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Abstract
In this work, we introduce a family of methods for the analysis of data observed
at locations scattered in three-dimensional (3D) domains, with possibly compli-
cated shapes. The proposed family of methods includes smoothing, regression,
and functional principal component analysis for functional signals defined over
(possibly nonconvex) 3D domains, appropriately complying with the nontriv-
ial shape of the domain. This constitutes an important advance with respect
to the literature, because the available methods to analyze data observed in 3D
domains rely on Euclidean distances, which are inappropriate when the shape
of the domain influences the phenomenon under study. The common building
block of the proposed methods is a nonparametric regression model with differ-
ential regularization. We derive the asymptotic properties of the methods and
show, through simulation studies, that they are superior to the available alter-
natives for the analysis of data in 3D domains, even when considering domains
with simple shapes. We finally illustrate an application to a neurosciences study,
with neuroimaging signals from functional magnetic resonance imaging, mea-
suring neural activity in the gray matter, a nonconvex volume with a highly
complicated structure.
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1 INTRODUCTION

In this article, we are interested in the analysis of data
observed in 3D domains with complicated shapes. Tech-
nological progress has made such data common in varied
contexts in both engineering and sciences. Figure 1 illus-
trates an application from the neurosciences. The lower
panels showa connectivitymap obtained froma functional
magnetic resonance imaging (fMRI) scan, concerning neu-
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provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
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ronal activity in the gray matter. It should be noted that
the fMRI scan returns a signal on a cube; however, through
appropriate processing of the data, this signal can be appro-
priately referred to the gray matter, where the signal arises
from, as represented in Figure 1. As highlighted by the
figure, the gray matter forms a volume with a very com-
plicated shape, with complex external boundaries and
internal cavities. Analyzing these data using current tech-
niques, that rely on Euclidean distances between data
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F IGURE 1 Top: different views of a tetrahedral mesh approximating the volume of the gray matter of an healthy subject. The left and
central panel shows two external views, from the top and from the back of the brain, highlighting the complicated external boundaries of the
organ. The right panel shows a mesial slice of the gray matter (highlighted in yellow), showing that this volume is full of internal cavities.
Bottom: mean functional connectivity map obtained from fMRI scan. This figure appears in color in the electronic version of this article, and
any mention of color refers to that version.

locations, may lead to inaccurate estimates, erroneously
considering as close data locations that are instead far
apart on the brain, as they are separated by a sulcus. There
is currently an increasing interest in the scientific com-
munity in setting up methods that can account for the
complex anatomy of the brain, with the common goal of
advancing the knowledge on cerebral functioning and dis-
eases. It has indeed been shown that including the highly
complex brain anatomy in the data analysis is a necessary
step to guarantee a reliable investigation (Glasser et al.,
2013). Several techniques have, for instance, been proposed
to analyze data observed on the cortical surface, a curved
two-dimensional (2D) domainwith anhighly folded geom-
etry (see, e.g., Chung et al., 2016; Hagler et al., 2006; Lila
et al., 2016, and references therein).
Here, we propose a family of methods capable to ana-

lyze data observed at locations scattered in complicated 3D
domains, properly accounting for the shape of the domain.
Such methods enable, for instance, to accurately analyze
fMRI signals referred to the gray matter, complying with
the highly complex morphology of the brain. The meth-
ods also permit to generalize to the case of complicated
multidimensional domains, techniques, and approaches

from functional data analysis (FDA) (Ferraty &Vieu, 2006;
Kokoszka & Reimherr, 2017; Ramsay & Silverman, 2005),
which have so far been mostly restricted to functional
data over one-dimensional domains or simple 2Ddomains.
The estimation problem at the core of the proposed fam-
ily of methods is a least-square problem with differential
regularization, which can be seen as an extension to com-
plicated multidimensional domains of the nonparametric
models with roughness penalties, classically considered
over one-dimensional domains or simple 2D domains (see,
e.g., Green and Silverman, 1994; Wahba, 1990; Wang, 2019;
Wood, 2017).
In the simpler context of 2D domains, various tech-

niques have been proposed to appropriately account for the
possibly nonconvex shape of the domain. A nonexhaustive
list includes regularized least square and other smooth-
ing methods such as those proposed by Ramsay (2002),
Wood et al. (2008), Lai and Schumaker (2007), Guillas and
Lai (2010), Lai and Wang (2013), Wang et al. (2020), Wang
and Ranalli (2007), Scott-Hayward et al. (2014), Sangalli
et al. (2013), Azzimonti et al. (2015), and Niu et al. (2019).
This also encompasses techniques for curved 2D domains
with nontrivial (e.g., nonspherical) shapes; see, for exam-
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ple, Duchamp and Stuetzle (2003), Ettinger et al. (2016),
Lila et al. (2016), Wilhelm et al. (2016), Hagler et al. (2006),
Chung et al. (2005), and Niu et al. (2019).
The case of nonconvex 3D domains instead appears

still largely unexplored. This case poses both method-
ological and computational challenges. On the one hand,
considering domains with nonconvex shapes calls for a
change of paradigm with respect to classical methods rely-
ing on the Euclidean distance. On the other hand, the
data analysis problems encountered in this context typ-
ically have large dimensions, in terms of sample sizes,
as well as in terms of complexity and high variations
displayed by the observed signals, as illustrated by the
neuroimaging study here considered. This hinders the
applicability of standard data analysis methods and poses
critical computational issues.
To tackle these challenges, we here propose a family

