
26 December 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

PriVeriFL: Privacy-Preserving and Aggregation-Verifiable Federated Learning

Published version:

DOI:10.1109/tsc.2024.3451183

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is the author's manuscript

This version is available http://hdl.handle.net/2318/2030687 since 2024-12-15T17:46:17Z

1

PriVeriFL: Privacy-Preserving and
Aggregation-Verifiable Federated Learning
Lulu Wang, Mirko Polato, Associate Member, IEEE, Alessandro Brighente, Member, IEEE,

Mauro Conti, Fellow, IEEE, Lei Zhang, Member, IEEE, and Lin Xu

Abstract—Federated learning provides a collaborative way to
build machine learning models without sharing private data.
However, attackers might infer private information from model
updates submitted by participants, and the aggregator might
maliciously forge the final aggregation results. Federated learning
still faces data privacy and aggregation integrity challenges. In
this paper, we combine inference attacks and information theory
to analyze the sensitivity of different bits of model parameters.
We conclude that not all bits of model parameters will leak
privacy. This realization inspires us to propose a novel low-
expansion homomorphic aggregation scheme based on Paillier
homomorphic encryption (PHE) for safeguarding participants’
data privacy. Building upon this, we develop PriVeriFL-A, a
privacy-preserving and aggregation-verifiable federated learning
scheme that combines homomorphic hash function and signature.
To prevent collusion attacks between the aggregator and mali-
cious participants, we further improve our PHE-based scheme
into a threshold PHE-based one, named PriVeriFL-B. Compared
with the privacy-preserving federated learning scheme based on
classic PHE, PriVeriFL-A reduces the communication overhead
to 1.65%, and the encryption/decryption computation overhead to
0.88%. Both PriVeriFL-A and PriVeriFL-B can effectively verify
the integrity of the global model, while maintaining an almost
negligible communication overhead for integrity verification and
protecting the privacy of participants’ data.

Index Terms—Federated learning, data privacy, aggregation
integrity, homomorphic encryption, homomorphic hash.

I. INTRODUCTION

Traditional machine learning (ML) collects data on a central
server to train a model. In many industries, however, data is
fragmented and locked in multiple organizations, resulting in
data islands (aka data silos). Due to growing concerns about
data privacy and legal restrictions [1], [2], data collection
processes that could lead to data leakage and violate privacy
are strictly prohibited.

Federated learning (FL) [3]–[7] provides a novel approach
to build personalized models without directly collecting private
data, thus effectively dealing with data silos. Since its incep-
tion, FL has found diverse applications, ranging from Google’s
keyboard application (Gboard [8]), to pharmaceutical labs
(MELLODDY [9]). Unlike traditional ML, which relies on

This work was supported in part by the NSF of China under Grant
62372177.

Lulu Wang, Lei Zhang, and Lin Xu are with the Software Engineering
Institute, East China Normal University, Shanghai 200062, China. Lei Zhang
is the corresponding author.

Mirko Polato is with the Department of Computer Science, University of
Turin, Turin 10124, Italy.

Alessandro Brighente and Mauro Conti are with the Department of Math-
ematics, University of Padua, Padua 35121, Italy.

centralized model training, FL enables users to collaboratively
leverage global models trained on their data without the ne-
cessity of centralizing data storage. This distributed approach
not only facilitates collaboration but also enhances privacy and
data security. A typical FL architecture consists of a central
server (usually referred to as the aggregator and assumed to
be malicious in our scheme) and multiple participants who
own local private data. When the system is initialized, the
aggregator sends an initial model to all participants. Each
participant then uses its local dataset to train a local model
and sends a corresponding model update to the aggregator.
Then, in the aggregation phase, the aggregator combines the
model updates from the participants into an updated global
model using a suitable aggregation function. Afterward, the
updated global model is sent back to all participants, and a new
federated round may start. This iterative process terminates
when the maximum number of epochs or training time is
reached, or the accuracy of the global model is high enough.

While offering significant advantages such as collaborative
learning and data locality, FL is inherently challenged by
serious data privacy concerns [10]. During the training process,
participants need to submit local model updates, which, if
transmitted without robust privacy safeguards, could become
vulnerable to interception by attackers. Such vulnerabilities
allow attackers to infer the participants’ local data-related
information indirectly [11], [12]. Existing works have demon-
strated that attackers can exploit these model updates to
extract critical details, including the labels and membership
of participants’ local datasets, and potentially even reconstruct
the original training data. The threat landscape in FL is diverse.
It includes not only external adversaries but also internal
threats from curious participants within the federated network
or a curious aggregator overseeing the learning process. The
risk escalates when multiple attackers collaborate. They may
target an honest participant, aiming to extract their data in
a collusive attack. These security risks highlight the urgent
need for developing and integrating more effective privacy
protection mechanisms.

In addition, FL also faces challenges related to aggregation
integrity [13], [14]. In the standard centralized FL architecture,
the role of the aggregator is pivotal, but this can also make it
a potential single point of failure. This vulnerability becomes
particularly apparent in the real world, where the aggregator
may be operated by untrusted organizations. In the absence
of robust guarantees for aggregation integrity, a malicious
aggregator could compromise the integrity of the global model.
Such an entity might not only falsify the aggregated results but

2

could also manipulate the outcomes returned to participants,
possibly driven by improper motives. For instance, within
an FL task designed for image recognition, an unscrupulous
aggregator could deliberately alter the aggregation process.
This manipulation could lead to the misclassification of im-
ages or introduce biases against certain categories of images,
potentially skewing the model’s effectiveness and fairness.
Similarly, in the context of financial analysis, an aggregator
might tamper with the results to create an undue advantage in
market transactions.

A. Related Work

Several FL schemes [15]–[29] have been proposed to tackle
fundamental data privacy challenges. These schemes incorpo-
rate differential privacy (DP) or cryptographic tools like secret
sharing and homomorphic encryption within secure multiparty
computation (MPC) frameworks. Focusing first on solutions
based on DP, the scheme proposed in [15] achieves a balance
between privacy and usability in deep neural networks through
selective parameter sharing and differential privacy. However,
a subsequent study shows that adversaries can recover in-
formation about the training data from gradients [24]. Other
schemes are [16]–[18], which integrate deep learning and DP
to avoid privacy leakage. However, as the performance results
show, the noise injected to get a differentially private solution
seriously affects the model’s accuracy. In scenarios such as
ad recommendation or credit management, a small loss in
accuracy greatly impacts results.

Turning to schemes based on secret sharing, in [19], the
authors design a secure aggregation scheme combining secret
sharing and key agreement, which requires four rounds of
interactions to aggregate model updates from one iteration of
training and it is only suitable for scenarios where the number
of participants is greater than two. Other secret sharing-based
schemes [20], [21] also exhibit similar challenges, including
the need for multiple interaction rounds to facilitate decryption
and mitigate the impact of users dropping out. Moreover, to
decrease the frequency of these interactions, some schemes
[22], [23] are compelled to employ a dual-server configuration.
Besides, secret sharing can also be deployed in the inference
phase [30]–[32], protecting the model privacy of the model
provider and the data privacy of the model users [33], [34].
Despite its significant importance, privacy preservation during
the inference phase is orthogonal to that in the training phase.
We stress that these secret sharing-based privacy-preserving
algorithms can be leveraged as a plug-in mechanism to further
enhance the system privacy, which leaves further work.

As for the privacy-preserving approaches that utilize homo-
morphic encryption, schemes [24], [25] based on the Paillier
homomorphic encryption (PHE) can protect data privacy but
introduce significant computation and communication over-
head. The approach proposed in [25] attempts to reduce
the overhead of PHE through batch encryption and gradient
clipping. However, this method may lead to a loss of accuracy,
cannot resist collusion attacks, and still incurs substantial
overhead. On the other hand, fully homomorphic encryption
(FHE) technologies such as BFV [35], BGV [36], TFHE [37],

and CKKS [38] are also employed to safeguard privacy in
FL. Although TFHE is robust, it lacks support for packing
encryption techniques, rendering it less suitable for processing
large-scale parameters in FL. The CKKS-based solutions [26],
[27] are specially designed to process floating-point numbers
and support packaging encryption. However, they will intro-
duce noise during decryption operations, thereby affecting
model accuracy. In contrast, schemes [28], [29] based on
BGV and BFV typically rely on integer operations but present
higher computational complexities when handling packed data.
Moreover, each encryption operation introduces noise, which
especially accumulates during the model aggregation process
when numerous participants are involved. Overall, despite the
broader application possibilities offered by fully homomorphic
encryption schemes, the Paillier scheme provides a simpler
approach in terms of noise management and computational
complexity. Most importantly, none of the mentioned schemes
analyze the composition of parameters or assess whether each
component is linked to privacy leakage. Additionally, they do
not support verification of aggregate integrity.

More recently, some studies [13], [14], [39], [40] have
attempted to guarantee aggregation integrity while preserving
data privacy. Xu et al. [13] add the aggregation integrity
verification based on the homomorphic hash function and
the pseudo-random technologies proposed in [19], which can
verify the correctness of the results returned by the aggregator
while ensuring the confidentiality of the model updates. Guo
et al. [14] further improve communication efficiency by de-
signing a verification function whose overhead is independent
of the dimension of the model updates. However, the above
two schemes, like [19], require four rounds of interactions to
aggregate model updates from one iteration of training, and
participants need to synchronize secret keys and masks. VFL
proposed in [39] implements verification through Lagrange
interpolation polynomials. However, it requires that the central
server and clients do not collude and that the x-coordinates of
all interpolation points remain consistent. Jiang et al. [40] pro-
posed PFLM, which achieves model aggregation verification
through ElGamal encryption and identity-based aggregate sig-
natures. Nonetheless, due to the ciphertext expansion problem,
the communication overhead for system verification is linearly
related to the dimension of the gradient vectors.

To our knowledge, existing privacy-preserving methods
based on DP invariably lead to a reduction in model ac-
curacy. Secret sharing approaches, while effective, introduce
substantial communication overhead, particularly in scenarios
with a large user base. Homomorphic encryption methods,
though capable of addressing the drawbacks of both DP and
secret sharing, still encounter significant computational costs.
PriVeriFL offers a novel solution by assessing the sensitivity
of individual bits within parameters and selectively encrypting
only those that are sensitive, thereby markedly reducing the
PHE workload. Furthermore, by employing batch encryption
techniques, the data volume requiring encryption is reduced
to less than 1% of its original size. Unlike existing aggre-
gation integrity verification schemes, PriVeriFL utilizes linear
homomorphic hashing and signature algorithms, making com-
munication overhead independent of model dimensions and

3

enabling integrity verification without additional interactions.

B. Our Contribution

In order to address the limitations in the existing litera-
ture, we analyze the sensitivity of different bits of model
parameters, and propose PriVeriFL, a privacy-preserving and
aggregation-verifiable FL scheme based on PHE, homomor-
phic hash function, and signature to ensure both data privacy
and aggregation integrity. Our main contributions are as fol-
lows:

1) We analyze the sensitivity of different bits of model
parameters by combining inference attacks and infor-
mation theory. Specifically, we implement membership
inference attacks and model inversion attacks on different
bits of model parameters to verify whether they will
leak model privacy. We utilize an information-theoretical
model, specifically mutual information, to quantify the
degree of information leakage about the input data leaked
by the different bits of the model parameter. Our results
demonstrate that exposing high bits of model parameters
does not reveal sensitive information.

