
Università degli Studi di Torino

PhD in Chemical and Materials Sciences

DOCTORAL THESIS

Development of Algorithms for Molecular

Dynamics Simulations and Electronic Transport

Properties in the CRYSTAL Code

PhD Student: Chiara Ribaldone

Supervisor: Prof. Silvia Casassa

2

Contents

1 Introduction 7

2 Unifying molecular dynamics and electronic structure 11

3 Initialization of quantities 17

3.1 Initialization of nuclear positions and velocities . 17

3.1.1 Subtraction of total linear momentum . 23

3.1.2 Velocity rescaling with respect to target temperature 23

3.2 Translations and rotations removal . 25

3.2.1 Removal of atomic systems translations . 25

3.2.2 Removal of molecular systems rotations . 26

3.2.3 Removal of polymer systems rotations . 29

3.3 Kinetic energy, net linear and angular momentum . 30

4 Equations of motion 33

4.1 Hamilton formulation . 33

4.1.1 Hamilton equations of motion . 33

4.1.2 Symplectiness and canonical transformations . 35

4.1.3 Liouville theorem . 36

4.1.4 Liouville equation . 37

4.1.5 Liouville operator . 38

4.1.6 Liouville operator invariance under canonical transformations 38

4.1.7 Time dependency in phase space . 40

4.1.8 First integrals of Hamilton equations of motion . 42

4.2 Generalized approach for equations of motion integration 42

4.2.1 Suzuki-Trotter factorization scheme . 43

4.2.2 Action of the Liouville operators . 46

4.3 Statistical mechanics and equations of motion . 47

4.3.1 Hamiltonian dynamics . 47

4.3.2 Non Hamiltonian dynamics . 49

4.3.2.1 The generalized phase space analysis . 58

4.3.2.2 Other forms of the generalized Liouville equation 58

5 Generation of statistical ensembles 61

5.1 The microcanonical ensemble . 61

5.1.1 Equations of motion . 61

5.1.2 Integration of the equations of motion . 61

5.1.3 Conserved quantities . 69

5.1.4 Jacobi coordinates . 71

5.1.5 Statistical mechanical ensemble . 73

5.1.5.1 Periodic boundary conditions . 73

5.1.5.2 Periodic boundary conditions: a second derivation 77

5.1.6 Calculation of temperature and the mean kinetic energy 83

5.2 Generation of different ensembles . 88

3

Contents Contents

5.2.1 The constraint methods . 88

5.2.2 The extended system methods . 88

5.3 Constant temperature approaches . 90

5.3.1 Gaussian thermostat . 91

5.3.2 Simple velocity rescaling . 95

5.3.3 Berendsen thermostat . 99

5.3.4 The Nosé-Hoover thermostat . 107

5.3.4.1 Equations of motion in real variables . 109

5.3.4.2 Integration of the equations of motion . 112

5.3.4.3 Conserved quantities . 114

5.3.4.4 Statistical mechanical ensemble . 117

5.3.4.5 Statistical mechanical ensemble under periodic boundary conditions . . . 121

5.3.4.6 Uniqueness of Nosé-Hoover equations of motion 125

5.3.4.7 Dynamical properties . 126

5.3.5 Nosé-Hoover chains . 130

5.3.5.1 Equations of motion in real variables . 130

5.3.5.2 Integration of the equations of motion . 131

5.3.5.3 Conserved quantities . 133

5.3.5.4 Statistical mechanical ensemble . 134

5.3.5.5 Statistical mechanical ensemble under periodic boundary conditions . . . 136

5.4 Constant temperature and pressure approaches . 140

5.4.1 Ferrario thermostat and barostat . 140

5.4.1.1 Equations of motion in real variables . 143

5.4.1.2 Integration of the equations of motion . 145

5.4.1.3 Conserved quantities . 147

5.4.1.4 Statistical mechanical ensemble . 152

5.4.1.5 Statistical mechanical ensemble under periodic boundary conditions . . . 155

5.5 Summary: ensembles and equations of motion . 161

6 Post processing of dynamics trajectory 163

6.1 Radial Pair Correlation Function . 163

6.1.1 Theory . 163

6.1.1.1 Averages in phase space . 163

6.1.1.2 Reduced Configurational Distribution Functions 164

6.1.1.3 Analytical expression of the radial pair correlation function 166

6.1.1.4 Radial pair correlation function resolved per species 168

6.1.2 Implementation . 169

6.1.2.1 Requirements . 169

6.1.2.2 The subroutine pcf md: description and methods 169

6.2 Power Spectrum and Diffusion Coefficient . 179

6.2.1 Theory . 179

6.2.1.1 The convolution theorem . 179

6.2.1.2 The Wiener-Khinchin theorem . 180

6.2.1.3 The autocorrelation function . 181

6.2.1.4 Velocity autocorrelation function and power spectrum 182

6.2.1.5 Velocity autocorrelation function and diffusion coefficient 183

6.2.2 Implementation . 184

6.2.2.1 Requirements . 184

6.2.2.2 The subroutine frequencies md: description and methods 184

7 Molecular dynamics simulations: results and discussion 187

7.1 Scaling efficiency . 189

7.2 Computational details . 193

4

Contents Contents

8 Fast Inertial Relaxation Engine (FIRE) 195

8.1 Review on quasi-Newton methods . 195

8.1.1 Conjugate Gradient method . 196

8.1.2 Broyden-Fletcher-Goldfarb-Shanno method . 199

8.1.3 Structural optimization methods in Crystal code 201

8.2 The Fire algorithm . 201

8.2.1 The Fire algorithm . 201

8.2.2 Fire2.0 algorithm . 204

8.2.3 Advantages in using Fire algorithm . 204

8.3 Implementation of Fire in Crystal code . 205

8.3.1 Molecular Dynamics integrator . 205

8.3.2 Convergence criteria . 205

8.3.3 Setting of Fire default parameters . 206

8.3.4 Computational details . 207

8.4 Results and Discussions . 209

8.5 Conclusions and Perspectives . 211

9 Electronic transport properties 213

9.1 Boltzmann transport theory . 213

9.1.1 Distribution function and Bbgky hierarchy . 213

9.1.2 Collision integral in solid state systems . 216

9.1.3 Boltzmann equation . 217

9.1.4 Current density and electrical conductivity . 218

9.1.4.1 Generalization to a multiband approach 220

9.2 Band velocities in the Crystal code . 222

9.2.1 Properties of reciprocal space representation of ∂µF and ∂µS matrices 225

9.2.2 The reality of band velocities . 227

9.2.3 Implementation in the Crystal code . 231

9.2.4 Orbital rotations and transport properties . 235

9.2.4.1 Off-diagonal elements of band velocities 235

9.2.4.2 Diagonal elements of band velocities . 236

9.3 Massively Parallel Processing implementation . 239

9.4 Results and Discussion: the famous case of silicon . 242

9.4.1 Band structure . 242

9.4.2 Comparison of P and MPP band velocities . 242

9.4.3 Effect of band degeneracy on the electronic transport properties 244

9.5 Parallel implementation: problems and solutions . 248

9.5.1 Test cases: results and discussion . 249

10 Conclusions and future perspectives 255

Appendices 257

A Notation stuffs and demonstrations 259

A.1 Maxwell-Boltzmann distribution . 259

A.1.1 Initial nuclear velocities distribution . 263

A.1.2 Initial nuclear velocities rescaling . 267

A.2 Position and Velocity Verlet algorithms . 269

A.3 Phase space notation . 272

A.4 Fluctuation-Dissipation Theorem . 274

A.5 Canonical transformation . 276

A.6 Resolution of the Bromwich integral . 277

A.7 Nosé-Hoover statistical mechanical ensemble . 279

A.7.1 Ensemble with linear momentum conservation . 281

A.8 Ferrario statistical mechanical ensemble . 287

5

Contents Contents

A.8.1 Ensemble with linear momentum conservation . 289
A.8.2 Solution of integral (5.569) with respect to variable pv 294
A.8.3 Conserved quantities . 295

A.9 Gaussian thermostat through extended system . 297
A.9.1 Equations of motion in real variables . 299

A.10 Equations of motion integration . 300
A.11 From virtual to real sampling . 304

A.11.1 Nosé-Hoover thermostat . 304
A.12 Integrator for Nosé-Hoover thermostat . 307

B Molecular Dynamics module details 309
B.1 Code workflow (moldyn.f90) . 309

B.1.1 Box-Muller implementation . 329
B.1.2 Kinetic energy and temperature calculations . 329

B.2 Constants and conversion units . 330
B.3 Output files . 331
B.4 Merging moldyn post.f90 in Crystal . 332

B.4.1 The module read moldyn post module: reading of the input file 333
B.4.2 Calculations starting from the input file .d12 . 333
B.4.3 Post processing calculations starting from the input file .d3 335

B.5 Fire in Crystal code . 336
B.5.1 Module fire module . 336

B.5.1.1 Subroutine fire . 337
B.5.1.2 Subroutine firealg1 . 338
B.5.1.3 Subroutine readFire . 338

B.5.2 Changes in libopt.f library and memory opt.f90 module 342
B.5.3 Changes in geometry.f and libforce6.f libraries . 345

B.6 Black list of changes . 347

C Electronic Transport Properties module details 349
C.1 Code workflow (boltzatorb.f90) . 349
C.2 Bug report 1 (boltzatorb.f90) . 353
C.3 Bug report 1 (boltzatorb.f90) . 357

D Computational parameters and input setup 363
D.1 Crystalline ice (P-ice) . 364
D.2 Liquid-like water . 365

E Manuals 367
E.1 Molecular dynamics : manual and keywords . 367
E.2 Fire : Manual and keywords . 370

F Documentation of some CRYSTAL core subroutines 373

G Fort.98 unit information 419

Bibliography 435

6

Chapter 1

Introduction

This doctoral thesis encompasses two subjects.

The main topic is the study and the implementation of the Born-Oppenheimer molecular dynamics in
the Crystal code, a program for quantum mechanical simulations of materials, whose peculiarity stems
from the use of atom-centered basis functions within a linear combination of atomic orbitals to describe
the wavefunction of a condensed matter system. The corresponding efficiency in the evaluation of the
exact Fock exchange series has led to the implementation of a rich variety of hybrid density functionals,
at low computational cost. Indeed, Crystal derives its unique capabilities from the use of a local
basis set of (non-orthogonal) atomic orbitals, expressed in terms of linear combinations of Gaussian
basis functions. This basis set choice and the extremely efficient algorithms implemented in the code
for the analytical calculation of two-electron repulsion integrals make Crystal a primary tool in solid
state physics in terms of both accuracy and computational efficiency in large systems. In particular, the
use of Gaussian basis functions and a suitable truncation of the exchange series allow a very efficient
implementation of hybrid exchange-correlation density functional approximations with respect to codes
based on a plane wave basis set.[1] At the same time, ab initio molecular dynamics, based on Hartree-Fock
(HF) or density functional theory (DFT), has become established since its early days as an important
tool for simulations of an increasingly wider range of problems in geology, condensed matter physics,
chemistry and biology.[2, 3, 4] This method combines the quantum mechanical static description given by
ab initio theories such as HF and DFT with a classical evolution of the nuclear coordinates in the phase
space, thus allowing a dynamic characterization of structural and electronic properties of a condensed
matter system. Ab initio molecular dynamics simulations are commonly performed using (semi)local
functionals that only depend on the electronic density and its gradients. At the same time, hybrid
functionals, that do not depend only on the electronic density, but also on the Kohn-Sham orbitals,
introduce non-local terms that have a key role in addressing some of the failures of (semi)local functional,
in particular those related to the self-interaction error. Moreover, hybrid functionals are known for their
high accuracy in ab initio molecular dynamics simulations, in particular for the improvement in the
description of the structural and dynamical properties of liquids[5, 6, 7, 8, 9] and for the accuracy in the
computation of free-energy surfaces.[10, 11, 12] Unfortunately, the inclusion of Hartree-Fock exchange
operator required in hybrid functionals has a very high computational cost, so that ab initio molecular
dynamics simulations with hybrid functionals are not routinely carried out. Although some efforts have
been made in the last years to address this problem, using plane waves[13, 14], dual representation
of Gaussian and plane wave basis sets,[15] and maximally localized Wannier functions,[16] the high
computational costs still remain one of the main issues of ab initio molecular dynamics with hybrid
functionals. In this framework, the implementation of the Born-Oppenheimer molecular dynamics in the
Crystal code offers the possibility to combine together ab initio molecular dynamics methods with the
numerical efficiency in treating non-local exchange and hybrid functionals. The initial and main part of
this thesis is therefore devoted to the explanation of the theoretical background underlying molecular
dynamics methods and to the description of its implementation in the Crystal code. In particular,
Chapter 2 describes how to combine a quantum mechanical description of the electronic part of the
system with a classical time evolution of the nuclei, Chapter 3 deals with the initialization of quantities
for molecular dynamics simulations, such as the initial nuclear velocities, Chapter 4 outlines the general
strategy to obtain classical equations of motion and how to combine them with statistical mechanics to

7

Chapter 1. Introduction

generate different ensembles, Chapter 5 contains a derivation of the algorithms to integrate the equations
of motion for the microcanonical, canonical and isothermal-isobaric ensembles, with a particular attention
to the correctness of the statistical ensembles generated by the equations of motion which have been
integrated. These first five chapters are main focused on theoretical development, though containing the
basis to implement molecular dynamics propagator in a consistent way. Chapter 6 is then devoted to the
description of the theoretical derivation and the implementation of some physical quantities that can be
derived from the analysis of molecular dynamics trajectories, such as the pair correlation function, the
power spectral density (also called vibrational density of states) and the diffusion coefficient. Finally,
Chapter 7 reports some of the more significant results obtained by applying the molecular dynamics
simulations methods on two test cases, represented by a crystalline ice and a liquid-like cubic periodic
system. A comment apart has to be dedicated to Chapter 8, which is aimed at explaining the theoretical
foundations and the implementation in the Crystal code of the Fast Inertial Relaxation Engine, a
structural optimization algorithm based on molecular dynamics concepts. The interest for this novel
method is threefold. Firstly, it does not rely on any approximation on the shape of the potential energy
surface, possibly resulting in good convergence behavior regardless the potential energy surface form.
Secondly, it does not involve the Hessian approximation, maybe leading to a less computational cost than
the commonly used quasi-Newton schemes. Finally, it can be a further approach to test the feasibility
of molecular dynamics propagator in the Crystal code, thus supporting the possibility to perform
accurate Born-Oppenheimer molecular dynamics simulations.

The second subject of this thesis is related to the calculation of electronic transport properties by means
of an ab initio approach in the Crystal code. The electronic ground state wavefunction computed with
Dft methods (using approximate functionals to model the exchange-correlation potential) can be used
to compute various physical quantities associated to the electronic ground state of a condensed matter
system. In particular, properties of solids that are related to the motion of electrons through the material,
such as conductivity or thermoelectricity, are of primary interest for the technological development of
the so-called thermoelectric devices.[17] Ab initio calculation of these properties can be easily obtained
through a post-processing of the ground state wavefunction, which consists in the computation of the
derivatives of the band structure with respect to the reciprocal space point coordinates,[18, 19] and
in the use of these derivatives in the semiclassical Boltzmann transport equation with relaxation time
approximation.[20, 21] In this way, the electrical conductivity, the Seebeck coefficient and the electronic
contribution to the thermal conductivity can be computed from ab initio principles. To date, several
codes can post-process Dft wavefunctions to evaluate the electron transport properties through the
solution of the Boltzmann equation. In particular, the Crystal code combines together the possibility
to perform analytical derivatives of the electronic bands with the numerical efficiency in treating non-
local exchange and hybrid functionals.[22] However, one of the major drawback of transport properties
calculation is the large sampling of the reciprocal space, that is necessary to obtain accurate values of
the electronic conductivity and the Seebeck coefficient. This requires a large memory storage in each
Ram unit, leading to the impossibility to run transport properties calculations for large systems, even
on modern High Performance Computing (Hpc) architectures. For this reason, a Massively Parallel
Processing (Mpp) approach would be very useful in order to address the memory issues and permit
transport properties calculations on large atomic systems. The Mpp strategy has already been introduced
in the Crystal code for the calculation of Kohn-Sham and overlap matrices in reciprocal space and for
the diagonalization of the Kohn-Sham matrix, by exploiting the independence of the reciprocal space
points for the calculations of the electronic transport properties.[23] This same property of reciprocal
space points independence can be used to massively parallelize the computation of the band velocities
in the transport properties calculations. Chapter 9 is therefore dedicated to this issue, both revising
the calculation of electronic transport properties from a theoretical point of view and presenting some
results coming from Mpp method implemented on this part of the code.

Finally, Chapter 10 outlines the conclusions and future perspectives of this work. Moreover, a series
of appendices, referenced throughout the thesis, can guide the reader through the details of theoretical
demonstrations and practical implementation in the code. In particular, Appendix A contains some
mathematical demonstrations main related to Chapters 4-5 of the thesis, Appendix B outlines some
details (workflows and commented pieces of code) about molecular dynamics implementation in the
Crystal code, Appendix C reports the main equations implemented for electronic transport properties

8

Chapter 1. Introduction

calculations, together with some bugs that are discovered during the implementation of the Massive
Parallel version of this part of the code, Appendix D includes the computational details and input files
used for molecular dynamics simulations on test cases as described in Chapter 7. Finally, Appendix E
contains the manuals with the list of input keywords and options to be used for molecular dynamics
simulations and for the structural optimization using Fast Inertial Relaxation Engine method, while
Appendix F and G include details of the Crystal code, respectively about some subroutines of interest,
which have been reported and commented, and about the information contained in fort.98 unit file.

9

Chapter 1. Introduction

10

Chapter 2

Unifying molecular dynamics and
electronic structure

“ The molecular dynamics method computes
phase space trajectories of a collection of
atoms which individually obey classical laws
of motion.”

D. W. Heermann, Computer Simulation
Methods in Theoretical Physics

The very basic starting point to describe the atomic properties of materials is the studying of the
Schrödinger equation for the electronic part of the system, taking into account the electrons-electrons
and the nuclei-electrons interactions. The solution of the electronic Schrödinger equation can be per-
formed using different theories, among which the most used are the Hartree-Fock and the Kohn-Sham
methods. These theories are based on the parametrization of the nuclei positions, so that each elec-
tronic ground state is computed for a particular configuration of the nuclei. Therefore, in this approach
the thermal motion of the nuclei is neglected, so that the electronic ground state is computed for an
ideal system, frozen in a given nuclei configuration. In this framework, the electronic structure theories
computes the electronic properties of a system at a temperature of zero Kelvin. However, the study
of the properties of a given system at non zero temperatures is rather important and interesting. The
presence of non zero temperature determines a thermal motion of nuclei, that becomes important to
describe various properties of condensed matter systems. This chapter has the purpose to construct
a theoretical background which can describe the motion of nuclei and electrons in condensed matter
systems, introducing some of the most used molecular dynamics methods.

A complete, non-relativistic, description of a system of N atoms whose positions are represented by
the set of coordinates q = (q1, q2, ..., qi, ..., qN) and with Ne electrons in position and spin states at
ξ = (ξ1, ξ2, ..., ξµ, ..., ξNe) is provided by the non-relativistic Schrödinger form of the equation of motion
in its coordinate representation

ih̄
∂

∂t
Ψ(ξ, q, t) = Ĥ(ξ, q) Ψ(ξ, q, t) (2.1)

where ξ := (re, σ) is the spatial and spin coordinates of the electrons, and the Hamiltonian Ĥ(ξ, q) that
governs both the electronic and nuclear motion is the electrostatic non-relativistic Hamiltonian form for
a system with N nuclei and Ne electrons, which can in general be written as the sum of a nuclear kinetic
operator T̂n(q) and an electronic Hamiltonian Ĥe(ξ, q) which depends on the electronic and nuclear
coordinates:

Ĥ(ξ, q) = T̂n(q) + Ĥe(ξ, q) where Ĥe(ξ, q) = T̂e(ξ) + v̂(ξ, q) (2.2)

The explicit form of the electronic Hamiltonian Ĥe(ξ, q) is not specified here, however, it is the entire
Hamiltonian of the system with the exception of the kinetic energy operator for the nuclei; i.e., it is the
Hamiltonian that governs the fast particle (electronic) motion when the slow (nuclear) particles are at

11

Chapter 2. Unifying molecular dynamics and electronic structure

fixed positions q. In the most general case, it includes the electronic kinetic T̂e(ξ) and all inter-particle
interaction v̂(ξ, q) operators (as, for example, the electron-electron, electron-nuclear, nuclear-nuclear and
spin-orbit interaction operators). In principle, a quantum mechanical treatment of both the electronic
and nuclear dynamics could be employed by solving (2.1). This is impractical, of course, except for
the simplest cases, those for which it is adequate to reduce the dimensionality of the problem to only
a few degrees of freedom. To handle this problem, two fundamental approximations are introduced,
namely, the Born-Oppenheimer approximation and classical mechanical motion of nuclei, which lay at
the basis of the most used molecular dynamics models and allow a straightforward implementation in a
quantum ab initio code. Therefore, the goal of this section is to derive molecular dynamics of classical
point particles, that is essentially the classical mechanics rule of motion, starting from the Schrödinger
quantum-mechanical wave equation of motion (2.1) for both electrons and nuclei. To this end, the
nuclear and electronic contributions to the total wavefunction Ψ(ξ, q, t) are separated directly such that,
ultimately, the classical limit can be imposed for the nuclei only. The so-called Ehrenfest product ansatz
is introduced for the wavefunction form in (2.1), which reads as

Ψ(ξ, q, t) = Ψe(ξ, t)Ψn(q, t) exp

[
i

h̄

∫ t

t0

Ẽe(t
′) dt′

]
(2.3)

where the nuclear Ψn(q, t) and electronic Ψe(ξ, t) wavefunctions are time dependent and are separately
normalized to unity at every time t with respect to integration over q and ξ, respectively∫

Ψ∗n(q, t)Ψn(q, t) dq = 1 and

∫
Ψ∗e(ξ, t)Ψe(ξ, t) dξ = 1 (2.4)

The arbitrary phase factor

Ẽe(t) =

∫ ∫
Ψ∗e(ξ, t)Ψ

∗
n(q, t) Ĥe(ξ, q) Ψe(ξ, t)Ψn(q, t) dξ dq (2.5)

is introduced in (2.3) for convenience, in order to simplify the appearance of the final equations, but
since the phase factor Ẽe does not depend explicitly on ξ or q, it could be incorporated into either of
the other terms to make equation (2.3) appear as a simple product. It is mentioned in passing that
this approximation is called a one-determinant or single-configuration ansatz for the total wavefunction,
which at the end must lead to a mean-field description of the coupled dynamics. Note in addition
that this product ansatz differs, independently from the issue of phase factor, from the Born product
ansatz[24] expressed in terms of adiabatic electronic states Ψe(ξ; q), even if only a single electronic state
is considered in the Born product.
At this point, the ansatz (2.3) can be substituted into the Schrödinger equation of motion (2.1), using
the Hamiltonian form of equation (2.2). Multiplying from the left by Ψ∗n(q, t) and integrating over q
yields an effective Schrödinger equation for the fast variables ξ related to the electronic particles:

ih̄
∂Ψe(q, t)

∂t
= − h̄

2

2

Ne∑
µ=1

∇2
µ

mµ
Ψe(ξ, t)− ih̄

{∫
Ψ∗n(q, t)

∂Ψn(q, t)

∂t
dq

}
Ψe(ξ, t) + Ẽe(t)Ψe(ξ, t)

+

{∫
Ψ∗n(q, t)

[
− h̄

2

2

N∑
i=1

∇2
i

mi
+ v̂(ξ, q)

]
Ψn(q, t) dq

}
Ψe(ξ, t) (2.6)

where the electronic and nuclear kinetic operators have been explicitly written. Similarly, multiplying
the Schrödinger equation of motion from the left by Ψ∗e(ξ, t) and integrating over the coordinates ξ gives
an effective Schrödinger equation for the slow variables q related to the nuclear degrees of freedom:

ih̄
∂Ψn(q, t)

∂t
= − h̄

2

2

Ne∑
i=1

∇2
i

mi
Ψn(q, t)− ih̄

{∫
Ψ∗e(ξ, t)

∂Ψe(ξ, t)

∂t
dξ

}
Ψn(q, t) + Ẽe(t)Ψn(q, t)

+

{∫
Ψ∗e(ξ, t)

[
− h̄

2

2

Ne∑
µ=1

∇2
µ

mµ
+ v̂(ξ, q)

]
Ψe(ξ, t) dξ

}
Ψn(q, t) (2.7)

12

Chapter 2. Unifying molecular dynamics and electronic structure

which is the equation of motion that describes the evolution in time of the nuclear wavefunction, in the
same way as equation (2.6) rules the evolution in time of the electronic wavefunction. The time derivative
term on the right hand side of equation (2.6) and the similar term in equation (2.7) remain to be specified.
Note that because of the assumption that Ψe(ξ, t) and Ψn(q, t) are normalized, the derivative integrals
are pure imaginary; i.e., the derivative factors multiplied by ih̄ are real-valued. Multiplying equation
(2.7) from the left by Ψ∗n(q, t) and integrating over q yields

ih̄

∫
Ψ∗n(q, t)

∂Ψn(q, t)

∂t
dq + ih̄

∫
Ψ∗e(ξ, t)

∂Ψe(ξ, t)

∂t
dξ − Ẽe(t)

=

∫ ∫
Ψ∗e(ξ, t)Ψ

∗
n(q, t) Ĥ(ξ, q) Ψe(ξ, t)Ψn(q, t) dξ dq = E

(2.8)

The same equation can be obtained by multiplying equation (2.6) from the left by Ψ∗e(ξ, t) and integrating
over the electronic coordinates ξ. In order for the total energy E to be conserved, the time derivative
of equation (2.8) must be zero. This imposes a constraint on the two derivative factors and the time
dependent phase factor Ẽe(t) in (2.8). The derivative factors can be specified arbitrarily, subject to
satisfying equation (2.8). In standard derivations, these factors are chosen so that the resulting effective
Schrödinger equations are symmetric in ξ and q. In the present situation, however, ξ and q are not
equivalent; one is the coordinate related to fast particles and the other to slow ones. It is more convenient
here to choose an unsymmetrical definition of the phases.[25] The phase convention is arbitrary, however,
so that the present development is entirely equivalent to standard derivations. The derivative phase
factors can thus be defined as follows:

ih̄

∫
Ψ∗n(q, t)

∂Ψn(q, t)

∂t
dq = E

ih̄

∫
Ψ∗e(ξ, t)

∂Ψe(ξ, t)

∂t
dξ = Ẽe(t)

(2.9)

On the basis of this assumption, the final effective Schrödinger equations of motion (2.6) for the fast
(electronic) and (2.7) for the slow (nuclear) particles become, respectively,

ih̄
∂Ψe(ξ, t)

∂t
= − h̄

2

2

Ne∑
µ=1

∇2
µ

mµ
Ψe(ξ, t) +

{∫
Ψ∗n(q, t) v̂(ξ, q) Ψn(q, t) dq

}
Ψe(ξ, t) (2.10)

ih̄
∂Ψn(q, t)

∂t
= − h̄

2

2

N∑
i=1

∇2
i

mi
Ψn(q, t) +

{∫
Ψ∗e(ξ, t) Ĥe(ξ, q) Ψe(ξ, t) dξ

}
Ψn(q, t) (2.11)

This set of coupled time-dependent Schrödinger equations defines the basis of the time-dependent self-
consistent field (TDSCF) method. Both electrons and nuclei move quantum-mechanically in time-
dependent effective potentials, i.e. self-consistently obtained average fields, given by the expressions
in the braces. These potentials are obtained from appropriate averages (defined as quantum-mechanical
expectation values) over the other class of degrees of freedom by using the nuclear and electronic wave-
functions, respectively. In other words, the fast particles move in the average field of the slow particles,
and vice-versa: this is a mean-field theory. Thus, the single-determinant ansatz equation (2.3) produces,
as already anticipated, a mean-field description of the coupled nuclear-electronic quantum dynamics.
This is the price to pay for the simplest possible separation of electronic and nuclear variables in terms
of dynamics. Up to this point, except for the arbitrary definitions of the phase factors, the fast and slow
particles are treated identically. The equations would be equally valid if ξ were the slow particles and q
the fast ones.
At this stage, the equations which rules the motion of nuclei in standard molecular dynamics can be
obtained by approximating the nuclei as classical point particles, i.e. applying the semiclassical approx-
imation to equation (2.11), in the presence of electrons which do move quantum-mechanically in time
according to equation (2.10). The first step is to factor the nuclear wavefunction into amplitude and
phase terms

Ψn(q, t) = A(q, t) e
i
h̄
S(q,t) (2.12)

13

Chapter 2. Unifying molecular dynamics and electronic structure

where A(q, t) is an amplitude factor and S(q, t) is a phase with dimension of an action. The phase
S(q, t) is in general a complex function, which can be used for describing the system as well as the
original nuclear wavefunction Ψn(q, t). In this treatment, both the amplitude A(q, t) and the phase
S(q, t) are supposed to be real-valued. Substituting the form (2.12) of the nuclear wavefunction into the
equation of motion (2.11) and separating real and imaginary terms results in the following two equations,
respectively

∂S(q, t)

∂t
+

1

2

N∑
i=1

1

mi
[∇iS(q, t)]2 +

∫
Ψ∗e(ξ, t) Ĥe(ξ, q) Ψe(ξ, t) dξ =

h̄2

2

N∑
i=1

1

mi

∇2
iA(q, t)

A(q, t)
(2.13)

∂A(q, t)

∂t
+

N∑
i=1

1

mi
∇IA(q, t)∇iS(q, t) +

1

2

N∑
i=1

1

mi
A(q, t)∇2

iS(q, t) = 0 (2.14)

Equations (2.13) and (2.14) are entirely equivalent to the original Schrödinger equation (2.11).
The classical limit is obtained by setting h̄ → 0 on the right hand side of equation (2.13), yielding a
Hamilton-Jacobi equation

∂S(q, t)

∂t
+H(q,∇iS) = 0 (2.15)

with the corresponding Hamiltonian

H(q,∇iS) =
1

2

N∑
i=1

1

mi
[∇iS(q, t)]2 +

∫
Ψ∗e(ξ, t) Ĥe(ξ, q) Ψe(ξ, t) dξ (2.16)

that can be rewritten as a classical Hamiltonian function defined in terms of generalized positions q and
their conjugate canonical momenta p in the following way

H(q,∇iS) ≡ H(q,p) =
1

2

N∑
i=1

p2
i (t)

mi
+ Ee(q(t)) = T (p(t)) + Ee(q(t)) (2.17)

where T (p(t)) is the nuclear kinetic energy while Ee(q(t)) is the expectation value of the electronic
Hamiltonian (2.2), containing the electronic kinetic operator and the inter-particle interaction operators.
At the same time, the relation for the amplitude, equation (2.14), may be rewritten after multiplying by
2A(q, t) from the left as

2A(q, t)
∂A(q, t)

∂t
+

N∑
i=1

2

mi
A(q, t)[∇iA(q, t)][∇i S(q, t)] +

N∑
i=1

1

mi
A2(q, t)∇2

i S(q, t) = 0

∂A2(q, t)

∂t
+

N∑
i=1

1

mi

{
2A(q, t)[∇iA(q, t)][∇i S(q, t)] +A2(q, t)∇2

i S(q, t)︸ ︷︷ ︸
= ∇i[A2(q,t)∇iS(q,t)]

}
= 0 (2.18)

which is easily identified as the continuity equation,

∂A2(q, t)

∂t
+

N∑
i=1

1

mi
∇i[A2(q, t)∇iS(q, t)] = 0 → ∂ρ(q, t)

∂t
+

N∑
i=1

∇iJi(q, t) = 0 (2.19)

where
ρ(q, t) = A2(q, t) = |Ψn(q, t)|2 and Ji(q, t) = A2(q, t)∇iS(q, t)/mi (2.20)

are the nuclear probability density and the associated current density, respectively. This continuity
equation (2.19) is independent of h̄ and ensures locally the conservation of the particle probability
density |Ψn(q; t)|2 of the nuclei in the presence of a flux.
The transformation of expression (2.16) for the classical Hamiltonian into (2.17) has been possible
through the definition of the connecting transformation

pi(t) = ∇i S(q, t) (2.21)

14

Chapter 2. Unifying molecular dynamics and electronic structure

from which an interesting relation between the nuclei velocities and the nuclear probability and current
density can be derived as

pi(t) = miq̇i(t) = ∇i S(q, t) = mi
Ji(q, t)

ρ(q, t)
→ q̇i(t) =

Ji(q, t)

ρ(q, t)
(2.22)

Finally, deriving with respect to time the nuclear momenta defined in the previous equations (2.21)-
(2.22), the Newtonian equations of motion for the classical nuclei can be obtained

dpi(t)

dt
= miq̈i(t) =

d∇i S(q, t)

dt
= ∇i

(
∂ S(q, t)

∂t

)
(2.15)

= −∇iH(q,∇iS)

(2.17)
= −∇i [T (p(t)) + Ee(q(t))] = −∇iEe(q(t))

(2.23)

and can be rewritten in a more clear way as

dpi(t)

dt
= −∇i

∫
Ψ∗e(ξ, t) Ĥe(ξ, q) Ψe(ξ, t) dξ or miq̈i(t) = −∇iEe(q(t)) (2.24)

Therefore, the calculation leads to conclude that the classical motion of the nuclei in the system is
driven by an effective potential Ee(q(t)), called the Ehrenfest potential, which is given by the quantum
dynamics of the electrons obtained by solving simultaneously the time-dependent electronic Schrödinger
equation (2.10). By virtue of its definition, it is clearly seen that this time-local many-body interaction
potential due to the explicit time evolution of the quantum electrons stems from averaging the electronic
Hamiltonian with respect to the electronic degrees of freedom, Ee(q(t)) = 〈Ψe|Ĥe|Ψe〉. However, the
time-dependent equation that describes the time evolution of the electrons, equation (2.10), still contains
the full quantum-mechanical nuclear wavefunction Ψn(q, t) instead of just the classical-mechanical nu-
clear positions q(t). In this case the classical reduction can be achieved simply by replacing the nuclear
density |Ψn(q, t)|2 in equation (2.10) in the limit h̄ → 0 by a product of delta functions centered at
the instantaneous positions q(t) of the classical nuclei. This naive approach yields, e.g. for the position
operator, ∫

Ψ∗n(q, t) qi Ψn(q, t) dq
h̄→0−→

∫
qi
∏
i

δ(qi − qi(t)) dq = qi(t) (2.25)

the required expectation value. This classical limit leads to a time-dependent wavefunction for the
electrons

ih̄
∂Ψe(ξ, t)

∂t
= − h̄

2

2

Ne∑
µ=1

∇2
µ

mµ
Ψe(ξ, t) + v̂(ξ; q(t)) Ψe(ξ, t) = Ĥe(ξ; q(t)) Ψe(ξ, q(t), t) (2.26)

which evolves self-consistently as the classical nuclei are propagated via equation (2.24). Note that now
Ĥe depends parametrically on the classical nuclear positions q(t) at time t through v̂(ξ; q(t)). This means
that feedback between the classical and quantum degrees of freedom is incorporated in both directions,
although in a mean-field sense only.
The approach to ab initio molecular dynamics that relies on solving Newton equation for the nuclei,
equation (2.24), simultaneously with Schrödinger equation for the electrons, equation (2.26), is often
called Ehrenfest molecular dynamics, in honor of Paul Ehrenfest who was the first to address the essen-
tial question of how Newtonian classical dynamics of point particles can be derived from Schrödinger
time-dependent wave equation. In the present case this leads to a hybrid or mixed quantum-classical
approach because only the nuclei are forced to behave like classical particles, whereas the electrons are
still treated as quantum objects, so that the electronic subsystem evolves explicitly in time according to
a time-dependent Schrödinger equation.
Although the approach underlying Ehrenfest molecular dynamics is clearly a mean-field theory concern-
ing the dynamical evolution, transitions between electronic states are included in this scheme. This can
be made transparent by expanding the electronic wavefunction Ψe(ξ, t) in equation (2.3) in a basis of
electronic states Ψe,s(ξ; q) as

Ψe(ξ, q(t), t) =

∞∑
s=0

cs(t) Ψe,s(ξ; q) (2.27)

15

Chapter 2. Unifying molecular dynamics and electronic structure

with complex time-dependent coefficients {cs(t)}. In this case, the coefficients satisfy the relation

∞∑
s=0

|cs(t)|2 = 1 (2.28)

and they describe explicitly the time evolution of the populations (occupations) of the different states s
whereas the necessary interferences between any two such states are included via the off-diagonal terms,
c∗kcs 6=k. One possible choice for the basis functions {Ψe,k(ξ; q)} is the instantaneous adiabatic basis
obtained from solving the time-independent electronic Schrödinger equation

Ĥe(ξ; q) Ψe,k(ξ; q) = Ee,k(q) Ψe,k(ξ; q) (2.29)

where q are the instantaneous nuclear positions at time t that are determined according to equation
(2.24). Here a further simplification is invoked in order to reduce Ehrenfest molecular dynamics to the
so called Born-Oppenheimer molecular dynamics. To achieve this, the electronic wavefunction Ψe is
restricted to be the ground state adiabatic wavefunction Ψe,0 of the electronic Hamiltonian Ĥe at each
instant of time according to equation (2.29), which implies |c0(t)|2 ≡ 1 and thus a single term in the
expansion (2.27). This should be a good approximation if the energy difference between Ψe,0 and the
first excited state Ψe,1 is large everywhere compared to the thermal energy kBT , roughly speaking. In
this limit the nuclei move on a single adiabatic potential energy surface according to equation (2.24),
where

Ee(q(t)) =

∫
Ψ∗e,0(ξ) Ĥe(ξ, q) Ψe,0(ξ) dξ ≡ Ee,0(q) (2.30)

This single adiabatic potential energy surface on which the nuclear motion takes place is nothing else
than the ground state Born-Oppenheimer potential energy surface that is obtained by solving the time-
independent electronic Schrödinger equation (2.29) for k = 0 at each nuclear configuration q generated
during molecular dynamics. This leads to the identification Ee(q(t)) = Ee,0(q) and thus, in this limit, the
Ehrenfest potential is identical to the ground state Born-Oppenheimer (or clamped nuclei) potential.
The Born-Oppenheimer approach consists in solving the static electronic structure problem in each
molecular dynamics step, given the set of fixed nuclear positions at that instant of time. Thus, the
electronic structure part is reduced to solving a time-independent quantum problem, e.g. by solving the
time-independent, stationary Schrödinger equation, concurrently to propagating the nuclei according to
classical mechanics. This implies that the time dependence of the electronic structure is imposed and
dictated by its parametric dependence on the classical dynamics of the nuclei which it just follows. The
resulting Born-Oppenheimer molecular dynamics method can be written down readily and is defined by
the set of equations

miq̈i(t) = −∇i min
Ψe,0

[〈Ψe,0|Ĥe|Ψe,0〉] i = 1, ..., N (2.31)

Ĥe(ξ; q) Ψe,0(ξ; q) = Ee,0(q) Ψe,0(ξ; q) (2.32)

for the nuclear equation of motion and the electronic ground state calculation. The minimum of 〈Ĥe〉
has to be reached in each step of a Born-Oppenheimer molecular dynamics propagation according to
equation (2.31), for instance by diagonalizing the Hamiltonian.
The main issue in molecular dynamics simulation algorithms is the resolution of Newton equations of
motion for the nuclei, defined by equation (2.31), that can be rewritten in a more simple way as

miq̈i(t) = Fi(t) i = 1, ..., N (2.33)

where mi are the nuclear masses, qi(t) the positions of the nuclei at time t, N the number of nuclei in
the system and Fi(t) the forces acting on the i-th particle computed as

Fi(t) = −∇i min
Ψe,0

[〈Ψe,0|Ĥe|Ψe,0〉] = −∇iEe,0(q(t)) i = 1, ..., N (2.34)

In Chapter 4, Section 4.2.1, one of the more robust and well-behaved algorithm used for the integration
of the equations of motion (2.33) will be derived. As will be explained, the Newton equations of motion
(2.33) sample the phase space so as to generate the microcanonical ensemble. However, before performing
the integration of the nuclear equations of motion which evolve the coordinates of the nuclei in time,
some geometrical constraints have to be introduced, in order to prevent spurious translations or rotations
of the system. This issue is treated in the next Section 3.2.

16

Chapter 3

Initialization of nuclear degrees of
freedom

3.1 Initialization of nuclear positions and velocities

The initialization of nuclear positions and velocities is very important in molecular dynamics simulations,
since it constitutes the initial conditions by which the dynamic trajectory depends.
The initialization of nuclear positions is essentially based on the geometry and symmetry of the system,
i.e. its space group. Sometimes the nuclear positions are taken from experimental data. Otherwise, a
structural optimization is performed, so that the equilibrium positions which leads to a minimal energy
of the system in the framework of a given theoretical method (e.g. Hf or Dft) are computed and
taken as starting conditions for the dynamics. In both cases, it is recommended for the initial nuclear
positions to be near their equilibrium positions. Indeed, if the initial geometry is too far from equilibrium,
instabilities and artifacts can arise during the propagation of coordinates in time along the dynamics
trajectory.
In the beginning of a molecular dynamics simulation, it is often the case that only the initial positions
of the nuclei are known, but not the velocities. Therefore, the initialization of the nuclear velocities is a
little bit more difficult. As molecular dynamics simulations are performed at some finite temperature,
it is a good idea to initialize the velocities in a way such that the desired simulation temperature
is already present at the beginning. In statistical mechanics, it is often assumed that the velocity
distribution of atoms is given by a Maxwell-Boltzmann distribution (which is strictly only the case in
idealized gases). It is a reasonable choice to initialize the nuclei velocities according to the Maxwell-
Boltzmann equation in the beginning of a dynamics simulation. The goal is to find an initial nuclear
velocity distribution in which each degree of freedom possesses a similar amount of energy, such that
the equipartition theorem is approximately fulfilled. This can be accomplished by looking for an initial
configuration of the nuclear velocities along the three spatial directions that follows a random Gaussian
distribution. It is fairly straightforward to generate a list of pseudo-random numbers on a computer.
However, these numbers are uniformly distributed. In this case, however, it is necessary to generate a
string of numbers with a different probability distribution, i.e. a Gaussian distribution. One of the most
famous algorithm which performs this task is the so-called Box-Muller algorithm, introduced by G. P.
Box and M. E. Muller.[26] It is a random number sampling method for generating pairs of independent,
standard, normally distributed (zero expectation, unit variance) random numbers, given a source of
uniformly distributed random numbers. In particular, the Box-Muller algorithm can be used to convert
two sets of random numbers with uniform distributions into two sets of random numbers with Gaussian
distributions. From a computational point of view, the algorithm is more efficient than the inverse
transform sampling method. Furthermore, the Box-Muller algorithm does not use any approximation
methods. Instead, it makes use of the famous Gaussian integral, as explained in the following.
The Gaussian integral is given by: ∫ ∞

−∞
e−x

2/2 dx =
√

2π (3.1)

The solution of this integral is the funniest part. Trying to integrate the Gaussian function on the right
hand side of equation (3.1) using traditional methods, it is found that the integral does not have a

17

3.1. Initialization of nuclear positions and velocities Chapter 3. Initialization of quantities

neat solution (i.e. the indefinite integral does not have an algebraic expression in terms of elementary
functions such as exponentials, logs or trigonometric functions). However, a little trick to make short
work of the integral can be introduces by noting that

I2 =

∫ ∞
−∞

e−x
2/2 dx

∫ ∞
−∞

e−y
2/2 dy =

∫ ∞
−∞

∫ ∞
−∞

e−(x2+y2)/2 dx dy (3.2)

The last two-dimensional integral can be calculated easily using the polar coordinates x = r cos θ,
y = r sin θ, with area element given by dx dy = J(r, θ)dr dθ = r dr dθ, where J(r, θ) is the Jacobian of
transformation between (x, y) and (r, θ) coordinates, so that

I2 =

∫ ∞
−∞

∫ ∞
−∞

e−(x2+y2)/2 dx dy =

∫ 2π

0

∫ ∞
0

e−r
2/2 r dr dθ = 2π

∫ ∞
0

r e−r
2/2 dr (3.3)

A simple substitution u = r2/2, and du = r dr can be used to solve this integral, leading to

I2 = 2π

∫ ∞
0

r e−r
2/2 dr = 2π

∫ ∞
0

e−u du = 2π (3.4)

Finally, renaming the variable y to x in the initial integral expression leads to

I2 =

∫ ∞
−∞

e−x
2/2 dx

∫ ∞
−∞

e−y
2/2 dy →

[∫ ∞
−∞

e−x
2/2 dx

]2

= 2π (3.5)

Therefore the result (3.1) is finally recovered,∫ ∞
−∞

e−x
2/2 dx =

√
2π (3.6)

The Box-Muller algorithm is a probabilistic interpretation of the trick to solve the Gaussian integral.
Suppose two sets of random numbers (x and y) have to be created, each with a probability density
function given by a Gaussian integral (p(x) and p(y)). The result above can be used to get expressions
for p(x) and p(y), given by

p(x) =
1√
2π

e−x
2/2 p(y) =

1√
2π

e−y
2/2 (3.7)

Since x and y are independent sets of numbers, the total probability density function p(x, y) is

p(x, y) = p(x)p(y) =
1

2π
e−(x2+y2)/2 (3.8)

Letting R2 = x2 + y2 gives the total probability density function in radial coordinates p(R,Θ) equal to

p(x, y) → p(R,Θ) =
1

2π
e−R

2/2 (3.9)

Now, suppose two uniformly distributed sets of numbers between zero and one (without including zero)
can be generated, and call these two sets u1 and u2. First of all, the two sets u1 and u2 can be transformed
into two new sets, Θ and R, on the base of the expression above:

u1 =
Θ

2π
→ Θ = 2πu1 (3.10)

u2 = e−R
2/2 → R =

√
−2 lnu2 (3.11)

18

Chapter 3. Initialization of quantities 3.1. Initialization of nuclear positions and velocities

Figure 3.1: Box-Muller graphical interpretation.
The coloured points in the unit square (u1, u2),
drawn as circles, are mapped to a 2D Gaussian
(z0 ≡ x, z1 ≡ y), drawn as crosses. The plots
at the margins are the probability distribution
functions of z0 and z1. Note that z0 and z1 are
unbounded; they appear to be in [-2.5,2.5] due to
the choice of the illustrated points.

The first expression for Θ represents a uniform
distribution of numbers over all values from zero to
2π (i.e. over all angles). The second expression for
R represents a Gaussian distribution. Then, the
polar coordinates can be converted to Cartesian
coordinates, so that finally the expressions for x
and y variables are obtained to be

x = R cos Θ = cos(2πu1)
√
−2 lnu2 (3.12)

y = R sin Θ = sin(2πu1)
√
−2 lnu2 (3.13)

Since the variable R has a Gaussian distribution,
both x and y have Gaussian distributions. Alto-
gether, the Box-Muller method takes independent
standard uniform random variables u1 and u2 and
produces independent standard normal deviates x
and y using the formulas (3.12) and (3.13). It may
seem odd that x and y are independent, given that
they use the same R and Θ variables. However,
not only does the previous algebra shows that this
is true,[26] but also computational tests for the dis-
tributions independence confirmed this algebraic
construction. In Figure 3.1 a graphical interpretation of the Box-Muller algorithm is reported. The
Box-Muller method consists in generating a point in a random way on the unit circle. This can be done
by choosing Θ uniformly in the interval [0, 2π] and then taking the point on the circle to be (cos Θ, sin Θ).
Another way to do this is to choose a point uniformly in the 2× 2 square −1 ≤ x ≤ 1, −1 ≤ y ≤ 1 and
then rejecting it if it falls outside the unit circle. The first accepted point will be uniformly distributed in
the unit disk x2 + y2 ≤ 1, so its angle will be random and uniformly distributed. The final step is to get
a point on the unit circle x2 +y2 = 1 by dividing by the length. From a computational point of view, the
Box-Muller algorithm is applied by generating two uniform distributions u1 and u2 of pseudo-random
numbers, and then applying equation (3.12) of (3.13) to generate a Gaussian distributed variable.

The independence of the variables x and y (which are distributed as independent standard normals
thanks to the formulas (3.12) and (3.13)) can be demonstrated following the original proof of Box and
Muller.[26] Let u1, u2 be independent random variables from the same rectangular density function on
the interval (0, 1). Starting from expressions (3.12) and (3.13), and solving these equations with respect
to the variables u1 and u2, leads to

y

x
= tan(2πu1) → u1 =

1

2π
arctan

(
y

x

)
(3.14)

x2 + y2 = −2 lnu2 → u2 = e−(x2+y2)/2 (3.15)

The Jacobian matrix is given by

J(x, y) =
∂(u1, u2)

∂(x, y)
=

(
∂xu1 ∂yu1

∂xu2 ∂yu2

)
=

(
y/[2π(x2 + y2)] −x/[2π(x2 + y2)]

−x exp[−(x2 + y2)/2] −y exp[−(x2 + y2)/2]

)
(3.16)

where ∂xu1 = ∂u1/∂x, ∂yu1 = ∂u1/∂y and so for the partial derivatives related to the variable u2. The
determinant of the Jacobian is therefore

det(J) =
(−y2 − x2)

2π(x2 + y2)
e−(x2+y2)/2 = − 1

2π
e−(x2+y2)/2 (3.17)

It follows that the joint density of the variables x, y is given by the following transformation relation

f(x, y) = f(u1, u2) |det(J)| = |det(J)| = 1

2π
e−(x2+y2)/2 =

1√
2π

e−x
2/2 1√

2π
e−y

2/2 (3.18)

19

3.1. Initialization of nuclear positions and velocities Chapter 3. Initialization of quantities

so that it can be written as the product of two probability distribution,

f(x, y) = f(x)f(y) where f(x) =
1√
2π

e−x
2/2 and f(y) =

1√
2π

e−y
2/2 (3.19)

Hence the variables x and y are independent normal deviates, i.e. they are normally distributed with
two independent Gaussian distributions.
The above approach is motivated by the following considerations: the probability density of f(x, y) is
constant on circles, so θ = arctan(y/x) is uniformly distributed (0, 2π). Further, the square of the length
of the radius vector R2 = x2 + y2 has a chi-squared distribution with two degrees of freedom. If u2 has a
rectangular density on (0, 1), then −2 ln(u2) has a chi-squared distribution with two degrees of freedom.
Proceeding in the reverse order, the equations (3.12) and (3.13) are recovered.
The Box-Muller algorithm is very useful for the initialization of nuclear velocities in a Molecular Dynamics
simulations. These initial nuclear velocities, together with the initial nuclear positions, define the initial
conditions for the integration of nuclear equations of motion, and are therefore very important. In the
implementation of Box-Muller algorithm, two sets of pseudo-random numbers ui1 and ui2 are generated,

ui1, ui2 ∈ (0, 1) with i = 1, ..., 3N (3.20)

where N is the number of atoms in the system. Then equation (3.12) is applied

ui = R cos Θ =
√
−2 lnui1 cos(2πui2) i = 1, ..., 3N (3.21)

in order to obtain 3N variables ui (i = 1, ..., 3N) standard normally distributed (as previously demon-
strated), so that each variable ui respects the relation

f(ui) =
1√
2π

e−u
2
i /2 i = 1, ..., 3N (3.22)

and the probability density function of the collection of variables u = {ui (i = 1, ..., 3N)} is given by

f(u) =
1√
2π

e−u
2/2 (3.23)

Then, the variables ui (i = 1, ..., 3N) are multiplied by the factor
√
kbTa/mi, where Ta is the initial

temperature given by the distribution of the random numbers ui and mi is the mass of the i-th atom,
so that the velocity components of the i-th atom can be obtained as

vij = u3(i−1)+j

√
kbTa
mi

i = 1, ..., N and j = 1, 2, 3 (3.24)

where j = 1, 2, 3 are the three Cartesian directions x, y, z. Reducing the indexes of the nuclear velocities
and masses to one index, in order to obtain a one-to-one more immediate correspondence between vi, mi

and ui (so that v1, v2 and v3 will be respectively the x, y and z velocity components of the first atom,
and so on until v3N that is the z velocity component of the N -th atom, while m1 = m2 = m3 is the mass
of the first atom until m3N−2 = m3N−1 = m3N that is the mass of the N -th atom), lead to the following
expression between variable ui and the nuclear velocities

vi = ui

√
kbTa
mi

→ ui = vi

√
mi

kbTa
i = 1, ..., 3N (3.25)

Therefore, the change of variable between the probability density function (3.23) and the probability
density function for the collection of the atomic velocities vj (j = x, y, z) will be ruled by the transfor-
mation

vj = u

√
kbTa
m

→ u = vj

√
m

kbTa
j = x, y, z (3.26)

The conversion factor
√
kbTa/m here introduced can be now justified to give the correct units to the

atomic velocities vi, starting from dimensionless quantities such as the random numbers ui. However, it
has a more profound meaning, as discussed in Appendix A, Section A.1.

20

Chapter 3. Initialization of quantities 3.1. Initialization of nuclear positions and velocities

Let ui be a real-valued random variable with probability density function f(u) and let vj = h(u) (j =
x, y, z) with h a strictly increasing continuously differentiable function with inverse u = g(vj) (j = x, y, z)
(see for example the transformation (3.26)), then vi = h(ui) will have a continuous distribution too, with
a probability density function given by

f(vj) =
f(u(vj))

det[J(u(vj))]
=

du

dvj
f(u(vj)) j = x, y, z (3.27)

Applying the change of variable (3.27) to the probability density function (3.23) leads to the following
probability density function for the whole collection of each component of the velocities of N atoms with
mass m is distributed as a normalized Gaussian

f(vj) =

√
m

2πkbTa
e−mv

2
j /(2kbTa) j = x, y, z (3.28)

so that the distribution followed by each atomic velocities in the system can be written as

f(vi) =

√
mi

2πkbTa
e−miv

2
i /(2kbTa) i = 1, ..., 3N (3.29)

The distribution in (3.28) represents a normalized Gaussian distribution, and it is related to each com-
ponent of the nuclear velocity. Therefore, written more explicitly, the three distributions describing the
collection component-by-component of the atomic velocities vj = {vj,k} with k = 1, ..., N and j = x, y, z
are

f(vx) =

√
m

2πkbTa
e−mv

2
x/(2kbTa) (3.30)

f(vy) =

√
m

2πkbTa
e−mv

2
y/(2kbTa) (3.31)

f(vz) =

√
m

2πkbTa
e−mv

2
z/(2kbTa) (3.32)

Multiplying together the three distributions (3.30)-(3.32), a probability density function can be defined,
which describes the probability of finding a particle with a speed near a given value v = (vx, vy, vz) in
the system formed by a collection of atoms all with mass m, that is

F (vx, vy, vz) = f(vx)f(vy)f(vz) =

(
m

2πkbTa

)3/2

e−m(v2
x+v2

y+v2
z)/(2kbTa) (3.33)

The probability density function (3.33) is seen to be the product of the distributions of three independent
normally distributed variables vx,k, vy,k and vz,k (k = 1, ..., N), with variance kbTa/m. In particular, the
probability of finding a particle with velocity in the infinitesimal element [dvx, dvy, dvz] about velocity
v = (vx, vy, vz) can be computed as

F (v) dvx dvy dvz ≡ F (vx, vy, vz) dvx dvy dvz =

(
m

2πkbTa

)3/2

e−m(v2
x+v2

y+v2
z)/(2kbTa) dvx dvy dvz (3.34)

The same form for the three distributions (3.30)-(3.32) for the three spatial components of the atomic
velocities is a direct consequence of the rotational symmetry. However, rotational invariance also requires
that the full distribution does not depend on the direction of the velocity; it can only depend on the
speed (i.e. on the modulus of the velocity vector)

v = ‖v‖ =
√
v2
x + v2

y + v2
z (3.35)

Indeed, since the function F (vx, vy, vz) in (3.34) depends only on the velocity modulus (3.35), it can be
written as F̃ (v), a function of the velocity modulus only, that is

F (vx, vy, vz) dvx dvy dvz = F̃ (v) dvx dvy dvz =

(
m

2πkbTa

)3/2

e−mv
2/(2kbTa) dvx dvy dvz (3.36)

21

3.1. Initialization of nuclear positions and velocities Chapter 3. Initialization of quantities

The probability (3.36) is expressed in Cartesian coordinates in the space of the velocity. However, the
variable v defined by (3.35) has the form of a typical radial variable, and it is therefore more convenient
to rewrite the probability (3.36) using spherical coordinates. The change of variable from Cartesian
to spherical coordinates can lead to a probability function F (v) dv that depends only on the velocity
variable (3.35), and not on the velocity vectors components, thus satisfying the space rotational invariance
required. The change of variable is given by

dv ≡ dvx dvy dvz = v2 sin(θ) dv dθ dφ (3.37)

where v is the modulus of the velocity, given by (3.35), while θ and φ are the polar and the azimuthal an-
gles, respectively, which both determine the direction of the velocity vector in the space. The probability
distribution function for the modulus of the nuclear velocities is defined through the integration

F (v) dv =

∫ π

0

∫ 2π

0
F̃ (v) v2 sin(θ) dθ dφ dv

where in the last equivalence the change of variable (3.37) has been introduced. Furthermore, since
F (v) ≡ F (vx, vy, vz), given by equation (3.36), depends only on ‖v‖ ≡ v, so that F (v) = F̃ (v), the
previous integral reduces to

F (v) dv = F̃ (v) v2 dv

∫ π

0

∫ 2π

0
sinθ dθ dφ =

(
m

2πkbTa

)3/2

e−mv
2/(2kbTa) v2 dv

∫ π

0

∫ 2π

0
sinθ dθ dφ

Integrating with respect to the solid angles dΩ = dθ dφ yields an additional factor of 4π,

F (v) dv =

(
m

2πkbTa

)3/2

e−mv
2/(2kbTa) v2 dv

∫ π

0

∫ 2π

0
sinθ dθ dφ︸ ︷︷ ︸

= 4π

= 4π

(
m

2πkbTa

)3/2

v2 e−mv
2/(2kbTa) dv

Therefore, the probability (3.36) can be rewritten in spherical coordinates as

F̃ (v) dvx dvy dvz = 4π v2 F̃ (v) dv = F (v) dv (3.38)

and it gives the probability to find a particle in the atomic system with a velocity modulus whose value
lies in the range (v, v + dv). As a consequence, the probability density function for the modulus of the
nuclear velocity vector (associated to a spherical coordinates reference frame) is obtained to be

F (v) = 4π

(
m

2πkbTa

)3/2

v2 e−mv
2/(2kbTa) (3.39)

The function (3.39) obtained in this way is the so-called normalized Maxwell-Boltzmann distribution,
a continuous probability distribution for the variable v (i.e. for the modulus of the velocity vector),
describing particle speeds in idealized gases, where the particles move freely inside a stationary container
without interacting with one another, except for very brief collisions in which they exchange energy and
momentum with each other or with their thermal environment. Remarkably, the Maxwell distribution
also holds in the presence of any interactions. In fact, Maxwell original derivation of the distribution
makes no reference to any properties of the gas.
Mathematically, the Maxwell-Boltzmann probability function is the distribution of the positive square
root of the sum of squares of three independent random variables (vx,k, vy,k, vz,k), with k = 1, ..., N , each
following a normalized Gaussian (normal) distribution as in equations (3.30)-(3.32), or equivalently, it
is the distribution of the Euclidean distance of the three random variables (given by the three velocity
components per each atom) from the origin. Thus, it can be stated that, from a mathematical point
of view, the Maxwell-Boltzmann distribution is a chi distribution with three degrees of freedom (the
components of the velocity vector in Euclidean space) and scale parameters λ =

√
kbTa/m measuring

speeds in units proportional to the square root of the ratio between the system temperature Ta and the
particle mass m. Examples of initial nuclear velocities distributions for two representative systems are

22

Chapter 3. Initialization of quantities 3.1. Initialization of nuclear positions and velocities

reported and discussed in Appendix A, Section A.1.1.
Note that the probability density function (3.23) is normalized thanks to the identity (3.1),∫ ∞

−∞
f(u) du =

1√
2π

∫ ∞
−∞

e−u
2/2 du = 1

In the same way, the three probability density functions in (3.28) are also normalized, indeed∫ ∞
−∞

f(vj) dvj =

√
m

2πkbTa

∫ ∞
−∞

e−mv
2
j /(2kbTa) dvj =

√
m

2πkbTa

√
2πkbTa
m

= 1 j = x, y, z

Finally, note that the distributions and the probability density functions described in this section are all
associated to atomic systems with only one atomic species (indeed, only the mass variable m has been
used). However, extension to atomic systems with a generic number of atomic species is straightforward,
and it has been discussed in Appendix A, Section A.1.1.

3.1.1 Subtraction of total linear momentum

After the nuclear velocities have been initialized, the total linear momentum of the system will probably
have some finite value other than zero. As the total linear momentum of the system is (approximately)
conserved within a molecular dynamics simulation, this would result in the system drifting away into
one direction during the course of the simulation, which is probably not desired. Therefore, the total
momentum is explicitly set to zero after the Maxwell-Boltzmann initialization. The equations used and
the procedure followed to set the system total linear momentum equal to zero at the beginning of a
dynamics simulation are derived and explained in Section 3.2.1. This modification of nuclear velocities
might, of course, change the initial temperature. Therefore, a final step is performed, in which all nuclear
velocity vectors are multiplied with a factor that is determined such that the initial temperature exactly
matches the target value, as described in Section 3.1.2.

3.1.2 Velocity rescaling with respect to target temperature

After the random initialization of the nuclear velocities following the Box-Muller algorithm and the
subtraction of the total linear momentum (i.e. the component-by-component subtraction of the non-zero
translational velocity to the initial nuclear velocities), the temperature Ta that enters in the Maxwell-
Boltzmann distribution (3.39) and which is given by the initial kinetic energy will not necessary be equal
to the target temperature T0 imposed as initial temperature for the molecular dynamics simulation.
Therefore, in order to match the initial target temperature, the nuclear velocities have to be rescaled.
The calculation of the rescaling factor proceeds as follows. First of all, the kinetic energy correspondent
to the initial nuclear velocities is computed

Kinetic energy : Ek(t0) =
1

2

N∑
i=1

3∑
j=1

mi v
2
ij(t0) where j = x, y, z(≡ 1, 2, 3) (3.40)

and the correspondent temperature Ta is given as a function of the kinetic energy through the formula

Temperature : Ta =
2

gkb
Ek(t0) (3.41)

where g are the system degrees of freedom and kb is the Boltzmann constant. Gathering together the
previous two equations, the following relation is obtained

Ta =
1

gkb

N∑
i=1

3∑
j=1

mi v
2
ij(t0) (3.42)

However, the desired initial velocities {ṽij} have to respect the condition

T0 =
1

gkb

N∑
i=1

3∑
j=1

mi ṽ
2
ij(t0) (3.43)

23

3.1. Initialization of nuclear positions and velocities Chapter 3. Initialization of quantities

that can be obtained by multiplying the equation (3.42) by the factor

T0

Ta
Ta = T0 =

T0

Ta

1

gkb

N∑
i=1

3∑
j=1

mi v
2
ij(t0) =

1

gkb

N∑
i=1

3∑
j=1

mi

[√
T0

Ta
vij(t0)

]2

=
1

gkb

N∑
i=1

3∑
j=1

mi ṽ
2
ij(t0)

so that the initial velocities {ṽij} that leads to the correct initial target temperature T0 can be simply
obtained from the initial velocities (3.24) computed through the Box-Muller algorithm as follows

Initial temperature scaling : vij(t0)← vij(t0)

√
T0

Ta
= ṽij(t0) i = 1, ..., N j = x, y, z (3.44)

This operation is performed at the beginning of every molecular dynamics simulation, just after the
Box-Muller initialization of the nuclear velocities. The result is a set of initial nuclear velocities {vij}
that leads, following the equations (3.43) and (3.44), to a temperature T0 equal to the target one.
As a consequence of this temperature rescaling performed at the beginning of each molecular dynamics
simulation, the multiplicative factor

√
kbTa applied to the standard normal distribution of random num-

bers {ui} obtained with the Box-Muller algorithm in order to maintain the correct physical dimensions
of the nuclear velocities, see equation (3.24), becomes a non essential and fictitious multiplicative factor,
which can be ignored in practical implementations (a rigorous demonstration that justifies this sentence
is reported in Appendix A, Section A.1.2).

24

Chapter 3. Initialization of quantities 3.2. Translations and rotations removal

3.2 Translations and rotations removal by initial velocity rescaling

The modeling of condensed matter system is usually performed with the so-called periodic boundary
conditions, which enables to simulate an infinite periodic system by means of the replication of a single
unit cell. However, the inclusion of geometrical constraints during a simulation affects the statistical
mechanics of the sampled microstates.[27] This is mainly because in the presence of such constraints, the
kinetic energy of the system cannot be written in a configuration-independent way (unless the constraints
are exclusively involved in fully-rigid atom groups, e.g., rigid molecules).
In the absence of stochastic and frictional forces, a few degrees of freedom are not coupled (i.e., do not
exchange kinetic energy) with the internal degrees of freedom of the system. These external degrees
of freedom correspond to the system rigid-body translation and, for non-fully periodic systems such as
molecules or polymers, to the system rigid-body rotation. Because the kinetic energy associated with
these external degrees of freedom can take an arbitrary (constant) value determined by the initial atomic
velocities, they must be removed from the definition of the system internal quantities computed in (as for
example the temperature). Consequently, the number of internal degrees of freedom h is calculated as
three times the total number of atoms N in the system, minus the number nc of geometrical constraint
imposed, that is

h = 3N − nc (3.45)

The subtraction of constrained degrees of freedom is necessary because geometrical constraints are char-
acterized by a time-independent generalized position associated with a vanishing generalized momentum
(i.e., no kinetic energy). A more formal statistical-mechanical justification for the subtraction of the
external degrees of freedom in the case of periodic boundary conditions can be found in Ref. [28]. When
stochastic and frictional forces are applied, as in Berendsen thermostat, these forces will couple the
rigid-body translational and rotational degrees of freedom with the internal ones. In this case all degrees
of freedom are considered internal to the system. Thus, equation (3.45) has to be used with nc = 0 in
the presence of stochastic and frictional forces, with nc = 3 under periodic boundary conditions, or with
values in the range 3 < nc < 6 if also the rotation of the system along some directions are removed (as
for molecules and polymers, see Section 3.2.2).

3.2.1 Removal of atomic systems translations

Consider a system of N atoms in three dimensions with nuclear initial positions {q̃i} and initial velocities
{ṽi}. In order to remove the translational movement of the system, the nuclear velocities have to be
rescaled with respect to the center of mass. The position of the center of mass qcm of a system with N
nuclei at positions {q̃i} is defined as

qcm =

∑N
i=1miq̃i∑N
i=1mi

=
1

m

N∑
i=1

miq̃i (3.46)

where the total mass of the system m has been defined as

m =
N∑
i=1

mi (3.47)

By deriving expression (3.46) with respect to time, the velocity of the center of mass vcm is obtained as

vcm =
dqcm
dt

=
d

dt

(
1

m

N∑
i=1

miq̃i

)
=

1

m

N∑
i=1

miṽi (3.48)

Finally, the component-by-component subtraction of the center of mass velocity to each nuclear velocities,

vi ≡ vi,t = ṽi − vcm i = 1, ..., N (3.49)

remove the translation movement of the atomic system with respect to its center of mass. The velocities
{vi} defined by equation (3.49) are called internal nuclear velocity coordinates (if only the translations

25

3.2. Translations and rotations removal Chapter 3. Initialization of quantities

with respect to the center of mass are removed) and are used to define the kinetic energy and therefore
the temperature of the system (see Section 3.3). To understand why the system net linear momentum is
set to zero by scaling the nuclear velocities as (3.49), its expression can be computed starting from the
translated velocities definition (3.49) as

P =
N∑
i=1

mivi =
N∑
i=1

mi(ṽi − vcm) =
N∑
i=1

miṽi −mvcm = mvcm −mvcm = 0 (3.50)

where for the penultimate equivalence in (3.50) the definition of center of mass velocity (3.48) has been
used. Therefore, through equation (3.49) the velocity of the center of mass is set to zero for the system
of N nuclei, so that the total linear momentum is set to zero just after the random initialization of the
nuclear velocities, before performing the first step of a molecular dynamics simulation. The total linear
momentum of the atomic system is a conserved quantity in a molecular dynamics simulation, since it is a
first integral of the Hamilton equation of motion (i.e. it is conserved by the Hamiltonian flow). Therefore,
the value of zero set for the linear momentum by means of equation (3.49) in the initialization process
should theoretically remain equal to zero during all the molecular dynamics run. Thus, the number of
degrees of freedom in a simple molecular dynamic run is g = 3N − 3, where the subtraction of three
degrees of freedom is a consequence of the linear momentum three-components conservation during the
system evolution.

3.2.2 Removal of molecular systems rotations

Consider a system of N atoms in a three dimensional space with nuclear initial positions {q̃i} and initial
velocities {ṽi}. Starting from these initial coordinates, a new set of nuclear positions {qi,t} ≡ {qi}
and velocities {vi,t} can be defined through a translation by the center of mass position and velocity,
respectively, as previously mentioned in Section 3.2.1, so that

qi ≡ qi,t = q̃i −
1

m

N∑
i=1

miq̃i = q̃i − qcm i = 1, ..., N (3.51)

vi,t = ṽi −
1

m

N∑
i=1

miṽi = ṽi − vcm i = 1, ..., N (3.52)

where m is the total mass of the atomic system defined in (3.47) and the positions {qi} defined by
equation (3.51) are called internal nuclear position coordinates. The total angular momentum of the
collection of N nuclear particles is the sum of the angular momentum of each nucleus

L =

N∑
i=1

mi(qi,t ∧ vi,t) ≡
N∑
i=1

mi(qi ∧ vi,t) (3.53)

Inserting the equations (3.51) and (3.52) in the expression of the total angular momentum (3.53), the
following relations can be obtained

L =
N∑
i=1

mi[(q̃i − qcm) ∧ (ṽi − vcm)]

=
N∑
i=1

mi q̃i ∧ ṽi −
N∑
i=1

mi q̃i ∧ vcm −
N∑
i=1

mi qcm ∧ ṽi +
N∑
i=1

mi qcm ∧ vcm

=

N∑
i=1

mi q̃i ∧ ṽi −m qcm ∧ vcm − qcm ∧ (mvcm) +m qcm ∧ vcm

=
N∑
i=1

mi q̃i ∧ ṽi −m qcm ∧ vcm

(3.54)

26

Chapter 3. Initialization of quantities 3.2. Translations and rotations removal

The first term of the last expression is the angular momentum of the particles moving relative to the
center of mass, while the second term is the angular momentum of the center of mass relative to the
origin. The result is that the equation (3.53) can be rewritten as

L =
N∑
i=1

mi(qi,t ∧ vi,t) ≡
N∑
i=1

mi(qi ∧ vi,t) =
N∑
i=1

mi q̃i ∧ ṽi −m qcm ∧ vcm (3.55)

which identify the angular momentum of the atomic system with respect to its center of mass angular
momentum. The angular momentum (3.55) is important since it is related to the angular velocity ω of
the system through the so-called moment of inertia I by the equation

L = Iω (3.56)

where the angular momentum L and angular velocity ω about the center of mass are 3 × 1 column
vectors and the moment of inertia I is a 3× 3 symmetric matrix whose components are defined as

Iij =

N∑
k=1

mk[‖qk,t‖2δij − (rk,t)i(rk,t)j] with i, j = x, y, z (3.57)

where (rk,t)i are the positions ((rk,t)x, (rk,t)y, (rk,t)z) of the k-th atom computed with respect to the
center of mass, i.e. the components of the position vector qk,t for the k-th atom, see equation (3.51).
Using Cartesian coordinates, ((rk,t)x, (rk,t)y, (rk,t)z) = (xk,t, yk,t, zk,t), so that the moment of inertia is
given by the matrix

I =

Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz

 =

N∑
k=1

mk

y2
k,t + z2

k,t −xk,t yk,t −xk,t zk,t
−yk,t xk,t x2

k,t + z2
k,t −yk,t zk,t

−zk,t xk,t −zk,t yk,t x2
k,t + y2

k,t

 with qk,t = (xk,t, yk,t, zk,t)

so that equation (3.56) can be written more explicitly asLxLy
Lz

 =
N∑
k=1

mk

y2
k,t + z2

k,t −xk,t yk,t −xk,t zk,t
−yk,t xk,t x2

k,t + z2
k,t −yk,t zk,t

−zk,t xk,t −zk,t yk,t x2
k,t + y2

k,t

ωxωy
ωz

 (3.58)

The angular momentum and the momentum of inertia of the atomic system can then be used to compute
the angular velocity ω of the entire system, with the following equation

ω = I−1 · L → ωi =

(x,y,z)∑
j

Iij
−1 Lj with i = x, y, z (3.59)

where I−1
ij are the elements of the inverse matrix I−1, computing by inverting the 3 × 3 matrix I. At

this point, the velocity {vi,r} of each nucleus due to the angular motion of the system can be calculated
using the relation

vi,r = ω ∧ qi,t ≡ ω ∧ qi = (ωy zi,t − ωz yi,t, ωz xi,t − ωx zi,t, ωx yi,t − ωy xi,t) i = 1, ..., N (3.60)

where qi,t = (xi,t, yi,t, zi,t) are the nuclear positions translated with respect to the center of mass (the
subscript t stands for translation) expressed in Cartesian components and the new defined nuclear
velocities {vi,r} are due to system angular motion which is caused by rotation of the atomic system
itself (indeed the subscript r stands for rotation). Finally, subtracting the set of velocities {vi,r} due to
system angular motion to the set of velocities {vi,t} defined in equation (3.52), a new set of velocities is
obtained, defined as

vi ≡ vi,tr = vi,t − vi,r = (ṽi − vcm)− vi,r = (ṽi − vcm)− ω ∧ qi i = 1, ..., N (3.61)

where in the last expression the velocities {vi,t} are written using equation (3.52) as a function of the
initial nuclear velocities {ṽi} and the center of mass velocity. The velocities {vi} defined by equation

27

3.2. Translations and rotations removal Chapter 3. Initialization of quantities

(3.61) are called internal nuclear velocity coordinates and are used to define the kinetic energy and
therefore the temperature of the system (see Section 3.3). To understand why the system net linear
momentum and the net angular momentum are both set to zero by scaling the nuclear velocities as in
(3.61), their expression can be computed starting from the translated and rotated velocities definition
(3.61) as

P =
N∑
i=1

mivi =
N∑
i=1

mi[(ṽi − vcm)− ω ∧ qi] =
N∑
i=1

mi[(ṽi − vcm)− ω ∧ (q̃i − qcm)]

=
N∑
i=1

mi[(ṽi − vcm)− (ṽi − vcm)] = 0

(3.62)

L =
N∑
i=1

mi qi ∧ vi ≡
N∑
i=1

mi qi,t ∧ vi,tr =
N∑
i=1

mi qi,t ∧ [(ṽi − vcm)− ω ∧ qi]

=
N∑
i=1

mi qi,t ∧ [(ṽi − vcm)− ω ∧ (q̃i − qcm)] =
N∑
i=1

mi qi,t ∧ [(ṽi − vcm)− (ṽi − vcm)] = 0

(3.63)

where the penultimate equivalence in both (3.62) and (3.63) is proved by using ω∧(q̃i−qcm) = (ṽi−vcm).
Thus, the system net linear and angular momenta of the internal velocities vanish, as expected.

These velocities (3.61) are therefore obtained starting from the random initial nuclear velocities and
subtracting from them the velocity of the center of mass of the system (removing translational motions)
and the nuclear velocities components due to the angular momentum of the system (removing rotational
motions). This task is accomplished just after the random initialization of the velocities in a molecular
dynamics simulation. The total angular momentum of the atomic system is a conserved quantity in a
molecular dynamics simulation, since it is a first integral of the Hamilton equation of motion (i.e. it
is conserved by the Hamiltonian flow). Therefore, the value of zero set for the angular momentum by
means of equation (3.61) in the initialization process should theoretically remain equal to zero during
all the molecular dynamics run. However, if the system is modeled using periodic boundary conditions,
the net angular momentum of the system is not conserved.[29] At the same time, if a system is modeled
in a unit cell with periodic boundary conditions, it can be imagined as an infinite system along all the
periodic directions, so that the rotations of the system are not allowed along these directions by the
periodic boundary conditions themselves.
If the system is an isolated molecule, then the effect of system rotation has to be removed along each one
of the three directions in space, so that the final result is the removal of the net angular momentum, and
the procedure to follow uses precisely the equations reported and described before. In this case, the net
angular momentum is a conserved quantity for Hamilton equation of motion that describes the evolution
of the system coordinates (since no periodic boundary conditions are applied in this case). Therefore,
equation (3.61) should be used just after the random initialization of the velocity before the first step of
the molecular dynamics simulation.
Otherwise, if the atomic system studied is a polymer, the rotation can be performed only along the x
axis, since the system is free to rotate only along this axis, while in the other two non-periodic directions
y, z the system is prevented from rotating due to the periodic boundary conditions to which the unit
cell is constrained. Also in this case the net angular momentum is a conserved quantity for Hamilton
equation of motion along the x non periodic direction, so that equation (3.61) should be applied only
one time at the beginning of the simulation. The particular case of polymers (1D systems) are treated in
Section 3.2.3, where the equations needed to remove the rotation along the periodic x axis are reported.
Finally, for the case of slab and crystal systems, the periodic boundary conditions imposed on the unit
cell do not allow the systems to rotate along any axis, so that for these cases no conditions for eliminating
the angular momentum are introduced. Because the total angular momentum is not conserved due to
the presence of periodic boundary conditions,[29] in 2D and 3D systems is not essential to set the initial
value of this quantity to zero (i.e. the formula (3.61) for the definition of initial velocities is not used for
these two cases). The four different cases are schematized in Table 3.1.