of methods that belong to the class of spatial regression
with partial differential equation regularization (SR-PDE),
which has so far only been restricted to 2D domains
(see, e.g., Azzimonti et al., 2015; Ettinger et al., 2016;
Lila et al., 2016; Sangalli et al., 2013). In particular, the
considered estimation problems feature a regularizing
term that includes a partial differential equation (PDE)
defined on the considered 3D domain. Such regulariz-
ing term permits to incorporate in the statistical model
the available problem-specific information, encoded in the
PDE, and to model general forms of anisotropy and non-
stationarity, complying with the nontrivial shape of the
domain. This is also made possible by an innovative use
of finite element analysis methods, defined on tetrahe-
dral meshes approximating the 3D domain of interest.
Numerical solution of spatial and FDA problems, by finite
element analysis based on tetrahedral discretizations of 3D
domains, has not been much explored in the statistical lit-
erature; however, it has a number of advantages. Indeed,
on the one hand, the ability of the proposed methods to
combine advanced statistical methodology, with state-of-
the-art numerical analysis techniques, permits to tackle
the complexity of the considered problem, concerning the
physics of the underlying phenomenon and the geometry
of the domain. On the other hand, it permits to tackle large
data problems, with dimensions that are prohibitive for
standard methods.
In the present work, we first consider the case where we

have one single functional signal, and we are interested in
smoothing problems or nonparametric and semiparamet-
ric regression problems (the latter when also space-varying
covariates are available in the 3D domain). In this set-
ting, we derive the asymptotic properties of the estimators,
and specifically the asymptotic normality and consistency
of the estimators. We then move to the case where we
have multiple functional signals over the 3D domain, cor-
responding to different statistical units, as, for instance,

multiple fMRI scans, and we are here are interested in
exploring the variability across the signals. We do so in the
framework of FDA, proposing a functional PCA method
based on SR-PDE, which exploits a low-rank approxima-
tion of PCA (Huang et al., 2008, 2009; Lila et al., 2016). The
proposed methods are tested through simulation studies
included in the Supporting Information, which highlight
their superiority to the available alternatives, both when
the 3D domain has a nontrivial shape as well as when the
signal exhibits strong variations and localized features, as
in the case of fMRI data. The methods are implemented in
the R package fdaPDE (Arnone et al., 2022).
The paper is organized as follows. Section 2 introduces

the regularized least-square problem at the core of the
proposed SR-PDE for 3D domains: we prove that the
estimation problem is well posed, describe its efficient
discretization via finite elements, and finally derive the
asymptotic normality and consistency of the resulting esti-
mators. Section 3 describes the proposed approach for
functional PCA based on SR-PDE. Section 4 illustrates
the application to neuroimaging data. Section 5 outlines
possible extensions of the proposed class of methods.

2 NONPARAMETRIC AND
SEMIPARAMETRIC REGRESSIONWITH
PDE PENALIZATION

Let Ω be a bounded and possibly nonconvex subset of
ℝ3, whose boundary 𝜕Ω has 𝐶2 regularity (see Section A
of the Supporting Information). Let {𝐩𝑖 = (𝑝1𝑖, 𝑝2𝑖, 𝑝3𝑖) ∈

Ω; 𝑖 = 1, … , 𝑛} be a set of 𝑛 points in the domain Ω,
let 𝑧𝑖 be a real-valued variable observed at 𝐩𝑖 , and let
𝐰𝑖 = (𝑤𝑖1, … ,𝑤𝑖𝑞)

⊤ ∈ ℝ𝑞 be 𝑞 covariates observed at 𝐩𝑖 .
We consider the following semiparametric model for the
data 𝑧𝑖:

𝑧𝑖 = 𝐰⊤
𝑖
𝜷 + 𝑓(𝐩𝑖) + 𝜖𝑖 𝑖 = 1, … , 𝑛, (1)

where 𝜖1, … , 𝜖𝑛 are random errors with zeromean and con-
stant variance 𝜎2, 𝜷 ∈ ℝ𝑞 is the vector of the unknown
regression coefficients, and 𝑓 ∶ Ω → ℝ is an unknown
real-valued smooth function. Extending the approach pre-
sented in Azzimonti et al. (2015) for data defined over
2D domains, we estimate the vector 𝜷 and the function
𝑓 by minimizing a penalized sum-of-square-error func-
tional, which incorporates the available problem-specific
information, encoded in the PDE 𝐿𝑓 = 𝑢, defined in the
domainΩ. This PDE involves a linear second-order differ-
ential operator 𝐿, defined as 𝐿𝑓 = −div (𝐾∇𝑓) + 𝐛 ⋅ ∇𝑓 +

𝑐𝑓, with𝐾 ∈ ℝ3×3 a symmetric and positive-definite diffu-
sion tensor, 𝐛 ∈ ℝ3 a transport vector, and 𝑐 ≥ 0 a reaction
term; the function 𝑢 ∶ Ω → ℝ is the so-called forcing term
of the PDE. The functional to minimize is:
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𝐽𝜆(𝜷, 𝑓) =