2) Inspired by the above realization, we propose a novel
low-expansion homomorphic aggregation scheme based
on PHE to protect the data privacy of participants. This
scheme can effectively reduce the computation and com-
munication overhead of PHE. Compared with the privacy-
preserving FL scheme based on classic PHE, our scheme
can reduce the communication overhead to 1.65%, and re-
duce the encryption and decryption calculation overhead
to 0.88%.

3) We design PriVeriFL-A, a privacy-preserving and
aggregation-verifiable FL scheme by combining the above
homomorphic aggregation scheme, homomorphic hash
function, and signature. PriVeriFL-A can effectively ver-
ify the integrity of the aggregation returned by the
aggregator while protecting the privacy of participants’
data. Moreover, the communication overhead of integrity
verification is independent of the dimension of the model
updates submitted by the participants, so the communica-
tion overhead of integrity verification is almost negligible.

4) We further improve the above PHE-based scheme into
a threshold PHE-based FL scheme, named PriVeriFL-B,
to further resist collusion attacks between the aggregator
and participants. In PriVeriFL-B, even if the aggregator
colludes with t − 1 malicious participants, the plaintext
model update of an honest participant will not be leaked,
where t refers to the decryption threshold of the threshold
PHE.

The rest of this paper is organized as follows. Section II
presents the relevant background, followed by preliminary
in Section III. In Section IV, we analyze the sensitivity
of different bits of model parameters. Section V presents
PriVeriFL-A, a privacy-preserving and aggregation-verifiable
FL scheme. We further improve the scheme in Section VI and
name it PriVeriFL-B to deal with possible collusion attacks.
Section VII is the security analysis. The experimental results

in Section VIII show the overhead of our scheme. Finally,
Section IX concludes the paper.

II. BACKGROUND

In this section, we provide our system architecture, threat
model, and design goals.

A. System Architecture

In the following, we describe the architecture of PriVeriFL.
As shown in Figure 1, the system consists of the following
entities.

Aggregator

Local ciphertext
gradient updates

Global ciphertext
gradient updates

CA

Join
Leave

Participants

System parameters
and certificates

… …

Fig. 1: System architecture.

• Certification Authority: The Certification Authority (CA)
is a trusted third party. It is used to generate the system
parameters and issue certificates for the aggregator and
participants.

• Participants: Each participant, denoted as Pi, has his own
dataset Di. A group of participants might decide to initialize
an FL task for the training of a global model. The partic-
ipants in the group will generate encrypted updates based
on the latest global model and their respective datasets, and
send the encrypted updates to the aggregator. Participants
can join or leave the group at any moment during the overall
learning procedure.

• Aggregator: The aggregator (Ag) is used to initialize the
parameters of the global model. Further, with the encrypted
updates from the participants in a group, it can aggregate
encrypted updates into two encrypted updated global model
shares which are used for the participants in the group to
generate an updated global model.

B. Threat Model

As discussed earlier, common threats to FL come from
attackers seeking to obtain local model updates as well as
the aggregator compromising the integrity of aggregation.
Threat summaries from different entities are described in the
following.
• Threats from participants: Driven by interests of profit,

even malicious participants need to perform local training
correctly according to the protocol and send their models
to the aggregator, to benefit from the final aggregated
model. However, malicious participants may steal local
model updates from other participants. Once malicious
participants get model updates of specific participants, they

4

can launch inference-based attacks [41], [42] to obtain
information about the training data. Furthermore, malicious
participants might also launch more covert backdoor attacks.
In response, honest participants can implement backdoor
detection after receiving the aggregated model, which is
beyond the scope of the current discussion.

• Threats from the aggregator: The malicious aggregator
attempts to obtain local model updates of specific partic-
ipants to launch inference-based attacks. Additionally, the
aggregator may be managed by an untrusted organization,
causing it to deliberately manipulate the aggregation result.
This could be done either to minimize its computational
efforts–referred to as laziness–or to falsify the global model,
undermining the integrity of the entire FL process.

• Threats from outsiders: An external attacker tries to obtain
local model updates of specific participants by monitoring
the communication between the participant and the aggre-
gator to launch inference-based attacks.

• Threats from colluding attackers: Multiple malicious par-
ticipants may collude, potentially with the malicious ag-
gregator. Their goals are twofold: attacking specific honest
participants to steal their local model updates, and falsifying
the global model. The latter can occur in two ways. First,
the aggregator might directly tamper with the aggregation
result, which is our primary focus. Secondly, corrupted
participants might introduce errors into their local models
before aggregation, potentially reducing the global model’s
utility. We believe that even if such an attack occurs, honest
participants can assess the aggregated model’s quality by
verifying its performance after an aggregation round. If the
aggregated model fails to provide the expected performance
improvement, honest participants may opt out to minimize
the impact of the attack. For task sustainability, even ma-
licious participants are expected to provide accurate local
model training results.

C. Design Goals
Our design goals are twofold: first, to mitigate the threats

previously discussed, and second, to minimize the computation
and communication overhead resulting from the incorporation
of homomorphic encryption in the FL system. The specific
goals are as follows.
• Efficient model update privacy: If the privacy of a par-

ticipant’s model update is not protected, an attacker may
launch inference-based attacks to extract sensitive informa-
tion about the participant. Efficient and lossless model up-
date privacy guarantees that 1) no one except the generator
of a model update can learn the update, 2) even if a privacy
mechanism is applied to protect the privacy of a model
update, the efficiency of the scheme will not be significantly
reduced.

• Global model privacy: It guarantees that, except for the
global model initialized by the aggregator, only the partic-
ipants of an FL task can learn the latest global model in
each training round of the task.

• Lossless: The accuracy of the final global model will not be
reduced compared with the final global model trained using
the plain FL scheme.

• Efficient integrity checking: A malicious aggregator could
dishonestly generate encrypted global model shares. Ef-
ficient integrity checking guarantees that 1) if encrypted
global model shares corresponding to an FL task are dis-
honestly generated, then any participant of the task can
efficiently find the misbehavior of the aggregator, 2) this
property can be achieved with low message expansion.

• Collusion resistance: Obviously, the aggregator can get the
global model corresponding to an FL task if it can collude
with a participant involved in this task. Collusion resistance
here means that even if t− 1 participants in a set P collude
with the aggregator, they cannot get the model update of a
participant who is not in P, where t is a threshold and defines
the least number of participants needed to have a successful
collusion. We note that all the participants in PriVeriFL-A
share the same public-private key pair. In this setting, if
a participant colludes with the aggregator, they can decrypt
the model updates of all the participants. PriVeriFL-B resists
this attack and achieves the property of collusion resistance.

III. PRELIMINARY

To facilitate the understanding of PriVeriFL, we introduce
the cryptographic primitives used and the background knowl-
edge of FL in this section.

A. (Threshold) Paillier Homomorphic Encryption

Our scheme is based on Paillier homomorphic encryption
(PHE) [43], which is an additive homomorphic encryption
scheme. The functionality of PHE is denoted as FPHE. It
consists of five algorithms PHE = (PHE.KeyGen,PHE.Enc,
PHE.Dec,PHE.Add,PHE.Mul), as follows:
• PHE.KeyGen(ℓ): Define L(x) = (x−1)

n . Choose two large
prime numbers p and q s.t. gcd(pq, (p − 1)(q − 1)) = 1.
Calculate n = pq and λ = lcm(p − 1, q − 1). Randomly
generate g ∈ Z∗

n2 s.t. gcd(L(gλ mod n2), n) = 1. Output
the public key pPHE = (n, g) and private key sPHE = λ.

• PHE.Enc(pPHE, m): On input a message m ∈ Zn, it
generates a random number r ∈ Z∗

n and computes the
ciphertext

c = gmrn mod n2.

• PHE.Dec(sPHE, c) : On input a ciphertext c, it calculates

m =
L(cλ mod n2)

L(gλ mod n2)
mod n.

• PHE.Add(c1, c2): On input two ciphertexts c1, c2 corre-
sponding to plaintexts m1,m2 ∈ Zn respectively, it com-
putes

c1c2 mod n2 = PHE.Enc(pPHE, (m1 +m2) mod n).

• PHE.Mul(c, k): On input a ciphertext c corresponding to the
plaintext m and k ∈ Zn, it satisfies

ck mod n2 = PHE.Enc(pPHE, km mod n).

In PriVeriFL-A, PHE is used to encrypt the model update of
a participant. Further, all participants share the same public-
private key pair. If a participant Pi gets an encrypted model

5

update of another participant Pj , then the encrypted model
update can be decrypted by Pi. Therefore, Pi could collude
with the aggregator and hence obtain a model update of Pj .
Threshold PHE (TPHE) may be applied to solve this prob-
lem [44]. A (t, n) TPHE scheme consists of five algorithms
TPHE = (TPHE.KeyGen,TPHE.Enc,TPHE.Dec,TPHE.Add,
TPHE.Mul), in which the algorithms TPHE.Enc, TPHE.Add
and TPHE.Mul are the same as the algorithms PHE.Enc,
PHE.Add and PHE.Mul in PHE, respectively. The algorithms
TPHE.KeyGen,TPHE.Dec are defined as follows:
• TPHE.KeyGen(ℓ): On input a security parameter ℓ, a group

of participants P1, . . . , Pn perform a (t, n) distributed key
generation protocol, e.g., the protocol in [44], to generate a
public key pTPHE and each participant Pi’s secret key share
siTPHE.

• TPHE.Dec({siTPHE}|{siTPHE}|≥t, c) : On input a ciphertext
c, each participant decrypt c with his/her own secret key
share siTPHE and announces partial decryption result ciTPHE.
Each participant combines the partial decryption results of
t participants to get the plaintext.

B. Homomorphic Hash Function

Homomorphic hashing (HH) is a one-way, collision-
resistant, and homomorphic function that supports computing
the hash of a composite block based on the hashes of the
individual blocks. We use FHH to denote the functionality
of HH. As constructed in [45], a homomorphic hash scheme
consists of three algorithms H = (H.Gen,H.Hash,H.Eval), as
follows:
• H.Gen(ϑ, θ) : On input security parameters ϑ, θ, it generates

public parameters pHH, including cyclic group G of prime
order p, a generator g ∈ G, and θ distinct elements
g1, . . . , gθ ∈ G.

• H.Hash(mi) : On input a θ-dimensional vector mi =
[mi[1],mi[2], . . . ,mi[θ]], it outputs the hash value of the
homomorphic hash function, i.e. hi ←

∏θ
l=1 g

mi[l]
l , where

mi[l] ∈ Zp.
• H.Eval(h1, . . . , hξ, w1, . . . , wξ) : The homomorphic hash

function satisfies the property that for hashes h1, . . . , hξ

output by H.Hash and coefficients w1, . . . , wξ ∈ Zp, it
can compute their linear combination, i.e. h∗ ←

∏ξ
i=1 h

wi
i .

Therefore, the size of the hash is independent of the dimen-
sion θ of the input vector mi.