28

Chapter 3. Initialization of quantities 3.2. Translations and rotations removal

System Dimensionality Nrot Rotation axis Periodic directions d nc

Molecule 0D 3 x, y, z – 3N − 6 6
Polymer 1D 1 x x 3N − 4 4
Slab 2D 0 – x, y 3N − 3 3
Crystal 3D 0 – x, y, z 3N − 3 3

Table 3.1: Dimensionality of the system, number of directions Nrot along which the system is free to rotate,
directions of rotation, periodic directions, number of degrees of freedom d and number of geometrical constraints
nc if the system would not be allowed neither to translate nor to rotate along the possible rotation directions
(d = 3N − 3 degrees of freedom in a system not allowed to translate along the three space directions, then in
a molecule and a polymer a further 3 and 1 degrees of freedom for rotation along the three and one directions,
respectively, have to be subtracted).

3.2.3 Removal of polymer systems rotations

Starting from the nuclear positions (3.51) and the velocity (3.52) translated with respect to the center
of mass correspondent quantities, the angular momentum along the x direction is computed as

Lx =

[
N∑
i=1

mi(qi,t ∧ vi,t)

]
· e1 =

N∑
i=1

mi(yi,tvz,i,t − zi,tvy,i,t) (3.64)

where e1 = (1, 0, 0) is a basis vector of the three-dimensional space, qi,t = (xi,t, yi,t, zi,t) is the position
vector in Cartesian coordinates and vi,t = (vx,i,t, vy,i,t, vz,i,t) are the velocities components of the i-th
nucleus. Then, since the other two angular momentum components are equal to zero (Ly = Lz = 0), the
matrix expression (3.58) reduces toLx0

0

 =

Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz

ωx0
0

 =
N∑
k=1

mk

y2
k,t + z2

k,t −xk,t yk,t −xk,t zk,t
−yk,t xk,t x2

k,t + z2
k,t −yk,t zk,t

−zk,t xk,t −zk,t yk,t x2
k,t + y2

k,t

ωx0
0

 (3.65)

where the angular velocity ω = (ωx, 0, 0) has all the components equal to zero except the one along the
x direction, so that the simple equation

Lx = Ixxωx → ωx = I−1
xx Lx (3.66)

relates the angular momentum with the angular velocity trough the moment of inertia. Therefore, after
the angular momentum component Lx has been computed by means of equation (3.64), the moment of
inertia component Ixx can be calculated with the formula

Ixx =
N∑
k=1

mk (y2
k,t + z2

k,t) (3.67)

and the angular velocity component along the x direction is derived

ωx = I−1
xx Lx =

[
N∑
k=1

mk (y2
k,t + z2

k,t)

]−1

Lx (3.68)

At this point, the velocity {vi,r} of each nucleus due to the angular motion of the 1D periodic system
can be calculated using the relation

vi,r = ω ∧ qi,t = (ωx, 0, 0) ∧ qi,t = (0, −ωx zi,t, ωx yi,t) i = 1, ..., N (3.69)

where qi,t = (xi,t, yi,t, zi,t) are the nuclear positions translated with respect to the center of mass (the
subscript t stands for translation) expressed in Cartesian components and the new defined nuclear
velocities {vi,r} are due to system angular motion which is caused by rotation of the atomic system
itself (indeed the subscript r stands for rotation). Finally, subtracting the set of velocities {vi,r} due to

29

3.3. Kinetic energy, net linear and angular momentum Chapter 3. Initialization of quantities

system angular motion to the set of velocities {vi,t} defined in equation (3.52), a new set of velocities is
obtained, defined as

vi ≡ vi,tr = vi,t − vi,r = (vx,i,t, vy,i,t + ωx zi,t, vz,i,t − ωx yi,t) i = 1, ..., N (3.70)

The new set of velocities {vi,tr} ≡ {vi} are called internal nuclear velocity coordinates and are defined so
that the 1D periodic system is prevented from translating along the x, y, z directions and from rotating
along the x axis.

3.3 Kinetic energy, net linear and angular momentum

The instantaneous internal kinetic energy for a system of N nuclei is classically defined as

Ek(t) =
1

2

N∑
i=1

miv
2
i (3.71)

where the internal velocities vi are obtained from the real initial nuclear velocities ṽi by excluding any
component along the external degrees of freedom. These corrected internal nuclear velocities are derived
and discussed in Section 3.2, and can be resumed equal to as

vi =

ṽi nc = 0

ṽi − vcm nc = 3

ṽi − vcm − [ω ∧ (q̃i − qcm)]x,y,z nc = 4, 5, 6

i = 1, ..., N (3.72)

where ω is the angular velocity of the center of mass for the system, while qcm, vcm are the position and
the velocity of the system center of mass, computed as

qcm =
1

m

N∑
i=1

miq̃i vcm =
1

m

N∑
i=1

miṽi i = 1, ..., N (3.73)

where m is the total mass of the atomic system and {q̃i} and {ṽi} are the initial nuclear positions and
velocities, respectively. In the last condition in (3.72), the velocity components of each particle due to
the rotation of the system can be subtracted along one or more of the three spatial directions x, y, z, so
that the number of constraints are equal to 3 (for the three translational degrees of freedom removed)
plus the number of subtracted velocity components. Application of conditions (3.72) ensures that, as
demonstrated in Sections 3.2.1 and 3.2.2, the system net linear momentum is equal to zero, so that

P =
N∑
i=1

mivi = 0 for nc = 3 or 4, 5, 6 (constraint for 0D, 1D, 2D and 3D systems) (3.74)

and, as demonstrated in Section 3.2.2, irrespective of the origin of the coordinate system, the system net
angular momentum is also equal to zero,

L =

N∑
i=1

miqi ∧ vi = 0 for nc = 4, 5, 6 (constraint for 0D and 1D systems) (3.75)

Thus, depending on the system dimensionality and on the periodic boundary conditions applied on the
system, the net linear and angular momenta of the internal velocities vanish, as expected. In the following
discussion, it is assumed that all the equation of motions introduced to describe the evolution of nuclear
coordinates in the phase space are applied to the internal velocities defined by equation (3.72), while the
nuclear coordinates are propagated simultaneously in time using the real velocities. As demonstrated
in Chapter 5, Section 5.1, the integration of the simple set of Newtonian equations of motion (2.33)
for an atomic system leads, in the limit of infinite sampling, to a trajectory mapping a microcanonical
ensemble of microstates. Assuming an infinite numerical precision, this is also what a standard molecular
dynamics simulation will reach. The laws of classical mechanics also lead to two additional conserved

30

Chapter 3. Initialization of quantities 3.3. Kinetic energy, net linear and angular momentum

quantities, namely, the linear momentum P of the system, and the angular momentum L of the system
around its center of mass. In simulations under periodic boundary conditions, the two quantities refer
to the infinite periodic system. However, in this case, if the linear momentum Pbox of the computational
box is also conserved, the corresponding angular momentum Lbox is not. This is because correlated
rotational motion in two adjacent boxes exert friction on each other, leading to an exchange of kinetic
energy with the other (internal) degrees of freedom of the system.[29] Note that the physical properties
of a molecular system are independent of its total linear momentum. However, they depend on the total
angular momentum, because the rotation of the system leads to centrifugal forces. For this reason, the
total angular momentum should be added to the list of independent variables defining the ensemble
sampled. Whenever the value of the total angular momentum is not given, it generally implicitly means
that L = 0. Indeed, the use of L 6= 0 in simulations under periodic boundary conditions (overall uniform
rotation of the infinite periodic system) is actually impossible, because it would lead to non-periodic
centrifugal forces. Finally, it should be specified that the total energy of the atomic system is defined
here so as to exclude the kinetic energy contributions corresponding to the overall translation and rotation
of the system (so that the total energy is independent on the total linear and angular momenta). Finally,
it should be stressed that computer simulations cannot be performed at infinite numerical precision. As
a consequence, quantities which are formally time-independent in classical mechanics may still undergo
a numerical drift in simulations. In microcanonical simulations, this is typically the case for the total
energy, as well as the total linear momentum P and the total angular momentum L (if the system is not
periodic), or the total linear momentum P (if periodic boundary conditions are applied).
In the following section, the Hamilton equations of motions are analyzed and a simple algorithm for
integrating them is derived.

31

3.3. Kinetic energy, net linear and angular momentum Chapter 3. Initialization of quantities

32

Chapter 4

Equations of motion

4.1 Hamilton formulation of the nuclear equations of motion

In molecular dynamics simulation the Newton equations of motion for the nuclei are solved for a set of
interacting particles

miq̈i(t) = Fi(t) = −∇iEe,0(q(t)) i = 1, ..., N (4.1)

where mi are the nuclear masses, qi(t) the positions of the nuclei at time t, N the number of nuclei in
the system and Fi(t) the forces acting on the i-th particle computed through the Hellmann-Feynman
theorem[30] as the analytical derivative of the ground state electronic energy functional. In turn, the
ground state electronic energy is computed by minimizing the expectation value of the electronic Hamil-
tonian, see equations (2.31) and (2.34), reported below

Fi(t) = −∇i min
Ψe,0

[〈Ψe,0|Ĥe|Ψe,0〉] = −∇iEe,0(r(t)) i = 1, ..., N (4.2)

In the specific case of Density Functional Theory, this minimization is carried out using the Levy-Lieb
reformulation,[31, 32] that is

Ee,0(q(t)) = min
ρ̃→Ne

{
FLL[ρ̃] +

∫
vext(ξ) ρ̃(ξ) dξ

}
(4.3)

where Ne is the number of electrons in the system, and FLL[ρ̃] is the universal Levy-Lieb functional,[31,
32] which in the general case is given by

FLL[ρ̃] = min
{|Ψ̃e,k〉}→ρ̃

(∑
k

wk 〈Ψ̃e,k|T̂ + v̂ee|Ψ̃e,k〉

)
with

∑
k

wk = 1 and wk ≥ 0 (4.4)

In the present treatment, only the case of conservative forces is considered, so that the total energy for
the system, expressed as the sum of the kinetic energy Ek and the potential energy (that is the ground
state electronic effective potential Ee,0(q)), namely,

Etot = Ek + Ee,0(q) =
N∑
i=1

mi v
2
i

2
+ Ee,0(q) =

N∑
i=1

p2
i

2mi
+ Ee,0(q) (4.5)

will be conserved. The first term in (4.5) is the kinetic energy, where vi is the velocity of the i-th nucleus,
while the second term is the potential energy. On the contrary, a non-conservative system has to be
taken into account when, for example, friction is introduced through a velocity dependent force. This
will be discussed, for example, in Section 5.3.

4.1.1 Hamilton equations of motion

Equation (4.1), together with the forces expression in equation (4.2), corresponds to a set of Nd coupled
second order ordinary differential equations, where d is the spatial dimension of the system. Given a

33

4.1. Hamilton formulation Chapter 4. Equations of motion

set of initial conditions for the positions (q1(t0), ..., qN (t0)) and velocities (v1(t0), ...,vN (t0)), a unique
solution can be formally obtained.
It is often convenient to introduce the Hamilton formulation of classical mechanics, in order to obtain a
more clear connection to statistical and quantum mechanics. The system is then defined in terms of a
set of Nd generalized coordinates qα and generalized momenta pα, where d is the spatial dimensionality
and Nd is the number of degrees of freedom. For a system with N particles, free to move in a three
dimensional space (d = 3) without constraints, there are Nd = 3N degrees of freedom. The Hamilton
dynamics is derived from the Lagrangian formulation. The Lagrangian L(qα, q̇α, t) is a function of the
coordinates qα, their time derivatives q̇α and (possibly) time. The Hamiltonian is defined to be the
Legendre transform of the Lagrangian with respect to the q̇α variables,

H(qα, pα, t) =

Nd∑
α=1

pαq̇α − L(qα, q̇α, t) (4.6)

where q̇α is eliminated from the right hand side in favour of pα by using

pα =
∂L

∂q̇α
= pα(qβ, q̇β, t) (4.7)

and inverting to get q̇α = q̇α(qβ, pβ, t). At the same time, the variation of the Hamiltonian H can be
computed starting from (4.6) as

dH = (dpαq̇α + pαdq̇α)−

(
∂L

∂qα
dqα +

∂L

∂q̇α
dq̇α +

∂L

∂t
dt

)
= dpαq̇α −

∂L

∂qα
dqα −

∂L

∂t
dt (4.8)

The same previous variation can be rewritten as

dH =
∂H
∂qα

dqα +
∂H
∂pα

dpα +
∂H
∂t

dt (4.9)

Equating the terms in (4.8) and (4.9), taking into account the relation (4.7), the famous Hamilton
equations of motion are found1

− ∂L

∂t
=

∂H
∂t

(4.10)

q̇α =
∂H
∂pα

ṗα = − ∂H
∂qα

α = 1, ..., Nd (4.11)

where H is the classical Hamiltonian of the system, given by the sum of the kinetic and the potential
energies. For a system with N particles in three dimensions, the Hamiltonian form can be written, using
Cartesian coordinates, as follows

H =
N∑
i=1

mi v
2
i

2
+ Ee,0(q) (4.12)

where, in this case, qi are the generalized positions (with q = {qi}) and mivi the generalized momenta.
Using equations (4.11) it follows that

q̇i = vi

mi v̇i = − ∂

∂qi
Ee,0(q)

i = 1, ..., N (4.13)

1Note. The components of vectors and covectors will be written in the following with the same index positions (in the
subscript), since the underlying metric is an Euclidean metric on the phase space. Remember: in general, in a Cartesian
coordinate system on an Euclidean space, the partial derivatives are orthonormal with respect to the Euclidean metric,
thus the metric tensor is the Kronecker delta in this coordinate system. Therefore, raising and lowering the indexes of the
components of covectors and vectors, respectively, have no cost in an Euclidean metric.

34

Chapter 4. Equations of motion 4.1. Hamilton formulation

which is equal to the Newton equation of motion (4.1) with the force given by (4.2).
The Hamiltonian form (4.12) can be written in a more simple way as

H(p, q) =

N∑
i=1

p2
i

2mi
+ φ(q) (4.14)

where pi = mivi is the generalized momentum of the i-th nucleus and φ(q) is the potential generated
by the field effect of the ground state electronic and nuclear degrees of freedom computed at the HF or
DFT level, at a fixed nuclear configuration q ≡ {qi}. Hamilton equations of motion describe the unique
evolution of the positions and momenta subject to a set of initial conditions. More precisely, equations
(4.11) specify a trajectory

x(t) ≡ (q1(t), ..., qd(t), p1(t), ..., pd(t)) ≡ (q(t),p(t)) (4.15)

in phase space R2d, starting from an initial point x(t0). For a system of N particles in three dimensions,
the phase space is 6N -dimensional. The constrain dictated by the energy conservation restricts the
motion on a (6N − 1)-dimensional surface in phase space, known as the constant energy hypersurface or
simply the constant energy surface. Furthermore, the Hamiltonian in equation (4.12) is invariant when
replacing vi with −vi, which implies that the time evolution is reversible in time.

4.1.2 Symplectiness and canonical transformations

Hamilton equations of motion can also be expressed using a symplectic notation.
Indeed, the time derivative of the phase space vector x(t) = t(q1(t), ..., qNd(t), p1(t), ..., pNd(t)) can be
written as a column vector in the following way

tẋ(t) =

(
∂H
∂p1

, ...,
∂H
∂pNd

,−∂H
∂q1

, ...,− ∂H
∂qNd

)
(4.16)

and hence the Hamilton equations of motion can be recast as

ẋ = M
∂H
∂x

(4.17)

where ẋ and (∂H/∂x) are 2Nd×1 column matrices, while M is a 2Nd×2Nd skew-symmetric, orthogonal
block matrix given by

M =

(
0 1
−1 0

)
(4.18)

where 0 and 1 are the Nd×Nd zero and identity matrices, respectively. Dynamical systems expressible in
this form are said to possess a symplectic structure. Equation (4.17) is the so-called symplectic notation
for the Hamilton equations of motion. To clearly understand the notation used and the beauty of this
matrix notation, see Appendix A, Section A.3.
It is also important to know the behavior of transformation of coordinates in the phase space. First of all,
a transformation of variables in phase space can be defined from the system of coordinates x = (q(t),p(t))
to the frame of coordinates y = (Q(q(t),p(t)),P (q(t),p(t))) as

y = y(x) (4.19)

The initial frame of reference x obeys to equation (4.17). For a restricted canonical transformation, the
function H(x) expressed in the new coordinates y corresponds to the Hamiltonian function for the new
coordinates y, and the Hamilton equations of motion in the y basis have exactly the same form as in
(4.17), so that

ẋ = M
∂H(x)

∂x

canonical transformation−→ ẏ = M
∂H(y)

∂y
(4.20)

Taking the time derivative of equation (4.19) for coordinates transformation and using the first relation
in (4.20), the following expression is obtained

ẏ =
∂y

∂x
· ∂x
∂t

=
∂y

∂x
M

∂H(x)

∂x
= J M

∂H(x)

∂x
with J =

∂y

∂x
(4.21)

35

4.1. Hamilton formulation Chapter 4. Equations of motion

where the matrix J is the Jacobian matrix related to coordinates transformation. In components, the
previous equation can be rewritten as

ẏα =
2Nd∑
β=1

∂yα
∂xβ

ẋβ =
2Nd∑
β=1

Jαβ ẋβ =
2Nd∑
β=1

Jαβ

2Nd∑
γ=1

Mβγ
∂H
∂xγ

=
2Nd∑
β=1

Jαβ

2Nd∑
γ=1

Mβγ

2Nd∑
ρ=1

∂H
∂yρ

∂yρ
∂xγ

(4.22)

where the last identity has been computed considering the inverse transformation y → x = x(y), and the
relation between gradients in the two reference frame of coordinates. Therefore, the previous equation
is given by

ẏα =

2Nd∑
β=1

2Nd∑
γ=1

2Nd∑
ρ=1

JαβMβγ
∂H
∂yρ

∂yρ
∂xγ

=

2Nd∑
β=1

2Nd∑
γ=1

2Nd∑
ρ=1

JαβMβγ
∂H
∂yρ

Jργ =

2Nd∑
β=1

2Nd∑
γ=1

2Nd∑
ρ=1

JαβMβγ Jργ
∂H
∂yρ

that, written in vector notation, becomes

ẏ = (J M tJ)
∂H(y)

∂y
with J =

∂y

∂x
(4.23)

This expression for the equations of motion is valid for any set of variables y that are being transformed
(independently of time) from the set x. Such a transformation is canonical if the equations of motion
in the new coordinates have the canonical form (4.20). Comparing the above identity with the last
expression in (4.20), it can be stated that the Hamilton equations of motion are left invariant under any
transformation whose Jacobian J satisfies the relation

J M tJ = M (4.24)

or, in components,

2Nd∑
β=1

2Nd∑
γ=1

∂yα
∂xβ

Mβγ
∂yρ
∂xγ

= Mαρ →
2Nd∑
β=1

2Nd∑
γ=1

JαβMβγ Jργ = Mαρ (4.25)

The Jacobian matrix is said to be symplectic if equation (4.24) holds. A change of variables with a
symplectic Jacobian is said to be a canonical transformation.
By means of Hamiltonian formulation, the classical dynamics has been rewritten in terms of first order
differential equations in which each point in phase space follows a unique path under time evolution.
This time evolution is sometimes called a flow on phase space. The Liouville theorem and its associated
equation are important properties of these flows. More details about the canonical transformations are
reported in Appendix A, Section A.5.

4.1.3 Liouville theorem

Liouville Theorem. Consider a region in phase space and watch it evolve over time. Then the
shape of the region will generically change, but Liouville theorem states that the volume in phase
space remains the same.

Proof.
Consider an infinitesimal volume e moving for an infinitesimal time. Starting in a neighbourhood of the
point (qα, pα) in phase space, with volume

v = dq dp ≡ dq1 · · · dqNd dp1 · · · dpNd (4.26)

the evolution in time dt is given by

qα → qα + q̇αdt = qα +
∂H
∂pα

dt ≡ q̃α (4.27)

pα → pα + ṗαdt = pα −
∂H
∂qα

dt ≡ p̃α (4.28)

36

Chapter 4. Equations of motion 4.1. Hamilton formulation

The new volume in phase space is then computed as

ṽ = dq̃ dp̃ ≡ dq̃1 · · · dq̃Nd dp1 · · · dp̃Nd = (det J)v (4.29)

where J is the Jacobian of the transformation defined by the determinant of the 2Nd× 2Nd matrix

J =

(
∂q̃α/∂qβ ∂q̃α/∂pβ
∂p̃α/∂qβ ∂p̃α/∂pβ

)
(4.30)

To prove the theorem, it has to be shown that det J = 1. First consider a single degree of freedom (i.e.
Nd = 1), so that

J =

(
∂q̃α/∂qβ ∂q̃α/∂pβ
∂p̃α/∂qβ ∂p̃α/∂pβ

)
(4.31)

Then the determinant of the Jacobian is given by

det(J) = det

(
1 + (∂2H/∂p∂q)dt (∂2H/∂p2)dt
−(∂2H/∂q2)dt 1− (∂2H/∂q∂p)dt

)
= 1 +O(dt2) (4.32)

which means that
d(det J)

dt
= 0 (4.33)

so that the volume remains constant for all time. Now, in order to generalize this reasoning to arbitrary
d, the determinant can be rewritten in a more general way as

det J = det

(
δαβ + (∂2H/∂pα∂qβ)dt (∂2H/∂pα∂pβ)dt
−(∂2H/∂qα∂qβ)dt δαβ − (∂2H/∂qα∂pβ)dt

)
(4.34)

To compute the determinant, the following relation is used

det(1 + εm) = 1 + εTr(m) +O(ε2) (4.35)

for any matrix m and small ε. Then the previous determinant can be rewritten as

det J = 1 +

Nd∑
α=1

(
∂2H

∂pα∂qβ
− ∂2H
∂qα∂pβ

)
dt+O(dt2) = 1 +O(dt2) (4.36)

so that the relation (4.33) is recovered also for the general case of a system with d degrees of freedom.

4.1.4 Liouville equation

Consider an ensemble (or collection) of systems with some density function f(p, q, t) (also called distri-
bution function). It can be interesting to taken into account this collection of system because
(i) there is a single system but its exact state is not known very well. Then f(p, q, t) is understood as a
probability parameterising the ignorance about the system and∫

f(p, q, t)

Nd∏
α=1

dpα dqα = 1 (4.37)

(ii) there is a large number N of identical, non-interacting systems (e.g. a certain number of atoms in
a condensed matter structure) and the only important information to collect is the average behavior.
Then the distribution f(p, q, t) satisfies∫

f(p, q, t)

Nd∏
α=1

dpα dqα = N (4.38)

In the latter case, the particles in phase space (i.e. dynamical systems) are neither created nor destroyed,
so the number of particles in a given volume is conserved. Since Liouville theorem assures that the volume
elements dp dq are preserved, the relation df/dt = 0 should be respected. This can be written as

df

dt
=
∂f

∂t
+

Nd∑
α=1

[
∂f

∂qα
q̇α +

∂f

∂pα
ṗα

]
=
∂f

∂t
+

Nd∑
α=1

[
∂f

∂qα

∂H
∂pα
− ∂f

∂pα

∂H
∂qα

]
= 0 (4.39)

37

4.1. Hamilton formulation Chapter 4. Equations of motion

Rearranging the terms leads to

∂f

∂t
=

Nd∑
α=1

[
∂f

∂pα

∂H
∂qα
− ∂f

∂qα

∂H
∂pα

]
(4.40)

which is know as the Liouville equation.
Notice that Liouville theorem holds whether or not the system conserves energy (i.e. whether or not
∂H/∂t = 0).2 But the system must be described by a Hamiltonian. For example, systems with dissipation
typically head to regions of phase space with q̇α = 0 and so do not preserve phase space volume.

4.1.5 Liouville operator

An important mathematical object which can be defined and it is useful to simplify the notation is the
so-called Poisson bracket. Let f(p, q, t) and g(p, q, t) be two functions on phase space, then the Poisson
bracket is defined as

{f, g} ≡
Nd∑
α=1

[
∂f

∂qα

∂g

∂pα
− ∂f

∂pα

∂g

∂qα

]
(4.41)

The Poisson bracket can be used to define the Liouville operator iL according to the relation

iL(·) ≡ { · ,H} (4.42)

where the imaginary unit i is used in Liouville operator definition as a matter of convention, and has
the effect of making the operator iL Hermitian. More explicitly, the Liouville operator can be written
as a differential operator 3

iL =

Nd∑
α=1

[
∂

∂qα
q̇α +

∂

∂pα
ṗα

]
(4.44)

4.1.6 Liouville operator invariance under canonical transformations

In Section 4.1.2 the change of variables have been classified as canonical transformations if the corre-
spondent Jacobian matrix J is symplectic. A Jacobian matrix is said to be symplectic if equation (4.24)
holds, where M is the block matrix defined in (4.18). On the base of these definitions, a theorem relating
canonical transformations with Poisson brackets, and thus with Liouville operator, can be proved.

Theorem. The Poisson bracket is invariant under canonical transformations. Conversely, any
transformation which preserves the Poisson bracket structure so that

{Qi, Qj} = {Pi, Pj} = 0 and {Qi, Pj} = δij (4.45)

2The central idea of Liouville theorem, that volume of phase space is constant, is somewhat reminiscent of quantum
mechanics. Indeed, this is the first of several occasions where the ideas of quantum physics creeps into the classical world.
Consider a system of particles distributed randomly within a square ∆q∆p in phase space. Liouville theorem implies that
if the system evolves in any Hamiltonian manner, the spread of positions of the particles can be cut down only at the
cost of increasing the spread of momentum. This is a strongly reminder of Heisenberg uncertainty relation, which is also
written as ∆q∆p = constant. While Liouville and Heisenberg seem to be talking the same language, there are very profound
differences between them. The distribution in the classical picture reflects the ignorance about details of the system rather
than any intrinsic uncertainty. The crucial point is that a system of classical particles is really described by collection of
points in phase space rather than a continuous distribution ρ(q, p, t) as modeled above.

3Analogously, the Liouville operator can be written using a notation with indexes that permits to easily identify the
phase space coordinates associated to each nucleus in the system, that is

iL =

N∑
i=1

[
∂

∂qi
q̇i +

∂

∂pi
ṗi

]
(4.43)

where, considering a three dimensional space, qi = (qxi, qyi, qzi) and pi = (pxi, pyi, pzi) are the three dimensional vectors
associated to the generalized coordinates of the i-th nucleus. Therefore, the expression (4.44) for the Liouville operator
with d = 3 is completely equivalent to the definition (4.43).

38

Chapter 4. Equations of motion 4.1. Hamilton formulation

is canonical.

Proof.
First of all, the fact that the Poisson bracket is invariant under canonical transformations is demonstrated.
Consider two functions f(xβ) and g(xβ), where x = (q,p). Then,

{f, g} ≡
Nd∑
α=1

[
∂f

∂qα

∂g

∂pα
− ∂f

∂pα

∂g

∂qα

]
=

2Nd∑
β=1

2Nd∑
γ=1

∂f

∂xβ
Mβγ

∂g

∂xγ
with {Mβγ} = M =

(
0 1
−1 0

)
(4.46)

where M = {Mβγ} is the 2Nd × 2Nd skew-symmetric, orthogonal block matrix defined in (4.18), with
0 and 1 the Nd × Nd zero and identity matrices, respectively. Consider the transformation defined as
x→ y(x), so that

∂f

∂xβ
=

2Nd∑
σ=1

∂f

∂yσ
Jσβ where Jσβ =

∂yσ
∂xβ

(4.47)

Analogously,

∂g

∂xγ
=

2Nd∑
ρ=1

∂f

∂yρ
Jργ =

2Nd∑
ρ=1

Jργ
∂f

∂yρ
where Jργ =

∂yρ
∂xγ

(4.48)

and substituting (4.47) and (4.48) in the Poisson bracket (4.46) leads to

{f, g} =
2Nd∑
β=1

2Nd∑
γ=1

(
2Nd∑
σ=1

∂f

∂yσ
Jσβ

)
Mβγ

(
2Nd∑
ρ=1

Jργ
∂f

∂yρ

)
=

2Nd∑
σ=1

2Nd∑
ρ=1

∂f

∂yσ

(
2Nd∑
β=1

2Nd∑
γ=1

JσβMβγ Jργ

)
∂f

∂yρ
(4.49)

Assuming that the transformation is canonical, then equation (4.25) holds, that is

2Nd∑
β=1

2Nd∑
γ=1

JσβMβγ Jργ = Mσρ (4.50)

The substitution of this expression in equation (4.49) permits to write the Poisson bracket as

{f, g} =

2Nd∑
σ=1

2Nd∑
ρ=1

∂f

∂yσ
Mσρ

∂f

∂yρ
(4.51)

leading to an expression in the frame of reference described with the coordinates y(x) equivalent to the
original one (4.46) that is instead written using the coordinates x. This means that the Poisson brackets
can be computed in any coordinates related by a canonical transformation.
Consider now the converse condition. Take into consideration a point in phase space given by (qα, pα) and
a new set of coordinates defines as (Qα(qα), Pα(pα)). A Jacobian matrix element for the transformation
is given by

Jαβ =

(
∂Qα/∂qβ ∂Qα/∂pβ
∂Pα/∂qβ ∂Pα/∂pβ

)
(4.52)

In order to demonstrate that this transformation is canonical if the hypothesis (4.45) are satisfied, the
matrix product on the left hand side of equation (4.24) is computed, so that the symplectiness relation

39

4.1. Hamilton formulation Chapter 4. Equations of motion

(4.24) can be verified by applying the hypothesis (4.45). In components,

[J M tJ]αβ =

Nd∑
γ=1

Nd∑
ρ=1

JαγMγρ (tJ)ρβ =

Nd∑
γ=1

Nd∑
ρ=1

JαγMγρ Jβρ

=
Nd∑
γ=1

Nd∑
ρ=1

[(
∂Qα/∂qγ ∂Qα/∂pγ
∂Pα/∂qγ ∂Pα/∂pγ

)(
0 1
−1 0

)(
∂Qβ/∂qρ ∂Pβ/∂qρ
∂Qβ/∂pρ ∂Pβ/∂pρ

)]

=
Nd∑
γ=1

Nd∑
ρ=1

[(
−∂Qα/∂pγ ∂Qα/∂qγ
−∂Pα/∂pγ ∂Pα/∂qγ

)(
∂Qβ/∂qρ ∂Pβ/∂qρ
∂Qβ/∂pρ ∂Pβ/∂pρ

)]

=
Nd∑
γ=1

Nd∑
ρ=1

(
(∂Qα/∂qγ)(∂Qβ/∂pρ)− (∂Qα/∂pγ)(∂Qβ/∂qρ) (∂Qα/∂qγ)(∂Pβ/∂pρ)− (∂Qα/∂pγ)(∂Pβ/∂qρ)
(∂Pα/∂qγ)(∂Qβ/∂pρ)− (∂Pα/∂pγ)(∂Qβ/∂qρ) (∂Pα/∂qγ)(∂Pβ/∂pρ)− (∂Pα/∂pγ)(∂Pβ/∂qρ)

)

=

(
{Qα, Qβ} {Qα, Pβ}
{Pα, Qβ} {Pα, Pβ}

)

Applying the conditions (4.45) in the previous equation leads to

[J M tJ]αβ =
Nd∑
γ=1

Nd∑
ρ=1

JαγMγρ Jβρ =

(
{Qα, Qβ} {Qα, Pβ}
{Pα, Qβ} {Pα, Pβ}

)
=

(
0 1
−1 0

)
= Mαβ (4.53)

Taking into consideration the second and the last expression in equation (4.53), the condition (4.25) for
the symplectiness of the Jacobian is recovered, demonstrating that the associated change of variables is
canonical. Therefore, this derivations allows to conclude that any transformation which preserves the
Poisson bracket structure is canonical.

4.1.7 Time dependency in phase space

The time dependence of a function of generalized phase space coordinates and time A(x(t), t), which
generically represents a property of the system (such as the distribution function), is formally given by

d

dt
A(x(t), t) =

∂A

∂t
+

Nd∑
α=1

[
∂A

∂qα
q̇α +

∂A

∂pα
ṗα

]
=
∂A

∂t
+

Nd∑
α=1

[
∂A

∂qα

∂H
∂pα
− ∂A

∂pα

∂H
∂qα

]
(4.54)

Using the Liouville operator introduced in Section 4.1.5, equation (4.54) which is valid for any function
A(x(t), t) = A(p(t), q(t), t) can be rewritten as

d

dt
A(x(t), t) =

∂A

∂t
+ {A,H} (4.55)

Often in physics there is a particular interest in probability distributions that do not change explicitly
in time (i.e. ∂A/∂t = 0). An important class of distributions that do not change in time have the form

A ≡ A(p(t), q(t)) (4.56)

In this case, if the quantity A(x(t), t) does not depend explicitly on time, so that it corresponds to
A(x(t)), then in equations (4.54) and (4.55) the time partial derivative is equal to zero, so that the total
time derivative becomes

d

dt
A(x(t)) =

Nd∑
α=1

[
∂A

∂qα
q̇α +

∂A

∂pα
ṗα

]
=

Nd∑
α=1

[
∂A

∂qα

∂H
∂pα
− ∂A

∂pα

∂H
∂qα

]
= {A,H} (4.57)

that is
d

dt
A(x(t)) = {A,H} (4.58)

40

Chapter 4. Equations of motion 4.1. Hamilton formulation

Comparing this last expression with equation (4.43), it is clearly seen that the time dependence of an
arbitrary phase space function A(x(t)) can be written in terms of the Liouville operator as

d

dt
A(x(t)) = iLA(x(t)) (4.59)

with the formal solution4

A(x(t)) = eiL(t−t0)A(x(t0)) (4.60)

where the integrations to solve the differential equation have been performed between the initial time t0
and a generic time t. The operator exp(iLt) is known as the classical propagator. By introducing the
imaginary unit i into the definition of the Liouville operator the classical propagator exp(iLt) resembles
the quantum propagator exp(−iĤt/h̄). Following the result given by equation (4.60), if the identification
between A(x(t)) and x(t) is made, then the time evolution of the phase space vector x(t) can be written
as

x(t) = eiL(t−t0) x(t0) (4.61)

This equation describes the central numerical problem in molecular dynamics simulation, to obtain the
time-dependent trajectory x(t) in phase space, given an initial condition x(t0). Although elegant in
its compactness, equation (4.61) amounts to little more than a formal device, since the action of the
exponential operator on the phase space vector at time t0 cannot be evaluated exactly. If this would be
possible, then any and every problem in classical mechanics could be solved exactly analytically without
developing numerical methods in the first place. However, what equation (4.61) does is to provide a
very useful starting point for developing approximate solutions to Hamilton equations, as described in
Section 4.2. In order to simplify the notation and generalize previous equations, the Liouville operator
can be represented by a vector notation as

iL = Γ̇ · ∂
∂Γ

with Γ(t) = (p(t), q(t)) (4.62)

where the vector Γ define a point in the phase space and the dot above the vector variable stands for
the time derivative. Using these abbreviate notation, the equations (4.54) and (4.57) can be rewritten
as

equation (4.54) → d

dt
A(Γ, t) =

∂A

∂t
+ Γ̇ · ∂A

∂Γ
(4.63)

equation (4.57) → d

dt
A(Γ) = Γ̇ · ∂A

∂Γ
(4.64)

and the equation (4.61) can be written as

Γ(t) = eiL(t−t0) Γ(t0) (4.65)

Alternatively, if the phase space coordinates are allowed to propagate P times (i.e. P is the number of
molecular dynamics steps in the simulation), and τ is the time step unit, then the previous phase space
propagation formula becomes

Γ(t) = Γ(t0 + P τ) = eiLP τ Γ(t0) (4.66)

The vector Γ(t) is a generalization of the phase space vector x(t). Indeed, it can contain different
number of coordinates, depending on the ensemble generated by the equations of motion defined for the
system. For the case of standard Newtonian equations of motion, it contains only positions and momenta
generalized coordinates. However, there are cases in which the equations of motion are described by
more than two variables, as the case of extended system methods that introduces virtual variables for
generating the canonical or the isobaric ensembles. In these cases the vector Γ(t) contains both the real
and the virtual degrees of freedom. Note that all the equations and properties studied and demonstrated
for the phase space vector x(t) from Section 4.1.2 up to now are also valid for its generalized phase space
vector Γ(t).

4Exponential mapping from group to algebra permits to solve differential equations with operators in the usual way.

41

4.2. Generalized approach for equations of motion integration Chapter 4. Equations of motion

4.1.8 First integrals of Hamilton equations of motion

The Hamiltonian vector field XH generated by the Hamiltonian H is defined as

XH =
∂

∂t
+

Nd∑
α=1

[
∂H
∂pα

∂

∂qα
− ∂H
∂qα

∂

∂pα

]
=

∂

∂t
+

Nd∑
α=1

[
q̇α

∂

∂qα
+ ṗα

∂

∂pα

]
=

∂

∂t
+ iL (4.67)

where iL is the Liouville operator defined in (4.43). A function f(p, q, t) is said to be an integral function
or a first integral of the Hamiltonian vector field XH if it is constant along each integral curve. The
necessary condition for the function f(p, q, t) to be a first integral of the Hamiltonian vector field is
therefore

XH(f(p, q, t)) =
df

dt
=
∂f

∂t
+

Nd∑
α=1

[
∂H
∂pα

∂f

∂qα
− ∂H
∂qα

∂f

∂pα

]
=
∂f

∂t
+ iLf =

∂f

∂t
+ {f,H} = 0 (4.68)

The Hamiltonian H itself, if it does not depend on time (i.e. if it is not an explicit function of time but
depends on it only through qα(t) ann pα(t)), is a first integral of XH . This can be shown taking the
time derivative of a time-independent Hamiltonian, following the definition of time derivative given by
equation (4.68),

d

dt
H(pα, qα) =

Nd∑
α=1

[
∂H
∂pα

∂H
∂qα
− ∂H
∂qα

∂H
∂pα

]
= 0 (4.69)

As a consequence, the total energy for the system described by a time-independent Hamiltonian is a
conserved quantity of the system itself. For this reason, if an efficient way for integrating the Hamilton
equation of motion (4.11) for a system of N particles is found, the so-called Nve ensemble (where the
Number of particles, the Volume and the Energy are conserved) is automatically generated from the
integration of the Hamilton equations of motion. Two others first integrals can be derived, namely, the
total linear momentum pt and the total angular momentum Lt of a system with N particles, defined as

pt =
N∑
i=1

pi Lt =
N∑
i=1

qi ∧ pi (4.70)

where pi, qi are d-dimensional vectors defined in a d-dimensional space, so that the number of degrees
of freedom is equal to Nd, as previously defined (for example, in a three-dimensional space d = 3 the
coordinate vectors are pi = (pxi, pyi, pzi) and qi = (qxi, qyi, qzi)). However, the conservation of these two
quantities depends on the form of the Hamiltonian of the system, so that the demonstration is not so
easy as the proof for total energy conservation, in which the only constraint imposed for the Hamiltonian
was the time-independence. A general and elegant demonstration of the conservation of the total linear
and angular momentum for a Hamiltonian that is, respectively, translational invariant (translational
symmetry) and rotational invariant (rotational symmetry), can be performed by introducing the action
and studying its deformation in the presence of an infinitesimal translation and rotation, respectively,
and by imposing that the action itself is invariant under these infinitesimal transformations. The use of
this argument is an application of the Noether theorem,[33] that links every differentiable symmetry of
the action of a physical system (with conservative forces) to a corresponding conservation law.

4.2 Generalized approach for equations of motion integration

The Liouville operator formalism is the starting point to derive symplectic integrators for the classical
equations of motion in the phase space.
The time evolution of the phase space point Γ(t) = (p(t), q(t)) from an initial time t0 to a generic time
t is formally written as

Γ(t) = eiL(t−t0) Γ(t0) (4.71)

Equation (4.71) is a formal solution of Hamilton equations of motion. The exponential operator times the
phase space point vector defines the flow of the Hamiltonian system which brings the system phase space

42

Chapter 4. Equations of motion 4.2. Generalized approach for equations of motion integration

point from the initial state (p(t0), q(t0)) to the state (p(t), q(t)) at a later time t.5 The transformation
(4.71) obeys equation (4.24). Note also that the adjoint of the exponential operator corresponds to the
inverse, i.e. exp[iL(t− t0)] is unitary. This implies that the trajectory is exactly time reversible.
In order to propagate in time the phase space variables, the form assumed by the Liouville operator has
to be known. It depends on the number of phase space variables, as well as on the form of the Hamilton
equations of motion, as stated by equation (4.62), reported hereafter

iL = Γ̇ · ∂
∂Γ

with Γ(t) point in phase space (4.73)

Therefore, knowing the Hamilton form of the equations of motion which rules the dynamics of the system,
the Liouville operator can be computed using equation (4.73), and then used in the time propagator to
calculate the evolution of the phase space variables in time, as in (4.71). The number of terms generated
by applying the scalar product in the definition (4.73) is equal to the number of set of coordinates intro-
duced to describe the evolution of the system in the phase space. For this reason, the time propagator
operator in (4.71) has an exponential form with at least two Liouville operators, corresponding to the
set of positions and momenta coordinates with the associated Hamilton equations of motion. Gener-
ally speaking, the terms generated by (4.73) to form the general Liouville operator can be labeled as
A,B,C, ..., so that its generic form will be iL = A+B + C + ... and equation (4.71) becomes

Γ(t) = e(A+B+C+...)(t−t0) Γ(t0) (4.74)

The Liouville operators in the exponential form generally do not commute with each other. For example,
when the positions and momenta coordinates refer to same degree of freedom, the associated Liouville
operators do not commute. The non-commutation of the Liouville operators in (4.74) is a problem,
because this implies that the whole time propagator operator is not unitary, and thus not time reversible.
This problem has been resolved by Trotter[34] and Suzuki[35], with the introduction of an approximate
expression for the discrete time propagator that retain both the symplectic and the reversibility property.
Indeed, expression (4.74) can be simplified using the Suzuki-Trotter factorization formula, described in
Section 4.2.1. Since the minimum number of variables to characterize a physical system of interest are
two (the generalized positions and momenta coordinates), the problem of the solution of equation (4.74)
will be treated in the following for the specific case of two Liouville operators, A and B, in order to
give a simple and useful hint to the solution. The generalization to more than two Liouville operators is
straightforward and will be discussed later on in Section 4.2.1.

4.2.1 Suzuki-Trotter factorization scheme

In general, two Liouville operators do not commute with each other. In order to show that two generic
Liouville operators, A and B, do not commute, a simple case can be considered, such as a single particle
with mass m moving in a one dimensional space. Its phase space is described by two coordinates (x, v)
with the Hamiltonian given by

H(p, x) =
p2

2m
+ φ(x) (4.75)

where φ(x) is the potential depending on the particle position in the mono-dimensional space. Therefore,
the Hamilton equations of motion are

ẋ =
∂H
∂p

=
p

m
= v ṗ = −∂H

∂x
= −∂φ

∂x
= F (x) =

a(x)

m
(4.76)

5The generic time t in a molecular dynamics simulation is sampled at equal intervals of time, multiple of the so-called
time step τ = ∆t. Starting from the initial time t0, the expression for a generic time t is t = t0 +P τ , where P is the number
of dynamics steps in which the phase space coordinates are allowed to propagate. Therefore, exploiting the discretization
of time in a molecular dynamics simulation, if the phase space coordinates are allowed to propagate through P dynamical
steps, the previous formula (4.71), that describes the time propagation of the phase space vector in the time interval [t0, t],
has to be applied taking t = t0 + P τ , which gives

Γ(t) = Γ(t0 + P τ) = eiLP τ Γ(t0) (4.72)

43

4.2. Generalized approach for equations of motion integration Chapter 4. Equations of motion

so that, applying (4.73), the Liouville operator can be written as

iL = v
∂

∂x
+ a(x)

∂

∂v
(4.77)

and separated in two the operators

iLx = v
∂

∂x
iLv = a(x)

∂

∂v
(4.78)

The action of iLxiLv on some arbitrary function h(x, v) is[
v
∂

∂x
a(x)

∂

∂v

]
h(x, v) =

[
v
∂ a(x)

∂x

∂

∂v
+ v a(x)

∂2

∂x∂v

]
h(x, v) (4.79)

while the action of iLviLx on the same function is[
a(x)

∂

∂v
v
∂

∂x

]
h(x, v) =

[
a(x)

∂

∂x
+ a(x) v

∂2

∂v∂x

]
h(x, v) (4.80)

Since the function h(x, v) is arbitrary, the commutator results as

[iLx, iLv] = v
∂ a(x)

∂x

∂

∂v
− a(x)

∂

∂x
(4.81)

so that, in general, the two operators (4.78) do not commute. For non-commuting operators A and B,

e(A+B) 6= eA eB (4.82)

In these cases it is useful to introduce the Suzuki-Trotter identity

e(A+B) = lim
P→∞

[eA/P eB/P]P (4.83)

where P is an integer. Using equation (4.24) it is easy to show that the flow defined in equation
(4.83) is symplectic, being the product of two successive symplectic transformations. Unfortunately,
the propagator defined in (4.83) is not unitary, and therefore the corresponding algorithm is not time
reversible. Again the non-unitarity is due to the fact that the two factorized exponential operators are
non commuting. This problem is prevented by halving the time step (which corresponds doubling the
integer P) and using a symmetric version of the Suzuki-Trotter identity

e(A+B) = lim
P→∞

[eB/2P eA/2P eA/2P eB/2P]P = lim
P→∞

[eB/2P eA/P eB/2P]P (4.84)

The resulting propagator is clearly unitary, and therefore time reversible. Applying this identity to the
classical propagator exp[iL(t− t0)], by defining a time step τ ≡ ∆t = (t− t0)/P so that the time t can
be discretized and written as a function of an integer P , the resultant expression is given by

e(A+B)(t−t0) = lim
∆t→0(P→∞)

[
eB∆t/2 eA∆t eB∆t/2

]P
(4.85)

For large but finite integers P , the expression for the propagator exp[iL(t− t0)] can be approximated as

e(A+B)(t−t0) ≈
[
eB∆t/2 eA∆t eB∆t/2

]P
+O(P∆t3) (4.86)

obtaining a time propagator operator that is clearly unitary, therefore time reversible, and is also correct
up to the second order. It can be easily demonstrated that the approximate expression derived from the
identity (4.83) generates a time propagator operator which is correct up to the first order in the time
step. Thus, requiring that the product of the exponential operators be unitary automatically leads to a
more accurate approximations of the true discrete time propagator.
In this way, the time evolution equation (4.74) can be easily solved for one time step (i.e. P = 1) by

44

Chapter 4. Equations of motion 4.2. Generalized approach for equations of motion integration

making the single exponential operator acting sequentially on the phase space coordinates. The integer
P can assume the meaning of the total number of steps performed in a molecular dynamics simulation,
which generally are very high, justifying the approximation (4.86) for large but finite P , i.e. for a large
but finite number of steps. Indeed, during a dynamics the three operators in (4.86) are applied on the
phase space point at each step, so that the result of a molecular dynamics simulation with P number of
steps are the phase space coordinates given by

Γ(t0 + P∆t) ≈
[
eB∆t/2 eA∆t eB∆t/2

]P
Γ(t0) (4.87)

Note also that a formally equivalent time propagator operator can be obtained exchanging the order of
the operators in the previous expression, leading to another way to propagate in time the phase space
point, given by

e(B+A)(t−t0) ≈
[
eA∆t/2 eB∆t eA∆t/2

]P
+O(P∆t3) (4.88)

Generally speaking, if the Liouville operator can be split in n operators, there will be n! number of
formally equivalent time propagator operator forms that can be obtained from the original splitting,
representing all the possible combination between operators. However, if among the split operators
there is a certain number, nc, of commuting operators, then there will be (n − nc)! number of possible
form of distinguishable time propagators formally equivalent.
Generalization to more than two Liouville operators is trivial. For example, if the whole form of Liouville
operator can be split in three operators, A, B and C, the approximated form of the symmetric version
of the Suzuki-Trotter decomposition, equation (4.86), becomes

e(A+B+C)(t−t0) ≈
[
eC∆t/2 eB∆t/2 eA∆t eB∆t/2 eC∆t/2

]P
+O(P∆t5) (4.89)

In this case, iff the three operators do not commute to each other, there are 3! = 6 possible distinguish-
able form of the time propagator operator, which can be applied to the system phase space coordinates.
Otherwise, if nc operators among the three commute to each other, then the number of possible distin-
guishable time propagator operators will be (3− nc)! (with 0 ≤ nc ≤ 3).
Further generalizing the splitting procedure to an arbitrary number of Liouville operators, labeled as
L1, L2, ..., Ln−1, Ln, that is, if the whole Liouville operator derived from the equations of motion can be
written as a sum of n Liouville operators as

iL = L1 + L2 + · · · + Ln−1 + Ln (4.90)

then the Suzuki-Trotter identity,[35, 34] used in the definition of an expression for the time propagator
exp[iL(t− t0)] which involves the Liouville operator, given by

e(L1+L2+ ···+Ln)(t−t0) = lim
P→∞

[
eLn/2P · · · eL2/2P eL1/P eL2/2P · · · eLn/2P

]P
(4.91)

can be written by defining a time step τ ≡ ∆t = (t − t0)/P , so that the time t can be discretized and
written as a function of an integer P . In this way, taking t = t0 + P τ leads to the identity

e(L1+L2+ ···+Ln)P τ = lim
τ→0(P→∞)

[
eLnτ/2 · · · eL2τ/2 eL1τ eL2τ/2 · · · eLnτ/2

]P
(4.92)

that can be approximated, for large but finite integers P , as

e(L1+L2+ ···+Ln)P τ ≈
[
eLnτ/2 · · · eL2τ/2 eL1τ eL2τ/2 · · · eLnτ/2

]P
+O(P τ2n−1) (4.93)

Therefore, applying the operators in the parenthesis in (4.93) sequentially on the phase space point at
time t0, for a number of times P equal to the number of steps in a molecular dynamics simulation (which
should be large in order to approximate the condition P → ∞), the phase space coordinates evolve in

45

4.2. Generalized approach for equations of motion integration Chapter 4. Equations of motion

time according to the general equation (4.72), with the previously introduced approximate expression
for the time propagator operator, that is

Γ(t) = Γ(t0 + P τ) ≈
[
eLnτ/2 · · · eL2τ/2 eL1τ eL2τ/2 · · · eLnτ/2

]P
Γ(t0) + O(P τ2n−1) (4.94)

where τ ≡ ∆t is the time step in the generalized time propagator Liouville operator formulation.
At each time step, the action of the time propagator operator in equation (4.93) on the phase space
coordinates of the previous step is evaluated, so that the system can evolve in time, sampling the phase
space according to the ensemble generated by the equations of motion. It is therefore necessary to
known the analytical form of the action of the exponential Liouville operators on a phase space point.
The action of the Liouville operators on phase space points will be computed analytically and discussed
in the following Section 4.2.2.

4.2.2 Action of the Liouville operators

The next step is to evaluate the action of the exponential Liouville operator on the phase space coordi-
nates. The more common forms of Liouville operators are

iL = c
∂

∂x
iL = c x

∂

∂x
(4.95)

where c can be a constant or a function, with the essential property to be independent on x.
It can be demonstrated that the action of the Liouville operators in (4.95) on a generic function f(x) is
given by

exp

(
c
∂

∂x

)
f(x) = f(x+ c) exp

(
c x

∂

∂x

)
f(x) = f(xec) (4.96)

The action of the time propagator generated by the first Liouville operator in (4.95) is first discussed.
Consider the time propagator in the form of an exponential operator exp(c ∂/∂x) acting on an arbitrary
function f(x), where c is independent on x. The action of the time propagator operator can be worked
out by expanding the exponential in a Taylor series as

exp

(
c
∂

∂x

)
f(x) =

∞∑
n=0

1

n!

(
c
∂

∂x

)n
f(x) =

∞∑
n=0

1

n!
cn

∂n

∂xn
f(x) = f(x+ c) (4.97)

The last series in (4.97) is just the Taylor expansion of f(x+c) about c = 0, showing that the exponential
operator gives rise to a pure translation of the coordinate on which it acts. Therefore, the time propagator
generated by the first Liouville operator in (4.95) only translates the phase space coordinate x, as given
in the first relation in (4.96).
Now, the action of the time propagator generated by the second Liouville operator in (4.95) can be
derived using the previous identity (4.96). First of all, let c be a constant and g(y) and f(y) be two
functions of a single variable y. Then,

exp

(
c
∂

∂g

)
f(y) = exp

(
c
∂

∂g

)
f{g−1[g(y)]} = f{g−1[g(y) + c]} (4.98)

Now consider c x ∂/∂x = c ∂/∂(ln(x)), so that the second relation in (4.96) can be easily proven as

exp

(
c x

∂

∂x

)
f(x) = exp

(
c

∂

∂ ln(x)

)
f(x) = exp

(
c

∂

∂ ln(x)

)
f
(
e ln(x)

)
= f

(
e ln(x)+c

)
= f(xec)

(4.99)

Therefore, the Suzuki-Trotter factorization, together with the evaluation of the time propagator operator
action on the phase space coordinates, allow to generate a symplectic time integrator starting from the
Hamiltonian form of the equations of motion. Using the results (4.96), a time reversible and symplectic
integration algorithm can now be derived by acting with an Hermitian operator of the form (4.93) onto
the phase space point at an initial time t0, computing updated positions and momenta at a later time t.

46

Chapter 4. Equations of motion 4.3. Statistical mechanics and equations of motion

4.3 Statistical mechanics and equations of motion

4.3.1 Hamiltonian dynamics

The equations of motion in the phase space are closely related to the statistical mechanics that describes
the ensemble sampled during time evolution in the phase space of the particles which follow those
equations of motion. Using the symplectic notation introduced in Section 4.1.2, the statistical mechanics
implication of the equations of motion can be studied. In the microcanonical ensemble, the partition
function in a three dimensional system is defined as

Z = ζ

∫
dp

∫
dq δ(H(p, q)− E) (4.100)

where the constant factors have been labeled as ζ = 1/[N ! (2πh̄)3N], with h̄ the reduced Planck constant,
and the shortest notation dp = dp1 · · · dpN and dq = dq1 · · · dqN has been adopted for the integrals.
The delta function in (4.100) restricts the integration to the hypersurface in the phase space defined by
H(p, q) = E. The partition function can be rewritten in terms of other phase space coordinates, taking
into account that a volume element in the two coordinate sets needs not be the same. The volume
element associated with Γ is

dΓ = dq1 · · · dqN dp1 · · · dpN (4.101)

and to another set of coordinates Λ is

dΛ = dQ1 · · · dQN dP1 · · · dPN (4.102)

These two volume elements are related via the Jacobian matrix of the transformation matrix

dΓ = |det(J)| dΛ where J =
dΛ

dΓ
(4.103)

This equation shows that, in general, a coordinate transformation will result in the appearance of a
Jacobian in the partition function, so that

Z = ζ

∫
dP

∫
dQ |det(J)| δ(H̃(P ,Q)− E) (4.104)

When computing ensemble averages in coordinate systems other than the original Cartesian one, the
Jacobian of the transformation may be different from one, and this should be taken into account.
For a transformation that is canonical, i.e. obeys the condition (4.24), the absolute value of the Jacobian
is one. To derive this result, the determinant on both sides of the symplectic condition (4.24) is taken,
which leads to

det(J M tJ) = det(M)

det(J) det(M) det(tJ) = det(J) det(tJ) det(M) = det(J) det(J) det(M) = [det(J)]2 det(M) = det(M)

The last identity can be true only if the determinant of the Jacobian matrix respects the condition

det(J) = ±1 (4.105)

which implies that for a canonical transformation the absolute value of the Jacobian associated with this
transformation must be one. An important point is that the natural time evolution in phase space of a
classical system may be considered as a coordinate transformation

Γ(t0)→ Γ(t) (4.106)

One important property of a Hamiltonian system is that the natural time evolution corresponds to
a symplectic coordinate transformation. The transformation from Γ(t0) to Γ(t) can be considered as
a sequence of infinitesimal transformations with time step δt. Suppose to define the evolution of the
coordinates during the time interval δt as transformation of coordinates from Γ to Λ, so that

Λ = Λ(Γ) = Γ(t+ δt) = Γ(t) + Γ̇(t) δt (4.107)

47

4.3. Statistical mechanics and equations of motion Chapter 4. Equations of motion

The Jacobian of this transformation is

J =
dΛ

dΓ
= 1 + δt

∂

∂Γ

(
M

∂H
∂Γ

)
= 1 + δtM

∂2H
∂Γ ∂Γ

(4.108)

where the expression (4.17) has been used to write the equations of motion Γ̇(t) in the second equivalence
of the previous relation and (

∂2H
∂Γ ∂Γ

)
ij

=
∂2H

∂Γi ∂Γj
(4.109)

Taking into account that M is an antisymmetric matrix (so that tM = −M), the transpose of the
Jacobian matrix (4.108) can be written as

tJ = 1− δt ∂2H
∂Γ ∂Γ

M (4.110)

Substitution of this expression for the Jacobian into the symplectic condition (4.24) yields, to first order
in δt,

J M tJ =

(
1 + δtM

∂2H
∂Γ ∂Γ

)
M

(
1− δt ∂2H

∂Γ ∂Γ
M

)

≈M + δtM
∂2H
∂Γ ∂Γ

M−M δt
∂2H
∂Γ ∂Γ

M = M

(4.111)

Hence the symplectic condition holds for the evolution of Γ during an infinitesimal time interval. As the
evolution of Γ during a finite interval can be considered as a sequence of canonical transformations of
infinitesimal steps, the total time evolution also satisfies the symplectic condition.
The Hamiltonian itself can be viewed as the generator of a canonical transformation acting on all points
in phase space. As the Jacobian of a canonical transformation is equal to one, the size of a volume
element in phase space does not change during the natural time evolution of a Hamiltonian system.
Moreover, the density f(p(t), q(t)) around any point in phase space also remains constant during the
time evolution. To see this, consider a volume v in phase space bounded by a surface s. During time
evolution, the surface moves and so do all points inside the surface. However, a point cannot cross the
surface. The reason is simple: if two trajectories in phase space would cross, it would imply that there are
two trajectories that start from the same phase space point. But this is impossible, as it would mean that
a trajectory starting from this point is not uniquely specified by its initial conditions. Hence, the number
of phase space points inside any volume does not change in time. As the volume itself is also constant,
this implies that the phase space density (i.e. the number of points per unit volume) is constant. In
other words: the phase space density of a Hamiltonian system behaves like an incompressible fluid

df

dt
= 0 (4.112)

While the exact solution of Hamilton equations of motion will satisfy the incompressibility condition,
discrete numerical schemes will, in general, violate it. As before, any numerical molecular dynamics
algorithm (as for example the velocity Verlet) can be considered as a transformation from (q(t),p(t))
to (q(t+ ∆t),p(t+ ∆t)). The Jacobian of this transformation can then be computed to check whether
it is equal to one (see Section 5.1.2). For all the good algorithms to solve Newton equations of motion,
the Jacobian of the transformation from (q(t),p(t)) to (q(t + ∆t),p(t + ∆t)) is equal to one (such
algorithms are said to be area preserving). It should be noted that the symplectic condition implies
more than just the area preserving properties. Unfortunately, these other consequences do not have
such a simple intuitive interpretation. When an algorithm is said to be symplectic, it should be more
than area preserving, it should really satisfy the symplectic condition. Fortunately, in many cases the
symplectic nature of an algorithm is easy to demonstrate by making use of the fact that any set of
classical Hamilton equations of motion satisfies the symplectic condition. An algorithm that can be
written as a sequence of exact time evolutions generated by simple Hamiltonians is therefore necessarily
symplectic. An example is the Verlet algorithm. As discussed in Section 5.1.2, this algorithm can be
viewed as a sequence of exact propagation steps using either the kinetic part of the Hamiltonian or the
potential part. Either propagation scheme satisfies the symplectic condition. Hence the Verlet algorithm
as a whole is symplectic.

48

Chapter 4. Equations of motion 4.3. Statistical mechanics and equations of motion

4.3.2 Non Hamiltonian dynamics

The classical Newtonian equations of motion describe the time evolution of a system of N particles in
a volume V , at a total energy E. However, often it is more convenient to keep other thermodynamic
variables constant, as for example the temperature or the pressure. One way to proceed is to impose
the condition of constant temperature or pressure by using an extended Lagrangian, from which the
equations of motion are then derived (see Sections 5.3.4 and 5.4.1). While the mechanical consequences
of extending the Lagrangian are straightforward, the effects on the statistical mechanics of the system
are less obvious. The reason is that, in general, these extended Lagrangians cannot be transformed into
a Hamiltonian form. This implies that a connection to statistical mechanics cannot be performed using
the methods introduced in Section 4.3. In the following, a general approach for analyzing the extended
Lagrangian systems will be presented.

Consider a d dimensional system with N atoms, described by the phase space vector

Γ = (q1, ..., qdN , p1, ..., pdN , ...) ≡ (Γ1, ...,Γn) (4.113)

that defines n coordinates. In Hamiltonian dynamics, the measure dΓ which enters in the definition
of the average is preserved. That is, given a subset of systems with initial conditions in a phase space
volume element dΓ0, the trajectories Γt(t; Γ0) obtained by solving Hamilton equations of motion for
each initial condition Γ0 will describe a volume element dΓt in phase space such that

dΓ0 = dΓt where dΓ0 ≡ dΓ(t0) and dΓt ≡ dΓ(t) (4.114)

This is equivalent to the incompressibility of phase space flow, which is a property satisfied by Hamilto-
nian systems. It is also equivalent to the condition that the Jacobian of the coordinate transformation
specified by Γt(t; Γ0) is unity. The implication of an invariant measure is that the average of an observ-
able can be computed with respect to the phase space variables Γ at any time t. One of the signatures of
non Hamiltonian flow is that it can have a nonzero phase space compressibility, a property that distin-
guishes it from the Hamiltonian case, which is always incompressible. Since Hamiltonian flow preserves
the measure of phase space, it is usually assumed that this space can be treated mathematically as a
Euclidean manifold. In the following, it will be shown that the assumption of a Euclidean phase space
manifold cannot be made for non Hamiltonian systems. Thus, in developing statistical mechanical con-
cepts that refer to the geometry of the underlying space for a non Hamiltonian system, one must treat
the phase space as a general Riemannian manifold. It will, nevertheless, be shown that key concepts
such as invariant measure and continuity, which describe Hamiltonian systems, can be generalized to
the non Hamiltonian case by a proper treatment of the geometry of the phase space and that an invari-
ant measure on the phase space manifold can be derived. Following this, an equation of continuity, a
generalized Liouville equation for the distribution function of an ensemble of systems evolving according
to non Hamiltonian dynamics, will be derived. The resulting equation will be seen to depend explicitly
on the phase space metric and thus can be shown to reduce to the ordinary Liouville equation in the
Hamiltonian limit.
Consider a non Hamiltonian dynamical system

Γ̇α = λα(Γ, t) α = 1, ..., n (4.115)

for the evolution of the n coordinates Γ = Γ1, ...,Γn with initial values Γ1
0, ...,Γ

n
0 . The n coordinates

describe a point of an n dimensional Riemannian manifold with metric G. If the set of all n-tuples
of real numbers is denoted as Rn, then Γ belongs to this set. The solutions Γ1

t , ...,Γ
n
t of equations

(4.115) provide a coordinate transformation on the manifold from the initial coordinates Γ1
0, ...,Γ

n
0 to the

coordinates at time t, given by

Γαt = Γαt (t; Γ1
0, ...,Γ

n
0) α = 1, ..., n (4.116)

The solution leads to a set of n vector functions that depend on time and on the initial phase space
coordinates. Since the generator of the coordinate transformations is the single parameter t, equations
(4.116) describe a one-parameter family of diffeomorphisms. Equation (4.116) can be viewed as a coor-
dinate transformation from the initial coordinates at time t0 to the coordinates at time t. Thus, using

49

4.3. Statistical mechanics and equations of motion Chapter 4. Equations of motion

equations (4.115) and (4.116) it is possible to determine how the initial phase space volume element dΓ0

transforms under equation (4.116). This is determined by the Jacobian of the coordinate transformation
defined by equation (4.116), that is

dΓt = det[J(Γt; Γ0)] dΓ0 ≡ J (Γt; Γ0) dΓ0 (4.117)

where the determinant of the Jacobian can be expressed as, using the well-known relation for the deter-
minant of a matrix,

J (Γt; Γ0) = det

[
∂(Γ1

t , ...,Γ
n
t)

∂(Γ1
0, ...,Γ

n
0)

]
= det(J) = eTr(ln J) with Jαβ =

∂Γαt

∂Γβ0
(4.118)

Knowledge of the Jacobian of this transformation is essential for an understanding of how the measure
on the manifold transforms in time. An equation of motion for J (Γt; Γ0) can be derived by computing
the time derivative of both sides of equation (4.118), which yields

dJ
dt

= J Tr

(
J−1 dJ

dt

)
= J

n∑
α=1

n∑
β=1

J−1
αβ

dJβα
dt

(4.119)

The matrix elements of J−1 and dJ/dt are given by

J−1
αβ =

∂Γα0

∂Γβt
and

dJβα
dt

=
∂Γ̇βt
∂Γα0

(4.120)

Substituting these expressions into (4.119), the equation of motion for the determinant of the Jacobian
reduces to

dJ
dt

= J
n∑

α=1

n∑
β=1

∂Γα0

∂Γβt

∂Γ̇βt
∂Γα0

= J
n∑

α=1

n∑
β=1

n∑
γ=1

∂Γα0

∂Γβt

∂Γ̇βt
∂Γγt

∂Γγt
∂Γα0

= J
n∑
β=1

n∑
γ=1

∂Γγt

∂Γβt

∂Γ̇βt
∂Γγt

= J
n∑
β=1

n∑
γ=1

δβγ
∂Γ̇βt
∂Γγt

= J
n∑

α=1

∂Γ̇αt
∂Γαt

= J
n∑

α=1

∂λαt
∂Γαt

= J κ(Γt, t)

(4.121)

that is
dJ (Γt; Γ0)

dt
= J (Γt; Γ0)κ(Γt, t) (4.122)

where the quantity

κ(Γt, t) ≡
n∑

α=1

∂Γ̇αt
∂Γαt

= ∇Γt · Γ̇t = ∇Γt · λt =
n∑

α=1

∂λαt
∂Γαt

(4.123)

is known as the phase space compressibility of the dynamical system. Since equation (4.116) represents
an identity transformation at t = 0, it is clear that equation (4.122) is subject to the obvious initial
condition J (Γ0; Γ0) = 1. Note that the Jacobian of the inverse transformation

J̄ (Γ0; Γt) = det

[
∂(Γ1

0, ...,Γ
n
0)

∂(Γ1
t , ...,Γ

n
t)

]
(4.124)

satisfies the relation
J J̄ = 1 ∀ t (4.125)

for all time, hence

J̄ (Γ0; Γt)
dJ (Γ0; Γt)

dt
+ J (Γ0; Γt)

dJ̄ (Γ0; Γt)

dt
= 0 (4.126)

J (Γ0; Γt)
dJ̄ (Γ0; Γt)

dt
= −J̄ (Γ0; Γt)

dJ (Γ0; Γt)

dt
= −J̄ (Γ0; Γt)J (Γ0; Γt)κ(Γ0, 0) (4.127)

dJ̄ (Γ0; Γt)

dt
= −J̄ (Γ0; Γt)κ(Γ0, 0) (4.128)

50

Chapter 4. Equations of motion 4.3. Statistical mechanics and equations of motion

where the equation of motion (4.122) has been used. The differential equation (4.128) can be written
equivalently as

dJ̄ (Γt; Γ0)

dt
= −J̄ (Γt; Γ0)κ(Γt, t) (4.129)

Equations (4.122) and (4.129) predict a non unit Jacobian for a compressible system. Therefore, in
general, the dynamics that results from solving non Hamiltonian equations of motion is not area pre-
serving. As explained in Appendix 4.3, solving the equations of motion can be considered as a coordinate
transformation. If the system is Hamiltonian, any volume element in phase space that is thus trans-
formed may change its shape, but not its volume. In this case, the compressibility (4.123) vanishes, so
that J (Γt; Γ0) = 1 for all time, that leads to the familiar conservation of the Euclidean phase space
volume element dΓ, according to equation (4.117), which indicates that phase space is flat. In con-
trast, for a non Hamiltonian system, the Jacobian of the transformation associated with the evolution of
Γ(t0) ≡ Γ0 → Γ(t) ≡ Γt has to be considered, following equation (4.117). The motion in phase space of
a Hamiltonian system can be resembled to that of an incompressible liquid, so that in time the volume
of the liquid does not change. In contrast, a non Hamiltonian system is compressible. This compress-
ibility, expressed as in (4.123), need not vanish and must be taken into account when considering the
generalization of the Liouville theorem to non Hamiltonian systems. As a consequence, the usual phase
space measure dΓ is no longer an invariant measure under the dynamical evolution. However, knowledge
of the compressibility of a system allows an invariant measure for the manifold to be derived. In fact,
the general solution to equation (4.122) is

J (Γt; Γ0) = exp

(∫ t

0
κ(Γs, s) ds

)
(4.130)

Since

κ(Γ, t) =
d ln[J (Γ; Γ0)]

dt
(4.131)

is a total time derivative, a variable w(Γ, t) related to the compressibility by

ẇ(Γ, t) = κ(Γ, t) → w(Γ, t) =

∫
κ(Γ, t) dt (4.132)

can be introduced as the indefinite time integral of the compressibility. Equation (4.130) can then be
written as

J (Γt; Γ0) = exp[w(Γt, t)− w(Γ0, 0)] (4.133)

Substituting equation (4.133) into (4.117) and rearranging leads to

dΓt = exp[w(Γt, t)− w(Γ0, 0)] dΓ0 → exp[−w(Γt, t)] dΓt = exp[−w(Γ0, 0)] dΓ0 (4.134)

The function w(Γ, t) defined in (4.132) can be related to the metric of the manifold as follows. First of
all, the metric G on the manifold has tensor components

g
(0)
αβ = G

(
∂

∂Γα0
,
∂

∂Γβ0

)
and g

(t)
αβ = G

(
∂

∂Γαt
,
∂

∂Γβt

)
(4.135)

respectively in the initial coordinate basis {∂/∂Γα0 , ..., ∂/∂Γn0} and in the corresponding coordinate basis
at time t. These representations of G are, in general, different. The determinants of the metric in these
two representations are related by the Jacobian as (see Ref. [36])√

g(Γ0, 0) =
√
g(Γt, t)J (Γt; Γ0)

√
g(Γt, t) =

√
g(Γ0, 0) J̄ (Γt; Γ0) (4.136)

where J̄ (Γt; Γ0) = J (Γ0; Γt) is the inverse of the Jacobian J (Γt; Γ0).
Since the determinant of the Jacobian and its inverse are not unity, it is clear that the metric determinant,
in general, is also not unity. This means that the phase space must be treated as a general Riemannian
manifold with arbitrary curvature, and the volume n-form, which determines the volume element in an
arbitrary coordinate system, should be expressed as

ω =
√
g dΓ1 ∧ · · · ∧ dΓn (4.137)

51

4.3. Statistical mechanics and equations of motion Chapter 4. Equations of motion

accounting for a nontrivial metric. Moreover, the integral of any function f : Rn → R1 over the space
should be written as ∫

ω f =

∫
dΓ1 ∧ · · · ∧ dΓn

√
g f (4.138)

The expression for the volume n-form
√
g dΓ1 ∧ · · · ∧ dΓn behaves like a tensor under coordinate trans-

formations, for which there is a Jacobian related to the metric by equation (4.136). The wedge product
in the volume n-form transforms according to

dΓ1
t ∧ · · · ∧ dΓnt = J (Γt; Γ0) dΓ1

0 ∧ · · · ∧ dΓn0 = exp[w(Γt, t)− w(Γ0, 0)] dΓ1
0 ∧ · · · ∧ dΓn0 (4.139)

where equation (4.133) has been used. Arranging equation (4.139) so that quantities at time t appear
on the left and quantities at time t = 0 appear on the right leads to

exp[−w(Γt, t)] dΓ1
t ∧ · · · ∧ dΓnt = exp[−w(Γ0, 0)] dΓ1

0 ∧ · · · ∧ dΓn0 (4.140)

which shows that
exp[−w(Γ)] dΓ1 ∧ · · · ∧ dΓn invariant volume (4.141)

is an invariant volume form on the manifold and, by extension,

exp[−w(Γ)] dΓ1 · · · dΓn = exp[−w(Γ)] dΓ invariant measure (4.142)

is an invariant measure. Furthermore, using the first relation in (4.136) between the determinant of the
Jacobian and the metric in the first equivalence of (4.139) leads to

dΓ1
t ∧ · · · ∧ dΓnt = J (Γt; Γ0) dΓ1

0 ∧ · · · ∧ dΓn0 =

√
g(Γ0, 0)√
g(Γt, t)

dΓ1
0 ∧ · · · ∧ dΓn0 (4.143)

√
g(Γt, t) dΓ1

t ∧ · · · ∧ dΓnt =
√
g(Γ0, 0) dΓ1

0 ∧ · · · ∧ dΓn0 (4.144)

and comparing (4.140) with (4.144), the metric determinant can be identified as√
g(Γt, t) = exp[−w(Γt, t)]

√
g(Γ0, 0) = exp[−w(Γ0, 0)] (4.145)

which satisfies the metric transformation rule (4.136).
Note that for Hamiltonian systems, equation (4.144) reduces to the well-known result

Hamiltonian systems : dΓ1
t ∧ · · · ∧ dΓnt = dΓ1

0 ∧ · · · ∧ dΓn0 (4.146)

and the familiar fixed Euclidean geometry of Hamiltonian phase space. The existence of an invariant
measure means that the phase space average of some property, expressed in terms of an integral over
the manifold, can be related to the time average of the same property over a trajectory generated by
the non-Hamiltonian dynamics equations (4.115) under the usual assumption of ergodicity. The above
formalism is also true for the case that the compressibility κ does not contain explicit time dependence.
In some cases, it may be possible to transform to a set of phase space coordinate where

√
g(Γt, t) is unity

or at least a constant. In this case, the phase space can be considered flat. However, transformation to
such a coordinate system may not be simple or may not exist for a given non Hamiltonian system. The
question of whether such transformations generally exist or not, although an interesting one, will not be
addressed in the present work, as the general framework being introduced here is independent of this
question. Indeed, the utility of equation (4.140) is that it permits an analysis of any non Hamiltonian
system to be carried out in an arbitrary set of coordinates. It should be noted that equations (4.140)
and (4.165) (see below) are formulated for a general phase space manifold and are, therefore, valid even
if a transformation to a system where

√
g is unity (or at least constant) does not exist and the phase

space is not flat. Indeed, a constant
√
g is a necessary but not a sufficient condition for a Riemannian

space to be a flat space. The more stringent condition is that the Riemann curvature tensor vanish,
which will hold in any coordinate system. This condition will be met manifestly if, in a given coordinate
system, all of the components Gij of the metric tensor are constant. The complexity of these issues is
avoided, however, by using the formalism in Ref. [37, 38].

52

Chapter 4. Equations of motion 4.3. Statistical mechanics and equations of motion

The existence of an invariant measure also means that there is an underlying fixed manifold with possibly
nontrivial curvature, for which the metric is determined by the compressibility. The exponential factor
can be viewed as a metric determinant factor

√
g(Γt, t), where g(Γt, t) is the determinant of the metric

tensor G(Γt, t) obtained from G(Γ0, 0) via the coordinate transformation Γ0 → Γt. G(Γ0, 0) is the metric
tensor describing the geometry of the space. Thus, at any time t, a nonunit metric determinant implies
the existence of a nonzero dynamical compressibility. Equation (4.136) implies that the metric satisfies
the same differential equation as does J̄ , so that

d
√
g(Γt, t)

dt
= −

√
g(Γt, t) κ(Γt, t) (4.147)

Equation (4.147) can be demonstrated by simply taking the time derivative of the second expression in
equation (4.136), that is

d
√
g(Γt, t)

dt
=

d

dt

[√
g(Γ0, 0) J̄ (Γt; Γ0)

]
=
d
√
g(Γ0, 0)

dt
J̄ (Γt; Γ0) +

√
g(Γ0, 0)

dJ̄ (Γt; Γ0)

dt

(4.129)
=

d
√
g(Γ0, 0)

dt
J̄ (Γt; Γ0)−

√
g(Γ0, 0) J̄ (Γt; Γ0)κ(Γt, t)

(4.136)
=

d
√
g(Γ0, 0)

dt

√
g(Γt, t)√
g(Γ0, 0)

−
√
g(Γ0, 0)

√
g(Γt, t)√
g(Γ0, 0)

κ(Γt, t)

=
√
g(Γt, t)

d(ln
√
g(Γ0, 0))

dt
−
√
g(Γt, t)κ(Γt, t)

(4.145)
= −

√
g(Γt, t)

dw(Γ0, 0)

dt
−
√
g(Γt, t)κ(Γt, t) = −

√
g(Γt, t)κ(Γt, t)

(4.148)

where the last identity holds because w(Γ0, 0) does not depend on time, so that dw(Γ0, 0)/dt = 0.