𝑛∑
𝑖=1

{𝑧𝑖 − 𝐰⊤
𝑖 𝜷 − 𝑓(𝐩𝑖)}

2 + 𝜆 ∫
Ω

(𝐿𝑓(𝐩) − 𝑢(𝐩))2𝑑𝐩,

(2)
for 𝜷 ∈ ℝ𝑞 and 𝑓 in an appropriate space 𝑉 of functions
defined over the domainΩ. The functional 𝐽𝜆(𝜷, 𝑓) is com-
posed by two terms, weighted by the positive smoothness
parameter 𝜆 > 0: the first term pulls the estimate close
to the data, whereas the second term pulls the estimate
close to the solution of the PDE. Observe that the dif-
fusion, transport, and reaction terms must satisfy some
mild regularity conditions (see Section A of the Support-
ing Information) and can vary over Ω, that is, 𝐾 = 𝐾(𝐩),
𝐛 = 𝐛(𝐩), 𝑐 = 𝑐(𝐩), and 𝑢 = 𝑢(𝐩) for 𝐩 ∈ Ω. The use of the
operator 𝐿makes themethodology very flexible, giving the
possibility tomodel anisotropy and nonstationarity in 𝑓, as
illustrated in Section B of the Supporting Information.
When no problem-specific information on the phe-

nomenon under study is available, but from the geometry
of the domain, the standard choice is to use a null forcing
term, 𝑢 = 0, and 𝐿 = Δ, where Δ is the Laplace operator

Δ𝑓 =
𝜕2𝑓

𝜕𝑝21
+
𝜕2𝑓

𝜕𝑝22
+
𝜕2𝑓

𝜕𝑝23
.

Regularization by ∫
Ω
(Δ𝑓)2 induces an isotropic smooth-

ing, which is independent of the orientation of the coor-
dinate system, and avoids too rough solutions: large values
of smoothness parameter 𝜆 yield very smooth estimates,
while small values of 𝜆 allow for more data-adapted esti-
mates. This generalizes to complicated 3D domains the
roughness penalties extensively used in nonparametric
regression and FDA (see, e.g., Green & Silverman, 1994;
Ramsay & Silverman, 2005).
Different kinds of conditions at the boundary 𝜕Ω of Ω

can be considered to appropriately account for geometry of
the domain in the estimation procedure. Let 𝛎 denote the
outward unit normal vector to 𝜕Ω and let 𝜕Ω = Γ̄𝐷 ∪ Γ̄𝑁 ∪

Γ̄𝑅, where Γ𝐷, Γ𝑁, Γ𝑅 are nonoverlapping and Γ̄ indicates
the closure of Γ. We consider Dirichlet, Neumann, and
Robin (or mixed) conditions, which can be summarized in
𝑐𝑓 = 𝛾 with

𝑐𝑓 =

⎧⎪⎪⎨⎪⎪⎩
𝑓 on Γ𝐷

𝐾∇𝑓 ⋅ 𝛎 on Γ𝑁

𝐾∇𝑓 ⋅ 𝛎 + 𝜒𝑓 on Γ𝑅

𝛾 =

⎧⎪⎪⎨⎪⎪⎩
𝛾𝐷 on Γ𝐷

𝛾𝑁 on Γ𝑁

𝛾𝑅 on Γ𝑅,

where 𝜒 ∈ ℝ is a positive constant. Let 𝐻2(Ω) denote the
Sobolev space of functions 𝑓 ∶ Ω → ℝ that are in 𝐿2(Ω)

and whose first and second weak derivatives are in 𝐿2(Ω).
We define the functional space 𝑉, where the estimate of 𝑓
is searched for, as

𝑉 = {𝑓 ∈ 𝐻2(Ω) s.t. 𝑐𝑓 = 𝛾}.

For simplicity of exposition, in this paper, we set 𝛾 = 0,
that is, we consider the so-called homogeneous case. In
particular, homogeneous Neumann boundary conditions
are the most natural choice of when no problem-specific
information on the boundary behavior is available; these
conditions correspond to zero flux across the boundary of
the domain, when using the Laplace operator. A complete
description on how to deal with nonhomogeneous bound-
ary conditions can be found in Azzimonti et al. (2014), for
the simpler case of 2D domains.
The use of the regularizing term ∫

Ω
(𝐿𝑓 − 𝑢)2, or of

its special case ∫
Ω
(Δ𝑓)2, and the inclusion of boundary

conditions in the functional space 𝑉 make the esti-
mation method able to appropriately comply with the
possibly complicated geometry of Ω, differently from
other classical regularized least-square estimators such
as multidimensional splines, tensor product splines, and
thin-plate splines.
Theminimization problem is thus formalized as the one

of finding �̂� and 𝑓 such that

(�̂�, 𝑓) = argmin
(𝜷,𝑓)∈ℝ𝑞×𝑉

𝐽𝜆(𝜷, 𝑓) (3)

with 𝐽𝜆(𝜷, 𝑓) defined by Equation (2).
For all 𝑣 ∈ 𝑉, denote by 𝐯𝑛 = (𝑣(𝐩1), … , 𝑣(𝐩𝑛))

⊤ ∈ ℝ𝑛

the corresponding vector of the evaluations of 𝑣 at the data
locations. Moreover, denote by𝑊 the 𝑛 × 𝑞 matrix whose
𝑖th row is given by 𝐰⊤

𝑖
, and set 𝑄 = 𝐼 −𝑊(𝑊⊤𝑊)−1𝑊⊤

where 𝐼 is the identity matrix.

Proposition 1. The estimation problem (3) is well posed.
Moreover, 𝜷 and 𝑓 are such that

𝜷 = (𝑊⊤𝑊)−1𝑊⊤(𝐳 − 𝐟𝑛),

𝐯⊤𝑛 𝑄𝐟𝑛 + 𝜆 ∫
Ω

𝐿𝑣(𝐿𝑓 − 𝑢) = 𝐯⊤𝑛 𝑄𝐳 ∀𝑣 ∈ 𝑉. (4)

The proof of Proposition 1 is deferred to Section A of the
Supporting Information.
When covariates are not present, Equation (1) reduces

to 𝑧𝑖 = 𝑓(𝐩𝑖) + 𝜖𝑖 , that is, a smoothingmodel, and 𝑓 can be
estimated minimizing the functional

𝐽𝜆(𝑓) =

𝑛∑
𝑖=1

{𝑧𝑖 − 𝑓(𝐩𝑖)}
2 + 𝜆 ∫

Ω

(𝐿𝑓 − 𝑢)2.