C. Model Average Algorithm

The federated averaging algorithm [3] is proposed for
model training in federated learning, specifically aggregating
multiple models into a global model. According to the different
aggregation parameters, federated averaging algorithms can
be divided into model averaging algorithms [46] and gradient
averaging algorithms [47], [48]. Here we take the traditional
model averaging algorithm as an example. As shown in
Algorithm 1, multiple participants train models with local
data and send model updates to the aggregator. Then, the
aggregator aggregates the received model updates into a global
model according to the model averaging algorithm. The model
averaging algorithm mainly includes the following steps:

1) The aggregator initializes the training, that is, it randomly
initializes the global model and broadcasts basic informa-
tion about model training to all participants along with
the model.

2) Each participant trains the model locally, gets the model
update and sends it to the aggregator.

3) The aggregator computes a weighted average of all par-
ticipants’ models based on the size of every participant’s
local dataset, resulting in an updated global model.

The above steps (2) and (3) are terminated after being repeated
T times or a convergence criterion is reached.

Our scheme achieves the same aggregation effect as the
model averaging algorithm, but sends encrypted model updates
during the aggregation process, thus protecting the data privacy
of participants.

Algorithm 1 Model Averaging Algorithm

Require: Participants P = {P1, P2, . . . , PN}, dataset D =
{D1, D2, .., DN}, where Pi ∈ P holds dataset Di and the
size of Di is ni; n: sum of participant dataset size; 𭟋: deep
learning algorithm; φ: learning rate; E: number of loacl epochs;
T : number of rounds.

Ensure: Global model mT

1: function AGGREGATOR EXECUTES:
2: Initialize m0

3: for t=1 to T do
4: for every participant Pi ∈ P in parallel do
5: mi

t ← LocalUpdate(mt−1)
6: end for
7: mt ←

∑N
i=1

ni
n
mi

t

8: return mt to all participants.
9: end for

10: end function
11: function LOCALUPDATE(i, m):
12: for iteration=1 to E do
13: for each batch b in participant Pi’s split do
14: m← m− φ · ▽𭟋(m, b)
15: end for
16: end for
17: return m to the aggregator
18: end function

IV. SENSITIVITY ANALYSIS FOR MODEL PARAMETERS

Prior to designing a privacy-preserving FL scheme, it is
important to determine whether it is necessary to encrypt all
the bits of the model. One way to analyze this is by examining
the composition of the model parameters. Typically, a deep
learning model trained by participants consists of several ma-
trices, each comprising multiple floating-point numbers with
eight decimal places (e.g., 0.12345678, and we represent 1 to
8 as from low bit to high bit). Our intuition is that different bits
of the model parameters exhibit varying sensitivity, meaning
that they carry different amounts of information about the
model training data.

To verify this intuition, we conducted membership inference
attacks and model inversion attacks on different bits of model
parameters and evaluated their sensitivity based on the results
of these attacks. It is important to note that while these attacks
are common and effective, they do not provide a rigorous
proof of the sensitivity of different bits of model parameters.

6

Therefore, we utilized mutual information from information
theory to quantify the amount of information leaked about the
model training data by different bits of model parameters. This
approach enabled us to determine the sensitivity of each bit
of the model parameters.

A. Membership Inference Attacks

Membership inference attacks [41] against machine learning
models aim to determine whether a target data sample is used
to train the target model. Formally speaking, given a data
sample x and the access to the target model M , determine
whether x belongs to the training set of model M . The
disclosure of identity information will seriously threaten the
privacy of users. For example, if a model is trained on patient-
specific disease data, judging that a person is included in
the training set can reveal that person’s health status, which
seriously violates personal privacy.

We first introduce the background knowledge and main idea
of the attack. Both knowledges of the target model and training
data are crucial for an attacker to implement membership
inference attacks effectively. In our experiment, we describe
the adversary’s knowledge with the most common setting that
fits our scheme, i.e., the adversary has black-box access to
the target model, and masters the training data distribution
to generate a shadow dataset with the same distribution. We
adopt the membership inference attacks scheme proposed in
[41]. The attacker trains the shadow model using part of the
shadow dataset and then queries the shadow model with the
entire shadow dataset to obtain prediction vectors pred. If a
sample of the shadow dataset belongs to the training set of
the shadow model, the adversary labels it member, otherwise,
label it as non-member. Taking the shadow dataset labels y,
prediction vectors pred, and membership set {member/non-
member} tuple (y, pred, {member/non-member}) as a new
training set, the attacker uses it to train a binary classification
attack model. After that, in order to confirm whether a target
sample belongs to the training set of the target model, it can
be fed to the target model to obtain the prediction vector, and
then the label of the sample and the prediction vector can be
fed to the attack model.

We train the classification model using the convolutional
neural network ResNet-18 [49] on the CIFAR100 [50] dataset.
CIFAR100 contains 100 classes of images, each class contains
600 images, divided into 500 training images and 100 testing
images. We choose PyTorch [51] as the experimental platform,
cross-entropy as the loss function, and SGD as the optimizer
with a momentum of 0.9. The learning rate is 0.01, and the
training epochs are 40.

First, we consider the relationship between attack accuracy
and the training dataset size of the target model. As shown in
Figure 2, we select 10000, 30000, and 50000 pieces of training
data to train the target model, and then conduct membership
inference attacks on it. Result shows that the accuracy of
the attack decreases as the target model training dataset size
increases.

Then we verify the impact of different bits of model
parameters on the attack accuracy to analyze the sensitivity

Original 8th 8 7 8 6 8 5 8 4 8 3 8 2 8 1
Model with different bits replaced with 0

0.0

0.2

0.4

0.6

0.8

1.0

At
ta

ck
 a

cc
ur

ac
y

Training set size: 10000
Training set size: 30000
Training set size: 50000

Fig. 2: Accuracy of the membership inference attacks against the original
model and the model in which different bits after the decimal point of all
parameters are replaced by 0.

of different bits of model parameters. We replace the 8th bit,
8th to 7th bits, ..., and the 8th to the 1st bits after the decimal
point of all parameters with 0, respectively. Figure 2 shows
that the attack against the original model and the model in
which the 8th to 3rd bits of all parameters are replaced with 0
is effective. When the 2nd and 1st bits are replaced, the attack
accuracy drops to the baseline 0.5. This means that from the
perspective of membership inference attacks, the 1st and 2nd
bits after the decimal point of model parameters are sensitive,
while the 3rd to 8th digits are insensitive because the presence
or absence of this part does not greatly affect the attack result.

B. Model Inversion Attacks

Model inversion attacks [42] against machine learning mod-
els aim to reconstruct information about the training data from
the target model. Formally, given the dimension and label of
the target sample, and the access of the target model M ,
reconstruct the representative data of this class of sample.
Model inversion attacks will indirectly leak victim privacy. For
example, in a neural network-based face recognition system,
the adversary can recover the victim’s face data contained in
the target model’s training set.

Again, we first introduce the background knowledge and
idea of this attack. In the experiments, we adopt the most
common setting for the adversary’s knowledge, that is, the
adversary has access to the target model M and grasps
the dimension and label of the target sample. We use the
model inversion attacks scheme proposed in [42]. The attacker
generates a random sample x according to the dimension
of the target sample and feeds it into the target model M
to calculate the loss value. The attacker then optimizes the
random sample x by using a backpropagation algorithm based
on the model parameters. This process is repeated until the loss
value reaches the threshold.

We train the classification model using a two-layer neural
network on the AT&T Laboratories Cambridge database of
faces1. This dataset contains 40 classes of images, each
class contains 10 images, divided into 7 training images and
3 testing images. We choose PyTorch as the experimental
platform, Negative Log-Likelihood as the loss function, and
Adam as the optimizer. The learning rate is 0.0003 and the
training epochs are 500.

1http://cam-orl.co.uk/facedatabase.html

7

(a) Training (b) Original (c) 8th (d) 8 → 7 (e) 8 → 6 (f) 8 → 5 (g) 8 → 4 (h) 8 → 3 (i) 8 → 2 (j) 8 → 1

Fig. 3: Model inversion attacks against the original model and the model in which different bits after the decimal point of all parameters are replaced by 0.
TABLE I: MI and NMI of the original model and the model in which different bits after the decimal point of all parameters are replaced by 0.

Original 8th 8→ 7 8→ 6 8→ 5 8→ 4 8→ 3 8→ 2 8→ 1

CIFAR100
MI 3.867 3.867 3.867 3.867 3.867 3.867 3.861 0.469 0.0

NMI 0.999 0.999 0.999 0.999 0.999 0.999 0.997 0.210 0.0

AT&T Face
MI 3.678 3.678 3.678 3.678 3.678 3.678 3.619 0.494 0.0

NMI 0.997 0.997 0.997 0.997 0.997 0.997 0.981 0.207 0.0

We perform the model inversion attacks on the above-
trained model. As shown in Figure 3(b), the adversary can
reconstruct the victims’ images after obtaining the necessary
information, which seriously violates the victims’ privacy.

Then we verify the impact of different bits of model
parameters on the attack result to analyze the sensitivity of
different bits. As in the membership inference attack, we
replace the 8th bit, 8th to 7th bits, ..., and the 8th to the 1st bits
after the decimal point of all parameters with 0, respectively.
It can be seen from Figures 3(c) to 3(h) that the absence of
the 8th to 3rd bits of the model parameters does not affect the
attack results. And when the 2nd and 1st bits are replaced, the
reconstructed images (Refer to Figures 3(i) and 3(j)) basically
cannot display effective information about the victims, which
means that from the perspective of model inversion attacks, the
first two bits after the decimal point of the model parameter
are highly sensitive, while other positions are non-sensitive.

C. Information Theoretic Analysis

Information theory is a mathematical theory that deals with
the quantification and communication of information. It offers
a mathematical framework for the examination of information,
encompassing its quantification. One of the central tenets of
information theory is mutual information (MI) [52], which
assesses the degree of information that two sets of cluster
share.

MI measures the reduction in uncertainty about one cluster
that can be achieved by knowing the other. MI between X and
Y is a non-negative. A high value of MI indicates a strong
association between X and Y , while a low value indicates
little or no association. More formally, given two clusters X
and Y , MI between them is defined as:

MI(X;Y) =
∑
x∈X

∑
y∈Y

P (x, y)log
P (x, y)

P (x)P (y)
,

where P (x) and P (y) are the marginal probabilities of X and
Y , respectively, and P (x, y) is the joint probability of X and

Y .
Normalized Mutual Information (NMI) is a variation of

MI, which takes into account the sizes of the clusters and
normalizes the MI value to a range between 0 (no mutual
information) and 1 (perfect correlation). NMI between two
sets of cluster labels X and Y is given by:

NMI(X;Y) =
2 ·MI(X;Y)

−
∑

x∈X P (x)logP (x)−
∑

y∈Y P (y)logP (y)
.

From the perspective of inference attacks, the aim is to
infer the membership attribute of the data or reproduce the
original data based on the labels. We consider the labels as
sensitive information that needs to be protected. Subsequently,
we modify certain bits of the model parameters and calculate
MI and NMI between the predicted labels and the true labels
of the modified model. This analysis allows us to evaluate the
sensitivity of different bits of the model parameters.