Consider next an arbitrary ensemble described by a distribution function f : Rn+1 → R1, i.e. f ≡ f(Γ, t)
is a function of the n coordinates and time t. A continuity equation for f can be derived by considering
that the number of ensemble members N(t) in a volume Ω of the space is given by

N(t) =

∫
Ω
ωf (4.149)

The continuity condition is that the rate of change of the number of ensemble members within Ω is
balanced by the flux of members through the surface bounding Ω, which is expressed mathematically as

− d

dt

∫
Ω
ω f =

∫
∂Ω
σ n̂ · λ f =

∫
Ω
Lλ(fω) (4.150)

where σ is the surface n− 1 form, n̂ is the unit normal one-form to the surface, and the surface integral
has been converted to a volume integral via a generalization of the divergence theorem to manifolds with
nontrivial metrics using the Lie derivative Lλ along the vector λ. Thus, equation (4.150) can be written
as ∫

Ω

(
∂

∂t
+ Lλ

)
(fω) = 0 (4.151)

Equation (4.151) must hold independently of the choice of Ω and thus implies the local continuity
condition (

∂

∂t
+ Lλ

)
(fω) = 0 (4.152)

Equation (4.152) represents a continuity equation for f on an arbitrary manifold but makes no reference
to a specific choice of coordinate basis. To project equation (4.152) onto a coordinate basis, the Leibniz
rule can be applied to the action of the Lie derivative on the product, namely,

Lλ(fω) = ωLλ f + f Lλ ω (4.153)

53

4.3. Statistical mechanics and equations of motion Chapter 4. Equations of motion

The action of the Lie derivative on the scalar f and on the volume form ω is well known to be

Lλ f =
n∑

α=1

λα
∂f

∂Γα
(4.154)

Lλ εi1···in =
n∑

α=1

λα
∂
√
g

∂Γα
εi1···in +

n∑
α=1

√
g

(
εα i2···in

∂λα

∂Γi1
+ · · ·+ εi1···in−1α

∂λα

∂Γin

)

=

n∑
α=1

Γ̇α
∂
√
g

∂Γα
εi1···in +

n∑
α=1

√
g
∂λα

∂Γα
εi1···in

(4.155)

where the component representation of the wedge product is given by εi1···in , the Levi-Civita tensor,
and the last line follows from the properties of the εi1···in . These results can be used to derive the new
form of the Liouville theorem for non Hamiltonian systems. Combining the results of equation (4.152)
with equations (4.154) and (4.155) gives the general form for the continuity equation in an arbitrary
coordinate basis as

∂(fω)

∂t
+ ωLλ f + f Lλ ω =

[
∂(f
√
g)

∂t
+
√
g

n∑
α=1

λα
∂f

∂Γα
+ f

n∑
α=1

Γ̇α
∂
√
g

∂Γα
+ f

n∑
α=1

√
g
∂λα

∂Γα

]
εi1···in

=

[
∂(f
√
g)

∂t
+

n∑
α=1

∂(f
√
g λα)

∂Γα

]
dΓ1 ∧ · · · ∧ dΓn = 0

Since the volume n-form is not zero, the term in brackets must, therefore, vanish yielding

∂(f
√
g)

∂t
+

n∑
α=1

∂

∂Γα
(f
√
g λα) =

∂(f
√
g)

∂t
+∇Γ · (f

√
g λ) = 0 (4.156)

∂(f
√
g)

∂t
+∇Γ · (f

√
g Γ̇) = 0 (4.157)

where

∇Γ =

(
∂

∂Γ1
, ...,

∂

∂Γn

)
(4.158)

Equation (4.156) is a general form of the Liouville equation, valid on a manifold with a nontrivial metric
and hence is valid for an ensemble in which the underlying dynamics is compressible. Recall that the
metric satisfies equation (4.147), therefore, explicitly writing the derivatives in (4.157) leads to

√
g
∂f

∂t
+ f

∂
√
g

∂t
+
√
g Γ̇ · ∇Γ f + f Γ̇ · ∇Γ

√
g + f

√
g ∇Γ · Γ̇ = 0 (4.159)

√
g

[
∂f

∂t
+ Γ̇ · ∇Γ f

]
+ f
√
g ∇Γ · Γ̇ + f

[
∂
√
g

∂t
+ Γ̇ · ∇Γ

√
g

]
= 0 (4.160)

√
g

[
∂f

∂t
+ Γ̇ · ∇Γ f

]
+ f
√
g ∇Γ · Γ̇− f

√
g ∇Γ · Γ̇ =

√
g

[
∂f

∂t
+ Γ̇ · ∇Γ f

]
= 0 ∀√g (4.161)

→ ∂f

∂t
+ Γ̇ · ∇Γ f =

df

dt
= 0 (4.162)

so that the conservation condition for the distribution function is recovered. Finally, combining this
result with equation (4.140) leads to the general statement of Liouville theorem for a non Hamiltonian
system,

f(Γt, t) exp[−w(Γt, t)] dΓ1
t ∧ · · · ∧ dΓnt = f(Γ0, 0) exp[−w(Γ0, 0)] dΓ1

0 ∧ · · · ∧ dΓn0 (4.163)

54

Chapter 4. Equations of motion 4.3. Statistical mechanics and equations of motion

where the conventional volume element has been used. Note that for Hamiltonian dynamics, the com-
pressibility vanishes and

√
g = 1. In this case, equation (4.157) reduces to the usual Liouville equation,

namely,

Hamiltonian systems :
∂f

∂t
+

∂

∂Γ
· (f Γ̇) ≡ ∂f

∂t
+∇Γ · (f Γ̇) = 0 (4.164)

non Hamiltonian systems :
∂(f
√
g)

∂t
+

∂

∂Γ
· (f√g Γ̇) ≡

∂(f
√
g)

∂t
+∇Γ · (f

√
g Γ̇) = 0 (4.165)

where equation (4.165) is a covariant generalization of the standard Liouville equation (4.164). Remember
that the covariant form (4.165) was derived from the balance between the rate of decrease of the number
of ensemble members in the phase space volume and the flux of members through the boundary surface
taking into account the geometry of the space (number conservation). It is, therefore, valid for equilibrium
as well as nonequilibrium ensembles generated by Hamiltonian or non-Hamiltonian systems.
Clearly, equation (4.165) reduces to equation (4.164) for Hamiltonian systems where

√
g(Γt, t) = 1 and

∇Γ · Γ̇ = 0. As alluded to above, if a transformation to a frame where ∇Ξ · Ξ̇ = 0 exists with Ξk =
Ξk(Γ1, ...,Γn) then equation (4.165) reduces to (4.164) as can be verified by applying the transformation
directly. Thus, equation (4.165) is valid when the phase space is not flat and remains valid in the limit
in which it is flat. The important point here is that the phase space distribution f(Γt, t) of interest,
which gives the probability density in phase space, should be kept separate from the phase space metric√
g(Γt, t), which ensures that the volume of phase space of a non Hamiltonian system is invariant under

time evolution. Indeed, it has to be underlined that equation (4.157) is different from the equation which
has previously been assumed to be the generalized form of the Liouville equation,

∂f

∂t
+∇Γ · (f Γ̇) = 0 (4.166)

Equation (4.157) can be put in this form by defining a new function f̃ = f
√
g. Such an identification is

not general, however. The consequences of this identification are explored in the following discussion.
The generalized Liouville equation and the invariant measure will be used to derive an important property
satisfied by the Gibbs entropy of a system. Consider, first, a Hamiltonian system for which the Gibbs
entropy S(t) is given by

S(t) = −kb
∫
dΓ1 · · · dΓn f ln(f) (4.167)

where kb is the Boltzmann constant. Although the standard integral notation has been employed for
simplicity, the connection between the volume element and the contraction of the volume form in equation
(4.138) (with

√
g = 1) must be kept in mind. By taking the time derivative of both sides of equation

(4.167), using the Hamiltonian form of Liouville equation, and performing a few integrations by parts,
it can be shown that

dS(t)

dt
= −kb

d

dt

∫
dΓ1 · · · dΓn f ln(f) (4.168)

Thus, for a Hamiltonian system, the Gibbs entropy, which is a fine-grained quantity, is constant in time.
The generalization of the Gibbs entropy for a non Hamiltonian system can be shown to satisfy the same
property, when the proper invariant measure is used. Recognizing that the phase space volume element
now contains a metric determinant factor, the entropy can be expressed as

S(t) = −kb
∫
dΓ1 · · · dΓn

√
g f ln(f) (4.169)

where the metric determinant is assumed to contain no explicit time dependence. Again, the standard
integral notation is connected to equation (4.138) through a contraction of the volume n-form, but with√
g correctly determined by the compressibility. Computing the time derivative of both sides gives

dS(t)

dt
= −kb

∫
dΓ1 · · · dΓn

√
g [1 + ln(f)]

∂f

∂t
= −kb

∫
dΓ1 · · · dΓn [1 + ln(f)]

∂(f
√
g)

∂t

= kb

∫
dΓ1 · · · dΓn [1 + ln(f)] ∇Γ · (f

√
g Γ̇)

(4.170)

55

4.3. Statistical mechanics and equations of motion Chapter 4. Equations of motion

In general, the ensemble average of any property A(Γ, t) is determined from the invariant measure and
the ensemble distribution function f(Γ, t), so that

〈A(t)〉 =
1

Z(t)

∫
dΓ
√
g(Γ, t)A(Γ, t) f(Γ, t) (4.171)

where the normalization function Z is the so-called partition function, defined as

Z(t) =

∫
dΓ
√
g(Γ, t) f(Γ, t) (4.172)

Consider the case where the λα in equation (4.115) do not contain explicit time dependence and there
are no external fields present. If, in addition, ∂

√
g/∂t = 0, then an equilibrium ensemble, for which

∂f/∂t = 0 can be associated with equations (4.115). From equation (4.171), it can be seen that these
conditions are compatible with the stationarity of the ensemble average 〈A〉.
Moreover, as a consequence of the coordinate transformation (4.117), and thank to the relation (4.133),
it is always possible to define an infinitesimal weighted phase space volume dvΓ for each point in the
phase space, that will retain its extension during the dynamic, that is

dvΓ ≡ exp[−w(Γ(t), t)] dΓ(t) = exp[−w(Γ(t0), t0)] dΓ(t0) (4.173)

Equation (4.173) shows that dvΓ is an invariant measure on the phase space, that can be associated
to an invariant volume form. A phase space distribution function, f(Γ(t), t), can then be defined so
that f(Γ(t), t) dvΓ is the fraction of the total number of ensemble members contained in the phase space
volume dvΓ at time t. Its associated partition function

Z(t) =

∫
dvΓ f(Γ(t), t) (4.174)

as a proper normalization factor, represents the total number of accessible microstates in the phase
space. In the absence of constraints, Z(t) coincides with the total number of points in a given phase
space at a certain instant of time t. As previously mentioned, the continuity condition states that the
rate of change of the number of ensemble members within a volume in the phase space is balanced by the
flux of members through the surface bounding that volume. Starting from this definition, as previously
demonstrated, the use of a generalization of the divergence theorem to manifolds with nontrivial metrics
by means of the Lie derivative and the projection of the resultant equation onto a coordinate basis, leads
to the formulation of a generalized Liouville equation (4.157), valid on a manifold with a nontrivial metric
(and hence valid for an ensemble in which the underlying dynamics has a non-unit compressibility).[37]
Furthermore, as demonstrated in (9.98)-(9.104), substituting the time evolution equation of the square
root of the metric determinant into the general form of the Liouville equation, leads to the conservation
condition

df(Γ(t), t)

dt
= 0 (4.175)

which affirms that, in a ensemble with a distribution in statistical equilibrium, the probability function
f(Γ(t), t) is conserved along the trajectory, so that the following equivalences hold true

f(Γ(t), t) ≡ f(Γ(t0), t0) ≡ f(Γ) (4.176)

This means that for a general metric space, the fraction of members of the ensemble in the initial weighted
volume element exp[−w(Γ(t0), t0)] dΓ(t0) is equal to the fraction of members in any volume element

f(Γ(t0), t0) exp[−w(Γ(t0), t0)] dΓ(t0) = f(Γ) exp[−w(Γ)] dΓ = f(Γ)
√
g(Γ) dΓ (4.177)

It follows that the value of a macroscopic observable A, connected to a microscopic phase space function
of the system coordinates A(Γ, t), can be calculated by performing an average over the phase space at
any point in time, that is

〈A〉 =

∫
dΓ f(Γ)A(Γ)

√
g(Γ) (4.178)

56

Chapter 4. Equations of motion 4.3. Statistical mechanics and equations of motion

This means that a system of an ensemble characterized by a statistical equilibrium distribution is in
thermodynamic equilibrium with respect to the set of variables A(Γ, t).

The corresponding partition function, that depends on the macroscopic observable used to define the
ensemble, becomes also an equilibrium property, defined by

Z ≡ Z(t) =

∫
dΓ f(Γ)

√
g(Γ) (4.179)

where √
g(Γ) = exp[−w(Γ)]

(4.132)
= exp

[
−
∫
κ(Γ) dt

]
with κ(Γ)

(4.123)
= ∇Γ · Γ̇ (4.180)

Finally, in the ergodic hypothesis, i.e. when a system during its evolution is able to visit all the allowed
configurations, the ensemble average of an observable can be replaced by time averages over the trajectory
according to

〈A〉 = lim
τ→∞

1

τ

∫
A(Γ(t)) dt (4.181)

Next, suppose that the set of dynamical equations possesses a set of nc associated conservation laws or
conserved quantities, labeled as

Λk(Γ) = Ck for k = 1, ..., nc (4.182)

which satisfy the condition
dΛk
dt

= 0 k = 1, ..., nc (4.183)

Thus, a trajectory generated by equation (4.115) will not sample the entire phase space, but a subspace
determined by the intersection of the hypersurfaces {Λk(Γ) = Ck} where Ck is a set of constants. There-
fore, the microcanonical distribution function generated by the dynamical system can be constructed
from a product of delta functions expressing the conservation laws,

f(Γ) =

nc∏
k=1

δ(Λk(Γ)− Ck) (4.184)

with the associated partition function

Z =

∫
dΓ
√
g(Γ)

nc∏
k=1

δ(Λk(Γ)− Ck) (4.185)

It is possible to show, by substitution, that equation (4.184) satisfies the generalized Liouville equation
(4.165). In fact, equation (4.184) constitutes the complete solution for such a microcanonical ensemble,
since all configurations that satisfy the conservation laws have equal probability of being visited by
a trajectory. It is important to note that a distribution constructed from a product of δ functions
corresponding to an arbitrary subset of the conservation laws, that is

fred(Γ) =

n′c∏
k=1

δ(Λk(Γ)− Ck) (4.186)

where n′c ≤ nc, also satisfies the generalized Liouville equation (4.165). If n′c < nc this solution will
not properly describe the phase space distribution of a system with nc conservation laws. Therefore,
satisfying equation (4.165) is a necessary but not sufficient condition to guarantee that a particular phase
space distribution function is generated by a given dynamical system. This illustrates the limitations
of relying solely on the Liouville equation to determine the distribution function. Indeed, the true
distribution must be consistent with all the conservation laws present.

57

4.3. Statistical mechanics and equations of motion Chapter 4. Equations of motion

4.3.2.1 The generalized phase space analysis

Given the above discussion, it is now possible to introduce a general procedure for constructing the
partition function corresponding to the equilibrium ensemble generated by a non Hamiltonian dynamical
system satisfying the above conditions. This procedure can be schematized in the following steps.

1. Determine all the conservation laws satisfied by the equations of motion.
The distribution function f(Γ) will then be given by equation (4.184).

2. Using the conservation laws and the equations of motion, identify and eliminate linearly dependent
variables/solutions. That is, if Γ2(t) = cΓ1(t), where c is a constant, then Γ2(t) must be removed
from the formal analysis of the dynamical system. Note, however, that such dependencies form a
set of conservation laws and can also be eliminated in steps 4 and 5 below if they are not eliminated
in this step. Driven or trivial or uncoupled variables must also be eliminated in the formal analysis.
That is, if Γ̇α = λα(Γα) and Γ̇β = λβ(Γα,Γβ) with Γα of primary importance, and there only exists
conservation laws of the form Λk(Γ

α) = 0 and Λm(Γβ) = 0, then Γβ must be eliminated, as the
phase space distribution of Γα is, in no way, affected by Γβ. This step will identify variables of
lesser physical importance, e.g., center of mass motion, in complex systems. Idealized systems,
such as separable systems, need to be treated as special cases.

3. Calculate the phase space compressibility, ∇Ξ · Ξ̇ of the remaining dynamical system Ξ̇ = λ̃(Ξ)
(having eliminated trivial variables and linear dependent solutions as described in step 2). Using
the compressibility, determine the phase space metric

√
g(Ξ) and generate the invariant volume

element
√
g(Ξ) dΞ.

4. The microcanonical partition function for the non Hamiltonian system can now be constructed
using the formula

Z(C1, ..., Cn) = ζ

∫
dΞ
√
g(Ξ) f(Ξ) = ζ

∫
dΞ
√
g(Ξ)

nc∏
k=1

δ(Λk(Ξ)− Ck) (4.187)

Note that the partition function is invariant under coordinate transformations Ξ0 → Ξt and can
therefore be computed in terms of the coordinates at any time t.

5. If equation (4.115) corresponds to a system with an extended phase space, then the partition
function (4.187) must be integrated over the extended phase space variables in order to determine
the distribution function sampled by the physical variables.

The theoretical results of steps 1 to 5 should always be tested numerically on a set of model problems.
Step 5 assumes ergodicity on the Ξ phase space subject to the conservation laws, and steps 1 to 4 are
merely a necessary but not sufficient condition to ensure ergodicity. In particular, steps 1 to 4 do not
address more complex issues of ergodicity such as arise when there are large potential energy barriers.
However, steps 1 to 4 are sufficient for the problems studied here. It is also important to note that
only an exceedingly small number of systems can be shown formally to be ergodic and it is unlikely
that ergodicity can be shown analytically for the complex set of systems of interest in condensed matter
physics.

4.3.2.2 Other forms of the generalized Liouville equation

Of primary importance is the generalized Liouville equation (4.165). Although a rigorous derivation of
this equation was presented in Section 4.3.2, the line of reasoning that leads to this formulation is as
follows.

(i) Equation (4.140) implies that there is a measure conservation law that, most generally, involves
a nontrivial metric. This suggests that phase space should be carefully treated using the general
rules of the geometry of manifolds.

(ii) Based on considerations at item (i), the Liouville equation was rederived using the mathematical
techniques of differential geometry.

58

Chapter 4. Equations of motion 4.3. Statistical mechanics and equations of motion

(iii) The rules of differential geometry require that the phase space distribution function f(Γ, t) be kept
separate from the phase space metric

√
g(Γ, t) and, therefore, leads naturally to equation (4.165)

which contains both a metric and a distribution function.

Formalisms existing before the work of M. E. Tuckerman et al.[38] for non Hamiltonian systems are
based on a generalized Liouville equation of the form

∂f̃

∂t
+ Γ̇ · ∇Γf̃ = −f̃ ∇Γ · Γ̇ (4.188)

which is derived assuming a flat phase space. In equation (4.188), the notation f̃ is used to distinguish
it from f in equation (4.165). Clearly, the expression (4.188) is related to the generalized form (4.165)
through the identification f̃ =

√
g f . Therefore, equation (4.188) is not incorrect, but is incomplete. The

more mathematically precise and fundamental form (4.165) has a powerful advantage. It allows one to
directly construct the microcanonical partition function in a manner analogous to the Hamiltonian case.
Because equation (4.188) is incomplete, its use to extract the partition function is awkward and is not
rigorous. What is generally done is to postulate a form for f̃ and show that this form satisfies equation
(4.188). Such an ad hoc procedure usually misses important information and often leads to incomplete
solutions. Specific failures of this simplistic approach are discussed in detail in Ref [38]. In order to
demonstrate this more generally, note that equation (4.188) admits any general solution of the form

f̃(Γ, t) = f0(Γ, t) f1(Γ, t) where f0(Γ, t) is any function satisfying
df0

dt
= 0 (4.189)

Once this fact is recognized, then it is clear that equation (4.188) reverts to the form (4.165) since,
in (4.165), the distribution function f(Γ, t) satisfies df/dt = 0. In other words, equation (4.188) alone
cannot determine the function f0(Γ, t) since it simply cancels out. By contrast, the formalism presented
in the work of M. E. Tuckerman et al.[38] shows how to determine the phase space metric and how to
construct the phase space distribution so that a full and general solution to equation (4.165) is obtained.
Other authors have suggested working only in coordinate systems in which

√
g is constant, in which case,

the deficiencies of equation (4.188) are bypassed. However, this transformation may not exist or may
simply be nontrivial to employ. The covariant formulation presented in Ref. [38] and described above
also permits the use of such coordinate systems, but does not require them.
The remainder of this section will be devoted to applying the above procedure to several commonly used
non Hamiltonian dynamical systems and demonstrating the failures of older analyses. In particular,
canonical (NVT) and isothermal-isobaric (NPT) extended system methods, and the isokinetic method
will be considered. The canonical and isothermal-isobaric ensembles are very useful. Therefore, various
extended system molecular dynamics methods have been designed to treat them. However, in formulating
these methods, the use of the standard Liouville equation (4.188) has led to incorrect definitions of the
ensemble produced by the dynamics. That is, rather than using a generalized microcanonical partition
function (see equation (4.187)), a distribution function f̃(Γ, t) is postulated, shown to satisfy equation
(4.188), and the equations of motion pronounced correct. Often, the postulated form is incomplete in the
sense of equation (4.186) and does not properly describe the distribution generated by the dynamics, i.e.,
the equations of motion may generate a distribution that is not of the predicted form. As demonstrated
in Section 5.3.4.4, the new phase space picture succeeds in predicting complex distribution functions
where these older methods fail. Furthermore, it will be shown during the derivations that the extended
system equations of motion for the canonical and isothermal-isobaric ensemble possess relatively simple
metrics. It is, therefore, possible to define a simple transformation to a coordinate system where

√
g(Γ, t)

is constant. For this reason, in Section 5.3.1 the isokinetic equations of motion, derived from Gauss
principle of least constraint, will be examined. Indeed, they have a nontrivial metric and can be used to
analyze one case for which the new non Hamiltonian phase space formalism leads to the correct isokinetic
partition function.
In many applications, the correct partition function for a given ensemble (NVT or NPT) can be obtained
from the generalized microcanonical partition function (4.187), by carrying out the integration over the
unphysical variables that have been introduced to represent the effect of a thermostat or barostat. In
order to do this properly, it is essential to identify all the conservation laws. Moreover, it is useful
to eliminate from the analysis all those coordinates that are linearly dependent on other variables and

59

4.3. Statistical mechanics and equations of motion Chapter 4. Equations of motion

variables that are driven (variables are called driven when they are not coupled through a conservation
law and they do not influence the time evolution of the physical variables of interest in the system, even
though their own time evolution may depend on these last variables).

60

Chapter 5

Generation of statistical ensembles

5.1 The microcanonical ensemble

5.1.1 Equations of motion

The equations of motion analyzed here are given by the simple Newton time evolution equations (4.11)
for a system in d dimensions, that can be rewritten as

q̇i =
dqi
dt

=
∂H
∂pi

ṗi =
dpi
dt

= −∂H
∂qi

i = 1, ..., N

(5.1)

(5.2)

where qi and qi are d dimensional vectors. The Hamiltonian is given by the sum of nuclear kinetic and
potential energies, that is

H(p, q) =
N∑
i=1

p2
i

2mi
+ φ(q) (5.3)

where pi = mivi is the generalized momentum of the i-th nucleus and φ(q) is the potential generated
by the field effect of the ground state electronic and nuclear degrees of freedom computed at the HF or
DFT level, at a fixed nuclear configuration q ≡ {qi}. Substituting the form of the Hamiltonian (5.3) in
the Hamiltonian equations of motion (5.1) - (5.2), they become

dqi
dt

=
pi
mi

dpi
dt

= −∂φ(q)

∂qi
= Fi

i = 1, ..., N

(5.4)

(5.5)

The Hamilton equations of motion (5.1)-(5.2) induce some conserved quantities, if particular conditions
are satisfied. The study of the constants of motion is essential to correctly describe the ensemble sampled
in the phase space by the Hamilton equations of motion, though the definition of the distribution and
the partition functions generated by the Hamiltonian flow.

5.1.2 Integration of the equations of motion

The time evolution of the phase space point x(t) is formally given by equation (4.61), or by its gen-
eralization (4.65), and it can be written in a compact form thanks to the definition of the Liouville
operator iL, given by equation (4.43). Using the general vector notation Γ, which is defined in this case
by Γ(t) = (p(t), q(t)), the time evolution in phase space (4.65) from an initial time t0 to a generic time
t is written as

Γ(t) = eiL(t−t0) Γ(t0) (5.6)

where the Liouville operator is given by equation (4.62) reported here below

iL = Γ̇ · ∂
∂Γ

with Γ(t) = (p(t), q(t)) (5.7)

61

5.1. The microcanonical ensemble Chapter 5. Generation of statistical ensembles

where the dot over the phase space vector variable stands for the time derivative. The Newton equations
of motion (4.11) can be rewritten in a more familiar way as

q̇i =
dqi
dt

=
∂H
∂pi

ṗi =
dpi
dt

= −∂H
∂qi

i = 1, ..., N (5.8)

Applying equation (5.7), the Liouville operator for the time evolution of the phase space point that
follows Newton equations of motion in the Hamilton form (5.8) can be written as

iL =
N∑
i=1

dqi
dt
· ∂
∂qi

+
N∑
i=1

dpi
dt
· ∂

∂pi
=

N∑
i=1

q̇i ·
∂

∂qi
+

N∑
i=1

ṗi ·
∂

∂pi

=

N∑
i=1

∂H
∂pi
· ∂
∂qi
−

N∑
i=1

∂H
∂qi
· ∂

∂pi
=

N∑
i=1

pi
mi
· ∂
∂qi
−

N∑
i=1

∂φ

∂qi
· ∂

∂pi

(5.9)

where the partial derivative of the Hamiltonian has been computed using the Hamiltonian form (5.3). For
a system of N point particles in three dimensions (d = 3N) the Liouville equation can be reformulated
as follows

iL =
3N∑
α=1

[
q̇α

∂

∂qα
+ v̇α

∂

∂vα

]
=

N∑
i=1

[
vi ·

∂

∂qi
+ ai ·

∂

∂vi

]
(5.10)

so that the Liouville operator form defined in equation (4.43) is recovered. The explicit summation in
the first expression in (5.10) is partially substituted and simplified with a vector notation which groups
together three elements qα or vα and it allows to quickly identify the components of a given atom, that
is to say, vi = (vxi, vyi, vzi), qi = (qxi, qyi, qzi) and ai = (axi, ayi, azi), with i = 1, ..., N , are respectively
the nuclear velocity, position and acceleration vectors of the i-th atom. For further details about the
difference in notation between (4.43) and the last espression in (5.10), see Appendix A, Section A.3. The
operator (5.10) can be divided into two parts

iL = iLq + iLv (5.11)

where

iLq =
N∑
i=1

vi ·
∂

∂qi
iLv =

N∑
i=1

ai ·
∂

∂vi
(5.12)

Using this Liouville operator, the equation (4.61) can then be formulated as

x(t) = ei(Lq+Lv)(t−t0) x(t0) (5.13)

or, generalizing the vector in phase space (but in the present case the following equation is perfectly
equivalent to the previous one), it can be formulated as

Γ(t) = ei(Lq+Lv)(t−t0) Γ(t0) (5.14)

However, the two operators iLq and iLv do not commute

iLq iLv 6= iLv iLq (5.15)

and hence
ei(Lq+Lv)(t−t0) 6= eiLq(t−t0)eiLv(t−t0) (5.16)

so that equation (5.13) (or (5.14)) is not easily solved. For non-commuting operators, the Suzuki-Trotter
decomposition can be used (see Section 4.2.1), which is very helpful to simplify and solve equation (5.13)
(or (5.14)). By defining a time step ∆t = (t− t0)/P so that the time t can be discretized and written as
a function of an integer P , equation (5.14) can be written as

Γ(t0 + P ∆t) = eiLP∆t Γ(t0) (5.17)

62

Chapter 5. Generation of statistical ensembles 5.1. The microcanonical ensemble

The application of the identity (4.85) to the present case leads to the following expression for the time
propagator

eiLP∆t = ei(Lq+Lv)P∆t = lim
∆t→0(P→∞)

[
eiLv∆t/2 eiLq∆t eiLv∆t/2

]P
(5.18)

For large but finite integers P , the expression for the propagator exp[iL(t − t0)] = exp[iLP∆t] can be
approximated applying equation (4.86), that is

eiLP∆t ≈
[
eiLv∆t/2 eiLq∆t eiLv∆t/2

]P
+O(P∆t3) (5.19)

thus obtaining a time propagator operator that is clearly unitary, therefore time reversible, and is also
correct up to the second order.

Note: A formally identical expression for the time propagator can be obtained by exchanging the order
of the Liouville operator in the exponent formulation in (5.18), so that for large but finite integers P ,
the expression for the propagator can be approximated as

eiLP∆t = ei(Lv+Lq)P∆t ≈
[
eiLq∆t/2 eiLv∆t eiLq∆t/2

]P
+O(P∆t3) (5.20)

The two different form of the time integrators (5.19) and (5.20) lead to two different algorithms for phase
space evolution of the simple Newton equations of motion for the nuclei, namely, the velocity Verlet and
the position Verlet algorithms, respectively. The first one is the most stable and useful algorithm in
molecular dynamics simulations, so that it is discussed and derived in more details in the following. The
position Verlet is essentially identical to the velocity Verlet. A shift of a time origin by ∆t/2 of either
the position or the velocity Verlet equations would actually make both integrator perfectly equivalent.
However, as pointed out in Ref. [37], half time steps are not formally defined, being the right hand side
of equations (5.19) and (5.20) an approximation of the discrete time propagator for the full step ∆t.
Velocity Verlet and position Verlet, therefore, do not generate numerically identical trajectories, although
of course they are formally equivalent and the trajectories produced by both of them are similar. It is
indeed noticeable that using the same Liouville formalism different long-time integrator schemes can be
derived. This is a first hint of the power of the Liouville approach, that represents a unifying treatment
for understanding the properties and relationships between stepwise time integrators.

Inserting the approximate expression (5.19) for the time propagator in equation (5.17), the time evolution
of the phase space vector for P dynamical steps and with a time step equal to ∆t can be written in an
approximate way as

Γ(t0 + P ∆t) ≈
[
eiLv∆t/2 eiLq∆t eiLv∆t/2

]P
Γ(t0) +O(P∆t3) (5.21)

and considering the time evolution starting from a generic time t (up to a value of time equal to t+P∆t),
the previous equation can be written as

Γ(t+ P ∆t) ≈
[
eiLv∆t/2 eiLq∆t eiLv∆t/2

]P
Γ(t) +O(P∆t3) (5.22)

The action of the two propagators (5.12) in (5.22) can be evaluated analytically using the derivation
given in Section 4.2.1. As previously demonstrated, the action of the propagator with form exp(iLqt)
only translates all position coordinates

qi ← qi + vit i = 1, ..., N (5.23)

and the propagator exp(iLvt) only translates all velocity coordinates

vi ← vi + ait i = 1, ..., N (5.24)

Once the action of the time propagator operators are known, the equation (5.22) can be used in a
numerical propagation scheme. To see how this works in practice, consider the i-th particle moving in a

63

5.1. The microcanonical ensemble Chapter 5. Generation of statistical ensembles

three-dimensional space without constraint, and apply the equation (5.22) for only one dynamical time
step, i.e. taking P = 1,

Γ(t+ ∆t) ≈
[
eiLv∆t/2 eiLq∆t eiLv∆t/2

]
Γ(t) +O(∆t3) (5.25)

The action of the time propagator in equation (5.22) for one dynamical step (P = 1) on the phase space
coordinates (qi,vi) from a generic time t to a value of time equal to t+ ∆t can be computed as 1

(
qi(t+ ∆t)
vi(t+ ∆t)

)
= eiLv∆t/2 eiLq∆t eiLv∆t/2

(
qi(t)
vi(t)

)
= eiLv∆t/2 eiLq∆t

(
qi(t)

vi(t) + ∆t
2 ai[qi(t)]

)
= eiLv∆t/2

(
qi(t) + ∆tvi(t)

vi(t) + ∆t
2 ai[qi(t) + ∆tvi(t)]

)
=

(
qi(t) + ∆t {vi(t) + ∆t

2 ai[qi(t)]}
vi(t) + ∆t

2 ai[qi(t)] + ∆t
2 ai[qi(t) + ∆t {vi(t) + ∆t

2 ai[qi(t)]}]

)
=

(
qi(t) + ∆tvi(t) + ∆t2

2 ai[qi(t)]

vi(t) + ∆t
2 ai[qi(t)] + ∆t

2 ai[qi(t) + ∆tvi(t) + ∆t2

2 ai[qi(t)]]

)

=

(
qi(t) + ∆tvi(t) + ∆t2

2 ai[qi(t)]

vi(t) + ∆t
2 {ai[qi(t)] + ai[qi(t+ ∆t)]}

)
(5.26)

The resultant expression for one dynamical time step (P = 1) is(
qi(t+ ∆t)
vi(t+ ∆t)

)
=

(
qi(t) + ∆tvi(t) + ∆t2

2 ai[qi(t)]

vi(t) + ∆t
2 {ai[qi(t)] + ai[qi(t+ ∆t)]}

)
i = 1, ..., N (5.27)

which defines the so-called velocity Verlet algorithm, resumed more simply in Table 5.1.

Starting point (initial conditions) : qi(t), vi(t), Fi[{qi(t)}]

Step 1. Propagator eiLv∆t/2 : vi(t+ ∆t/2)← vi(t) +
∆t

2mi
Fi[{qi(t)}]

Step 2. Propagator eiLq∆t : qi(t+ ∆t)← qi(t) + ∆tvi(t+ ∆t/2)

Step 3. Updating forces : compute Fi[{qi(t+ ∆t)}]

Step 4. Propagator eiLv∆t/2 : vi(t+ ∆t)← vi(t+ ∆t/2) +
∆t

2mi
Fi[{qi(t+ ∆t)}]

Table 5.1: Velocity Verlet integrator algorithm, applied for each nuclear phase space coordinate (i = 1, ..., N).

First notice that each of the three transformations defining the velocity Verlet algorithm obeys the
symplectic condition (4.24) and has a Jacobian determinant equal to one. The product of the three
transformation is also symplectic and, thus, phase volume preserving. Finally, since the discrete time
propagator (5.19) is unitary, the algorithm is time reversible.
The above analysis demonstrates how the velocity Verlet algorithm can be obtained via the powerful
Suzuki-Trotter factorization scheme. The first step is a velocity translation by a half time step ∆t/2,

1In the following, in the numerical propagation schemes the approximate symbol in (5.25) will be substituted with an
equal sign. Indeed, the treatment is associated to a numerical propagation scheme, which is intrinsically approximated.
For this reason, it has to be keep in mind the fact that the equal signs in the numerical propagation schemes are used and
referred to a practical implementation, though be approximate models from a theoretical point of view.

64

Chapter 5. Generation of statistical ensembles 5.1. The microcanonical ensemble

and it is sometimes called a kick, since it impulsively changes the velocity of each atomic nucleus without
altering its positions. The second step is a position translation by a full time step ∆t, and it is often called
a drift step, because it advances the nuclear positions without changing the velocities. The accelerations
are then updated, since they depend on the positions modified in the second step. The last step is another
translation of the nuclear velocities by a half time step ∆t/2, with the new accelerations computed in
the third step. These are just the steps required by the above operator factorization scheme. The power
of this method is due to the fact that the instructions in the computer code can be written directly from
the factorization scheme, following the order of the propagator with the appropriate time step, bypassing
all the lengthy algebra needed to derive an explicit expression for the finite difference equations.

Figure 5.1: Illustration of the phase portrait for the harmonic oscillator. The red line represents the Liouville
operator splitting acting between successive red points. In the context of the velocity Verlet algorithm, this implies
solving equations in Table 5.1, for a time (t+ ∆t), by the action of (i) a half kick (half integration of the p term
at fixed q position), (ii) a drift (integration of the q term at fixed p momentum) and finally (iii) a half kick.
Formally, the algorithm presents a long-term conservation of the quantity associated to the pseudo Hamiltonian
Hp (indicated in the figure as H†). The blue line illustrates the analytical solution which strictly conserves the
real Hamiltonian H of the system. This means that, in the phase portrait, the simulated system remains on an
ellipse H† ≡ Hp = constant, which differs from the ellipse H = constant of the exact solution, with a difference
that decreases as the time step ∆t used to integrate the equation of motions trough the procedure in Table 5.1
decreases.

The velocity Verlet algorithm has been introduced by W. Swope et al.[39] in 1982, as a modification of
the so-called position Verlet algorithm[40] (see Appendix A.2). The previously demonstrated procedure
of integration in Table 5.1 defining the velocity Verlet algorithm has three main important properties.
In particular, the velocity Verlet algorithm is

1. exactly time reversible (symmetric splitting gives exact time reversibility)

2. symplectic (it conserves phase space volume)

3. exactly conserves the pseudo Hamiltonian Hp = H+O(∆t2)

All these features lead to a good stability of the integration algorithm, so that the energy related to the
pseudo Hamiltonian remains nearly-conserved over a long time.

In order to prove the reversible and symplectic nature of velocity Verlet algorithm, some definitions and
notation have to be introduced.
First of all, the discretized equations of motion considered here are the two derived in (5.26) and (5.27),
which are here rewritten as

qi(t+ ∆t) = qi(t) + ∆tvi(t) +
∆t2

2
ai[q(t)]

vi(t+ ∆t) = vi(t) +
∆t

2
{ai[q(t)] + ai[q(t+ ∆t)]}

i = 1, ..., N
(5.28)

(5.29)

65

5.1. The microcanonical ensemble Chapter 5. Generation of statistical ensembles

The relation between the acceleration of the nuclei ai and the forces Fi (i = 1, ..., N) acting on them
permits to write the previous equations (5.28) and (5.29) in the following way:

qi(t+ ∆t) = qi(t) + ∆tvi(t) +
∆t2

2

Fi[q(t)]

mi

vi(t+ ∆t) = vi(t) +
∆t

2

{
Fi[q(t)]

mi
+

Fi[q(t+ ∆t)]

mi

} i = 1, ..., N

(5.30)

(5.31)

In order to simplify the notation further, the dependence on the time step will be substituted with a
dependence on an index, so that the time t will be identified with index n and the time (t + ∆t) with
index (n+ 1). The time step in the remaining formula will be replaced by h ≡ ∆t, and the dependence
on the mass mi will be included in the forces defined as F̄i = Fi/mi. Applying these changes, equations
(5.30) and (5.31) become

qi,n+1 = qi,n + hvi,n +
h2

2
F̄i(qn)

vi,n+1 = vi,n +
h

2
F̄i(qn) +

h

2
F̄i(qn+1)

i = 1, ..., N
(5.32)

(5.33)

Secondly, the following definitions have to be introduced:

Let Φh : (qi,n,vi,n) → (qi,n+1,vi,n+1) be a one-step method for the first order system of differential
equations

vi = q̇i v̇i = Fi(q) i = 1, ..., N (5.34)

Definition 1. The map Φh is called symmetric if

Φh = Φ−1
−h (5.35)

where Φ−1
−h denotes the method Φ−1

−h : (qi,n+1,vi,n+1) → (qi,n,vi,n), with the inversion of the subscripts
n and n+ 1, as a reflection based on qi,n+1/2.

Definition 2. The numerical flow Φh is called reversible if

Φh(qi,vi) = (q̃i, ṽi) → Φh(q̃i,−ṽi) = (qi,−vi) ∀ qi,vi, h (5.36)

Definition 3. The map Φh is called symplectic if it satisfies

tJ [Φh(q,v)]

(
0 1
−1 0

)
J [Φh(q,v)] =

(
0 1
−1 0

)
∀ q,v, h (5.37)

where J [Φh(q,v)] denotes the Jacobian of Φh, the vectors q = (q1, ..., qN) and v = (v1, ...,vN) collect all
particle positions and velocities and the matrix with non-zero off-diagonal elements is the metric tensor
for a Hamiltonian system, where 0 and 1 are the N × N zero and identity matrices, respectively. In
order to simplify the calculations, the above expression can be written as a function of the coordinates
of each atom, so that

tJ [Φh(qi,vi)]

(
0 1
−1 0

)
J [Φh(qi,vi)] =

(
0 1
−1 0

)
∀ qi,vi, h i = 1, ..., N (5.38)

where the metric becomes a simple 2× 2 matrix.

Using these definitions, the following theorems can be proved.

66

Chapter 5. Generation of statistical ensembles 5.1. The microcanonical ensemble

Theorem 1. The velocity Verlet algorithm is symmetric.

Proof. The numerical flow Φ−h is given by

Φ−h : (qi,n,vi,n)→ (qi,n+1,vi,n+1)

where

qi,n+1 = qi,n − hvi,n +
h2

2
F̄i(qn)

vi,n+1 = vi,n −
h

2
F̄i(qn)− h

2
F̄i(qn+1)

Inverting the indexes n and n+ 1, the flow

Φ−1
−h : (qi,n+1,vi,n+1)→ (qi,n,vi,n)

can be written explicitly as

qi,n = qi,n+1 − hvi,n+1 +
h2

2
F̄i(qn+1)

vi,n = vi,n+1 −
h

2
F̄i(qn+1)− h

2
F̄i(qn)

and finally,

qi,n+1 = qi,n + hvi,n+1 −
h2

2
F̄i(qn+1) = qi,n + h

[
vi,n+1 −

h

2
F̄i(qn+1)

]
= qi,n + h

[
vi,n +

h

2
F̄i(qn)

]
= qi,n + hvi,n +

h2

2
F̄i(qn)

vi,n+1 = vi,n +
h

2
F̄i(qn+1) +

h

2
F̄i(qn)

From the last expressions it follows that Φh = Φ−1
−h and hence the flow Φh generated by the velocity

Verlet algorithm has been demonstrated to be symmetric.

Theorem 2. The velocity Verlet algorithm is reversible.

Proof. Recalling the definition of reversibility given through the equation (5.36), the first quantity to
compute in order to prove the theorem is

Φh(qi,vi) = (q̃i, ṽi) =

(
qi + hvi +

h2

2
F̄i({qi}), vi +

h

2
F̄i({qi}) +

h

2
F̄i

(
{qi + hvi +

h2

2
F̄i({qi})}

))
so that

Φh(q̃i,−ṽi) =

(
q̃i − h ṽi +

h2

2
F̄i({q̃i})︸ ︷︷ ︸

α

, −ṽi +
h

2
F̄i({q̃i}) +

h

2
F̄i

(
{q̃i − h ṽi +

h2

2
F̄i({q̃i})}︸ ︷︷ ︸

β

))

Substituting the expressions for q̃i and ṽi obtained in the first equation of this proof in the previously
defined α and β quantities leads to

α = q̃i − h ṽi +
h2

2
F̄i({q̃i})

= qi + hvi +
h2

2
F̄i({qi})︸ ︷︷ ︸

= q̃i

−h
[
vi +

h

2
F̄i({qi}) +

h

2
F̄i({q̃i})

]
︸ ︷︷ ︸

= ṽi

+
h2

2
F̄i({q̃i}) = qi

67

5.1. The microcanonical ensemble Chapter 5. Generation of statistical ensembles

β = −ṽi +
h

2
F̄i({q̃i}) +

h

2
F̄i

(
{q̃i − h ṽi +

h2

2
F̄i({q̃i})}︸ ︷︷ ︸

= α = qi

)

= −
[
vi +

h

2
F̄i({qi}) +

h

2
F̄i({q̃i})

]
︸ ︷︷ ︸

= ṽi

+
h

2
F̄i({q̃i}) +

h

2
F̄i({qi}) = −vi

This gives Φh(q̃i,−ṽi) = (qi,−vi) ∀ qi,vi, h, therefore the flow Φh generated by the velocity Verlet
algorithm has been demonstrated to be reversible.

Theorem 3. The velocity Verlet algorithm is symplectic.

Proof. The flow Φh can be written in the following way

Φh(qi,vi) = (Φ1(qi,vi),Φ2(qi,vi))

≡
(
qi + hvi +

h2

2
F̄i({qi}), vi +

h

2
F̄i({qi}) +

h

2
F̄i

(
{qi + hvi +

h2

2
F̄i({qi})}

))
The Jacobian J [Φh(qi,vi)] is the matrix(
∇qiΦ1(qi,vi) ∇viΦ1(qi,vi)
∇qiΦ2(qi,vi) ∇viΦ2(qi,vi)

)
≡
(
∇qiΦ1 ∇viΦ1

∇qiΦ2 ∇viΦ2

)
where in the following it is sometimes dropped for simplicity the dependence of the flow Φh on the coor-
dinates (qi,vi) in the elements of the Jacobian, as outlined in the above equivalence. The computation
of the left hand side of the equation (5.38) leads to

tJ [Φh(qi,vi)]

(
0 1
−1 0

)
J [Φh(qi,vi)] =

(
−∇qiΦ2 ∇qiΦ1

−∇viΦ2 ∇viΦ1

)(
∇qiΦ1 ∇viΦ1

∇qiΦ2 ∇viΦ2

)
=

(
0 ∇qiΦ1∇viΦ2 −∇viΦ1∇qiΦ2

−∇qiΦ1∇viΦ2 +∇viΦ1∇qiΦ2 0

)
where

∇qiΦ1 = 1 +
h2

2
∇qiF̄i({qi})

∇qiΦ2 =
h

2
∇qiF̄i({qi}) +

h

2
∇qiF̄i

(
{qi + hvi +

h2

2
F̄i({qi})}

)
·
(

1 +
h2

2
∇qiF̄i({qi})

)
∇viΦ1 = h

∇viΦ2 = 1 +
h2

2
∇qiF̄i

(
{qi + hvi +

h2

2
F̄i({qi})}

)

This gives

∇qiΦ1∇viΦ2 −∇viΦ1∇qiΦ2 =

[
1 +

h2

2
∇qiF̄i({qi})

][
1 +

h2

2
∇qiF̄i

(
{qi + hvi +

h2

2
F̄i({qi})}

)]
− h

[
h

2
∇qiF̄i({qi}) +

h

2
∇qiF̄i

(
{qi + hvi +

h2

2
F̄i({qi})}

)
·
(

1 +
h2

2
∇qiF̄i({qi})

)]
= 1

so that

tJ [Φh(qi,vi)]

(
0 1
−1 0

)
J [Φh(qi,vi)] =

(
0 1
−1 0

)
and the definition (5.38) of a symplectic flow is recovered. Thus, the flow Φh generated by the velocity
Verlet algorithm has been demonstrated to be symplectic.

68

Chapter 5. Generation of statistical ensembles 5.1. The microcanonical ensemble

5.1.3 Conserved quantities

By definition, the total Hamiltonian (5.3) is a constant of motion for (5.4) - (5.5) (more precisely, the
Hamiltonian (5.3) can be defined as an integral of motion, or first integral, since it does not depend on
time), so that

H(p, q) =

N∑
i=1

p2
i

2mi
+ φ(q) = C1 (5.39)

Anyway, the fact that the Hamiltonian is a constant of motion can be simply demonstrated by taking
the total time derivative of (5.3), as follows

dH
dt

=

N∑
i=1

(
∂H
∂qi

dqi
dt

+
∂H
∂pi

dpi
dt

)
=

N∑
i=1

(
∂H
∂qi

∂H
∂pi
− ∂H
∂pi

∂H
∂qi

)
= 0 (5.40)

Furthermore, if there are no external forces acting on the system, so that the sum of all interparticle
forces is equal to zero, that is

F =

N∑
i=1

Fi = 0 (5.41)

then d additional conservation laws must be accounted for when determining the properties of the system,
which take the form

P = K ↔ F =
N∑
i=1

Fi = 0 (5.42)

where K is an arbitrary constant vector in d dimensions (with d the dimension of the physical space)
and P is the total linear momentum, that is the sum of the linear momentum of all the particles, i.e.

P =

N∑
i=1

pi (5.43)

Indeed, the total time derivative of the total linear momentum (5.43) is given by

dP

dt
=

N∑
i=1

dpi
dt

=

N∑
i=1

(
−∂φ(q)

∂qi

)
=

N∑
i=1

Fi = 0 ↔
N∑
i=1

Fi = 0 (5.44)

where the equation of motion (5.5) has been used. The conservation law (5.42) can be written using
a single independent variable (note that the d components of the total linear momentum are linearly
dependent), by taking the Euclidean norm on both sides of equation (5.42), so that

‖P‖ = P = ‖K‖ = K (5.45)

Hence, the conservation law in the absence of net forces on the system becomes

P = K = C2 ↔ F =

N∑
i=1

Fi = 0 (5.46)

Moreover, if the following condition
N∑
i=1

qi ∧ Fi = 0 (5.47)

is satisfied by the system, then there are d additional conservation laws satisfied by the Hamilton equa-
tions of motion, which take the form

L = K ↔
N∑
i=1

qi ∧ Fi = 0 (5.48)

69

5.1. The microcanonical ensemble Chapter 5. Generation of statistical ensembles

where K is an arbitrary constant vector in d dimensions and L is the total angular momentum of the
system defined as the sum of the angular momentum of all the particles, i.e.

L =

N∑
i=1

qi ∧ pi (5.49)

Indeed, its total time derivative can be computed as

dL

dt
=

N∑
i=1

(
dqi
dt
∧ pi + qi ∧

dpi
dt

)
=

N∑
i=1

(
pi
mi
∧ pi − qi ∧

∂φ(q)

∂qi

)

=
N∑
i=1

qi ∧ Fi = 0 ↔
N∑
i=1

qi ∧ Fi = 0

(5.50)

where the equations of motion (5.4) and (5.5) have been used. The conservation law (5.48) can be
written using a single independent variable (note that the d components of the total angular momentum
are linearly dependent), by taking the Euclidean norm on both sides of equation (5.48), so that

‖L‖ = L = ‖K‖ = K (5.51)

Hence, the conservation law is given by

L = K = C3 ↔
N∑
i=1

qi ∧ Fi = 0 (5.52)

A more general criterion for the existence of these conservation laws is provided by symmetry con-
siderations. If the system is invariant to translation in a particular direction, then the corresponding
momentum component is conserved. If the system is invariant to rotation about an axis, then the cor-
responding angular momentum component is conserved. Thus, the three quantities (5.39), (5.46) and
(5.52) are conserved for a completely isolated set of interacting molecules subject to the equations of
motion (5.1) - (5.2). In practice, however, a completely isolated system is rarely considered, except for
the case of an isolated molecule. Indeed, when systems are enclosed in a spherical box are encounter,
then all the three components of total angular momentum about the centre of symmetry will be con-
served, but total translational momentum will not be. If the surrounding walls formed a cubical box,
none of these quantities would be conserved. This is an important case in practice, since for the practical
simulations, periodic boundary conditions are often used, i.e. the system is enclosed in a periodically
repeated box. In the case of such periodic boundary conditions, it is easy to see that translational invari-
ance is preserved, and hence total linear momentum is conserved. Several different box geometries can
be considered (e.g. cubic, orthorhombic, or truncated octahedron), but none of them can be spherically
symmetrical; in fact it is impossible (in Euclidean space) to construct a spherically symmetric periodic
system. Hence, total angular momentum is not conserved in most molecular dynamics simulations. As
a consequence, if periodic boundary conditions are included in the simulation, then there are only two
quantities conserved by the non Hamiltonian flow of the equations of motion (5.1) - (5.2), given by (5.39)
and (5.46).

Because the total linear momentum of the system is constant, the equation (5.43) can be integrated over
the time variable as

G(t) =

∫ t

t0

P dt′ =

∫ t

t0

N∑
i=1

pi dt
′ = P (t− t0) =

N∑
i=1

pi t−
N∑
i=1

mi qi (5.53)

so that the initial value of the quantity is given by

G(0) = −
N∑
i=1

mi qi (5.54)

70

Chapter 5. Generation of statistical ensembles 5.1. The microcanonical ensemble

The numerical value of G is therefore associated with the initial position of the center of mass of the
system. As demonstrated by J. R. Ray and H. Zhang,[41] the quantity G is conserved in molecular
dynamics simulations when the conservation of total linear momentum holds. This can be proved by a
simple time derivative of equation (5.53), that is

dG(t)

dt
=

d

dt

(
N∑
i=1

pi t−
N∑
i=1

mi qi

)
= t · d

dt

(
N∑
i=1

pi

)
+

N∑
i=1

pi −
d

dt

(
N∑
i=1

mi qi

)

= t · dP
dt

+

N∑
i=1

pi −
N∑
i=1

mi
dqi
dt

= t · dP
dt

+

N∑
i=1

pi −
N∑
i=1

mi
pi
mi

= t · dP
dt

+
N∑
i=1

pi −
N∑
i=1

pi = t · dP
dt

= 0 ↔
N∑
i=1

Fi = 0

(5.55)

where the derivation in (5.44) has been used in the last passage. The constants of the motion represented
by G are associated with Galilean boost (transformation between inertial reference frames that have
infinitesimally different velocities) and G is the generator of infinitesimal boosts like the Hamiltonian
H is the generator of infinitesimal time translations and P, L are the generators of infinitesimal spatial
translations and rotations, respectively. In the following, the constraint that G is constant will be referred
to as the boost constraint. Therefore, due to the additional conserved quantity (5.53), d additional
conservation laws must be accounted for when determining the properties of the system, which take the
form

G = K̃ ↔ F =
N∑
i=1

Fi = 0 (5.56)

where K̃ is an arbitrary constant vector in d dimensions (with d the dimension of the physical space).

In order to resume these concepts, in Table 5.2, the constants of motion for the Hamilton equations (5.1)
- (5.2) are reported, together with the simulation conditions that are required to preserve their values.
Note that the total Hamiltonian (5.39) is always a constant of motion, independently of the simulation
conditions.

conservation laws of Hamilton equations (5.1) - (5.2)

H(p, q) =
N∑
i=1

p2
i

2mi
+ φ(q) = C1

P = K = C2 iff F =

N∑
i=1

Fi = 0

L = K = C3 iff
N∑
i=1

qi ∧ Fi = 0 and NO PBC

Table 5.2: Constants of motion for the Hamilton equations of motion (5.1) - (5.2), together with the simulation
conditions that are necessary to preserve these quantities.

5.1.4 Jacobi coordinates

It is convenient to introduce a set of coordinates and momenta, referred to as Jacobi coordinates and
momenta, for the later discussion of phase space integrals. These coordinates are defined so the first
(N − 1) Jacobi coordinates are internal coordinates, while the N -th Jacobi coordinate is the center of
mass coordinate of the system of particles. For a system of N particles, the Jacobi coordinates and

71

5.1. The microcanonical ensemble Chapter 5. Generation of statistical ensembles

momenta are defined by

ρα =

[
α∑
i=1

mi

]−1 α∑
i=1

mi qi − qα+1 α = 1, ..., N with qN+1 = 0 (5.57)

πα =
mα+1

Mα+1
1

α∑
i=1

pi −
Mα

1

Mα+1
1

pα+1 α = 1, ..., N − 1 and πN =
N∑
i=1

pi (5.58)

where

M j
i =

j∑
k=i

mk i ≤ j and i, j, k = 1, ..., N (5.59)

Note that the Jacobi coordinates give the position of the center of mass of the previous particles with
respect to the next particle. The Jacobi coordinates are orthogonal and are a generalization of the
usual coordinates for the center of mass and relative coordinates of a two particle system. The Jacobi
coordinates are canonical, so that the Jacobian (i.e. the determinant of the transformation matrix) from
the original Cartesian coordinates and momenta to the Jacobi coordinates and momenta is equal to one.
Also the Jacobians for the transformation from the Cartesian coordinates alone or the momenta alone
are equal to one.
The kinetic energy of the system in Jacobi coordinates is

T =
N∑
i=1

p2
i

2mi
=

N−1∑
α=1

π2
α

2µα
+
π2
N

2µN
(5.60)

where the reduced masses µα are defined by

µα = mα+1
Mα

1

Mα+1
1

α = 1, ..., N − 1 and µN = MN
1 (5.61)

Equation (5.60) gives the kinetic energy in terms of the internal kinetic energy plus the kinetic energy
of the center of mass and is a well known result in classical mechanics. The reduced masses satisfy the
following product rule

N−1∏
α=1

µα =
1

µN

N∏
i=1

mi (5.62)

where µN = MN
1 is the total mass of the system.2

2For example, having N = 3 particles, the Jacobi coordinates and the reduced masses are

ρ1 =
1

m1
m1 q1 − q2 = q1 − q2

ρ2 =
1

m1 +m2
(m1 q1 +m2 q2)− q3

ρ3 =
1

m1 +m2 +m3
(m1 q1 +m2 q2 +m3 q3)− q4

q4=0
=

1

m1 +m2 +m3
(m1 q1 +m2 q2 +m3 q3)

π1 =
m2

m1 +m2
pi −

m1

m1 +m2
p2

π2 =
m3

m1 +m2 +m3
pi −

m1 +m2

m1 +m2 +m3
p3

π3 =

3∑
i=1

pi = p1 + p2 + p3

µ1 =
m2 m1

m1 +m2
µ2 =

m3 (m2 +m1)

m1 +m2 +m3
µ3 = M3

1 = m1 +m2 +m3

72

Chapter 5. Generation of statistical ensembles 5.1. The microcanonical ensemble

5.1.5 Statistical mechanical ensemble

The statistical ensemble sampled by the microcanonical equations of motion depends on the form of
the laws of motion, together with the associated conserved quantities. In the following, the statistical
ensemble sampled by the Hamilton equations of motion (5.1)-(5.2) will be derived, taking into account
the presence and the absence of periodic boundary conditions. As a general statement, it is worth
mentioning that the microcanonical ensemble, ruled by an Hamiltonian dynamic, posses a fundamental
property known as the condition of phase space incompressibility. This can be easily demonstrated by
computing the compressibility according to its definition (4.180) as

κ(Γ) = ∇Γ · Γ̇ =

N∑
i=1

[
∂q̇i
∂qi

+
∂ṗi
∂pi

]
=

N∑
i=1

[
∂

∂qi
· ∂H
∂pi
− ∂

∂pi
· ∂H
∂qi

]
=

N∑
i=1

[
∂2H
∂qi∂pi

− ∂2H
∂pi∂qi

]
= 0 (5.63)

so that

Hamilton equations of motion : κ(Γ) = 0 →
√
g(Γ) = 1 (5.64)

Then, the time evolution of the infinitesimal volume element dvΓ, ruled by equation (4.173), given in
this case by

dvΓ = dΓ(t) = dΓ(t0) (5.65)

can be associated to a canonical coordinates transformation.
The partition function (4.185) can be finally written, for the case of Hamilton equations of motion
(microcanonical ensemble), as

Z = ζ

∫
dΓ

nc∏
k=1

δ(Λk(Γ)− Ck) (5.66)

where

Λk(Γ) = Ck for k = 1, ..., nc (5.67)

are the set of nc conservation laws associated to the Hamilton equations of motion and Λk(Γ) are the
related conserved quantities which satisfy the condition (4.183).

5.1.5.1 Periodic boundary conditions

As demonstrated in Section 5.1.3, if periodic boundary conditions are used, then three quantities are
conserved by the Hamilton equations of motion (5.1) - (5.2), that are given by (5.39), (5.42) and (5.56),
reported in the following for completeness

H(p, q) =

N∑
i=1

p2
i

2mi
+ φ(q) = C1 ≡ E (5.68)

P =

N∑
i=1

pi = K ↔ F =

N∑
i=1

Fi = 0 (5.69)

G =
N∑
i=1

pi t−
N∑
i=1

mi qi = tP−
N∑
i=1

mi qi = K̃ ↔ F =
N∑
i=1

Fi = 0 (5.70)

As a consequence, the partition function for microcanonical molecular dynamics when using periodic
boundary conditions can be written by means of the equations (5.66) and (5.67) as

Z = ζ

∫
dp

∫
dq δ(H(p, q)− E) δ

(
P−

N∑
i=1

pi

)
δ

(
G− t

N∑
i=1

pi +

N∑
i=1

mi qi

)
(5.71)

73

5.1. The microcanonical ensemble Chapter 5. Generation of statistical ensembles

where dΓ = dp dq = dp1 · · · dpN dq1 · · · dqN . The boost constraint is straightforwardly handled via the
introduction of Jacobi coordinates for the position vectors (see Section 5.1.4), so that the third term in
the boost constraint delta function can be written using the definition (5.57) as

ρN =

[
N∑
i=1

mi

]−1 N∑
i=1

mi qi − qN+1 =

[
N∑
i=1

mi

]−1 N∑
i=1

mi qi →
N∑
i=1

mi qi = ρN

N∑
i=1

mi = µNρN

where µN is the total mass of the system. Moreover, the Jacobian of the transformation between Jacobi
and Cartesian position coordinates and vice-versa is unitary, so that

dq1 · · · dqN = dρ1 · · · dρN → dp1 · · · dpN dq1 · · · dqN = dp1 · · · dpN dρ1 · · · dρN (5.72)

Therefore, the partition function (5.71) can be rewritten as

Z(N,V,E,P,G)

= ζ

∫
dp1 · · · dpN

∫
dρ1 · · · dρN δ(H(p,ρ)− E) δ

(
P−

N∑
i=1

pi

)
δ

(
G− t

N∑
i=1

pi + µNρN

)
(5.73)

where ρN is the N -th Jacobi coordinate, that is center of mass coordinate of the system of particles,
and the Hamiltonian H(p,ρ) is now expressed as a function of the Jacobi position coordinates. For a
system in which the potential φ(q)→ φ(ρ) is only a function of the relative distances between particles
(as is considered here), the Hamiltonian is not a function of the center of mass of the particles and
so it is independent of one of the Jacobi coordinates. Consequently, the delta function containing the
boost constraint can be immediately integrated over by carrying out the integral over the center of mass
coordinate ρN to yield

Z(N,V,E,P,G) = ζ

∫
dp1 · · · dpN

∫
dρ1 · · · dρN−1 δ(H(p,ρ1, ...,ρN−1)− E) δ

(
P−

N∑
i=1

pi

)
(5.74)

where ρ1, ...,ρN−1 are the remaining Jacobi coordinates for the nuclear positions. This step has the
effect of reducing the number of spatial integrations by three because the integral over the boost delta
function does not change any other parts of the integrand; recall that it has been assumed that the
potential energy depends only on the relative coordinates and not the center of mass coordinate. Next,
a Laplace transform of the energy (E → t) is performed on the partition function. In general, the lower
bound on the resulting integral over E should be set equal to the appropriate minimum energy Emin
(corresponding to zero kinetic energy and all particle pairs residing in their lowest energy state), which
may be different from zero. A simple coordinate transformation (s = E − Emin), however, converts the
lower bound of the Laplace transform back to zero. In the present case, the energy is represented by the
constant E, as written in (5.68). Therefore, the Laplace transform E → t or more precisely s→ t leads
to

L[Z(N,V,E,P,G)] = Z(N,V, t,P,G) =

∫ ∞
0

e−t E Z(N,V,E,P,G) dE

= ζ

∫ ∞
0

dE

∫
dp1 · · · dpN

∫
dρ1 · · · dρN−1 e

−t E δ(H(p,ρ1, ...,ρN−1)− E) δ

(
P−

N∑
i=1

pi

)

= ζ

∫
dp1 · · · dpN

∫
dρ1 · · · dρN−1 δ

(
P−

N∑
i=1

pi

)
e−tH(p,ρ1,...,ρN−1)

The Hamiltonian H in the exponential factor is given by equation (5.68), so that the Laplace transform
of the partition function can be written explicitly as

L[Z(N,V,E,P,G)] = ζ

∫
dp1 · · · dpN

∫
dρ1 · · · dρN−1 δ

(
P−

N∑
i=1

pi

)
exp

[
− t

(
N∑
i=1

p2
i

2mi
+ φ(ρ)

)]

= ζ

∫
dp1 · · · dpN δ

(
P−

N∑
i=1

pi

)
exp

[
− t

N∑
i=1

p2
i

2mi

]∫
dρ1 · · · dρN−1 exp[−t φ(ρ)] (5.75)

74

Chapter 5. Generation of statistical ensembles 5.1. The microcanonical ensemble

In the following, the integral over the Jacobi position coordinates will be sometimes abbreviated, using
the notation

I(t, {ρ}) ≡
∫
dρ1 · · · dρN−1 exp[−t φ(ρ)] (5.76)

In order to perform the integration over the momenta variables, a Fourier transform of the total mo-
mentum (P→ k) can be done,

F [L[Z(N,V,E,P,G)]] = F [Z(N,V, t,P,G)]

= Z(N,V, t,k,G) =
1

(2π)d/2

∫ ∞
−∞

dP exp[−ık ·P]Z(N,V, t,P,G)
(5.77)

where ι is the imaginary unit. The Fourier transform of equation (5.75) will affect only the integral over
the momenta coordinates, so that it can be written as

Z(N,V, t,k,G) = F [L[Z(N,V,E,P,G)]]

=
ζ

(2π)d/2

∫
dp1 · · · dpN

∫ ∞
−∞

dP exp[−ιk ·P] δ

(
P−

N∑
i=1

pi

)
exp

[
− t

N∑
i=1

p2
i

2mi

]
I(t, {ρ})

The integral over the variable P can be solved through the Dirac delta function, resulting in the following
expression

F [L[Z(N,V,E,P,G)]] =
ζ

(2π)d/2

∫
dp1 · · · dpN exp

[
−ιk ·

N∑
i=1

pi

]
exp

[
− t

N∑
i=1

p2
i

2mi

]
I(t, {ρ})

=
ζ

(2π)d/2

∫
dp1 · · · dpN exp

[
− t

2

N∑
i=1

(
p2
i

mi
+ 2

ιk · pi
t

)]
I(t, {ρ})

=
ζ

(2π)d/2

∫
dp1 · · · dpN exp

[
− t

2

N∑
i=1

(
pi√
mi

+
ιk

t

√
mi

)2]
exp

[
−k

2

2t

N∑
i=1

mi

]
I(t, {ρ})

so that

F [L[Z(N,V,E,P,G)]] = Z(N,V, t,k,G)

=
ζ

(2π)d/2
exp

[
−mk

2

2t

]∫
dp1 · · · dpN exp

[
− t

2

N∑
i=1

(
pi√
mi

+
ιk

t

√
mi

)2]
I(t, {ρ})

(5.78)

The integral that involves the momenta variables is a Gaussian integral, which can be resolved as follows

∫
dp1 · · · dpN exp

[
− t

2

N∑
i=1

(
pi√
mi

+
ιk

t

√
mi

)2]

=

∫
dp1 exp

[
− t

2

(
p1√
m1

+
ιk

t

√
m1

)2]
· · ·
∫
dpN exp

[
− t

2

(
pN√
mN

+
ιk

t

√
mN

)2]

=

(
2πm1

t

)d/2
· · ·

(
2πmN

t

)d/2
=

(
2π

t

)Nd/2 N∏
i=1

m
d/2
i

(5.79)

75

5.1. The microcanonical ensemble Chapter 5. Generation of statistical ensembles

Indeed, each one of the Gaussian integral in the second line of the previous expression has the solution∫
dpi exp

[
− t

2

(
pi√
mi

+
ιk

t

√
mi

)2]

=

∫
dpi,j exp

[
− t

2

(
pi,j√
mi

+
ι kj
t

√
mi

)2]
· · · · · ·

∫
dpi,d exp

[
− t

2

(
pi,d√
mi

+
ι kd
t

√
mi

)2]

=

∫
dpi,j exp

[
− t

2mi

(
pi,j +

ι kj
t
mi

)2]
· · · · · ·

∫
dpi,d exp

[
− t

2mi

(
pi,d +

ι kd
t
mi

)2]

=

√
2πmi

t
· · · · · ·

√
2πmi

t︸ ︷︷ ︸
d times

=

(
2πmi

t

)d/2
(5.80)

with pi a d-dimensional vector, so that d identifies the dimension of the physical space of the system.
Therefore, substituting the result (5.79) in (5.1.5.1), the Fourier transform of the Laplace transform of
the partition function can be written as

Z(N,V, t,k,G) = F [L[Z(N,V,E,P,G)]]

=
ζ

(2π)d/2
exp

[
−mk

2

2t

](
2π

t

)Nd/2 (N∏
i=1

m
d/2
i

)
I(t, {ρ})

= ζ(2π)(N−1)d/2

(
N∏
i=1

m
d/2
i

)
exp

[
−mk

2

2t

]
t−Nd/2 I(t, {ρ})

(5.81)

In order to found the partition function, it is necessary to perform an inverse Fourier transform (k→ P)
of (5.81), by applying a Fourier anti-transform, that is the inverse operation of (5.1.5.1), namely

F−1{F [L[Z(N,V,E,P,G)]]} = F−1{F [Z(N,V, t,P,G)]} = F−1{Z(N,V, t,k,G)}

= Z(N,V, t,P,G) =
1

(2π)d/2

∫ ∞
−∞

dk exp[ık ·P]Z(N,V, t,k,G)
(5.82)

Applying the Fourier anti-transform to (5.81), following the definition (5.1.5.1), leads to

F−1{F [L[Z(N,V,E,P,G)]]} = L[Z(N,V,E,P,G)] = Z(N,V, t,P,G)

= ζ(2π)(N−1)d/2

(
N∏
i=1

m
d/2
i

)
1

(2π)d/2

∫ ∞
−∞

dk exp[ık ·P] exp

[
−mk

2

2t

]
t−Nd/2 I(t, {ρ})

(5.83)

F−1{F [L[Z(N,V,E,P,G)]]} = L[Z(N,V,E,P,G)] = Z(N,V, t,P,G)

= ζ(2π)(N−1)d/2

(
N∏
i=1

m
d/2
i

)
1

(2π)d/2

∫ ∞
−∞

dk exp[ık ·P] exp

[
−mk

2

2t

]
t−Nd/2 I(t, {ρ})

= ζ(2π)(N−1)d/2

(
N∏
i=1

m
d/2
i

)
1

(2π)d/2

∫ ∞
−∞

dk exp

[
−mk

2

2t
+ ık ·P

]
t−Nd/2 I(t, {ρ})

(5.84)

The integral in the variable k can be resolved as follows∫ ∞
−∞

dk exp

[
−mk

2

2t
+ ık ·P

]
=

∫ ∞
−∞

dk exp

[(
ı
√
m k√
2t

+
P√
m

√
t

2

)2]
exp

(
−P2

m

t

2

)

= exp

(
−P2

m

t

2

) ∫ ∞
−∞

dk exp

[
−m

2t

(
k +

P√
m

√
t

2

√
2t

ı
√
m

)2]

= exp

(
−P2

m

t

2

) ∫ ∞
−∞

dk exp

[
−m

2t

(
k +

tP

ım

)2]
= exp

(
−P2

m

t

2

)(√
2π t

m

)d
(5.85)

76

Chapter 5. Generation of statistical ensembles 5.1. The microcanonical ensemble

Substituting the obtained result (5.85) in (5.84), the Laplace transform of the partition function can be
written as

L[Z(N,V,E,P,G)] = Z(N,V, t,P,G)

= ζ(2π)(N−1)d/2

(
N∏
i=1

m
d/2
i

)
1

(2π)d/2
exp

[
−P2

m

t

2

](√
2π t

m

)d
t−Nd/2 I(t, {ρ})

= ζ(2π)(N−1)d/2

(
N∏
i=1

m
d/2
i

)
1

(2π)d/2
exp

[
−P2

m

t

2

]
(2π)d/2

td/2

md/2
t−Nd/2 I(t, {ρ})

=
ζ(2π)(N−1)d/2

md/2

(
N∏
i=1

m
d/2
i

)
exp

[
−P2

m

t

2

]
t−(N−1)d/2 I(t, {ρ})

(5.86)

Recalling the definition of I(t, {ρ}) given in (5.76), the Laplace transform of the partition function can
be rewritten as

L[Z(N,V,E,P,G)] = Z(N,V, t,P,G)

=
ζ(2π)(N−1)d/2

md/2

(
N∏
i=1

m
d/2
i

)
exp

[
−P2

m

t

2

]
t−(N−1)d/2

∫
dρ1 · · · dρN−1 exp[−t φ(ρ)]

= Ω exp

[
−P2

m

t

2

]
t−(N−1)d/2

∫
dρ1 · · · dρN−1 exp[−t φ(ρ)]

(5.87)

where Ω includes all the constant factors in (5.87) and it is thus defined by

Ω ≡ ζ(2π)(N−1)d/2

md/2

(
N∏
i=1

m
d/2
i

)
(5.88)

At this point, the last step is to compute the Laplace anti-transform of the equation (5.87), finally
obtaining the partition function

L−1{L[Z(N,V,E,P,G)]} = L−1{Z(N,V, t,P,G)} = Z(N,V,E,P,G)

=
1

2π ı

∫ γ+ı∞

γ−ı∞
etE Z(N,V, t,P,G) dt

(5.89)

Applying the definition (5.89) to the Laplace transform of the partition function (5.87), the following
expression can be obtained for the partition function

Z(N,V,E,P,G) =
Ω

2π ı

∫ γ+ı∞

γ−ı∞
dt

∫
dρ1 · · · dρN−1 exp[tE] exp

[
−P2

m

t

2

]
t−(N−1)d/2 exp[−t φ(ρ)]

=
Ω

2π ı

∫ γ+ı∞

γ−ı∞
dt

∫
dρ1 · · · dρN−1 t−(N−1)d/2 exp

[
t

(
E − P2

2m
− φ(ρ)

)]

=
Ω

2π ı

∫
dρ1 · · · dρN−1

∫ γ+ı∞

γ−ı∞
dt t−(N−1)d/2 exp

[
t

(
E − P2

2m
− φ(ρ)

)]
(5.90)

5.1.5.2 Periodic boundary conditions: a second derivation

If periodic boundary conditions are used, then three quantities are conserved by the Hamilton equations of
motion (5.1) - (5.2), that are given by (5.39), (5.42) and (5.56), reported in the following for completeness

H(p, q) =

N∑
i=1

p2
i

2mi
+ φ(q) = C1 ≡ E (5.91)

77

5.1. The microcanonical ensemble Chapter 5. Generation of statistical ensembles

P =
N∑
i=1

pi = K ↔ F =
N∑
i=1

Fi = 0 (5.92)

G =
N∑
i=1

pi t−
N∑
i=1

mi qi = tP−
N∑
i=1

mi qi = K̃ ↔ F =
N∑
i=1

Fi = 0 (5.93)

where the last two quantities are conserved if and only if the total force acting on the system is equal to
zero. Related to the initial position of the center of mass, the quantity G is the generator of infinitesimal
Galilean boosts (transformations between inertial reference frames that have infinitesimally different
velocities). However, as specified by Ref. [42], the quantity G becomes a constant of motion because
the center of mass of the system is a driven variable (i.e. its dynamics does not effect other variables
and it does not contribute to a nontrivial conserved quantity). Therefore, the G constraint accounts
for the center of mass of the system being a driven variable,[42] and can be ignored if the center of
mass is discarded as a driven variable of the system, following the procedure outlined in Section 4.3.2
(in particular, see Section 4.3.2.1). In order to follow the analysis following Section 4.3.2.1, the driven
variables have to be eliminated from the system. As a consequence, the center of mass position R must
be eliminated in the formal analysis. On the other hand, the magnitude of the center of mass momentum
is coupled to the other variables through a conservation law and cannot be eliminated from the analysis.
At the same time, the components of the center of mass momentum P are linearly dependent.3 Thus,
d− 1 components of the center of mass momentum must be eliminated. Therefore of the d components
only one component can be chosen independently, otherwise the variable

P = ‖P‖ =

(
d∑

α=1

P 2
α

)1/2

(5.95)

can be taken as the independent variable. Before proceeding further on, the equation of motion for this
new variable can be easily found by taking into account the definition of the conserved quantity, equation
(5.92), and rewriting it in terms of the new variable P defined in (5.95), by taking the Euclidean norm
on both sides of equation (5.92), so that

‖P‖ = P = ‖K‖ = K → Ṗ = K̇ = 0 (5.96)

Proceeding with the analysis, the two variables R and P can be eliminated by considering the positions
and momenta relative to the center of mass of the system, ρ and π, respectively. Thus, a canonical
transformation to a set of relative coordinates and momenta {p, q} → {π, P,ρ} has to be introduced,
using the Jacobi coordinates as outlined in Section 5.1.4, where the equations of motion for the P will
be written in terms of the single independent variable P . Starting from the equation of motion (5.1) -
(5.2), this procedure yields the following transformed equations of motion

ρ̇i =
dρi
dt

=
∂H
∂πi

=
πi
µi

i = 1, ..., N − 1 (5.97)

π̇i =
dπi
dt

= −∂H
∂ρi

= − ∂φ
∂ρi

i = 1, ..., N − 1 (5.98)

Ṗ = 0 (5.99)

where µi is the reduced mass of the system defined by equation (5.61) and the equation of motion for
the momentum P, written in terms of the single independent variable P as defined in (5.95), has been
introduced in equation (5.99), following the result obtained in (5.96). The equations of motion have two
conservative laws (because the d center of mass momenta components have been replaced by a single
variable P only one conservation law for the momenta is left), namely,

H(π, P,ρ) =

N−1∑
i=1

π2
i

2µi
+
P 2

2m
+ φ(ρ) = C1 ≡ E (5.100)

3To see this, consider the components of equation (5.298) in a three dimensional system (d = 3),

Px
Kx

=
Py
Ky

=
Pz
Kz

= eη (5.94)

which shows that only one of the components is independent.