The minimization problem is equivalent to solving Equa-
tion (4) where the matrix 𝑄 is replaced by the iden-
tity matrix.
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2.1 Discretization via finite elements

The variational problem (4) cannot be solved analytically,
and the solution must hence be found numerically. In
particular, a convenient numerical technique to deal with
spatial domains with complex shapes and generic bound-
ary conditions is the finite element method (see, e.g.,
Ciarlet, 2002).
Consider  a regular partition of the domainΩmade by

tetrahedra, where adjacent tetrahedra share either a ver-
tex, a complete edge, or a complete face. For simplicity of
exposition, let us consider the case of polygonal domains,
so thatΩ is the union of all the tetrahedra in  . WhenΩ is
not a polygon, we approximate it by a polygonal domain
Ω composed by the union of all the tetrahedra in  .
In many applications where the shape of the domain is
important, the mesh comes with the data. For instance, in
biomedical applications, where we might be interested in
studying quantities of interest inside an organ, the mesh
can be reconstructed using segmentation tools. In other
cases, such as, for example, in engineering applications,
the shape of the volume is typically described by para-
metric formulae, and therefore, the mesh can be created
using publicly available software such as Gmsh (Geuzaine
& Remacle, 2009). Figure 1, top panels, shows a tetrahe-
dral mesh representing the volume of the gray matter of a
healthy subject.
The space of finite element functions is the space

of continuous functions that are polynomials over each
tetrahedron of the tessellation  ,

𝑉𝑟
ℎ
= {𝑣 ∈ 𝐶(Ω) ∶ 𝑣|𝜏 ∈ ℙ𝑟(𝜏) ∀𝜏 ∈  },

where ℙ𝑟(𝜏) indicates the space of polynomials of a fixed
degree 𝑟 over 𝜏. For simplicity of exposition, we concen-
trate on linear finite elements, which are linear polyno-
mials over each tetrahedron, and we write 𝑉ℎ instead of
𝑉1
ℎ
. Call 𝝃1, … , 𝝃𝑁 the nodes of  , that is, in the linear

case, the vertices of the tetrahedra of  . A Lagrangian
nodal basis 𝜓1, … , 𝜓𝑁 is hence associated with the nodes
𝝃1, … , 𝝃𝑁 : each basis function is piecewise linear and is
such that 𝜓𝑖(𝝃𝑗) = 1 if 𝑖 = 𝑗 and 𝜓𝑖(𝝃𝑗) = 0 otherwise. Set
𝝍 ∶= (𝜓1, … , 𝜓𝑁 )

⊤ and, for any given function 𝑓 on Ω,
denote by 𝐟 the𝑁 -vector having as entries the evaluations
of 𝑓 at the 𝑁 nodes, that is, 𝐟 ∶= (𝑓(𝝃1), … , 𝑓(𝝃𝑁 ))

⊤.
Every function 𝑓 in the finite element space is completely
defined by its values at the 𝑁 nodes:

𝑓(𝐩) =

𝑁∑
𝑘=1

𝑓(𝝃𝑘)𝜓𝑘(𝐩) = 𝐟⊤𝝍(𝐩)

for each𝐩 ∈ Ω. Note that the nodes of themesh, 𝝃1, … , 𝝃𝑁 ,
and the data locations, 𝐩1, … , 𝐩𝑛, can be different. Figure 2
shows two views of a finite element basis function on a
regular tetrahedral mesh of a simple cubic domain.
Define the 𝑛 × 𝑁 matrix Ψ = {Ψ}𝑖𝑘 = 𝜓𝑘(𝐩𝑖)

and the 𝑁 × 𝑁 matrices 𝑅0 = ∫
Ω
(𝝍𝝍⊤) and

𝑅1 = ∫
Ω
(∇𝝍𝐾∇𝝍⊤ + ∇𝝍𝐛𝝍⊤ + 𝑐𝝍𝝍⊤).

Proposition 2. There exists a unique 𝑓 = 𝐟⊤𝝍 ∈ 𝑉ℎ that
solves equation (4) for all 𝑣 ∈ 𝑉ℎ. Moreover, it satisfies:[

Ψ⊤𝑄Ψ 𝜆𝑅⊤1
𝜆𝑅1 −𝜆𝑅0

] [
𝐟

�̂�

]
=

[
Ψ⊤𝑄𝐳

𝜆𝐮

]
.