We analyze the sensitivity of different bits of the model
parameters with the target models used in Sections IV-A and
IV-B. As shown in Table I, the predicted labels and the true
labels of the original target model are highly correlated. We
perform a bit replacement process on various parameters of
two models: one trained on the CIFAR100 dataset, used for
membership inference attacks, and the other trained on the
AT&T Laboratories Cambridge database of faces, used for
model inversion attacks. During this process, we replace the
8th bit, the 8th to 7th bits, and so on, up to the 8th to 1st
bits after the decimal point, with 0 for each parameter. Upon
replacing the 2nd and 1st bits of all parameters with 0, we
observe that the MI and NMI scores between the predicted
labels and true labels become close to 0. This finding sheds
light on the reasons behind the success of the membership
inference attacks and model inversion attacks.

We need to point out that although the above method of
gradually replacing the 8th bit, 8th to 7th bits, ..., and the 8th
to the 1st bits can reflect the sensitivity of each bit, it cannot
fully capture the synergistic effect between bits, especially the

8

1 2 3 4 5 6 7 8
Different Bits

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Sh
ap

le
y

Va
lu

e

0.525

0.442

0.028 0.009 -0.005 -0.001 0.000 0.000

Fig. 4: Shapley value of the normalized mutual
information of each bit.

1 6 11 16 21 26 31 36 41
Epoch

0.00

0.02

0.04

0.06

0.08

0.10

Sh
ap

le
y

Va
lu

e
Pr

op
or

tio
n:

 B
its

 3
-8

 /
1-

8

0.009

0.037 0.034

0.010
0.015

0.041
0.032

0.045

0.030

Fig. 5: The proportion of the sum of Shapley
values for bits 3-8 as a function of the training
epoch.

interaction between non-adjacent bits. The Shapley value [53],
[54] of NMI is a promising tool that quantifies the contribution
of each bit across all possible combinations. This method not
only assesses the impact of a single bit but also captures
their synergistic effects, thus providing a more comprehensive
understanding of bit sensitivity. We implement this by con-
sidering all 256 combinations of the 8 bits post-decimal and
calculating the NMI between the model’s predicted labels and
the actual labels, from which we derive the Shapley values for
each bit.

Our calculations of the Shapley value of NMI are performed
on models trained on the CIFAR100 and AT&T Face datasets.
Given the similarity in Shapley values between the two mod-
els, we only present the analysis of the ResNet-18 model
trained on CIFAR100. As shown in Figure 4, the Shapley val-
ues of the 1st and 2nd bits post-decimal are significantly higher
than those of the other bits, indicating that they contribute
substantially to model performance, carrying the bulk of the
model’s critical information. The 3rd and 4th bits show smaller
Shapley values, indicating lesser contributions. Notably, the
Shapley values of the 5th and 6th bits are negative, suggesting
that these bits might introduce noise or redundant information
in certain combinations, thus degrading model performance.
Although these bits may have a certain effect in specific cases,
they could disrupt model predictions in others. The Shapley
values of the 7th and 8th bits are almost 0, indicating minimal
to no impact on model performance.

To verify the robustness of the above analysis, we also
explore the potential variability in the sensitivity of insensi-
tive bits as the model’s accuracy changes (reflected through
training epochs). To assess the overall sensitivity/contribution
of the aforementioned non-sensitive bits, we still use the
Shapley value as a measurement tool. The Shapley value,

which quantifies the contribution or sensitivity of each bit, is
determined by calculating its marginal contribution across all
possible combinations. Thus, by summing the Shapley values
of several bits and dividing this sum by the total Shapley
values of all bits, we can gauge the proportionate contribution
of these bits to the model. To assess the sensitivity changes
in bits beyond the most significant (i.e., bits 3 to 8), we
calculated the proportion of the sum of the Shapley values
for bits 3 to 8 over the sum of the Shapley values for all
bits across various training epochs. In our research, compared
to the two-layer neural network model trained on the AT&T
Face dataset, the ResNet-18 trained on the CIFAR100 dataset
presents a higher training challenge and can better reflect the
changes in the training accuracy curve. We select this model
for detailed analysis. As illustrated in Figure 5, the proportion
of the sum of the Shapley values for 3-8 bits does not
show significant variation with the increase in training epochs
(i.e., as the training accuracy curve flattens) and consistently
remains below 5%. Regardless of the model’s accuracy level,
the primary information is still represented by the 1st and 2nd
bits. This demonstrates that even as the accuracy curve tends
to be flat, the most significant bits (lower bits) are still the
main information carriers of the model, while the sensitivity
of other bits changes minimally.

We conclude that the success of inference attacks depends
on the accuracy of model predictions. However, the sensitivi-
ties of different bits of the model parameters are inconsistent.
By protecting the low bits, which carry most of the model
information, the prediction results become invalid for attack-
ers, preventing successful inference attacks. Thus, it is only
necessary to implement privacy protection for the first sensitive
t bits after the decimal point of the model. To generalize the
above conclusions to different privacy-preserving tasks, we
develop an adaptive method to provide appropriate bit sensitiv-
ity analysis for various tasks, which is particularly crucial for
special cases. For example, when the first two bits of the model
parameter are almost all 0, it may be necessary to consider
sensitivity from the third bit. To accommodate varying privacy
protection tasks, model providers could calculate the Shapley
values of NMI for different bits to determine the primary
sensitive bits. When the sum of the Shapley values from the 1st
bit to the t-th bit exceeds a set threshold (such as 95%), these
bits can be regarded as sensitive bits. Based on our experience,
t =2 or t =3 should suffice for most scenarios. This finding
suggests that selectively encrypting highly sensitive bits of
parameters in privacy-preserving FL schemes can significantly
reduce computation and communication overhead, without
compromising the privacy of the training data.

V. PROPOSED FRAMEWORK

PriVeriFL-A comprises the system setup, and training and
aggregation stages. Below is a detailed description of each
stage.

A. System Setup

Suppose each participant has a public-private key pair and
a certificate issued by a CA. Then, the CA initializes the

9

𝐀𝐠𝐠𝐫𝐞𝐠𝐚𝐭𝐨𝐫

Local model training and

encryption

1. 𝑷𝒊 trains and gets the model 𝑚𝑖

2. 𝑷𝒊 computes (𝐻𝑎𝑠ℎ 𝑚𝑖 , 𝜎𝑖)

3. 𝑷𝒊 encrypts 𝑚𝑖

Model aggregation

Participants

Join

Leave

… …

Parameter

initialization

Model decryption and verification

4. (joint) decrypt

5. 𝑷𝒊 verifies the integrity of the

aggregation

6. 𝑷𝒊 updates local model

Fig. 6: Training and aggregation stage, which includes four sub-stages, namely: parameter initialization, local model training and encryption, model aggregation,
model decryption and verification.

[[0.07327445, -0.01614979, -0.06371141, ..., -0.01109161, 0.08281107, 0.04186641]

[-0.02696884, -0.03636086, -0.03650842, ..., -0.01221302, -0.05999003, -0.01852072]

...

[0.01156262, 0.02728741, 0.01009761, ..., 0.00356066, 0.01425921, 0.06700374]

[-0.04976177, -0.03033303, 0.05532552, ..., 0.08750954, -0.07852595, 0.04087993]]

[[07, -01, -06, ..., -01, 08, 04]

[-02, -03, -03, ..., -01, -05, -01]

...

[01, 02, 01, ..., 00, 01, 06]

[-04, -03, 05, ..., 08, -07, 04]]

[[0.00327445, -0.00614979, -0.00371141, ..., -0.00109161, 0.00281107, 0.00186641]

[-0.00696884, -0.00636086, -0.00650842, ..., -0.00221302, -0.00999003, -0.00852072]

...

[0.00156262, 0.00728741, 0.00009761, ..., 0.00356066, 0.00425921, 0.00700374]

[-0.00976177, -0.00033303, 0.00532552, ..., 0.00750954, -0.00852595, 0.00087993]]

. Paillier Encryption . Symmetric Encryption

Fig. 7: Model segmentation.

hash function (see Section III-B) and publishes the basic
parameters to all participants. That is, all participants have
the same hash function security parameters ϑ. Moreover, the
aggregator uses any symmetric encryption (SE) scheme SE =
(SE.Gen(τ),SE.Enc(k,m),SE.Dec(k, c)) [55] to establish a
secure channel with participants, where k is the symmetric
key, m is the plaintext and the c is the ciphertext. As for
participants, they use PHE scheme with the same public-
private key pairs (pPHE, sPHE) to protect local model updates.
Additionally, each participant has a public-private key pair
(mpki,mski) of the signature scheme.

B. Training and Aggregation

As shown in Figure 6, this stage can be divided into
four sub-stages, namely: parameter initialization, local model
training and encryption, model aggregation, model decryption
and verification.

1) Parameter initialization: The initialization of the par-
ticipants should be completed before each round of training.
The aggregator sends the initial neural network model to the
participants, and specifies the corresponding loss function,
optimization function, learning rate, and other necessary pa-
rameters for the training.

2) Local model training and encryption: Each participant
will execute the TRAIN&ENCRYPT function in Algorithm 2
(see lines 1 to 14). Participant Pi trains his/her local model mi

by multiple iterations on the dataset Di. In order to ensure the
correctness of the global model M sent by the aggregator, each

participant Pi needs to use the homomorphic hash function
(see Section III-B) to generate the hash value hi of the local
model update mi, and finally verify whether the global model
is calculated correctly through all the hash values {hi}1≤i≤N

of particpants’ local model updates. The specific process of
calculating the hash value is as follows:
• When the participant Pi gets the trained model update mi,

he/she multiplies each parameter in the mi by 108 to get
an new model m′

i (here it is assumed that the parameters of
model update mi are kept to eight decimal places).

• Participant Pi calculates and obtains the hash value hi of
the model m′

i by computing H.Hash(m′
i), and generates

the signature σi of the hash value hi through the signature
scheme Sig(mski, hi). At the same time, Pi generates the
signature ϱi of the local dataset size ni through the signature
scheme Sig(mski, ni).
In order to protect the privacy of the model update, each

participant combines the Paillier homomorphic encryption
algorithm and the symmetric encryption algorithm to encrypt
the local model update and then send it to the aggregator for
aggregation. As shown in Figure 7, participant Pi splits the
parameters in the model update mi into two parts, extracts and
saves the t decimal places of all parameters into matrix Ai

(Here take t=2 as an example), fills the extracted part with 0,
and saves the filled parameters to matrix Bi. Each participant
will use the PHE scheme to encrypt the data in matrix Ai,
and use the symmetric encryption scheme to encrypt the data
in matrix Bi. The specific process is as follows:

10

Algorithm 2 Training, aggregation and verification.

Require: Participants P = {P1, . . . , PN}, dataset D =

{D1, . . . , DN}, where Pi ∈ P holds his/her own dataset Di

and the size of dataset Di is ni; 𭟋: deep learning algorithm;
(pPHE, sPHE): Paillier based public-private key pair of all par-
ticipants; (mpki,mski): The public-private key pair of each
participant’s signature scheme; H: Hash function.