78

Chapter 5. Generation of statistical ensembles 5.1. The microcanonical ensemble

P = C2 (5.101)

where, in the first conservation law (5.100), the variable µi is the reduced mass of the system defined
by equation (5.61), and m ≡ µN is the total mass of the system, see again equation (5.61). In order to
compute the partition function, the compressibility has to be calculated, as already performed in Section
5.1.5, but using, in this case, the phase space vector Ξ = (π, P,ρ) together with the definition (4.123),
as

κ(Ξ, t) ≡ ∇Ξ · Ξ̇ =
N−1∑
i=1

∇ρi · ρ̇i +
N−1∑
i=1

∇πi · π̇i +∇P · Ṗ = 0 (5.102)

From the compressibility, the metric follows directly

√
g(Ξ, t) = exp

(
−
∫
κ(Ξ, t) dt

)
= 1 (5.103)

The conservation laws (5.100), (5.101) and the metric (5.103) can now be used to construct the micro-
canonical partition function, as in equation (5.66) (see Section 5.1.5), which contains two delta functions
that express the two conservation laws

Z(N,V,E,C2) = ζ

∫
dπ

∫
dP

∫
dρ δ(H(π, P,ρ)− C1) δ(P − C2)

≡ ζ
∫
dπ

∫
dP

∫
dρ δ(H(π, P,ρ)− E) δ(P − C2)

(5.104)

where dπ = dπ1 · · · dπN−1 and dρ = dρ1 · · · dρN−1 are the remaining Jacobi coordinates for the nuclear
positions and momenta. Next, a Laplace transform of the energy (E → t) is performed on the partition
function. In general, the lower bound on the resulting integral over E should be set equal to the
appropriate minimum energy Emin (corresponding to zero kinetic energy and all particle pairs residing
in their lowest energy state), which may be different from zero. A simple coordinate transformation
(s = E−Emin), however, converts the lower bound of the Laplace transform back to zero. In the present
case, the energy is represented by the constant E, as written in (5.68). Therefore, the Laplace transform
E → t or more precisely s→ t leads to

L[Z(N,V,E,C2)] = Z(N,V, t, C2) =

∫ ∞
0

e−t E Z(N,V,E,C2) dE

= ζ

∫ ∞
0

dE

∫
dπ

∫
dP

∫
dρ e−tE δ(H(π, P,ρ)− E) δ(P − C2)

= ζ

∫
dπ

∫
dP

∫
dρ δ(P − C2) e−tH(π,P,ρ)

(5.105)

The Hamiltonian H(π, P,ρ) in the exponential factor is given by equation (5.100), so that the Laplace
transform of the partition function can be written explicitly as

L[Z(N,V,E,C2)] = ζ

∫
dπ

∫
dP

∫
dρ δ(P − C2) exp

[
−t

(
N−1∑
i=1

π2
i

2µi
+
P 2

2m
+ φ(ρ)

)]

= ζ

∫
dπ exp

[
−t

(
N−1∑
i=1

π2
i

2µi

)]∫
dP δ(P − C2) exp

(
−t P

2

2m

)∫
dρ exp [−t φ(ρ)]

(5.106)

In the following, the integral over the Jacobi position coordinates will be sometimes abbreviated, using
the notation

I(t, {ρ}) ≡
∫
dρ exp [−t φ(ρ)] ≡

∫
dρ1 · · · dρN−1 exp[−t φ(ρ)] (5.107)

so that equation (5.106) becomes

L[Z(N,V,E,C2)] = ζ

∫
dπ exp

[
−t

(
N−1∑
i=1

π2
i

2µi

)]∫
dP δ(P − C2) exp

(
−t P

2

2m

)
I(t, {ρ}) (5.108)

79

5.1. The microcanonical ensemble Chapter 5. Generation of statistical ensembles

The integral that involves the momenta variables is a Gaussian integral, which can be resolved as follows

I(t, {π}) ≡
∫
dπ exp

[
−t

(
N−1∑
i=1

π2
i

2µi

)]
=

∫
dπ1 · · · dπN−1 exp

(
− t

2

N∑
i=1

π2
i

µi

)

=

∫
dπ1 exp

(
− t

2

π2
1

µ1

)
· · ·

∫
dπN−1 exp

(
− t

2

π2
N−1

µN−1

)

=

(
2π µ1

t

)d/2
· · ·

(
2π µN−1

t

)d/2
=

(
2π

t

)(N−1)d/2 N−1∏
i=1

µ
d/2
i

(5.109)

where the fact that the integration over dπ can be split into the product of N−1 Gaussian integrals in the
variables πi (i = 1, ..., N−1), which are represented by a d-dimensional vector, is used, where d identifies
the dimension of the physical space of the system, so that dπi = dπ1, ..., dπd for all i = 1, ..., N − 1.
Therefore, equation (5.108) can be rewritten as

L[Z(N,V,E,C2)] = ζ I(t, {π})
∫
dP δ(P − C2) exp

(
−t P

2

2m

)
I(t, {ρ}) (5.110)

where I(t, {π}) is a constant factor as given by (5.109).
In order to simplify the integration over the momentum P variable, it is convenient to perform a Fourier
transform of the total momentum (C2 → k) so that

F [L[Z(N,V,E,C2)]] = F [Z(N,V, t, C2)]

= Z(N,V, t, k) =
1

(2π)1/2

∫ ∞
−∞

dC2 exp[−ı k C2]Z(N,V, t, C2)
(5.111)

where ι is the imaginary unit. The Fourier transform of equation (5.111) will affect only the integral
over the momentum coordinate P , so that it can be written as

Z(N,V, t, k) = F [L[Z(N,V,E,C2)]]

=
ζ

(2π)1/2
I(t, {π})

∫ ∞
−∞

dC2

∫
dP exp[−ı k C2] δ(P − C2) exp

(
−t P

2

2m

)
I(t, {ρ})

=
ζ

(2π)1/2
I(t, {π})

∫
dP

∫ ∞
−∞

dC2 exp[−ı k C2] δ(P − C2) exp

(
−t P

2

2m

)
I(t, {ρ})

The integral over the variable C2 can be solved through the Dirac delta function, resulting in the following
expression

Z(N,V, t, k) = F [L[Z(N,V,E,C2)]]

=
ζ

(2π)1/2
I(t, {π})

∫
dP exp[−ı k P] exp

(
−t P

2

2m

)
I(t, {ρ})

(5.112)

Substituting expression (5.109) for the Gaussian integral I(t, {π}) in the partition function (5.112) gives

Z(N,V, t, k) = F [L[Z(N,V,E,C2)]]

=
ζ

(2π)1/2

(
2π

t

)(N−1)d/2
(
N−1∏
i=1

µ
d/2
i

) ∫
dP exp[−ı k P] exp

(
−t P

2

2m

)
I(t, {ρ})

(5.113)

The integral over the variable P can be solved through the following steps∫
dP exp[−ı k P] exp

(
−t P

2

2m

)
I(t, {ρ}) =

∫
dP exp

[
− t

2

(
P 2

m
+ 2

ı k P

t

)]
=

∫
dP exp

{
− t

2

[(
P 2

m
+ 2

ı k P

t
− k2

t2
m

)
+
k2

t2
m

]}
=

∫
dP exp

[
− t

2

(
P√
m

+
ı k

t

√
m

)2
]

exp

(
−k

2

2t
m

)

=

∫
dP exp

[
− t

2m

(
P +

ı k

t
m

)2
]

exp

(
−k

2

2t
m

)
=

√
2πm

t
exp

(
−k

2

2t
m

)
(5.114)

80

Chapter 5. Generation of statistical ensembles 5.1. The microcanonical ensemble

Therefore, substituting the result (5.114) in (5.113), the Fourier transform of the Laplace transform of
the partition function can be written as

Z(N,V, t, k) = F [L[Z(N,V,E, P)]]

=
ζ

(2π)1/2

(
2π

t

)(N−1)d/2
(
N−1∏
i=1

µ
d/2
i

) √
2πm

t
exp

(
−k

2

2t
m

)
I(t, {ρ})

=
ζ

(2π)1/2
(2π)(N−1)d/2

(
N−1∏
i=1

µ
d/2
i

)
√

2πm exp

(
−k

2

2t
m

)
t−(N−1)d/2−1/2 I(t, {ρ})

= ξ exp

(
−k

2

2t
m

)
t−(N−1)d/2−1/2 I(t, {ρ})

(5.115)

where ξ collects all the constant factors, that is

ξ =
ζ

(2π)1/2
(2π)(N−1)d/2

(
N−1∏
i=1

µ
d/2
i

)
√

2πm (5.116)

In order to found the partition function, it is necessary to perform an inverse Fourier transform (k → P)
of (5.115), by applying a Fourier anti-transform, that is the inverse operation of (5.111), namely

F−1{F [L[Z(N,V,E, P)]]} = F−1{F [Z(N,V, t, P)]} = F−1{Z(N,V, t, k)}

= Z(N,V, t, P) =
1

(2π)1/2

∫ ∞
−∞

dk exp[ı kP]Z(N,V, t, k)
(5.117)

Applying the Fourier anti-transform to (5.115), following the definition (5.117), leads to

F−1{F [L[Z(N,V,E, P)]]} = L[Z(N,V,E, P)] = Z(N,V, t, P)

=
ξ

(2π)1/2

∫ ∞
−∞

dk exp[ı kP] exp

(
−k

2

2t
m

)
t−(N−1)d/2−1/2 I(t, {ρ})

=
ξ

(2π)1/2

∫ ∞
−∞

dk exp

(
−k

2

2t
m+ ı kP

)
t−(N−1)d/2−1/2 I(t, {ρ})

(5.118)

The integral in the variable k can be resolved as follows

∫ ∞
−∞

dk exp

(
−mk

2

2t
+ ıkP

)
=

∫ ∞
−∞

dk exp

[(
ı
√
m k√
2t

+
P√
m

√
t

2

)2]
exp

(
−P

2

m

t

2

)

= exp

(
−P

2

m

t

2

) ∫ ∞
−∞

dk exp

[
−m

2t

(
k +

P√
m

√
t

2

√
2t

ı
√
m

)2]

= exp

(
−P

2

m

t

2

) ∫ ∞
−∞

dk exp

[
−m

2t

(
k +

t P

ım

)2]
= exp

(
−P

2

m

t

2

)(√
2π t

m

)
(5.119)

Substituting the obtained result (5.119) in (5.118), the Laplace transform of the partition function can
be written as

L[Z(N,V,E, P)] = Z(N,V, t, P)

=
ξ

(2π)1/2

∫ ∞
−∞

dk exp

(
−k

2

2t
m+ ı kP

)
t−(N−1)d/2−1/2 I(t, {ρ})

=
ξ

(2π)1/2

(√
2π t

m

)
exp

(
−P

2

m

t

2

)
t−(N−1)d/2−1/2 I(t, {ρ})

= ζ (2π)(N−1)d/2

(
N−1∏
i=1

µ
d/2
i

)
exp

(
−P

2

m

t

2

)
t−(N−1)d/2 I(t, {ρ})

(5.120)

81

5.1. The microcanonical ensemble Chapter 5. Generation of statistical ensembles

where the constant factors has been rewritten, recalling the definition (5.116), as

ξ

(2π)1/2

(√
2π

m

)
=

1

(2π)1/2

(√
2π

m

)
ζ

(2π)1/2
(2π)(N−1)d/2

(
N−1∏
i=1

µ
d/2
i

)
√

2πm

= ζ (2π)(N−1)d/2

(
N−1∏
i=1

µ
d/2
i

) (5.121)

Recalling the definition of I(t, {ρ}) given in (5.107), the Laplace transform of the partition function can
be rewritten as

L[Z(N,V,E, P)] = Z(N,V, t, P)

= ζ (2π)(N−1)d/2

(
N−1∏
i=1

µ
d/2
i

)
exp

(
−P

2

m

t

2

)
t−(N−1)d/2

∫
dρ1 · · · dρN−1 exp[−t φ(ρ)]

= Ω exp

(
−P

2

m

t

2

)
t−(N−1)d/2

∫
dρ1 · · · dρN−1 exp[−t φ(ρ)]

(5.122)

where Ω includes all the constant factors in (5.122) and it is thus defined by

Ω = ζ (2π)(N−1)d/2

(
N−1∏
i=1

µ
d/2
i

)
=
ζ (2π)(N−1)d/2

µ
d/2
N

(
N∏
i=1

m
d/2
i

)
(5.123)

where the relation (5.62) has been used, and µN = m is the total mass of the system. At this point,
the last step is to compute the Laplace anti-transform of the equation (5.122), performing the change of
variable t→ E and finally obtaining the partition function

L−1{L[Z(N,V,E, P)]} = L−1{Z(N,V, t, P)} = Z(N,V,E, P)

=
1

2π ı

∫ γ+ı∞

γ−ı∞
etE Z(N,V, t, P) dt

(5.124)

Applying the definition (5.124) to the Laplace transform of the partition function (5.122), the following
expression can be obtained for the partition function

Z(N,V,E, P) =
Ω

2π ı

∫ γ+ı∞

γ−ı∞
dt

∫
dρ1 · · · dρN−1 exp(tE) exp

(
−P

2

m

t

2

)
t−(N−1)d/2 exp[−t φ(ρ)]

=
Ω

2π ı

∫ γ+ı∞

γ−ı∞
dt

∫
dρ1 · · · dρN−1 t−(N−1)d/2 exp

[
t

(
E − P 2

2m
− φ(ρ)

)]
(5.125)

=
Ω

2π ı

∫
dρ1 · · · dρN−1

∫ γ+ı∞

γ−ı∞
dt t−(N−1)d/2 exp

[
t

(
E − P 2

2m
− φ(ρ)

)]
The complex integral in the previous equation, also known as the Bromwich integral, has the solution
(see Appendix, Section A.6)∫ γ+ı∞

γ−ı∞
dt t−(N−1)d/2 exp

[
t

(
E − P 2

2m
− φ(ρ)

)]
=

2π ı

Γ[(N − 1)d/2]
Θ

(
E − P 2

2m
− φ(ρ)

) (
E − P 2

2m
− φ(ρ)

)(N−1)d/2−1
(5.126)

Substituting this result in (5.125), the partition function can be finally written as

Z(N,V,E, P)

=
Ω

Γ[(N − 1)d/2]

∫
dρ1 · · · dρN−1 Θ

(
E − P 2

2m
− φ(ρ)

) (
E − P 2

2m
− φ(ρ)

)(N−1)d/2−1 (5.127)

where the constant Ω is defined by (5.123).

82

Chapter 5. Generation of statistical ensembles 5.1. The microcanonical ensemble

5.1.6 Calculation of temperature and the mean kinetic energy

For the calculation of the temperature and the mean kinetic energy in a microcanonical ensemble using
periodic boundary conditions, the phase space volume has to be defined as

Φ(N,V,E,C2) = ζ

∫
dπ

∫
dP

∫
dρ Θ(C1 −H(π, P,ρ)) δ(P − C2)

≡ ζ
∫
dπ

∫
dP

∫
dρ Θ(E −H(π, P,ρ)) δ(P − C2)

(5.128)

where dπ = π1, ...,πN−1 and dρ = ρ1, ...,ρN−1 are the Jacobi coordinates for the nuclear positions
and momenta, as defined in Section 5.1.4, and the Hamiltonian H(π, P,ρ) is given by equation (5.100).
Following the same procedure used in Section 5.1.5.2, a Laplace transform of equation (5.128) can be
done, so that

L[Φ(N,V,E,C2)] = Φ(N,V, t, C2) =

∫ ∞
0

e−t E Φ(N,V,E,C2) dE

= ζ

∫ ∞
0

dE

∫
dπ

∫
dP

∫
dρ e−tE Θ(E −H(π, P,ρ)) δ(P − C2)

= ζ

∫
dπ

∫
dP

∫
dρ δ(P − C2)

(
−1

t

)
e−t E

∣∣∣E=∞

E=H(π,P,ρ)

= ζ

∫
dπ

∫
dP

∫
dρ δ(P − C2)

1

t
e−tH(π,P,ρ)

(5.129)

The Hamiltonian H in the previous equation can be substituted with its explicit form (5.100), that is

L[Φ(N,V,E,C2)] =
ζ

t

∫
dπ

∫
dP

∫
dρ δ(P − C2) exp

[
−t

(
N−1∑
i=1

π2
i

2µi
+
P 2

2m
+ φ(ρ)

)]

=
ζ

t

∫
dπ exp

[
−t

(
N−1∑
i=1

π2
i

2µi

)]∫
dP δ(P − C2) exp

(
−t P

2

2m

)∫
dρ exp [−t φ(ρ)]

(5.130)

where m is the total mass of the system. In order to simplify the notation, the integral over the Jacobi
position coordinates will be sometimes abbreviated as

I(t, {ρ}) ≡
∫
dρ exp [−t φ(ρ)] ≡

∫
dρ1 · · · dρN−1 exp[−t φ(ρ)] (5.131)

so that equation (5.130) becomes

L[Φ(N,V,E,C2)] =
ζ

t

∫
dπ exp

[
−t

(
N−1∑
i=1

π2
i

2µi

)]∫
dP δ(P − C2) exp

(
−t P

2

2m

)
I(t, {ρ}) (5.132)

The integral that involves the momenta variables is a Gaussian integral, which can be easily resolved,
as demonstrated in (5.109), and it is given by

I(t, {π}) ≡
∫
dπ exp

[
−t

(
N−1∑
i=1

π2
i

2µi

)]
=

(
2π

t

)(N−1)d/2 N−1∏
i=1

µ
d/2
i (5.133)

Therefore, equation (5.132) can be rewritten as

L[Φ(N,V,E,C2)] =
ζ

t
I(t, {π})

∫
dP δ(P − C2) exp

(
−t P

2

2m

)
I(t, {ρ}) (5.134)

In order to simplify the integration over the momentum P variable, it is convenient to perform a Fourier
transform of the total momentum (C2 → k) so that

F [L[Φ(N,V,E,C2)]] = F [Φ(N,V, t, C2)]

= Φ(N,V, t, k) =
1

(2π)1/2

∫ ∞
−∞

dC2 exp[−ı k C2] Φ(N,V, t, C2)
(5.135)

83

5.1. The microcanonical ensemble Chapter 5. Generation of statistical ensembles

where ι is the imaginary unit. The Fourier transform of equation (5.135) will affect only the integral
over the momentum coordinate P , so that it can be written as

Φ(N,V, t, k) = F [L[Φ(N,V,E,C2)]]

=
ζ

t (2π)1/2
I(t, {π})

∫ ∞
−∞

dC2

∫
dP exp[−ı k C2] δ(P − C2) exp

(
−t P

2

2m

)
I(t, {ρ})

=
ζ

t (2π)1/2
I(t, {π})

∫
dP

∫ ∞
−∞

dC2 exp[−ı k C2] δ(P − C2) exp

(
−t P

2

2m

)
I(t, {ρ})

The integral over the variable C2 can be solved through the Dirac delta function, resulting in the following
expression

Φ(N,V, t, k) = F [L[Φ(N,V,E,C2)]]

=
ζ

t (2π)1/2
I(t, {π})

∫
dP exp[−ı k P] exp

(
−t P

2

2m

)
I(t, {ρ})

(5.136)

Substituting expression (5.133) for the Gaussian integral I(t, {π}) in the partition function (5.136) gives

Φ(N,V, t, k) = F [L[Φ(N,V,E,C2)]]

=
ζ

t (2π)1/2

(
2π

t

)(N−1)d/2
(
N−1∏
i=1

µ
d/2
i

) ∫
dP exp[−ı k P] exp

(
−t P

2

2m

)
I(t, {ρ})

(5.137)

The integral over the variable P can be easily solved, as demonstrated in (5.114), by completing the
square in the exponent, leading to the following expression for the phase space volume

Φ(N,V, t, k) = F [L[Φ(N,V,E, P)]]

=
ζ

t (2π)1/2

(
2π

t

)(N−1)d/2
(
N−1∏
i=1

µ
d/2
i

) √
2πm

t
exp

(
−k

2

2t
m

)
I(t, {ρ})

=
ζ

t (2π)1/2
(2π)(N−1)d/2

(
N−1∏
i=1

µ
d/2
i

)
√

2πm exp

(
−k

2

2t
m

)
t−(N−1)d/2−1/2 I(t, {ρ})

= ξ exp

(
−k

2

2t
m

)
t−(N−1)d/2−3/2 I(t, {ρ})

(5.138)

where ξ collects all the constant factors, that is

ξ =
ζ

(2π)1/2
(2π)(N−1)d/2

(
N−1∏
i=1

µ
d/2
i

)
√

2πm = ζ
√
m(2π)(N−1)d/2

(
N−1∏
i=1

µ
d/2
i

)
(5.139)

In order to found the partition function, it is necessary to perform an inverse Fourier transform (k → P)
of (5.138), by applying a Fourier anti-transform, that is the inverse operation of (5.135), namely

F−1{F [L[Φ(N,V,E, P)]]} = F−1{F [Φ(N,V, t, P)]} = F−1{Φ(N,V, t, k)}

= Φ(N,V, t, P) =
1

(2π)1/2

∫ ∞
−∞

dk exp[ı kP] Φ(N,V, t, k)
(5.140)

Applying the Fourier anti-transform to (5.138), following the definition (5.140), leads to

F−1{F [L[Φ(N,V,E, P)]]} = L[Φ(N,V,E, P)] = Φ(N,V, t, P)

=
ξ

(2π)1/2

∫ ∞
−∞

dk exp[ı kP] exp

(
−k

2

2t
m

)
t−(N−1)d/2−3/2 I(t, {ρ})

=
ξ

(2π)1/2

∫ ∞
−∞

dk exp

(
−k

2

2t
m+ ı kP

)
t−(N−1)d/2−3/2 I(t, {ρ})

(5.141)

The integral in the variable k can be resolved by completing the square, as in (5.119), leading to∫ ∞
−∞

dk exp

(
−mk

2

2t
+ ıkP

)
=

√
2π t

m
exp

(
−P

2

m

t

2

)
(5.142)

84

Chapter 5. Generation of statistical ensembles 5.1. The microcanonical ensemble

Substituting this result in equation (5.141), it becomes

L[Φ(N,V,E, P)] = Φ(N,V, t, P)

=
ξ

(2π)1/2

√
2π t

m
exp

(
−P

2

m

t

2

)
t−(N−1)d/2−3/2 I(t, {ρ})

= ζ (2π)(N−1)d/2

(
N−1∏
i=1

µ
d/2
i

)
exp

(
−P

2

m

t

2

)
t−(N−1)d/2−1 I(t, {ρ})

(5.143)

where the constant factors has been rewritten, recalling the definition (5.139), as

ξ

(2π)1/2

√
2π

m
=

ξ√
m

= ζ (2π)(N−1)d/2

(
N−1∏
i=1

µ
d/2
i

)
(5.144)

Recalling the definition of I(t, {ρ}) given in (5.131), the Laplace transform (5.143) can be rewritten as

L[Φ(N,V,E, P)] = Φ(N,V, t, P)

= ζ (2π)(N−1)d/2

(
N−1∏
i=1

µ
d/2
i

)
exp

(
−P

2

m

t

2

)
t−(N−1)d/2−1

∫
dρ1 · · · dρN−1 exp[−t φ(ρ)]

= Ω exp

(
−P

2

m

t

2

)
t−(N−1)d/2−1

∫
dρ1 · · · dρN−1 exp[−t φ(ρ)]

(5.145)

where Ω includes all the constant factors in (5.145) and it is thus defined by

Ω = ζ (2π)(N−1)d/2

(
N−1∏
i=1

µ
d/2
i

)
=
ζ (2π)(N−1)d/2

µ
d/2
N

(
N∏
i=1

m
d/2
i

)
(5.146)

where the relation (5.62) has been used, and µN = m is the total mass of the system. At this point,
the last step is to compute the Laplace anti-transform of the equation (5.145), performing the change of
variable t→ E in the following way

L−1{L[Φ(N,V,E, P)]} = L−1{Φ(N,V, t, P)} = Φ(N,V,E, P)

=
1

2π ı

∫ γ+ı∞

γ−ı∞
etE Φ(N,V, t, P) dt

(5.147)

and finally obtaining the expression

Φ(N,V,E, P) =
Ω

2π ı

∫ γ+ı∞

γ−ı∞
dt

∫
dρ1 · · · dρN−1 exp(tE) exp

(
−P

2

m

t

2

)
t−(N−1)d/2−1 exp[−t φ(ρ)]

=
Ω

2π ı

∫ γ+ı∞

γ−ı∞
dt

∫
dρ1 · · · dρN−1 t−(N−1)d/2−1 exp

[
t

(
E − P 2

2m
− φ(ρ)

)]
(5.148)

=
Ω

2π ı

∫
dρ1 · · · dρN−1

∫ γ+ı∞

γ−ı∞
dt t−(N−1)d/2−1 exp

[
t

(
E − P 2

2m
− φ(ρ)

)]
The complex integral in the previous equation, also known as the Bromwich integral, has the solution
(see Appendix, Section A.6)∫ γ+ı∞

γ−ı∞
dt t−(N−1)d/2−1 exp

[
t

(
E − P 2

2m
− φ(ρ)

)]
=

∫ γ+ı∞

γ−ı∞
dt t−[(N−1)d/2+1] exp

[
t

(
E − P 2

2m
− φ(ρ)

)]
=

2π ı

Γ[(N − 1)d/2 + 1]
Θ

(
E − P 2

2m
− φ(ρ)

) (
E − P 2

2m
− φ(ρ)

)(N−1)d/2

(5.149)

85

5.1. The microcanonical ensemble Chapter 5. Generation of statistical ensembles

Substituting this result in (5.148), the phase space volume can be finally written as

Φ(N,V,E, P)

=
Ω

Γ[(N − 1)d/2 + 1]

∫
dρ1 · · · dρN−1 Θ

(
E − P 2

2m
− φ(ρ)

) (
E − P 2

2m
− φ(ρ)

)(N−1)d/2 (5.150)

where the constant Ω is defined by (5.146). Recalling the results obtained in Section 5.1.5.2, the corre-
sponding partition function can be written as in equation (5.127), that is reported here below

Z(N,V,E, P)

=
Ω

Γ[(N − 1)d/2]

∫
dρ1 · · · dρN−1 Θ

(
E − P 2

2m
− φ(ρ)

) (
E − P 2

2m
− φ(ρ)

)(N−1)d/2−1 (5.151)

where the constant Ω is defined by (5.123) and it exactly corresponds to the same constant factor
appearing in (5.150), see equation (5.146).
Moreover, the mean value of a physical quantity A(π, P,ρ), given by

〈A〉 =
ζ

Z

∫
dπ

∫
dP

∫
dρ A(π, P,ρ) δ(H(π, P,ρ)− E) δ(P − C2) (5.152)

can be written in its explicit form, following identically the procedure in Section 5.1.5.2 used to found
the explicit expression of the partition function, leading to the equation

〈A〉 =

=
Ω

Z Γ[(N − 1)d/2]

∫
dρ1 · · · dρN−1 A(π, P,ρ) Θ

(
E − P 2

2m
− φ(ρ)

) (
E − P 2

2m
− φ(ρ)

)(N−1)d/2−1

(5.153)
where the denominator contains the partition function Z ≡ Z(N,V,E, P) in the form (5.151), as given
by the definition (5.152).
Considering the definition of entropy given by Ref. [43] as

S = kb ln(Φ) (5.154)

the temperature of the system can be computed using the relation

1

T
=

(
∂S

∂E

)
V

(5.155)

leading to the expression

1

T
= kb

(
1

Φ

∂Φ

∂E

)
V

= kb

(
Z

Φ

)
V

→ kb T =

(
Φ

Z

)
V

(5.156)

Therefore, using the derived expression for the phase space volume (5.150) and the partition function
(5.151), the temperature of the system can be expressed by the relation

kb T =

(
Φ

Z

)
V

=
Ω

Z Γ[(N − 1)d/2 + 1]

∫
dρ1 · · · dρN−1 Θ

(
E − P 2

2m
− φ(ρ)

) (
E − P 2

2m
− φ(ρ)

)(N−1)d/2 (5.157)

Using the following property of the Gamma function

Γ(n+ 1) = nΓ(n) → Γ

[
(N − 1)d

2
+ 1

]
=

(N − 1)d

2
Γ

[
(N − 1)d

2

]
(5.158)

and comparing expression (5.157) with equation (5.153) gives

kb T =
2

(N − 1)d
〈E − P 2

2m
− φ(ρ)〉 =

2

(N − 1)d
〈E − φ(ρ)〉 − 1

(N − 1)d

(
P 2

m

)
(5.159)

86

Chapter 5. Generation of statistical ensembles 5.1. The microcanonical ensemble

kb T =
2

(N − 1)d
〈Ek〉 −

1

(N − 1)d

(
P 2

m

)
(5.160)

where Ek is the kinetic energy of the system, that is Ek = E − φ(ρ) ≡ C1 − φ(ρ). Fixing P = 0 at the
beginning of the molecular dynamics simulation, the value of P = ‖P‖ should be constant and equal to
zero during the whole simulation (because the total linear momentum P, and thus the value of P that is
its norm, is a conserved quantity for the Hamilton equations of motion), so that the mean kinetic energy
of the system at each step can be computed using (5.160) with P = 0 as

〈Ek〉 =
(N − 1)d

2
kb T (5.161)

87

5.2. Generation of different ensembles Chapter 5. Generation of statistical ensembles

5.2 Generation of different ensembles

As previously explained, in conventional molecular dynamics the microcanonical ensemble is generated
due to the conservation laws of Hamilton’s equations derived from Newton laws of motion. Indeed, the
simple integration of the classical equations of motion for such a system leads, in the limit of infinite
sampling, to a trajectory mapping a microcanonical ensemble of microstates, as a consequence of the
Hamiltonian flow conservation. In this ensemble the number of particles N , the volume V , and the
energy E are kept constant, so that it is often called Nve ensemble. However, experiments are usually
conducted at constant temperature and/or pressure, which corresponds to a canonical and/or isobaric
ensemble. In these ensembles, energy is not conserved but fluctuates due to exchange of energy between
the system and the thermal and/or pressure reservoir to which it is coupled, so as to generate the proper
Boltzmann distribution. Although the energy fluctuations vanish in the thermodynamic limit, the vast
majority of simulations are performed far enough from this limit, so that the fluctuations cannot be
neglected.
Performing a molecular dynamics simulation in an other ensemble than microcanonical requires a means
to keep at least one intensive quantity constant (on average) during the simulation. This can be done
either in a hard or in a soft manner. Applying a hard boundary condition on an intensive macroscopic
variable means constraining a corresponding instantaneous observable to its specified macroscopic value
at every time step during the simulation. This approach is for example used for the Woodcock simple
scaling introduced in Section 5.3.2. It is a kind of method also called constraint approach (see Section
5.2.1 but with the imposition of very strict constraint conditions. In contrast, the use of a soft boundary
condition allows for fluctuations in the instantaneous observable, only requiring its average to remain
equal to the macroscopic value (on a given timescale). The definition of a soft boundary condition
generally also requires the specification of a timescale for which the average observable should match
the specified value. Typical methods for applying soft boundary conditions are the penalty function,
weak coupling, extended system and stochastic coupling methods. The thermostats (except for the
Woodcock simple scaling one) and the barostats introduced in the following are all examples for soft
boundary conditions. In particular, the idea underneath the constraint methods and the extended
system approach will be described in Sections 5.2.1 and 5.2.2, respectively. The equations related to
the constraint method and the extended system approach will be analyzed and discussed in details in
Section 5.3, where the approaches to obtain a constant temperature molecular dynamics simulation are
described, and in Section 5.4, where the equations of motion that generate constant temperature and
pressure ensembles are derived.

5.2.1 The constraint methods

In large systems, the relative amplitude of the fluctuations of quantities such as the kinetic energy or
the pressure of a system become very small. Therefore, the suppression of the thermal fluctuation of
the kinetic energy and/or the pressure fluctuation of the volume of the system do not affect seriously
static and dynamical quantities. The constraint method is based on this matter of fact, suppressing the
fluctuation of the quantities that are supposed to be constant in the ensemble (e.g. the temperature or
the pressure, respectively in the canonical or isobaric ensemble). Therefore, in the constraint approach
the total kinetic energy and/or the pressure of the system are kept to a constant value by imposition of
a constraint. A constant temperature condition, for example, is attained by keeping the kinetic energy
to a constant value by imposing a constraint on the equations of motion.
The earliest proposal of the simulation at constant temperature is the velocity scaling algorithm by L.
V. Woodcock.[44] Later on, the strict conditions imposed by Woodcock has been relaxed and modified,
so that new constraint approaches arise. Three different techniques to maintain the temperature of the
system fixed to a constant value, based of the constraint approach and frequently used in molecular
dynamics simulation codes, will be described in Sections 5.3.1, 5.3.2 and 5.3.3.

5.2.2 The extended system methods

In ordinary molecular dynamics simulations, an isolated system in a fixed simulation unit cell is con-
sidered. The total energy and the volume of a physical system are constant under this situation. To

88

Chapter 5. Generation of statistical ensembles 5.2. Generation of different ensembles

break the conservation law which restricts the behavior of a physical system, and to realize a constant
temperature or a constant pressure condition, a physical system is extended to a composite system con-
sisting of a physical system and an external system. Usually, a system surrounded by a heat reservoir at
constant temperature or pressure is considered. Therefore, additional degrees of freedom corresponding
to an external system in contact to the physical one are introduced. The conservation law still holds
in an extended system, but the total energy or the volume of a physical system is allowed to fluctuate.
This idea accords well with the schematic image of the canonical or the isobaric ensemble in statistical
mechanics. The major difference between the extended system method and a real situation is that in
the theoretical framework a very small system for an external system instead of a macroscopic reservoir
is taken into account.
The idea of the extended system method was first presented by Andersen in his work on the constant pres-
sure method.[45] A temperature version of the extended system method was proposed by Nosé[46, 47, 48]
and later modified by Hoover, and it is therefore called the Nosé-Hoover thermostat. The extended sys-
tem approach is a very general tool, and it is therefore used across the years extend standard molecular
dynamics to various ensembles which match more closely the experimental conditions.

89

5.3. Constant temperature approaches Chapter 5. Generation of statistical ensembles

5.3 Constant temperature approaches

A modification of the Newtonian equation scheme with the purpose of generating a thermodynamic
ensemble at constant temperature is called a thermostat algorithm. The introduction of a thermo-
stat can be motivated by the following reasons: (i) to match experimental conditions, (ii) to study
temperature-dependent processes (such as, for example, phase transitions), (iii) to enhance the efficiency
of a conformational search (as in simulated annealing technique); (iv) to avoid steady energy drifts
caused by the accumulation of numerical errors during a molecular dynamics simulation.4

The use of a thermostat requires the definition of an instantaneous temperature. This temperature will
be compared to the reference temperature T0 of the heat bath to which the system is coupled. Following
from the equipartition theorem, the average internal nuclear kinetic energy Ek of a system with N nuclei
in a three-dimensional space is related to its macroscopic temperature T through the equation

Ek = 〈Ek(t)〉 =
g

2
kbT (5.162)

where Ek(t) is the instantaneous nuclear kinetic energy computed at time t (whose definition has been
introduced in Section 3.3 by means of internal nuclear velocities), kb is the Boltzmann constant, and g is
essentially equal to the number of degrees of freedom of the physical system, which in generally differs
from the number of degrees of freedom d defined as described in Section 3.3. Indeed, the number of
degrees of freedom d are mainly related to the geometry constraint of the system, while g is connected the
total number of degrees of freedom obtained after the addition or the removal from the physical subsystem
of some degrees of freedom associated to the external system. However, obviously the total number of
degrees of freedom g has to contain also the geometrical constraint of the system, so it is somehow related
with the number of degrees of freedom defined by the integer d. Defining the instantaneous temperature
T (t) at any time step as

T (t) =
2

gkb
Ek(t) =

1

gkb

[
N∑
i=1

mi v
2
i (t)

]
(5.163)

one ensures that the average temperature 〈T (t)〉 is identical to the macroscopic temperature T .
Different methods for temperature control are developed and actually well-assessed. They are classified
into three main types: i) the constraint method, ii) the stochastic method, and iii) the extended system
method. A key factor in distinguishing between these methods is the way in which the thermal contact
between a physical system and a heat bath is taken into consideration. In the present work, two of these
approaches are considered, namely, the constraint and the extended system methods.
The goal is to define particular equations of motion, different from the simple Newtonian equations used
in the Nve ensemble, which allows to generate the so-called canonical (Nvt) ensemble, where the number
of particles N , the volume of the system V and the temperature T are kept constant. In the constraint
methods, the total kinetic energy is kept to a constant value by imposition of a constraint, leading to
a suppression of the thermal fluctuation of the instantaneous kinetic energy, and therefore (through
equation (5.163)) an absence of temperature fluctuations during the dynamics. This behavior does not
allow to correctly sample the canonical ensemble. The second main approach is the extended system
method, where an additional degree of freedom representing a heat bath is introduced in the equations
of motion, and the total energy of the physical system is allowed to fluctuate by a thermal contact with
the heat bath. moreover, the extended technique permits the temperature of the physical system to
fluctuate during the dynamics, thus possibly generating the correct canonical ensemble. Furthermore,
the extended system approaches have a strong theoretical justification, differently from the majority of
the constraint methods. Indeed, these approaches rely on precise equations of motion, and this provides
an easy way to analytically compute the partition function associated, thus understanding the ensemble
generated by the extended dynamics.
In the following, four main methods which allow to maintain constant temperature during a molecular
dynamics simulation are introduced. The first two techniques, namely, the Gaussian thermostat and

4A thermostat algorithm (involving explicit reference to a heat-bath temperature T0) will avoid systematic energy drifts,
because if the instantaneous temperature is forced to fluctuate within a limited range around T0, the energy will also
fluctuate within a limited range around its corresponding equilibrium value. To perform long microcanonical simulations
(no thermostat), it is also advisable to employ an algorithm that will constrain the energy to its reference value.

90

Chapter 5. Generation of statistical ensembles 5.3. Constant temperature approaches

the simple velocity rescaling are classified as constrained methods; the third one, namely, the Berendsen
thermostat, is mainly a constraint method but with the insertion of concepts coming from the stochastic
approach, while the last one, the so-called Nosé-Hoover thermostat, is an extended system algorithm.
The first three methods do not properly generate a Nvt ensemble, whilst the fourth method, the Nosé-
Hoover thermostat, introduces a specific Hamiltonian that leads to equations of motion which permit a
good sampling of the canonical ensemble.

5.3.1 Gaussian thermostat

The average of the kinetic energy is usually used as a measure of the temperature in molecular dynamics
simulations. The kinetic energy should fluctuate both in the microcanonical and the canonical ensembles,
but the relative amplitude of the fluctuations becomes very small in a large system. Therefore, a constant
temperature condition can be attained by suppressing thermal fluctuations of the kinetic energy and
keeping it to a constant value.
A constant kinetic energy condition can be achieved by imposing a constraint

R(p, q) =
N∑
i=1

p2
i

2mi
− g

2
kbT0 = 0 (5.164)

to the equations of motion, where g is the number of degrees of freedom, kb is the Boltzmann constant
and T0 is the target temperature, which has to be maintained constant throughout the simulation. The
relation (5.164) can be equivalently rewritten as

Ek(t) =
1

2

N∑
i=1

mi v
2
i (t) =

g

2
kbT0 → using equation (5.163): T (t) = T0 (5.165)

so that it is easy to see that, through equation (5.164), the instantaneous kinetic energy is constrained
to assume a constant value. Indeed, constraining the instantaneous kinetic energy Ek(t) to be a con-
stant, computed with respect to the target temperature T0, coincides with imposing a constraint on the
instantaneous temperature T (t), by means of equation (5.163), so that the instantaneous temperature
becomes a constant equal to the target temperature T0. This constraint depends on the velocities, thus
generating a type of problem classified as non-holonomic constrained case in classical dynamics. The
application of non-holonomic constraints in molecular dynamics method has been discussed by Haile et
al.[49]. There is some ambiguity on how to impose this constraint to a mechanical system. A method
proposed by Evans et al.[50] is based on Gauss principle of least constraint, which states that the actual
constrained motion should occur along a trajectory obtained by normal projection of a force onto a
constraint hypersurface. A constraint force which is necessary to restrict the trajectory on a constraint
hypersurface is the least in this choice. A non-holonomic constraint is generally expressed as

R(q, q̇, t) = 0 (5.166)

Differentiating the previous equation (5.166) with respect to time gives a relation which the acceleration
q̈ = ṗ should satisfy,

dR

dt
= q̇

∂R

∂q
+ q̈

∂R

∂q̇
+
∂R

∂t
= 0 → q̈

∂R

∂q̇
= −q̇ ∂R

∂q
− ∂R

∂t
(5.167)

An unconstrained motion described by

dpi
dt

= −∂φ(q)

∂qi
= Fi(q(t)) i = 1, ..., N (5.168)

where φ(q) is the potential associated to the nuclear forces,5 gives a trajectory which does not stay on
the constraint hypersurface defined by equation (5.166). Therefore, a constrained force Fi,c has to be
added to the equations of motion to prevent the deviation from the constrained hypersurface

dpi
dt

= −∂φ(q)

∂qi
+ Fi,c i = 1, ..., N (5.169)

5Note: the potential φ(q) is associated to the forces acting on the nuclei, due to the electronic and nuclear mean field
generated by the Hf or Dft electronic ground state computed at constant nuclear positions.

91

5.3. Constant temperature approaches Chapter 5. Generation of statistical ensembles

The constraint force Fi,c is minimum when it is chosen perpendicular to the constraint surface or parallel
to the gradient n(q, q̇, t) = ∂R/∂q̇ of the surface. In particular, a constraint force from the constant
temperature constraint is proportional to the velocity, so that the form of Fi,c can be chosen proportional
to the gradient vector given by

ni(q, q̇, t) =
∂R

∂q̇i
= miq̇i = pi i = 1, ..., N (5.170)

Following this reasoning, the simple Newtonian equations of motion (5.8) for the nuclei should be modified
in the following way

dqi
dt

=
pi
mi

dpi
dt

= −∂φ(q)

∂qi
− γpi = Fi(q(t))− γpi

i = 1, ..., N

(5.171)

(5.172)

where the last equation of motion can be rewritten as

mαv̇α(t) = Fα(t)−mαγαvα(t) α = 1, ..., dN (5.173)

which is easily identified as a simple form of the Langevin equation, where d is the dimensionality of the
system. At the same time, using vector notation that permits to easily identified the coordinates of a
given nucleus, equation (5.173) can be expressed as

miv̇i(t) = Fi(q(t))−miγvi(t) i = 1, ..., N (5.174)

where γ = γα are constants imposed to be equal for all the particles in the system, that cannot be
interpreted as friction coefficients and whose values can be positive or negative: a positive value indicates
that heat flows from the system to the heat bath, while a negative value indicates a heat flow in the
opposite direction. Mathematically, the coefficient γ of the constrained force term is a Lagrangian
undetermined multiplier, whose expression is determined to satisfy the time derivative of the constraint
equation (5.164), given by

dR(q,p)

dt
=

d

dt

[
N∑
i=1

p2
i

2mi
− g

2
kbT0

]
=

N∑
i=1

pi
mi
· ṗi =

N∑
i=1

pi
mi
· (Fi(q(t))− γpi) = 0 (5.175)

Therefore, the following relation is obtained

γ =

[
N∑
i=1

pi
mi
·Fi(q(t))

](
N∑
i=1

p2
i

mi

)−1

=
1

gkbT0

N∑
i=1

vi(t) ·Fi(q(t)) = − 1

gkbT0

N∑
i=1

vi(t) ·
∂φ(q(t))

∂qi
(5.176)

so that the equations of motion (5.174) can be rewritten using this expression for the constant γ as

miv̇i(t) = Fi(q(t))− mi

gkbT0

[
N∑
i=1

vi(t) · Fi(q(t))

]
vi(t) i = 1, ..., N (5.177)

Therefore, the equations of motion (5.177) derived above corresponds to the Langevin equations (5.174)
with the constraint of constant instantaneous kinetic energy (and temperature) given by (5.165). If the
initial value of the total nuclear kinetic energy is set equal to (g/2)kbT0 at an initial step, equations
(5.171) and (5.172) will maintain this value during the whole molecular dynamics simulation.6

Carrying out simulations with the constrained equations of motion (5.171) and (5.172), the canonical
distribution in the coordinate part of a phase space Γ = (p, q) can be obtained. In the following, this

6Otherwise, the same result about the expression for γ can be obtained using the following strategy.
On the equations of motion (5.174) the non-holonomic constraint (5.165) is imposed, so that the instantaneous kinetic
energy is constrained to assume a constant value. Constraining the instantaneous kinetic energy Ek(t) to be a constant
coincides with imposing a constraint on the instantaneous temperature T (t), by means of equation (5.163), so that T (t)
becomes a constant equal to the target temperature T0. Therefore, the constraint (5.165) can be reformulated as in the

92

Chapter 5. Generation of statistical ensembles 5.3. Constant temperature approaches

assertion will be proved analytically.
The distribution function f(p, q) expresses the probability that a phase space point (p, q) will be occupied
by the system. A generalized Liouville equation expresses the probability conservation in the phase space
Γ and it is given by

∂f

∂t
+

∂

∂Γ
· (Γ̇f) = 0 (5.181)

where the first and second terms express a change inside a volume element and a change passing through
the surface of a volume element, respectively. The generalized Liouville equation can be rewritten as

∂f

∂t
= −

(
∂

∂Γ
· Γ̇
)
f − Γ̇ · ∂f

∂Γ
(5.182)

At the same time, the total time derivative of the distribution function f(p, q) along a phase space
trajectory is defined by (see Section 4.1)

df

dt
=
∂f

∂t
+ Γ̇ · ∂f

∂Γ
(5.183)

so that, substituting the expression (5.182) for the partial time derivative of the distribution function in
previous equation (5.183), the total time derivative of the distribution function can be reformulated as

df

dt
= −

(
∂

∂Γ
· Γ̇
)
f (5.184)

In ordinary mechanics, the right-hand side of the above equation is zero, and the famous Liouville
theorem df/dt = 0 holds. This means that the equilibrium distribution function does not change by the
time evolution. Otherwise, if the equations of motion are given by (5.171) and (5.172), the derivative
(5.184) does not vanish and can be calculated as

∂

∂Γ
· Γ̇ =

N∑
i=1

(
∂

∂pi
· ṗi +

∂

∂qi
· q̇i
)

= −
N∑
i=1

∂

∂pi
· (γpi) = −

N∑
i=1

dγ −
N∑
i=1

pi ·
∂γ

∂pi
= −(Nd− 1)γ

(5.185)

where d is the dimensionality of the system and the last part in the above equation has been computed
as follows

N∑
i=1

pi ·
∂γ

∂pi
=

N∑
i=1

pi ·
∂

∂pi

{[
N∑
j=1

pj
mj
· Fj(q(t))

](
N∑
i=1

p2
j

mj

)−1}

= −
N∑
i=1

pi ·
∂

∂pi

{[
N∑
j=1

pj
mj
· ∂φ(q)

∂qj

](
N∑
i=1

p2
j

mj

)−1}

= −
N∑
i=1

(
pi
mi
· ∂φ(q)

∂qi

)(
N∑
i=1

p2
i

mi

)−1

+ 2

(
N∑
j=1

pj
mj
· ∂φ(q)

∂qj

)(
N∑
i=1

p2
i

mi

)(
N∑
i=1

p2
j

mj

)−2

= γ − 2γ = −γ

(5.186)

following

Ṫ (t) =
d

dt

[
1

gkb

N∑
i=1

mi v
2
i (t)

]
=

2

gkb

N∑
i=1

mi vi(t) · v̇i(t) = 0 (5.178)

Inserting the Langevin equation of motion (5.174) in the previous expression leads

Ṫ (t) =
2

gkb

[
N∑
i=1

vi(t) · Fi(q(t))− γ
N∑
i=1

miv
2
i (t)

]
=

2

gkb

[
N∑
i=1

vi(t) · Fi(q(t))− γgkbT0

]
= 0 (5.179)

where the penultimate equivalence is performed using the constraint (5.165). Solving equation (5.179) with respect to γ
leads to a particular expression for this constant, given by

γ =
1

gkbT0

N∑
i=1

vi(t) · Fi(q(t)) = − 1

gkbT0

N∑
i=1

vi(t) ·
∂φ(q(t))

∂qi
(5.180)

93

5.3. Constant temperature approaches Chapter 5. Generation of statistical ensembles

If the conservation of linear momentum is taken explicitly into consideration, equation (5.185) results in
−(Nd− 4)γ.
Using the computed expression (5.185), the differential equation (5.184) becomes

df

dt
= (Nd− 1)γf = (Nd− 1)

[
N∑
i=1

pi
mi
· Fi(q(t))

](
N∑
i=1

p2
i

mi

)−1

f (5.187)

The expression for γ, given by (5.176) and used in the equation above, can be rewritten in a more
suitable way which permits to easily solve the differential equation (5.187), that is

γ =

[
N∑
i=1

pi
mi
· Fi(q(t))

](
N∑
i=1

p2
i

mi

)−1

= − 1

gkbT0

N∑
i=1

pi
mi
· ∂φ(q(t))

∂qi

= − 1

gkbT0

N∑
i=1

dqi
dt
· ∂φ(q(t))

∂qi
= − 1

gkbT0

[
dφ(q(t))

dt

] (5.188)

In this way, substituting this last expression for the coefficient γ in (5.187), the differential equation for
the distribution function turns into

df

dt
= (Nd− 1)γf = −

(
Nd− 1

gkbT0

)(
dφ(q)

dt

)
f

g=Nd−1−−−−−→ df

dt
= − 1

kbT0

(
dφ(q)

dt

)
f (5.189)

and, as previously said, if the conservation of linear momentum is taken explicitly into consideration,
then equation (5.189) results equal to

df

dt
= (Nd− 4)γf = −

(
Nd− 4

gkbT0

)(
dφ(q)

dt

)
f

g=Nd−4−−−−−→ df

dt
= − 1

kbT0

(
dφ(q)

dt

)
f (5.190)

Therefore, by choosing a value of degrees of freedom equal to g = Nd− 1 and g = Nd− 4 for the cases
(5.189) and (5.190), respectively, the simple linear differential equation for the distribution function
finally becomes

df

dt
= − 1

kbT0

(
dφ(q)

dt

)
f (5.191)

The solution of this equation is

f(p, q) = δ

(
N∑
i=1

p2
i

2mi
− g

2
kbT0

)
exp

[
−
(
φ(q)

kbT0

)]
(5.192)

The same result can be demonstrated more rigorously starting from equations of motions written using
the extended system method, or using the procedure for non Hamiltonian systems outlined in Section
4.3.2.1 (see Appendix A, Section A.9). The distribution in the coordinate part has the canonical form,
whereas that in the momentum space has a Dirac delta function form, because of imposition of a
constraint on the kinetic energy. The probability in a volume element along a phase space trajectory is
not conserved in the Gaussian constraint method. A conserved quantity is instead

f(p, q) exp

[(
φ(q)

kbT0

)]
(5.193)

Therefore, the probability in a phase space along the trajectory changes in proportion to the entity of
the exponential function in (5.192). Equation (5.192) only states that the relative probability of two
phase points along a trajectory is expressed in a canonical distribution form. In order to identify f(p, q)
with the equilibrium distribution function in statistical mechanics, the assumption that a trajectory
determined by equations (5.171), (5.172) and (5.176) passes through almost all point in an accessible
part of a phase space has to be made (ergodicity hypothesis). This assumption is essential for the proof.
There are no certainties whether this is true or not in a particular case. However, usually the assumption
that the ergodic property is satisfied in a many particle system is underpinned. In this situation, the
exact canonical ensemble average is obtained in simulations with the Gaussian constraint method for
quantities which are functions of coordinates only.
The integration of the equations of motion (5.171) and (5.172) can be performed using the Liouville
approach and the Suzuki-Trotter factorization method, as demonstrated in Appendix A, Section A.10.

94

Chapter 5. Generation of statistical ensembles 5.3. Constant temperature approaches

5.3.2 Simple velocity rescaling

Velocity rescaling method is actually the first technique proposed by Woodcock[44] (in 1971) to keep the
temperature fixed during a simulation, without allowing fluctuations of the temperature itself. This was
the first attempt to carry out a simulation in a controlled condition. In this method the instantaneous
temperature T (t) of the system is constrained to the reference heat bath value T0 at every step in the
simulation, without allowing for any fluctuations. In this sense, temperature constraining represents a
hard boundary condition, in contrast to the soft boundary conditions employed by all other thermostats
mentioned in the present treatise.
The simple velocity rescaling thermostat does not properly rely on a modified equation of motion, but
uses instead the Newton equations of motion (4.1) which sample the microcanonical ensemble, and then
introduced a scaling factor at the end of each simulation step by which the velocities are scaled to return
the target temperature. The equations of motion (4.1) generate the following simple Hamilton equations

dqi
dt

=
pi
mi

= vi

dpi
dt

= Fi(q(t))

i = 1, ..., N
(5.194)

(5.195)

The integrator used in this case is basically the same as for the Nve ensemble, namely, the velocity
Verlet algorithm

qi(t+ ∆t) = qi(t) + ∆tvi(t) +
∆t2

2

Fi[q(t)]

mi

vi(t+ ∆t) = vi(t) +
∆t

2

{
Fi[q(t)]

mi
+

Fi[q(t+ ∆t)]

mi

} i = 1, ..., N

(5.196)

(5.197)

with an additional scaling for the velocities at each step,

vi,λ(t+ ∆t) ≡ λvi(t+ ∆t) i = 1, ..., N (5.198)

introduced in order to satisfy the constraint of constant kinetic energy. Note that all the nuclear velocities
are scaled by the same factor λ, which is a constant, different for each time step of the dynamics, but
equal (at a give time step) for all the nuclei. The value of the scaling factor is computed at each molecular
dynamics step and it is determined from the constraint of constant kinetic energy

Ek,λ(t+ ∆t) ≡ λ2Ek(t+ ∆t) = Ek(t) =
g

2
kbT0 (5.199)

where the scaled kinetic energy is defined by the scaled nuclear velocities and it is fixed equal to a
constant in the last equivalence above, so that, writing the explicit expression of the first term on the
left hand side of previous equation, and equaling it with the constant kinetic energy value leads to

N∑
i=1

mi

2
v2
i,λ(t+ ∆t) = λ2

N∑
i=1

mi

2
v2
i (t+ ∆t) =

g

2
kbT0 (5.200)

Thus the value of the scaling factor λ to be used in (5.198) is given by

λ =

{
gkbT0

[
N∑
i=1

mi v
2
i (t+ ∆t)

]−1}1/2

= {gkbT0[gkbT (t+ ∆t)]−1}1/2 =

√
T0

T (t+ ∆t)
(5.201)

where the temperature T (t + ∆t) is computed from the nuclear velocities at time (t + ∆t), which are
obtained through the velocity Verlet algorithm (5.197), in the following way

T (t+ ∆t) =
1

gkb

N∑
i=1

mi v
2
i (t+ ∆t) =

2

gkb
Ek(t+ ∆t) (5.202)

95

5.3. Constant temperature approaches Chapter 5. Generation of statistical ensembles

This velocity scaling procedure is very simple and convenient. It is performed outside of the molecular
dynamics equations of motion, i.e., after the velocity Verlet algorithm is used, updating nuclear positions
and momenta. After this coordinates update, the new temperature associated to the new velocities is
computed, and then the velocity rescaling is applied, with the value of the scaling factor λ determined
by the new and the target temperatures as in (5.201).
One of the main issue for this method has been outlined by S. C. Harvey et al.,[51] who observed that the
velocity rescaling performed using standard protocols can systematically change the proportion of total
kinetic energy found in motions associated with the various degrees of freedom. Under these conditions,
the simulation violates the principle of equipartition of energy, which requires that each degree of freedom
has the same mean kinetic energy, affecting both structural and dynamical properties.[51] A particularly
pathological form of this problem occurs if one does not periodically remove the net translation of (and
rotation about) the center of mass. In this case, almost all of the kinetic energy is converted into these two
kinds of motion, producing a system with almost no kinetic energy associated with the internal degrees
of freedom, a phenomenon called the flying ice cube effect.[51, 52] Because velocity rescaling converts
much of the kinetic energy of the system into motion of the center of mass, artifactual behavior can
be reduced by periodically removing the translational motion of the center of mass (by subtracting the
center of mass velocity vcm(t+ ∆t) to the nuclear velocities) and the rotation about it (by subtracting
the rotational velocities vi,r(t + ∆t) of the nuclei to the nuclear velocities). Unfortunately, this still
leaves the simulation subject to violation of energy equipartition, because low-frequency modes can still
be excited by repeated velocity reassignments.[51] Furthermore, if only translational motion of the center
of mass is removed, the excitation of the zero-frequency rotational mode around the center of mass can
cause substantial distortion of the structure, due to the growing centrifugal force. For these reasons, the
removal of translational and rotational motions of the entire system can be seen as a desirable, but not
sufficient, precaution. Therefore, to avoid pathological cases of equipartition energy principle violation,
after that the new velocities {vi(t+∆t)} are computed through the velocity Verlet integrator, the system
net linear and angular momenta are subtracted in order to remove the net translational and rotational
motion (this is performed by removing from the nuclear velocities vi(t + ∆t) the linear velocity of the
center of mass vcm(t+∆t) and the nuclear velocities vi,r(t+∆t) induced by the system rotation). Then,
the instantaneous kinetic energy Ek(t + ∆t) corresponding to the new velocities {vi(t + ∆t)} and its
associated temperature T (t+ ∆t) are calculated, so that the new velocities {vi(t+ ∆t)} can be rescaled
using the factor (5.201) in order to recover the set of velocities {vi,λ(t + ∆t)} associated to the target
temperature T0, that is to say

vi(t+ ∆t) ← vi,λ(t+ ∆t) = vi(t+ ∆t)

√
T0

T (t+ ∆t)
i = 1, ..., N (5.203)

This velocity rescaling procedure is outlined in Table 5.3. Therefore, the simple velocity rescaling method
consists, at a given time step, in performing the nuclear positions and velocities time propagation with
the velocity Verlet algorithm, subtracting the system linear and angular momenta components from
the updated nuclear velocities, and then multiplying the new velocities of all the nuclei by the same
factor, calculated by constraining the total kinetic energy at each step to be equal to the average kinetic
energy Ek at the target temperature. The nuclear velocities are then scaled at the end of each molecular
dynamics run by a factor λ defined as

λ =

√
T0

T (t+ ∆t)
(5.204)

where T0 is the target temperature and T (t+ ∆t) is the temperature at the end of molecular dynamics
run (computed with the new velocities propagated through Verlet algorithm). In this way, a target
instantaneous temperature is maintained during the simulation. Since the same factor is used for all
the particles, there is neither an effect on constrained bond lengths nor on the center of mass motion.
Furthermore, there was also not a consensus how often the scaling procedure should be employed. Some
were optimistic and scaled in every time step. Some were skeptical and recommended applying scaling
as few times as possible because the trajectory in a phase space becomes discontinuous at the instant
of the scaling. The equations used for the integrator implemented in the Crystal code for propagating
the phase space point in time with simple velocity rescaling thermostat method is reported in Table 5.3,
where it can be seen that the velocities rescaling is applied at each molecular dynamics iteration.

96

Chapter 5. Generation of statistical ensembles 5.3. Constant temperature approaches

Starting point (initial conditions) : qi(t), vi(t), Fi[{qi(t)}]

Step 1. Propagator eiLv∆t/2 : vi(t+ ∆t/2)← vi(t) +
∆t

2mi
Fi[{qi(t)}]

Step 2. Propagator eiLq∆t : qi(t+ ∆t)← qi(t) + ∆tvi(t+ ∆t/2)

Step 3. Updating forces : compute Fi[{qi(t+ ∆t)}]

Step 4. Propagator eiLv∆t/2 : vi(t+ ∆t)← vi(t+ ∆t/2) +
∆t

2mi
Fi[{qi(t+ ∆t)}]

Step 5. Remove COM velocities : vi(t+ ∆t)← vi(t+ ∆t)− vcm(t+ ∆t)− vi,r(t+ ∆t)

Step 6. Updating kinetic energy : Ek(t+ ∆t) =
1

2

3N∑
i=1

miv
2
i (t+ ∆t)

Step 7. Updating temperature : T (t+ ∆t) =
2

gkb
Ek(t+ ∆t)

Step 8. Velocity scaling : vi(t+ ∆t)← λvi(t+ ∆t) with λ given by (5.204)

Table 5.3: Simple velocity scaling thermostat integrator algorithm, applied ∀ i = 1, ..., N .

Another important issue is to understand and compute the form of the phase space distribution generated
by the scaling procedure. Indeed, it was not clear for long years since Woodcock article[44] whether
this approach can really produce the canonical distribution or not. At first sight, there seems to be
a difference between the true canonical trajectory of the system and the one generated by the simple
velocity rescaling thermostat. Since no particular equations of motion is associated to the simple velocity
scaling technique, this ad hoc temperature control algorithm is difficult to investigate theoretically, and
its validity was considered questionable.[46] Nevertheless, it can be demonstrated that the simple scaling
scheme is an approximate algorithm to solve the Gaussian constraint method described in Section 5.3.1,
leading to the correct canonical distribution in the coordinate space with accuracy of order equal to
the time step ∆t, if the scaling is carried out at every molecular dynamics step.[47] Furthermore, the
difference between equations of motion for Woodcock algorithm and the Gaussian thermostat is O(∆t).
The next paragraph will be dedicated to this demonstration.
Since in the thermodynamic limit the average properties do not depend on the ensemble chosen, even this
very simple algorithm can be used to produce useful results.[53] However, for small systems or when the
observables of interest are dependent on the fluctuations rather than on the averages, this method cannot
be employed. Its usage can also lead to simulation artifacts, as for example the previously mentioned
flying ice cube effect, which can be partially compensated and minimized by removing net translation
and rotational momentum, but cannot be completely avoided.[51, 52]

Relation between the Gaussian constraint method and velocity scaling algorithm The dif-
ferential equation which can approximately describes the velocity scaling algorithm is here analyzed and
discussed. The velocity scaling algorithm consists of two finite difference equations (in a velocity Verlet
form) (5.196) and (5.197), and finally a scaling equation (5.203) for the nuclear velocities. The nuclear
velocities at time t are given by (5.197)

vi(t) = vi(t+ ∆t)− ∆t

2

{
Fi[q(t)]

mi
+

Fi[q(t+ ∆t)]

mi

}
(5.205)

97

5.3. Constant temperature approaches Chapter 5. Generation of statistical ensembles

An acceleration is expressed by a difference of the nuclear velocity after the scaling at time (t+ ∆t) with
the nuclear velocity before the scaling at time t, expressed by (5.205), so that

d2qi
dt2

=
dvi
dt

=
λvi(t+ ∆t)− vi(t)

∆t
=

(
λ− 1

∆t

)
vi(t+ ∆t) +

1

2

{
Fi[q(t)]

mi
+

Fi[q(t+ ∆t)]

mi

}
(5.206)

In the final line of the above equation, the force terms are separated into an ordinary force and an
additional part which is proportional to (λ − 1) and to the nuclear velocity. The scaling factor defined
in equation (5.201) can be computed as

λ =

{
1

gkbT0

N∑
i=1

mi v
2
i (t+ ∆t)

}−1/2

=

{
1

gkbT0

N∑
i=1

mi

[
vi(t) +

∆t

2

Fi[q(t)]

mi
+

∆t

2

Fi[q(t+ ∆t)]

mi

]2}−1/2

=

{
1

gkbT0

N∑
i=1

mi

[
v2
i (t) +

∆t

mi
vi(t) · Fi[q(t)] +

∆t

mi
vi(t) · Fi[q(t+ ∆t)] +O((∆t)2)

]}−1/2

=

{
1

gkbT0

N∑
i=1

(
miv

2
i (t) + ∆tvi(t) · Fi[q(t)] + ∆tvi(t) · Fi[q(t+ ∆t)]

)
+O((∆t)2)

}−1/2

(5.207)

The last term in the parenthesis is only indicated as a quantity of order (∆t)2. The kinetic energy at
time t is assumed to be (g/2)kbT0, so that the previous expression becomes

λ =

[
1 +

∆t

gkbT0

N∑
i=1

vi(t) · Fi[q(t)] +
∆t

gkbT0

N∑
i=1

vi(t) · Fi[q(t+ ∆t)] +O((∆t)2)

]−1/2

(5.208)

At this point, the forces acting on nuclei at time t + ∆t can be written as a Taylor expansion in the
following way

Fi[q(t+ ∆t)] ≡ Fi[{qi(t+ ∆t)}] = Fi

[{
qi(t) + ∆t

(
vi(t) +

∆t

2

Fi[q(t)]

mi

)}]
= Fi[q(t)] + ∆t

(
vi(t) +

∆t

2

Fi[q(t)]

mi

)
Ḟi[q(t)] +O((∆t)2)

= Fi[q(t)] +O(∆t)

(5.209)

so that, substituting this expression in (5.208) and comparing the result with the formula of γ coefficient
defined in (5.176) for the Gaussian thermostat equations of motion, leads to a scaling factor equal to

λ =

[
1 +

2∆t

gkbT0

N∑
i=1

vi(t) · Fi[q(t)] +O((∆t)2)

]−1/2

= [1 + 2γ∆t+O((∆t)2)]−1/2 (5.210)

Finally, using the binomial series for the expansion of the inverse square root,7 the previous expression
becomes

λ = [1 + 2γ∆t+O((∆t)2)]−1/2 = 1− γ∆t+O((∆t)2) (5.211)

Substituting this formula in the equation of motion (5.206), and adopting at the same time the approx-
imation (5.209) for the forces acting on the nuclei at time (t + ∆t), equation (5.206) can be rewritten
as

d2qi
dt2

=
dvi
dt

= −γvi(t+ ∆t) +
1

2

{
Fi[q(t)]

mi
+

Fi[q(t)]

mi
+O((∆t)2)

}

=
Fi[q(t)]

mi
− γvi(t)− γ

∆t

2

{
Fi[q(t)]

mi
+

Fi[q(t+ ∆t)]

mi

}
+O((∆t)2)

=
Fi[q(t)]

mi
− γvi(t) +O(∆t)

(5.212)

7Binomial series...

98

Chapter 5. Generation of statistical ensembles 5.3. Constant temperature approaches

where the passage from the first to the second line has been performed using the velocity Verlet discretized
equation of motion (5.197) for the nuclear velocities vi(t+∆t). Therefore, the differential equation which
characterizes approximately the simple velocity scaling algorithm has finally been found, together with
an expression for the undetermined multiplier γ, that is

d2qi
dt2

=
dvi
dt

=
Fi[q(t)]

mi
− γvi(t) +O(∆t) where γ =

1

gkbT0

N∑
i=1

vi(t) · Fi[q(t)] (5.213)

The leading term in equation (5.213) is equivalent to that in the Gaussian constraint method, see
equations (5.171), (5.172) and (5.176). If the scaling is carried out in every time step, and if the unit
time step ∆t is chosen to a reasonably small value, the simulation with the velocity scaling algorithm gives
equal results with those in the Gaussian constraint method, and the distribution function sampled in
the coordinate space is the canonical distribution, see equation (5.192). The error in this approximation
is of order ∆t. It should be noted that the accuracy is one order less than that of the ordinary Verlet
algorithm, which is O((∆t)2).

5.3.3 Berendsen thermostat

The method introduced by H. J. C. Berendsen et al.[54] is a constant temperature technique based on
the modification of a Langevin equation. The term for the local disturbance from random noise in the
standard generalized Langevin equation is eliminated, so as to mimic the global energy exchange between
a ionic system and an external heat bath, while neglecting local coupling by random noise. Since only
the global coupling of the system with a heat bath remains, this technique results in relatively modest
temperature controlling, leading to an approximation of the perturbation that would occur in an ideal
physical non-equilibrium system. This method is called weak coupling or Berendsen thermostat. In the
following, the main equations that describes this temperature controlling technique are outlined.
Consider a system of N point particles (nuclei) in d dimensions described using Cartesian coordinates,
where the number of degrees of freedom is equal toNd, that also corresponds to the number of coordinates
in the phase space required to define the physical system. The coupling of this system to a heat bath
with fixed reference temperature T0 can be taken into account by inserting stochastic and friction terms
in the equations of motions, yielding a Langevin equation of the form

mαv̇α(t) = Fα(t)−mαγαvα(t) +Rα(t) α = 1, ..., Nd (5.214)

where Fα is the external systematic force (computed through the Hellman-Feynman theorem for a system
of N nuclei), the second term on the right hand side is a viscous friction force with γα a positive friction
coefficient8 and the last term Rα is a Gaussian stochastic variable force with zero mean, fixed intensity
and zero correlation with the velocities for different degrees of freedom, namely,

〈Rα(t)〉 = 0 〈Rα(t)Rβ(t+ τ)〉 = 2mαγα kb T0 δ(τ)δαβ 〈vα(t)Rα(t+ τ)〉 = 0 (5.216)

where the physical assumption about the intensity of the random forces Rα given in the second ex-
pression in (5.216) has been made on the basis of the fluctuation-dissipation theorem, that gives the

8If the last term Rα(t) in (5.214), which represents a stochastic force, is removed and a single friction coefficient is used
for all the nuclei, then γα loses its physical meaning of a friction coefficient and is no longer restricted to positive values. A
positive value indicates that heat flows from the system to the heat bath. A negative value indicates a heat flowing in the
opposite direction. In the case the stochastic force Rα(t) is avoided, equation (5.214) becomes

mαv̇α(t) = Fα(t)−mαγαvα(t) α = 1, ..., Nd (5.215)

An important thing to note here is that if equation (5.215) was applied to the real nuclear velocities {ṽi} instead of the
internal nuclear velocities {vi}, the linear and angular momenta of the system would not be conserved (unless they exactly
vanish). Any algorithm relying on the equation of motion(5.215) is smooth (i.e., generates a continuous velocity trajectory)
and deterministic. It is also time-reversible if γα is antisymmetric with respect to time-reversal operations.
The advantages of deterministic algorithms are that (i) the results can be exactly reproduced (in the absence of numerical
errors), and (ii) there are well-defined conserved quantities (constants of the motion). Considering a given microstate,
time-reversibility is achieved if the change dt→ −dt (leading in particular to rα → rα, vα → −vα and v̇α → v̇α) leaves the
equation of motion for the coordinates unaltered (while the velocities are reversed). Clearly, this condition is satisfied for
equation (5.215) only if the corresponding change for γα is γα → −γα.