The proof of Proposition 2 is deferred to Section A of the
Supporting Information. For general meshes of dimension
𝑁 , the computational complexity for the resolution of
the SR-PDE problem (5) is 𝑂(𝑁2 ). However, if the mesh
nodes are a superset of the data locations (i.e., {𝐩𝑖} ⊆ {𝜉𝑖}),
the complexity is only 𝑂(𝑁 ), thanks to the special struc-
ture of the matrix Ψ, which has at most one nonzero
entry per row. The latter case is indeed very common in
real applications; for instance, this is the natural setting
for data obtained from medical imaging, such as the one
considered in this work.
Denote by 𝑃 = 𝑅⊤1 𝑅

−1
0 𝑅1 the matrix that discretizes the

penalty term. From Proposition 2, it follows that

𝐟 = (Ψ⊤𝑄Ψ + 𝜆𝑃)−1(Ψ⊤𝑄𝐳 + 𝜆𝑅⊤1 𝑅
−1
0 𝐮),

𝑓(𝐩) = 𝝍(𝐩)⊤(Ψ⊤𝑄Ψ + 𝜆𝑃)−1(Ψ⊤𝑄𝐳 + 𝜆𝑅⊤1 𝑅
−1
0 𝐮)

for any data location 𝐩 ∈ Ω. Denote by 𝑆 = Ψ(Ψ⊤𝑄Ψ +

𝜆𝑃)−1Ψ⊤𝑄 the smoothingmatrix. The value of the smooth-
ing parameter 𝜆, which trades off the two terms in
the functional 𝐽𝜆(𝜷, 𝑓), can be chosen with generalized
cross-validation, minimizing the quantity

GCV(𝜆) = 1

𝑛(1 − (𝑞 + tr(𝑆))∕𝑛)2
(𝐳 − �̂�)⊤(𝐳 − �̂�).

Section C of the Supporting Information gives some
simple finite sample properties of the estimators. Next sec-
tion discusses instead the good asymptotic properties of
the estimators, proving their consistency and asymptotic
normality; analogous results, for the simpler case of 2D
domains and with regularizing terms involving the simple
Laplacian without forcing terms, are derived in Ferrac-
cioli et al. (2021). Moreover, Section F of the Supporting
Information reports simulation studies that highlight the
superiority of the proposed methods with respect to state-
of-the-art techniques, in the context of smoothing as well
as of semiparametric regression.
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F IGURE 2 Two views of a linear finite element basis on a regular mesh of a cubic domain. Left: view from the exterior of the cubic
domain. Right: view on a slice of the cubic domain. This figure appears in color in the electronic version of this article, and any mention of
color refers to that version.

2.2 Asymptotic properties

We here study the infill asymptotic properties of the
SR-PDE estimator, keeping fixed the discretization. In par-
ticular, we fix a partition  of the domain, rich enough
to capture the features of the signal and the geometry of
the domain, and we let the number of observations 𝑛 go
to infinity.
For convenience, we reparameterize the functional

𝐽𝜆(𝜷, 𝑓) as

𝐽𝜆(𝜷, 𝑓) =
1

𝑛

𝑛∑
𝑖=1

{𝑧𝑖 − 𝐰⊤
𝑖
𝜷 − 𝑓(𝐩𝑖)}

2 + 𝜆𝑛 ∫
Ω

(𝐿𝑓 − 𝑢)2,

(5)
which is a more common formulation in nonparametric
regression. We point out that the functional is equivalent
to the one in Equation (2), setting 𝜆 = 𝑛𝜆𝑛. The estimators
𝐟𝑛 and 𝜷𝑛 minimizing (5) are

𝐟𝑛 =
(
Ψ⊤𝑄Ψ∕𝑛 + 𝜆𝑛𝑃

)−1(
Ψ𝑇𝑄𝐳∕𝑛 + 𝜆𝑛𝑅

⊤
1 𝑅

−1
0 𝐮

)
,

𝜷𝑛 =
(
𝑊𝑇𝑊

)−1
𝑊𝑇(𝐳 − Ψ𝐟𝑛).

We assume that, for sufficiently large 𝑛, the matrix
Ψ⊤𝑄Ψ is nonsingular, so that we can define the matrix
𝐴𝑛 = (Ψ⊤𝑄Ψ∕𝑛)−1. Moreover, let Σ𝑛 = 𝑊⊤𝑊∕𝑛.

Theorem 1. Let {𝐟𝑛} be a sequence of ST-PDE estimators.
Assume that a nonsingular limit𝐴 = lim𝑛 𝐴𝑛 exists. If 𝜆𝑛 →
0, then 𝐟𝑛 is a consistent estimator for 𝐟 . Moreover, for 𝜆𝑛 =
𝑜(𝑛−1∕2),

√
𝑛(𝐟𝑛 − 𝐟 )|𝑊 𝑑

→ 𝑁
(
0, 𝜎2𝐴

)
,

where
𝑑
→ denotes convergence in distribution.

Theorem 2. Let {𝜷𝑛} be a sequence of ST-PDE estimators.
Assume Σ = lim𝑛 Σ𝑛 exists and is nonsingular. Then, under
the hypothesis of Theorem 1, the estimator 𝜷𝑛 is consistent for
𝜷. Moreover, for 𝜆𝑛 = 𝑜(𝑛−1∕2),

√
𝑛(𝜷𝑛 − 𝜷)|𝑊 𝑑

→ 𝑞

(
0, 𝜎2

{
Σ−1 + (1∕𝑛2)Σ−1𝑊⊤Ψ𝐴Ψ⊤𝑊Σ−1

})
.

The proofs of Theorems 1 and 2 are deferred to Section D
of the Supporting Information.