Ensure: Global model M.
1: function TRAIN&ENCRYPT:
2: for Pi ∈ P do
3: mi ← 𭟋(Di)

4: m′
i ← mi · 108

5: hi ← H.Hash(m′
i)

6: σi ← Sig(mski, hi)

7: ϱi ← Sig(mski, ni)

8: Ai,Bi ←split(mi)

9: {vij}1≤j≤η ←encode and pack(Ai)

10: {v̂ij}1≤j≤η ← {PHE.Enc(pPHE, vij)}1≤j≤η

11: B̂i ← SE.Enc(k,Bi)

12: send ({v̂ij}1≤j≤η, B̂i, hi, σi, ni, ϱi) to Aggregator
13: end for
14: end function
15: function AGGREGATE:
16: Get {{v̂ij}1≤j≤η, B̂i, hi, σi, ni, ϱi}1≤i≤N

17: {{v̂wij}1≤j≤η}1≤i≤N ←
18: {{PHE.Mul(v̂ij , ni)}1≤j≤η}1≤i≤N

19: {V̂j}1≤j≤η ← {
∑N

i=1 v̂
w
ij}1≤j≤η

20: {Bi}1≤i≤N ← {SE.Dec(k, B̂i)}1≤i≤N

21: {Bi
w}1≤i≤N ← {Bi ∗ ni}1≤i≤N

22: MB ←
∑N

i=1 Bi
w

23: Broadcast {hi, σi, ni, ϱi}1≤i≤N&zi=1, n,MB,

24: {V̂j}1≤j≤η to all participants
25: end function
26: function DECRYPT&VERIFY:
27: Get {hi, σi, ni, ϱi}1≤i≤N&zi=1, n,MB, {V̂j}1≤j≤η

28: for Pi ∈ P do
29: if V er(mpki, σi) or V er(mpki, ϱi) = ⊥ then
30: Terminate this round of training
31: end if
32: end for
33: MA ←decode({PHE.Dec(sPHE, V̂j)}1≤j≤η)

34: Global model M ←combine(MA,MB)

35: M ′ ←M × 108

36: if H.Hash(M ′) = H.Eval(h1, . . . , hi, n1, . . . , ni) then
37: Globao model M ← M

n

38: end if
39: end function

• In the PHE scheme, the ciphertext length is roughly the
same as the key length, and as of 2019, the minimum secure
key size for Paillier is 2048 [56]. If Paillier homomorphic
encryption is performed on each element in matrix Ai sepa-
rately, it will cause dozens of times of ciphertext expansion.
In order to avoid redundancy, when the plaintext is short
and of fixed length, we make full use of the plaintext space
and pack multiple plaintexts into one for encryption and
decryption calculations.

• Participant Pi converts each parameter ai in matrix Ai

+

=

00 1111100111 00 1111111001 00 1111110111 00 …

-25 -7 -9

00 0000001111 00 0000001001 00 0000100011 00 …

15 9 35

00 1111110110 01 0000000010 01 0000011010 00 …

-10 2 26

original valuesign bitpadding bit

Fig. 8: BatchCrypt.

into a two’s complement bi of length l bits with two sign
bits. Take ρ = ⌊2048/(l + 2)⌋ two’s complement as a
group, and concatenate padding values and a group of
two’s complement as shown in Figure 8 to obtain a large
integer v = 00∥b1∥00∥b2∥ . . . ∥00∥bρ. The padding value
is used here to avoid overflow, and two sign bits are used
to distinguish positive overflow and negative overflow in
subsequent calculations. We assume that the total number
of parameters in matrix Ai is Q, and so does matrix Bi.
Set η = ⌈Q/ρ⌉, the parameters in the matrix Ai are divided
into η groups with the number ρ as a group (the number of
last group is Q− ρ ∗ (η − 1)), and are respectively packed
into large integers vi1, vi2, . . .,viη as previously described.

• Participant Pi encrypts each large integers vij (1 ≤ j ≤ η)
by computing PHE.Enc(pPHE, vij) of the PHE scheme to
obtain PHE-based ciphertext v̂ij , and encrypts matrix Bi
by computing SE.Enc(k, Bi) of the symmetric encryption
scheme to obtain the SE-based ciphertext B̂i.
Finally, participant Pi sends {v̂ij}1≤j≤η , B̂, hash and sig-

nature pair (hi, σi), and local dataset size and signature pair
(ni, ϱi) to the aggregator.

3) Model aggregation: If either the ag-
gregator receives model-related information
{{v̂ij}1≤j≤η, B̂, hi, σi, ni, ϱi}1≤i≤N from all participants,
or the maximum waiting time of aggregator is reached, the
aggregator executes the Aggregate function (see lines 15 to
25). The aggregator generates a vector Z to indicate which
model-related information of participants it has received, and
it can be set as Z = (z1, z2, . . . , zN) = (1, 0, . . . , 1), s.t.
|Z| = N , where N is the total number of participants. The
aggregator may not receive some participants’ model-related
information due to network delay, participants dropping
out, etc. If the aggregator has received the model-related
information submitted by participant Pi , zi = 1, otherwise
zi = 0. Therefore, the impact of some participants leaving the
system is small, which enables dynamic participation. Then,
the aggregator calculates the sum of the dataset sizes of the
participants included in vector Z and denotes it by n. It needs
to calculate the weight of each participant based on his/her
dataset size, and sets weight = (n1, . . . , nN), where ni > 0
if zi = 1 and ni = 0 otherwise. Now the aggregator needs
to aggregate the encrypted model updates of the participants
included in Z, which is done as follows:
• For the {v̂ij}1≤j≤η sent by participant Pi, the aggregator

multiplies each element v̂ij in it by the corresponding
weight ni by computing PHE.Mul(v̂ij , ni) to obtain the
weighted PHE-based ciphertext {v̂wij}1≤j≤η . The aggregator
performs this calculation for the PHE-based ciphertexts of
all participants in vector Z.

• Next, the aggregator adds each element v̂wij (1 ≤ j ≤ η, 2 ≤

11

i ≤ N) of participants P2 to PN with corresponding element
v̂w1j(1 ≤ j ≤ η) of participant P1 by computing v̂w1j =
PHE.Add(v̂w1j , v̂

w
ij), thereby aggregating the weighted PHE-

based ciphertexts of all participants to obtain {v̂w1j}1≤j≤η

(it will be denoted as {V̂j}1≤j≤η later).
• The aggregator decrypts all participants’ SE-based cipher-

text {B̂i}1≤i≤N by computing SE.Dec(k, B̂i) to obtain
{Bi}1≤i≤N . Then, it uses the model average algorithm
mentioned in Section III-C to aggregate {Bi}1≤i≤N with
weight ni ̸= 0.

• Specifically, the aggregator multiplies each element bj (1 ≤
j ≤ Q) in Bi by the corresponding weight ni to obtain
the weighted Biw. It performs the above for all participants
to obtain {Biw}1≤i≤N . Next, it aggregates {Biw}1≤i≤N to
obtain MB.

Finally, the aggregator sends {hi, σi, ni, ϱi}1≤i≤N&zi=1, n,
MB, {V̂j}1≤j≤η to all participants.

4) Model decryption and verification: When the partici-
pant Pi receives {hi, σi, ni}1≤i≤N&zi=1,MB, and {V̂j}1≤j≤η

returned by the aggregator, he/she will execute the DE-
CRYPT&VERIFY function (see lines 26 to 39 of Algorithm 2).
He/She first determines whether the hash values and dataset
size of all participants’ model updates have been tampered by
computing Ver(mpkj , σj)1≤j≤N or Ver(mpkj , ϱj)1≤j≤N

?
=

⊥. If it is confirmed that the hash value or dataset size of one
participant model update has been tampered, Pi will terminate
the current round of training and aggregation. Otherwise,
he/she decrypts and decodes ({V̂j}1≤j≤η,MB) to obtain the
global model M .

Specifically, participant Pi decrypts each element V̂j

in {V̂j}1≤j≤η by computing PHE.Dec(sPHE, V̂j) to obtain
{Vj}1≤j≤η . According to the reverse operation in Figure 8,
Pi divides each element in {Vj}1≤j≤η into ρ parts, each of
which is l+2 bits in length, and removes the first two padding
values in each part to obtain the matrix MA as same as the
matrix A in Figure 7. Then, according to the reverse operation
in Figure 7, the participants combine the matrix MA and the
matrix MB into a global model M .

Finally, participant Pi need to verify the integrity of the
global model M to determine whether the aggregator has
tampered with the aggregation result. Pi multiplies each
parameter in the M by 108 to get an new model M ′, and
generates a hash value H.Hash(M ′) for the new model M ′.
Then Pi determines whether the result returned by the aggre-
gator has been tampered with by calculating H.Hash(M ′)

?
=

H.Eval(h1, . . . , hi, n1, . . . , ni)1≤i≤N&zi=1. If the above equa-
tion does not hold, it can be determined that the aggregator
maliciously forged the aggregation results. Otherwise, the
global model M = M

n .

VI. IMPROVED FRAMEWORK

In PriVeriFL-A (see Section V), there may be a risk of
privacy leakage due to the fact that some malicious partici-
pants and the aggregator launch collusion attacks to observe
local model updates of some honest participants and launch
inference attacks against these model updates. In the improved
framework, we address this problem by enhancing the system

setup proposed in Section V-A, and training and aggregation
proposed in Section V-B, name it PriVeriFL-B.

The improved system setup is the same as that in Section
V-A, with the exception that all participants execute the
threshold Paillier homomorphic encryption distributed key
generation protocol (see Section III-A) to generate the public
key pTPHE and the secret key share siTPHE of each participant.

The improved training and aggregation stage is the same
as that in Section V-B, except for the following sub-stage:
• In the model decryption and verification sub-stage,

participant Pi decrypts {V̂j}1≤j≤η with his/her secret
key share siTPHE, and broadcast the partial decryp-
tion result. After receiving the partial decryption re-
sult sets (|sets| ≥ t − 1) of other participants, Pi

obtains the decrypted result {Vj}1≤j≤η by computing
{TPHE.Dec({srTPHE}|{srTPHE}|≥t, V̂j)}1≤j≤η .

VII. SECURITY ANALYSIS

In this section, we first analyze how our scheme guarantees
the confidentiality of each participant’s local update. Then, we
briefly describe the aggregation integrity against the malicious
adversary. We formally prove the security of our schemes
in the malicious setting using the simulation-based paradigm
[57]. The designed security goals of our protocol are formally
captured by an ideal functionality F , where a trusted entity re-
ceives inputs from parties, performs the designed computation,
and sends outputs to parties. In the real world, an adversary A
will on behalf of the corrupted parties and run the protocol Π
with honest parties. Then, a simulator S plays the same role as
the corrupted parties and interacts with F in the ideal world
to get the input/output results. So S can communicate with
A in the real world to simulate the view of A. The formal
definition of malicious security is as follows.

Definition 1: A Protocol (or scheme) Π securely computes
F in the presence of a malicious adversary if for every
probabilistic polynomial-time (PPT) adversary A, there exists
a PPT simulator S , such that for every subset of corrupt
parties C, all inputs x1, . . . , xn, auxiliary input z and security
parameters k:

IDEALF,S(k,C, z;x1, . . . , xn)

c≡ REALπ,ADV(k,C, z;x1, . . . , xn).

We say that the protocol Π can securely compute the
functionality F with a satistical error 2λ and a negligible
function negl(·) such that the probability that an adversary
can distinguish the views of the ideal and real world is less
than 2λ + negl(κ).