99

5.3. Constant temperature approaches Chapter 5. Generation of statistical ensembles

relationship between a fluctuating force on some degree of freedom and the damping coefficient that
determines dissipation in this degree of freedom (see Appendix A, Section A.4).
The relationships (5.216) can be physically interpreted as follows: (i) the function Rα(t) has no di-
rectional preference; (ii) the function Rα(t) is a Gaussian random function of time with zero mean and
variance 2mαγα kb T0 for all degrees of freedom interacting with the heat bath; (iii) the force Rα(t) acting
on degree of freedom α is uncorrelated with the force Rβ(t) which acts on another degree of freedom β;
(iv) the instantaneous value of Rα(t) is not affected by its preceding values, i.e., the function Rα(t) is
uncorrelated with its time history, that is to say, the force component Rα(t) is uncorrelated with any
component Rβ(t′) unless α = β and t′ = t; (v) the random force components Rα(t) (α = 1, ..., Nd) are
uncorrelated with the nuclear velocities vα(t′) and systematic forces Fα(t′) at previous times t′ < t.
In practice, the random force Rα(t) can be sampled at each molecular dynamic step of a numerical simu-
lation as a random Gaussian variable with zero mean and variance (mean square amplitude) 2mαγα kb T0.
The sampling procedure is performed independently for each degree of freedom exposed to the thermal
noise. Furthermore, samples for two successive time steps are evaluated independently from each other.
Equation (5.214) corresponds physically to a system of particles that experience viscous friction and are
subject to frequent collisions with light particles that form an ideal gas at temperature T0. Mathemati-
cally, the form of (5.214) corresponds to a standard Langevin equation with a viscous friction force and a
stochastic external force with the property (5.216). These two forces are intended to represent coupling
to an external heat bath and scale the atomic velocities during the numerical simulation to add or re-
move energy from the system as desired. The damping constants γα in the friction and stochastic terms
determine the strength of the coupling to the thermal bath. Through the Langevin equation (5.214) the
system couples not only globally to a heat bath, but is also locally subjected to random noise. If only
a global coupling with minimal local disturbance wants to be imposed on the system, equation (5.214)
has to be modified in such a way that only the global coupling remains.
The Langevin equation of motion (5.214) is smooth, non-deterministic and time-irreversible. It can be
rewritten as

v̇α(t) = −γαvα(t) +
1

mα
[Fα(t) +Rα(t)] α = 1, ..., Nd (5.217)

so that it is easily recognizable in the form of a first order linear differential equation with variable
coefficients, whose solution is given by

vα(t) = vα(0)e−γαt +

∫ t

0

1

mα
[Fα(t) +Rα(t)] e−γα(t−t′) dt′ α = 1, ..., Nd (5.218)

where the first term is just the solution of the correspondent homogeneous differential equation with an
exponential decay due to friction, and the second term gives the extra velocity produced by the external
force and the random noise acting on the nuclear particles.
For convenience, in the following the friction constants are chosen to be equal for all the particles: γα = γ.
This is a matter of choice, different classes of degrees of freedom can in principle be coupled to the bath
with different friction constants.
As previously mentioned, the idea behind the Berendsen thermostat is to modify the Langevin equation
of motion (5.214) in the sense of removing the local temperature coupling through stochastic collisions
(random noise), neglecting stochastic fluctuations on the microscopic timescale, while retaining the global
coupling (principle of least local perturbation). In various applications, only the global thermodynamic
behavior of the system is of importance. Then, it is computationally effective to eliminate the local ran-
dom noise Rα(t) in the Langevin equation (5.214), and to characterize the system/heat bath coupling via
a time-dependent damping term. This damping term can be introduced on the basis of the requirement
that the new equation of motion must yield the same averaged behavior of the system kinetic and total
energy for a given target temperature T0.
In the following, the main procedure necessary to derive the Berendsen equations of motion is outlined.
First of all, the time derivative of the nuclear kinetic energy Ek can be written in the form

dEk
dt

= lim
∆t→0

{
1

2∆t

Nd∑
α=1

mα[v2
α(t+ ∆t)− v2

α(t)]

}
(5.219)

and defining the velocity difference as

∆vα = vα(t+ ∆t)− vα(t) (5.220)

100

Chapter 5. Generation of statistical ensembles 5.3. Constant temperature approaches

the previous expression for the kinetic energy derivative can be rearranged in the following way

dEk
dt

= lim
∆t→0

{
1

2∆t

Nd∑
α=1

mα[2vα(t)∆vα + ∆v2
α]

}
(5.221)

At the same time, according to the Langevin equation (5.214) with the additional constraint imposed
on the constants γα which are chosen to be equal for all particles, i.e. γα = γ ∀α = 1, ..., Nd, the change
in nuclear velocity over a short time interval can be approximated as

∆vα = vα(t+ ∆t)− vα(t) =
1

mα

∫ t+∆t

t
[Fα(t′)−mαγvα(t′) +Rα(t′)]dt′

≈ 1

mα
[Fα(t)∆t−mαγvα(t)∆t] +

1

mα

∫ t+∆t

t
Rα(t′) dt′

(5.222)

Then, the substitution of equation (5.222) in equation (5.221) can be performed, separately considering
the first and the second terms of the summation in equation (5.221). The first term is given by

lim
∆t→0

{
1

∆t

Nd∑
α=1

mαvα(t)∆vα

}
≈

Nd∑
α=1

[Fα(t)vα(t)−mαγv
2
α(t)] + lim

∆t→0

{
1

∆t

Nd∑
α=1

∫ t+∆t

t
vα(t)Rα(t′) dt′

}

= −Ėe,0(ξ(t))− 2γEk(t) + lim
∆t→0

{
Nd

∆t

∫ t+∆t

t
〈vα(t)Rα(t′)〉 dt′

}
= −Ėe,0(ξ(t))− 2γEk(t) (5.223)

where ξ are the electronic degrees of freedom (i.e. space and spin electronic coordinates) and the time
derivative of the potential energy has been computed as

Ėe,0(ξ(t)) =
dEe,0(ξ(t))

dt
=

Nd∑
α=1

∇αEe,0(ξ(t))
dqα
dt

= −
Nd∑
α=1

Fα(t) vα(t) (5.224)

The current kinetic energy Ek(t) in (5.223) has the form

Ek(t) =
1

2

Nd∑
α=1

mαv
2
α(t) (5.225)

and the ensemble average, given by

1

Nd

Nd∑
α=1

vα(t)Rα(t′) = 〈vα(t)Rα(t′)〉 = 0 (5.226)

has been used to set equal to zero the argument of the last limit in equation (5.223).
Then, according to equation (5.222), the second term in equation (5.221) becomes

lim
∆t→0

{
1

2∆t

Nd∑
α=1

mα∆v2
α

}
≈ lim

∆t→0

{
1

2∆t

Nd∑
α=1

1

mα
F 2
α(t)∆t2

}
+ lim

∆t→0

{
1

2∆t

Nd∑
α=1

mα(γvα(t))2∆t2

}

− lim
∆t→0

{
1

∆t

Nd∑
α=1

γFα(t)vα(t)∆t2

}
+Nd

∫ t+∆t

t
〈Fα(t)Rα(t′)

mα
〉 dt′

− γNd
∫ t+∆t

t
〈vα(t)Rα(t′)〉 dt′

+ lim
∆t→0

{
1

2∆t

Nd∑
α=1

Nd∑
β=1

mα
1

mαmβ

∫ t+∆t

t

∫ t+∆t

t
Rα(t′)Rβ(t′′) dt′ dt′′

}

= lim
∆t→0

{
1

2∆t

Nd∑
α=1

Nd∑
β=1

1

mβ

∫ t+∆t

t

∫ t+∆t

t
Rα(t′)Rβ(t′′) dt′ dt′′

}

(5.227)

101

5.3. Constant temperature approaches Chapter 5. Generation of statistical ensembles

where the first five terms are equal to zero: in the first three the application of the limit ∆t → 0
makes the terms equal to zero, while in the fourth and fifth terms the average values are both zero since
the stochastic forces Rα(t′) (α = 1, ..., Nd) are all uncorrelated with the nuclear velocities vα(t) and
systematic forces Fα(t) at previous times t < t′. Therefore, only the sixth term remains, so that, thanks
to the equation (5.222), the second term in (5.221) can be written as

lim
∆t→0

{
1

2∆t

Nd∑
α=1

mα∆v2
α

}
≈ lim

∆t→0

{
1

2∆t

Nd∑
α=1

Nd∑
β=1

1

mβ

∫ t+∆t

t

∫ t+∆t

t
Rα(t′)Rβ(t′′) dt′ dt′′

}

= lim
∆t→0

{
Nd

2∆t

Nd∑
β=1

1

mβ

∫ t+∆t

t

∫ t+∆t

t
〈Rα(t′)Rβ(t′′)〉 dt′ dt′′

}

= lim
∆t→0

{
Nd

∆t

Nd∑
β=1

1

mβ

∫ t+∆t

t

∫ t+∆t

t
mαγ kb T0 δ(t

′ − t′′)δαβ dt′ dt′′
}

= lim
∆t→0

{
Nd

∆t
γ kb T0

∫ t+∆t

t
dt′

}
= Ndγ kb T0 lim

∆t→0

∫ t+∆t

t
dt′

= NdγkbT0

(5.228)

Finally, summing up the expressions (5.223) and (5.228), the time derivative of the kinetic energy (5.221)
can be approximated as

dEk
dt

=
Nd∑
α=1

Fα(t)vα(t) + 2γ

[
Nd

2
kbT0 − Ek(t)

]
(5.229)

where the first term on the right hand side equals minus the time derivative of the potential energy, as
demonstrated in (5.224), and the second term is an additional quantity describing the global coupling
to the heat bath. In terms of temperature, using the relation Ek = NdkbT/2, this extra term can be
rearranged as

dEk
dt

=

Nd∑
α=1

Fα(t)vα(t) +
Nd

2
kb

(
dT

dt

)
bath

(5.230)

where the last term has been written as a function of the time rate of temperature changing, which is
represented by the first order differential equation(

dT

dt

)
bath

≡ dT (t)

dt
= 2γ[T0 − T (t)] =

1

τt
[T0 − T (t)] (5.231)

so that the time constant τt of this coupling is equal to τt = (2γ)−1, leading to a temperature deviation
that decays exponentially with a time constant τt. In order to recover the meaning of the constant τt,
equation (5.231) can be rewritten in such a way that its character of a non-homogeneous first order
linear ordinary differential equation can be easily recognized and solved as

dT (t)

dt
= − 1

τt
[T (t)− T0] → T (t) = T0 e

−t/τt + T0(1 + e−t/τt) (5.232)

Therefore, the quantity τt (often called the rise time or relaxation time of the thermostat) describes the
strength of the coupling of the system to a hypothetical heat bath and it gives the coupling constant
that represents the characteristic time of equilibration of the system with the thermal bath. The larger
the rise time τt, the weaker the coupling, i.e., the longer the time that the system employs to achieve
a given target temperature T0 from the current one T = T (t). Equation (5.229) can be rewritten in a
form that recovers the expression for the derivative of the Hamiltonian of the system, starting from

Ėk = −Ėe,0(ξ(t)) +NdγkbT0 − 2γEk(t) (5.233)

and rearranging this relationship to obtain

d

dt
[Ek(t) + Ee,0(ξ(t))] = Ḣ = NdγkbT0 − 2γEk(t) = Ndγkb[T0 − T (t)] (5.234)

102

Chapter 5. Generation of statistical ensembles 5.3. Constant temperature approaches

where H is the system Hamiltonian, T (t) is the current system temperature viewed as a function of
time and the relation Ek(t) = NdkbT (t)/2 between the instantaneous kinetic energy and the current
temperature has been used to obtain the final expression. Equation (5.234) must be satisfied by the
equation of motion (5.214) after imposing γα = γ ∀α = 1, ..., Nd and the elimination of the random
force term Rα(t). In particular, returning to equation (5.214), it is clear that the global additional
temperature coupling of equation (5.231) is accomplished by the equations of motion

mαv̇α(t) = Fα(t) +mαγ

[
T0

T (t)
− 1

]
vα(t) α = 1, ..., Nd (5.235)

without adding local stochastic terms, because the equations (5.235), known as Berendsen equations of
motion, satisfy the relation (5.229) and, equivalently, the expression (5.234). Indeed, multiplying the
equations (5.235) by the velocity vα(t) and summing over all the degrees of freedom gives

Nd∑
α=1

mαv̇α(t)vα(t) =

Nd∑
α=1

Fα(t)vα(t) + γ

[
T0

T (t)
− 1

] Nd∑
α=1

mαv
2
α(t) (5.236)

and using the expression in (5.225) for the kinetic energy Ek the previous relation becomes

dEk
dt

=

Nd∑
α=1

mαv̇α(t)vα(t) =

Nd∑
α=1

Fα(t)vα(t) +γ

[
T0

T (t)
−1

]
2Ek(t) =

Nd∑
α=1

Fα(t)vα(t) + 2γ

[
Nd

2
kbT0−Ek(t)

]
finally recovering equation (5.229), which describes the time derivative of the kinetic energy of the system.
Thus, from an energetic point of view, the Berendsen equation (5.235) is equivalent to the original
Langevin equation (5.214) in which the condition on the damping constants γα = γ ∀α = 1, ..., Nd has
been imposed, for applications to multiparticle systems.
Thus, the equations of motion (5.214) describing the system of N particles coupled with a thermal
bath has been modified, using the conditions (5.216) for the random force Rα(t) and damping constants
γα = γ ∀α = 1, ..., Nd equal for all the particles, with a resultant equation of motion given by (5.235),
whose discretization (using simple Euler discrete formulation) leads to

vα(t+ ∆t)− vα(t)

∆t
=
Fα(t)

mα
+ γ

[
T0

T (t)
− 1

]
vα(t) =

Fα(t)

mα
+

1

2τt

[
T0

T (t)
− 1

]
vα(t) α = 1, ..., Nd

where the relation γ = (2τt)
−1 has been used. Therefore, the velocity of the α-th particle at time (t+∆t)

can be computed with the formula

vα(t+ ∆t) =
Fα(t)

mα
∆t+ vα(t)

[
1 +

∆t

2τt

(
T0

T (t)
− 1

)]
α = 1, ..., Nd (5.237)

that represents a proportional scaling of the velocities per time step in the algorithm from vα to λpvα
with λp given by (up to first order)

λp = 1 +
∆t

2τt

[
T0

T (t)
− 1

]
(5.238)

Otherwise, another strategy for the updating of the velocity at each time step comes from the discretiza-
tion of equation (5.231), which rules the time variation of the system temperature, so that

T (t+ ∆t)− T (t)

∆t
=

1

τt
[T0 − T (t)] → T (t+ ∆t) = T (t)

[
1 +

∆t

τt

(
T0

T (t)
− 1

)]
= λt T (t) (5.239)

In this case, the system temperature at time (t+ ∆t) is scaled, with respect to the same temperature at
the previous time step, by a factor λt defined as

T (t+ ∆t) = λt T (t) with λt = 1 +
∆t

τt

[
T0

T (t)
− 1

]
(5.240)

103

5.3. Constant temperature approaches Chapter 5. Generation of statistical ensembles

so that the correspondent velocities has to be scaled at each time step by the factor λb defined as

vα(t+ ∆t) = λb vα(t) with λb =

[
1 +

∆t

τt

(
T0

T (t)
− 1

)]1/2

α = 1, ..., Nd (5.241)

Despite the usefulness of the Berendsen equation, its numerical integration has never raised much at-
tention. The system is not a Hamiltonian system, so one cannot directly use symplectic integrators,
which has been shown to be efficient in a variety of studies. This was the main reason to hamper the
development of an efficient numerical integration based on a theoretically clear foundation. Most of the
integration algorithms for the Berendsen equations of motion are thus based on heuristic approaches,
obtained by a combination of the leapfrog or Verlet method and the velocity scaling, which may give
O(∆t) accuracy. However, these approaches lack both the time-reversibility feature and a protocol to
attain higher accuracy. Practical reasons may also have prevented the development of an efficient in-
tegrator for this equations of motion. That is, one often supposes that it is sufficient to have a good
temperature controllability of the target physical system and that the accuracy is of second importance.
However, there are cases where the temperature control is good but a large numerical error is accumu-
lated. Thus a method to capture the error is necessary to get physically correct results. Fukuda et al.[55]
propose a time-reversible (symmetric) integrator for the Berendsen thermostat, where the equations of
motion are extended so as to have a time invariant function. This device is based on the techniques
previously developed for non-Hamiltonian systems. From the time reversibility, the integrator map pre-
serves the reversible feature that the original ordinary differential equation has, thus contributing to the
accuracy of the integration. By monitoring the value of the constructed invariant function, numerical
integration on the extended space can be done without destroying the original solutions of the ordinary
differential equations and will detect the integration errors that cannot be detected by simple temper-
ature monitoring.[55] However, in the basic module of Molecular Dynamics in the Crystal code, the
integrator used for the Berendsen thermostat does not rely on a mathematical justification, but it is the
same used in standard practical simulations and implemented in many other computational codes. This
heuristic algorithm is based on the velocity Verlet scheme with an additional nuclear velocity scaling
procedure, as reported in Table 5.4. The integration of the Berendsen equations of motion are thus per-
formed using the velocity Verlet algorithm in the same form reported in Table 5.1 as for the equations of
motion characterizing the microcanonical ensemble, with the additional operation of a velocity rescaling
(5.241) at the end of the integration algorithm.
Therefore, the Berendsen thermostat takes the Langevin equation, removes the stochastic term, and mod-
ifies the frictional dissipative force to yield similar temperature time dependence as with the stochastic
term present. In practice, this is implemented as a smoother version of the simple velocity rescaling
technique, in which the velocities of all particles are rescaled at the end of each timestep by a factor λb
given by

λb =

[
1 +

∆t

τt

(
T0

T (t+ ∆t)
− 1

)]1/2

(5.242)

where τt represents a time damping constant and the instantaneous temperature to be considered is that
computed using the velocities vα(t+∆t) resultant from the velocity Verlet algorithm, and are accordingly
expressed by T (t+ ∆t).
Since the value of the relaxation time constant τt greatly influences the dynamics of the system, a general
rule has to be find for the setting of a good value for τt constant. First of all, it has to be noted that the
value of τt determines the ensemble explored by Berendsen equations of motion (5.235). Unfortunately,
the exact statistical mechanical ensemble for Berendsen thermostat has been unknown for many years.
In some studies employing the thermostat, it is reported that fluctuations of thermodynamic properties
are coincident with neither those in the canonical ensemble nor microcanonical ensemble. Generally,
ensemble averages are identical in different ensembles (e.g. the microcanonical and the canonical ones).
However, fluctuations of thermodynamic properties are different, and fluctuation formulas associated
with thermodynamic derivatives such as cv(= ∂E/∂T) are also dependent on the statistical ensemble.
Therefore, it is clear that the statistical ensemble associated with the Berendsen thermostat is neither
the canonical nor microcanonical. As a consequence, there is no conserved quantity with which to control
the accuracy of the algorithm.[56] In an interesting study, T. Morishita[57] deeply analyzes for the first
time the problem and computes an approximate expression of the equilibrium distribution function

104

Chapter 5. Generation of statistical ensembles 5.3. Constant temperature approaches

Starting point (initial conditions) : qi(t), vi(t), Fi[{qi(t)}]

Step 1. Propagator eiLv∆t/2 : vi(t+ ∆t/2)← vi(t) +
∆t

2mi
Fi[{qi(t)}]

Step 2. Propagator eiLq∆t : qi(t+ ∆t)← qi(t) + ∆tvi(t+ ∆t/2)

Step 3. Updating forces : compute Fi[{qi(t+ ∆t)}]

Step 4. Propagator eiLv∆t/2 : vi(t+ ∆t)← vi(t+ ∆t/2) +
∆t

2mi
Fi[{qi(t+ ∆t)}]

Step 5. Updating kinetic energy : Ek(t+ ∆t) =
1

2

3N∑
i=1

miv
2
i (t+ ∆t)

Step 6. Updating temperature : T (t+ ∆t) =
2

gkb
Ek(t+ ∆t)

Step 7. Velocity scaling : vi(t+ ∆t)← λbvi(t+ ∆t) with λb given by (5.242)

Table 5.4: Berendsen thermostat integrator algorithm, applied ∀ i = 1, ..., N .

in the configurational space for the Berendsen thermostat. This distribution function is dependent
on the parameter τt and the corresponding statistical ensemble can change from the canonical to the
microcanonical according to the value of τt. It is easily recognized that with large τt, in the limit
τt → ∞ when energy exchange between the system and the heat bath are suppressed, the coefficient
γ in (5.235) approaches zero and equations (5.235) become the standard Newton equations of motion
(i.e., the microcanonical ensemble is recovered). On the contrary, energy exchange between a ionic
system and a heat bath becomes large with small value of τt. In particular, when τt = ∆t (that
theoretically corresponds to the limit τt → 0), the scaling factor λb in (5.241) becomes equal to the
Woodcock[44] simple velocity rescaling factor (5.204) (see Section 5.3.2). In this situation, the fluctuation
of kinetic energy is suppressed entirely and the Berendsen thermostat becomes close to the Gaussian
thermostat, which corresponds to the canonical ensemble in the configurational space[57] (see Section
5.3.1). All intermediate situations correspond to the sampling of an unusual weak-coupling ensemble,
which is neither canonical nor microcanonical (and it is sometimes called weak ensemble, from the fact
that the Berendsen thermostat is considered a weak coupling thermostat).[57] Therefore, the statistical
mechanical ensemble for the Berendsen thermostat has intermediate properties between canonical and
microcanonical ensembles. An approximate expression for the equilibrium distribution function in the
configurational space for the Berendsen thermostat, derived under simple approximations, is presented
in Ref. [57].
In practice, τt is used as an empirical parameter to adjust the strength of the coupling, whose value
should be chosen in an appropriate range. On the one hand, a too large value (loose coupling) may
cause a systematic temperature drift and a poor temperature control. Indeed, in the limit τt → ∞,
the Berendsen thermostat is inactive leading to the simple Newton equations of motion, which samples
a microcanonical ensemble. Thus, the temperature fluctuations will increase with τt until they reach
the appropriate value for a microcanonical ensemble. However, they will never reach the appropriate
value for a canonical ensemble, which are larger. For large values of τt, a systematic energy (and thus
temperature) drift due to numerical errors may also occur. On the other hand, a too small value (tight
coupling) will cause unrealistically low temperature fluctuations. Values of τt ≈ 0.1 ps are typically used
in molecular dynamics simulations of condensed matter systems. For liquid water, a value of τt = 0.4 ps
is good. In the original paper of Berendsen et al.,[54] simulations of water with its long range dipolar

105

5.3. Constant temperature approaches Chapter 5. Generation of statistical ensembles

interaction have been performed. Normally in these simulations a cutoff noise and drift are produced
(see Figure 5.2, left panel, a).[54] Using a temperature coupling the drift is removed but the average
temperature is slightly larger than the reference temperature of the bath.[54] With a time constant
τt = 0.4 ps the opposing fluctuations in kinetic and potential energy remain similar to those of the
uncoupled simulation (see Figure 5.2, left panel, b). When τt is reduced below 0.1 ps, the fluctuations
in the kinetic energy are reduced at the expense of increasing fluctuation in the total energy (see Figure
5.2, right panel), while the fluctuations in potential energy are not sensitive to the value of the coupling
time constant.[54]

Figure 5.2: Left panel: Fluctuations of kinetic, total, and potential energy in two 1 ps molecular dynamics runs of
216 water molecules, starting from the same initial conditions (T = 300 K). a) isochoric, microcanonical simulation
(τt = ∞), b) isochoric simulation with weak coupling to constant temperature bath (τt = 0.4 ps). The vertical
scale respresents 1 kJ/mol per division. Horizontal lines represent averages for each curve. Right panel: Root
means square fluctuations in kinetic, total, and potential energies, measured over several 0.1 ps simulations of
liquid water. From Ref. [54].

The work of Berendsen et al.[54] permits to conclude that (i) although short coupling time constants
greatly influence fluctuations, average thermodynamic quantities and static average properties are not
disturbed and are not significantly influenced even for time constants as short as 0.01 ps, (ii) fluctuations
of global properties, however, are strongly influenced for time constants less than 0.1 ps, so that the
intensity of such fluctuations cannot be used to derive thermodynamic properties, and (iii) dynamic
properties of individual particles are not significantly altered, although the velocity autocorrelation
function shows some deviation for very short time constants. Although these variations may not be
significant, they indicate the possibility of a deviation in dynamic properties for time constants as low
as 0.01 ps, so that reliable dynamic properties are considered to be derived for coupling time constants
above 0.1 ps.

The Berendsen method has two distinct advantages above methods that are based on Lagrangians mod-
ified to include certain constraints. First, the coupling can be made as weak as desired to minimize the
disturbance of the system, and the strength of the coupling can easily be varied to suit the needs of a
given application. Indeed, since the Berendsen thermostat can change the behavior of the system only
by controlling parameter τt, it can be used in various situations without any changes in the algorithm.
Second, the algorithm is numerically stable and truncation errors will not develop undesired deviations
that need ad hoc corrections. This is of considerable practical value when conditions are adjusted to
new values, as well as for long runs.
However, the Berendsen equations of motion are smooth and deterministic, but time-irreversible. Fur-
thermore, they do not sample the exact canonical ensemble, as demonstrated in Ref. [57], but they
produce an ensemble with intermediate properties between the canonical and microcanonical, according

106

Chapter 5. Generation of statistical ensembles 5.3. Constant temperature approaches

to coupling strength of a heat bath represented by τt. Moreover, the Berendsen thermostat suffers from
the flying ice cube effect as well as the velocity rescaling procedure (see Section 5.3.2). If motion of the
center of mass and global rotational motion are periodically removed from the system, this combination
should substantially ameliorate the problems identified by the violation of energy equipartition, even if
this issue cannot be completely avoided.[51, 52]
For these reasons, the Berendsen thermostat is not recommended for use in production molecular dy-
namics runs because it does not strictly conform to the canonical ensemble, but it is considered good to
use during equilibration.
The reason why the Berendsen thermostat systematically (for all values of τt) underestimates temper-
ature fluctuations (and thus it does not give the correct thermodynamic canonical ensemble) resides in
the neglect of the stochastic contribution to these fluctuations on the microscopic timescale. Therefore,
eliminating random forces in a Langevin equation fails to produce the canonical (Nvt) ensemble. To
achieve the goal of sampling the canonical distribution, some fictitious (virtual) degrees of freedom have
to be introduced in the equations of motion, allowing to directly derive the canonical distribution func-
tion. This methodology, called the extended system method, is explained and derived in the following
section.

5.3.4 The Nosé-Hoover thermostat

One of the most used classical mechanic method that generates a constant temperature molecular dy-
namics simulation is the so-called Nosé-Hoover thermostat, which is one of the first extended system
method introduced by S. Nosé,[46, 47, 48] on the wheel of Andersen work on the constant pressure
method,[45] where the extended system technique has been first introduced. The temperature version
of the extended system method proposed by S. Nosé[46, 47, 48] will be explained in the present section.

Figure 5.3: Schematic representation for a sys-
tem (a) in the microcanonical and (b) in the
canonical ensembles. The shaded area is a heat
insulating wall.

A schematic image of the canonical ensemble is
a system surrounded by and thermally contacted
with a large external reservoir (a heat bath), see
Figure 5.3b. In the constant temperature method
introduced by Nosé, a degree of freedom s is in-
serted in the equations of motion, representing the
large external system, so that the physical subsys-
tem exchanges energy with this additional degree
of freedom. Under this condition, the total energy
of the physical system is allowed to fluctuate.
The thermal interactions between the system and
the heat bath are expressed by a scaling of the
nuclear velocities by a factor s.
The real velocity vi of the i-th atom is obtained by multiplying the scaling factor s with a virtual velocity
ṽi, so that

vi = sṽi (5.243)

The virtual variables refer to the extended system and will be indicated with a tilde symbols as above, in
order to distinguish them from the variables referred to the real physical atomic system. Two additional
degrees of freedom are introduced for the description of the external system (heat bath), which stand
for momentum p̃s and positions s̃ related to the particles representing the heat reservoir. The position
coordinates are the same in both frames, but they are defined through virtual and real coordinates to
complete the formulation. Obviously, the real variables describe the motion of the nuclei in the atomic
system, while the virtual ones are introduced artificially for controlling the temperature. The relation
between the two frames is given by a non-canonical transformation,

qi = q̃i pi = p̃i/s s = s̃ t =

∫ t dt̃

s
(5.244)

This transformation can be explained in a unified fashion from a basic assumption of the scaling for the
infinitesimal time,

dt = dt̃/s (5.245)

107

5.3. Constant temperature approaches Chapter 5. Generation of statistical ensembles

This relation, in turn, was extracted from the following speculation. Consider the motion of a particle
during one simulation time step. The velocity v is defined as a ratio of the difference of the position ∆q
and the time ∆t. The temperature of a system is related to the average kinetic energy. A temperature
control will be achieved via control of the nuclear velocity. If the time ∆t required for the movement ∆q
is lengthened, the velocity is reduced. On the other hand, the motion is accelerated by shortening the
time period ∆t. Therefore, the temperature control could be achieved by the introduction of a flexible
time. The change of the time length is expressed by a scaling of the time variable by a factor s.
With the time scaling (5.245), the velocity scaling in (5.243) can be interpreted as

vi =
dqi
dt

= s
dqi

dt̃
= s

dq̃i

dt̃
= sṽi (5.246)

This type of transformations from virtual to real variables and vice versa will be employed later on to
transform the equations of motion from a virtual to a real variables formulation.
The Hamiltonian of the extended system given by the real atomic subsystem and the heat reservoir in
terms of the virtual variables is postulated as follows

H̃(p̃, q̃, p̃s, s̃) =

N∑
i=1

p̃2
i

2mis̃2
+ φ(q̃) +

p̃2
s

2Q
+ gkbT0 ln s̃ (5.247)

The first two terms are the kinetic energy and the potential energy of the physical system of interest.
The last two terms correspond to the added degree of freedom, where ps is a conjugate momentum of
s, Q is a parameter with dimension energy·(time)2 which behaves as a mass for the motion of s and T0

is the temperature of the heat bath. The parameter g is essentially equal to the number of degree of
freedom of the physical system. Its exact value will be chosen to exactly satisfy the canonical distribution
in equilibrium. The additional degree of freedom s is introduced to break the conservation of the total
energy of the real system, which is inevitably imposed on the molecular dynamics simulations as a result
of the use of standard classical mechanics Hamilton equations. The total Hamiltonian (5.247) is still
conserved in the whole extended system, but the total energy of the physical system,

H(p, q) =
N∑
i=1

p2
i

2mi
+ φ(q) (5.248)

can fluctuate and the distribution of the energy will follow the canonical distribution. It is worth noting
that a logarithmic dependence of the potential on the variable s, in the form gkbT0 ln s, is essential
for producing the canonical ensemble. The assumption that the Hamiltonian formalism can be applied
to equation (5.247), in the virtual variables frame of reference, is made. The equations of motion are
obtained via canonical equations as[46]

dq̃i

dt̃
=
∂H̃
∂p̃i

=
p̃i
mis2

i = 1, ..., N (5.249)

dp̃i

dt̃
= −∂H̃

∂q̃i
= − ∂φ

∂q̃i
i = 1, ..., N (5.250)

ds̃

dt̃
=
∂H̃
∂p̃s

=
p̃s
Q

(5.251)

dp̃s

dt̃
= −∂H̃

∂s̃
=

1

s̃

[
N∑
i=1

p̃2
i

mis̃2
− gkbT0

]
(5.252)

These equations exhibit a negative feedback mechanism to control the temperature, keeping it around
a fixed value. The acceleration of s is proportional to the deviation of the total kinetic energy from its
average value gkbT0/2. This mechanism keeps the kinetic energy around gkbT0/2. This will be shown
more clearly using equations of motion in the real variables frame of reference, see Section 5.3.4.1.
One of the conserved quantity is the Hamiltonian H̃, that is an integral of motion, because the total
time derivative of the virtual Hamiltonian is equal to zero,

dH̃
dt̃

=

N∑
i=1

(
∂H̃
∂p̃i

dp̃i

dt̃
+
∂H̃
∂q̃i

dq̃i

dt̃

)
+
∂H̃
∂p̃s

dp̃s

dt̃
+
∂H̃
∂s̃

ds̃

dt̃
= 0 (5.253)

108

Chapter 5. Generation of statistical ensembles 5.3. Constant temperature approaches

Other two conserved quantities are the total linear and angular momentum, respectively given by,

N∑
i=1

p̃i and

N∑
i=1

q̃i ∧ p̃i (5.254)

The conservation laws for the total linear and angular momenta are derived from equation (5.250) and
the properties satisfied by the potential

N∑
i=1

∂φ

∂q̃i
= 0

N∑
i=1

q̃i ∧
∂φ

∂q̃i
= 0 (5.255)

However, it should be noted here that during the ordinary molecular dynamics simulations with peri-
odic boundary conditions the angular momentum is not conserved.[29] Because of the theoretical linear
and angular momenta conservation, the ensembles produced by the molecular dynamics method are
slightly different from the usual statistical mechanical ensembles. At the same time, the conservation of
the linear momentum in practical simulations generates a different ensemble than the theoretical ones.
These deviations are ignored in the following discussion, but they are introduced and discussed later in
paragraph A.7.1.

5.3.4.1 Equations of motion in real variables

The equations of motion (5.249)-(5.252) can be transformed from virtual to real variables. The equations
of motion in real variables represents the physical system, and they are therefore useful in practical
simulations. Therefore, starting from the equations of motion (5.249)-(5.252), variables transformations
are applied so that the coordinates change of reference frame, from the virtual (p̃i, q̃i, p̃s, s̃, t̃) to the real
(pi, qi, ps, s, t) set of variables, can be performed

(p̃i, q̃i, p̃s, s̃, t̃) → (pi, qi, ps, s, t) (5.256)

The transformations are carried out in stepwise fashion, via the basic relations between the virtual and
the real set of variables, which are here reported

pi = p̃i/s qi = q̃i ps = p̃s/s s = s̃ t =

∫ t dt̃

s
(5.257)

Calculations in real variables lead to

dqi
dt

= s
dqi

dt̃
= s

dq̃i

dt̃
=

p̃i
mis

=
pi
mi

i = 1, ..., N (5.258)

dpi
dt

= s
d

dt̃

(
p̃i
s

)
=
dp̃i

dt̃
− 1

s

ds

dt̃
p̃i = − ∂φ

∂q̃i
− p̃s
sQ

(spi) = − ∂φ
∂qi
− sps

Q
pi i = 1, ..., N (5.259)

ds

dt
= s

ds

dt̃
= s

p̃s
Q

=
s2 ps
Q

(5.260)

dps
dt

= s
d

dt̃

(
p̃s
s

)
=
dp̃s

dt̃
− p̃s

s

ds

dt̃
=

1

s

(
N∑
i=1

p2
i

mi
− gkbT0

)
− s p2

s

Q
(5.261)

where the equations of motion (5.249)-(5.252) in virtual variables have been used for the derivation. In
1985, one year later than the Nosé article on constant temperature molecular dynamics, W. G. Hoover
in its paper on canonical dynamics[58] pointed out that, if a new variable is chosen, with the form

ξ =
1

s

(
ds

dt

)
=
s ps
Q

(5.262)

109

5.3. Constant temperature approaches Chapter 5. Generation of statistical ensembles

then the equations (5.258)-(5.261) can be simplified as

dqi
dt

=
pi
mi

i = 1, ..., N (5.263)

dpi
dt

= − ∂φ
∂qi
− ξ pi i = 1, ..., N (5.264)

d(ln s)

dt
= ξ (5.265)

dξ

dt
=

1

Q

(
N∑
i=1

p2
i

mi
− gkbT0

)
(5.266)

where in particular equation (5.266) has been derived starting from equations (5.261) and (5.260) and
manipulating it as follows

dps
dt

=
1

s

(
N∑
i=1

p2
i

mi
− gkbT0

)
− s p2

s

Q
→ s

dps
dt

+ ps

(
s2 ps
Q

)
=

(
N∑
i=1

p2
i

mi
− gkbT0

)

s
dps
dt

+ ps
ds

dt
=

d

dt
(sps) =

(
N∑
i=1

p2
i

mi
− gkbT0

)
→ 1

Q

d

dt
(sps) =

d

dt

(
sps
Q

)
=
dξ

dt
=

1

Q

(
N∑
i=1

p2
i

mi
− gkbT0

)

The form of the equations of motion as reported in (5.263)-(5.266) are known as the Nosé-Hoover
thermostat equations of motion.[59] A negative feedback mechanism is more apparent in the Nosé-
Hoover thermostat form of the equations of motion (see Figure 5.4a). The first two equations (5.263)
and (5.264) have the typical form as those describing the motion of a body with a frictional force.
However, the friction coefficient ξ is not a constant and can be positive or negative in this case. The
time development of ξ, given by equation (5.266), is driven by the imbalance between the kinetic energy
and its average value (g/2)kbT0. If the kinetic energy is larger than (g/2)kbT0, the time derivative of ξ is
positive (dξ/dt > 0), so that ξ increases and will become positive. The equation with positive values of
ξ is equivalent with that of a system with a friction force, see equation (5.264). As a consequence, the
velocity of the particle decreases and the kinetic energy also decreases. If the kinetic energy becomes
lower than (g/2)kbT0, the feedback mechanism works in the opposite direction. In this way, the time
derivative of ξ becomes negative (dξ/dt < 0), so that ξ decreases. Then, in the region of ξ negative
values, the system is heated up again. Following this mechanism on the base of the equations of motion,
the kinetic energy fluctuates around its average value (g/2)kbT0. The time average of a time derivative
of a variable will vanish. This guarantees that the average of the kinetic energy coincides with the result
of the equipartition theorem (g/2)kbT0.

a) b)

Figure 5.4: a) A schematic time evolution of (dξ/dt), the kinetic energy ξ, and the heat bath variable s, repre-
senting the negative feedback mechanism that works to keep the kinetic energy around its averaged value. b) The
movement in a phase space (ξ, δEk). Arrows indicate velocity vectors.

The change of ξ is governed by the deviation of the kinetic energy from its average value. When ξ is
positive, the movement of the particles is slowed down, but the motion is accelerated in the negative ξ

110

Chapter 5. Generation of statistical ensembles 5.3. Constant temperature approaches

region. Consider a motion in a phase space,

A = (ξ, δEk) (5.267)

where the deviation of the kinetic energy Ek from its average value, δEk = Ek − 〈Ek〉 is proportional to
the time derivative of the variable ξ,

dξ

dt
∝ δEk = Ek − 〈Ek〉

The velocity in this space is

Ȧ =

(
dξ

dt
,
d (δEk)

dt

)
(5.268)

and it is depicted in Figure 5.4b. From equation (5.266) follows that

dξ

dt
> 0 if δEk > 0 and

dξ

dt
< 0 if δEk < 0 (5.269)

At the same time, from equation (5.264),

d(δEk)

dt
< 0 if ξ > 0 and

d(δEk)

dt
> 0 if ξ < 0 (5.270)

Therefore, the trajectory in this phase space circles around the origin clockwise. The kinetic energy
fluctuates and it is kept around a constant.
This reformulation of the extended system method given by Hoover,[58] is based on the above mentioned
equations of motion and it is now known as the Nosé-Hoover thermostat.[59] The three equations of
motion (5.263), (5.264) and (5.266) form a closed system of equations. The time evolution of the system
within a phase space (p, q, ξ) is uniquely determined from these equations. In this sense, equation (5.265)
is redundant. However, if also this equation is solved, the conserved quantity correspondent to the virtual
Hamiltonian given by (5.247), that generates the equations of motion (5.249)-(5.252) in virtual variables,
can be computed. Indeed, this conserved quantity can be written in terms of real variables as

H(p, q, ps, s) =
N∑
i=1

p2
i

2mi
+ φ(q) +

(sps)
2

2Q
+ gkbT0 ln s (5.271)

and using the definition (5.262) of the ξ variable, the previous expression becomes

H(p, q, ξ, s) =

N∑
i=1

p2
i

2mi
+ φ(q) +

Q

2
ξ2 + gkbT0 ln s (5.272)

The resultant form (5.272) is also a conserved quantity for the equations of motion (5.263)-(5.266) in
real variables, as demonstrated by the time derivative

dH
dt

=

N∑
i=1

(
∂H
∂pi
· dpi
dt

+
∂H
∂qi
· dqi
dt

)
+
∂H
∂ξ

dξ

dt
+
∂H
∂s

ds

dt

=

N∑
i=1

[
pi
mi
·
(
− ∂φ
∂qi
− ξ pi

)
+
∂φ

∂qi
· pi
mi

]
+ (ξ Q)

1

Q

(
N∑
i=1

p2
i

mi
− gkbT0

)
+
gkbT0

s
(sξ) = 0

(5.273)

From equation (5.272) it is clear that the calculation of the conserved quantity in real variables requires
the value of the ξ variable. Therefore, the equation of motion (5.265), although redundant, is essential
to compute the conserved quantity (5.272). This conservation law can be used as a measure that the
simulation is carried out correctly.
The equations of motion (5.258)-(5.261), and as a consequence the equation of motion (5.263)-(5.266),
are no longer canonical, since equations (5.259) and (5.261) (so as the correspondent equations (5.264)
and (5.266)) have additional force terms with respect to the virtual variables counterpart. Therefore, the
quantity (5.271) (and the correspondent (5.272) form) is no longer a Hamiltonian, i.e., the equations of

111

5.3. Constant temperature approaches Chapter 5. Generation of statistical ensembles

motion in real variables cannot be derive directly by applying the Hamilton equations of motion starting
from the expression (5.271) (or (5.272), equivalently). This is due to the fact that the transformations
(5.257) from virtual to real coordinates are not canonical. For example, by computing the Hamilton
equations of motion on the form (5.271), the following expressions are recovered:

dqi
dt

=
∂H
∂pi

=
pi
mi

i = 1, ..., N (5.274)

dpi
dt

= −∂H
∂qi

= − ∂φ
∂qi

i = 1, ..., N (5.275)

ds

dt
=
∂H
∂ps

=
s2ps
Q

(5.276)

dps
dt

= −∂H
∂s

= −s p
2
s

Q
− gkbT0

s
(5.277)

Since the equations of motion (5.275) and (5.277) do not coincide with the correct forms (5.259) and
(5.261), respectively, the conserved quantity (5.271) is non a Hamiltonian (non-Hamiltonian form). The
same non-Hamiltonian form can be trivially proved also for the conserved quantity (5.272) written as
a function of the variable ξ (instead of the variable ps): the transformations (5.257) are not canonical,
therefore equation (5.272) is no longer a Hamiltonian, and the equations of motion (5.263)-(5.266) cannot
be derived from it.

5.3.4.2 Integration of the equations of motion

For the Nosé-Hoover method, a time propagator operator can be defined by decomposition of the Liouville
operator, as explained in Section 4.2. By changing the order of these decomposed operators, several
time integrators can be thought.[60] For the vector Γ in the extended phase space, which is defined by
Γ(t) = (p(t), q(t), pη(t), η(t)), the time development (4.65) from time t0 to time t = t0 +P τ , where P is
an integer representing the number of molecular dynamics steps the phase space coordinates are allowed
to propagate and τ is the simulation time step unit, is written as

Γ(t) = Γ(t0 + P τ) = eiLP τ Γ(t0) (5.278)

where the Liouville operator is given by equation (4.62) reported here below for the case of the extended
system of interest

iL = Γ̇ · ∂
∂Γ

with Γ(t) = (p(t), q(t), pη(t), η(t)) (5.279)

where the dot over the phase space vector variable stands for the time derivative.
The conserved quantity corresponding to the Hamiltonian (5.271) expressed in real coordinates (physical
system frame of reference) can be rewritten using the transformations (5.291) as

H(p, q, pη, η) =

N∑
i=1

p2
i

2mi
+ φ(q) +

p2
η

2Q
+ gkbT0η (5.280)

Starting from the formula (5.279), and using the Nosé-Hoover equations of motion (5.309)-(5.312) pre-
viously derived, the form of the Liouville operator can be easily derived to be

iL =

Nd∑
i=1

dqi
dt
· ∂
∂qi

+

Nd∑
i=1

dpi
dt
· ∂

∂pi
+
dη

dt

∂

∂η
+
dpη
dt

∂

∂pη

=

Nd∑
i=1

pi
mi
· ∂
∂qi
−

Nd∑
i=1

∂φ

∂qi
· ∂

∂pi
−

Nd∑
i=1

pη
Q
pi ·

∂

∂pi
+
pη
Q

∂

∂η
+

(
N∑
i=1

p2
i

mi
− gkbT0

)
∂

∂pη

(5.281)

The evolution in time of real system and thermostat variables can be modeled through a velocity Verlet-
like reversible scheme of integration derived using the Trotter-Suzuki factorization of the Liouville oper-
ator (see Section 4.2.1). Using a five-terms decomposition of the Liouville operator (with the generalized

112

Chapter 5. Generation of statistical ensembles 5.3. Constant temperature approaches

factorization (4.93) derived in Section 4.2.1), the Liouville operator can be split into the sum of five
operators as follows

iL = iL1 + iL2 + iL3 + iL4 + iL5 (5.282)

where

iL1 =

Nd∑
i=1

pi
mi
· ∂
∂qi

iL2 = −
Nd∑
i=1

∂φ

∂qi
· ∂

∂pi
(5.283)

iL3 = −
Nd∑
i=1

pη
Q
pi ·

∂

∂pi
iL4 =

pη
Q

∂

∂η
iL5 =

(
N∑
i=1

p2
i

mi
− gkbT0

)
∂

∂pη
(5.284)

The separated operators iL1 and iL2 are the same as in the Nve ensemble (see Section 5.1.2), while
the operators iL3, iL4 and iL5 are additional operators which come from the variables associated to the
Nosé-Hoover thermostat. This separation has been proposed in Refs. [61] and [62], and the transfor-
mations of the variables by these separated operators preserve an extended phase space volume element
equal to ω = exp(gη) dΓ, where dΓ = dq dp dη dpη (see Refs. [61] and [62] for more details).
From the separation in equations (5.283) and (5.284), several decomposition forms for the time devel-
opment operator exp(iLτ) can be considered as time integrators. Indeed, different variants of the time
integrator form can be obtained by the permutation of the five separated Liouville operators. However,
because the operators iL1 and iL5 are commutative with each other, the variants number reduces, and
it is less than the total number of possible permutations of the five operators. S. Itoh et al.[60] em-
ployed and analyzed six different time integrators among all the possible ones, which are extensions of
the velocity Verlet or position Verlet algorithms, and they discuss the effects of difference among these
integrators on ensemble averages of physical quantities such as temperature and potential energy.

The approximate discrete time propagator can be constructed applying the general Suzuki-Trotter fac-
torization formula (4.93), with P = 1 (one molecular dynamics step) and a number of Liouville operators
equal to n = 5 (see Section 4.2.1), as follows

eiLτ ≈ eiL5 τ/2 eiL4 τ/2 eiL3 τ/2 eiL2 τ/2 eiL1 τ eiL2 τ/2 eiL3 τ/2 eiL4 τ/2 eiL5 τ/2 +O(τ9) (5.285)

The above defined time propagator has to be used in equation (5.278) to compute the time propagation
of variables from an initial time t0 to t0 + τ (one time step) in the extended phase space, so that

Γ(t0 + τ) ≈ eiL5 τ/2 eiL4 τ/2 eiL3 τ/2 eiL2 τ/2 eiL1 τ eiL2 τ/2 eiL3 τ/2 eiL4 τ/2 eiL5 τ/2 Γ(t0) +O(τ9) (5.286)

Obviously, this phase space propagation formula has been defined for a single time step (P = 1), starting
from an initial time t0. The number of steps P defined in a molecular dynamics simulation is in generally
very high, so that P is a large but finite integer which approximates the condition P →∞ defined in the
exact formulation of Suzuki-Trotter decomposition, equation (4.92). Indeed, in a dynamical simulation
the formula (5.286) has to be applied sequentially P times, propagating the phase space point step by
step until a final time t = t0 + P τ (see equation (5.278)), with a discretized time unit of τ = ∆t.

The action of operators with the form (5.283) and (5.284) on a phase space point has been computed in
Section 4.2.2, and it is therefore applied for each operator in the order given by equation (5.286). The
resulting algorithm has the structure reported in Table 5.5, for a time step equal to τ = ∆t.

The form of the time propagator operator in (5.286) follows the form and the structure of the integrator
I2 discussed in Ref. [60]. At the same time, by changing the order of the decomposed operators, the
algorithms for time development can vary. In this framework, it is worth mentioning that in the Crystal
code the propagator (5.286) is the default one, but there is also the possibility to use another kind of
slightly different time propagator, with the form reported in equation (A.298), see Appendix A, Section
A.12. Even in this case, in order to implement the time evolution algorithm it is necessary to evaluate
the action of operators in (A.298) on a phase space point, following the results derived in Section 4.2.2,
applied for each operator in the order given by equation (A.299), see Appendix A, Section A.12. The
resulting algorithm has the structure reported in Table A.1 of Section A.12 (Appendix A), for a time
step equal to τ = ∆t.

113

5.3. Constant temperature approaches Chapter 5. Generation of statistical ensembles

Starting point (initial conditions) : qi(t), pi(t), Fi[{qi(t)}], η(t), pη(t)

Step 1. Propagator eiL5∆t/2 : pη(t+ ∆t/2)← pη(t) +
∆t

2

(
N∑
i=1

p2
i (t)

mi
− gkbT0

)

Step 2. Propagator eiL4∆t/2 : η(t+ ∆t/2)← η(t) +
∆t

2Q
pη(t+ ∆t/2)

Step 3. Propagator eiL3∆t/2 : pi(t+ ∆t/2)← pi(t) exp

[
−∆t

2Q
pη(t+ ∆t/2)

]

Step 4. Propagator eiL2∆t/2 : pi(t+ ∆t/2)← pi(t+ ∆t/2) +
∆t

2
Fi[{qi(t)}]

Step 5. Propagator eiL1∆t : qi(t+ ∆t)← qi(t) +
∆t

mi
pi(t+ ∆t/2)

Step 6. Updating forces : compute Fi[{qi(t+ ∆t)}]

Step 7. Propagator eiL2∆t/2 : pi(t+ ∆t)← pi(t+ ∆t/2) +
∆t

2
Fi[{qi(t+ ∆t)}]

Step 8. Propagator eiL3∆t/2 : pi(t+ ∆t)← pi(t+ ∆t) exp

[
−∆t

2Q
pη(t+ ∆t/2)

]

Step 9. Propagator eiL4∆t/2 : η(t+ ∆t)← η(t+ ∆t/2) +
∆t

2Q
pη(t+ ∆t/2)

Step 10. Propagator eiL5∆t/2 : pη(t+ ∆t)← pη(t+ ∆t/2) +
∆t

2

(
N∑
i=1

p2
i (t+ ∆t)

mi
− gkbT0

)

Table 5.5: Nosé-Hoover thermostat integrator algorithm (vverlet nose I1), applied ∀ i = 1, ..., N .

5.3.4.3 Conserved quantities

The Nosé-Hoover equations of motion (5.258) - (5.261) in the real variable frame of reference, given by

dqi
dt

=
pi
mi

i = 1, ..., N (5.287)

dpi
dt

= − ∂φ
∂qi
− sps

Q
pi i = 1, ..., N (5.288)

ds

dt
=
s2 ps
Q

(5.289)

dps
dt

=
1

s

(
N∑
i=1

p2
i

mi
− gkbT0

)
− s p2

s

Q
(5.290)

can be rearranged by defining two new variables η and pη to be equal to

η = ln s pη = sps (5.291)

114

Chapter 5. Generation of statistical ensembles 5.3. Constant temperature approaches

Moreover, equation (5.290) can be rewritten using the new variable pη as

dps
dt

=
1

s

(
N∑
i=1

p2
i

mi
− gkbT0

)
− s p2

s

Q
→ s

dps
dt

+ ps

(
s2 ps
Q

)
=

N∑
i=1

p2
i

mi
− gkbT0

and using the equations of motion (5.289) to rewrite the term in the parenthesis on the left hand side of
the previous expression, a new equation of motion can be written for the variable pη as follows

s
dps
dt

+ ps
ds

dt
=

d

dt
(sps) =

dpη
dt

=

N∑
i=1

p2
i

mi
− gkbT0

Therefore, the equations of motion (5.288) - (5.290) change slightly under the transformations (5.291),
obtaining the following set of equations of motion

dqi
dt

=
pi
mi

i = 1, ..., N (5.292)

dpi
dt

= − ∂φ
∂qi
− pη
Q
pi i = 1, ..., N (5.293)

dη

dt
=
pη
Q

(5.294)

dpη
dt

=
N∑
i=1

p2
i

mi
− gkbT0 (5.295)

where the coordinates qi and pi are d dimensional vector (with d the dimension of the physical system),
the forces Fi = −∂φ/∂qi are derived from an N particle potential φ(q) through the Hellmann-Feynmann
theorem, and g is a parameter that has to be determined to generate the canonical distribution in the
physical degrees of freedom. In order to determine the statistical mechanical ensemble generated by the
equations of motion (5.292) - (5.295), following the analysis outlined in Section 4.3.2.1, the constants of
motion have to be found. The simplest one is the total Hamiltonian (5.271), written using the change
of variables (5.291), that is

H(p, q, pη, η) = H0(p, q) +
p2
η

2Q
+ gkbT0η = C1 where H0(p, q) ≡

N∑
i=1

p2
i

2mi
+ φ(q) (5.296)

If there exists a non zero net force acting on the system, then (5.296) is the only one constant of motion
preserved by the non Hamiltonian flow of equations (5.292) - (5.295). In general, however, there will be
more conserved quantities. For instance, considering a system in the absence of external forces, namely,
under the hypothesis

F =
N∑
i=1

Fi = 0 (5.297)

then there are d additional conservation laws satisfied by the equations of motion (5.292) - (5.295), which
take the form

P eη = K ↔ F =
N∑
i=1

Fi = 0 (5.298)

where K is an arbitrary constant vector in d dimensions (with d the dimension of the physical space)
and P is the center of mass momentum of the system defined as

P =

N∑
i=1

pi (5.299)

115

5.3. Constant temperature approaches Chapter 5. Generation of statistical ensembles

with the origin taken at the center of mass of the system.
Equation (5.298) can be verified by taking the time derivative explicitly, so that

d(Peη)

dt
= Ṗ eη + η̇P eη = eη (Ṗ + η̇P) = eη

(
Ṗ +

pη
Q

P

)
= eη

(
N∑
i=1

ṗi +
pη
Q

P

)
= eη

[
N∑
i=1

(
− ∂φ
∂qi
− pη
Q
pi

)
+
pη
Q

P

]

= eη

(
N∑
i=1

Fi −
pη
Q

N∑
i=1

pi +
pη
Q

P

)
= eη

(
N∑
i=1

Fi −
pη
Q

P +
pη
Q

P

)
= eη

N∑
i=1

Fi

(5.300)

where the equations of motion (5.293) and (5.294) have been used, together with the definition of the
total linear momentum (5.299). Therefore, as demonstrated in (5.300), the total time derivative of the
quantity (5.298) is equal to zero iff the condition (5.297) is satisfied. The conservation law (5.298) can be
written using a single independent variable (note that the d components of the total linear momentum
are linearly dependent), by taking the Euclidean norm on both sides of equation (5.298), so that

‖P eη‖ = P eη = ‖K‖ = K (5.301)

Hence, the conservation law in the absence of net forces on the system becomes

Peη = K = C2 ↔ F =

N∑
i=1

Fi = 0 (5.302)

Therefore, the quantity conserved by Nosé-Hoover equations of motion in the absence of external forces,
namely when the condition (5.297) holds, is given by (5.302).
Furthermore, if the following condition is satisfied

N∑
i=1

qi ∧ Fi = 0 (5.303)

then there are d additional conservation laws satisfied by the equations of motion (5.292) - (5.295), which
take the form

L eη = K ↔
N∑
i=1

qi ∧ Fi = 0 (5.304)

where K is an arbitrary constant vector in d dimensions and L is the total angular momentum of the
system defined as

L =
N∑
i=1

qi ∧ pi (5.305)

with the origin taken at the center of mass of the system. Equation (5.304) can be verified by taking
the time derivative explicitly, so that

d(Leη)

dt
= L̇ eη + η̇L eη = eη (L̇ + η̇L) = eη

(
L̇ +

pη
Q

L

)
= eη

(
N∑
i=1

q̇i ∧ pi +

N∑
i=1

qi ∧ ṗi +
pη
Q

L

)

= eη

[
N∑
i=1

(
pi
mi
∧ pi + qi ∧ Fi −

pη
Q
qi ∧ pi

)
+
pη
Q

L

]

= eη

(
N∑
i=1

qi ∧ Fi −
pη
Q

N∑
i=1

qi ∧ pi +
pη
Q

L

)

= eη

(
N∑
i=1

qi ∧ Fi −
pη
Q

L +
pη
Q

L

)
= eη

N∑
i=1

qi ∧ Fi

(5.306)

116

Chapter 5. Generation of statistical ensembles 5.3. Constant temperature approaches

where the equations of motion (5.292), (5.293) and (5.294) have been used, together with the definition
of the total angular momentum (5.305). Therefore, as demonstrated in (5.306), the total time derivative
of the quantity (5.304) is equal to zero iff the condition (5.303) is satisfied. The conservation law (5.304)
can be written using a single independent variable (note that the d components of the total angular
momentum are linearly dependent), by taking the Euclidean norm on both sides of equation (5.304), so
that

‖L eη‖ = Leη = ‖K‖ = K (5.307)

Hence, the conservation law is given by

Leη = K = C3 ↔
N∑
i=1

qi ∧ Fi = 0 (5.308)

Therefore, the quantity conserved by Nosé-Hoover equations of motion when the condition (5.303) holds,
is given by (5.308).

As already explained for the microcanonical ensemble in Section 5.1.3, if the system is invariant to
translation in a particular direction, then the corresponding momentum component is conserved, and if
the system is invariant to rotation about an axis, then the corresponding angular momentum component
is conserved. Thus, the three quantities (5.296), (5.302) and (5.308) are conserved for a completely
isolated set of interacting molecules subject to the equations of motion (5.292) - (5.295). In practice,
however, a completely isolated system is rarely considered, except for the case of an isolated molecule.
On the contrary, in the presence of periodic boundary conditions, the total angular momentum is not
conserved, so that there are only two constants of motion related to the time evolving equations (5.292)
- (5.295), which are given by (5.296) and (5.302). In order to resume these concepts, in Table 5.6, the
constants of motion for the Nosé-Hoover equations (5.292) - (5.295) are reported, together with the
simulation conditions that are required to preserve their values. Note that the total Hamiltonian (5.296)
is always a constant of motion, independently of the simulation conditions.

conservation laws of Nosé - Hoover equations (5.292) - (5.295)

H(p, q, pη, η) =
N∑
i=1

p2
i

2mi
+ φ(q) +

p2
η

2Q
+ gkbT0η = C1

Peη = K = C2 iff F =

N∑
i=1

Fi = 0

Leη = K = C3 iff
N∑
i=1

qi ∧ Fi = 0 and NO PBC

Table 5.6: Constants of motion for the Nosé-Hoover equations of motion (5.292) - (5.295), together with the
simulation conditions that are necessary to preserve these quantities.

5.3.4.4 Statistical mechanical ensemble

The methods of non Hamiltonian dynamics can be applied to the Nosé-Hoover algorithm that has been
discussed in Section 5.3.4. This discussion is only intended as an illustration of a systematic technique
for predicting the phase space density generated by a particular non Hamiltonian dynamics scheme.
Such an analysis is essential when the use of thermostat or barostat is considered in molecular dynamics
simulations.

In Section 5.3.4 the Nosé-Hoover algorithm is introduced, and it has been demonstrated that it generates
non Hamiltonian dynamics. The equations of motion related to the Nosé-Hoover algorithm that will be

117

5.3. Constant temperature approaches Chapter 5. Generation of statistical ensembles

considered in this analysis are given by (5.292) - (5.295), and they are reported here below

dqi
dt

=
pi
mi

i = 1, ..., N (5.309)

dpi
dt

= − ∂φ
∂qi
− pη
Q
pi i = 1, ..., N (5.310)

dη

dt
=
pη
Q

(5.311)

dpη
dt

=
N∑
i=1

p2
i

mi
− gkbT0 (5.312)

The equations of motion contain two nonphysical variables, η and pη, giving an overall phase space
dimension of 2Nd+2, where d is the number of spatial dimensions. These new variables can be regarded
as a virtual thermostat which controls the fluctuations in the total kinetic energy of the system around
its average value given by gkbT0/2. The parameter Q determines the time scale on which the thermostat
evolves and takes the form Q = gkbT0τ

2, where τ is a time scale relevant to the physical system. The
parameter g will be determined in the following analysis.
The conditions under which the equations of motion (5.309) - (5.312) can generate a canonical distribu-
tion in the physical variables will be analyzed by applying the procedure described in Section 4.3.2.1.
As a first step, the conservation laws have to be determined. Assuming that the only conserved quantity
is the energy given by (5.296) and here reported

H(p, q, pη, η) =

N∑
i=1

p2
i

2mi
+ φ(q) +

p2
η

2Q
+ gkbT0η = H0(p, q) +

p2
η

2Q
+ gkbT0η = C1 (5.313)

where H0(p, q) is the physical Hamiltonian, then only one conservation law exists. Using the phase space
vector Γ = (p, q, pη, η), the phase space compressibility of this system, given by equation (4.123), can
be written as

κ(Γ, t) ≡ ∇Γ · Γ̇ =

N∑
i=1

∇qi · q̇i +

N∑
i=1

∇pi · ṗi +∇η · η̇ +∇pη · ṗη

=

N∑
i=1

∇pi · ṗi =

N∑
i=1

∇pi ·
(
− ∂φ
∂qi
− pη
Q
pi

)
= −Nd

(
pη
Q

)
= −Nd η̇

(5.314)

where the equations of motion (5.310) and (5.311) have been used, N is the number of atoms and d is
the dimensionality of the system. The metric can then be computed using equation (4.180) with the just
derived compressibility (5.314) as

√
g(Γ, t) = exp

(
−
∫
κ(Γ, t) dt

)
= exp

(∫
Nd

dη

dt
dt

)

= exp

(
Nd

∫
dη

dt
dt

)
= exp(Ndη)

(5.315)

The microcanonical partition function at a given temperature T0 can be constructed using the metric
(5.315) and the energy conservation condition, by means of (4.185), so that

Z(N,V,C1) = ζ

∫
dq

∫
dp

∫
dη

∫
dpη exp(Ndη) δ

(
H0(p, q) +

p2
η

2Q
+ gkbT0η − C1

)
(5.316)

where the microcanonical partition function depends parametrically on the temperature T0 of the system.
The distribution function in the physical subspace can now be obtained by integrating over η and pη.
In equation (5.316), the integration over η and pη can be performed analytically. Because of the delta
function, integration over the variable η gives as condition

H0(p, q) +
p2
η

2Q
+ gkbT0η = C1 (5.317)

118

Chapter 5. Generation of statistical ensembles 5.3. Constant temperature approaches

Since the argument of the second δ function in equation (5.316) has only one zero as a function of the
variable η, a convenient equivalence relation can be employed to resolve the integral, that is

δ[f(η)] =
δ(η − η0)

f ′(η0)
(5.318)

where η0 is the zero of function f(η) in the argument of the Dirac function, and f ′(η0) is the derivative
of the function f(η) evaluated in the point η0, which has to be read, inside the integral, as the function
f ′(η), so that the expressions for these objects are

f(η) = H0(p, q) +
p2
η

2Q
+ gkbT0η − C1 f ′(η) = gkbT0 (5.319)

η0 =
1

gkbT0

(
C1 −H0(p, q)−

p2
η

2Q

)
f ′(η0) = gkbT0 (5.320)

Using the relation (5.318), together with equation (5.320), in the partition function (5.316), leads to

Z(N,V,C1) = ζ

∫
dq

∫
dp

∫
dη

∫
dpη exp(Ndη)

δ(η − η0)

gkbT0
=

ζ

gkbT0

∫
dq

∫
dp

∫
dpη exp(Ndη0)

=
ζ

gkbT0

∫
dq

∫
dp

∫
dpη exp

[
Nd

gkbT0

(
C1 −H0(p, q)−

p2
η

2Q

)]
=

ζ

gkbT0
exp

(
NdC1

gkbT0

)∫
dpη exp

(
− Nd

gkbT0

p2
η

2Q

)
︸ ︷︷ ︸

= constant ξ

∫
dq

∫
dp exp

(
− Nd

gkbT0
H0(p, q)

)

The integration over the variable pη yields a constant prefactor that has no physical importance and has
been included in the constant ξ. The analytical expression for this constant prefactor can be computed
considering that the integral with respect to the variable pη in the constant ξ is a Gaussian integral and
it can be solved easily,9 so that the partition function can be written as

Z(N,V,C1) =
ζ

gkbT0
exp

(
NdC1

gkbT0

)√
2πQ

Nd
gkbT0

∫
dq

∫
dp exp

(
− Nd

gkbT0
H0(p, q)

)
=

ζ√
gkbT0

√
2πQ

Nd
exp

(
NdC1

gkbT0

)
︸ ︷︷ ︸

= constant ξ

∫
dq

∫
dp exp

(
− Nd

gkbT0
H0(p, q)

)

Finally, the partition function has been demonstrated to have the form

Z(N,V,C1) = ξ

∫
dq

∫
dp exp

(
− Nd

gkbT0
H0(p, q)

)
(5.322)

where the constant factor ξ has the expression

ξ =
ζ√
gkbT0

√
2πQ

Nd
exp

(
NdC1

gkbT0

)
(5.323)

Equation (5.322) is the canonical distribution function (modulo constant prefactors), provided that
g = Nd.
Indeed, if g = Nd then the partition function (5.322) becomes

g = Nd → Z(N,V,C1) = ξ

∫
dq

∫
dp exp

(
−H0(p, q)

kbT0

)
with ξ =

ζ
√

2πQ

Nd
√
kbT0

exp

(
C1

kbT0

)
9A Gaussian integral has the following solution :

I(a) =

∫ ∞
−∞

e−a x
2

dx =

√
π

a
(5.321)

119

5.3. Constant temperature approaches Chapter 5. Generation of statistical ensembles

A similar result has been derived in Appendix A.11.1 for the Nosé-Hoover equations in terms of its real
variables in a three dimensional space (d = 3). It is worth noting that for simple non Hamiltonian
systems such as the Nosé-Hoover algorithm, it is possible to eliminate the metric factor by reformulating
the equations of motion in terms of a variable η̃ = exp(Ndη). In this case, the equations of motion
will be incompressible, and the metric factor (5.315) will be constant. Of course, such an elementary
transformation may not exist for other non Hamiltonian systems.

It is worth noting how the incomplete version of the Liouville equation, given by (4.188), can lead to an
incorrect prediction of the phase space sampled by equations of motion (5.309) - (5.312). Indeed, for the
Nosé-Hoover equations (5.309) - (5.312), the Liouville relation (4.188) takes the form

∂f̃

∂t
+ Γ̇ · ∇Γf̃ =

df̃

dt
= −f̃ ∇Γ · Γ̇ = Nd

(
pη
Q

)
f̃ (5.324)

where, in the last expression, the result obtained in (5.314) has been used. The previous equation can
be rewritten as

d ln(f̃)

dt
= Nd

(
pη
Q

)
(5.325)

Note, however, that the quantity

H̃(p, q, pη) =
N∑
i=1

p2
i

2mi
+ φ(q) +

p2
η

2Q
≡ H0(p, q) +

p2
η

2Q
(5.326)

satisfies

dH̃

dt
=

N∑
i=1

pi
mi

dpi
dt

+

N∑
i=1

∂φ(q)

∂qi

dqi
dt

+
pη
Q

dpη
dt

=
N∑
i=1

pi
mi

(
−∂φ(q)

∂qi
− pη
Q
pi

)
+

N∑
i=1

∂φ(q)

∂qi

pi
mi

+
pη
Q

(N∑
i=1

p2
i

mi
− gkbT0

)
= −gkbT0

pη
Q

(5.327)

where the equations of motion (5.309), (5.310) and (5.312) have been used. Therefore, comparing the
two time derivatives (5.325) and (5.327), and setting g = Nd, then the conclusion would be

d ln(f̃)

dt
= −β dH̃

dt
(5.328)

ln(f̃) = −βH̃ + const (5.329)

f̃ ∝ exp(−β H̃) = exp

[
−β
(
p2
η

2Q
+H0(p, q)

)]
(5.330)

where β = 1/(kbT0). Using these equations, a distribution function of the form (5.330) was generated by
the dynamics under all circumstances. However, it has been made clear that if more than one conservation
law exists, linear dependent solutions are present and/or driven variables remain unidentified, the above
procedure will fail to predict the correct distribution. Again, satisfying the generalized Liouville equation
is a necessary but not sufficient condition to guarantee that a given distribution function is, in fact,
generated by a dynamical system.

The previous derivation demonstrates that the Nosé-Hoover equations are capable of generating a canoni-
cal distribution in the physical subsystem variables when the HamiltonianH(p, q, pη, η), given by (5.313),
is the only conserved quantity. Note that the basic assumption used is that there is only a single con-
servation law, namely the conservation of the Hamiltonian (5.313).
However, as demonstrated and discussed in Section 5.3.4.3, for the case of simulations with periodic
boundary conditions, also the quantity (5.302) related to the total linear momentum is conserved, while
in the absence of periodic boundary conditions, both the quantities (5.302) and (5.308), where the last
one is related to the total angular momentum, are conserved (see Table 5.6). The conservation of these
additional quantities will affect the phase space distribution. Therefore, a separate treatment of these
two cases has to be performed, to study the form of the partition function with these additional conser-
vation laws. The case of periodic boundary conditions, with the conserved quantities (5.296) and (5.302),
will be first analyzed in Section 5.3.4.5, since it is the most important case in practical simulations.

120

Chapter 5. Generation of statistical ensembles 5.3. Constant temperature approaches

5.3.4.5 Statistical mechanical ensemble under periodic boundary conditions

In this section, the form of the partition function describing a system without external forces (i.e. in
which the condition (5.297) holds) and modeled using periodic boundary conditions is analyzed. In
this case, two constants of motion have to be taken into account (see Table 5.6), namely, the total
Hamiltonian (5.296) and the quantity (5.302) related to the total linear momentum.
To continue the analysis following Section 4.3.2.1, the driven variables have to be eliminated from the
system. The center of mass position R is a driven variable (its dynamics does not effect other variables,
and it does not contribute to a nontrivial conserved quantity) and must also be eliminated in the formal
analysis. On the other hand, the magnitude of the center of mass momentum is coupled to the other
variables through a conservation law and cannot be eliminated from the analysis. At the same time, the
components of the center of mass momentum P are linearly dependent.10 Thus, d − 1 components of
the center of mass momentum must be eliminated. Therefore of the d components only one component
can be chosen independently, otherwise the variable

P = ‖P‖ =

(
d∑

α=1

P 2
α

)1/2

(5.332)

can be taken as the independent variable. Before proceeding further on, the equation of motion for this
new variable can be easily found by taking into account the definition of the conserved quantity, equation
(5.298), and rewriting it in terms of the new variable P defined in (5.332), by taking the Euclidean norm
on both sides of equation (5.298), so that

‖P eη‖ = P eη = ‖K‖ = K (5.333)

Therefore, the norm of the vector P defined in (5.332) can be written as

P = e−ηK (5.334)

Taking the time derivative on both member of the previous equivalence, and using the equation of motion
(5.311) leads to

Ṗ = −η̇ e−ηK = −η̇ P = −pη
Q
P (5.335)

that is the equation of motion which rules the evolution in time of the norm of the total linear momentum
of the system. Proceeding with the analysis, the two variables R and P can be eliminated by considering
the positions and momenta relative to the center of mass of the system, ρ and π, respectively. Thus, a
canonical transformation to a set of relative coordinates and momenta {π,P,ρ,R} (Jacobi coordinates)
has to be introduced, in which R and P are explicit variables, and the equations of motion for the P,
written in terms of the single independent variable P . Starting from the equation of motion (5.309) -
(5.312), this procedure yields the following transformed equations of motion

dρi
dt

=
πi
µi

i = 1, ..., N − 1 (5.336)

dπi
dt

= − ∂φ
∂ρi
− pη
Q
πi i = 1, ..., N − 1 (5.337)

dP

dt
= −pη

Q
P (5.338)

dη

dt
=
pη
Q

(5.339)

dpη
dt

=

N−1∑
i=1

π2
i

µi
+
P 2

M
− gkbT0 (5.340)

10To see this, consider the components of equation (5.298) in a three dimensional system (d = 3),

Px
Kx

=
Py
Ky

=
Pz
Kz

= eη (5.331)

which shows that only one of the components is independent.

121

5.3. Constant temperature approaches Chapter 5. Generation of statistical ensembles

where µi is the reduced mass of the system,11 and the equation of motion for the momentum P, written
in terms of the single independent variable P as defined in (5.332), has been introduced in equation
(5.338), following the result obtained in (5.335). The equations of motion have two conservative laws
(because the d center of mass momenta components have been replaced by a single variable P only one
conservation law for the momenta is left), namely,

H(π, P,ρ, pη, η) = H0(π, P,ρ) +
p2
η

2Q
+ gkbT0η = C1 (5.343)

P eη = C2 (5.344)

where in the first conservation law (5.343), the Hamiltonian on the left hand side is given by

H0(π, P,ρ) =
N−1∑
i=1

π2
i

2µi
+
P 2

2M
+ φ(ρ) (5.345)

In order to compute the partition function, the compressibility has to be calculated, using the phase
space vector Ξ = (π, P,ρ, pη, η) and the definition (4.123), as

κ(Ξ, t) ≡ ∇Ξ · Ξ̇ =
N−1∑
i=1

∇ρi · ρ̇i +
N−1∑
i=1

∇πi · π̇i +∇P · Ṗ +∇η · η̇ +∇pη · ṗη

=
N−1∑
i=1

∇πi · π̇i +∇P · Ṗ =
N−1∑
i=1

∇πi ·
(
− ∂φ
∂ρi
− pη
Q
πi

)
− pη
Q

= −(N − 1)d

(
pη
Q

)
− pη
Q

= −(N − 1)d η̇ − η̇ = −[(N − 1)d+ 1] η̇

(5.346)

From the compressibility, the metric follows directly

√
g(Ξ, t) = exp

(
−
∫
κ(Ξ, t) dt

)
= exp

(∫
[(N − 1)d+ 1]

dη

dt
dt

)

= exp

{
[(N − 1)d+ 1]

∫
dη

dt
dt

}
= exp{[(N − 1)d+ 1] η}

(5.347)

The conservation laws and the metric can now be used to construct the microcanonical partition function,
which contains two delta functions that express the two conservation laws

Z(N,V,C1, C2) (5.348)

= ζ

∫
dρ

∫
dπ

∫
dP

∫
dη

∫
dpη e

[(N−1)d+1] η δ

(
H0(π, P,ρ) +

p2
η

2Q
+ gkbT0η − C1

)
δ(eη P − C2)

where dρ = dρ1 · · · dρN−1 and dπ = dπ1 · · · dπN−1 and the Hamiltonian H0(π, P,ρ) is given by equation
(5.345). The distribution function in the physical subspace is obtained by integrating over η and pη.
Since the argument of the second δ function in the above equation (5.348) has only one zero as a function
of the variable η, a convenient equivalence relation can be employed to resolve the integral, given by
equation (5.318), with

f(η) = eη P − C2 f ′(η) = eη P (5.349)

11The canonical transformation to a set of relative coordinates and momenta {π,P,ρ,R} leads to a different expression
in the kinetic part of the equations of motion and of the Hamiltonian. By introducing the center of mass momenta,

αi = pi −P/N (5.341)

the kinetic energy term becomes a sum of the relative kinetic energy and the center of mass kinetic energy as follows

N∑
i=1

p2
i

2mi
=

N∑
i=1

α2
i

2mi
+

P2

2M
where M =

N∑
i=1

mi (5.342)

122

Chapter 5. Generation of statistical ensembles 5.3. Constant temperature approaches

η0 = ln

(
C2

P

)
f ′(η0) = C2 (5.350)

where η0 is the zero of function f(η) and f ′(η0) is the derivative of the function f(η) evaluated in the
point η0, which has to be read, inside the integral, as the function f ′(η). Therefore, using the relation
(5.318) in (5.348), together with equations (5.349) and (5.350), the partition function becomes

Z(N,V,C1, C2)

= ζ

∫
dρ

∫
dπ

∫
dP

∫
dη

∫
dpη e

[(N−1)d+1] η δ

(
H0(π, P,ρ) +

p2
η

2Q
+ gkbT0η − C1

)
δ(η − η0)

eη P

= ζ

∫
dρ

∫
dπ

∫
dP

∫
dpη e

[(N−1)d+1] η0 δ

(
H0(π, P,ρ) +

p2
η

2Q
+ gkbT0η0 − C1

)
1

eη0 P

The substitution of the variable η0 with its explicit expression, given by the first equation in (5.350),
yields the following form for the partition function

Z(N,V,C1, C2)

=
ζ

C2

∫
dρ

∫
dπ

∫
dP

∫
dpη

(
C2

P

)(N−1)d+1

δ

(
H0(π, P,ρ) +

p2
η

2Q
+ gkbT0 ln

(
C2

P

)
− C1

) (5.351)

The remaining delta function has an argument that can be viewed as a function of the variable pη, so
that

f(pη) = H0(π, P,ρ) +
p2
η

2Q
+ gkbT0 ln

(
C2

P

)
− C1 f ′(pη) =

pη
Q

(5.352)

The previous function f(pη) has only one zero pn,0 with respect to the variable pη, that is

pn,0 =

{
2Q

[
C1 −H0(π, P,ρ)− gkbT0 ln

(
C2

P

)]}1/2

(5.353)

f ′(pn,0) =

{
2

Q

[
C1 −H0(π, P,ρ)− gkbT0 ln

(
C2

P

)]}1/2

(5.354)

Using again the relation (5.318), the integration over the variable pη results in the following expression
for the partition function

Z(N,V,C1, C2)

=
ζ

C2

∫
dρ

∫
dπ

∫
dP

∫
dpη

(
C2

P

)(N−1)d+1 [
Q
δ(pη − pn,0)

pη

]
=
ζ Q

C2

∫
dρ

∫
dπ

∫
dP

(
C2

P

)(N−1)d+1 [1

pn,0

]
The substitution of the explicit expression for pn,0 given by equation (5.353) in the previous integrand
leads the following form for the partition function

Z(N,V,C1, C2)

=
ζ
√
Q√

2C2

∫
dρ

∫
dπ

∫
dP

(
C2

P

)(N−1)d+1 [
C1 −H0(π, P,ρ)− gkbT0 ln

(
C2

P

)]−1/2 (5.355)

Clearly, this is not the partition function for a canonical ensemble. This problem was first pointed out by
Cho and coworkers.[63] Moreover, the phase space distribution function given in equation (5.355) may
contain forbidden regions or islands and sharp boundaries corresponding to negative or zero argument
of the square root. Only in the case that C2 = 0 the conventional Nosé-Hoover equations of motion can
generate a canonical distribution. Indeed, if P eη = C2 = 0 then the partition function (5.348) becomes

Z(N,V,C1, 0) (5.356)

= ζ

∫
dρ

∫
dπ

∫
dP

∫
dη

∫
dpη e

[(N−1)d+1] η δ

(
H0(π, P,ρ) +

p2
η

2Q
+ gkbT0η − C1

)
δ(eη P − 0)

123

5.3. Constant temperature approaches Chapter 5. Generation of statistical ensembles

The second delta function in the previous equation imposes that P = 0. Using the relation (5.318) with

f(P) = eη P f(P0) = 0 ↔ P0 = 0 f ′(P) = f ′(P0) = eη (5.357)

Integration over the variable P then yields

Z(N,V,C1, 0) = ζ

∫
dρ

∫
dπ

∫
dη

∫
dpη e

[(N−1)d+1] η e−η δ

(
H0(π,ρ) +

p2
η

2Q
+ gkbT0η − C1

)
= ζ

∫
dρ

∫
dπ

∫
dη

∫
dpη e

(N−1)d η δ

(
H0(π,ρ) +

p2
η

2Q
+ gkbT0η − C1

)
(5.358)

where H0(π,ρ) ≡ H0(π,ρ, 0), that is H0(π,ρ) is the Hamiltonian in equation (5.345) with P = 0. The
remaining delta function can be rewritten using the relation (5.318) with

η0 = − 1

gkbT0

[
H0(π,ρ) +

p2
η

2Q
− C1

]
and f ′(η) = f ′(η0) = gkbT0 (5.359)

so that the partition function (5.358) can be rewritten as

Z(N,V,C1, 0) = ζ

∫
dρ

∫
dπ

∫
dη

∫
dpη e

(N−1)d η δ(η − η0)

gkbT0
=

ζ

gkbT0

∫
dρ

∫
dπ

∫
dpη e

(N−1)d η0

Then, the substitution of the explicit expression for the variable η0 in the previous integrand, with η0

given by the first equation in (5.359), leads to a partition function of the form

Z(N,V,C1, 0) =
ζ

gkbT0

∫
dρ

∫
dπ

∫
dpη exp

{
−(N − 1)d

gkbT0

[
H0(π,ρ) +

p2
η

2Q
− C1

]}
(5.360)

=
ζ

gkbT0
exp

[
(N − 1)d

gkbT0
C1

] ∫
dpη exp

(
−(N − 1)d

gkbT0

p2
η

2Q

)
︸ ︷︷ ︸

= constant ξ

∫
dρ

∫
dπ exp

[
−(N − 1)d

gkbT0
H0(π,ρ)

]

where all the constant factors are collected by defining the constant ξ and the Hamiltonian H0(π,ρ) ≡
H0(π,ρ, 0), that is H0(π,ρ) is the Hamiltonian in equation (5.345) with P = 0, written as

H0(π,ρ) ≡ H0(π,ρ, 0) =

N−1∑
i=1

π2
i

2µi
+ φ(ρ) (5.361)

The integral with respect to the variable pη is a Gaussian integral and it can be easily solved (see equation
(5.321) in the footnote 9), so that

Z(N,V,C1, 0) =
ζ

gkbT0
exp

[
(N − 1)d

gkbT0
C1

]√
2πQgkbT0

(N − 1)d

∫
dρ

∫
dπ exp

[
−(N − 1)d

gkbT0
H0(π,ρ)

]
=

ζ
√

2πQ√
gkbT0(N − 1)d

exp

[
(N − 1)d

gkbT0
C1

]
︸ ︷︷ ︸

= constant ξ

∫
dρ

∫
dπ exp

[
−(N − 1)d

gkbT0
H0(π,ρ)

]
(5.362)

Clearly, imposing g = (N − 1)d in the partition function (5.362), it becomes

g = (N − 1)d → Z(N,V,C1, 0) = ξ

∫
dρ

∫
dπ exp

(
−H0(π,ρ)

kbT0

)
≡ Z(N−1)V T

with ξ =
ζ
√

2πQ

(N − 1)d
√
kbT0

exp

(
C1

kbT0

) (5.363)

so that the correct canonical partition function is recovered. Therefore, for the special choice C2 = 0,
corresponding to the choice P (0) = 0, the previous analysis leads to an (N−1)VT ensemble distribution.
The same results have been obtained by K. Cho et al.,[63] taking into account the periodic boundary
conditions applied in the simulation, see Appendix A.7, Section A.7.1. In practice, most conventional
Nosé-Hoover simulations are performed with a fixed center of mass and therefore obey the condition
P = 0.