3 SMOOTH FUNCTIONAL PRINCIPAL
COMPONENT ANALYSIS

We now consider the case where we have multiple func-
tional signals observed overΩ andwewould like to explore
the variability across these data. In the application to neu-
roimaging data presented in the Introduction, this will, for
instance, enable us to explore the variability across dif-
ferent fMRI scans, as described in Section 4. We do so in
the framework of functional principal component analy-
sis (FPCA), exploiting a low-rank approximation of PCA
(Huang et al., 2008, 2009; Lila et al., 2016).
Consider a random field 𝑍 taking values in 𝐿2(Ω), with

mean 𝜇 = 𝔼[𝑍] and a finite second moment. Assume
its covariance function Σ(𝐩, 𝐪) = 𝔼[(𝑍(𝐩) − 𝜇(𝐩))(𝑍(𝐪) −

𝜇(𝐪))] is square integrable. Mercer’s lemma ensures the
existence of an orthonormal sequence {𝖿𝑗} of eigenfunc-
tions and a nonincreasing sequence {𝜁𝑗} of eigenvalues
such that

∫
Ω

Σ(𝐩, 𝐪)𝖿𝑗(𝐩)𝑑𝐩 = 𝜁𝑗𝖿𝑗(𝐪) ∀𝐪 ∈ Ω. (6)
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The covariance function can be represented as Σ(𝐩, 𝐪) =∑∞

𝑗=1 𝜁𝑗𝖿𝑗(𝐩)𝖿𝑗(𝐪) for all 𝐩, 𝐪 ∈ Ω. Thus, the random vari-
able 𝑍 can be expanded as 𝑍 = 𝜇 +

∑∞

𝑗=1 𝑠
𝑗𝖿𝑗 , where the

random variables {𝑠1, 𝑠2, …} are uncorrelated and given by
𝑠𝑗 = ∫

Ω
{𝑍(𝐩) − 𝜇(𝐩)}𝖿𝑗(𝐩)𝑑𝐩. This is named Karhunen–

Loève expansion of 𝑍.
The functions {𝖿𝑗(𝐩)} are called principal component

(PC) functions, whereas the random variables {𝑠𝑗} are
called PC scores. The first PC function is such that

𝖿1 = argmax
𝑓∶‖𝑓‖𝐿2=1∫Ω ∫

Ω

𝑓(𝐩)Σ(𝐩, 𝐪)𝑓(𝐪)𝑑𝐩𝑑𝐪,

and define the strongest mode of variation in the random
function 𝑍. Subsequent PC functions solve the same prob-
lem, but with the constraint that each component 𝖿𝑑 is
orthogonal to the previous 𝑑 − 1 components 𝖿1 … 𝖿𝑑−1

𝖿𝑑 = argmax
𝑓∶‖𝑓‖𝐿2=1

<𝑓,𝖿𝑗>𝐿2=0 ∀𝑗=1…𝑑−1

∫
Ω
∫
Ω

𝑓(𝐩)Σ(𝐩, 𝐪)𝑓(𝐪)𝑑𝐩𝑑𝐪.

This characterization constitutes the basis for the clas-
sical computation of functional PCs, along the so-called
presmoothing approach (see, e.g., Chapter 8 of Ramsay &
Silverman, 2005).
In this work, we instead rely on a different characteriza-

tion of PCs, the best 𝑀-basis approximation property: for
any integer𝑀, the first𝑀 PCs solve

{𝖿𝑖}
𝑀
𝑖=1 = argmin

∫ 𝑓𝑖𝑓𝑗=0, ‖𝑓𝑖‖=1 𝔼
[
∫
Ω

{
𝑍 − 𝜇 −

𝑀∑
𝑗=1

(
∫
Ω

𝑍𝑓𝑖

)
𝑓𝑖

}]
. (7)

Consider 𝑚 discrete and noisy realizations of the random
field 𝑍. In particular, for 𝑗 = 1,…𝑚 and 𝑖 = 1, … , 𝑛, let
𝑧𝑗(𝐩𝑖) denote the realization of 𝑍 in the location 𝐩𝑖 , for the
𝑗th statistical unit. The empirical counterpart of the func-
tional in (7), when we take data already centered around
the mean, is given by

𝑚∑
𝑗=1

𝑛∑
𝑖=1

{𝑧𝑗(𝐩𝑖) − 𝑠𝑗𝑓(𝐩𝑖)}
2, (8)

where 𝐬 = {𝑠𝑗}, 𝑗 = 1…𝑚 is the𝑚-dimensional scores vec-
tor. Following SR-PDE approach, we promote regularity
of the PC by adding a penalization in functional (8). In
particular, we estimate the first PC 𝖿1 ∶ Ω → ℝ and the
associated scores �̂�1 solving the minimization problem

(�̂�1, 𝖿1) = argmin
𝐬,𝑓

𝐽𝑚
𝜆
(𝐬, 𝑓), (9)

where

𝐽𝑚
𝜆
(𝐬, 𝑓) =

𝑚∑
𝑗=1

𝑛∑
𝑖=1

{𝑧𝑗(𝐩𝑖) − 𝑠𝑗𝑓(𝐩𝑖)}
2 + 𝜆𝐬⊤𝐬∫

Ω

(Δ𝑓)2.

(10)
The empirical term encourages 𝖿1 to capture the strongest
mode of variation, whereas the second part of the func-
tional accounts for the regularity of 𝖿1. A normalization
constraint is added to make the representation unique,
setting ‖𝐬‖2 = 1.
Theminimization problem (9) is solved following a two-

step algorithm. In the first step, 𝖿 is kept fixed and a
finite-dimensional optimization in 𝐬 is carried out. In the
second step, 𝐬 is kept fixed and an infinite-dimensional
optimization in 𝖿 is performed.

Step 1. Estimation of 𝐬 for a fixed 𝖿 . The minimizer of the
objective function is

𝐬 =
𝐙𝗳𝑛‖𝗳𝑛‖22 + 𝜆 ∫

Ω
Δ𝖿2

,

and the unitary-norm vector 𝐬 that solves the
optimization problem above is

𝐬 =
𝐙𝗳𝑛‖𝐙𝗳𝑛‖2 .