Next, we need to prove our protocol ΠPriVeriFL is secure
as we claimed in the security goals. So we present the ideal
functionality of our protocol FPriVeriFL as shown in Figure 9.
Specifically, ΠPriVeriFL represents the PriVeriFL-B protocol,
which has more functionality than PriVeriFL-A. If PriVeriFL-
B has been proven to be secure, then the security of PriVeriFL-
A is guaranteed.

Theorem 1: Under the (FPHE, FHH)-hybrid model, the pro-
tocol ΠPriVeriFL implements FPriVeriFL correctly and securely
in the presence of malicious adversaries.

12

FPriVeriFL

Parameters: For each party Pi, it has a database Di and a local
trained model mi. An aggregated result M. PriVeriFL:

1. On receiving inputs (PriVeriFL,mi) from Pi, the func-
tionality outputs the encrypted model {v̂ij}1≤j≤η , B̂i,
H.Hash (mi), σi, ni, ϱi }1≤i≤N to participant Pi if it
does not abort;

2. On receiving (Aggregation, {{v̂ij}1≤j≤η , B̂i}1≤i≤N)
from aggregator Ag, the functionality outputs the aggre-
gated values {V̂j}1≤j≤η and MB to all parties if it does
not abort;

3. On receiving (Decryption & Verification,MB,
{V̂j}1≤j≤η) from Pi, the functionality verifies the
aggregated values and sends the global model M to
parties. If the verification process fails, ⊥ is output to
parties.

Fig. 9: Ideal functionality FPriVeriFL.

Proof: Participant is Corrupted. We can construct an ideal
world simulator Spa to simulate the view of a participant.

1) Spa invokes the real-world adversary Apa with input model
m and is given the public parameters pPHE, pHH, mpk.

2) Spa is given the encrypted model {v̂j}1≤j≤η and records
the results B̂, h =Hash(m), σ, n, ϱ.

3) Spa invokes the adversary Apa with pPHE, pHH, mpk,
{v̂j}1≤j≤η , B̂, h, σ, n, ϱ.

4) Spa receives a verification call from the adversary Apa,
and generates Ver(mpk, σ), Ver(mpk, ϱ), and returns the
results of Ver(mpk, σ), Ver(mpk, ϱ) to Apa.

As we can see, in this simulation, the view of the adversary
in the real execution is the same as that in the simulation,
because it has been proved that the results of PHE are random
and indistinguishable when different values are input.

Aggregator is Corrupted. We can construct an ideal world
simulator Sag to simulate the view of an aggregator, and the
adversary is denoted as Aag.

1) Sag is given the encrypted results {v̂j}1≤j≤η , B̂,
h =Hash(m), σ, n, ϱ.

2) Sag invokes the adversary Aag with {v̂j}1≤j≤η , B̂,
h =Hash(m), σ, n, ϱ, and receives an aggregation call from
the adversary.

3) Sag invokes FPHE to compute an encrypted aggregated
model {V̂j}1≤j≤η and MB, then sends them to Aag.

As we can see, in this simulation, the view of the adversary
in the real execution is the same as that in the simulation,
because it has been proved that the results of HH and PHE
are random and indistinguishable when different values are
input.

Collusion of Aggregator and t− 1 Participants. We can
construct an ideal world simulator S ′ to simulate the views of
an aggregator and corrupted participants. The adversaries are
denoted as A′

pa and A′
ag, and the set of corrupted participants

is denoted as C.

1) S ′ invokes the real-world adversary A′
pa with input models

{mi}i∈C and is given the public parameters pPHE, pHH,
{mpki}i∈C .

2) S ′ receives an invocation to FPHE and FHH, and is given
the results {{v̂ij}1≤j≤η , B̂i, hi =Hash(mi), σi, ni, ϱi}i∈C .

3) S ′ invokes the adversary A′
pa with pPHE, pHH, {mpki}i∈C

and {{v̂ij}1≤j≤η , B̂i, hi =Hash(mi), σi, ni, ϱi}i∈C .
4) S ′ invokes the adversary A′

ag with {{v̂ij}1≤j≤η , B̂i,
hi =Hash(mi), σi, ni, ϱi}i∈C , and receives an aggregation
call from A′

ag.
5) S ′ invokes FPHE to compute an encrypted aggregated

model {V̂j}1≤j≤η and MB, then and sends them to A′
ag

and A′
pa.

6) S ′ invokes FPHE and FHH to do a verification on all inputs
receives from last steps. If the verification fails, S ′ sends an
abort to FPriVeriFL and terminates the protocol execution
with the adversary.

As we can see, in this simulation, the view of the adversary
in the real execution is the same as that in the simulation,
because it has been proved that the results of PHE and HH are
random and indistinguishable when different values are input.
Besides, less than t corrupted participants can not decrypt the
results and change the verification results. After simulating
all scenarios of different corruptions, we can prove that our
protocol ΠPriVerFL is as secure as the ideal functionality
FPriVerFL defined in Fig. 9.

Aggregation Integrity Against Malicious Adversary. In
the next theorem, we assert that integrity is attained where
any adversary attempting to manipulate the aggregation result
can be promptly detected once all participants have generated
signatures of the homomorphic hash value and the weight.

Theorem 2 (Integrity of Aggregation, Against Malicious
Aggregator): Let M be the aggregation result of the inputs
of all participants that successfully send the message to the
aggregator, and {hi, ni, σi, ϱi} be the hashes, weights, and
their signatures of these participants. We say that if the
adversary cannot break the hash and signature scheme, the
integrity of the aggregation result can be guaranteed.

Proof: During the collaborative process, each honest-but-
curious participant undertakes a series of steps to ensure the
security and authenticity of the model aggregation. Initially,
before proceeding with encryption, each participant generates
a cryptographic hash of the model. Subsequently, each of them
create signatures denoted as σi, ϱi corresponding to the hash
hi and the associated weight ni.

Upon reaching the aggregation phase, the aggregator as-
sumes the responsibility of aggregating the models and sub-
sequently delivering all associated messages. It is impor-
tant to emphasize that, concurrently, each individual par-
ticipant carries out a comprehensive verification procedure.
This verification involves confirming the authenticity of the
hashes and weights by all other participants and verify-
ing the integrity of the aggregation result by calculating
H.Eval(h1, . . . , hi, n1, . . . , ni). Should the aggregator engage
in tampering with the aggregation result, it is noteworthy that
this manipulation can solely extend to the forging signatures
of hash and weight attributed to a specific participant. Impor-
tantly, the security of the signature scheme employed in this
context renders malicious forgery an implausible endeavor.

13

TABLE II: Comparison of computation and communication overhead between PHE scheme and our scheme.

Plaintext Size Ciphertext Size Encode Encryption Decryption C ∗ P † C1 + C2 Decode

PHE 1 Thread 3.815MB 493.353MB − 8317.736s 2373.330s 41.874s 28.276s −
16 Threads 3.815MB 493.353MB − 1193.921s 357.837s 35.920s 35.060s −

PriVeriFL-A 1 Thread 3.815MB 4.319+3.815MB§ 3.873s 72.831s 20.847s 0.362s 0.245s 3.114s

16 Threads 3.815MB 4.319+3.815MB§ 1.376s 9.708s 2.942s 0.577s 0.570s 0.678s

PriVeriFL-B ℵ 1 Thread 3.815MB 4.32*20+3.815MB§ 3.892s 73.847s 858.241s 0.375s 0.241s 3.241s

16 Threads 3.815MB 4.32*20+3.815MB§ 1.355s 9.596s 127.563s 0.594s 0.568s 0.655s
† Here C represents a ciphertext and P represents a constant.
§ The ciphertext in our scheme consists of two parts, namely the homomorphically encrypted ciphertext of matrix A and the symmetrically encrypted
ciphertext of matrix B in Figure 7.
ℵ The number of participants is 120 and the decryption threshold is 20.

VIII. PERFORMANCE EVALUATION

In this section, we begin by systematically analyzing the
experimental performance of our scheme. We then proceed to
compare it with the state-of-the-art scheme.

A. Experimental Performance
The experiments were performed on a PC with 11th Gen

Intel(R) Core(TM) i7-11700K @ 3.60GHz, 16G RAM, 500G
SSD, 2T HDD, and NVIDIA Quadro P5000 graphics card. We
evaluate the overhead of PriVeriFL-A, the threshold generation
and threshold decryption overhead of PriVeriFL-B, and the
overhead of the integrity verification of the aggregated results
in both schemes respectively. Specifically, we first compare
PriVeriFL-A with standard PHE-based scheme in terms of
computation and communication overhead to demonstrate the
advantages brought by PriVeriFL-A. We then evaluate the
factors that affect the time required to generate the threshold
for PriVeriFL-B. Then, we assess the overhead of PriVeriFL-
B to complete the threshold decryption. Finally, we evaluate
the overhead required for participants to complete the integrity
verification of aggregated results.

First, we calculate the computation and communication
overhead of PriVeriFL-A and PriVeriFL-B, and compare them
with the classic PHE-based scheme. In subsequent experi-
ments, we set the key size for Paillier to the current minimum
security key size of 2048 [56]. We encrypt and decrypt 1000K
32-bit floating point numbers using the classical PHE scheme
implemented by python-Paillier-library [58] and PriVeriFL-A.
At the same time, in order to reflect the impact of the number
of threads on the encryption and decryption time, we also
use 1 thread and 16 threads to complete the above encryption
and decryption tests. As shown in Table II, compared with the
classic PHE-based scheme, our ciphertext overhead is reduced
to 1.65%. Under the 1-thread setting, our encryption time
and decryption time are both reduced to 0.88%. Under the
16-thread setting, our encryption time is reduced to 0.81%,
and our decryption time is reduced to 0.82%. In addition,
we also verify the calculation times of PHE.Mul(C,P) and
PHE.Add(C1, C2). Under the 1-thread setting, the time re-
quired by our scheme is reduced to 0.86% and 0.87%,
respectively. Under the 16-thread setting, the time required
by our scheme is reduced to 1.61% and 1.63% respectively.
PriVeriFL-A only needs to introduce additional low-cost en-
coding and decoding operations, which can greatly reduce the

amount of data that needs to be encrypted, thereby reducing
the computation and communication overhead. In our analysis
of PriVeriFL-B, we set the system with 120 participants and
the decryption threshold to 20. Our comparative study reveals
that relative to PriVeriFL-A, the size of the homomorphically
encrypted ciphertext and the decryption time in PriVeriFL-B
both increase linearly as the decryption threshold is raised.
Despite these increases, PriVeriFL-B continues to maintain a
high level of performance across other metrics, comparable to
that of PriVeriFL-A.

Next, to evaluate the overhead of generating distributed keys
in PriVeriFL-B, we implement distributed key generation using
Paillier Threshold Encryption Toolbox2. We first consider the
relationship between the time required to generate distributed
keys and the number of participants. Since the distributed key
generation phase involves random selection and checking pro-
cessing, the time required is not constant. We, therefore, repeat
the experiment 50 times to calculate the mean and standard
deviation of the times required to generate the distributed keys.
We set the number of participants to 20, 40, 60, 80, 100, and
120, respectively, and fix the decryption threshold to 20. As
shown in Figure 10(a), the average time to generate distributed
keys grows slowly as the number of participants grows. At
the same time, we consider the relationship between the time
required to generate the distributed keys and the decryption
threshold when the number of participants is fixed. We fix the
number of participants to 120, and the decryption threshold to
20, 40, 60, 80, 100, and 120, respectively. As shown in Figure
10(b), changing the decryption threshold has little effect on
the time required to generate the distributed keys when the
total number of participants is fixed. That is, the average time
to generate a distributed key is only positively related to the
total number of participants.