124

Chapter 5. Generation of statistical ensembles 5.3. Constant temperature approaches

5.3.4.6 Uniqueness of Nosé-Hoover equations of motion

An important implication of the Nosé equations is that in the Hamiltonian (5.272) a logarithmic term ln s
is required to have the correct scaling of time. Any other scheme that does not have such a logarithmic
term will fail to describe the canonical ensemble correctly. An important result obtained by Hoover[58]
is that the equations of motion (5.263)-(5.266) are unique, in the sense that other relaxation equations
of similar form cannot lead to a canonical distribution.
Because the variables q, p and ξ used in (5.263)-(5.266) are independent, the components of the flow of
probability density f(p, q, ξ) in the phase space can be easily computed. The equations (5.263)-(5.266)
governing the motion in this space are not Hamiltonian. Therefore the derivatives ∂q̇i/∂qi and ∂ṗi/∂pi
(i = 1, ..., N) do not generally sum to zero. Thus the analog of Liouville equation, expressing the
conservative flow of probability with time, including flow in the ξ direction, is given by equation (5.181)
with Γ = (p, q, ξ), that can be written more explicitly as

∂f

∂t
+

N∑
i=1

(
q̇i
∂f

∂qi
+ ṗi

∂f

∂pi

)
+ ξ̇

∂f

∂ξ
+ f

[
N∑
i=1

(
∂q̇i
∂qi

+
∂ṗi
∂pi

)
+
∂ξ̇

∂ξ

]
= 0 (5.364)

Consider now the density function f(p, q, ξ) derived in equation (A.293) in the real system frame of
reference, which enters the canonical partition function as

Z =
ζ

gkbT0

∫
dp̃s

∫
dp

∫
dq exp

[
− Nd

gkbT0

(
H0(p, q) +

p̃2
s

2Q
− E

)]
(5.365)

where H0(p, q) is given by equation (A.295) and the virtual variable p̃s can be transformed in real frame
of reference through p̃s = sps. Using the relation (5.262), so that p̃s = Qξ, the previous equation can be
rewritten as

Z =
ζQ

gkbT0

∫
dp

∫
dq

∫
dξ exp

[
− Nd

gkbT0

(
H0(p, q) +

Qξ2

2
− E

)]
=

ζQ

gkbT0
exp

(
Nd

gkbT0
E

)∫
dp

∫
dq

∫
dξ exp

[
− Nd

gkbT0

(
H0(p, q) +

Qξ2

2

)] (5.366)

The partition function can be shortly written as

Z =

∫
dp

∫
dq

∫
dξ f(p, q, ξ) (5.367)

where the distribution function, taking g = Nd in (5.366) and written explicitly as in (A.295) the form
of the Hamiltonian H0(p, q), is given by

f(p, q, ξ) = C exp

[
− 1

kbT0

(
N∑
i=1

p2
i

2mi
+ φ(q) +

Qξ2

2

)]
(5.368)

where C is a constant that collects all the constant terms before the integrals of the last expression in
(5.366). Only four derivative terms in (5.364) are non vanishing, and they can be computed from the
density function (5.368) as follows

∂f

∂qi
= − 1

kbT0

∂φ(q)

∂qi
f(p, q, ξ)

∂f

∂pi
= − 1

kbT0

pi
mi

f(p, q, ξ)

∂f

∂ξ
= − 1

kbT0
Qξ f(p, q, ξ)

∂ṗi
∂pi

= −3ξ

(5.369)

where for the last equality the equation of motion (5.264) has been used. Plugging these derivatives in
(5.364) and using the equations of motion (5.263)-(5.266) in the real frame of reference, the Liouville

125

5.3. Constant temperature approaches Chapter 5. Generation of statistical ensembles

formula given by (5.364) can be rewritten as

− 1

kbT0

[
N∑
i=1

pi
mi

∂φ(q)

∂qi
f(p, q, ξ) +

N∑
i=1

(
−∂φ(q)

∂qi
− ξ pi

)
pi
mi

f(p, q, ξ) +

(
N∑
i=1

p2
i

mi
− gkbT0

)
ξ f(p, q, ξ)

+ kbT0 f(p, q, ξ)
N∑
i=1

(3ξ)

]
= − 1

kbT0

[
N∑
i=1

pi
mi

∂φ(q)

∂qi
f(p, q, ξ)−

N∑
i=1

pi
mi

∂φ(q)

∂qi
f(p, q, ξ)

− ξ
N∑
i=1

p2
i

mi
f(p, q, ξ) + ξ

N∑
i=1

p2
i

mi
f(p, q, ξ)− gkbT0 ξ f(p, q, ξ) +NdkbT0 ξ f(p, q, ξ)

]
g=Nd

= 0

So that these terms sum to zero, provided that the coefficient g in the equation of motion (5.266) for the
friction coefficient ξ is chosen equal to the number of independent degrees of freedom in the set (p, q),
namely, equal to g = Nd as in (5.368).12 Thus the canonical distribution (5.368) is a steady equilibrium
solution of the flow equation (5.364) and satisfies the equations of motion (5.263)-(5.266). It is important
to note that the phase space distribution (5.368) can be used to derive the equation of motion for the
friction coefficient ξ. To see this, note that the canonical distribution (5.368) satisfies (5.364) if, and only
if, ξ follows the relaxation equation (5.266). Thus Nosé canonical equations of motion are unique. Other
relaxation equations, such as Berendsen equation of motion, cannot lead to the canonical distribution
(5.368).

5.3.4.7 Dynamical properties

The correct canonical ensemble averages for thermodynamic quantities can be obtained using the Nosé-
Hoover constant temperature method. Because the equations of motion are solved numerically, the
dynamic properties of the system can be studied. This is a feature of the molecular dynamics method.
Therefore, it is a natural question whether the correct dynamical behaviors are also obtainable or not
at constant temperature. If the simulations are carried out in an appropriate condition, the answer is
affirmative in most cases.
The relaxation from a non-equilibrium state to equilibrium in constant temperature simulations does
not correspond to any realistic process in the experiments, it is instead a process introduced artificially
to control the temperature. The speed of the relaxation is determined by the value of mass Q associated
to the thermostat degrees of freedom in the extended system method. The response is quick with a
small mass, while the system relaxes slowly with a large mass. Also a large amplitude slowly decaying
continuous oscillation of the heat bath variable s is often observed. In a certain condition, the coupling
between the variable s and a physical system is not so strong. It takes quite a long time for the damping
of this oscillation. All the behaviors mentioned above are artifacts introduced by the extended system
method. The rate of collision with hypothetical particles or the random forces acting on a particle in
the stochastic constant temperature method also affect the relaxation. Therefore, the correct dynamical
behavior in non-equilibrium state cannot be obtained by modified simulation methods.
In this section, several problems related to dynamical behaviors in the constant temperature methods
are considered. In Section 5.3.4.7, the response speed of a thermostat in equilibrium is revised. This
is necessary for determining an appropriate mass value associated to the heat bath variable. Indeed,
a good choice of this quantity is important to realize the condition of thermal equilibrium between a
physical system and a heat bath.

Choice of values for mass parameters In order to derive a set of equations of motion that includes
the heat bath variable in the extended system formulation, an artificial kinetic energy term for the
external system is introduced. The mass parameter appearing in this term controls the speed of response
of a heat bath. It is of great importance to choose an appropriate value for this parameter in dynamics
simulations. S. Nosé[47] pointed out that the mass parameter should not be too small. In the study
of the lattice vibration in a system containing impurities, it is known that a localized isolated mode
appears when the mass of the impurities is smaller than that of host atoms. A similar situation occurs

12In the usual molecular dynamics simulation, with periodic boundaries, the center of mass and its velocity are fixed so
that this number of degrees of freedom is d(N − 1) for a d-dimensional N -body system.

126

Chapter 5. Generation of statistical ensembles 5.3. Constant temperature approaches

in simulation of a system when Q is small. The heat bath variable becomes an isolated mode and
it continues an oscillation independently. The behavior resembles that of a harmonic oscillator. The
distribution of the total kinetic energy driven by this oscillation deviates significantly from the Gaussian
distribution as shown schematically in Figure 5.5(a). The distribution of a harmonic oscillator has two
peaks at turning points: these correspond to two peaks at high and low temperature in the kinetic
energy distribution. The variable s oscillates independently from other degrees of freedom. Therefore,
the system does not reach an equilibrium state during the simulation, and the ergodic hypothesis is not
satisfied.

Figure 5.5: Change in the distribution of the total kinetic energy with different values of the mass parameter Q;
(a) very small, (b) small and (c) large values. Thin lines indicate the distribution during a short period.

With a larger mass Q, the behavior changes. Typical examples of the time evolution of the temperature
(kinetic energy) are depicted in Figure 5.6. The results are obtained by S. Nosé[47] with a 108 particle
Lennard-Jones system (for more details about simulation parameters see Ref. [47]). With a smaller mass
(Q = 1.0, see Figure 5.6, upper panel), the change of the kinetic energy is still mostly driven by the fast
oscillation due to the heat bath variable s. The amplitude of the oscillation is due to a coupling between
the heat bath and the physical system. In this case, the accumulation of the distribution of harmonic
oscillators with various amplitudes forms a Gaussian distribution with a single peak at an average value
(Figure 5.5(b)).
At larger mass (see Figure 5.6, lower panel), fast thermal fluctuations of the kinetic energy around a
slow systematic change due to the heat bath variable oscillation is observed. A distribution of Gaussian
form, but narrower than the Maxwell distribution at temperature T0 is expected in a short period. The
situation is similar to that in the microcanonical ensemble, because the exchange of the heat is slow. The
centers of mass of the distribution oscillate synchronizing the oscillation of the variable s. An envelope
of these distribution recovers the Maxwell distribution form (see 5.5(c)). Using a large value for the mass
Q, a large number of time steps are necessary to get reliable average values from dynamics trajectory.

Figure 5.6: Comparison of the temperature fluctuations with different Q values, for a 108 Lennard-Jones system
at T = 100 K. Values of Q = 1.0 (kJ/mol)ps2 (left panel) and Q = 100.0 (kJ/mol)ps2 (right panel) are considered.

On the base of this behavior, an intermediate value for the mass Q related to the thermostat is the most
appropriate one. To obtain a criterion for deciding the entity of intermediate mass Q value for a given
system, a relation between the number of atoms or some other quantity related to the system and the
value of thermostat mass Q has to be established. In this sense, it is very helpful to analyze the period
of oscillation of the variable s with the linearization of equation (5.266) which is reported below

dξ

dt
=

1

Q

(
N∑
i=1

p2
i

mi
− gkbT0

)
(5.370)

127

5.3. Constant temperature approaches Chapter 5. Generation of statistical ensembles

where the variable ξ is related to s through relation (5.262) and a virtual frame of reference can be used
by means of transformations (5.257), so that using the equivalences

ξ =
1

s

(
ds

dt

)
=
s ps
Q

s = s̃ pi = p̃i/s (5.371)

the equation of motion (5.370) becomes

Q
d

dt

(
1

s

ds

dt

)
=

N∑
i=1

p̃2
i

mi s2
− gkbT0 (5.372)

Consider a fluctuation δs of the variable s around an average value 〈s〉, that is

s = 〈s〉+ δs (5.373)

At a small mass limit, the change of s is much faster than that of the particles, and the change of
the momentum in a virtual frame can thus be ignored. The constant temperature condition is mainly
maintained by the motion of s, namely,

N∑
i=1

p̃2
i

mi 〈s〉2
= gkbT0 (5.374)

By manipulating equation (5.372) in the following way,

Q
d

dt

(
1

s

ds

dt

)
=

N∑
i=1

p̃2
i

mi s2
− gkbT0 (5.375)

− 1

s2

(
ds

dt

)2

+
1

s

d2s

dt2
=

1

Q

(
N∑
i=1

p̃2
i

mi s2
− gkbT0

)
(5.376)

and by linearizing it as follows

Q

[
− 1

(〈s〉+ δs)2

(
d(〈s〉+ δs)

dt

)2

+
1

〈s〉+ δs

d2(〈s〉+ δs)

dt2

]
=

N∑
i=1

p̃2
i

mi (〈s〉+ δs)2
− gkbT0 (5.377)

Q

[
− 1

〈s〉2

(
1− 2δs

〈s〉

)(
dδs

dt

)2

+
1

〈s〉

(
1− δs

〈s〉

)(
d2δs

dt2

)]
=

N∑
i=1

p̃2
i

mi 〈s〉2

(
1− 2δs

〈s〉

)
− gkbT0 (5.378)

By neglecting the first two terms that contain the first derivative squared, and by neglecting the second
term in the second parenthesis on the left hand side, the previous equation can be rewritten as

Q

〈s〉

(
d2δs

dt2

)
=

N∑
i=1

p̃2
i

mi 〈s〉2

(
1− 2δs

〈s〉

)
− gkbT0 (5.379)

Finally, using the expression (5.374) for the last term of the previous equation, it becomes

Q

〈s〉

(
d2δs

dt2

)
=

N∑
i=1

p̃2
i

mi 〈s〉2

(
1− 2δs

〈s〉

)
−

N∑
i=1

p̃2
i

mi 〈s〉2
= − 2

〈s〉

(
N∑
i=1

p̃2
i

mi 〈s〉2

)
δs = −2gkbT0

〈s〉
δs (5.380)

leading to the equation for the harmonic oscillator

d2δs

dt2
= −2gkbT0

Q
δs = −ω2 δs (5.381)

with frequency

ω =

√
2gkbT0

Q
(5.382)

128

Chapter 5. Generation of statistical ensembles 5.3. Constant temperature approaches

and period τ equal to

τ =
2π

ω
= 2π

√
Q

2gkbT0
(5.383)

Therefore, the value of Q can be deduced from the previous expression and computed using the formula

Q = 2gkbT0

(
τ

2π

)2

(5.384)

Using these results, a general criterion for an appropriate choice of the heat bath mass Q value can be
given. It should be an intermediate value, since a small Q does not guarantee the equilibration in a
whole system, and a large Q is instead inefficient. The most economical choice is to agree the oscillation
of the variable s with a typical oscillation period of a physical system. A maximum coupling is generally
expected at a resonant condition. The characteristic time τ0 of a system does not depend much on a
system size. An appropriate choice for Q will be calculated from the dependence of the heat bath mass
on the system size and temperature as derived in (5.384), that is, with a direct proportionality on the
number of particles through g and on the temperature. Therefore, in principle any finite (positive) Q
value is guaranteed to generate a canonical ensemble. In practice, however, the heat bath mass value
must be chosen carefully. Values of Q too large lead to poor temperature control, in this case the
canonical ensemble can only be obtained after very long simulation time. In the limit Q→∞, the NVE

ensemble is recovered. Too small value of Q will result in high-frequency temperature oscillation, which
might be off-resonance with the characteristic vibrational frequencies (phonon frequencies) of the real
system and effectively decouple from the real system. Finally, when aiming at a precise measurement of
dynamical properties, such as diffusion or vibrations, the use of a larger value of Q or the running of a
NVE ensemble simulation should be considered, in order to avoid artifacts of the thermostat.

129

5.3. Constant temperature approaches Chapter 5. Generation of statistical ensembles

5.3.5 Nosé-Hoover chains

In the previous section, the dynamics and equations of motion derived from an extended Hamiltonian
have been demonstrated to give canonically distributed positions and momenta. It is important here
to underline that the proof does not guarantee that the system is ergodic and that the correct limiting
distribution will be generated, on the contrary, it is the proof itself which involves the assumption that
the dynamics itself is ergodic or, in other words, that the trajectory average can be taken into the phase
space average. Therefore the method works extremely well in large (ergodic) systems. However, it has
been shown for example in Ref. [58] that for small or stiff systems the dynamics is not ergodic and the
correct distributions are not generated.

More rigorously, in Ref. [64] a possible reason for the nonergodicity of Nosé original formulation is
discussed, and a simple modification based on this analysis is presented and tested on model problems.
The method proposed in Ref. [64] succeeds precisely where the original formulation fails, with the
advantage to preserves the simplicity of the original approach.

Other methods can also be used to obtain canonical distributions on stiff systems,[45, 65, 66, 67] some of
which are variations and generalizations of the original Nosé-Hoover approach.[65, 66, 67] In the general
method of Kusnezov et al.,[65] the choice of functions and parameters is somewhat arbitrary and the
algorithm is difficult to apply in complex situations such as constant pressure simulations. The method of
Andersen,[45] which involves stochastic collisions (at intervals some or all of the velocities are resampled
according to the Boltzmann distribution) will also give the canonical ensemble, even in the most trivial
systems.[45] However, this method has the disadvantage that it is not a continuous dynamics with well
defined conserved quantities. Hence the same trajectory cannot easily be reproduced from the same
initial conditions.
Moreover, as demonstrated in Section 5.3.4.5, if more than one conservation law is obeyed by the system,
than the standard Nosé-Hoover equations of motion generate a partition function with the form (5.355),
which is clearly not equal to a canonical partition function.
The reason for the failure of the Nosé-Hoover equations when more than one conservation law is obeyed
by the system is that the equations of motion do not contain a sufficient number of variables in the
extended phase space to offset the restrictions placed on the accessible phase space caused by multiple
conservation laws. Each conservation law restricts the accessible phase space by one dimension. In
order to counterbalance this effect, more phase space dimensions must be introduced, which can be
accomplished by introducing additional variables. The question is now how should these variables be
added so as to give the correct distribution in the physical phase space. The answer can be gleaned
from the fact that the momentum variable pη ≡ pη1 in the Nosé-Hoover equations must have a Maxwell-
Boltzmann distribution, just as the physical momenta do. In order to ensure that such a distribution is
generated, pη ≡ pη1 itself can be coupled to a Nosé-Hoover-type thermostat, which will bring in a new
set of variables, η2 and pη2 . But once this is done, the problem arises that pη2 must also have a Maxwell-
Boltzmann distribution, which requires introducing a thermostat for this variable. This reasoning can
be continued ad infinitum, but the procedure must terminate at some point. If it is terminated after
the addition of M new thermostat variable pairs ηµ and pηµ with µ = 1, ...,M , then a finite set of new
equations of motion can be defined for these variables.

Following the reasoning of Ref. [64], it can be observed that the distribution in the partition function
(5.360) has a Gaussian dependence on the particle momenta π, as well as on the thermostat momenta
pη. While the Gaussian fluctuations of π are driven with a thermostat, there is nothing to drive the
fluctuations of pη. Although the positions ρ and momenta π are of primary interest, if the Nosé-
Hoover equations are ergodic, the system covers the whole phase space, which includes the space of
the thermostat velocities. The fluctuations of the thermostat variables, which clearly occur in ergodic
systems, may even be important in driving the system to fill phase space (the dynamical equations
are, of course, coupled). This suggests thermostating pη and, by analogy, the thermostat of pη plus its
thermostat, and so on, to form a chain.

5.3.5.1 Equations of motion in real variables

According to the theoretical framework described at the beginning of this section, the dynamics of the
Nosé-Hoover chain method can be expressed taking the Nosé-Hoover equations of motion (5.309)-(5.312)

130

Chapter 5. Generation of statistical ensembles 5.3. Constant temperature approaches

and including additional thermostat momenta degrees of freedom, as follows

dqi
dt

=
pi
mi

i = 1, ..., N (5.385)

dpi
dt

= − ∂φ
∂qi
− pη1

Q1
pi i = 1, ..., N (5.386)

dηµ
dt

=
pηµ
Qµ

µ = 1, ...,M (5.387)

dpη1

dt
=

N∑
i=1

p2
i

mi
− gkbT0 − pη1

pη2

Q2
(5.388)

dpηµ
dt

=
p2
ηµ−1

Qµ−1
− kbT0 − pηµ

pηµ+1

Qµ+1
µ = 2, ...,M − 1 (5.389)

dpηM
dt

=
p2
ηM−1

QM−1
− kbT0 (5.390)

where M thermostats have been included. Note that even in large systems, the addition of the extra
thermostats is relatively inexpensive as they form a simple one dimensional chain. Only the first ther-
mostat interacts with the physical system of N particles. The method presented above increases the size
of the phase space and thus helps make the system ergodic.
Equations (5.385)-(5.390) are known as the Nosé-Hoover chain equations. These equations ensure that
the firstM−1 thermostat momenta pη1 , ..., pηM−1 have the correct Maxwell-Boltzmann distribution. Note
that for M = 1 the equations of motion reduce to the simpler Nosé-Hoover formulation. However, unlike
the Nosé-Hoover equations, which are essentially Hamiltonian equations in noncanonical variables, the
Nosé-Hoover chain equations have no underlying Hamiltonian structure, meaning no canonical variables
exist that transform equations (5.385)-(5.390) into a Hamiltonian system.

5.3.5.2 Integration of the equations of motion

Numerical integrators for non-Hamiltonian systems such as the Nosé-Hoover chain equations can be
derived using the Liouville operator formalism developed in Section 4.3.2. However, certain subtleties
arise due to the generalized Liouville theorem and, therefore, the subject merits some discussion. For
a Hamiltonian system, any numerical integration algorithm must preserve the symplectic property, in
which case, it will also conserve the phase space volume. For non-Hamiltonian systems, there is no
clear analog of the symplectic property. Nevertheless, the existence of a generalized Liouville theorem,
equation (4.163), provides a minimal requirement that numerical solvers for non-Hamiltonian systems
should satisfy, specifically, the preservation of the measure

√
g(Γ) dΓ. Integrators that fail to obey

the generalized Liouville theorem cannot be guaranteed to generate correct distributions. Therefore,
in devising numerical solvers for non-Hamiltonian systems, care must be taken to ensure that they are
measure-preserving. Despite the fact that the equations (5.385)-(5.390) are non-Hamiltonian, they can
be expressed as an operator equation just as in the Hamiltonian case. Indeed, a general non-Hamiltonian
system

Γ̇ = ξ(Γ) (5.391)

can be always expressed as

Γ̇ = iLΓ where iL = ξ(Γ) · ∇Γ (5.392)

Note that only systems with no explicit time dependence are considered here, although the Liouville
operator formalism can be extended to systems with explicit time dependence.[68]
The Liouville operator corresponding to equations (5.385)-(5.390) can be written as

iL = iLNHC + iL1 + iL2 (5.393)

The three Liouville operators are given by

iL1 =

Nd∑
i=1

pi
mi
· ∂
∂qi

iL2 = −
Nd∑
i=1

∂φ

∂qi
· ∂

∂pi
(5.394)

131

5.3. Constant temperature approaches Chapter 5. Generation of statistical ensembles

iLNHC = −
N∑
i=1

pη1

Q1
pi ·

∂

∂pi
+

M∑
µ=1

pηµ
Qµ

∂

∂ηµ
+

(
N∑
i=1

p2
i

mi
− gkbT0 − pη1

pη2

Q2

)
∂

∂pη1

+
M−1∑
µ=2

(
p2
ηµ−1

Qµ−1
− kbT0 − pηµ

pηµ+1

Qµ+1

)
∂

∂pηµ
+

(
p2
ηM−1

QM−1
− kbT0

)
∂

∂pηM

= −
N∑
i=1

pη1

Q1
pi ·

∂

∂pi
+

M∑
µ=1

pηµ
Qµ

∂

∂ηµ
−
M−1∑
µ=1

pηµ
pηµ+1

Qµ+1

∂

∂pηµ

+

(
N∑
i=1

p2
i

mi
− gkbT0

)
∂

∂pη1

+
M−1∑
µ=2

(
p2
ηµ−1

Qµ−1
− kbT0

)
∂

∂pηµ
+

(
p2
ηM−1

QM−1
− kbT0

)
∂

∂pηM

= −
N∑
i=1

pη1

Q1
pi ·

∂

∂pi
+

M∑
µ=1

pηµ
Qµ

∂

∂ηµ
−
M−1∑
µ=1

pηµ
pηµ+1

Qµ+1

∂

∂pηµ
+G1

∂

∂pη1

+

M−1∑
µ=2

Gµ
∂

∂pηµ
+GM

∂

∂pηM

iLNHC = −
N∑
i=1

pη1

Q1
pi ·

∂

∂pi
+

M∑
µ=1

pηµ
Qµ

∂

∂ηµ
+

M−1∑
µ=1

(
Gµ − pηµ

pηµ+1

Qµ+1

)
∂

∂pηµ
+GM

∂

∂pηM
(5.395)

where

G1 =

N∑
i=1

p2
i

mi
− gkbT0 GM =

p2
ηM−1

QM−1
− kbT0 (5.396)

Gµ =
p2
ηµ−1

Qµ−1
− kbT0 µ = 2, ...,M − 1 (5.397)

represent the thermostat forces. Note that the sum iL1 + iL2 in equation (5.393), with the two operators
defined as in (5.394), constitutes a purely Hamiltonian subsystem. The evolution of the full phase space
vector Γ(t) = [p(t), q(t),pη(t),η(t)] is given by the usual relation

Γ(t+ τ) = eiLτ Γ(t) (5.398)

As done in the Hamiltonian case, the Trotter theorem can be employed to factorize the propagator
exp(iLτ) for a single timestep τ . Consider a particular factorization of the form

eiLτ ≈ eiLNHC τ/2 eiL2 τ/2 eiL1 τ eiL2 τ/2 eiLNHC τ/2 +O(τ3) (5.399)

Note that the three operators in the middle are identical to those defined in the case of microcanonical
ensemble (see Section 5.1.2 with timestep ∆t = τ). Indeed, this factorization, on its own, would generate
the velocity Verlet algorithm. However, in equation (5.399), it is sandwiched between the thermostat
propagators. This type of separation between the Hamiltonian and non-Hamiltonian parts of the Liouville
operator is intuitively appealing and it allows for easy implementation of the numerical integrator for
the Nosé-Hoover chains equations of motion.

The operator iLNHC contains many terms, so that the operator exp(iLNHCτ/2) still needs to be separated
further. Experience has shown, however, that a simple factorization of the operator based on the
separate terms in (5.395) is insufficient to achieve a robust integration scheme. The reason is that
the thermostat forces in equations (5.396) and (5.397) vary rapidly, thereby limiting the timestep. To
alleviate this problem, the RESPA methodology can be applied to this part of the propagator. Once
again, experience shows that several hundred RESPA steps are needed to resolve the thermostat part of
the propagator accurately, so RESPA alone cannot easily handle the rapidly varying thermostat forces.
Consider, however, employing a higher-order (than τ3) factorization together with RESPA to the operator
exp(iLNHCτ/2). A judiciously chosen algorithm could improve the accuracy of RESPA without adding
significantly to the computational overhead. Fortunately, high order methods suitable for these purposes
exist. One scheme in particular, due to Suzuki,[69, 70] and Yoshida,[71] has proved particularly useful
for the Nosé-Hoover chains equations.

132

Chapter 5. Generation of statistical ensembles 5.3. Constant temperature approaches

5.3.5.3 Conserved quantities

In order to analyze the distribution of the physical phase space generated by equations (5.385)-(5.390),
first of all the conservation laws must be identified. It can be proved that the following quantity is
conserved

H(p, q,pη,η) =
N∑
i=1

p2
i

2mi
+ φ(q) +

M∑
µ=1

p2
ηµ

2Qµ
+ gkbT0η1 + kbT0

M∑
µ=2

ηµ = C1 (5.400)

where pη = (pη1 , pη2 , ..., pηM) and η = (η1, η2, ..., ηM). The conservation of (5.400) can be easily proved
by computing the total time derivative of the conserved Hamiltonian (5.400), that is

dH(p, q,pη,η)

dt
=

N∑
i=1

(
∂H
∂pi
· dpi
dt

+
∂H
∂qi
· dqi
dt

)
+

M∑
µ=1

∂H
∂pηµ

dpηµ
dt

+
∂H
∂η1

dη1

dt
+

M∑
µ=2

∂H
∂ηµ

dηµ
dt

=

N∑
i=1

[
pi
mi
·
(
− ∂φ
∂qi
− pη1

Q1
pi

)
+
∂φ

∂qi
· pi
mi

]
+
pη1

Q1

(N∑
i=1

p2
i

mi
− gkbT0 − pη1

pη2

Q2

)

+
M−1∑
µ=2

pηµ
Qµ

(
p2
ηµ−1

Qµ−1
− kbT0 − pηµ

pηµ+1

Qµ+1

)
+
pηM
QM

(
p2
ηM−1

QM−1
− kbT0

)
+ gkbT0

pη1

Q1
+ kbT0

M∑
µ=2

pηµ
Qµ

(5.401)

which can be rewritten as

dH(p, q,pη,η)

dt
=

N∑
i=1

[
− ∂φ
∂qi
· pi
mi
− pη1

Q1

p2
i

mi
+
∂φ

∂qi
· pi
mi

+
pη1

Q1

p2
i

mi

]
− gkbT0

pη1

Q1
−
p2
η1

Q1

pη2

Q2

+

M−1∑
µ=2

pηµ
Qµ

p2
ηµ−1

Qµ−1
− kbT0

M−1∑
µ=2

pηµ
Qµ
−
M−1∑
µ=2

p2
ηµ

Qµ

pηµ+1

Qµ+1
+
pηM
QM

p2
ηM−1

QM−1
− kbT0

pηM
QM

+ gkbT0
pη1

Q1
+ kbT0

M∑
µ=2

pηµ
Qµ

= −
p2
η1

Q1

pη2

Q2
+

M−1∑
µ=2

pηµ
Qµ

p2
ηµ−1

Qµ−1
− kbT0

M∑
µ=2

pηµ
Qµ
−
M−1∑
µ=2

p2
ηµ

Qµ

pηµ+1

Qµ+1
+
pηM
QM

p2
ηM−1

QM−1
+ kbT0

M∑
µ=2

pηµ
Qµ

= −
p2
η1

Q1

pη2

Q2
+

M−1∑
µ=2

pηµ
Qµ

p2
ηµ−1

Qµ−1
−
M−1∑
µ=2

p2
ηµ

Qµ

pηµ+1

Qµ+1
+
pηM
QM

p2
ηM−1

QM−1

=
M−1∑
µ=2

pηµ
Qµ

p2
ηµ−1

Qµ−1
−
M−1∑
µ=1

p2
ηµ

Qµ

pηµ+1

Qµ+1
+
pηM
QM

p2
ηM−1

QM−1

=
M−2∑
µ=1

pηµ+1

Qµ+1

p2
ηµ

Qµ
−
M−1∑
µ=1

p2
ηµ

Qµ

pηµ+1

Qµ+1
+
pηM
QM

p2
ηM−1

QM−1
=

M−1∑
µ=1

pηµ+1

Qµ+1

p2
ηµ

Qµ
−
M−1∑
µ=1

p2
ηµ

Qµ

pηµ+1

Qµ+1
= 0

If there exists a non zero net force acting on the system, then (5.400) is the only one constant of motion
preserved by the non Hamiltonian flow of equations (5.385) - (5.390). However, considering a system in
the absence of external forces, namely, under the hypothesis

F =

N∑
i=1

Fi = 0 (5.402)

then there are d additional conservation laws satisfied by the equations of motion (5.385) - (5.390), which
take the form

P eη1 = K ↔ F =
N∑
i=1

Fi = 0 (5.403)

where K is an arbitrary constant vector in d dimensions (with d the dimension of the physical space)
and P is the center of mass momentum of the system defined as in (5.299). Equation (5.403) can be

133

5.3. Constant temperature approaches Chapter 5. Generation of statistical ensembles

verified by taking the time derivative explicitly, so that

d(Peη1)

dt
= Ṗ eη1 + η̇1 P eη1 = eη1 (Ṗ + η̇1 P) = eη1

(
Ṗ +

pη1

Q1
P

)
= eη1

(
N∑
i=1

ṗi +
pη1

Q1
P

)
= eη1

[
N∑
i=1

(
− ∂φ
∂qi
− pη1

Q1
pi

)
+
pη1

Q1
P

]

= eη1

(
N∑
i=1

Fi −
pη1

Q1

N∑
i=1

pi +
pη1

Q1
P

)
= eη1

(
N∑
i=1

Fi −
pη1

Q1
P +

pη1

Q1
P

)
= eη1

N∑
i=1

Fi

(5.404)

where the equations of motion (5.386) and (5.387) have been used, together with the definition of the
total linear momentum (5.299). Therefore, as demonstrated in (5.404), the total time derivative of the
quantity (5.403) is equal to zero iff the condition (5.402) is satisfied. The conservation law (5.403) can
be written using a single independent variable, because the d components of the total linear momentum
are linearly dependent. Taking the Euclidean norm on both sides of equation (5.403) leads to

‖P eη1‖ = P eη1 = ‖K‖ = K where P = ‖P‖ =

(
d∑

α=1

P 2
α

)1/2

(5.405)

Hence, the conservation law in the absence of net forces on the system becomes

Peη1 = K = C2 ↔ F =

N∑
i=1

Fi = 0 (5.406)

conservation laws of Nosé - Hoover chains equations of motion (5.385) - (5.390)

H(p, q,pη,η) =
N∑
i=1

p2
i

2mi
+ φ(q) +

M∑
µ=1

p2
ηµ

2Qµ
+ gkbT0η1 + kbT0

M∑
µ=2

ηµ = C1

Peη1 = K = C2 iff F =
N∑
i=1

Fi = 0

Table 5.7: Constants of motion for the Nosé-Hoover chains equations of motion (5.385) - (5.390), together with
the simulation conditions that are necessary to preserve these quantities.

5.3.5.4 Statistical mechanical ensemble

First of all, the partition function generated if the only conserved quantity is given by (5.400) is derived.
In this case, using the phase space vector Γ = (p, q,pη,η), the phase space compressibility of this system,
given by equation (4.123), can be written as

κ(Γ, t) ≡ ∇Γ · Γ̇ =

N∑
i=1

∇qi · q̇i +

N∑
i=1

∇pi · ṗi +

M∑
µ=1

∇ηµ · η̇µ +

M∑
µ=1

∇pηµ · ṗηµ

=

N∑
i=1

∇pi · ṗi +∇pη1 · ṗη1 +

M−1∑
µ=2

∇pηµ · ṗηµ +∇pηM · ṗηM

=

N∑
i=1

∇pi ·
(
− ∂φ
∂qi
− pη1

Q1
pi

)
− pη2

Q2
−
M−1∑
µ=2

pηµ+1

Qµ+1

= −Nd pη1

Q1
−
M−1∑
µ=1

pηµ+1

Qµ+1
= −Nd pη1

Q1
−

M∑
µ=2

pηµ
Qµ

= −Nd η̇1 −
M∑
µ=2

pηµ
Qµ
≡ −Nd η̇1 − η̇c

(5.407)

134

Chapter 5. Generation of statistical ensembles 5.3. Constant temperature approaches

where the equations of motion (5.385) - (5.390) have been used, N is the number of atoms, d is the
dimensionality of the system and a new variable ηc has been defined as

ηc =

M∑
µ=2

ηµ (5.408)

Among the M thermostats chain (M chains), only η1 and the thermostat center, given by (5.408), are
independently coupled to the dynamics. The remaining chain variables are driven. Therefore, the M
chains add only two additional degrees of freedom to the system. The metric can then be computed
using the definition (4.180) with the compressibility (5.407) as

√
g(Γ, t) = exp

(
−
∫
κ(Γ, t) dt

)
= exp

(∫
(Nd η̇1 + η̇c) dt

)
= exp(Ndη1 + ηc) (5.409)

The microcanonical partition function at a given temperature T0 can be constructed using the metric
(5.409), the conserved quantity (5.400) and the energy conservation condition, by means of equation
(4.185), so that

Z(N,V,C1)

= ζ

∫
dq

∫
dp

∫
dη

∫
dpη exp(Ndη1 + ηc) δ

(
H0(p, q) +

M∑
µ=1

p2
ηµ

2Qµ
+ gkbT0η1 + kbT0ηc − C1

)
(5.410)

where the microcanonical partition function depends parametrically on the temperature T0 of the system,
and the Hamiltonian H0(p, q) is given by

H0(p, q) =
N∑
i=1

p2
i

2mi
+ φ(q) (5.411)

First of all, an integration over the variable η1 can be performed. Since the argument of the second delta
function in equation (5.410) has only one zero as a function of the variable η1, a convenient equivalence
relation can be employed to resolve the integral, that is

δ[f(η1)] =
δ(η1 − η̄1)

f ′(η̄1)
(5.412)

where η̄1 is the zero of function f(η1) in the argument of the Dirac function, and f ′(η̄1) is the derivative
of the function f(η1) evaluated in the point η̄1, which has to be read, inside the integral, as the function
f ′(η1), so that the expressions for these objects are

f(η1) = H0(p, q) +
M∑
µ=1

p2
ηµ

2Qµ
+ gkbT0η1 + kbT0ηc − C1 f ′(η1) = gkbT0 (5.413)

η̄1 =
1

gkbT0

(
C1 −H0(p, q)−

M∑
µ=1

p2
ηµ

2Qµ
− kbT0ηc

)
f ′(η̄1) = gkbT0 (5.414)

Using the relation (5.412), together with equation (5.414), in the partition function (5.410), leads to

Z(N,V,C1) = ζ

∫
dq

∫
dp

∫
dη2 · · · dηM

∫
dpη

∫
dη1 exp(Ndη1 + ηc)

δ(η1 − η̄1)

gkbT0

=
ζ

gkbT0

∫
dq

∫
dp

∫
dη2 · · · dηM

∫
dpη exp(Nd η̄1 + ηc)

=
ζ

gkbT0

∫
dq

∫
dp

∫
dη2 · · · dηM

∫
dpη exp

[
Nd

gkbT0

(
C1 −H0(p, q)−

M∑
µ=1

p2
ηµ

2Qµ
− kbT0ηc

)
+ ηc

]

135

5.3. Constant temperature approaches Chapter 5. Generation of statistical ensembles

= ξ

∫
dq

∫
dp exp

(
− Nd

gkbT0
H0(p, q)

)
(5.415)

where the constant ξ which groups together the integration over the variable pη and η2 · · · ηM (that
represent constant prefactors with no physical importance) is given by

ξ =
ζ

gkbT0
exp

(
NdC1

gkbT0

)∫
dpη exp

(
− Nd

gkbT0

M∑
µ=1

p2
ηµ

2Qµ

)∫
dη2 · · · dηM exp

[
M∑
µ=2

ηµ

(
1− Nd

g

)]
(5.416)

The analytical expression for this constant prefactor can be computed considering that it involves a simple
exponential integral in the variables η2 · · · ηM and a Gaussian integral with respect to the variable pη
which can be both solved easily, so that it can be rewritten as

ξ =
ζ

gkbT0
exp

(
NdC1

gkbT0

) M∏
µ=1

(
2πQµ
Nd

gkbT0

)1/2 ∫
dη2 · · · dηM exp

[
M∑
µ=2

ηµ

(
1− Nd

g

)]
(5.417)

Equation (5.415) is the canonical distribution function (modulo constant prefactors), provided that
g = Nd. Indeed, if g = Nd then the partition function (5.415) becomes

g = Nd → Z(N,V,C1) = ξ

∫
dq

∫
dp exp

(
−H0(p, q)

kbT0

)
(5.418)

with the constant prefactor given by

g = Nd → ξ =
ζ

Nd kbT0
exp

(
C1

kbT0

) M∏
µ=1

(2π kbT0Qµ)1/2

∫
dη2 · · · dηM (5.419)

5.3.5.5 Statistical mechanical ensemble under periodic boundary conditions

In this section, the form of the partition function describing a system without external forces (i.e. in
which the condition (5.402) holds) and modeled using periodic boundary conditions is analyzed, following
the procedure previously introduced for the simple Nosé-Hoover equations of motion (see Section 5.3.4.5).
In this case, two constants of motion have to be taken into account (see Table 5.7), namely, the total
Hamiltonian (5.400) and the quantity (5.406) related to the total linear momentum.
To continue the analysis following Section 4.3.2.1, as already outlined in Section 5.3.4.5 in the case of
Nosé-Hoover equations of motion (M = 1 thermostat), also in the Nosé-Hoover chains the momenta
variables in P are linearly dependent and the positions in R are driven variables. Taking the time
derivative on both member of the equation (5.406), and using the equation of motion (5.387) leads to

Ṗ = −η̇1 e
−η1 K = −η̇1 P = −pη1

Q1
P (5.420)

that is the equation of motion which rules the evolution in time of the norm of the total linear momentum
of the system. Proceeding with the analysis, the two variables R and P can be eliminated by considering
the positions and momenta relative to the center of mass of the system, ρ and π, respectively. Therefore,
the equations of motion (5.385)-(5.390) can be rewritten following the same reasoning as in Section
5.3.4.5, leading to the new set of equations

dρi
dt

=
πi
m̄i

i = 1, ..., N − 1 (5.421)

dπi
dt

= − ∂φ
∂ρi
− pη1

Q1
πi i = 1, ..., N − 1 (5.422)

dP

dt
= −pη1

Q1
P (5.423)

dηµ
dt

=
pηµ
Qµ

µ = 1, ...,M (5.424)

136

Chapter 5. Generation of statistical ensembles 5.3. Constant temperature approaches

dpη1

dt
=

N−1∑
i=1

π2
i

m̄i
− gkbT0 − pη1

pη2

Q2
(5.425)

dpηµ
dt

=
p2
ηµ−1

Qµ−1
− kbT0 − pηµ

pηµ+1

Qµ+1
µ = 2, ...,M − 1 (5.426)

dpηM
dt

=
p2
ηM−1

QM−1
− kbT0 (5.427)

where m̄i is the total mass of the system, and the equation of motion for the momentum P, written
in terms of the single independent variable P as defined in (5.405), has been introduced in equation
(5.423), following the result obtained in (5.420). The equations of motion have two conservative laws
(because the d center of mass momenta components have been replaced by a single variable P only one
conservation law for the momenta is left), namely,

H(π, P,ρ,pη,η) = H0(π, P,ρ) +

M∑
µ=1

p2
ηµ

2Qµ
+ gkbT0η1 + kbT0

M∑
µ=2

ηµ = C1 (5.428)

P eη1 = C2 (5.429)

where in the first conservation law (5.428), the Hamiltonian on the left hand side is given by

H0(π, P,ρ) =

N−1∑
i=1

π2
i

2m̄i
+
P 2

2M
+ φ(ρ) (5.430)

In order to compute the partition function, the compressibility has to be calculated, using the phase
space vector Ξ = (π, P,ρ,pη,η), the equations of motion (5.421)-(5.427) and the definition (4.123), as

κ(Ξ, t) ≡ ∇Ξ · Ξ̇ =

N−1∑
i=1

∇ρi · ρ̇i +

N−1∑
i=1

∇πi · π̇i +∇P · Ṗ +

M∑
µ=1

∇ηµ · η̇µ +

M∑
µ=1

∇pηµ · ṗηµ

=
N−1∑
i=1

∇πi · π̇i +∇P · Ṗ +

M∑
µ=1

∇pηµ · ṗηµ =

N−1∑
i=1

∇πi · π̇i +∇P · Ṗ +∇pη1 · ṗη1 +

M−1∑
µ=2

∇pηµ · ṗηµ

=
N−1∑
i=1

∇πi ·
(
− ∂φ
∂ρi
− pη1

Q1
πi

)
− pη1

Q1
− pη2

Q2
−
M−1∑
µ=2

∇pηµ ·
(N−1∑
i=1

π2
i

m̄i
− gkbT0 − pη1

pη2

Q2

)

= −(N − 1)d
pη1

Q1
− pη1

Q1
− pη2

Q2
−
M−1∑
µ=2

pηµ+1

Qµ+1
= −[(N − 1)d+ 1]

pη1

Q1
−
M−1∑
µ=1

pηµ+1

Qµ+1

= −(Nd− d+ 1)
pη1

Q1
−

M∑
µ=2

pηµ
Qµ

= −(Nd− d+ 1) η̇1 − η̇c (5.431)

where ηc is the variable defined as in equation (5.408). From the compressibility (5.431), the metric
follows directly

√
g(Ξ, t) = exp

(
−
∫
κ(Ξ, t) dt

)
= exp

(∫
[(Nd− d+ 1) η̇1 + η̇c] dt

)

= exp

{
(Nd− d+ 1)

∫
dη1

dt
dt+

∫
dηc
dt

dt

}
= exp{(Nd− d+ 1)η1 + ηc}

(5.432)

The conservation laws and the metric can now be used to construct the microcanonical partition function,
which contains two delta functions that express the two conservation laws

Z(N,V,C1, C2)

= ζ

∫
dρ

∫
dπ

∫
dP

∫
dη

∫
dpη e

(Nd−d+1)η1 eηc δ

(
H(π, P,ρ,pη,η)− C1

)
δ(eη1 P − C2)

(5.433)

137

5.3. Constant temperature approaches Chapter 5. Generation of statistical ensembles

where dρ = dρ1 · · · dρN−1 and dπ = dπ1 · · · dπN−1, while dη = dη1 · · · dηM and dpη = dpη1 · · · dpηM
and the Hamiltonian is given by equation (5.428). Since the argument of the second delta function in
the above equation (5.433) has only one zero as a function of the variable η1, a convenient equivalence
relation can be employed to resolve the integral, given by equation (5.412), with

f(η1) = eη1 P − C2 f ′(η1) = eη1 P (5.434)

η̄1 = ln

(
C2

P

)
f ′(η̄1) = C2 (5.435)

where η̄1 is the zero of function f(η1) and f ′(η̄1) is the derivative of the function f(η1) evaluated in the
point η̄1, which has to be read, inside the integral, as the function f ′(η1). Therefore, using the relation
(5.412) in (5.433), together with equations (5.434) and (5.435), the partition function becomes

Z(N,V,C1, C2)

= ζ

∫
dρ

∫
dπ

∫
dP

∫
dη

∫
dpη e

(Nd−d+1)η1 eηc δ

(
H(π, P,ρ,pη,η)− C1

)
δ(η1 − η̄1)

eη1 P

= ζ

∫
dρ

∫
dπ

∫
dP

∫
dη2 · · · dηM

∫
dpη e

(N−1)d η̄1
eηc

P
δ

(
H0(π, P,ρ) +

M∑
µ=1

p2
ηµ

2Qµ
+ gkbT0 η̄1 + kbT0 ηc − C1

)

The substitution of the variable η̄1 with its explicit expression, given by the first equation in (5.435),
yields the following form for the partition function

Z(N,V,C1, C2) =
ζ

C2

∫
dρ

∫
dπ

∫
dP

∫
dη2 · · · dηM

∫
dpη

(
C2

P

)(N−1)d+1

eηc δ[f(ηc)] (5.436)

where the expression inside the delta in the previous equation can be viewed as a function of the variable
ηc and it is given by

f(ηc) = H0(π, P,ρ) +

M∑
µ=1

p2
ηµ

2Qµ
+ gkbT0 ln

(
C2

P

)
+ kbT0 ηc − C1 f ′(ηc) = kbT0 (5.437)

The previous function f(ηc) has only one zero η̄c with respect to the variable ηc, that is

η̄c =
1

kbT0

(
C1 −H0(π, P,ρ)−

M∑
µ=1

p2
ηµ

2Qµ
− gkbT0 ln

(
C2

P

))
f ′(η̄c) = kbT0 (5.438)

Using again the relation (5.412), the integration over the variable ηc results in the following expression
for the partition function

Z(N,V,C1, C2)

=
ζ

C2

∫
dρ

∫
dπ

∫
dP

∫
dη2 · · · dηM

∫
dpη

(
C2

P

)(N−1)d+1

eηc
δ(ηc − η̄c)
kbT0

=
ζ

kbT0C2

∫
dρ

∫
dπ

∫
dP

∫
dpη e

η̄c

(
C2

P

)(N−1)d+1

=
ζ

kbT0C2

∫
dρ

∫
dπ

∫
dP

∫
dpη

(
C2

P

)(N−1)d+1

exp

{
1

kbT0

[
C1 −H0(π, P,ρ)−

M∑
µ=1

p2
ηµ

2Qµ
− gkbT0 ln

(
C2

P

)]}

=
ζ

kbT0C2
exp

(
C1

kbT0

)∫
dpη exp

(
− 1

kbT0

M∑
µ=1

p2
ηµ

2Qµ

)∫
dρ

∫
dπ

∫
dP

(
C2

P

)(N−1)d+1−g
exp

[
−H0(π, P,ρ)

kbT0

]

=
ζ

kbT0C2
exp

(
C1

kbT0

)∫
dpη exp

(
− 1

kbT0

M∑
µ=1

p2
ηµ

2Qµ

)∫
dρ

∫
dπ

∫
dP

(
P

C2

)g−(N−1)d−1

exp

[
−H0(π, P,ρ)

kbT0

]

138

Chapter 5. Generation of statistical ensembles 5.3. Constant temperature approaches

Collecting all the prefactors in a constant ξ, the partition function can be written as

Z(N,V,C1, C2) = ξ

∫
dρ

∫
dπ

∫
dP

(
P

C2

)g−(N−1)d−1

exp

[
−H0(π, P,ρ)

kbT0

]
(5.439)

with the constant is given by

ξ =
ζ

kbT0C2
exp

(
C1

kbT0

)∫
dpη exp

(
− 1

kbT0

M∑
µ=1

p2
ηµ

2Qµ

)

=
ζ

kbT0C2
exp

(
C1

kbT0

) M∏
µ=1

(
2π kbT0Qµ

)1/2
(5.440)

where the integral over the variables pη = (pη1 , ..., pηM) is the product of simple Gaussian integrals and
it has been solved using the formula (5.321).
In particular, the constant ξ given by equation (5.440) is independent from the variable g. Instead, if
g = Nd, the partition function (5.439) becomes

g = Nd → Z(N,V,C1, C2) = ξ

∫
dρ

∫
dπ

∫
dP

(
P

C2

)d−1

exp

[
−H0(π, P,ρ)

kbT0

]
(5.441)

while if g = (N − 1)d+ 1 then the partition function (5.439) can be written as

g = (N − 1)d+ 1 → Z(N,V,C1, C2) = ξ

∫
dρ

∫
dπ

∫
dP exp

[
−H0(π, P,ρ)

kbT0

]
(5.442)

with the constant ξ given by equation (5.440) in both cases.

139

5.4. Constant temperature and pressure approaches Chapter 5. Generation of statistical ensembles

5.4 Constant temperature and pressure approaches

The coupling of a physical system with a thermal and a pressure reservoir can be regarded as a ther-
modynamic constraint. The extended system approach in molecular dynamics simulation, pioneered by
Andersen in his 1980 seminal paper for the constant pressure case,[45] treats the thermodynamic con-
straints in a dynamic way, where the baths are represented solely by a few additional degrees of freedom.
In this context, an extended Hamiltonian is introduced, in which the physical and the extra degrees of
freedom are treated at the same level, and the equations of motion are derived by standard methods.[72]
These equations are then cast in a non-canonical form by means of a coordinate transformation in order
to sample the properties of the physical system from the appropriate statistical ensemble by numerical
integration over uniform time separations.[47, 73] Within this general scheme, several different equations
of motion have been proposed, all leading to an ensemble equilibrium probability density for the physical
system, after integration over the extra variables.[47, 58, 74, 75, 76, 77, 78, 79] In fact, the form of the
kinetic term for the extended variables is not fixed and there is freedom for different choices that give rise
to different dynamic trajectories, which equally sample in a correct way the phase space of the desired
ensemble.[80, 81]
In general the extended system procedure requires the introduction of velocity dependent forces, which
are difficult to integrate numerically in the context of a Verlet scheme without spoiling the time reversal
properties of the algorithm. The Suzuki-Trotter formalism[69, 82, 83] provides for an elegant solution
to these problems. Indeed, it has been shown that an appropriate breakup of the propagator for the
Newtonian dynamics of an N particle atomic system originates the well known velocity Verlet algorithm,
providing at the same time a theoretical foundation for such a simple and commonly used integration
scheme (see Section 4.2.1). Moreover, this approach leads to a procedure that allows one to derive in a
systematic way multiple time step strategies in molecular simulations, highly suitable for systems with
strong separations in timescales.
Following these general strategies, in the framework of extended system methods (see Section 5.2.2), in
Section 5.4.1 a set of equations of motion introduced by Ferrario[78] are described, leading to a con-
stant temperature and pressure molecular dynamics simulation (sampling of the Npt ensemble in phase
space).

5.4.1 Ferrario thermostat and barostat

In this section a particular set of equations of motion, previously introduced by M. Ferrario,[78] is de-
scribed, which combines constant pressure with constant temperature thermodynamic constraints, in
the framework of extended system methods. The set of equations of motion fulfills the requirement that,
following Andersen,[45] reference can be made to a Hamiltonian system via a non-canonical transforma-
tion. In Ref. [78], the equations of motion proposed by Andersen[45] for constant pressure molecular
dynamics simulation were combined with the Nosé-Hoover approach for constant temperature.[46, 47, 58]
In particular, by introducing first an extended Lagrangian in virtual coordinates, a system of Hamil-
tonian first-order equations of motion was derived for the canonical virtual coordinates and momenta
and rearranged in terms of real variables associated to the physical system of interest by means of a
non-canonical transformation. Therefore, these equations are derived by a Lagrangian, or in Hamilton
canonical form, only in a virtual system of coordinates and become non-canonical when expressed in
term of the real variables of the physical system. The particular form of these equations is chosen in
such a way that the microcanonical equilibrium distribution produced by a constant-energy trajectory of
the extended system reduces to the desired distribution when the positions and momenta of the system
of interest are considered, that is after integration over the extra reservoir variables. Indeed, it can
be proved that the molecular dynamics trajectory generated by these equations of motion samples the
isobaric-isothermal (Npt) ensemble.

The extended system Lagrangian, introduced by Andersen,[45] was designed to produce a constant
pressure, constant enthalpy simulation by adding one extra variable, representing the Md cell volume,
which is therefore free to fluctuate, and the coupling is made through a dynamical equation of motion for
the cell volume variable. When the cell volume changes there is a uniform spatial scaling of the particle
positions. In the same paper a constant temperature method was also introduced. This, however, was
based on a different mechanism in which the coupling between the heat reservoir and the system of

140

Chapter 5. Generation of statistical ensembles 5.4. Constant temperature and pressure approaches

interest is stochastic and is implemented by randomly sampling particle velocities from a Maxwellian
distribution. This method is of relevance when dealing with complex systems where there is a poor
coupling between various degrees of freedom, for example molecular internal vibrational and translational
or rotational degrees of freedom, and it is probably the best method of achieving adequate equilibrium
sampling in these systems. However, here either the stochastic method or the constraint methods are not
discussed. Instead, the concentration is focused on the extended system method for constant temperature
dynamics first proposed by Nosé[46], and later modified by Hoover[58] and Nosé himself,[47] discussed
extensively in Section 5.3.4. In this method, the reservoir is described by a single degree of freedom,
which however does not have a simple physical meaning, and the coupling contains a scaling term which
applies uniformly to all particle velocities and is in fact a scaling on simulation time. Hoover approach
simplifies matters as it does not require the use of virtual variables and scaling concepts and also makes
a direct link to constraint methods.
Therefore, the equations of motion for the constant temperature and pressure dynamics, which samples
the Npt ensemble, are a combination between the Andersen constant pressure and the Nosé-Hoover
constant temperature approaches.13

In the constant pressure molecular dynamics method the volume v of the Md box is allowed to fluctuate
in time. Andersen replaced the nuclear coordinates {qi} with virtual scaled coordinates {q̃i} defined in
the following way

q̃i = v−1/3qi (5.443)

Each component of the virtual positions {q̃i} is therefore a dimensionless number between zero and one
(taking care to consider always the image inside the Md box). Similarly, Nosé introduces a scaled time
t̃ which is related to the real time variable t through the reservoir coordinate s in the following way

dt̃ = s dt (5.444)

Now the Lagrangian for the extended system can be introduced following Ref. [78] as

L̃ =
1

2

N∑
i=1

mi s̃
2 ṽ2/3 ˙̃q2

i − φ({ṽ1/3q̃i}, ṽ) +
1

2
W s̃2 ˙̃v2 − P0ṽ +

1

2
Q ˙̃s2 − gkbT0 ln s̃ (5.445)

in which two new variables ṽ and s̃ appear, and the potential φ({ṽ1/3q̃i}, ṽ) depends also on the variable
ṽ. If the variable ṽ is interpreted as the volume v, then the first two terms in (5.445) are just the
Lagrangian of the system of interest. The third term is a kinetic energy term, followed by a potential
energy term for the motion of ṽ in which two constants appear, the inertia factor W for the barostat
degrees of freedom and the external pressure P0. The firth term is the kinetic term for the thermostat
variable s̃, and the last term is the corresponding potential energy. The constants appearing in the last
two terms are another inertia factor Q for the thermostat degrees of freedom and the temperature of
the reservoir T0 with Boltzmann constant kb, while g is the number of degrees of freedom which are
computed so that the statistical distribution function for the isobaric-isothermal ensemble in the real
system frame of reference has been recovered, starting from the conserved Hamiltonian form. Andersen
gives a physical interpretation of the ṽ terms. Imagine that the fluid to be simulated can be compressed
in a container whose volume is changed by a piston. Thus the variable W represents the mass of the
piston whose motion is described by the coordinate ṽ, and P0ṽ is the potential derived from an external
pressure P0 acting on the piston. The piston is a virtual object and produces an isotropic expansion or
contraction of the fluid. However, this interpretation is not completely consistent as, writing down the
expected particle velocities

dqi
dt

=
d

dt
(v1/3q̃i) = v1/3dq̃i

dt
+

1

3
v−2/3 q̃i

dv

dt
= v1/3s

dq̃i

dt̃
+
qi
3v

dv

dt
= ṽ1/3 s̃

dq̃i

dt̃
+
qi
3ṽ

dṽ

dt
(5.446)

where in the last equality the identities ṽ = v and s̃ = s have been used, one finds that the second term
of this derivative does not appear in the kinetic terms of the Lagrangian. However equation (5.445)
gives a well-defined Lagrangian for the extended system in terms of virtual coordinates. The next step is

13As a word of caution, it must be mentioned that different Lagrangians (and therefore different Hamiltonians) can be set
up, all leading to the same equilibrium distribution but with different definitions and dynamics for the reservoir variables.

141

5.4. Constant temperature and pressure approaches Chapter 5. Generation of statistical ensembles

therefore to derive from it the conjugate momenta. First of all, the momentum conjugate to the particle
positions q̃i will be denoted as p̃i and it is computed as

p̃i =
∂L̃

∂ ˙̃qi
= mi s̃

2 ṽ2/3 ˙̃qi (5.447)

The momentum conjugate to the variable ṽ will be denoted as p̃v and it is given by

p̃v =
∂L̃

∂ ˙̃v
= W s̃2 ˙̃v (5.448)

and finally, the momentum conjugate to the variable s̃ will be denoted as p̃s and it is defined by

p̃s =
∂L̃

∂ ˙̃s
= Q ˙̃s (5.449)

The Hamiltonian of the extended system can now be written down as

H̃ =
N∑
i=1

˙̃qi · p̃i + ˙̃vp̃v + ˙̃sp̃s − L̃

=
N∑
i=1

p̃i · p̃i
mi s̃2 ṽ2/3

+W s̃2 ˙̃v2 +Q ˙̃s2 − 1

2

N∑
i=1

p̃i · p̃i
mi s̃2 ṽ2/3

+ φ({ṽ1/3q̃i}, ṽ)− 1

2
W s̃2 ˙̃v2 + P0ṽ −

1

2
Q ˙̃s2 + gkbT0 ln s̃

=
1

2

N∑
i=1

p̃i · p̃i
mi s̃2 ṽ2/3

+ φ({ṽ1/3q̃i}, ṽ) +
1

2
W s̃2 ˙̃v2 + P0ṽ +

1

2
Q ˙̃s2 + gkbT0 ln s̃

Therefore, using the relations (5.448) and (5.449) for the conjugate momenta, the Hamiltonian form for
the extended system in virtual variables frame of reference is given by

H̃(p̃, q̃, p̃s, s̃, p̃v, ṽ) =
1

2

N∑
i=1

p̃2
i

mi s̃2 ṽ2/3
+ φ({ṽ1/3q̃i}, ṽ) +

p̃2
v

2s̃2W
+ P0ṽ +

p̃2
s

2Q
+ gkbT0 ln s̃ (5.450)

At this point, the equations of motion for the extended system in virtual variables can be derived in the
canonical way from the Hamiltonian, using the Hamilton form of the equations of motion, so that

dq̃i

dt̃
=
∂H̃
∂p̃i

=
p̃i

mi s̃2 ṽ2/3
i = 1, ..., N (5.451)

dp̃i

dt̃
= −∂H̃

∂q̃i
= −ṽ1/3 ∂φ

∂qi
i = 1, ..., N (5.452)

dṽ

dt̃
=
∂H̃
∂p̃v

=
p̃v
s̃2W

(5.453)

dp̃v

dt̃
= −∂H̃

∂ṽ
=

1

3ṽ

N∑
i=1

(
p̃2
i

mi s̃2 ṽ2/3
− ṽ1/3 ∂φ

∂qi
· q̃i
)
−∂φ
∂ṽ
− P0 (5.454)

ds̃

dt̃
=
∂H̃
∂p̃s

=
p̃s
Q

(5.455)

dp̃s

dt̃
= −∂H̃

∂s̃
=

N∑
i=1

p̃2
i

mi s̃3 ṽ2/3
+

p̃2
v

s̃3W
− gkbT0

s̃
(5.456)

The conserved quantities are the Hamiltonian H̃ expressed in virtual coordinates as in (5.450), the
total linear momentum

∑N
i=1 p̃i and the total angular momentum

∑N
i=1 q̃i ∧ p̃i. Indeed, the total time

derivative of the virtual Hamiltonian is equal to zero,

dH̃
dt̃

=

N∑
i=1

(
∂H̃

∂p̃i

dp̃i

dt̃
+
∂H̃
∂q̃i

dq̃i

dt̃

)
+
∂H̃
∂p̃v

dp̃v

dt̃
+
∂H̃
∂ṽ

dṽ

dt̃
+
∂H̃
∂p̃s

dp̃s

dt̃
+
∂H̃
∂s̃

ds̃

dt̃
= 0 (5.457)

142

Chapter 5. Generation of statistical ensembles 5.4. Constant temperature and pressure approaches

The conservation laws for the total linear and angular momenta are derived from equation (5.452) and
the properties satisfied by the potential

N∑
i=1

∂φ

∂q̃i
= 0

N∑
i=1

q̃i ∧
∂φ

∂q̃i
= 0 (5.458)

However, it should be noted here that during the ordinary molecular dynamics simulations with periodic
boundary conditions the angular momentum is not conserved.[29] In the theoretical framework, the
equations lead to the conservation of both the linear and angular momenta, thus producing a theoretical
ensemble slightly different from that generated by imposing only the conservation of the total linear
momentum due to the presence of periodic boundary conditions. These differences are ignored in the
following discussion, but they are introduced and discussed later in paragraph A.8.1.

5.4.1.1 Equations of motion in real variables

The equations of motion (5.451)-(5.456) could be solved numerically to produce a time trajectory in the
virtual phase space of the extended system. However this turns out not to be the best choice, because
integrating with a constant time step ∆t̃ over the virtual time implies producing a trajectory unevenly
spaced in the real time of the system of interest. It is therefore more rewarding to go back from the
positions and momenta in virtual space to the positions and momenta in the real space

(p̃i, q̃i, p̃v, ṽ, p̃s, s̃, t̃) → (pi, qi, pv, v, ps, s, t) (5.459)

by means of the following transform relations

pi =
p̃i

sv1/3
qi = v1/3 q̃i pv =

p̃v
s

v = ṽ

ps = p̃s s = s̃ t =

∫ t dt̃

s

(5.460)

that have been previously introduced and used in Section 5.4.1 and are explicitly given in Ref. [78].
By applying these transformations to the equations of motion in virtual variables, the correspondent
equations of motion in the real frame of reference are obtained to be

dqi
dt

= s
d

dt̃
(v1/3 q̃i) = sv1/3 dq̃i

dt̃
+

1

3

sq̃i

v2/3

dṽ

dt̃
= sv1/3 p̃i

mi s2 v2/3
+

1

3

qi
v
s
dṽ

dt̃
=
pi
mi

+
qi
3v

dv

dt

=
pi
mi

+
1

3

qi
v
s
p̃v
s2W

=
pi
mi

+
qi
3v

pv
W

(5.461)

dpi
dt

= s
dpi

dt̃
= s

d

dt̃

(
p̃i

sv1/3

)
=

1

v1/3

dp̃i

dt̃
− p̃i

sv1/3

ds

dt̃
− 1

3

p̃i

v4/3

dv

dt̃

=
1

v1/3

(
−ṽ1/3 ∂φ

∂qi

)
− pi

s

ds

dt
− pi

3v

dv

dt

= − ∂φ
∂qi
− pi

ds

dt̃
− spi

3v

dv

dt̃
= − ∂φ

∂qi
− pi

ps
Q
− pi

3v

pv
W

(5.462)

dv

dt
= s

dv

dt̃
= s

(
p̃v
s2W

)
= s

(
s pv
s2W

)
=
pv
W

(5.463)

dpv
dt

= s
dpv

dt̃
= s

d

dt̃

(
p̃v
s

)
=
dp̃v

dt̃
− p̃v

s

ds

dt̃
=

1

3v

N∑
i=1

(
p2
i

mi
− ∂φ

∂qi
· qi
)
−∂φ
∂v
− P0 −

pv
s

(
ds

dt

)

=
1

3v

N∑
i=1

(
p2
i

mi
− ∂φ

∂qi
· qi
)
−∂φ
∂v
− P0 −

pvps
Q

(5.464)

ds

dt
= s

ds

dt̃
= s

ps
Q

(5.465)

143

5.4. Constant temperature and pressure approaches Chapter 5. Generation of statistical ensembles

dps
dt

= s
dps

dt̃
= s

(
N∑
i=1

p2
i

smi
+

p2
v

sW
− gkbT0

s

)
=

N∑
i=1

p2
i

mi
+
p2
v

W
− gkbT0 (5.466)

Resuming the expression derived above, the equations of motion in real variables (i.e. in the variable
associated to the real physical system), that lead to a partition function of the form (A.174) or, including
the linear momentum conservation, to a partition function with the form (A.204), well reproducing the
Npt ensemble equilibrium distribution function (see Section A.8.1), are given by

dqi
dt

=
pi
mi

+
qi
3v

dv

dt
=
pi
mi

+
qi
3v

pv
W

i = 1, ..., N (5.467)

dpi
dt

= − ∂φ
∂qi
− pi

s

ds

dt
− pi

3v

dv

dt
= − ∂φ

∂qi
− pi

ps
Q
− pi

3v

pv
W

i = 1, ..., N (5.468)

dv

dt
=
pv
W

(5.469)

dpv
dt

=
1

3v

N∑
i=1

(
p2
i

mi
− ∂φ

∂qi
· qi
)
−∂φ
∂v
− P0 −

pvps
Q

(5.470)

ds

dt
= s

ps
Q

(5.471)

dps
dt

=
N∑
i=1

p2
i

mi
+
p2
v

W
− gkbT0 (5.472)

It is known that, for a system without severe timescale separations, these equations are robust with
respect to the choice of the inertial parameters and that their integration does yield the correct sam-
pling of the statistical mechanical ensemble.[78] Comparing the Ferrario equations of motion with the
Nosé-Hoover forms (5.258)-(5.261), it can be noted that the first two equations (5.467) and (5.468) are
similar to (5.258) and (5.259), respectively, except for an additional term due to the barostat degrees
of freedom. Obviously, equations (5.469) and (5.470) do not compare in the Nosé-Hoover form of the
equations of motion, since they are related to the evolution in time of the barostat degrees of freedom.
On the other hand, equation (5.471) is very similar to (5.260), except for a multiplicative factor s, and
equation (5.472) is similar to (5.261) except for a multiplicative factor s and for a kinetic term related
to the barostat degree of freedom instead of the thermostat one.
The Hamiltonian (5.450), when expressed using real non-canonical variables, transforms into the con-
served energy of the extended system as

H(p, q, ps, s, pv, v) =
N∑
i=1

p2
i

2mi
+ φ({qi}, v) +

p2
v

2W
+ P0v +

p2
s

2Q
+ gkbT0 ln s (5.473)

However, it must be noticed that because the transformation between virtual and real set of coordinates
is not canonical, the function (5.473), obtained applying virtual to real reference frame transformations
to the Hamiltonian (5.450), cannot be used to derive the equations of motion for the real positions and
momenta, given by (5.467)-(5.472). Indeed, starting from the function (5.473), the equations of motion
obtained applying Hamilton formulation are

dqi
dt

=
∂H
∂pi

=
pi
mi

i = 1, ..., N (5.474)

dpi
dt

= −∂H
∂qi

= − ∂φ
∂qi

i = 1, ..., N (5.475)

dv

dt
=
∂H
∂pv

=
pv
W

(5.476)

dpv
dt

= −∂H
∂v

= −∂φ
∂v
− P0 (5.477)

ds

dt
=
∂H
∂ps

=
ps
Q

(5.478)

144

Chapter 5. Generation of statistical ensembles 5.4. Constant temperature and pressure approaches

dps
dt

= −∂H
∂s

= −gkbT0

s
(5.479)

which are clearly different from the previously derived equations of motion (5.467)-(5.472), that are
computed by applying the virtual to real reference frame transformations (5.460) to the virtual variables
equations of motion (5.451)-(5.456).
At the same time, the function (5.473) still remains a constant of motion for the time evolution defined
by equations (5.467)-(5.472), so that its value can be monitored during a dynamical simulation and it
can be used to judge the reliability of time trajectory and ensemble sampling.

5.4.1.2 Integration of the equations of motion

Using the equations of motion in the real reference frame, derived in Section 5.4.1.1, a time development
operator can be formulated by the decomposed Liouville operators, as explained in Section 4.2. By
changing the order of these decomposed operators, several time integrators can be thought. In the case
of constant temperature and pressure, since the degrees of freedom associated to a thermostat and a
barostat have to be added, the vector Γ contains 2dN + 4 variables in the phase space of the extended
system, which is defined by Γ(t) = (p(t), q(t), pv(t), v(t), ps(t), s(t)). Its time development (4.65) from
time t0 to a generic time t = t0 + P τ , where P is an integer representing the number of dynamics steps
the phase space coordinates are allowed to propagate and τ is the simulation time step unit, is written
as

Γ(t) = Γ(t0 + P τ) = eiLP τ Γ(t0) (5.480)

where the Liouville operator is given by equation (4.62) reported here below for the case of the extended
system of interest

iL = Γ̇ · ∂
∂Γ

with Γ(t) = (p(t), q(t), pv(t), v(t), ps(t), s(t)) (5.481)

where the dot over the phase space vector variable stands for the time derivative. The equations of motion
(5.467)-(5.472) can be rewritten using the variable transformation (5.498), that modifies only the form
of equation (5.471) involving the thermostat degree of freedom s, so that the new set of equations of
motion to be considered is

dqi
dt

=
pi
mi

+
qi
3v

dv

dt
=
pi
mi

+
qi
3v

pv
W

i = 1, ..., N (5.482)

dpi
dt

= − ∂φ
∂qi
− pi

s

ds

dt
− pi

3v

dv

dt
= − ∂φ

∂qi
− pi

ps
Q
− pi

3v

pv
W

i = 1, ..., N (5.483)

dv

dt
=
pv
W

(5.484)

dpv
dt

=
1

3v

N∑
i=1

(
p2
i

mi
− ∂φ

∂qi
· qi
)
−∂φ
∂v
− P0 −

pvps
Q
≡ Fv −

pvps
Q

(5.485)

dη

dt
=
ps
Q

(5.486)

dps
dt

=

N∑
i=1

p2
i

mi
+
p2
v

W
− gkbT0 ≡ Fs (5.487)

where two new force variables have been introduced in equations (5.485) and (5.487) to further simplify
the notation, namely,

Fv ≡
1

3v

N∑
i=1

(
p2
i

mi
− ∂φ

∂qi
· qi
)
−∂φ
∂v
− P0 Fs ≡

N∑
i=1

p2
i

mi
+
p2
v

W
− gkbT0 (5.488)

Therefore, using the new variable defined in (5.498), the evolution in phase space of the system vector
(5.481) becomes

iL = Γ̇ · ∂
∂Γ

with Γ(t) = (p(t), q(t), pv(t), v(t), ps(t), η(t)) (5.489)

145

5.4. Constant temperature and pressure approaches Chapter 5. Generation of statistical ensembles

The conserved quantity corresponding to the Hamiltonian (5.473) expressed in real coordinates (physi-
cal system frame of reference) can be rewritten using the transformation (5.498) as in equation (5.534).
Starting from the formula (5.489), and using the Ferrario equations of motion (5.482)-(5.487) just ob-
tained, the form of the Liouville operator can be easily derived to be

iL =
Nd∑
i=1

dqi
dt
· ∂
∂qi

+
Nd∑
i=1

dpi
dt
· ∂

∂pi
+
dv

dt

∂

∂v
+
dpv
dt

∂

∂pv
+
dη

dt

∂

∂η
+
dps
dt

∂

∂ps

=
Nd∑
i=1

pi
mi
· ∂
∂qi

+

Nd∑
i=1

qi
3v

pv
W
· ∂
∂qi
−

Nd∑
i=1

∂φ

∂qi
· ∂

∂pi
−

Nd∑
i=1

pi
ps
Q
· ∂

∂pi
−

Nd∑
i=1

pi
3v

pv
W
· ∂

∂pi

+
pv
W

∂

∂v
+ Fv

∂

∂pv
− pvps

Q

∂

∂pv
+
ps
Q

∂

∂η
+ Fs

∂

∂ps

(5.490)

The evolution in time of real system and thermostat and barostat degrees of freedom can be modeled
through a velocity Verlet-like reversible scheme of integration derived using the Trotter-Suzuki factor-
ization of the Liouville operator (see Section 4.2.1). Using a ten-terms decomposition of the Liouville
operator (with the generalized factorization (4.93) derived in Section 4.2.1), the Liouville operator can
be split into the sum of ten operators as follows

iL = iL1 + iL2 + iL3 + iL4 + iL5 + iL6 + iL7 + iL8 + iL9 + iL10 (5.491)

where

iL1 =
Nd∑
i=1

pi
mi
· ∂
∂qi

iL2 =
Nd∑
i=1

qi
3v

pv
W
· ∂
∂qi

iL3 =
pv
W

∂

∂v
(5.492)

iL4 = −
Nd∑
i=1

∂φ

∂qi
· ∂

∂pi
iL5 = −

Nd∑
i=1

pi
ps
Q
· ∂

∂pi
iL6 = −

Nd∑
i=1

pi
3v

pv
W
· ∂

∂pi
(5.493)

iL7 = Fv
∂

∂pv
iL8 = −pvps

Q

∂

∂pv
iL9 =

ps
Q

∂

∂η
iL10 = Fs

∂

∂ps
(5.494)

The separated operators iL1 and iL4 are the same as in the Nve ensemble (see Section 5.1.2), while the
operators iL5 and iL9 have a similar form with respect to Nosé-Hoover operators iL3 and iL4 in (5.284),
respectively (the Nosé-Hoover equations involve the variable pη = sps, while the expressions defined
above use the variable ps). Furthermore, the operator iL5 in (5.284) is associated to the operator iL10

in (5.494) and it is reproduced by the two terms in Fs (see the second identity in (5.488)). All the
other operators, namely, iL2, iL3, iL6, iL7, iL8 and a term in iL10 are additional operators which come
from the variables associated to the barostat degrees of freedom. From the operator separations in
equations (5.492)-(5.494), several decomposition forms of the time development operator exp(iLτ) can
be considered as time integrators. Indeed, different variants of the time integrator form can be obtained
by the permutation of the ten separated Liouville operators. However, because some operators in the
decomposition commute to each other, the variants number reduces, and it is less than the total number
of possible permutations of the ten operators.
Starting from the ten-term decomposition of the Liouville operator introduced above, the approximate
discrete time propagator can now be derived by means of the Suzuki-Trotter factorization formula (4.93),
with P = 1 (one time step) and a number of Liouville operators equal to n = 10 (see Section 4.2.1),
following the decomposition order applied by A. Sergi et al.[84], given by

eiLτ ≈ eiL10 τ/2 eiL9 τ/2 eiL8 τ/2 eiL7 τ/2 eiL6 τ/2 eiL5 τ/2 eiL4 τ/2 eiL3 τ/2 eiL2 τ/2 eiL1 τ ·
· eiL2 τ/2 eiL3 τ/2 eiL4 τ/2 eiL5 τ/2 eiL6 τ/2 eiL7 τ/2 eiL8 τ/2 eiL9 τ/2 eiL10 τ/2 +O(τ19)

(5.495)

which can be more conveniently rewritten using the shortest notation

eiLτ ≈

(
2∏

i=10

eiLi τ/2

)
eiL1 τ

(
10∏
i=2

eiLi τ/2

)
+O(τ19) (5.496)

146

Chapter 5. Generation of statistical ensembles 5.4. Constant temperature and pressure approaches

where the product order follows the index value with multiplication factors applied from left to right.
The above defined time propagator has to be used in equation (5.480) to compute the time propagation
of phase space variables from an initial time t0 to t0 + τ (one time step, i.e. P = 1) in the extended
phase space, so that

Γ(t0 + τ) ≈ eiL10 τ/2 eiL9 τ/2 eiL8 τ/2 eiL7 τ/2 eiL6 τ/2 eiL5 τ/2 eiL4 τ/2 eiL3 τ/2 eiL2 τ/2 eiL1 τ ·
· eiL2 τ/2 eiL3 τ/2 eiL4 τ/2 eiL5 τ/2 eiL6 τ/2 eiL7 τ/2 eiL8 τ/2 eiL9 τ/2 eiL10 τ/2 Γ(t0) +O(τ19)

or, equivalently, using (5.496) to shorten the notation,

Γ(t0 + τ) ≈

[(
2∏

i=10

eiLi τ/2

)
eiL1 τ

(
10∏
i=2

eiLi τ/2

)]
Γ(t0) +O(τ19) (5.497)

Obviously, this phase space propagation formula has been defined for a single time step (P = 1), starting
from an initial time t0. The number of steps P defined in a molecular dynamics simulation is in generally
very high, so that P is a large but finite integer which approximates the condition P →∞ defined in the
exact formulation of Suzuki-Trotter decomposition, equation (4.92). Indeed, in a dynamical simulation
the formula (5.497) has to be applied sequentially P times, propagating the phase space point step by
step until a final time t = t0 + P τ (see equation (5.480)), with a discretized time unit of τ = ∆t.
The action of operators with the forms (5.492)-(5.494) on a phase space point has been demonstrated in
Section 4.2.1, and it is therefore applied for each operator in the order given by equation (5.497). The
resulting algorithm has the structure reported in Table 5.8, for a time step equal to τ = ∆t.