Step 2. Estimation of 𝖿 for a fixed 𝐬. Finding the minimiz-
ing 𝖿 of the objective function (10) is an equivalent
problem to finding the 𝖿 that minimizes

𝐽𝜆,𝐬(𝖿) = 𝗳
⊤
𝑛 𝗳𝑛 + 𝜆 ∫

Ω

(Δ𝖿)2 − 2𝗳𝑛𝐙
⊤𝐬. (11)

The problem in Step 1 is equivalent to that of finding
the scores vector given the loadings vector in standard
multivariate PCA. The problem in Step 2 can instead be
represented as an appropriate smoothing problem, special
case of those described in Section 2. Indeed, let 𝑦𝑖 denote
the 𝑖th element of the vector 𝐙⊤𝐬, then minimizing (11) is
equivalent to minimizing

𝑛∑
𝑗=1

{
𝑦𝑗 − 𝖿(𝐩𝑗)

}2
+ 𝜆 ∫

Ω

(Δ𝖿)2,

which can be solved with SR-PDE (purely nonparametric
model).
The subsequent PCs are estimated one at a time, sequen-

tially, after subtracting the previous PCs from the data
matrix 𝐙, the 𝑚×𝑛 matrix whose 𝑗th row is given by
(𝑧𝑗(𝐩1), … , 𝑧𝑗(𝐩𝑛)). Note that orthogonality is not imposed
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F IGURE 3 The selected region of interest (ROI), corresponding to the left superior frontal gyrus. On the left, a view from the top; on the
right, a sliced view of the left hemisphere. This figure appears in color in the electronic version of this article, and any mention of color refers
to that version.

F IGURE 4 First, second, and third principal components. On the left, a view from the top; in the center, the posterior view; on the right,
a sliced view of the left hemisphere. This figure appears in color in the electronic version of this article, and any mention of color refers to that
version.
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in the estimation algorithm. However, when the same
value of 𝜆 is chosen for all components, the minimization
problem is analogous to the one proposed by Silverman
(1996) for unidimensional functions, and therefore, the
estimated PCs are uncorrelated. Nevertheless, as shown
in the simpler univariate context by Huang et al. (2008),
there are many advantages in imposing different levels
of smoothing on different components; thus, we do not
suggest to use the same 𝜆 for all the components. The
simulation study reported in Section F.5 of the Supporting
Information compares the proposed FPCA to state-of-the-
art techniques based on presmoothing approaches, and
shows that the proposed method is superior to the alter-
natives, both in terms of goodness of fit and in terms of
computational cost. In particular, the method returns very
good estimates of the true PCs, which are orthogonal. We
can hence still consider the usual interpretation of PCs as
yielding modes of variability of the data.

4 DATA ANALYSIS

MyConnectome project is a collection of brain magnetic
resonance imaging (MRI) scans, both structural MRI and
functional MRI (fMRI), of a single healthy individual,
taken over the course of 18 months. The leader of the
project is doctor Russel Alan Poldrack, Professor of Psy-
chology at Stanford University. A complete and detailed
description of the project, from themotivations that led the
data collection to the goals of the analyses, is given in Pol-
drack et al. (2015). In particular, we here aim at exploring
the main modes of variation of the cerebral connectivity
for the healthy individual under study, based on a dataset
of 92 sessions of resting state fMRI.
The raw data consist of the images resulting from each

session of fMRI, which must be processed in order to
obtain comparable and analyzable quantities. Data of dif-
ferent sessions are denoised, realigned to correct for head
motion, segmented, and registered to the MNI 152 tem-
plate space, a reference map built from the average of the
MRI scan of 152 healthy individuals (see Fonov et al., 2011,
2009). In particular, the registration of the different fMRI
sessions of the considered healthy individual to a com-
mon template, the MNI 152 template, permits to make
analyses across the sessions. The entire pipeline of data
preprocessing is detailed in Esteban et al. (2018). A further
preprocessing step consists in creating a precise 3D tetra-
hedral mesh of the brain, starting from a segmentation of
anatomical images, as detailed in Section 4.1. Then, start-
ing from the fMRI signals, evaluated at themesh nodes, we
compute a functional connectivity map, for each fMRI ses-
sion, as detailed in Section 4.2. We hence apply the FPCA
in Section 3, to explore the main modes of variation of the

functional connectivity for the considered individual. Note
that although the 92 connectivity maps may not be inde-
pendent, corresponding to repeated scans over time, this
does not prevent the use of PCA for descriptive purposes
(see, e.g., Jolliffe, 2002).

4.1 Mesh creation

The mesh is created starting from the preprocessed T1-
weighted structural scan of the patient. In particular, using
the MATLAB toolbox SPM12 (Friston et al., 2007), the brain
is segmented in graymatter, white matter, and cortical sur-
face. The MATLAB toolbox Brain2Mesh (Fang & Boas, 2009;
Tran&Fang, 2017) provides a streamlined MATLAB function
to convert a segmented MRI scan into a high-quality mul-
tilayered tetrahedral brain/full head mesh, and it is used
for the creation of the tetrahedral mesh starting from the
segmented MRI-scan image. For the purpose of the anal-
ysis, we are interested in studying the signal over the gray
matter; therefore, we employ only that part of the segmen-
tation to create the mesh. The resulting mesh is shown in
the first row of Figure 1, and is composed of 45,677 nodes
and 165,953 tetrahedra. The mesh shows a great accuracy
in capturing all the complex anatomy of the brain.