2https://cs.utdallas.edu/dspl/cgi-bin/Pailliertoolbox/

14

20 40 60 80 100 120
Number of participants

500

600

700

800

900

1000

De
cr

yp
tio

n
tim

e
(s

)
820.2 825.9 832.2 839.5 846.5 856.8

(a) Decryption time as a function of the
number of participants, with a decryption
threshold of 20 and a plaintext size of 3.815
MB.

20 40 60 80 100 120
Threshold for decryption

500
1000
1500
2000
2500
3000
3500
4000
4500

De
cr

yp
tio

n
tim

e
(s

)

858.2

1402.2

2105.3

2790.1

3422.4

4106.5

(b) Decryption time as a function of the
decryption threshold, with 120 participants
and a plaintext size of 3.815 MB.

1 20 40 60 80 100 120
Threshold for decryption

0

100

200

300

400

500

600

Ci
ph

er
te

xt
 si

ze
 (M

B)

4.3

86.3

172.7

259.0

345.4

431.7

518.1

(c) Ciphertext size as a function of the
decryption threshold, with 120 participants
and a plaintext size of 3.815 MB.

Fig. 11: The decryption time and ciphertext size of threshold Paillier.

20 40 60 80 100 120
Number of participants

0
20
40
60
80

100
120
140
160

Ke
y

ge
ne

ra
tio

n
tim

e
(s

)

(a) Key generation time as a function
of the number of participants, where
the threshold for decryption is 20.

20 40 60 80 100 120
Threshold for decryption

0
20
40
60
80

100
120
140
160

Ke
y

ge
ne

ra
tio

n
tim

e
(s

)

(b) Key generation time as a function
of the threshold for decryption, where
the number of participants is 120.

Fig. 10: The key generation time of threshold Paillier.

Then, we also evaluate the overhead of threshold decryp-
tion. In order to reflect the change in the required time to
complete decryption from PriVeriFL-A to PriVeriFL-B (that
is, from PHE to TPHE), we calculate how long it takes for
the PriVeriFL-B to decrypt the data that can be decrypted
by PriVeriFL-A in 20.847s under the 1-thread setting. We
first consider the relationship between the required time for
threshold decryption and the number of participants. We set
the number of participants to 20, 40, 60, 80, 100, and 120,
respectively, and fix the decryption threshold at 20. As shown
in Figure 11(a), the time required for threshold decryption will
increase slightly with the increase in the number of partici-
pants. At the same time, we consider the relationship between
the required time for threshold decryption and the decryption
threshold when the number of participants is fixed. We set the
number of participants to 120, and the decryption thresholds to
20, 40, 60, 80, 100, and 120, respectively. As shown in Figure
11(b), the time required for threshold decryption increases
linearly with the increase of the decryption threshold.

At the same time, we evaluate the relationship between
the additional communication overhead caused by threshold
decryption and the decryption threshold. We fix the number of
participants to 120 and set the decryption thresholds to 20, 40,
60, 80, 100, and 120, respectively. As shown in Figure 11(c),
as the decryption threshold increases, the threshold decryption
communication overhead also increases linearly. When the
decryption threshold is 1, the threshold decryption commu-
nication overhead is exactly the same as that of PriVeriFL-A.

Finally, we evaluate the overhead of computing model hash
value for participants to verify the integrity of aggregation.
We choose Charm [59] as the development platform and
implement the homomorphic hash function based on the NIST

1000 10000 100000 100000010000000
Dimensions of the model

0

10

20

30

40

50

Ti
m

e
to

 c
al

cu
la

te
 h

as
h

va
lu

e
(s

)
0.004 0.040 0.405

3.914

38.878

(a) The time cost of calculating the
hash value.

1000 10000 100000 100000010000000
Dimensions of the model

0

10

20

30

40

50

Si
ze

 o
f h

as
h

va
lu

e
(B

)

31.375 31.875 31.750 31.875 31.750

(b) The size of the hash value.

Fig. 12: The overhead of computing hash values with different dimensions.

P-256 curve. We need to consider the relationship between
the time required to compute the hash value and the model
dimension, and the relationship between the size of the hash
value and the model dimension. We set the model dimensions
to 103, 104, 105, 106, and 107, respectively, and calculate the
hash values of models with different dimensions. As shown
in Figure 12, as the model dimension grows exponentially,
so does the time required to compute the hash value, while
the size of the hash value barely changes. Therefore, the
computation overhead of integrity verification in PriVeriFL
is related to the model dimension, while the communication
overhead is fixed and almost negligible.

B. Comparison

In the realm of privacy-preserving federated learning,
BatchCrypt [25] stands as a leading scheme, primarily due to
its use of parameter quantization and packed encryption, which
notably lower both computational and communication over-
head. To assess the effectiveness of our scheme, PriVeriFL, we
perform a thorough comparison with BatchCrypt across key
metrics: accuracy, computational overhead, communication
overhead, data privacy, and aggregation integrity.

When it comes to accuracy, BatchCrypt uses gradient quan-
tization and pruning to compress encrypted data, which leads
to some loss in accuracy. In contrast, PriVeriFL preserves the
model’s accuracy without any degradation. When compared to
traditional PHE, BatchCrypt reduces computational overhead
to 4.29% and communication overhead to 1.52% on the FM-
NIST dataset, while capping accuracy loss at 1%. PriVeriFL,
however, employs sensitivity analysis of model parameters
to selectively encrypt only the most sensitive bits, reducing

15

computational overhead to 0.88% and communication over-
head to 1.65%, without compromising accuracy. While both
BatchCrypt and PriVeriFL prioritize data privacy, PriVeriFL
takes security a step further by incorporating aggregation
integrity verification. This feature ensures protection against
maliciously altered aggregation results by the aggregator,
providing an additional layer of security for each client.

IX. CONCLUSION

We combine inference attacks and information theory to
analyze the sensitivity of different bits of model parameters.
Based on the analysis results, we clarify that not all bits
of model parameters will leak privacy. This inspires us to
propose a privacy-preserving and aggregation-verifiable fed-
erated learning scheme, which can protect the data privacy of
participants and verify the integrity of aggregation returned
by the aggregator. We further improve the scheme to resist
possible collusion attacks. Our scheme dramatically reduces
the computation and communication overhead caused by the
introduction of homomorphic encryption, and the overhead
caused by integrity verification is almost negligible.

REFERENCES

[1] P. Voigt and A. Von dem Bussche, “The eu general data protection regu-
lation (gdpr),” A Practical Guide, 1st Ed., Cham: Springer International
Publishing, vol. 10, p. 3152676, 2017.

[2] L. de la Torre, “A guide to the california consumer privacy act of 2018,”
Available at SSRN 3275571, 2018.

[3] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Artificial intelligence and statistics, 2017, pp. 1273–1282.

[4] J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and
D. Bacon, “Federated learning: Strategies for improving communication
efficiency,” arXiv preprint arXiv:1610.05492, 2016.

[5] J. Konečnỳ, H. B. McMahan, D. Ramage, and P. Richtárik, “Federated
optimization: Distributed machine learning for on-device intelligence,”
arXiv preprint arXiv:1610.02527, 2016.

[6] J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and
D. Bacon, “Federated learning: Strategies for improving communication
efficiency,” arXiv preprint arXiv:1610.05492, 2016.

[7] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning:
Challenges, methods, and future directions,” IEEE Signal Processing
Magazine, vol. 37, no. 3, pp. 50–60, 2020.

[8] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman,
V. Ivanov, C. Kiddon, J. Konečnỳ, S. Mazzocchi, B. McMahan et al.,
“Towards federated learning at scale: System design,” Proceedings of
machine learning and systems, vol. 1, pp. 374–388, 2019.

[9] E. Cordis, “Machine learning ledger orchestration for drug discovery,”
2019.

[10] V. Mothukuri, R. M. Parizi, S. Pouriyeh, Y. Huang, A. Dehghantanha,
and G. Srivastava, “A survey on security and privacy of federated
learning,” Future Generation Computer Systems, vol. 115, pp. 619–640,
2021.

[11] C. Song and V. Shmatikov, “Overlearning reveals sensitive attributes,”
in ICLR, 2020.

[12] L. Melis, C. Song, E. De Cristofaro, and V. Shmatikov, “Exploiting un-
intended feature leakage in collaborative learning,” in IEEE Symposium
on Security and Privacy. IEEE, 2019, pp. 691–706.

[13] G. Xu, H. Li, S. Liu, K. Yang, and X. Lin, “VerifyNet: Secure
and verifiable federated learning,” IEEE Transactions on Information
Forensics and Security, vol. 15, pp. 911–926, 2019.

[14] X. Guo, Z. Liu, J. Li, J. Gao, B. Hou, C. Dong, and T. Baker, “VeriFl:
Communication-efficient and fast verifiable aggregation for federated
learning,” IEEE Transactions on Information Forensics and Security,
vol. 16, pp. 1736–1751, 2020.

[15] R. Shokri and V. Shmatikov, “Privacy-preserving deep learning,” in
Proceedings of the 22nd ACM SIGSAC conference on computer and
communications security, 2015, pp. 1310–1321.

[16] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov,
K. Talwar, and L. Zhang, “Deep learning with differential privacy,” in
Proceedings of the 2016 ACM SIGSAC conference on computer and
communications security, 2016, pp. 308–318.

[17] Y. Gao, L. Zhang, L. Wang, K.-K. R. Choo, and R. Zhang, “Privacy-
preserving and reliable decentralized federated learning,” IEEE Trans-
actions on Services Computing, vol. 16, no. 4, pp. 2879–2891, 2023.

[18] R. Liu, Y. Cao, H. Chen, R. Guo, and M. Yoshikawa, “FLAME:
Differentially private federated learning in the shuffle model,” in AAAI,
vol. 35, no. 10, 2021, pp. 8688–8696.

[19] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan,
S. Patel, D. Ramage, A. Segal, and K. Seth, “Practical secure aggregation
for privacy-preserving machine learning,” in proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security,
2017, pp. 1175–1191.

[20] P. Xu, M. Hu, T. Chen, W. Wang, and H. Jin, “LaF: Lattice-based
and communication-efficient federated learning,” IEEE Transactions on
Information Forensics and Security, vol. 17, pp. 2483–2496, 2022.

[21] C. Wu, L. Zhang, L. Xu, K.-K. R. Choo, and L. Zhong, “Privacy-
preserving serverless federated learning scheme for internet of things,”
IEEE Internet of Things Journal, 2024.

[22] Z. Zhang, L. Wu, C. Ma, J. Li, J. Wang, Q. Wang, and S. Yu, “LSFL: A
lightweight and secure federated learning scheme for edge computing,”
IEEE Transactions on Information Forensics and Security, vol. 18, pp.
365–379, 2022.