5.4.1.3 Conserved quantities

The search for conserved quantities can be started from the equations of motion in real variables, given
by (5.467) - (5.472), and by rewriting them using the variable transformation

η = ln s (5.498)

that modifies only the form of equation (5.471) involving the thermostat degree of freedom s, so that
the new set of equations of motion to be considered in the real variables frame of reference is

dqi
dt

=
pi
mi

+
qi
3v

dv

dt
=
pi
mi

+
qi
3v

pv
W

i = 1, ..., N (5.499)

dpi
dt

= − ∂φ
∂qi
− pi

s

ds

dt
− pi

3v

dv

dt
= − ∂φ

∂qi
− pi

ps
Q
− pi

3v

pv
W

i = 1, ..., N (5.500)

dv

dt
=
pv
W

(5.501)

dpv
dt

=
1

3v

N∑
i=1

(
p2
i

mi
− ∂φ

∂qi
· qi
)
−∂φ
∂v
− P0 −

pvps
Q
≡ Fv −

pvps
Q

(5.502)

dη

dt
=
ps
Q

(5.503)

dps
dt

=
N∑
i=1

p2
i

mi
+
p2
v

W
− gkbT0 ≡ Fs (5.504)

where two new force variables have been introduced in equations (5.502) and (5.504) to further simplify
the notation, namely,

Fv ≡
1

3v

N∑
i=1

(
p2
i

mi
− ∂φ

∂qi
· qi
)
−∂φ
∂v
− P0 Fs ≡

N∑
i=1

p2
i

mi
+
p2
v

W
− gkbT0 (5.505)

In the previous set of equations of motion (5.499) - (5.504), a three dimensional space (d = 3) has been
considered. However, the generalization of the equations (5.499) - (5.504) at an arbitrary dimension d
of the physical space leads to the set of equations of motion

dqi
dt

=
pi
mi

+
qi
vd

dv

dt
=
pi
mi

+
qi
vd

pv
W

i = 1, ..., N (5.506)

147

5.4. Constant temperature and pressure approaches Chapter 5. Generation of statistical ensembles

Starting point (initial conditions) : qi(t), pi(t), Fi[{qi(t)}], v(t), pv(t), η(t), ps(t)

Step 1. Propagator eiL10∆t/2 : ps(t+ ∆t/2)← ps(t) +
∆t

2
Fs(t)

Step 2. Propagator eiL9∆t/2 : η(t+ ∆t/2)← η(t) +
∆t

2Q
ps(t+ ∆t/2)

Step 3. Propagator ei(L8+L7)∆t/2 : pv(t+ ∆t/2)← pv(t) exp

[
−∆t

2Q
ps(t+ ∆t/2)

]
+

∆t

2
Fv(t)

Step 4. Propagator ei(L6+L5)∆t/2 : pi(t+ ∆t/2)← pi(t) exp

[
− ∆t

2W

pv(t+ ∆t/2)

3v(t)
− ∆t

2Q
ps(t+ ∆t/2)

]

Step 5. Propagator eiL4∆t/2 : pi(t+ ∆t/2)← pi(t+ ∆t/2) +
∆t

2
Fi[{qi(t)}]

Step 6. Propagator eiL3∆t/2 : v(t+ ∆t/2)← v(t) +
∆t

2W
pv(t+ ∆t/2)

Step 7. Propagator eiL2∆t/2 : qi(t+ ∆t/2)← qi(t) exp

[
∆t

2W

pv(t+ ∆t/2)

3v(t+ ∆t/2)

]

Step 8. Propagator eiL1∆t : qi(t+ ∆t/2)← qi(t+ ∆t/2) +
∆t

mi
pi(t+ ∆t/2)

Step 9. Propagator eiL2∆t/2 : qi(t+ ∆t)← qi(t+ ∆t/2) exp

[
∆t

2W

pv(t+ ∆t/2)

3v(t+ ∆t/2)

]
Step 10. Updating forces : compute Fi[{qi(t+ ∆t)}]

Step 11. Propagator eiL3∆t/2 : v(t+ ∆t)← v(t+ ∆t/2) +
∆t

2W
pv(t+ ∆t/2)

Step 12. Propagator eiL4∆t/2 : pi(t+ ∆t/2)← pi(t+ ∆t/2) +
∆t

2
Fi[{qi(t+ ∆t)}]

Step 13. Propagator ei(L5+L6)∆t/2 : pi(t+ ∆t)← pi(t+ ∆t/2) exp

[
−∆t

2Q
ps(t+ ∆t/2)− ∆t

2W

pv(t+ ∆t/2)

3v(t+ ∆t)

]

Step 14. Propagator ei(L7+L8)∆t/2 : pv(t+ ∆t)←
(
pv(t+ ∆t/2) +

∆t

2
Fv(t+ ∆t)

)
exp

[
−∆t

2Q
ps(t+ ∆t/2)

]

Step 15. Propagator eiL9∆t/2 : η(t+ ∆t)← η(t+ ∆t/2) +
∆t

2Q
ps(t+ ∆t/2)

Step 16. Propagator eiL10∆t/2 : ps(t+ ∆t)← ps(t+ ∆t/2) +
∆t

2
Fs(t+ ∆t)

Table 5.8: Ferrario thermostat and barostat integrator algorithm, applied ∀ i = 1, ..., N .

148

Chapter 5. Generation of statistical ensembles 5.4. Constant temperature and pressure approaches

dpi
dt

= − ∂φ
∂qi
− pi

s

ds

dt
− pi
vd

vd

dt
= − ∂φ

∂qi
− pi

ps
Q
− pi
vd

pv
W

i = 1, ..., N (5.507)

dv

dt
=
pv
W

(5.508)

dpv
dt

=
1

vd

N∑
i=1

(
p2
i

mi
− ∂φ

∂qi
· qi
)
−∂φ
∂v
− P0 −

pvps
Q
≡ Fv −

pvps
Q

(5.509)

dη

dt
=
ps
Q

(5.510)

dps
dt

=

N∑
i=1

p2
i

mi
+
p2
v

W
− gkbT0 ≡ Fs (5.511)

where the two force variables used in equations (5.509) and (5.511) are given by

Fv ≡
1

vd

N∑
i=1

(
p2
i

mi
− ∂φ

∂qi
· qi
)
−∂φ
∂v
− P0 Fs ≡

N∑
i=1

p2
i

mi
+
p2
v

W
− gkbT0 (5.512)

where all the positions and momenta in (5.506) - (5.511) and (5.512) are d dimensional vectors. Obviously,
taking d = 3, the set of equations (5.506) - (5.512) reduces to the set (5.499) - (5.505).

In order to determine the statistical mechanical ensemble generated by the equations of motion (5.506)
- (5.511), following the analysis outlined in Section 4.3.2.1, the constants of motion have to be found.
The simplest one is the total Hamiltonian (5.473), written using the change of variables (5.498), that is

H(p, q, pv, v, ps, η) = H0(p, q) +
p2
v

2W
+ P0v +

p2
s

2Q
+ gkbT0η = C1 (5.513)

where the Hamiltonian on the right hand side of the previous equation has been defined as

H0(p, q) ≡
N∑
i=1

p2
i

2mi
+ φ({qi}, v) (5.514)

If there exists a non zero net force acting on the system, then (5.513) is the only constant of motion
preserved by the non Hamiltonian flow of equations (5.506) - (5.511). In general, however, there will be
more conserved quantities. For instance, considering a system in the absence of external forces, namely,
under the hypothesis

N∑
i=1

Fi = 0 (5.515)

then there are d additional conservation laws satisfied by the equations of motion (5.506) - (5.511), which
take the form

P v1/d eη = K (5.516)

where, K is an arbitrary constant vector in d dimensions (with d the dimension of the physical space)
and P is the total linear momentum defined as

P =

N∑
i=1

pi (5.517)

with the origin taken at the center of mass of the system. Indeed, the conservation of the quantities in

149

5.4. Constant temperature and pressure approaches Chapter 5. Generation of statistical ensembles

(5.516) can be demonstrated by taking explicitly the time derivative, that is

d

dt
(P v1/d eη) = Ṗ v1/d eη +

1

d
P v1/d−1 eη v̇ + P v1/d eη η̇

= eη v1/d

[
N∑
i=1

dpi
dt

+
1

vd

pv
W

P +
ps
Q

P

]

= eη v1/d

[
N∑
i=1

(
− ∂φ
∂qi
− pi

ps
Q
− pi
vd

pv
W

)
+

1

vd

pv
W

P +
ps
Q

P

]

= eη v1/d

[
N∑
i=1

Fi −
ps
Q

N∑
i=1

pi −
1

vd

pv
W

N∑
i=1

pi +
1

vd

pv
W

P +
ps
Q

P

]

= eη v1/d

[
N∑
i=1

Fi −
ps
Q

P− 1

vd

pv
W

P +
1

vd

pv
W

P +
ps
Q

P

]
= eη v1/d

N∑
i=1

Fi

(5.518)

where the equations of motion (5.507), (5.508) and (5.510) have been used. Therefore, as demonstrated
in (5.518), the total time derivative of the quantity (5.516) is equal to zero iff the condition (5.515) is
satisfied. In this case, an additional conservative law has been individuated, that is effectively conserved
if the value of the total force acting of the system is equal to zero. The conservation law (5.516) can be
written using a single independent variable (note that the d components of the total linear momentum
are linearly dependent), by taking the Euclidean norm on both sides of equation (5.516), so that

‖P v1/d eη‖ = P v1/d eη = ‖K‖ = K (5.519)

Hence, the conservation law in the absence of net forces on the system becomes

P v1/d eη = K = C2 ↔ F =
N∑
i=1

Fi = 0 (5.520)

Therefore, the quantity conserved by Ferrario equations of motion in the absence of external forces,
namely when the condition (5.515) holds, is given by (5.520).
Furthermore, if the following condition is fulfilled

N∑
i=1

qi ∧ Fi = 0 (5.521)

then there are d additional conservation laws satisfied by the equations of motion (5.506) - (5.511), which
take the form

L eη = K (5.522)

where K is an arbitrary constant vector in d dimensions and L is the total angular momentum of the
system defined as

L =
N∑
i=1

qi ∧ pi (5.523)

with the origin taken at the center of mass of the system. Equation (5.522) can be verified by taking

150

Chapter 5. Generation of statistical ensembles 5.4. Constant temperature and pressure approaches

the time derivative explicitly, that is

d

dt
(L eη) = L̇ eη + L eη η̇

= eη

[
N∑
i=1

(
dqi
dt
∧ pi + qi ∧

dpi
dt

)
+
ps
Q

L

]

= eη

[
N∑
i=1

(
pi
mi
∧ pi +

pv
vdW

qi ∧ pi − qi ∧
∂φ

∂qi
− ps
Q
qi ∧ pi −

pv
vdW

qi ∧ pi

)
+
ps
Q

L

]

= eη

(
−

N∑
i=1

qi ∧
∂φ

∂qi
− ps
Q

N∑
i=1

qi ∧ pi +
ps
Q

L

)

= eη

(
N∑
i=1

qi ∧ Fi −
ps
Q

L +
ps
Q

L

)
= eη

N∑
i=1

qi ∧ Fi

(5.524)

where the equations of motion (5.506), (5.507) and (5.510) have been used, together with the definition
of the total angular momentum (5.523). Therefore, as demonstrated in (5.524), the total time derivative
of the quantity (5.522) is equal to zero iff the condition (5.521) is satisfied. The conservation law (5.522)
can be written using a single independent variable (note that the d components of the total angular
momentum are linearly dependent), by taking the Euclidean norm on both sides of equation (5.522), so
that

‖L eη‖ = Leη = ‖K‖ = K (5.525)

Hence, the conservation law is given by

Leη = K = C3 ↔
N∑
i=1

qi ∧ Fi = 0 (5.526)

Therefore, the quantity conserved by Ferrario equations of motion (5.506) - (5.511) when the condition
(5.521) holds, is given by (5.526). Note that the conservation quantity that involves the total linear
momentum includes both the thermostat and the barostat degrees of freedom, while the conserved
quantity related to the total angular momentum includes the thermostat degrees of freedom only. There
is a sort of symmetry breaking, a consequence of the form of the equations of motion (5.506) - (5.511).
Other quantities (related to total angular momentum with only thermostat degrees of freedom and
total linear momentum with both thermostat and barostat degrees of freedom) are analyzed as possible
candidates for a conservation law (see Appendix A, Section A.8.3), but the only two quantities which
results conserved are those previously analyzed, namely (5.520) and 5.526, as a consequence of the form
of the equations of motion (5.506) - (5.511).
A more general criterion for the existence of these conservation laws is provided by symmetry considera-
tions (see Noether theorem, Ref. [33]). If the system is invariant to translation in a particular direction,
then the corresponding momentum component is conserved. If the system is invariant to rotation about
an axis, then the corresponding angular momentum component is conserved. Thus, the three quantities
(5.513), (5.520) and (5.526) are conserved for a completely isolated set of interacting molecules subject
to the equations of motion (5.506) - (5.511). In practice, however, a completely isolated system is rarely
considered, except for the case of an isolated molecule. Indeed, when systems are enclosed in a spherical
box are encounter, then all the three components of total angular momentum about the centre of sym-
metry will be conserved, but total translational momentum will not be. If the surrounding walls formed
a cubical box, none of these quantities would be conserved. This is an important case in practice, since
for the practical simulations, periodic boundary conditions are often used, i.e. the system is enclosed
in a periodically repeated box. In the case of such periodic boundary conditions, it is easy to see that
translational invariance is preserved, and hence total linear momentum is conserved. Several different
box geometries can be considered (e.g. cubic, orthorhombic, or truncated octahedron), but none of them
can be spherically symmetrical; in fact it is impossible (in Euclidean space) to construct a spherically
symmetric periodic system. Hence, total angular momentum is not conserved in most molecular dynam-
ics simulations. As a consequence, if periodic boundary conditions are included in the simulation, then

151

5.4. Constant temperature and pressure approaches Chapter 5. Generation of statistical ensembles

there are only two quantities conserved by the non Hamiltonian flow of the equations of motion (5.506)
- (5.511), given by (5.513) and (5.520).
In order to resume these concepts, in Table 5.9, the constants of motion for the Ferrario equations (5.506)
- (5.511) are reported, together with the simulation conditions that are necessary to preserve their values.
Note that the total Hamiltonian (5.513) is always a constant of motion, independently of the simulation
conditions.

conservation laws of Ferrario equations (5.506) - (5.511)

H(p, q, pv, v, ps, η) =
N∑
i=1

p2
i

2mi
+ φ({qi}, v) +

p2
v

2W
+ P0v +

p2
s

2Q
+ gkbT0η = C1

P v1/d eη = K = C2 iff F =
N∑
i=1

Fi = 0

Leη = K = C3 iff

N∑
i=1

qi ∧ Fi = 0 and NO PBC

Table 5.9: Constants of motion for the Ferrario equations of motion (5.506) - (5.511), together with the simulation
conditions that are necessary to preserve these quantities.

5.4.1.4 Statistical mechanical ensemble

Solving numerically equations (5.451) - (5.456), one can produce a time trajectory for the extended
system and therefore calculate time averages as in the standard molecular dynamics to estimate the
macroscopic properties of the system of interest. The question is now what kind of averages can be
computed in this way with respect to statistical mechanics ensembles. The ensemble generated can be
studied starting from the equations of motion in real variables, given by (5.467) - (5.472), rewriting them
using the variable transformation (5.498), that modifies only the form of equation (5.471) involving the
thermostat degree of freedom s, and generalizing the equations to a d dimensional space. In this way,
the new set of equations of motion to be considered in the real variables frame of reference is given by
(5.506) - (5.511), and it is reported here below

dqi
dt

=
pi
mi

+
qi
vd

dv

dt
=
pi
mi

+
qi
vd

pv
W

i = 1, ..., N (5.527)

dpi
dt

= − ∂φ
∂qi
− pi

s

ds

dt
− pi
vd

vd

dt
= − ∂φ

∂qi
− pi

ps
Q
− pi
vd

pv
W

i = 1, ..., N (5.528)

dv

dt
=
pv
W

(5.529)

dpv
dt

=
1

vd

N∑
i=1

(
p2
i

mi
− ∂φ

∂qi
· qi
)
−∂φ
∂v
− P0 −

pvps
Q
≡ Fv −

pvps
Q

(5.530)

dη

dt
=
ps
Q

(5.531)

dps
dt

=

N∑
i=1

p2
i

mi
+
p2
v

W
− gkbT0 ≡ Fs (5.532)

where all the positions and momenta are d dimensional vectors and the two force variables used in
equations (5.530) and (5.532) are given by

Fv ≡
1

vd

N∑
i=1

(
p2
i

mi
− ∂φ

∂qi
· qi
)
−∂φ
∂v
− P0 Fs ≡

N∑
i=1

p2
i

mi
+
p2
v

W
− gkbT0 (5.533)

152

Chapter 5. Generation of statistical ensembles 5.4. Constant temperature and pressure approaches

Note that, in equations (5.527) - (5.532), both the particles and the barostat are coupled to a single
Nosé-Hoover thermostat. The equations of motion (5.527) - (5.532) produce the conserved energy

H(p, q, pv, v, ps, η) =
N∑
i=1

p2
i

2mi
+ φ({qi}, v) +

p2
v

2W
+ P0v +

p2
s

2Q
+ gkbT0η

≡ H0(p, q) +
p2
v

2W
+ P0v +

p2
s

2Q
+ gkbT0η = C1

(5.534)

which corresponds to the Hamiltonian (5.473) expressed in real coordinates, rewritten using the trans-
formation (5.498), and where the Hamiltonian introduced in the second line has been defined as

H0(p, q) ≡
N∑
i=1

p2
i

2mi
+ φ({qi}, v) (5.535)

As demonstrated at the end of Section 5.4.1.1, the Hamiltonian in equation (5.534) cannot be used to
derive the equations of motion (5.527) - (5.532) for the real positions and momenta, while it still remains
a constant of motion for the time evolution equations (5.527) - (5.532). This is due to the fact that the
change of variables from the virtual to the real set of coordinates is not a canonical transformation.
At this point, the procedure described in Section 4.3.2.1 for constructing the microcanonical partition
corresponding to the equations of motion (5.506) - (5.512) will now be carried on, assuming that the
Hamiltonian (5.534) is the only conserved quantity. First of all, the compressibility, defined as in (4.123)
with Γ = (p, q, pv, v, ps, η), can be computed using the equations of motion (5.506) - (5.511) as

κ(Γ, t) = ∇Γ · Γ̇ =
N∑
i=1

[∇pi · ṗi +∇qi · q̇i] +
∂ṗv
∂pv

+
∂v̇

∂v
+
∂ṗs
∂ps

+
∂η̇

∂η

=
N∑
i=1

[
−d ps

Q
− 1

v

pv
W

+
1

v

pv
W

]
− ps
Q

= −Nd ps
Q
− ps
Q

= −(Nd+ 1)
ps
Q

= −(Nd+ 1) η̇

(5.536)

The metric can then be computed as

√
g(Γ, t) = exp

(
−
∫
κ(Γ, t) dt

)
= exp

(∫
(Nd+ 1)

dη

dt
dt

)

= exp

{
(Nd+ 1)

∫
dη

dt
dt

}
= exp{(Nd+ 1) η}

(5.537)

Thus, if there are no other conservation laws apart from equation (5.534), the microcanonical partition
function becomes

Z(N,C1) = ζ

∫
dp

∫
dq

∫
dpv

∫
dv

∫
dps

∫
dη e(Nd+1) η δ

(
H0(p, q) +

p2
v

2W
+ P0v +

p2
s

2Q
+ gkbT0η − C1

)
By introducing the relation

δ[f(x)] =
δ(x− x0)

f ′(x0)
(5.538)

where x0 is the zero of function f(x) in the argument of the Dirac function, and f ′(x0) is the derivative of
the function f(x) evaluated in the point x0, and applying this relation to the variable η in the argument
of the delta function in the previous partition function, with

η0 =
1

gkbT0

[
C1 −H0(p, q)− p2

v

2W
− P0v −

p2
s

2Q

]
and f ′(η) = f ′(η0) = gkbT0 (5.539)

the partition function becomes

Z(N,C1) = ζ

∫
dp

∫
dq

∫
dpv

∫
dv

∫
dps

∫
dη e(Nd+1) η δ(η − η0)

gkbT0

153

5.4. Constant temperature and pressure approaches Chapter 5. Generation of statistical ensembles

=
ζ

gkbT0

∫
dp

∫
dq

∫
dpv

∫
dv

∫
dps e

(Nd+1) η0

Then, the substitution of the explicit expression for the variable η0 in the previous integrand, with η0

given by the first equation in (5.539), leads to a partition function of the form

Z(N,C1) =
ζ

gkbT0

∫
dp

∫
dq

∫
dpv

∫
dv

∫
dps exp

{
(Nd+ 1)

gkbT0

[
C1 −H0(p, q)− p2

v

2W
− P0v −

p2
s

2Q

]}
Collecting all the constant factors (i.e. the terms in the integrals that do not depend on the variables p,
q and v), the partition function can be written as

Z(N,C1) = ξ

∫
dv

∫
dp

∫
dq exp

{
−(Nd+ 1)

gkbT0
[H0(p, q) + P0v]

}
(5.540)

where the constant factor ξ is expressed as

ξ =
ζ

gkbT0
exp

[
(Nd+ 1)

gkbT0
C1

] ∫
dpv exp

[
−(Nd+ 1)

gkbT0

p2
v

2W

] ∫
dps exp

[
−(Nd+ 1)

gkbT0

p2
s

2Q

]
(5.541)

=
ζ

gkbT0
exp

[
(Nd+ 1)

gkbT0
C1

] √
2πWgkbT0

Nd+ 1

√
2πQgkbT0

Nd+ 1
=

2πζ

Nd+ 1

√
WQ exp

[
(Nd+ 1)

gkbT0
C1

]
where the integrals with respect to the variables pv and ps in the first line of the previous expression are
Gaussian integrals, and they can be easily resolved using equation (5.321) (see footnote 9), as done in
the second line of the previous expression.

Taking g = Nd + 1, then the partition function (5.540) generated by the equations of motion (5.506) -
(5.511) if the only conserved quantity is given by (5.534) can be written as

g = Nd+ 1 → Z(N,C1) = ξ

∫
dp

∫
dq

∫
dv exp

{
− 1

kbT0
[H0(p, q) + P0v]

}
(5.542)

where the constant factors have been collected outside of the integrals in the constant ξ that is given by

ξ =
ζ exp(βC1)

(Nd+ 1)kbT0

∫
dpv exp

(
−β p2

v

2W

)∫
dps exp

(
−β p

2
s

2Q

)
=

2πζ

Nd+ 1

√
WQ eβC1 with β =

1

kbT0

From equation (5.542) it is clear that, by taking g = Nd + 1, the correct isothermal-isobaric ensemble
distribution function is generated by the equations of motion (5.506) - (5.511), considering as the only
conserved quantity the Hamiltonian given by equation (5.534). The non Hamiltonian equations of mo-
tion (5.506) - (5.511) do have the desired compressibility which, in turn, leads to the correct phase space
metric and distribution function.

The previous derivation demonstrates that the Ferrario equations are capable of generating an isothermal-
isobaric distribution in the physical subsystem variables when the Hamiltonian H(p, q, pv, v, ps, η), given
by (5.534), is the only conserved quantity. Note that the basic assumption used is that there is only a
single conservation law, namely the conservation of the Hamiltonian (5.534).
However, as demonstrated and discussed in Section 5.4.1.3, for the case of simulations with periodic
boundary conditions, also the quantity (5.520) related to the total linear momentum is conserved, while
in the absence of periodic boundary conditions, both the quantities (5.520) and (5.526), where the last
one is related to the total angular momentum, are conserved (see Table 5.9). The conservation of these
additional quantities will affect the phase space distribution. Therefore, a separate treatment of these two
cases has to be performed, to study the form of the partition function with these additional conservation
laws. The case of periodic boundary conditions, with the conserved quantities (5.513) and (5.520), will
be first analyzed in Section 5.4.1.5, since it is the most important case in practical simulations.

154

Chapter 5. Generation of statistical ensembles 5.4. Constant temperature and pressure approaches

5.4.1.5 Statistical mechanical ensemble under periodic boundary conditions

In order to perform the analysis following Section 4.3.2.1, the driven variables have to be eliminated
from the system. The center of mass position R is a driven variable (its dynamics does not effect other
variables, and it does not contribute to a nontrivial conserved quantity) and must also be eliminated in
the formal analysis. On the other hand, the magnitude of the center of mass momentum is coupled to
the other variables through a conservation law and cannot be eliminated from the analysis. At the same
time, equation (5.516) implies that the d components of the center of mass momentum P are linearly
dependent. Thus, d− 1 components of the center of mass momentum must be eliminated. Therefore of
the d components only one component can be chosen independently, otherwise the variable

Π = ‖P‖ =

(
d∑

α=1

P 2
α

)1/2

(5.543)

can be taken as the independent variable. Before proceeding with the analysis, the equation of motion
for this new variable can be easily found by taking into account the definition of the conserved quantity,
equation (5.516), and rewriting it in terms of the new variable Π defined in (5.543), by taking the
Euclidean norm on both sides of equation (5.516), so that

‖P v1/d eη‖ = ‖P‖ v1/d eη = Π v1/d eη = ‖K‖ = K (5.544)

where K is a constant, being K an arbitrary constant vector. Therefore, the norm of the vector P
defined in (5.543) can be written as

Π = v−1/d e−ηK (5.545)

Taking the time derivative on both member of the previous equivalence, and using the equations of
motion (5.508) and (5.510) leads to

Π̇ = −η̇ v−1/d e−ηK − 1

d
v−1 v̇ v−1/d e−ηK = −η̇Π− v̇

vd
Π = −ps

Q
Π− 1

vd

pv
W

Π (5.546)

that is the equation of motion which rules the evolution in time of the norm of the total linear momentum
of the system. Proceeding further with the analysis, the two variables R and P can be eliminated by
considering the positions and momenta relative to the center of mass of the system, ρ and π, respectively.
At this point, a transformation of variable can be performed, from the set {q,p, v, pv, η, ps} to the set
{ρ,π, v, pv, η, ps}. The equations of motion (5.506) - (5.512) transform as follows

dρi
dt

=
πi
µi

+
ρi
vd

dv

dt
=
πi
µi

+
ρi
vd

pv
W

i = 1, ..., N − 1 (5.547)

dπi
dt

= − ∂φ
∂ρi
− πi

s

ds

dt
− πi
vd

vd

dt
= − ∂φ

∂ρi
− πi

ps
Q
− πi
vd

pv
W

i = 1, ..., N − 1 (5.548)

dΠ

dt
= −

(
ps
Q

+
1

vd

pv
W

)
Π (5.549)

dv

dt
=
pv
W

(5.550)

dpv
dt

=
1

vd

N−1∑
i=1

(
π2
i

µi
− ∂φ

∂ρi
· ρi
)

+
1

vd

Π2

M
− ∂φ

∂v
− P0 −

pvps
Q
≡ Fv −

pvps
Q

(5.551)

dη

dt
=
ps
Q

(5.552)

dps
dt

=

N−1∑
i=1

π2
i

µi
+

Π2

M
+
p2
v

W
− gkbT0 ≡ Fs (5.553)

where the two force variables used in equations (5.551) and (5.553) are given by

Fv ≡
1

vd

N−1∑
i=1

(
π2
i

µi
− ∂φ

∂ρi
·ρi
)

+
1

vd

Π2

M
−∂φ
∂v
−P0 Fs ≡

N−1∑
i=1

π2
i

µi
+

Π2

M
+
p2
v

W
−gkbT0 (5.554)

155

5.4. Constant temperature and pressure approaches Chapter 5. Generation of statistical ensembles

Therefore, when the condition (5.515) is introduced in the system, this causes the conservation laws
given in equation (5.516), so that two quantities are now conserved, that are

H(π,Π,ρ, pv, v, ps, η) = H0(π,Π,ρ) +
p2
v

2W
+ P0v +

p2
s

2Q
+ gkbT0η = C1 (5.555)

Π v1/d eη = C2 (5.556)

where in (5.555) the Hamiltonian on the right hand side is given by

H0(π,Π,ρ) =
N−1∑
i=1

π2
i

2µi
+

Π2

M
+ φ({ρi}, v) (5.557)

The compressibility, defined as in (4.123) with Ξ = (π,Π,ρ, pv, v, ps, η), can be computed using the
equations of motion (5.547) - (5.553) as

κ(Ξ, t) = ∇Ξ · Ξ̇ =
N−1∑
i=1

[∇πi · π̇i +∇ρi · ρ̇i] +
∂Π̇

∂Π
+
∂ṗv
∂pv

+
∂v̇

∂v
+
∂ṗs
∂ps

+
∂η̇

∂η

=
N−1∑
i=1

[
−d ps

Q
− 1

v

pv
W

+
1

v

pv
W

]
−
(
ps
Q

+
1

vd

pv
W

)
− ps
Q

(5.558)

= −(N − 1)d
ps
Q
− 2

ps
Q
− 1

vd

pv
W

= −[(N − 1)d+ 2]
ps
Q
− 1

vd

pv
W

= −[(N − 1)d+ 2] η̇ − v̇

vd

where the equations of motion (5.550) and (5.552) have been used. The metric can then be computed as

√
g(Ξ, t) = exp

(
−
∫
κ(Ξ, t) dt

)
= exp

{∫
[(N − 1)d+ 2]

dη

dt
dt+

∫
1

vd

dv

dt
dt

}

= exp

{
[(N − 1)d+ 2]

∫
dη

dt
dt+

1

d

∫
d ln(v)

dt
dt

}

= exp{[(N − 1)d+ 2] η} exp

{
1

d
ln(v)

}
= v1/d exp{[(N − 1)d+ 2] η}

(5.559)

The partition function can be written as

Z(N,C1, C2) = ζ

∫
dπ

∫
dρ

∫
dΠ

∫
dpv

∫
dv

∫
dps

∫
dη v1/d e[(N−1)d+2] η ×

× δ
(
H0(π,Π,ρ) +

p2
v

2W
+ P0v +

p2
s

2Q
+ gkbT0η − C1

)
δ(Π v1/d eη − C2)

(5.560)

where dπ = dπ1 · · · dπN−1 and dρ = dρ1 · · · dρN−1 and the Hamiltonian H0(π,Π,ρ) is given by equation
(5.557). Using the relation (5.538) in the second delta function of the integral, with respect to the variable
η, where

f(η) = Π v1/d eη − C2 f ′(η) = Π v1/d eη (5.561)

η0 = ln

(
C2

Π v1/d

)
f ′(η0) = C2 (5.562)

the integral of the delta function over the variable η gives the result

Z(N,C1, C2) = ζ

∫
dπ

∫
dρ

∫
dΠ

∫
dpv

∫
dv

∫
dps

∫
dη v1/d e[(N−1)d+2] η ×

× δ
(
H0(π,Π,ρ) +

p2
v

2W
+ P0v +

p2
s

2Q
+ gkbT0η − C1

)
δ(η − η0)

Π v1/d eη

= ζ

∫
dπ

∫
dρ

∫
dΠ

∫
dpv

∫
dv

∫
dps v

1/d e[(N−1)d+2] η0 ×

× δ
(
H0(π,Π,ρ) +

p2
v

2W
+ P0v +

p2
s

2Q
+ gkbT0η0 − C1

)
1

Π v1/d eη0

(5.563)

156

Chapter 5. Generation of statistical ensembles 5.4. Constant temperature and pressure approaches

Then, the substitution of the explicit expression for the variable η0 in the previous integrand, with η0

given by the first equation in (5.562), leads to a partition function of the form

Z(N,C1, C2) =
ζ

C2

∫
dπ

∫
dρ

∫
dΠ

∫
dpv

∫
dv

∫
dps v

1/d

(
C2

Π v1/d

)(N−1)d+2

×

× δ
[
H0(π,Π,ρ) +

p2
v

2W
+ P0v +

p2
s

2Q
+ gkbT0 ln

(
C2

Π v1/d

)
− C1

] (5.564)

Z(N,C1, C2) =
ζ

C2

∫
dπ

∫
dρ

∫
dΠ

∫
dpv

∫
dv

∫
dps

1

v(N−1)+1/d

(
C2

Π

)(N−1)d+2

×

× δ
[
H0(π,Π,ρ) +

p2
v

2W
+ P0v +

p2
s

2Q
+ gkbT0 ln

(
C2

Π v1/d

)
− C1

] (5.565)

The previous partition function can be further simplified using the remaining delta function to perform
the integration over the variable ps by means of the relation (5.538) with

f(ps) = H0(π,Π,ρ) +
p2
v

2W
+ P0v +

p2
s

2Q
+ gkbT0 ln

(
C2

Π v1/d

)
− C1 and f ′(ps) =

ps
Q

(5.566)

The previous function f(ps) has only one zero ps,0 with respect to the variable ps, that is given by

ps,0 =
√

2Q

[
C1 −H0(π,Π,ρ)− p2

v

2W
− P0v − gkbT0 ln

(
C2

Π v1/d

)]1/2

(5.567)

f ′(ps,0) =
ps,0
Q

=

√
2

Q

[
C1 −H0(π,Π,ρ)− p2

v

2W
− P0v − gkbT0 ln

(
C2

Π v1/d

)]1/2

(5.568)

Therefore, the partition function (5.565) becomes

Z(N,C1, C2) =
ζ

C2

∫
dπ

∫
dρ

∫
dΠ

∫
dpv

∫
dv

∫
dps

1

v(N−1)+1/d

(
C2

Π

)(N−1)d+2

Q
δ(ps − ps,0)

ps

=
ζQ

C2

∫
dπ

∫
dρ

∫
dΠ

∫
dpv

∫
dv

1

v(N−1)+1/d

1

ps,0

(
C2

Π

)(N−1)d+2

and substituting the explicit expression for the variable ps,0 in the previous integrand, with ps,0 given
by equation (5.567), leads to a partition function of the form

Z(N,C1, C2) =
ζ

C2

√
Q

2

∫
dπ

∫
dρ

∫
dΠ

∫
dpv

∫
dv

1

v(N−1)+1/d

(
C2

Π

)(N−1)d+2

×

×
[
C1 −H0(π,Π,ρ)− p2

v

2W
− P0v − gkbT0 ln

(
C2

Π v1/d

)]−1/2
(5.569)

Finally, the integration over the variable pv can be performed via a simple substitution (see Appendix
A.8.2), leading to the following form for the partition function

Z(N,P0, T, C1, C2) =
πζ

C2

√
QW

∫
dπ

∫
dρ

∫
dΠ

∫
dv

1

v(N−1)+1/d

(
C2

Π

)(N−1)d+2

(5.570)

The integration over the N − 1 particle positions and momenta can be easily performed as∫
dπ

∫
dρ =

∫
dπ1 · · · dπN−1

∫
dρ1 · · · dρN−1 = vN−1 (5.571)

so that the partition function can be finally written as

Z(N,P0, T, C1, C2) =
πζ

C2

√
QW

∫
dΠ

∫
dv

vN−1

v(N−1)+1/d

(
C2

Π

)(N−1)d+2

(5.572)

157

5.4. Constant temperature and pressure approaches Chapter 5. Generation of statistical ensembles

Z(N,P0, T, C1, C2) =
πζ

C2

√
QW

∫
dΠ

∫
dv

1

v1/d

(
C2

Π

)(N−1)d+2

(5.573)

The resultant partition function is independent of the potential, and it is not the partition function of
the NPT ensemble.
However, in case the condition Π v1/d eη = C2 = 0 is satisfied, then equation (5.560) can be rewritten as

Z(N,C1, 0) = ζ

∫
dπ

∫
dρ

∫
dΠ

∫
dpv

∫
dv

∫
dps

∫
dη v1/d e[(N−1)d+2] η ×

× δ
(
H0(π,Π,ρ) +

p2
v

2W
+ P0v +

p2
s

2Q
+ gkbT0η − C1

)
δ(Π v1/d eη − 0)

(5.574)

The integration with respect to the variable Π can be then performed using the relation (5.538) with

f(Π) = Π v1/d eη f(Π0) = 0 ↔ Π0 = 0 f ′(Π) = f ′(Π0) = v1/d eη (5.575)

leading to a partition function with the form

Z(N,C1, 0) = ζ

∫
dπ

∫
dρ

∫
dΠ

∫
dpv

∫
dv

∫
dps

∫
dη v1/d e[(N−1)d+2] η ×

× δ
(
H0(π,Π,ρ) +

p2
v

2W
+ P0v +

p2
s

2Q
+ gkbT0η − C1

)
δ(Π−Π0)

v1/d eη

Z(N,C1, 0) = ζ

∫
dπ

∫
dρ

∫
dpv

∫
dv

∫
dps

∫
dη v1/d e[(N−1)d+2] η ×

× δ
(
H0(π,Π0,ρ) +

p2
v

2W
+ P0v +

p2
s

2Q
+ gkbT0η − C1

)
v−1/d e−η

(5.576)

where the Hamiltonian H0(π,Π0 = 0,ρ) ≡ H0(π,ρ) is given by equation (5.557) with Π = 0, that is

H0(π,Π0 = 0,ρ) ≡ H0(π,ρ) =
N−1∑
i=1

π2
i

2µi
+ φ({ρi}, v) (5.577)

Then, the partition function (5.576) can be rewritten as

Z(N,C1, 0) = ζ

∫
dπ

∫
dρ

∫
dpv

∫
dv

∫
dps

∫
dη v1/d v−1/d e−η e[(N−1)d+2] η ×

× δ
(
H0(π,ρ) +

p2
v

2W
+ P0v +

p2
s

2Q
+ gkbT0η − C1

)
= ζ

∫
dπ

∫
dρ

∫
dpv

∫
dv

∫
dps

∫
dη e[(N−1)d+1] η ×

× δ
(
H0(π,ρ) +

p2
v

2W
+ P0v +

p2
s

2Q
+ gkbT0η − C1

)
Using the relation (5.538) on the remaining delta function of the partition function, with respect to the
variable η, so that

f(η) = H0(π,ρ) +
p2
v

2W
+ P0v +

p2
s

2Q
+ gkbT0η − C1 f ′(η) = f ′(η0) = gkbT0 (5.578)

η0 =
1

gkbT0

[
C1 −H0(π,ρ)− p2

v

2W
− P0v −

p2
s

2Q

]
(5.579)

the partition function becomes

Z(N,C1, 0) = ζ

∫
dπ

∫
dρ

∫
dpv

∫
dv

∫
dps

∫
dη e[(N−1)d+1] η δ(η − η0)

gkbT0

=
ζ

gkbT0

∫
dπ

∫
dρ

∫
dpv

∫
dv

∫
dps e

[(N−1)d+1] η0

158

Chapter 5. Generation of statistical ensembles 5.4. Constant temperature and pressure approaches

and substituting the explicit expression for the variable η0 in the previous integrand, with η0 given by
the equation (5.579), then the partition function can be written as

Z(N,C1, 0)

=
ζ

gkbT0

∫
dπ

∫
dρ

∫
dpv

∫
dv

∫
dps exp

{
(N − 1)d+ 1

gkbT0

[
C1 −H0(π,ρ)− p2

v

2W
− P0v −

p2
s

2Q

]}
Collecting all the constant terms (i.e. the terms that do not depend on the variables π, ρ and v) in the
constant ξ, the the partition function can be written as

Z(N,C1, 0) = ξ

∫
dπ

∫
dρ

∫
dv exp

{
−(N − 1)d+ 1

gkbT0
[H0(π,ρ) + P0v]

}
(5.580)

with the constant factor given by

ξ =
ζ

gkbT0
exp

[
(N − 1)d+ 1

gkbT0
C1

] ∫
dpv exp

[
−(N − 1)d+ 1

gkbT0

p2
v

2W

] ∫
dps exp

[
−(N − 1)d+ 1

gkbT0

p2
s

2Q

]
=

ζ

gkbT0
exp

[
(N − 1)d+ 1

gkbT0
C1

] √
2πWgkbT0

(N − 1)d+ 1

√
2πQgkbT0

(N − 1)d+ 1

=
2πζ

(N − 1)d+ 1

√
WQ exp

[
(N − 1)d+ 1

gkbT0
C1

]
where the integrals with respect to the variables pv and ps in the first line of the previous expression are
Gaussian integrals, and they have been easily resolved in the the second line using equation (5.321) (see
footnote 9).

Taking g = (N − 1)d + 1, the partition function (5.580) and the constant factor ξ contained in its
expression become

g = (N − 1)d+ 1 → Z(N,C1, 0) = ξ

∫
dπ

∫
dρ

∫
dv exp

{
− 1

kbT0
[H0(π,ρ) + P0v]

}
(5.581)

ξ =
ζ exp(βC1)

[(N − 1)d+ 1]kbT0

∫
dpv exp

(
−β p2

v

2W

)∫
dps exp

(
−β p2

s

2Q

)
=

2πζ

(N − 1)d+ 1

√
WQ eβC1

where β = 1/(kbT0).

If a three dimensional space is considered, so that d = 3, then the value of g becomes equal to g =
3N − 3 + 1 = 3N − 2. The same result for the value of the factor g has been obtained in Appendix
A.8, Section A.8.1. However, in this case the partition function obtained, equation (A.204), and as a
consequence the distribution function (A.205), do not describe correctly an isothermal-isobaric ensemble.
This is due to the additional term 1/v derives from the Jacobian computed in (A.195), and used for the
change of variable from the virtual to the real set of coordinates. Indeed, the calculation of the Jacobian
has been based on the integration over 3N − 3 momenta variables, but also on the integration over 3N
position variables. Therefore, the error was due to the fact that the center of mass positions R were not
identified as driven variables, and they have not been eliminated from the analysis. This is clear also
noting that, in the calculation of the Jacobian in (A.195), if only 3N − 3 positions would be considered,
then the factor 1/v would cancel out with that from the momenta change of variable, so that it is not
carried out inside the partition function integrals.

Some comments about the differences between the results obtained for the form of the partition function
starting from the Ferrario equations of motion (5.506) - (5.511) and the Hoover algorithm (see equations
(5.2) in Ref. [38]) can be done. In the case of non zero total force acting on the system (i.e. when
only the total Hamiltonian is conserved), the significant difference is that in the equation of motion for
the variable v, that depends on the variable v itself in the Hoover algorithm, while it is independent on
the variable v in the case of equation (5.508). This leads to a different compressibility, namely, for the
Ferrario equations of motion the form of the compressibility obtained is that in (5.536), while for the
Hoover algorithm it assumes the form in equation (5.6) in Ref. [38], which differs from (5.536) for an

159

5.4. Constant temperature and pressure approaches Chapter 5. Generation of statistical ensembles

additive term that derives from the non zero contribution of the derivative ∂v̇/∂v to the compressibility.
As a consequence, the metric (5.7) in Ref. [38] differs from (5.537) by a multiplicative term 1/v, whose
presence in the volume integration of the partition function derived from the Hoover equations of motion
leads to a form of the distribution function that does not correspond to an isothermal-isobaric ensemble.
The same considerations are also valid in the case of a zero total force acting on the system. Also in this
case, the compressibility derived from the Hoover algorithm has an additional term with respect to the
compressibility in equation (5.558), that derives from the non zero contribution of the derivative ∂v̇/∂v.
As a consequence, the metric in the Hoover algorithm (see equation (5.10) in Ref. [38]) has a additional
factor of 1/v with respect to the metric computed in (5.559), whose presence in the integral leads to a
partition function form different from that of an isothermal-isobaric ensemble, even in the case C2 = 0,
condition that generates the correct isothermal-isobaric partition function in the absence of a net force
acting on the system for the case of equations of motion (5.547) - (5.553).

160

Chapter 5. Generation of statistical ensembles 5.5. Summary: ensembles and equations of motion

5.5 Summary: ensembles and equations of motion

In the following, a summary of the ensembles whose theoretical derivations have been made in this
chapter and that have been implemented in the Crystal code is reported.
In Table 5.10, the list of conserved quantities for each ensemble is given.

Ensemble Conserved quantity

Standard molecular dynamics
H(p, q) =

N∑
i=1

p2
i

2mi
+ φ(q)Nve ensemble, Section 5.1

Simple scaling thermostat
H(p) =

N∑
i=1

p2
i

2mi
Section 5.3.2

Berendsen thermostat
none (but in the code : kinetic energy H(p) =

N∑
i=1

p2
i

2mi
is taken as conserved)Section 5.3.3

Nosé-Hoover thermostat
H(p, q, pη, η) =

N∑
i=1

p2
i

2mi
+ φ(q) +

p2
η

2Q
+ gkbT0ηNvt ensemble, Section 5.3.4

Ferrario thermostat and barostat
H(p, q, pv, v, ps, η) =

N∑
i=1

p2
i

2mi
+ φ({qi}, v) +

p2
v

2W
+ P0v +

p2
s

2Q
+ gkbT0ηNpt ensemble, Section 5.4.1

Table 5.10: Conserved quantity for each ensemble and thermostat method implemented in the Crystal code.

Table 5.11 reports, for each ensemble and thermostat type, the logical variables involved, the name of
the subroutines which implement the correspondent time propagator algorithm, as well as the keywords
and the integer ie to be inserted in the input file to perform molecular dynamics simulations for each
particular ensemble or using different thermostats. For more details about the keywords that can be
used in the molecular dynamics input block, see Appendix E, Section E.1.

1. Code internal distinction among ensembles

Ensemble Logical variables thstat (ie) Keyword Eom integrator subroutine

Nve nve = T [default: T] 0 [default] none vverlet NVE

Rescaling nve = T [default: T] 1 THERMOST vverlet NVE

Berendsen nve = T [default: T] 2 THERMOST

Nvt (Nose)
nve = F [default: T]

0 [default] NOSE
vverlet nose I0 (if nose integ = 0)

nvt = T [default: F] vverlet nose I1 (if nose integ = 1) [default]

Npt
nve = F [default: T]

0 [default] NPT vverlet npt I0 (if npt integ = 0) [default]
npt = T [default: F]

Table 5.11: Logical variables set to true (T) or false (F), value of the variable thstat, keyword used to activate the
ensemble and Equations of Motion (Eom) integrator subroutine for the different implemented molecular dynamics
ensembles. The equations of motion integrators subroutines vverlet nose I0, vverlet nose I1 and vverlet npt I0
refer to the algorithms reported in Tables A.1, 5.5 and 5.8, respectively.

Finally, since a lot of attention has been devoted in this chapter in finding the correct value of the
number of degrees of freedom g to be used in a molecular dynamics simulation to correctly sample a
given ensemble under a certain set of equations of motion, in Table 5.12 the number of degrees of freedom
g for each ensemble and kind of thermostat implemented in the Crystal code is reported. In the case

161

5.5. Summary: ensembles and equations of motion Chapter 5. Generation of statistical ensembles

of geometrical constraint, as for example the removal of the system rotations (activated by the keyword
Norot), a further decreasing of the number of degrees of freedom has to be applied, depending on
the dimensionality of the system. This last issue has been also discussed in more details in Chapter 3,
Section 3.2.

2. Number of degrees of freedom for each ensemble

Ensemble Logical variables thstat (ie) Keyword g

Nve nve = T [default: T] 0 [default] none 3N − 3

Rescaling nve = T [default: T] 1 THERMOST 3N − 3
Berendsen nve = T [default: T] 2 THERMOST 3N − 3

Nvt (Nose)
nve = F [default: T]

0 [default] NOSE 3N − 3
nvt = T [default: F]

Npt
nve = F [default: T]

0 [default] NPT 3N − 2
npt = T [default: F]

Geometry Constraint Logical variables g

Keyword NOROT norot = T [default: F]
0D systems : g ← g − 3
1D systems : g ← g − 1

Table 5.12: Number of degrees of freedom g for a given ensemble and kind of thermostat, logical variables that
activates the number of degrees of freedom to the correspondent value g, value of the integer variable thstat and
keywords used to activate the molecular dynamics calculation in a given ensemble.

162

Chapter 6

Post processing of molecular dynamics
trajectory

6.1 Radial Pair Correlation Function

6.1.1 Theory

The relative dispositions of atoms and molecules in liquids and solids are often predicted accurately
using classical statistical mechanics. The electronic system has to be described with quantum mechanical
equations, but these quantal fluctuations can be averaged inside the physical system. The remaining
problem is to sample the statistical configurations of the nuclei in the effective interaction induced by
the electrons, whose degrees of freedom have been already integrated out. From a mathematical point
of view, this procedure can be achieved considering the partition function in the canonical ensemble:

Z =
∑
µ

e−βEµ (6.1)

where β = 1/(kbT0), and µ identifies the state of the system with a particular nuclear arrangement,
defined by the symbol R, and with a particular electronic state parametrized by R, defined by the
symbol i(R), which indicates the i-th state of the electrons when the nuclei are fixed in the configuration
R. The partition function (6.1) can be factorized as follows:

Z =
∑
R

[∑
i(R)

e−βER,i(R)

]
=
∑
R

e−βẼR (6.2)

The quantity ẼR is obtained by performing the Boltzmann weighted sum in the square brackets, and it
represents the effective energy governing the statistics for the configurations of the nuclei. In general,
ẼR is a free energy that depends on the temperature. Often, however, the electronic states of a system
are dominated by the lowest energy level. In that case, the averaging out of the electronic degrees of
freedom yields an ẼR that must be the ground state Born-Oppenheimer energy surface for all the nuclei.

After that the electronic contribution to the partition function has been averaged out, the spatial con-
figurations of the nuclei can be usually well studied with a classical mechanical approach. The reason
is that the nuclei are heavier than the electrons, and the relatively high mass implies that the quantum
uncertainties in the positions of the nuclei are relatively small and, as a result, the quantum dispersion
becomes unimportant when considering the spatial fluctuations of the nuclei in atomic systems.

6.1.1.1 Averages in phase space

When adopting a classical model, the microscopic state of the system is characterized by a point in the
phase space. A point in phase space for a system with n particles is given by a list of the coordinates
and conjugate momenta of all the classical degrees of freedom in the system:

(q1, q2, ..., qn,p1,p2, ...,pn) ≡ (q,p)

163

6.1. Radial Pair Correlation Function Chapter 6. Post processing of dynamics trajectory

where qi and pi are, respectively, the position and the momentum of the i-th particle, and q and p are
abbreviations for points in configuration space and momentum space, respectively. The probability of a
state in a classical system is f(p, q) dq dp, where :

f(p, q) = probability distribution for observing the system at phase space point (q,p)

The analytical form for the probability distribution function f(p, q) can be found by analogy with the
statistical mechanical probability to find a system in a particular state µ, whose partition function is
given by equation (6.1). From a classical point of view, the probability distribution function f(p, q) that
gives the probability to find the system at point (q,p) in phase space is given by

f(p, q) =
e−βH(p,q)∫

dp
∫
dq e−βH(p,q)

(6.3)

where dp = dp1 · · · dpn, dq = dq1 · · · dqn have been used as integration variables, and the Hamiltonian
H(p, q) can be written as the sum of the kinetic energy Ek(p) of the classical degrees of freedom and
the potential energy φ(q), namely,

H(p, q) = Ek(p) + φ(q) =
n∑
i=1

p2
i

2mi
+ φ(q) (6.4)

Here the kinetic energy is a function of the momenta only, and the potential energy is a function of
position coordinates only, since it is supposed that the system is a conservative Newtonian system. The
potential energy φ(q) is obtained by averaging over all the quantum degrees of freedom that are not
treated explicitly in the classical model. Thus, the potential energy has to be determined from a quantum
electronic structure calculation, using for example Hartree-Fock theory or Density Functional Theory.
Since the Hamiltonian can be written as a sum of two contributions, and the probability distribution
function (6.3) includes the Hamiltonian in the exponential part, then the phase space distribution can
be exactly factorized as

f(p, q) = Q(p)P (q) (6.5)

where

Q(p) =
e−βEk(p)∫
dp e−βEk(p)

and P (q) =
e−βφ(q)∫
dq e−βφ(q)

(6.6)

are, respectively, the probability distribution for observing the system at momentum space point p, and
the probability distribution for observing the system at configuration space point q. Further factorization
of the momentum distribution is possible, since the kinetic energy can be written as a sum of single
particle kinetic energies, so that

Q(p) =

n∏
i=1

h(pi) (6.7)

where

h(pi) =
e−βp

2
i /2m∫

dpi e
−βp2

i /2m
(6.8)

in which also the integral on the momenta dp has been factorized as a product of single particle integrals
in the momentum variable: this has been possible because the momenta of the nuclei are each one
independent from each other. The single particle momentum distribution h(pi) in (6.8) is usually called
the normalized Maxwell-Boltzmann distribution, and it is the correct momentum distribution function
for a particle with mass m in thermal equilibrium with the system at a fixed temperature T0 = 1/(kbβ) =
2/(nd kb)Ek(p), where nd is the number of degrees of freedom of the system and kb is the Boltzmann
constant (see Appendix A, Section A.1).

6.1.1.2 Reduced Configurational Distribution Functions

The configurational distribution P (q) does not factor into single particle functions because the potential
energy φ(q) couples together all the coordinates. However, the distribution functions for a small number

164

Chapter 6. Post processing of dynamics trajectory 6.1. Radial Pair Correlation Function

of particles can be defined, by integrating over all coordinates except those corresponding to the particles
of interest. For example:

P(2/n)(q1, q2) =

∫
dq3

∫
dq4 · · ·

∫
dqn P (q) (6.9)

is the specific reduced joint probability distribution for finding the particle 1 at position q1 and the
particle 2 at position q2. The function is called specific because it requires particle 1 (and no other
particle) to be at q1 and, similarly, it must be particle 2 at q2. Such requirements are not physically
relevant for systems composed of n indistinguishable particles. A more meaningful quantity is the generic
reduced joint probability distribution function. The generic counterpart of the previously defined specific
distribution function P(2/n)(q1, q2) is indicated with ρ(2/n)(q1, q2). It is the joint distribution function
for finding a particle (any one) at position q1 and any other particle (in the remaining n − 1 particle
system) at position q2. Since there are n possible ways of picking the first particle (the one at q1) and
there are n − 1 ways of picking the second, the generic reduced joint probability can be written as a
function of the specific reduced joint probability as follows

ρ(2/n)(q1, q2) = n(n− 1)P(2/n)(q1, q2) (6.10)

Generalizing the concept, the generic reduced joint distribution function that describes the probability
that, in a system with n particles, a particle will be found at q1, another at q2, ..., and another at qm is

ρ(m/n)(q1, q2, ..., qm) =
n!

(n−m)!

∫
dqm+1

∫
dqm+2 · · ·

∫
dqn P (q)

=
n!

(n−m)!

∫
dqn−m

e−βφ(q)∫
dq e−βφ(q)

≡ n!

(n−m)!

∫
dqn−m

e−βφ(q)

Zn

(6.11)

where Zn is the partition function and dqn−m is an abbreviation for dqm+1dqm+2 · · · dqn. For a ho-
mogeneous system, the generic reduced single-particle joint probability for the i-th particle is given
by

ρ(1/n)(qi) = ρ =
n

v
∀ i = 1, ..., n (6.12)

where v is the volume of the system. In an ideal gas, the different particles in the system are uncorrelated.
As a result, for an ideal gas, the specific reduced joint two-particles distribution P(2/n)(q1, q2) factors as
P(1/n)(q1)P(1/n)(q2). As a consequence, the generic reduced joint two-particles distribution for an ideal
gas can be written as

ρ(2/n)(q1, q2) = n(n− 1)P(2/n)(q1, q2)

= n(n− 1)P(1/n)(q1)P(1/n)(q2) = n(n− 1)
ρ2

n2
=
n− 1

n
ρ2 ≈ ρ2

(6.13)

where in the last approximation the difference between n and (n− 1) is neglected. In view of the ideal
homogeneous gas result for ρ(2/n)(q1, q2), given by equation (6.13), it seems appropriate to introduce
the quantity

g(q1, q2) =
ρ(2/n)(q1, q2)

ρ2
(6.14)

which is the ratio between the generic reduced joint two-particles distribution function for the real system
and that for an ideal homogeneous gas. If the system is isotropic, the previous function (6.14) depends
only upon coordinates distances q ≡ q12 = ‖q1 − q2‖, that is,

g(q1, q2) = g(q) for isotropic homogeneous systems (6.15)

The function g(q) is called the radial distribution function, but it is also referred to as the pair correlation
function or pair distribution function. In the following, the function g(q) will be addressed as the total
radial pair correlation function.

Starting from the knowledge of the analytical form for ρ(2/n)(q1, q2), that is the generic reduced joint
probability for finding a particle at position q2 and any other particle of the system at position q1, the
conditional probability can be found thanks to the following theorem:

165

6.1. Radial Pair Correlation Function Chapter 6. Post processing of dynamics trajectory

Theorem If x and y are random variables with a joint probability distribution P (x, y), then the
conditional probability distribution for y given a specific value of x is P (x, y)/p(x), where p(x) is
the probability distribution for x.

Therefore, the conditional probability density that a particle will be found at q2 given the specific position
of another particle at q1 is given by

ρ(2/n)(q1, q2)/ρ = ρ g(q) (6.16)

Alternatively, ρ g(q) can be seen as the average density of particles at q2 given that another particle is
at the origin. Now, ρ g(q) dq is the probability of observing a second particle at a certain distance dq
(where dq is a radial distance) given that there is another particle at position q1 (which can be taken
to be, for example, the origin of the coordinate system). Note that this probability is not normalized to
unity, but instead ∫ ∞

0
ρ g(q) 4πq2dq = n− 1 (6.17)

This equation shows that ρ g(q) 4πq2 is really the number of particles between q and q + dq about a
central particle. In this view, the function g(q) can also be thought of as the factor that multiplies the
bulk density ρ to give a local density ρ(q) = ρ g(q) about some fixed particle. Clearly, g(q) → 0 as
the radial distance q → 0, because the particles become effectively “hard” as q → 0 (and, obviously,
because of the repulsion among particles increases when the particles approach each other). On the other
hand, since the influence of the particle at position q1 (at the origin) decreases as q becomes large, then
g(q)→ 1 as q →∞. Finally, consider the first minimum qm of the total radial pair correlation function
g(q) (the minimum can be local or global, depending on the atomic system). The integral from 0 to qm
of the integrand function in (6.17) is the so-called coordination number nc of the system, that is∫ qm

0
ρ g(q) 4πq2dq = nc (6.18)

6.1.1.3 Analytical expression of the radial pair correlation function

Generalizing previous concepts, the radial pair correlation function for a group of m particles can be
defined in terms of the corresponding generic reduced single-particle joint probability distributions as

g(m/n)(q1, ..., qm) = ρ(m/n)(q1, ..., qm)

/ m∏
i=1

ρ(1/n)(qi) (6.19)

and, using the definition (6.14) where the radial pair correlation distribution is written as a function of
the generic reduced single-particle joint probability for a homogeneous gas (6.12), the previous expression
becomes

g(m/n)(q1, ..., qm) =
ρ(m/n)(q1, ..., qm)

ρm
(6.20)

Note that g(m/n) is called correlation function because, if the particles were independent from each other
(as in an ideal gas), ρ(m/n) for the real system would equal simply the correspondent quantity for an
ideal homogeneous gas, ρm. Rewriting the previous formula as

ρ(m/n)(q1, ..., qm) = ρm g(m/n)(q1, ..., qm) (6.21)

the role of g(m/n) in correcting for the non-independence can be clearly seen, i.e. g(m/n) corrects for the
correlation among particles acting on a real atomic system.
Using the expression (6.11), along with the relation ρm = (n/v)m (see equation (6.12) for this last
identity), equation (6.20) becomes

g(m/n)(q1, ..., qm) =
vm n!

nm (n−m)!

∫
dqn−m

e−βφ(q)

Zn
(6.22)

166

Chapter 6. Post processing of dynamics trajectory 6.1. Radial Pair Correlation Function

Working in the canonical ensemble, it is possible to obtain useful expressions for the particles densities in
terms of the delta functions of positions. Starting from the mean value of the delta function of position,
the following relation holds

< δ(qα − q1) > =

∫
dq

e−βφ(q)

Zn
δ(qα − q1)

=

∫
dq2 · · ·

∫
dqn

e−βφ(qα,q2,...,qn)

Zn

(6.23)

The statistical average in (6.23) is a function of the coordinate qα, but is independent on the particle
label (here taken to be 1). The sum over all the particle labels can therefore be written as n times the
contribution from a single particle (6.23), that is

<
n∑
i=1

δ(qα − qi) > =

∫
dq

e−βφ(q)

Zn

n∑
i=1

δ(qα − qi) =
n∑
i=1

∫
dq̂i

e−βφ(qi→α)

Zn

= n

∫
dq2 · · ·

∫
dqn

e−βφ(qα,q2,...,qn)

Zn

(6.11)
= ρ(1/n)(qα)

(6.24)

where dq̂i is the integration over all the coordinate variables q1 · · · qn except the variable qi, while
the notation φ(qi→α) means that the potential depends on all the coordinates variables set where the
coordinate qi has been substituted with qα. If the function form of the potential φ(q) is the same for all
the coordinates degrees of freedom (as it is for the atomic systems where electrostatic interactions are
considered), then all the integrals in the sum in the last expression of the first line in (6.24) are equal to
each other, so that the sum can be written as n times one form of the integral, equivalent to the others.
Therefore, from the definition (6.11), it follows that the generic reduced single-particle joint distribution
function is given by

ρ(1/n)(qα) = <

n∑
i=1

δ(qα − qi) > (6.25)

Similarly, the statistical average of the product of two delta functions of the position is

< δ(qα − q1)δ(qβ − q2) > =

∫
dq

e−βφ(q)

Zn
δ(qα − q1) δ(qβ − q2)

=

∫
dq3 · · ·

∫
dqn

e−βφ(qα,qβ ,q3,...,qn)

Zn

(6.26)

and hence

ρ(2/n)(qα, qβ) = <
n∑
i=1

n∑
j=1
i 6=j

δ(qα − qi) δ(qβ − qj) > (6.27)

Finally, for a system that is homogeneous, g(qα + qβ, qβ) is independent on the position qβ. The
expression for g(qα + qβ, qβ) = g(qα) can be obtained by computing the following quantity

<
1

n

n∑
i=1

n∑
j=1
i 6=j

δ(qα + qj − qi) > = <

∫
dqβ

[
1

n

n∑
i=1

n∑
j=1
i 6=j

δ(qα + qβ − qi) δ(qβ − qj)
]
>

=
1

n

∫
dqβ <

n∑
i=1

n∑
j=1
i 6=j

δ(qα + qβ − qi) δ(qβ − qj) > =
1

n

∫
dqβ ρ(2/n)(qα + qβ, qβ)

=
1

ρ

[
1

v

∫
dqβ ρ(2/n)(qα + qβ, qβ)

]
=

ρ(2/n)(qα)

ρ
= ρ g(2/n)(qα) ≡ ρ g(qα)

(6.28)

where in the first equality an elementary property of delta functions has been exploited, and in the fourth
equality the expression n = ρ v for a homogeneous system has been used. Considering the first and last

167

6.1. Radial Pair Correlation Function Chapter 6. Post processing of dynamics trajectory

expression of the previous derivation, the following equality can be written

g(qα) =
1

nρ
<

n∑
i=1

n∑
j=1
i 6=j

δ(qα + qj − qi) > =
v

n2
<

n∑
i=1

n∑
j=1
i 6=j

δ(qα + qj − qi) > (6.29)

If the system is isotropic as well as homogeneous, the pair distribution function g(2/n)(q1, q2) is a function
of the distance q ≡ q12 = ‖q1 − q2‖ only, for this reason it is usually called pair correlation function
as previously explained, and it is indicated simply with g(q) as defined in (6.15). When the separation
q12 is much larger than the range of interparticle potential, then g(2/n)(q1, q2) approaches its ideal gas
limit. The expression for the total pair correlation distribution function in this limit can be computed
as follows. The definition for g(2/n)(q1, q2) is

g(2/n)(q1, q2) =
ρ(2/n)(q1, q2)

ρ2
=
n(n− 1)P(2/n)(q1, q2)

ρ2
(6.30)

As the separation q12 is much larger than the range of interparticle potential, the interaction between
particles approaches zero, i.e. φ(q)→ 0, so that

P(2/n)(q1, q2) =

∫
dq3 · · ·

∫
dqn

e−βφ(q)∫
dq e−βφ(q)

→ vn−2

vn
=

1

v2
for φ(q)→ 0 (6.31)

and finally, using (6.30)

g(2/n)(q1, q2) = n(n− 1)
1

(ρ v)2
= n(n− 1)

(
v2

n2

)
1

v2
= 1− 1

n
for q ≡ q12 = ‖q1 − q2‖ → ∞ (6.32)

Thus, for a system with a large number of particles, the pair correlation function for q →∞ approaches
the asymptotic value of one.

6.1.1.4 Radial pair correlation function resolved per species

The radial pair correlation functions resolved per species are computed according to the formula

xµxνρ gµν(qα) =
1

n
<

nµ∑
i=1

n′ν∑
j=1

δ(qα + qj − qi) > (6.33)

where xµ,ν = nµ,ν/n is the fraction of species µ or ν, the coordinates qi and qj are respectively the
positions of the i-th particle with species µ and of the j-th particle with species ν, and the prime n′ν
indicates that the terms for which i = j are omitted when µ = ν. Substituting the terms xµ,ν with
their expressions as functions of n and nµ,ν in the left hand side of equation (6.33), the pair correlation
function for the species (µ, ν) can be rewritten more explicitly as

gµν(qα) =
n

ρnµ nν
<

nµ∑
i=1

n′ν∑
j=1

δ(qα + qj − qi) > =
v

nµ nν
<

nµ∑
i=1

n′ν∑
j=1

δ(qα + qj − qi) > (6.34)

The radial pair correlation function resolved per species is defined so that the normalized sum over all
couples of possible atomic species of the system is equal to the total radial pair correlation function
g(qα), i.e. so that

g(qα) =
1

n2

∑
µν

nµnν gµν(qα) (6.35)

Indeed, substituting the first expression of equation (6.34) in the previous relation, the total g(qα) of
equation (6.29) can be recovered as follows

g(qα) =
1

n2

∑
µν

nµnν

[
n

ρnµ nν
<

nµ∑
i=1

n′ν∑
j=1

δ(qα + qj − qi) >
]

=
1

nρ

∑
µν

<

nµ∑
i=1

n′ν∑
j=1

δ(qα + qj − qi) >=
1

nρ
<

n∑
i=1

n∑
j=1
i 6=j

δ(qα + qj − qi) > q.e.d.

168

Chapter 6. Post processing of dynamics trajectory 6.1. Radial Pair Correlation Function

6.1.2 Implementation

In this section the implementation of the radial pair correlation function in the Crystal code is de-
scribed. The calculation of the pair correlation function is a post-processing analysis, which starts from
the results of a molecular dynamics simulation.

6.1.2.1 Requirements

For the calculation of the pair correlation function, an input file with the atomic configurations per each
step of a molecular dynamics simulation is needed. Furthermore, if the system is a three dimensional
crystalline periodic bulk, the direct lattice vectors has to be known, in order to compute the lattice
parameters (fort.34 file is required). When the Module Moldyn is activated through the keyword MOLDYN

the input file, and a molecular dynamics simulation is performed, the code generates by default the files
POSITIONS.DAT and VELOCITIES.DAT, which contains the positions and velocities of each atom during
the molecular dynamics simulation. At the same time, the code updates at each step the file fort.34
(by overwriting it at each step), where the direct lattice vectors as well as the Md final geometry are
written. Since the pair correlation function deals with the spatial configuration of the particles, a file
POSITIONS.DAT must exist in the same directory where the post-processing analysis is carried out. For
these reasons, the code check for the existence of a file named POSITIONS.DAT; if the file exists in the
directory of execution, everything is fine and the calculation can proceed, otherwise, if the file does not
exist, the code call the subroutine errvrs with ierr = 0 (this subroutine is implemented in library both4.f),
it stops and prints in the output file the following string:

ERROR **** PCF MD **** FILE POSITIONS.DAT NOT FOUND!

6.1.2.2 The subroutine pcf md: description and methods

The subroutine implemented for the calculation of the radial pair correlation function is the subroutine
pcf md, contained in the module moldyn post in the library moldyn post.f90. The execution section of
the subroutine pcf md can be divided into the following different parts:

1. Reading of the file POSITIONS.DAT, saving the information needed

2. Modification of the vector with the atomic species for chemically irreducible atoms

3. Creation of a radial regular mesh (binned space)

4. Initialization of the vectors and matrices needed for the calculation

5. Filling of the histogram with the number of atomic couples

6. Computation of the radial pair correlation functions (total and resolved per species)

7. Creation of the output files with the results

Then, in the final part of the subroutine, the files used are closed and the dynamical vectors and matrices
are deallocated. In the following part of this chapter, the different execution subsections of the code listed
above are described, taking particular attention on the way the data are saved and manipulated within
vectors and matrices to obtain the results, and on the practical way to implement the calculation for
the radial pair correlation function, whose underneath theoretical basis have been explained in Section
6.1.1.

Reading of the file POSITIONS.DAT and saving information The subroutine pcf md calls the
subroutine readPOSfile of the moldyn post module in order to accomplish the task of reading the file
POSITIONS.DAT with the atomic positions per each molecular dynamics step. The file POSITIONS.DAT,
generated by default during a molecular dynamics calculation (and described in Appendix B.3), is read
by the subroutine readPOSfile as follows:

• The first row contains the number of atoms in the system, saved in the integer variable naf.

169

6.1. Radial Pair Correlation Function Chapter 6. Post processing of dynamics trajectory

• The following naf rows are divided into three columns: the first one for the row index (from 1 to
naf), the second one for the atomic number and the third one for the atomic mass of each atom,
respectively. Only the atomic number is saved in the dynamical integer vector atos tmp(naf).

• The following nstp·naf rows contains the Cartesian atomic positions (x, y, z) [in Angstrom] of
each atom in the initial atomic configuration and in the successive nstp−1 steps of the molecular
dynamics simulation. These positions are saved in matrices with dimension nstp·naf in the following
way

qx =

xs11 xs21 ... xsm1
xs12 xs22 ... xsmnaf
...
xs1naf xs2naf ... xsmnaf

 qy =

ys11 ys21 ... ysm1

ys12 ys22 ... ysmnaf
...
ys1naf ys2naf ... ysmnaf

 qz =

zs11 zs21 ... zsm1

zs12 zs22 ... zsmnaf
...
zs1naf zs2naf ... zsmnaf

where the subscripts 1,...,naf are referred to the indexes of the atoms while the superscripts s1,...,sm
are the indexes of the molecular dynamics step (with sm = nstp). These matrices are therefore
filled column-by-column while reading the file, so that all (x, y, z) positions per each atom of the
system are given for the initial configuration (first column), then for the first step (second column),
and so on.

The atomic number of each atomic species in the system has been saved in vector atos tmp(naf). In
order to generalize the calculation of the pair correlation function for couples of atoms of the same
atomic species but with a different structural (chemical) environment, it is useful to work with atomic
symbols instead of atomic numbers. For this reason, after the file with positions has been read, the
atomic numbers saved in vector atos tmp(naf) are converted in the correspondent atomic symbols, and
these are saved in the characters-type vector atos(naf), using the function symbat(at number):

atos(i) = symbat(mod(atos tmp(i),100)), i = 1,...,naf

so that
atos tmp =

(
X1 X2 ... Xnaf

)
→ atos =

(
A1 A2 ... Anaf

)
where Xi is the atomic number of the i-th atom, while Ai is the symbol of the correspondent atomic
species. Obviously, since the atos vector (as well as the atos tmp vector) contains a list of all the atoms
in the system, it can happen that Ai = Aj for some elements i and j.

Modification of the vector with the atomic symbols (for chemically irreducible atoms) If
two or more atoms have the same atomic symbol but two different structural (chemical) environments,
and the user wants to study these atoms with distinct radial pair correlation functions, than the function-
ality of the keyword IRRCHIM can be exploited (see manual in Appendix E). If this keyword is activated,
the label of the atoms in the vector atos is modified consequently. For example, consider the case of
water H2O. If the two atoms of hydrogen H have to be considered differently from each other and the two
chemical environments around each of them have to be analyzed, one can insert in the Crystal input
file the list of atom indexes accordingly to the order of insertion of the atoms in the geometry section
of the input file (this order also corresponds to the sequence order of atoms as printed in the Crystal
output file). The insertion of the atom indexes in the correct order in the input file is not mandatory,
the code works well even if the correct input sequence is not respected. In this way, the atoms whose
indexes are called in the input file through the keyword IRRCHIM are considered different from each
other even if they have the same atomic number. The only modification in the code is the vector atos,
which from now on labels those atoms in a different way, i.e. with a name that is a concatenation of
the atomic symbol with the correspondent index inserted in input by the user. In the case of water, for
example, if the atomic coordinates are inserted in the input file (and printed in the output file) with the
order H H O, than the three atoms have indexes 1 2 3, respectively. If the keyword IRRCHIM is used in
the input file, and the indexes 1 and 2 are selected, the atos vector is modified as follows:

IRRCHIM → atos = (H1, H2, O)

so that four radial pair correlation functions will be computed: the total radial pair correlation function
g(q), together with the pair correlation functions for the three atomic couples H1-H2, H1-O and H2-O.

170

Chapter 6. Post processing of dynamics trajectory 6.1. Radial Pair Correlation Function

Creation of a radial regular mesh Equations (6.29) and (6.34) are the formal definitions of the
total and partial pair correlation functions, respectively. In practice, the delta function is implemented
by filling an histogram, counting all the pairs of atoms of two given species falling within each bin of
the histogram, i.e. counting the number of atoms of a given species at a certain distance from atoms
of another given species. In order to define and fill such an histogram, a radial regular mesh is created,
which divides the space in nbin bins, each of one is a spherical shell in three dimensions. The number
of bin nbin is defined by the user, otherwise it is equal to its default value (see see manual in Appendix
E). Consider a system with the side of the sampling cubic box equal to `s (the radial pair correlation
function will be sampled and calculated in this cubic box). The radial bin width dq ≡ δq is defined as:

dq ≡ δq =
`s

2 · nbin
bin width (6.36)

In order to identify each bin with a unique distance parameter, the following definition is given:

rad(i) ≡ q(i) = ((i− 1) + 0.5) · δq with i = 1,..., nbin (6.37)

In this way, the vector rad contains the elements:

rad =
(
0.5 δq 1.5 δq 2.5 δq ... (nbin− 0.5) δq

)
so that the i-th element of the vector uniquely identifies the i-th bin of the system and it associates to
each i-th bin a radial distance equal to the radius of the sphere that intersect the i-th bin in its central
point. This construction is very useful in each loop on the number of bins, in which the radial bin distance
has to be involved, because in this way all the quantities in the loop are identified with a unique index,
that is the bin index, referred to a unique radial distance associated to a given bin. When the radial
pair distribution function is computed, it has to be calculated inside each i-th bin, so that there are nbin
different values for each particular radial pair correlation function, each referred to a particular bin. The
radial distance associated to the i-th values of the radial pair correlation function correspondent to the
i-th bin will be defined to be equal to rad(i) ≡ q(i). It can be said that rad(i) is the radial distance that
represents the i-th bin, and the radial pair distribution function computed for that bin is associated to
that radial distance. Table 6.1 resumes the division of the three-dimensional space in spherical shell bins
with radius q. The radial extension of each bin identifies the range of values for the radius q that spanned
the spherical shell associated with that bin. The radial pair correlation function will be computed for
each one of these volume elements (bins).

bin index bin radial extension representative radial distance
1 0 < q ≤ q(1) + h q(1) ≡ rad(1)
2 q(2)− h < q ≤ q(2) + h q(2) ≡ rad(2)
..

nbin q(nbin)− h < q ≤ q(nbin) + h q(nbin) ≡ rad(nbin)

Table 6.1: Bin division defined by the radial regular mesh. The radial extension and the representative radial
distance for each bin are reported. The quantity h is equal to half of the bin width: h = δq/2.

—– definition of `s

Initialization of vectors and matrices needed for the calculation The radial pair correlation
function (Rpcf) can be computed for the entire system, without distinction of the atomic species, or
by taking into account only two particular atomic species, µ and ν. In the first case it is called total
Rpcf g(q), while in the second case it is called partial Rpcf gµν(q). The definition of the radial pair
distribution function lies on the assumption that the system is homogeneous as well as isotropic, so that
the pair correlation function depends only on the separation q12 = ‖q1 − q2‖. The partial radial pair
distribution function is also characterized by a two-particles exchange symmetry, i.e. gµν(q) = gνµ(q).
The correspondent matrix g = {gµν(q)} is then a square neqatos×neqatos symmetric matrix, completely
determined by

neqatos · (neqatos + 1)

2

171

6.1. Radial Pair Correlation Function Chapter 6. Post processing of dynamics trajectory

elements, where neqatos is the number of non-equivalent atoms (physically or chemically speaking). First
of all, it is necessary to determine the number of non-equivalent atoms, the atomic species of these atoms
and the total number of atoms per each atomic species. This is accomplished with an analysis of the
elements contained in the atos(naf) vector. The results of the analysis are saved in the following vectors:

atyp neq =
(
An1 An2 ... Ans

)
s = neqatos

which contains only the name of the atomic species of the neqatos non-equivalent atoms, and

ntyp neq =
(
Nn1 Nn2 ... Nns

)
s = neqatos

whose i-th element is the number of atoms of the i-th non-equivalent atomic species saved in the cor-
respondent i-th element of the atyp neq vector. Starting from the atyp neq vector, a matrix can be
constructed, that contains all the possible non-equivalent atomic couples for which the partial gµν(q) has
to be computed. The couple (µ, ν) is equivalent to the couple (ν, µ), because the correspondent pair
correlation functions gµν(q) and gνµ(q) are equal. The number of non-equivalent couples is therefore

ncpl =
neqatos · (neqatos + 1)

2

However, if there is only one atom of a certain atomic species µ in the system, it makes no sense to
compute the partial pair correlation function gµµ(q) for that particular atomic species µ: no other atoms
except it exists with the same atomic species, so that computing gµµ(q) would mean to compute a
partial pair correlation function of an atom with itself, a case which has to be excluded by default.
Thus, although (µ, µ) is in principle an acceptable couple to be taken into account, it has to be excluded
when there is only one atom in the system with that atomic species µ. As a consequence, the variable
ncpl is reduced by the number of atomic species Nalone that have only one atom in the system:

ncpl← ncpl−Nalone

Now, a 2×ncpl matrix can be constructed, with the atomic species of all the possible non-equivalent
couples, in this way

cpl =

(
Ac11 Ac21 ... Acm1
Ac12 Ac22 ... Acm2

)
m = ncpl

where Aci1 and Aci2 are respectively the first and the second atomic species of the i-th couple. Thus, each
column of the matrix contains the symbols of the two atomic species of a possible non-equivalent atomic
couple. At the same time, the ntyp neq vector can be used to construct a 2×ncpl matrix whose element
(i, j) is equal to the number of atoms in the system with that particular cpl(i, j) atomic species, i.e.

cpl num =

(
N c1

1 N c2
1 ... N cm

1

N c1
2 N c2

2 ... N cm
2

)
m = ncpl

where N ci
1 and N ci

2 are respectively the number of atoms in the system with atomic species Aci1 and
Aci2 . The elements of the matrices cpl and cpl num must have a one-to-one correspondence. The matrix
cpl num is useful for the normalization procedure of the partial radial pair correlation functions.