4.2 Computation of the connectivity
maps

Each fMRI scan consists of a spatiotemporal signal, the
blood-oxygen-level-dependent (BOLD) signal, evaluated at
each node of the mesh. This means that for each loca-
tion 𝐩𝑖 , we observe a function of time. Since cell activity
requires oxygen consumption, the BOLD signal can be
seen as a proxy for neural activity.
A standard approach to explore the behavior of the

brain, during a resting state fMRI, is to consider a region
of interest (ROI) in the brain, and hence, compute for
each location 𝐩𝑖 the correlation between the temporal sig-
nal observed in 𝐩𝑖 and the mean temporal signal in the
ROI. As a result, we obtain, for each location, the corre-
lation between the signal at that location and the signal
in the ROI. The idea behind this procedure is to ana-
lyze the behavior of the brain with respect to an ROI,
to understand which regions are positively or negatively
correlated with it. The functional connectivity map is
then obtained from the correlation map by application
of the Fisher’s r-to-z transformation (Fisher, 1915). The
procedure is repeated for each of the 92 sessions, giving
as a result a 92×45,677 data matrix 𝐙 of the functional
connectivity maps. As ROI, we here consider the left
superior frontal gyrus, which is shown in Figure 3. This
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region is involved in self-awareness, in coordination and
episodic memory.
The bottom row of Figure 1 shows the mean functional

connectivity map over the 92 sessions. We observe that the
mean signal is quite noisy. In the ROI and the nearby areas,
the correlation is high, as expected. In the mesial part of
the cerebellum, a positive correlation is observed. Mild
negative correlations are observed in the occipital lobes.

4.3 Results

After subtracting the global mean, the FPCA in Sec-
tion 3, implemented in the R package fdaPDE (Arnone
et al., 2022), is employed to compute the first three PCs.
The obtained components are represented in Figure 4.
We observe that the PCs estimated with FPCA-PDE are
smooth functions over the brain. The first PC assumes low
negative values in the ROI, in the right superior frontal
gyrus, in the right parietal lobule, and in the mesial region
of the cerebellum. In the rest of the brain, it takes values
near to zero, and mildly positive values in the posterior
part of the cortical surface. The second PC shows a con-
trast between the ROI, the right superior frontal gyrus, the
mesial region of the cerebellum (where it takes negative
values), and the rest of the brain. In particular, it assumes
high positive values in the visual cortex, which is the area
of the cerebral cortex, in the occipital lobe. The third PC
has high positive values in two localized areas of the visual
cortex. It takes values near to zero in the rest of the vol-
ume, with mild negative values on the frontal and parietal
regions. The fronto-occipital network is well known to be
implicated in higher order visual processing. Moreover, it
has been suggested that the higher order process of motor
ideation operates through a neural network involving also
the visual mental imagery areas (Gardini et al., 2016; Raf-
fin et al., 2012). Therefore, the positive correlation between
the left superior frontal gyrus and occipital areas high-
lighted by the PCs may be ascribed to ideation processes
performed by the subject during the fMRI sessions.

5 DISCUSSION

The simulation studies reported in Section F of the Sup-
porting Information and the application to fMRI data
detailed in Section 4 show that the proposed SR-PDE and
FPCA are able to analyze complicated functional signals
observed in 3D domains with highly nontrivial geometries.
As detailed in Section E of the Supporting Information,
the data could also be referred to volumetric subdomains,
instead of to pointwise locations. Moreover, the methods
can be extended in various directions. A first interest-

ing extension is to consider generalized linear models
over complicated 3D domains, when the response variable
has some continuous or discrete distribution within the
exponential family. This could be done suitably extending
the model presented in Wilhelm and Sangalli (2016) for
2D domains. Another interesting direction concerns the
extension to temporally dependent data. The BOLD sig-
nal itself, for example, is indeed a temporal series observed
at locations in the brain volume. Such extension can be
formulated considering two penalty terms, regularizing
the estimate over space and over time, similarly to what
done by Ugarte et al. (2010), Marra et al. (2012), Aguilera-
Morillo et al. (2017), Bernardi et al. (2017), and Arnone
et al. (2021), in the case of 2D planar domains, or a sin-
gle penalty involving a time-dependent PDE, as done for
2D planar domains by Arnone et al. (2019). Concerning
the asymptotic properties, we have here derived the con-
sistency and asymptotic normality of the estimators setting
𝜆 = 𝑜(𝑛−1∕2). In future research, we shall rigorously inves-
tigate whether the selection of 𝜆 by GCV guarantees
such convergences.
In this work, we have focused on an application to neu-

roimaging data and considered regularization with the
simple Laplace operator. However, life sciences present
several other challenging problems where the proposed
methods could be profitably applied, to study biological
signals within organs, complying with the morphology
of the organs. Moreover, the possibility to include in
the regularizing term general forms of PDEs further per-
mits to include the available problem-specific information
about the complex physics of the underlying phenom-
ena. As an example, the study of heart malfunctioning
requires the analysis of complex electrical signals within
the cardiac muscle, which governs its contractions, and
extensive knowledge is available on the physics of the
problem (see, e.g., Quarteroni et al., 2017; Salvador et al.,
2021). Many other sciences and engineering problems
present data distributed in volumes with complicated
shapes and a problem-specific knowledge that can sug-
gest a regularizing PDE. In engineering design processes,
for instance, it is crucial to study quantities of interest
observed within the volume of a 3D prototype, in order to
optimize its design, for example, the aerodynamic forces
exerted on an airfoil, when considering the design of
an airplane. In environmental and geo sciences, it is of
paramount importance to accurate model data distributed
in regions characterized by a complex orography. These
examples highlight the broad applicability of the proposed
methods.
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