[23] L. Zhong, L. Wang, L. Zhang, J. Domingo-Ferrer, L. Xu, C. Wu, and
R. Zhang, “Dual-server based lightweight privacy-preserving federated
learning,” IEEE Transactions on Network and Service Management,
2024.

[24] Y. Aono, T. Hayashi, L. Wang, S. Moriai et al., “Privacy-preserving deep
learning via additively homomorphic encryption,” IEEE Transactions on
Information Forensics and Security, vol. 13, no. 5, pp. 1333–1345, 2017.

[25] C. Zhang, S. Li, J. Xia, W. Wang, F. Yan, and Y. Liu, “BatchCrypt:
Efficient homomorphic encryption for Cross-Silo federated learning,” in
2020 USENIX Annual Technical Conference, 2020, pp. 493–506.

[26] X. Hao, C. Lin, W. Dong, X. Huang, and H. Xiong, “Robust and secure
federated learning against hybrid attacks: a generic architecture,” IEEE
Transactions on Information Forensics and Security, 2023.

[27] Y. Miao, Z. Liu, H. Li, K.-K. R. Choo, and R. H. Deng, “Privacy-
preserving byzantine-robust federated learning via blockchain systems,”
IEEE Transactions on Information Forensics and Security, vol. 17, pp.
2848–2861, 2022.

[28] M. Hao, H. Li, X. Luo, G. Xu, H. Yang, and S. Liu, “Efficient and
privacy-enhanced federated learning for industrial artificial intelligence,”
IEEE Transactions on Industrial Informatics, vol. 16, no. 10, pp. 6532–
6542, 2019.

[29] Y. M. Saputra, D. N. Nguyen, D. T. Hoang, Q.-V. Pham, E. Dutkiewicz,
and W.-J. Hwang, “Federated learning framework with straggling miti-
gation and privacy-awareness for ai-based mobile application services,”
IEEE Transactions on Mobile Computing, vol. 22, no. 9, pp. 5296–5312,
2022.

[30] X. Liu, Y. Zheng, X. Yuan, and X. Yi, “Deep learning-based medical
diagnostic services: A secure, lightweight, and accurate realization 1,”
Journal of Computer Security, vol. 30, no. 6, pp. 795–827, 2022.

[31] ——, “MediSC: Towards secure and lightweight deep learning as a
medical diagnostic service,” in 26th European Symposium on Research
in Computer Security. Springer, 2021, pp. 519–541.

[32] ——, “Securely outsourcing neural network inference to the cloud with
lightweight techniques,” IEEE Transactions on Dependable and Secure
Computing, vol. 20, no. 1, pp. 620–636, 2022.

[33] C. Juvekar, V. Vaikuntanathan, and A. Chandrakasan, “GAZELLE: A
low latency framework for secure neural network inference,” in 27th
USENIX security symposium, 2018, pp. 1651–1669.

[34] Q. Zhang, C. Xin, and H. Wu, “GALA: Greedy computation for
linear algebra in privacy-preserved neural networks,” arXiv preprint
arXiv:2105.01827, 2021.

[35] Z. Brakerski and V. Vaikuntanathan, “Efficient fully homomorphic
encryption from (standard) LWE,” SIAM Journal on computing, vol. 43,
no. 2, pp. 831–871, 2014.

[36] J. Fan and F. Vercauteren, “Somewhat practical fully homomorphic
encryption,” Cryptology ePrint Archive, 2012.

[37] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène, “TFHE: fast
fully homomorphic encryption over the torus,” Journal of Cryptology,
vol. 33, no. 1, pp. 34–91, 2020.

[38] J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic encryption
for arithmetic of approximate numbers,” in 23rd International Confer-

16

ence on the Theory and Applications of Cryptology and Information
Security. Springer, 2017, pp. 409–437.

[39] A. Fu, X. Zhang, N. Xiong, Y. Gao, H. Wang, and J. Zhang, “VFL:
A verifiable federated learning with privacy-preserving for big data in
industrial iot,” IEEE Transactions on Industrial Informatics, vol. 18,
no. 5, pp. 3316–3326, 2020.

[40] C. Jiang, C. Xu, and Y. Zhang, “PFLM: Privacy-preserving federated
learning with membership proof,” Information Sciences, vol. 576, pp.
288–311, 2021.

[41] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership
inference attacks against machine learning models,” in 2017 IEEE
symposium on security and privacy. IEEE, 2017, pp. 3–18.

[42] M. Fredrikson, S. Jha, and T. Ristenpart, “Model inversion attacks
that exploit confidence information and basic countermeasures,” in
Proceedings of the 22nd ACM SIGSAC conference on computer and
communications security, 2015, pp. 1322–1333.

[43] P. Paillier, “Public-key cryptosystems based on composite degree residu-
osity classes,” in International conference on the theory and applications
of cryptographic techniques. Springer, 1999, pp. 223–238.

[44] T. Nishide and K. Sakurai, “Distributed paillier cryptosystem without
trusted dealer,” in International Workshop on Information Security
Applications. Springer, 2010, pp. 44–60.

[45] M. Bellare, O. Goldreich, and S. Goldwasser, “Incremental cryptog-
raphy: The case of hashing and signing,” in Advances in Cryptology-
CRYPTO’94: 14th Annual International Cryptology Conference Santa
Barbara. Springer, 1994, pp. 216–233.

[46] H. B. McMahan, E. Moore, D. Ramage, and B. A. y Arcas, “Federated
learning of deep networks using model averaging,” arXiv preprint
arXiv:1602.05629, vol. 2, 2016.

[47] H. Su and H. Chen, “Experiments on parallel training of deep neural
network using model averaging,” arXiv preprint arXiv:1507.01239,
2015.

[48] C. Yu, H. Tang, C. Renggli, S. Kassing, A. Singla, D. Alistarh, C. Zhang,
and J. Liu, “Distributed learning over unreliable networks,” in ICML.
PMLR, 2019, pp. 7202–7212.

[49] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[50] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” 2009.

[51] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in
pytorch,” 2017.

[52] A. Kraskov, H. Stögbauer, and P. Grassberger, “Estimating mutual
information,” Physical review E, vol. 69, no. 6, p. 066138, 2004.

[53] H. W. Kuhn and A. W. Tucker, Contributions to the Theory of Games.
Princeton University Press, 1953, no. 28.

[54] M. Sundararajan and A. Najmi, “The many shapley values for model
explanation,” in International conference on machine learning. PMLR,
2020, pp. 9269–9278.

[55] J. Daemen and V. Rijmen, The design of Rijndael. Springer, 2002,
vol. 2.

[56] E. Barker, E. Barker, W. Burr, W. Polk, M. Smid et al., Recommendation
for key management: Part 1: General. National Institute of Standards
and Technology, Technology Administration, 2006.

[57] Y. Lindell, “How to simulate it–a tutorial on the simulation proof
technique,” Tutorials on the Foundations of Cryptography: Dedicated
to Oded Goldreich, pp. 277–346, 2017.

[58] CSIRO’s Data61, “Python paillier library,” https://github.com/data61/
python-paillier, 2013.

[59] J. A. Akinyele, C. Garman, I. Miers, M. W. Pagano, M. Rushanan,
M. Green, and A. D. Rubin, “Charm: a framework for rapidly proto-
typing cryptosystems,” Journal of Cryptographic Engineering, vol. 3,
no. 2, pp. 111–128, 2013.

Lulu Wang is currently pursuing his Ph.D. degree
with the School of Software Engineering, East China
Normal University, Shanghai, China. He was a Visit-
ing PhD Student with SPRITZ Security and Privacy
Research Group, Department of Mathematics, Uni-
versity of Padova, Italy. Since January 2024, he has
been a visiting scholar with the Information Systems
Technology and Design Pillar, Singapore University
of Science and Technology, Singapore. His current
research interests are at the intersection of security,
privacy, and machine learning.

Mirko Polato received his Ph.D. in Brain, Mind, and
Computer Science from the University of Padova
(Italy) in 2018. He was Post-doc at the University of
Padova and he is currently an Assistant Professor at
the University of Turin (Italy). His research interests
include federated learning, recommender systems,
kernel methods, and machine learning in general.

Alessandro Brighente is assistant professor at the
University of Padova. He received his Ph.D. degree
in Information Engineering from the University of
Padova in Feb. 2021. He was visiting researcher
at Nokia Bell Labs, Stuttgart and University of
Washington, Seattle in 2019 and 2022, respectively.
He has been involved in European projects and
industrial projects with the University of Padova.
He served as TPC for several conferences, including
Globecom and VTC. He is guest editor for IEEE
Transactions on Industrial Informatics. His current

research interests include security and privacy in cyber-physical systems,
vehicular networks, blockchain, and physical layer security.

Mauro Conti is Full Professor at the University of
Padua, Italy. He is also affiliated with TU Delft and
University of Washington, Seattle. He obtained his
Ph.D. from Sapienza University of Rome, Italy, in
2009. After his Ph.D., he was a Post-Doc Researcher
at Vrije Universiteit Amsterdam, The Netherlands.
In 2011 he joined as Assistant Professor at the
University of Padua, where he became Associate
Professor in 2015, and Full Professor in 2018. He
has been Visiting Researcher at GMU, UCLA, UCI,
TU Darmstadt, UF, and FIU. He has been awarded

with a Marie Curie Fellowship (2012) by the European Commission, and with
a Fellowship by the German DAAD (2013). His research is also funded by
companies, including Cisco, Intel, and Huawei. His main research interest is
in the area of Security and Privacy. In this area, he published more than 600
papers in topmost international peer-reviewed journals and conferences. He is
Editor-in-Chief for IEEE Transactions on Information Forensics and Security,
Area Editor-in-Chief for IEEE Communications Surveys & Tutorials, and has
been Associate Editor for several journals, including IEEE Communications
Surveys & Tutorials, IEEE Transactions on Dependable and Secure Com-
puting, IEEE Transactions on Information Forensics and Security, and IEEE
Transactions on Network and Service Management. He was Program Chair
for TRUST 2015, ICISS 2016, WiSec 2017, ACNS 2020, CANS 2021, CSS
2021, WiMob 2023 and ESORICS 2023, and General Chair for SecureComm
2012, SACMAT 2013, NSS 2021, ACNS 2022, RAID 2024, NDSS 2026 and
2027. He is Fellow of the IEEE, Fellow of the AAIA, Distinguished Member
of the ACM, and Fellow of the Young Academy of Europe.

Lei Zhang received the Ph.D. degree in com-
puter engineering from Universitat Rovira i Vir-
gili, Tarragona, Spain. Since then, he has been
with Universitat Rovira i Virgili, as a Postdoctoral
Researcher. He is currently a Full Professor with
the School of Software Engineering, East China
Normal University, Shanghai, China. He has been
a holder/coholder of more than ten China/Spain-
funded (key) projects. His fields of activity are in-
formation security, VANET security, cloud security,
data privacy, and network security. He has authored

over 80 publications. He has served in the program committee of more than
70 international conferences in information security and privacy.

Lin Xu received the Master degree in computer
science and technology from Shandong Normal
University, Jinan, China. She is currently pursuing
her Ph.D. degree with the School of Software En-
gineering, East China Normal University, Shang-
hai, China. Her current research interests include
information security, multi-party computation and
privacy-preserving machine learning.