Note: by default, the code computes the total radial pair correlation function g(q) and all the partial
radial pair correlation functions gµν(q) for each couple in the matrix cpl.

Example
Consider the crystalline system CsBa2I5. The vector atos, that contains a list of all the atoms in the
system, is given by

atos =
(
Cs Ba Ba I I I I I

)
Physically speaking, the number of non-equivalent atoms in the system is neqatos = s = 3. The atomic
species of these non-equivalent atoms are Cs, Ba and I, and the number of atoms per each non-equivalent
atomic species is respectively 1, 2 and 5, so that the following vectors are defined:

atyp neq =
(
Cs Ba I

)
172

Chapter 6. Post processing of dynamics trajectory 6.1. Radial Pair Correlation Function

which contains only the symbols of the atomic species of the neqatos non-equivalent atoms, and

ntyp neq =
(
1 2 5

)
that contains the total number of each non-equivalent atom in the system. The number of non-equivalent
couples are:

ncpl =
3 · 4

2
= 6

However, in this case it makes no sense to compute the partial radial pair correlation function gCs,Cs(q)
for the atomic species Cs, because there is only one Cs atom in the entire system. Indeed, computing
gCs,Cs(q) would mean to compute the partial pair correlation function of an atom with itself, which is
not allowed. Therefore, the number of possible couples ncpl has to be decreased by Nalone = 1, so that

ncpl = 5

Finally, the 2×5 matrix cpl, containing all the possible non-equivalent atomic couples for which the
partial radial pair correlation function is computed, is defined as

cpl =

(
Cs Cs Ba Ba I
Ba I Ba I I

)
and the correspondent 2×5 matrix cpl num, with the number of atoms in the system for each correspon-
dent atomic species in the matrix cpl, is given by

cpl num =

(
1 1 2 2 5
2 5 2 5 5

)

Filling of the histogram with the number of atomic couples As previously explained, equations
(6.29) and (6.34) are replaced, in practice, by a step function which is non-zero in a small range of
separations, and the pair correlation function is most simply thought as the number of atoms of a given
species at a distance q from the atoms of a second given species in the system, compared with the same
quantity computed for an ideal gas. The most computationally expensive part of the calculation of the
radial pair distribution function is the loop over the bins and the calculation of the number of particles
np inside each bin, given a reference central atomic species. The pseudocode in Table 6.2 explains the
way in which this calculation is performed.

An important point to underline is that, for periodic systems (3D, 2D or 1D) the distances are computed
using periodic boundary conditions along the directions of periodicity, using the minimum image con-
vention (i.e. each individual particle in the simulation undergoes an interaction with the closest image
of the remaining particles in the system).

Finally, the (ncpl + 1)×nbin matrix gr(0:ncpl,nbin), which contains the computed number of particles per
each bin, is defined as follows

gr =

nc(b1) nc(b2) ... nc(bλ)
nc1c (b1) nc1c (b2) ... nc1c (bλ)
...

ncmc (b1) ncmc (b2) ... ncmc (bλ)

 m = ncpl, λ = nbin

Each i-th element of the first row of the matrix gr is the total number of particles in the i-th bin bi, so
that the first row contains the values of the total radial pair correlation function g(q). From the second
to the (ncpl + 1)-th row, the number of particles per each bin for a given couple ck (which corresponds
to the k-th column of the matrix cpl) is listed, and these elements are used row-by-row to compute the
partial radial pair correlation function gµν(q) for the k-th couple of atoms with species µ and ν. In
this way, each column identifies a different bin, and each row of the matrix corresponds to a partial
radial pair correlation function for a given non-equivalent couple of atomic species (except the first row
which sums up all the partial radial pair correlation functions in order to compute the total radial pair
correlation function).

173

6.1. Radial Pair Correlation Function Chapter 6. Post processing of dynamics trajectory

———
fixloop: do i = 1,naf ! fix an atom i (reference central atom)

spi = atomic species of the atom i
varloop: do j = 1,naf ! loop on the other naf atoms given a fixed central i atom

if(i == j) cycle
spj = atomic species of the atom j
compute the distance dij between atoms i and j, using periodic boundary conditions (Pbc)
binloop: do ib = 1,nbin ! loop over the bins to count the number of atoms per each bin

distance: if (dij > q(ib)− δq/2 .and. dij ≤ q(ib) + δq/2) then
increase total nc(q) of bin ib: nc(0,ib) = nc(0,ib) + 1
species: do k = 1,ncpl ! loop on the cpl matrix columns (on each non-equivalent couple)

if (spi == cpl(1,k) .and. spj == cpl(2,k)) then
increase partial nijc (q) of bin ib: nc(k,ib) = nc(k,ib) + 1

endif
enddo species

endif distance
enddo binloop

enddo varloop
enddo fixloop
———

Table 6.2: Pseudocode for the computation of the non-normalized total and partial radial pair correlations
functions (Rpcf histogram filling).

Note: in the pseudocode previously reported, the case i = j (i.e. the case in which the atom selected
in the loop fixloop is the same as the atom selected in the inner loop varloop, namely, the self-counted
case) has been discarded by the code with an if statement inside the inner loop.

The procedure described by the pseudocode is repeated for a certain number τrun of different atomic
configurations. Each atomic configuration (sometimes also called snapshot) is defined as the collection of
the nuclear coordinates for a given step of a molecular dynamics simulation. In the code, the information
about the nuclear positions is stored in the matrices qx, qy and qz (see paragraph 6.1.2.2). The way in
which the atomic configurations for the calculation of the pair correlation functions are chosen among
all those obtained from the molecular dynamics simulation is fixed by the user with the parameters
tin, tfin and δt (see the input keywords manual in Appendix E). The indexes of the initial and final
atomic configurations (corresponding to an initial and a final molecular dynamics steps) are defined by
the parameters tin and tfin, respectively. The δt parameter is instead the frequency of the selection of
the atomic configurations among the tin and tfin steps. Therefore, the atomic configurations selected
from the molecular dynamics trajectory are those whose step indexes are t1 = tin + δt, t2 = t1 + δt,...,
tn = tn−1 +δt, for each tn ≤ tfin. For example, if tin = 2, tfin = 15 and δt = 3, the atomic configurations
selected are those corresponding to the steps 2, 5, 8, 11, 14 of the molecular dynamics simulation. The
pair correlation functions obtained for each one of these atomic configurations are then appropriately
averaged out to obtain the final results, as explained in paragraph 6.1.2.2.

Computation of the normalized radial pair correlation functions When all the configurations
have been processed, the (total and partial) pair correlation functions must be finally computed and
normalized. Suppose that τrun atomic configurations of the molecular dynamics trajectory have been
analyzed to compute the pair correlation functions, and that a particular bin bi of the histogram, corre-
sponding to the interval (q(bi)− δq/2, q(bi) + δq/2), contains nc(bi) pairs. Then the average number of
atoms in the system whose distance from a given atom lies in this interval is

n(bi) =
nc(bi)

n · τrun
(6.38)

where nc(bi) is the number of atoms detected in the i-th bin (computed through the algorithm described
in Table 6.2), n is the total number of atoms in the system and τrun is the number of atomic configurations

174

Chapter 6. Post processing of dynamics trajectory 6.1. Radial Pair Correlation Function

(snapshots) used to compute nc(bi). The average number of atoms in the same interval of space in an
ideal gas with uniform density ρ is

ngas(bi) = ρ · vs(bi) (6.39)

where vs(bi) is the volume of the i-th bin. In the present case each bin divides the three-dimensional space
in a spherical shell and the number of particles inside this shell are counted. The volume of the spherical
shell can be computed (considering the definition of the radial regular grid previously descrb˙ied) as the
difference between two spheres, one with radius q(bi)−δq/2 and the other with radius q(bi)+δq/2, where
q(bi) is the distance of the center of the i-th bin spherical shell from the origin (i.e. from the atom of
reference), and δq is the bin width. Then,

vs(bi) =
4

3
π

[(
q(bi) +

δq

2

)3

−
(
q(bi)−

δq

2

)3]
= 4π[q(bi)]

2 δq +
π

3
(δq)3 ≈ 4π[q(bi)]

2 δq (6.40)

where the term π(δq)3/3 can be neglected iff the bin width δq is sufficiently small. Substituting the last
expression in equation (6.39), the result is

ngas(bi) = 4πρ [q(bi)]
2 δq (6.41)

By definition, the total pair correlation function of the i-th bin is the ratio between (6.38) and (6.41),
i.e.

g(bi) =
n(bi)

ngas(bi)
=

nc(bi)

4πρ [q(bi)]2 δq · n · τrun
(6.42)

In the same way as (6.38), the average number of atoms nµν(bi), that is the average number of atoms in
the system with species ν whose distance from a given atom of species µ (taken as the reference central
atom) lies within the spherical shell defined by the i-th bin, can be computed as follows

nµν(bi) =
nµνc (bi)(
nµnν
n

)
τrun

= n
nµνc (bi)

nµnντrun
=

1

n

(
nµνc (bi)

xµxντrun

)
(6.43)

where nµνc (bi) is the number of the couple of atomic species (µ, ν) detected in the i-th bin (computed
through the algorithm described in Table 6.2), xµ = nµ/n (xν = nν/n) is the fraction of atoms with
species µ (or ν) with respect to the total number of atoms n, and τrun is the number of configurations
along the molecular dynamics trajectory (snapshots) for which the partial pair correlation functions have
been computed.
Analogously to the total pair correlation function (6.42), the partial radial pair distribution function
resolved per species, formally defined by equation (6.34), can be given by the following expression:

gµν(bi) =
nµν(bi)

ngas(bi)
(6.44)

where nµν(bi) is defined by equation (6.43) as the average number of atoms in the system with species
ν whose distance from a given atom of species µ (taken as the reference central atom) lies within the
spherical shell defined by the i-th bin. The volume of this spherical shell is equal to vs(bi), and it is
given by the equation (6.40). Then the partial pair correlation function resolved per species is the ratio
between expression (6.43) and the average number of atoms in the same i-th bin for an ideal gas with
uniform density ρ, given by the expression (6.41), that is

gµν(bi) =
1

n
· nµνc (bi)

4πρ [q(bi)]2 δq · xµxν · τrun
(6.45)

Substituting xµ (and xν) with the correspondent expressions nµ/n (and nν/n), and using the relation
for the density ρ = n/v, the following expression for the partial pair correlation function in the i-th bin
can be obtained

gµν(bi) =
v · nµνc (bi)

4π [q(bi)]2 δq · nµnν · τrun
(6.46)

175

6.1. Radial Pair Correlation Function Chapter 6. Post processing of dynamics trajectory

where v is the volume of the unitary simulation cell, and nµ (nν) is the number of atomic species µ (and
ν) in the system. From the definition in equation (6.46), the total pair correlation function for the i-th
bin can be recovered using the relation (6.35), so that

g(bi) =
1

n2

∑
µν

nµnν gµν(bi) (6.47)

Indeed, substituting the expression (6.46) in equation (6.47), the formula (6.42) for the total pair corre-
lation function is recovered, as demonstrated in the following.

g(bi) =
1

n2

∑
µν

nµnν
v · nµνc (bi)

4π [q(bi)]2 δq · nµnν · τrun

=
v

n2
·

∑
µν n

µν
c (bi)

4π [q(bi)]2 δq · τrun
=

1

nρ
· nc(bi)

4π [q(bi)]2 δq · τrun

=
nc(bi)

4πρ [q(bi)]2 δq · n · τrun
q.e.d. (6.48)

where the expression for the density ρ = n/v has been used in the second row, together with the identity∑
µν

nµνc (bi) = nc(bi) (6.49)

In this way, the equation (6.42) for the total pair correlation function g(bi) of the i-th bin has been
recovered, starting from the relation (6.47) and the definition (6.46) for the partial pair correlation
function resolved per species gµν(bi) of the correspondent i-th bin. The computed (ncpl + 1)×nbin
matrix for the radial pair correlation function is then:

gr =

gr(b1) gr(b2) ... gr(bλ)
grc1(b1) grc1(b2) ... grc1(bλ)
...

grcm(b1) grcm(b2) ... grcm(bλ)

 m = ncpl, λ = nbin

The first row of the matrix contains the total radial pair correlation function g(bi) per each bin bi,
i = 1, ..., nbin. From the second to the (ncpl + 1)-th row, the partial radial pair correlation functions
gck(bi) ≡ gµν(bi) are reported per each bin bi for a given couple ck = (µ, ν) of species µ and ν, that
corresponds to the two elements in the k-th column of the matrix cpl.

Consider now the equation (6.17), that represents the number of particles inside a sphere of radius q
about a central particle, as q varies from 0 to ∞. In the code, the integral over the radial distance is
substituted by a summation over the number of bin, so that equation (6.17) becomes

nbin∑
i=1

ρ g(bi) 4π[q(bi)]
2 δq = N − 1 (6.50)

Substituting the definition (6.42) of the total radial pair correlation function in the previous equation,
it can be written

nbin∑
i=1

nc(bi)

n · τrun
=

nbin∑
i=1

n(bi) = N − 1 (6.51)

where the equation (6.38) has been used. Thus, per each bin bi, the total number of particles (N(bi)−1)
contained within a sphere of radius equal to the external radius correspondent to that bin bi can be
computed, summing up all the values of the total pair correlation function g(bi) multiplied by the factor
4π[q(bi)]

2ρ δq, up to that i-th bin, namely,

intgr(bi) =
i∑

n=1

ρ g(bn) 4π[q(bn)]2 δq = N(bi)− 1 bi = 1, ..., nbin (6.52)

176

Chapter 6. Post processing of dynamics trajectory 6.1. Radial Pair Correlation Function

As regards the integrated partial pair correlation function gµν(q), here the symmetry is broken, i.e.
intgrµν 6= intgrνµ, at least for a multiplication factor. Indeed, the two integrals which defines the inte-
grated partial radial pair correlation functions are:

intgrµν =

∫ ∞
0

ρµ gµν(q) 4πq2dq and intgrνµ =

∫ ∞
0

ρν gνµ(q) 4πq2dq (6.53)

Exploiting the symmetry of the functions in the previous integrals, i.e. gµν(q) = gνµ(q), it can be written:

intgrµν = ρµ

[∫ ∞
0

gµν(q) 4πq2dq

]
= ρµ

[∫ ∞
0

gνµ(q) 4πq2dq

]
= ρµ

intgrνµ
ρν

(6.54)

so that it is verified that intgrµν differs from intgrνµ by a multiplication factor ρµ/ρν . Therefore, comput-
ing one of the two integrals lead to the knowledge of the other one, if the multiplication factor is known.
In order to go into the details of equations (6.53), return to the operative definition of the partial radial
pair correlation function (6.46), transforming the integrals in summation over the bins

intgrµν =
nbin∑
i=1

ρµ gµν(bi) 4π[q(bi)]
2δq and intgrνµ =

nbin∑
i=1

ρν gνµ(bi) 4π[q(bi)]
2δq (6.55)

and, substituting equation (6.46) into the first relation of the previous definitions, this can be written as

intgrµν =
nbin∑
i=1

ρµ
v · nµνc (bi)

nµnν · τrun
=

nbin∑
i=1

nµνc (bi)

nν · τrun
(6.56)

where in the last equality the relation for the density ρµ = nµ/v has been used.
At the same time, making the same procedure on the second equation in (6.55), it becomes

intgrνµ =
nbin∑
i=1

ρν
v · nνµc (bi)

nνnµ · τrun
=

nbin∑
i=1

nνµc (bi)

nµ · τrun
=

nbin∑
i=1

nµνc (bi)

nµ · τrun
(6.57)

where the relation for the density ρν = nν/v has been used, and the symmetry for the number of couples
in each bin nµνc (bi) = nνµc (bi) can be easily derived from the equations (6.43) and (6.44) and from the
exchange symmetry of the partial radial pair correlation function, gµν(bi) = gνµ(bi). Therefore, the
equations (6.56) and (6.57) lead to the relation

intgrµν =
nµ
nν

intgrνµ (6.58)

Furthermore, the integrated partial radial pair correlation function up to the i-th bin can be defined as

intgrµν(bi) =

i∑
n=1

ρµ gµν(n) 4π[q(n)]2 δq bi = 1, ..., nbin (6.59)

The relation between the two summations is therefore the same that relates the integrals (6.53), as
shown in (6.54). Thus, operatively speaking, all the information needed in order to compute all the
values intgrµν , with (µ = 1, ..., nµ and ν = 1, ..., nν) can be stored in a (ncpl+1)×nbin matrix as reported
in the following.

intgr =

intgr(b1) intgr(b2) ... intgr(bλ)
intgrc1(b1) intgrc1(b2) ... intgrc1(bλ)

...
intgrcm(b1) intgrcm(b2) ... intgrcm(bλ)

 m = ncpl, λ = nbin

The first row contains the integrated total radial pair correlation function intgr(bi) per each bin bi,
i = 1, ..., nbin, as defined in equation (6.52). From the second to the (ncpl + 1)-th row, the integrated
partial radial pair correlation functions intgrck(bi) ≡ intgrµν(bi) are reported per each bin bi for a given
couple ck = (µ, ν) with species µ and ν, that corresponds to the two elements in the k-th column of the

177

6.1. Radial Pair Correlation Function Chapter 6. Post processing of dynamics trajectory

matrix cpl. These elements intgrµν(bi) are defined by a summation over the partial radial pair correlation
function gµν(bi) up to a certain radial distance, identified by the i-th bin index, as expressed in equation
(6.59).
All the other elements needed, that regards the integrated partial pair correlation functions with the same
atomic species but with the order inverted (i.e. the exchange symmetry related partial pair correlation
functions), are computed from the previous ones by a multiplication factor, as in equation (6.58). For
example, knowing the elements intgrµν(bi) for the couple of atomic species (µ, ν), the elements intgrνµ(bi)
for the couple of atomic species (ν, µ) can be computed with equation (6.58) by multiplying the elements
intgrµν(bi) with a factor nν/nµ. This procedure is obviously general for each couple of atomic species
(µ, ν), with µ = 1, ..., nµ and ν = 1, ..., nν .

Creation of the output files The results obtained are printed in the output files. Two output files
are created, namely, pcf.dat and integrated pcf.dat.

The main file pcf.dat reports the total and the pair correlation functions for each spatial bin ib = 1,...,
nbin. It has a number of columns equal to the number of pair correlation functions computed plus one,
and is structured as follows:
1. first column: radial distance for each ib-th bin: r(ib) (spatial mesh points)
2. second column: total pair correlation function for each ib-th bin: grib

3. third-(ncpl+2) columns: partial (µ, ν) pair correlation functions for each ib-th bin: gribµν → the name of
the atomic species of the couple (µ, ν) is specified for each column in the first line of the file, respectively.

The second output file integrated pcf.dat contains the integrated pair correlation functions for each spatial
bin ib = 1,..., nbin. It has a number of columns that depends on the number of pair correlation functions
computed, and it is structured as follows:
1. first column: radial distance for each ib-th bin: r(ib) (spatial mesh points)
2. second column: total pair correlation function for each ib-th bin: intgrib

3. third-(ncpl+n neq+2) columns: partial (µ, ν) integrated pair correlation functions for each ib-th bin:
intgribµν → the name of the atomic species of the couple (µ, ν) is specified for each column in the first
line of the file, respectively.

178

Chapter 6. Post processing of dynamics trajectory 6.2. Power Spectrum and Diffusion Coefficient

6.2 Power Spectrum and Diffusion Coefficient

6.2.1 Theory

The aim of this chapter is to explain and demonstrate the Wiener-Khinchin theorem,[85, 86] that relates
the power spectrum to the Fourier transform of the autocorrelation function G(τ), in the following way

P (ω) = F [G(τ)] = F [〈f∗(t) f(t+ τ)〉] = lim
T→∞

1

T

∣∣∣∣∫ T/2

−T/2
f(t) e−iωt dt

∣∣∣∣2 (6.60)

where ω = 2πν and G(τ) = 〈f∗(t) f(t+ τ)〉 is the autocorrelation function of the signal f(t). In order to
derive this theorem, the convolution theorem will be introduced and demonstrate in Section 6.2.1.1, then
the Wiener-Khinchin will be proved in Section 6.2.1.2 and some properties of the autocorrelation function
will be analyzed in Section 6.2.1.3. Finally, in Section 6.2.1.4, the calculation of the power spectra for the
study of the vibrational frequencies in condensed matter systems through the post processing of nuclear
velocities derived from molecular dynamics trajectory is outlined.

6.2.1.1 The convolution theorem

The convolution integral is defined as

(f ∗ g)(τ) =

∫ ∞
−∞

f(t) g(τ − t) dt (6.61)

The convolution theorem gives an easy way to evaluate the convolution integral in equation (6.61),
both in an intuitive and a computational point of view. The convolution theorem states that the Fourier
transform of the convolution is the product of the Fourier transforms of the individual functions, namely,

F(f ∗ g) = F(f)F(g) (6.62)

In the following, the assumption that the functions involved are well-behaved and nice enough that all
the integrals simply exist is underpinned. To prove equation (6.62), the explicit form of F(f ∗ g) has to
be computed. First of all, the Fourier and inverse transforms have the form

f(t) =
1

2π

∫ ∞
−∞

f(ω) eiωt dω and F [f(t)] ≡ f(ω) =

∫ ∞
−∞

f(t) e−iωt dt (6.63)

It is important to make these definitions explicit, since the result depends on the normalization convention
chosen for the Fourier transform. Then computing the Fourier transform of F(f ∗ g) the following
expression can be obtained

F(f ∗ g) = F
[∫ ∞
−∞

f(t) g(τ − t) dt
]

=

∫ ∞
−∞

∫ ∞
−∞

f(t) g(τ − t) e−iωτ dt dτ

=

∫ ∞
−∞

∫ ∞
−∞

f(t) e−iωt g(τ − t) e−iω(τ−t) dt dτ

(6.64)

Letting τ → τ + t

F(f ∗ g) =

∫ ∞
−∞

∫ ∞
−∞

f(t) e−iωt g(τ) e−iωτ dt dτ

=

∫ ∞
−∞

f(t) e−iωt dt

∫ ∞
−∞

g(τ) e−iωτ dτ = F [f]F [g]

(6.65)

Thus, to convolve two functions, just follow this recipe: Fourier transform both functions, multiply them
together, then compute the inverse Fourier transform. Mathematically, it can be written

f ∗ g = F−1{F [f]F [g]} (6.66)

Since Fourier transforms of common function are usually already known, the convolution theorem pro-
vides a shortcut for evaluating the full convolution integral.

179

6.2. Power Spectrum and Diffusion Coefficient Chapter 6. Post processing of dynamics trajectory

6.2.1.2 The Wiener-Khinchin theorem

Recall the convolution theorem for two functions f(t) and g(t) (see Section 6.2.1.1). Writing out the
convolution integral explicitly,

(f ∗ g)(τ) =

∫ ∞
−∞

f(t) g(τ − t) dt = F−1{F [f]F [g]} (6.67)

Consider the particular choice g(t) = f∗(−t), then

F [g(t)] = F [f∗(−t)] =

∫ ∞
−∞

f∗(−t) e−iωt dt =

∫ ∞
−∞

f∗(t) eiωt dt = (F [f(t)])∗ (6.68)

Thus, equation (6.67) becomes∫ ∞
−∞

f(t) f∗(t− τ) dt = F−1{F [f] (F [f(t)])∗} = F−1{|F [f]|2} (6.69)

where g(τ − t) in (6.67) has been transformed, following the condition g(t) = f∗(−t) previously intro-
duced, as g(τ−t) = f∗(t−τ). Inverting the transform in (6.69) and letting t→ t+ τ , the Wiener-Khinchin
theorem is recovered

F

[∫ ∞
−∞

f∗(t) f(t+ τ) dt

]
= |F [f]|2 (6.70)

The function on the left hand side in (6.70) is the autocorrelation function of f(t), that is defined as

G(τ) =

∫ ∞
−∞

f∗(t) f(t+ τ) dt (6.71)

Using this definition, together with the Fourier transform convention introduced in equation (6.63), then
the Wiener-Khinchin theorem in (6.70) can be rewritten as

F [G(τ)] =

∣∣∣∣∣
∫ ∞
−∞

f(t) e−iωt dt

∣∣∣∣∣
2

(6.72)

Essentially, it compares the function f(t) to itself but shifted by an amount τ by computing an overlap
integral. The right hand side of equation (6.70) can be understand by noting that F [f(t)] is the spectrum
of f(t), and so |F [f]|2 is the energy spectral density of f(t). Essentially, the energy spectrum is the
square of the usual spectrum, with the phase information removed. This is consistent with the notion
of energy going as the square of a signal amplitude. Thus, the Wiener-Khinchin theorem states that the
Fourier transform of the autocorrelation function gives the energy spectrum.
There is one subtle point to these definitions: for some signals, such as steady optical signals, the
correlation integral diverges,

G(τ) =

∫ ∞
−∞

f∗(t) f(t+ τ) dt → ∞ (6.73)

In this case, a time average instead of the normal integral has to be considered. For an averaging time
of T , the average in time is defined as

〈f∗(t) f(t+ τ)〉T =
1

T

∫ T/2

−T/2
f∗(t) f(t+ τ) dt (6.74)

For bounded signals, this integral is guaranteed to converge. To be physically sensible, T should be a
suitably long observation time (e.g., long enough to resolve the frequency spectrum). For such signals,
equation (6.64) becomes

F [〈f∗(t) f(t+ τ)〉T] = F
[

1

T

∫ T/2

−T/2
f∗(t) f(t+ τ) dt

]
=

∫ ∞
−∞

1

T

∫ T/2

−T/2
f∗(t) f(t+ τ) e−iωτ dt dτ

=
1

T

∫ T/2

−T/2
f∗(t)

∫ ∞
−∞

f(t+ τ) e−iωτ dt dτ

(6.75)

180

Chapter 6. Post processing of dynamics trajectory 6.2. Power Spectrum and Diffusion Coefficient

Letting τ → τ − t

F [〈f∗(t) f(t+ τ)〉T] =
1

T

∫ T/2

−T/2
f∗(t)

∫ ∞
−∞

f(τ) e−iω(τ−t) dt dτ

=
1

T

∫ T/2

−T/2
f∗(t) eiωt dt

∫ ∞
−∞

f(τ) e−iωτ dτ

(6.76)

Now the Wiener-Khinchin theorem says that the Fourier transform of the (time averaged) correlation
function is the power spectral density, or the energy spectral density per unit time. For a stationary
process, the correlation function is independent of t (generally for a sufficiently long averaging time T).
Therefore, the averaging time can be extended T →∞. Denoting this long-time average limit as

〈f∗(t) f(t+ τ)〉 = lim
T→∞

〈f∗(t) f(t+ τ)〉T (6.77)

In this limit, equation (6.76) becomes

lim
T→∞

F [〈f∗(t) f(t+ τ)〉T] = F
[

lim
T→∞

〈f∗(t) f(t+ τ)〉T
]

= F [〈f∗(t) f(t+ τ)〉]

= lim
T→∞

1

T

∫ T/2

−T/2
f∗(t) eiωt dt

∫ ∞
−∞

f(τ) e−iωτ dτ

(6.78)

and the Wiener-Khinchin theorem can be rewritten as

P (ω) = F [G(τ)] =

∫ ∞
−∞

G(τ) e−iωτ dτ = lim
T→∞

1

T

∣∣∣∣∫ T/2

−T/2
f(t) e−iωt dt

∣∣∣∣2 (6.79)

where the autocorrelation function G(τ) is defined as

G(τ) = 〈f∗(t) f(t+ τ)〉 = lim
T→∞

1

T

∫ T/2

−T/2
f∗(t) f(t+ τ) dt (6.80)

Again, the right hand side of equation (6.79) is the power spectral density P (ω), and in this form it is
more clear that this is the energy density per unit time.

6.2.1.3 The autocorrelation function

Consider a real time series, i.e. a time dependent signal describe by a real-valued function f(t) so that
f(t) : R → R. Assume that this signal is known over an infinitely long interval of time [−T, T], with
T →∞. The general time autocorrelation function between the two time series is given by

G(τ) = lim
T→∞

1

T

∫ T/2

−T/2
f(t) f(t+ τ) dt = 〈f(t) f(t+ τ)〉 (6.81)

that is known as the autocorrelation function of the signal f(t). It can be proven that the autocorrelation
function (6.81) is even. Indeed,

G(−τ) = lim
T→∞

1

T

∫ T/2

−T/2
f(t) f(t− τ) dt = lim

T→∞

1

T

∫ T/2−τ

−T/2−τ
f(t′ + τ) f(t′) dt′

= lim
T→∞

1

T

[∫ −T/2
−T/2−τ

f(t′ + τ) f(t′) dt′ +

∫ T/2

−T/2
f(t′ + τ) f(t′) dt′

]
= G(τ)

(6.82)

where the last equality holds in the limit T →∞, and in the first line the substitution

t− τ = t′ so that t = −T
2
→ t′ = −T

2
− τ and t =

T

2
→ t′ =

T

2
− τ (6.83)

has been used.

181

6.2. Power Spectrum and Diffusion Coefficient Chapter 6. Post processing of dynamics trajectory

6.2.1.4 Velocity autocorrelation function and power spectrum

An alternative way to compute vibrational properties from molecular dynamics trajectory is given by
the power spectra, that describe all present vibrational and rotational movements of the system and do
not only the infrared or Raman active ones. The power spectra feature peaks for each normal mode and
allow the investigation of vibrational frequencies independently of infrared and Raman selection rules.
The main aspect of this calculation is that the nuclear velocities evolving in time during a molecular
dynamics trajectory are treated as a signal. The power spectrum P (ω) (also called power spectral
density) is defined as the Fourier transform of the velocity autocorrelation function G(τ), namely,

P (ω) = F [G(τ)] =

∫ ∞
−∞

G(τ) e−iωτ dτ (6.84)

where the velocity autocorrelation function G(τ) is defined as

G(τ) = 〈v(t) · v(t+ τ)〉 = lim
T→∞

1

T

∫ T/2

−T/2
v(t) · v(t+ τ) dt (6.85)

where the velocity vector v(t) at time t in a three-dimensional system with N atoms has 3N components.
It is also interesting to analyze the velocity autocorrelation function (6.85) derived from a molecular
dynamics trajectory. Indeed, the form of this function can give an indication about the strength of the
nuclear forces. The calculation of the velocity autocorrelation function (6.85) is performed using the
formula

G(τ) =
1

3N(tend − tbeg − τ)

3N∑
α=1

tend−τ∑
t=tbeg

vα(t) vα(t+ τ)

=
1

3N(tend − tbeg − τ)

N∑
i=1

3∑
j=1

tend−τ∑
t=tbeg

vi,j(t) vi,j(t+ τ)

(6.86)

where τ = ∆t is the time step, tend is the time length of the whole trajectory, vα(t) with α = 1, ..., 3N are
the components of the v(t) velocity vectors, containing three components per each nucleus, and vi,j(t)
with i = 1, ..., N and j = 1, 2, 3 is another way of writing the nuclear velocities scalar product in the left
hand side of equation (6.85), that indicates explicitly the j-th Cartesian component of the i-th nucleus.
It would be also useful to compare the form of the velocity autocorrelation function computed using
molecular dynamics simulations at different temperatures. In this case, the autocorrelation function
(6.85) can be normalized by the average of the scalar product of the velocity vector at time t = 0,
namely,

G(τ) =
〈v(t) · v(t+ τ)〉
〈v(0) · v(0)〉

(6.87)

so that the previous formula (6.86) becomes

G(τ) =
1

3N(tend − tbeg − τ)

3N∑
α=1

tend−τ∑
t=tbeg

vα(t) vα(t+ τ)

[
1

3N

3N∑
α=1

vα(tbeg) vα(tbeg)

]−1

=
1

(tend − tbeg − τ)

3N∑
α=1

tend−τ∑
t=tbeg

vα(t) vα(t+ τ)

[
3N∑
α=1

vα(tbeg) vα(tbeg)

]−1
(6.88)

Instead of computing the Fourier Transform of the velocity autocorrelation function, the power spectrum
can be evaluated more easily using the Wiener-Khinchin theorem,[85, 86] which stated that the Fourier
transform of the (time averaged) autocorrelation function is the power spectral density, or the energy
spectral density per unit time. Therefore, the power spectrum (6.84) can be also computed as

P (ω) = F [G(τ)] = lim
T→∞

1

T

3N∑
α=1

∣∣∣∣∫ T/2

−T/2
vα(t) e−iωt dt

∣∣∣∣2 (6.89)

182

Chapter 6. Post processing of dynamics trajectory 6.2. Power Spectrum and Diffusion Coefficient

Operatively, the power spectrum is implemented using a finite time version of the formula in (6.89), that
is

P (ω) =
1

tend − tbeg

3N∑
α=1

{[
tend∑
t=tbeg

vα(t) cos(ωt)

]2

+

[
tend∑
t=tbeg

vα(t) sin(ωt)

]2}
(6.90)

This calculation has the advantage that it does not affect the computational cost of an ab initio molecular
dynamics simulation, as it is evaluated as a post processing quantity, after the simulation has been
performed. At the same time, the reliability of a power spectrum calculation increases as the system size
and the simulation time increase, so that long molecular dynamics runs are required to obtain a good
quality power spectrum and thus a good estimation of vibrational frequencies. The power spectra can
be a useful tool to interpret the signals found in experimental spectra, without the necessity to compute
infrared or Raman spectra. Recent studies have demonstrated that it can be a unique tool in the study
of short time dynamics in ionic liquids, allowing to obtain power spectra with peaks at wavenumbers
in agreement with experimental data.[87] However, it has to be noted that the intensities derived from
theoretical power spectra may not match the infrared or Raman intensities.[87] Therefore, the power
spectra can be used as a tool of validation of the molecular dynamics approach used, and at the same
time, they provide important information for computing the vibrational properties of a system and for
interpreting the associated experimental data.

6.2.1.5 Velocity autocorrelation function and diffusion coefficient

Using the Green-Kubo formula, the diffusion coefficient can be defined in terms of the velocity autocor-
relation function (VACF), denoted as Gv(τ), in the following way

D =

∫ ∞
0

G(τ) dτ ≡
∫ ∞

0
〈v(t) · v(t+ τ)〉 dτ (6.91)

where the velocity vector v(t) = {vα(t)} with α = 1, ..., Nd at time t in a d dimensional system of N
atoms has Nd components. The VACF can be easily computed by discretizing the time coordinate in
the time average over the dynamical evolution contained in the definition of G(τ), as follows

G(τ) = G(k∆t)

=
1

Nd(nt − k + 1)

Nd∑
α=1

nt−k∑
n=0

vα(n∆t) vα[(n+ k)∆t]
(6.92)

where k is an integer defined in the range (0, nt), while ∆t is the time step and nt is the total number
of molecular dynamics steps carried out from a given initial state. In practical implementations, the
integral over time in equation (6.91) has to be discretized and it is computed using τcut as an upper
bound in the integration, that is

D(τcut) =

τcut∑
τ=0

G(τ) ∆t (6.93)

where ∆t is the time step of the molecular dynamics simulation and τcut is chosen as the time at which
the normalized velocity autocorrelation function G(τ) begins to oscillate around zero. The diffusion
coefficient D is a collective observable describing a process where, in the absence of external forces, an
initial concentration gradient is canceled through molecular motions. This phenomenon is specific to
the liquid and gaseous phases in which, starting from a non-uniform concentration, self-diffusion causes
the system to evolve towards a uniform equilibrium concentration. In the case of solids, self-diffusion
is less interesting where instead it is possible to calculate the migration of interstitial defects, vacancies
or molecules trapped inside the lattice. Thus, in order to estimate the diffusion coefficient of an atom
or a group of atoms along one or more directions, equations (6.92) and (6.93) can be used, with the
summation in (6.92) restricted to the velocities of the atoms (and directions) of interest.

183

6.2. Power Spectrum and Diffusion Coefficient Chapter 6. Post processing of dynamics trajectory

6.2.2 Implementation

In this section the implementation of the calculation of normal modes, frequencies and power spectrum
(or power spectral density) as a post-processing of the molecular dynamics velocities in the Crystal
code is described.

6.2.2.1 Requirements

For the calculation of the normal modes, the frequencies and the power spectrum, an input file with
the nuclear velocities per each step of the molecular dynamics simulation is required. When the Module
Moldyn is activated through the keyword MOLDYN the input file, and a molecular dynamics simulation is
performed, the code generates by default the files POSITIONS.DAT and VELOCITIES.DAT, which contains
the positions and velocities of each atom during the molecular dynamics simulation. At the same time,
the code updates at each step the file fort.34 (by overwriting it at each step), where the direct lattice
vectors as well as the Md final geometry are written. Since the normal modes and related quantities
rely on the velocities of the particles, a file VELOCITIES.DAT must exist in the same directory where the
post-processing analysis is carried out. For these reasons, the code check for the existence of a file named
VELOCITIES.DAT; if the file exists in the directory of execution, everything is fine and the calculation
can proceed, otherwise, if the file does not exist, the code call the subroutine errvrs with ierr = 0 (this
subroutine is implemented in library both4.f), it stops and prints in the output file the following string:

ERROR **** FREQUENCIES MD **** FILE VELOCITIES.DAT NOT FOUND!

6.2.2.2 The subroutine frequencies md: description and methods

The subroutine implemented for the calculation of the normal modes, the frequencies and the power
spectrum is the subroutine frequencies md, contained in the module moldyn post in the library mol-
dyn post.f90. The execution section of the subroutine frequencies md can be divided into the following
different parts:

1. Reading of the file VELOCITIES.DAT, saving the information needed

2. Creation of the output files with the results

Then, in the final part of the subroutine, the files used are closed and the dynamical vectors and matrices
are deallocated. In the following part of this chapter, the different execution subsections of the code
listed above are described, taking particular attention on the way the data are saved and manipulated
within vectors and matrices to obtain the results, and on the practical way to implement the calculation
of vibrational modes and frequencies and their intensities, whose underneath theoretical basis have been
explained in Section 6.2.1.

Reading of the file VELOCITIES.DAT and saving information The subroutine frequencies md
calls the subroutine readVELfile of the moldyn post module in order to accomplish the task of reading
the file VELOCITIES.DAT with the nuclear velocities per each molecular dynamics step. The file VELOC-

ITIES.DAT, generated by default during a molecular dynamics calculation (and described in Appendix
B.3), is read by the subroutine readVELfile as follows:

• The first row contains the number of atoms in the system, saved in the integer variable nats.

• The following nats rows are divided into three columns: the first one for the row index (from 1 to
nats), the second one for the atomic number and the third one for the atomic mass of each atom,
respectively. Only the atomic number is saved in the dynamical integer vector atos tmp(nats).

• The following nstp·nats rows contains the Cartesian nuclear velocities (vx, vy, vz) [in Angstrom/fs]
of each atom in the initial atomic configuration and in the successive nstp−1 steps of the molec-
ular dynamics simulation. These velocities are saved in matrices with dimension nstp·nats in the
following way

184

Chapter 6. Post processing of dynamics trajectory 6.2. Power Spectrum and Diffusion Coefficient

v =

vs1x,1 vs2x,1 ... vsmx,1
vs1y,1 vs2y,1 ... vsmy,1
vs1z,1 vs2z,1 ... vsmz,1
vs1x,2 vs2x,2 ... vsmx,2
vs1y,2 vs2y,2 ... vsmy,2
vs1z,2 vs2z,2 ... vsmz,2
...

vs1x,nats vs2x,nats ... vsmx,nats
vs1y,nats vs2y,nats ... vsmy,nats
vs1z,nats vs2z,nats ... vsmz,nats

[Bohr / (au time)]

where the subscripts 1,...,naf are referred to the indexes of the atoms while the superscripts s1,...,sm
are the indexes of the molecular dynamics step (with sm = nstp). These matrices are therefore
filled column-by-column while reading the file, so that all (vx, vy, vz) velocities per each atom
of the system are given for the initial configuration (first column), then for the first step (second
column), and so on.

The atomic number of each atomic species in the system has been saved in vector atos tmp(nats).
Since the atomic masses are important for the calculation of the vibrational modes and frequencies,
the atomic masses are computed starting from the atomic numbers saved in atos tmp(nats) using the
function aisotop(at number) in the following way

mass nc(i) = aisotop(mod(atos tmp(i),100))·amu with i = 1,...,nats

where amu is the conversion factor from atomic units to Hartree units used in the code.

Calculation of the velocity autocorrelation function The calculation of the velocity autocorre-
lation function is implemented in the code using formula (6.86). In particular, considering the set of
velocity components viα at the i-th molecular dynamics steps for each degrees of freedom α = 1, ..., 3N ,
where N is the number of atoms in the system, the velocity autocorrelation function associated to the
α-th degrees of freedom at a time t associated to the index τ can be computed as

G̃α,τ =

se−τ+1∑
s=sb

vsα v
s+τ−1
α α = 1, ..., 3N τ = 1, ..., se (6.94)

Gα,τ =
1

3N(ns − τ + 1)

se−τ+1∑
s=sb

vsα v
s+τ−1
α α = 1, ..., 3N τ = 1, ..., se (6.95)

where sb and se are respectively the indexes of the initial and final molecular dynamics steps for which
the velocity autocorrelation function has to be computed, ns = se − sb + 1 is the number of molecular
dynamics steps between se and sb (considering a step of one between a the i-th and the i-th step, i.e.
considering all the molecular dynamical steps) and τ is the time index, which ranges up to a maximum
index of se with a step of one, i.e. τ = 1, 2, ..., se − 1, se.

Therefore, the velocity autocorrelation function can be stored in a 3N × ns matrix auto vcorr(3N , ns)
defined in the time domain, where ns is the number of molecular dynamics steps considered.

At the same time, the velocity autocorrelation matrix in frequency domain can be stored in a 3N × nω
matrix auto vcorr fourier(3N , nω), where nω = ns is the number of frequency values spanned (equal to
the number of molecular dynamics step for which the velocity autocorrelation function is computed).
Therefore, the velocity autocorrelation function associated to the α-th degrees of freedom at a frequency
ω can be computed using the Wiener-Khinchin theorem as applied in formula (6.90) for each single

185

6.2. Power Spectrum and Diffusion Coefficient Chapter 6. Post processing of dynamics trajectory

degrees of freedom, leading to the implemented equation

Gα,ω =

se∑
s=sb

vsα cos(ts · ω · dω) ·
se∑
s=sb

vsα cos(ts · ω · dω)

+

se∑
s=sb

vsα sin(ts · ω · dω) ·
se∑
s=sb

vsα sin(ts · ω · dω) α = 1, ..., 3N ω = 1, ..., nω

(6.96)

where ts is the time value in units of ps and dω is expressed in THz units. Finally, to properly obtain the
power spectrum of the system in equation (6.90), all the components related to each degrees of freedom
have to be summed up, so that

P (ω) =
3N∑
α=1

Gα,ω ω = 1, ..., nω (6.97)

Table 6.3 reports some details about the implemented algorithm just mentioned for the calculation of
the power spectrum by the application of the Wiener-Khinchin theorem and for the computation of the
velocity autocorrelation function, used in formula (6.93) for the estimation of the diffusion coefficient.

Fourier Transform t→ ω nα = 3N where N = number of atoms

ωi = ωmin + (i− 1) δω i = 1, ..., nω
tk = tmin + (k − 1) δt k = 1, ..., nt

<[Fi[{v(1 : nα, 1 : tnt)}]] = Fi(1 : nα, 1) =

nt∑
k=1

v(1 : nα, tk) cos(ωi tk)

=[Fi[{v(1 : nα, 1 : tnt)}]] = Fi(1 : nα, 2) =

nt∑
k=1

v(1 : nα, tk) sin(ωi tk)

p(1 : nα, i) = Fi(1 : nα, 1) · Fi(1 : nα, 1) + Fi(1 : nα, 2) · Fi(1 : nα, 2) i = 1, ..., nω

P (i) =

nα∑
µ=1

p(µ, i) i = 1, ..., nω

Velocity Autocorrelation Function nα = 3N where N = number of atoms

G(α,m− n) =

te∑
m=ti

m∑
n=ti

v(α,m) · v(α, n) α = 1, ..., nα and m− n = 1, ..., nt

G(α, τ) =

nt−1∑
n=0

v(α, ti) · v(α, ti + nτ) α = 1, ..., nα and τ = 1, ..., nt

G(τ) =

nα∑
α=1

A(α, τ) τ = 1, ..., nt

Table 6.3: Implemented steps for the calculation of the power spectrum through the Wiener-Khinchin theorem
(upper panel) and for the calculation of the velocity autocorrelation function (lower panel).

186

Chapter 7

Molecular dynamics simulations in
microcanonical and canonical
ensembles: results and discussion

For the purpose of demonstrating the reliability of molecular dynamics module in the Crystal code,
calculations on proton-ordered ice with space group Pna21 (P-ice) and (H2O)32 water 3D periodic sys-
tems are presented. The first structure is one of the hypothetical proton-ordered model which satisfy the
Bernal-Fowler-Pauling rules[88, 89] among the 17 possible orthorhombic symmetry-independent struc-
tures that can exist with eight water molecules per unit cell,[90] and it has been heralded as a reasonable
and convenient reference model for the simulation of ordinary ice.[91] The second system considered
consists in 32 water molecules inside a periodic cubic cell of size a = b = c = 9.855 Å, which corresponds
to liquid water at a density of 1.00 g·cm−3. The computational details of simulations are outlined in Sec-
tion 7.2, while further information about the initial nuclear coordinates and cell parameters are reported
for both systems in Sections D and in the Supplementary Information of Ref. [92]. These two models
are representative of hydrogen bonded environments, that are known to be very difficult to characterize,
thus being optimal starting test cases to validate computational methods and the corresponding practical
implementation in quantum mechanical packages. At the same time, these systems are very well known
and extensively studied, thus permitting a strict comparison with the results found in existing literature.

In the microcanonical ensemble, the modeling of P-ice and liquid water has been done using a GGA

functional (PBE)[93] and two global hybrid functionals (B3LYP and PBE0). Simulations with PBE and
B3LYP functionals enriched with the a posteriori dispersion correction as proposed by Grimme (PBE-D3

and B3LYP-D3)[94, 95] were also carried out, for both systems. In the canonical ensemble, instead, the
modeling of both P-ice and liquid water structures has been performed with the hybrid functional B3LYP,
which is known to provide a more accurate description of hydrogen bonded water based materials.[96]

First of all, the accuracy in terms of the drift in the conserved quantities and the related standard
deviation has been evaluated, for all the molecular dynamics simulations in both the microcanonical
(NVE) and the canonical (NVT) ensembles, where the conserved quantities are, respectively, the total
energy (5.39) and the quantity (5.296) that also includes the thermostat degrees of freedom. The drift
in the conserved quantities has been computed by performing a least-squares fit of the correspondent
trajectory to a straight line, so that the reported total drift is the absolute value of the difference at the
first and last point of the fitting line. The results obtained are reported in Table 7.1, together with the
mean value of the temperature and the corresponding standard deviation.

The data demonstrate the presence of a very small drift in the conserved quantity, and a good temperature
control reproduced by the NVT ensemble. In order to obtain an accurate sampling of the canonical
ensemble, the parameter Q related to the mass of the thermostat has to be accurately chosen, as discussed
in Section 5.3.4.7. To this aim, the parameter Q has been varied using a period τs in the range (10, 100) fs
for the P-ice and (22, 266) fs for the (H2O)32 liquid water systems (see equation (5.384) for the relation
between the thermostat mass and the period). The drift and standard deviation in the conserved
quantity, the mean temperature and the standard deviation of the temperature for each different value
of Q have been evaluated using PBE functional, the results are reported in Table 7.2 for both P-ice and
(H2O)32 systems.

187

Chapter 7. Molecular dynamics simulations: results and discussion

System Ensemble Functional Cdrift [eV/ps/atom] σC [Hartree] T̄ [K] σT [K] D [10−9 m2/s]

P-ice

NVE PBE 1.39998 ·10−5 1.58244 ·10−5 148.857 23.235 0.73

NVE PBE-D3 2.04989 ·10−5 1.42484 ·10−5 148.765 23.108 0.23

NVE B3LYP 3.65062 ·10−5 1.54663 ·10−5 148.561 22.558 0.17

NVE B3LYP-D3 2.40323 ·10−5 1.52647 ·10−5 148.404 21.927 0.01

NVE PBE0 2.05324 ·10−5 1.49972 ·10−5 149.211 22.865 0.18

NVT B3LYP 7.92477 ·10−5 3.43785 ·10−5 300.103 45.367 0.79

NVT B3LYP 1.86164 ·10−4 7.76731 ·10−5 600.037 86.383 3.53

(H2O)32

NVE PBE 4.34625 ·10−5 9.70295 ·10−5 427.077 28.579 3.06

NVE PBE-D3 6.16852 ·10−5 1.07775 ·10−4 430.797 31.161 2.81

NVE B3LYP 7.57273 ·10−5 1.29620 ·10−4 397.799 24.126 4.46

NVE B3LYP-D3 7.04336 ·10−5 1.12112 ·10−4 399.862 25.810 4.64

NVE PBE0 3.46565 ·10−5 1.11460 ·10−4 403.606 27.976 3.97

NVT B3LYP 1.39504 ·10−5 6.80806 ·10−5 300.058 29.339 3.83

NVT B3LYP 2.10581 ·10−5 1.91238 ·10−4 599.879 47.198 11.11

Table 7.1: Drift in the conserved quantity Cdrift, standard deviation of the conserved quantity σC , mean temper-
ature T̄ with the corresponding standard deviation σT and diffusion coefficient D obtained for all the molecular
dynamics simulations performed on the two test cases systems. The drift, standard deviations and mean values
are computed on the whole 1 ps trajectory, with initial temperature of T = 300 K for the microcanonical (NVE)
ensemble and initial temperatures of T = 300 K and T = 600 K for the two simulations in the canonical (NVT)
ensemble, and a time step equal to 0.15 fs and 0.25 fs, respectively for the P-ice and the (H2O)32 liquid-like
systems. The diffusion coefficients are obtained using formula (6.93) with τcut = 600 fs for P-ice and τcut = 200 fs
for (H2O)32 cubic system.

The calculation of dynamical properties from the post-processing of molecular dynamics trajectory is
also very useful to evaluate the accuracy and capabilities of the Born-Oppenheimer molecular dynamics
implementation.

The pair correlation functions of the (H2O)32 liquid water is first computed from the post-processing
of NVE molecular dynamics simulations using PBE and B3LYP functionals, as reported respectively
in the left and right panel of Figure 7.1. The comparison with the experimental data demonstrates
that the hybrid functional reproduces the experimental patterns with much more precision, matching
the experimental radius of each coordination shell (corresponding to a maximum in the pair correlation
function) with increased accuracy with respect to PBE functional, as already known from other theoretical
studies.[97]

Then, the pair correlation function of the (H2O)32 computed from a canonical trajectory at 300 K and
600 K are compared, in Figure 7.2, with the experimental data. As already highlighted in literature,[97]
it is plausible that some amount of the observed overstructure is due to the neglect of the quantum
motion of the hydrogen atoms. The effect of the increase in average temperature, which is claimed to
compensate for this lack,[97] leads to a striking agreement with experimental data.

Moreover, the power spectra obtained at the B3LYP level from the NVT molecular dynamics of both
P-ice and (H2O)32 systems at T = 300 K are shown in Figure 7.3. The broadening of the peaks and
the appearance of a broad band in the librational zone is a direct consequence of the transition from a
crystalline structure to a liquid-like material that our dynamics manages to reproduce perfectly.

Finally, the diffusion coefficients are computed and the values are listed in Table 7.1. In particular, the
result obtained in the case of the (H2O)32 liquid-like system at 300 K using the B3LYP functional in
the canonical ensemble reproduce the correct order of magnitude of the experimental data, which also
present a certain degree of variability, ranging from 2.3 ·10−9 m2/s (Ref. [98]) to 2.4 ·10−9 m2/s (Ref.
[99]) at 298.2 K. Moreover, this value for the diffusion coefficient is also in agreement with the result

188

Chapter 7. Molecular dynamics simulations: results and discussion 7.1. Scaling efficiency

System τs [fs] Q [kJ·ps2/mol] Cdrift [eV/ps/atom] σC [Hartree] T̄ [K] σT [K]

P-ice

10.00 8.71916 ·10−4 1.20277 ·10−4 3.09166 ·10−5 299.660 44.475

20.00 3.48767 ·10−3 1.88581 ·10−4 3.22775 ·10−5 300.004 50.878

30.00 7.84725 ·10−3 7.72230 ·10−5 2.83148 ·10−5 298.067 50.722

100.00 8.71916 ·10−2 2.08887 ·10−4 5.16090 ·10−5 302.522 82.868

(H2O)32

22.00 1.74307 ·10−2 1.08989 ·10−4 8.11815 ·10−5 300.101 26.575

38.00 5.20041 ·10−2 9.61499 ·10−5 7.81892 ·10−5 299.628 34.960

55.00 1.08942 ·10−1 1.46431 ·10−4 9.25325 ·10−5 299.703 33.472

266.00 25.48202 ·10−1 3.58336 ·10−5 7.22603 ·10−5 303.720 56.555

Table 7.2: Drift in the conserved quantity Cdrift and corresponding standard deviation σC , mean temperature
T̄ and corresponding standard deviation σT for all the NVT (Nosé-Hoover thermostat) molecular dynamics sim-
ulations performed on the two test cases systems using PBE functional, associated to the different values of the
coupling period τs and the thermostat mass Q. The drift, standard deviations and mean values are computed for
a trajectory of 2000 steps in the NVT ensemble (Nosé-Hoover thermostat) with initial temperature of T = 300 K
and time step equal to 0.15 fs and 0.25 fs, respectively for the P-ice and the (H2O)32 liquid-like systems.

of 1.0 · 10−9 m2/s found by Silvestrelli et al.[100] using Car-Parrinello molecular dynamics with BLYP

functional.
These results demonstrate that the dynamical properties can be accurately determined from both the
microcanonical and the canonical (Nosé-Hoover thermostat) ensembles.

7.1 Scaling efficiency of molecular dynamics algorithm

In order to assess the computational performances of the molecular dynamics algorithm, a strong and
a weak scaling analyses were investigated. In the first case, the number of processing units np is varied
while maintaining fixed the system size; in the second case, the system size (expressed in terms of
number of atoms in the reference cell nat) is varied while maintaining fixed the ratio of np to system size,
ζ = np/nat. The crystalline ice belonging to the Pna21 space group (P-ice), with 8 water molecules in the
reference cell, is chosen as the test system and a set of supercells were constructed, containing 16, 24 and
32 water molecules, respectively. A series of 16 different molecular dynamics simulations were performed,
in which the system size is varied to include nat = 24, 48, 72, 96 atoms, that correspond respectively to
8, 16, 24, 32 water molecules, and the ratio is varied so that ζ = 1/6, 1/3, 1, 2. The optimized structure
of P-ice, whose lattice parameters are reported in Table D.3 and in the Supporting Information of Ref.
[92], is used as a starting point to construct supercells of increasing size. In this way, the initial atomic
configuration is the same for the dynamics of all supercell models, and the possible effect on the scaling
analysis due to different initial conditions is minimized. The computational parameters used for all the
simulations are reported in Section 7.2.

The scaling efficiency has been evaluated by averaging over 200 molecular dynamics steps, using a time
step of 0.15 fs in the microcanonical (NVE) ensemble, with an initial temperature equal to 300 K. The
average timings obtained using the PBE and B3LYP hybrid functionals are reported in Table 7.3 (in units
of s/step) and are meant to reflect the mean computational time required to perform a self-consistent
cycle (〈tSCF〉) and the associated analytical nuclear forces calculation (〈tGRAD〉).
All the calculations presented in this section are performed on a x86 64 Debian GNU/Linux cluster with
AMD EPYC 7742 64-Core @ 2552.484 MHz processors grouped into 128 processing units per each node.
The strong scaling behavior can be assessed by analyzing how 〈tSCF〉 and 〈tGRAD〉 change as the number
of processors is varied for a fixed problem size. For each system with a given number of atoms, this is
accomplished using the formula

ηmstrong(ζ) ≡
ζref · 〈tm〉ζref

ζ · 〈tm〉ζ
=

1
6 · 〈tm〉ζ=1/6

ζ · 〈tm〉ζ
(7.1)

189

7.1. Scaling efficiency Chapter 7. Molecular dynamics simulations: results and discussion

Figure 7.1: Pair correlation functions of the periodic (H2O)32 cubic system obtained from a post-processing of
1 ps NVE molecular dynamics trajectory using PBE (green lines, left panel) and B3LYP (green lines, right panel)
functionals, together with the experimental counterpart (black dots) by A. K. Soper.[101] See Table 7.1 for details
about molecular dynamics simulations.

where ζref = 1/6 is chosen as the reference value for the ratio ζ of processing units to system size and
〈tm〉ζ is the average time spent in the m = SCF or m = GRAD module for a given ζ. The efficiency
factors for all the systems is reported in Table 7.3. The weak scaling behavior, namely, the changes in
〈tSCF〉 and 〈tGRAD〉 as the system size is varied for a fixed ratio ζ is computed as

ηmweak(nat) ≡
〈tm〉nref

at

〈tm〉nat
=
〈tm〉nat=24

〈tm〉nat
(7.2)

where nref
at = 24 is chosen as the reference system size, and 〈tm〉nat is the average time spent in the m =

SCF or m = GRAD module for a given number of atoms nat.

The last parameter considered is the speedup Θ, that permits to assess the scaling efficiency of a generic
algorithm, by means of the formula

Θ ≡
T (nref

p)

T (np)
(7.3)

190

Chapter 7. Molecular dynamics simulations: results and discussion 7.1. Scaling efficiency

Figure 7.2: Pair correlation functions of the periodic (H2O)32 cubic system obtained from a post-processing of 1
ps NVT (Nosé-Hoover) molecular dynamics trajectory at 300 K (green lines, left panel) and 600 K (green lines,
right panel) using B3LYP functionals, together with the experimental counterpart (black dots) by A. K. Soper.[101]
See Table 7.1 for details about molecular dynamics simulations.

in which T (nref
p) is the total computational time required for a molecular dynamics calculation on a

reference number of cores nref
p (chosen equal to the lower number of processors used for each system),

while T (np) is the time obtained for the calculation on np processors. The plots representing the speedup
as a function of the number of processors np for PBE and B3LYP functionals, shown in Figure 7.4, exhibit
a trend very close to the ideal linear scaling, represented by the diagonal line, for all the four systems.
Furthermore, the total computational time (SCF + GRAD) for all the simulations is reported as a function
of the number of processors (strong scaling) and as a function of the number of atoms (weak scaling) in
Figure 7.5, for both the PBE and B3LYP functionals. As shown in these figures, the molecular dynamics
module is quite scalable as the system size increases, and the time to the solution can be kept relatively
constant for systems as large as 96 atoms, provided that a consistent (i.e. fixed ζ ratio) amount of
computational resources are available. Moreover, the scalability of the B3LYP functional is comparable
to that obtained using PBE and the prefactor is about only double, thus demonstrating the possibility
of routinely performing molecular dynamics with hybrid functionals.

191

7.1. Scaling efficiency Chapter 7. Molecular dynamics simulations: results and discussion

Figure 7.3: Power spectrum obtained as a post-processing of 1 ps NVT (Nosé-Hoover) molecular dynamics
trajectory at 300 K using B3LYP functional for the P-ice crystalline structure (left panel) and the periodic (H2O)32

cubic system (right panel). Details about the molecular dynamics simulations are reported in Table 7.1.

PBE B3LYP

nat nao np ζ 〈tSCF〉 〈tGRAD〉 ηSCF
strong ηGRAD

strong ηSCF
weak ηGRAD

weak 〈tSCF〉 〈tGRAD〉 ηSCF
strong ηGRAD

strong ηSCF
weak ηGRAD

weak

24 192 4 1/6 334.16 199.63 1.0000 1.0000 1.0000 1.0000 7277.16 3194.07 1.0000 1.0000 1.0000 1.0000

24 192 8 1/3 169.04 100.87 0.9884 0.9896 1.0000 1.0000 4374.50 1883.98 0.8318 0.8477 1.0000 1.0000

24 192 24 1 62.33 35.46 0.8935 0.9382 1.0000 1.0000 1585.11 692.50 0.7652 0.7687 1.0000 1.0000

24 192 48 2 36.29 18.52 0.7674 0.8985 1.0000 1.0000 756.08 334.85 0.8021 0.7949 1.0000 1.0000

48 384 8 1/6 500.76 223.65 1.0000 1.0000 0.6673 0.8926 7933.75 3156.85 1.0000 1.0000 0.6673 0.8926

48 384 16 1/3 256.25 115.14 0.9771 0.9712 0.6597 0.8761 4713.74 1868.09 0.8416 0.8449 0.6597 0.8761

48 384 48 1 99.41 40.80 0.8396 0.9136 0.6270 0.8692 1730.72 685.98 0.7640 0.7670 0.6270 0.8692

48 384 96 2 56.70 20.61 0.7360 0.9044 0.6400 0.8985 879.19 346.93 0.7520 0.7583 0.6400 0.8985

72 576 12 1/6 602.84 228.39 1.0000 1.0000 0.5543 0.8741 8294.50 3148.30 1.0000 1.0000 0.5543 0.8741

72 576 24 1/3 319.08 118.44 0.9447 0.9641 0.5298 0.8516 4971.23 1872.38 0.8342 0.8407 0.5298 0.8516

72 576 72 1 124.88 42.48 0.8046 0.8960 0.4991 0.8348 1838.99 686.72 0.7517 0.7641 0.4991 0.8348

72 576 144 2 80.00 24.01 0.6279 0.7926 0.4536 0.7711 978.78 371.28 0.7062 0.7066 0.4536 0.7711

96 768 16 1/6 827.07 257.65 1.0000 1.0000 0.4040 0.7748 9625.43 3287.34 1.0000 1.0000 0.4040 0.7748

96 768 32 1/3 452.93 132.64 0.9130 0.9713 0.3732 0.7605 5606.58 1975.27 0.8584 0.8321 0.3732 0.7605

96 768 96 1 208.22 48.19 0.6620 0.8911 0.2994 0.7359 1938.37 660.57 0.8276 0.8294 0.2994 0.7359

96 768 192 2 121.02 27.67 0.5695 0.7760 0.2998 0.6692 1066.49 365.37 0.7521 0.7498 0.2998 0.6692

Table 7.3: Number of atoms nat and atomic orbitals nao in the unit cell, number of processors np and scaling
factor ζ = np/nat, together with the computational timings (in units of s/step, obtained as an average over
200 molecular dynamics steps) for the calculation of the converged energy (tSCF) and the related nuclear forces
(tGRAD), for a NVE BOMD performed using two different DFT functionals. The corresponding strong and weak
scaling efficiencies for the SCF module (ηSCF

strong, ηSCF
weak) and for the GRAD module (ηGRAD

strong , ηGRAD
weak), which are

computed using formulae (7.1) and (7.2), respectively, are also reported.

192

Chapter 7. Molecular dynamics simulations: results and discussion 7.2. Computational details

Figure 7.4: Speedup of the molecular dynamics module (computed with respect to the total computational time
over 200 steps) as a function of the number of processors np used to perform the calculation, with PBE (left panel)
and B3LYP (right panel) functionals.

7.2 Computational details

The two model systems consisted of a crystalline ice with Pna21 space group (P-ice) and a liquid-like
system (H2O)32 with 32 water molecules, treated under periodic boundary conditions in the framework
of density functional theory (DFT). Both the crystalline P-ice and the liquid-like (H2O)32 system are
described using the gradient-corrected Perdew-Burke-Ernzerhof (PBE) functional,[93] and two hybrid
functionals such as B3LYP[102] and PBE0.[103] Moreover, in conjunction with PBE and B3LYP function-
als, a London-type pairwise empirical correction (D3) to the energy for dispersive interactions is also
considered, in order to include long-range dispersion contributions to the computed ab initio total en-
ergy and gradients, as proposed by Grimme[94] and as implemented in Crystal, including three-body
dispersion contributions with fast analytical gradients.[95]
The all-electron basis sets introduced by Gatti et al.,[104] consisting of contracted Gaussian-type atomic
orbital functions (AOs), are used for both the hydrogen and the oxygen atoms. The number of orbitals
used for the description of each hydrogen and oxygen atom is given respectively by 5 and 14 AOs, with
a resultant number of 192 and 768 AOs for the P-ice crystal and the (H2O)32 liquid-like system, respec-
tively.
The DFT exchange-correlation contribution was evaluated by numerical integration over the unit cell
volume, using a pruned grid,[105, 106] consisting (for both systems) of 99 radial points, with a maxi-
mum number of 1454 angular points in the region relevant for chemical bonding.
The diagonalization of the Hamiltonian matrix and the integration over the reciprocal space is carried
out using the Monkhorst-Pack mesh,[107] consisting in a grid of 112 and 36 k-points defined in the
irreducible part of the first Brillouin Zone (IBZ) for the P-ice crystal and the (H2O)32 liquid-like system,
respectively. The Coulomb and exchange series, summed in direct space, are truncated using overlap
criteria, with thresholds of [10,10,20,20,20] for both the P-ice and (H2O)32 systems with all the function-
als correspondingly used. The threshold for the self-consistent field algorithm convergence on the total
energy per unit cell is chosen equal to 10−8 Ha for all the considered simulations.
Molecular dynamics calculations are performed using the previous listed computational parameters,
both in the NVE and NVT ensemble. The initial nuclear configuration for all the molecular dynamics
simulations on the P-ice crystal is obtained though a structural optimization using the corresponding
exchange-correlation functional, the fully relaxed cell parameters obtained are reported in Appendix D,
while the related initial nuclear positions are listed in the Supporting Information of Ref. [92]. The
initial nuclear positions of the (H2O)32 liquid-like system are specified (together with the cell parame-
ters) in the Supporting Information of Ref. [92]. The initial nuclear velocities are determined by the
input temperature, that is given by T = 300 K for all the simulations on both of the two systems in
the microcanonical ensemble, while it is equal to T = 300 K and T = 600 K for the two molecular
dynamics simulations performed in the canonical ensemble using B3LYP functional. The total time of
each molecular dynamics run is 1 ps, with a time step equal to 0.15 fs and 0.25 fs, respectively for P-ice
and (H2O)32 periodic systems, for both the ensembles considered.

193

7.2. Computational details Chapter 7. Molecular dynamics simulations: results and discussion

Figure 7.5: Average total computational time per step as a function of the number of processors np, for all the
systems considered (nat = 24, 48, 72, 96), using PBE (top left panel) and B3LYP (top right panel) functionals.
Average total computational time per step as a function of the number of atoms nat, for a given ratio ζ = np/nat,
using PBE (down left panel) and B3LYP (down right panel) functionals.

A comment apart has to be reserved for the molecular dynamics simulation performed on the P-ice
crystal to study the scaling efficiency of the algorithm (see Section 7.1). In this case, the initial nuclear
positions are the ones obtained though a PBE-D3 fully structural optimization (see Appendix D and the
Supporting Information of Ref. [92]), and the supercells with increasing size are derived from this initial
configuration, as described in Section 7.1. Molecular dynamics simulations are then performed in the
microcanonical (NVE) ensemble, using the PBE functional, with an initial temperature of T = 300 K
and a time step of 0.15 fs, for a total run time of 30.0 fs (200 steps).
Geometry optimizations are performed using analytical gradients with respect to nuclear coordinates,
within a quasi-Newton algorithm combined with the Broyden-Fletcher-Goldfarb-Shanno (BFGS) updat-
ing formula[108, 109, 110, 111, 112] The computational parameters (DFT functional, basis set, Coulomb
and exchange integrals thresholds, reciprocal space sampling and energy thresholds for self-consistent
cycle) used for structural optimization are the same as previously reported, for both systems. Conver-
gence criteria for BFGS structural optimizations are based on the root mean square and absolute value
of the largest component of both the estimated displacements and the gradients of energy functional
with respect to the nuclear positions, computed in normal coordinates. In this framework, Crystal23
default convergence thresholds and minimization parameters have been adopted.[113, 114]

194

Chapter 8

Fast Inertial Relaxation Engine (FIRE)

Structural minimization of molecular and solid state atomic systems is a fundamental step in the study
and the comprehension of condensed matter properties at a microscopic level, becoming one of the
most common tasks in computational solid state physics, chemistry, materials science and biology. The
problem of structural optimization of atomic systems is a multi-dimensional minimization problem, that
corresponds to finding the atomic structures nearest to a local or a global minimum of the potential
energy surface, starting from a given initial configuration. The resolution of such a problem can be
quite complicated from a mathematical point of view and its implementation in the framework of ab
initio quantum-mechanical codes can lead to algorithms with high computational costs. Therefore, every
effort that goes in the direction of a possible simplification of the methodology to perform structural
optimization could provide novel robust and efficient minimization methods, that could in principle
be applied on a large variety of atomic systems. In this framework, a novel minimization method for
structural optimization based on Molecular Dynamics concepts, namely, the Fast Inertial Relaxation
Engine (Fire), is introduced in this Chapter. This algorithm relies on molecular dynamics concepts,
introducing an equation of motion that associates to each atomic nucleus a velocity and a force, bringing
the system to a minimum in the potential energy surface.

In order to understand the main differences between this novel method and the quasi-Newton algo-
rithms which are the most used structural optimization schemes in the field of ab initio simulations, a
brief review of the two well-known quasi-Newton minimization schemes for multidimensional functions,
namely, the Conjugate Gradient (Cg) and the Broyden-Fletcher-Goldfarb-Shanno (Bfgs) methods, is
outlined in Section 8.1. Then, in Section 8.2, the (Fire) structural minimization method is introduced,
the theoretical details about the algorithm are described and discussed, the power and the limits of this
novel method are investigated, also in comparison with the other two minimization scheme previously
illustrated. Finally, in Section 8.3, the implementation of the Fire method in the Crystal code is delin-
eated. The efficiency and reliability of the algorithm is tested on systems with different dimensionalities
and type of bonding and the results are reported in Section 8.4.

8.1 A review on quasi-Newton structural minimization methods

The minimization of a function of one variable is a well known procedure. If we start at a point P
in N -dimensional space, and proceed from there in some vector direction n, then any function of N
variables f(P) can be minimized along the line n by the one-dimensional methods. One can dream up
various multidimensional minimization methods that consist of sequences of such line minimizations.
Different methods will differ only by how, at each stage, they choose the next direction n to try. All such
methods presume the existence of a black box sub-algorithm, which is a line minimization algorithm,
whose definition can be taken as follows.

Line minimization algorithm: Given as input the vectors P and n, and the function f , find the scalar λ
that minimizes f(P + λn). Replace P by P + λn. Replace n by λn. Done.

All the minimization methods in the following two sections fall under this general schema of successive
line minimizations. It is not necessary to specify whether the line minimization algorithm uses gradient
information or not. That choice is up to the method used, and its optimization depends on the particular

195

8.1. Review on quasi-Newton methods Chapter 8. Fast Inertial Relaxation Engine (FIRE)

function considered.

But what if, in some application, calculation of the gradient is out of the question. You might first
think of this simple method: take the unit vectors e1, e2, ..., eN as a set of directions. Using the line
minimization, move along the first direction to its minimum, then from there along the second direction
to its minimum, and so on, cycling through the whole set of directions as many times as necessary, until
the function stops decreasing. This simple method is actually not too bad for many functions. Even
more interesting is why it is bad, i.e. very inefficient, for some other functions. Consider a function of
two dimensions whose contour map (level lines) happens to define a long, narrow valley at some angle
to the coordinate basis vectors. Then the only way down the length of the valley going along the basis
vectors at each stage is by a series of many tiny steps. More generally, in N dimensions, if the function
second derivatives are much larger in magnitude in some directions than in others, then many cycles
through all N basis vectors will be required in order to get anywhere. This condition is not all unusual.
Obviously what we need is a better set of directions than the ei. All direction set methods consist of
prescriptions for updating the set of directions as the method proceeds, attempting to come up with
a set which either (i) includes some very good directions that will take us far along narrow valleys, or
else (more subtly) (ii) includes some number of non-interfering directions with the special property that
minimization along one is not spoiled by subsequent minimization along another, so that interminable
cycling through the set of directions can be avoided.

8.1.1 Conjugate Gradient method

This concept of non-interfering directions, more conventionally called conjugate directions, is worth
making mathematically explicit. First, note that if we minimize a function along some direction u, then
the gradient of the function must be perpendicular to u at the line minimum; if not, then there would
still be a nonzero directional derivative along u. Take some particular point P as the origin of the
coordinate system with coordinates x. Consider the case where it is possible to compute, at a given N
dimensional point P, not just the value of a function f(P) but also the gradient ∇f(P) of the function
in that point. Then any function f can be approximated by its Taylor series:

f(x) = f(P) +
∑
i

∂f

∂xi
xi +

1

2

∑
i,j

∂2f

∂xi∂xj
xixj + ... (8.1)

Suppose that the function f can be roughly approximated by a quadratic form, which we can write, in
matrix notation, as

f(x) ≈ f(P) +
∑
i

∂f

∂xi
xi +

1

2

∑
i,j

∂2f

∂xi∂xj
xixj ≈ c− b · x +

1

2
x ·A · x (8.2)

where

c ≡ f(P) b ≡ −∇f |P [A]ij ≡
∂2f

∂xi∂xj

∣∣∣∣
P

(8.3)

The matrix A whose components are the second partial derivative of the function is called the Hessian
matrix of the function at the point P. In the approximation (8.2), the gradient of the function f is easily
calculated as

∇f(x) = A · x− b (8.4)

This implies that the gradient will vanish (the function will be at an extremum) at a value of x obtained
by solving the system of equations

A · x = b (8.5)

To compute how does the gradient ∇f change as we move along some direction, the following calculation
can be performed

δ(∇f) = A · (δx) (8.6)

Suppose that we have moved along some direction u to a minimum, and now suppose to move along
some new direction v. The condition that the motion along v not spoil our minimization along the

196

Chapter 8. Fast Inertial Relaxation Engine (FIRE) 8.1. Review on quasi-Newton methods

direction u is just that the gradient stay perpendicular to u, i.e. that the change in the gradient be
perpendicular to u. By equation (8.6) this is expressed by the formula

0 = u · δ(∇f) = u ·A · (δu) = u ·A · v (8.7)

When the condition (8.7) holds for two vectors u and v, they are said to be conjugate. When the relation
holds pairwise for all members of a set of vectors, they are said to be a conjugate set. If a successive
line minimization of a function along a conjugate set of directions is done, then it is not necessary to
redo any of those directions (unless, of course, things are spoiled by minimizing along a direction that
they are not conjugate to). A triumph for a direction set method is to come up with a set of N linearly
independent, mutually conjugate directions. Then, one step along each of the N line minimizations
will bring exactly at the minimum of a quadratic form like (8.2). For functions f that are not exactly
quadratic forms, it won’t be exactly at the minimum; but repeated cycles of N line minimizations will
in due course converge quadratically to the minimum.

A rough counting argument will show how advantageous it is to use the gradient information: suppose
that the function f is roughly approximated as a quadratic form as in (8.2). Then the number of
unknown parameters in f is equal to the number of free parameters in the vector b and in the matrix A,
which is 1

2N(N + 1), that is of order N2. Changing any one of these parameters can move the location
of the minimum. Therefore, we should not expect to be able to find the minimum until an equivalent
information content has been collected, of order N2 numbers. In the direction set method based on
conjugate line minimizations described below, we collected the necessary information by making on the
order of N2 separate line minimizations, each requiring a few (but sometimes a big few!) function
evaluations. Now, each evaluation of the gradient will bring us N new components of information. If we
use them wisely, we should need to make only of order N separate line minimizations. That is in fact
the case for the algorithms in this section and the next, namely, for the Conjugate Gradient (Cg) and
the Broyden-Fletcher-Goldfarb-Shanno (Bfgs) methods.
A factor of N improvement in computational speed is not necessarily implied. As a rough estimate, we
might imagine that the calculation of each component of the gradient takes about as long as evaluating
the function itself. In that case there will be of order N2 equivalent function evaluations both with
and without gradient information. Even if the advantage is not of order N , however, it is nevertheless
quite substantial: (i) each calculated component of the gradient will typically save not just one function
evaluation, but a number of them, equivalent to say, a whole line minimization. (ii) There is often a high
degree of redundancy in the formulas for the various components of a function’s gradient; when this is
so, especially when there is also redundancy with the calculation of the function, then the calculation of
the gradient may cost significantly less than N function evaluations.
However, not any reasonable way of incorporating gradient information is as good as any other. For
example, think about the following not very good algorithm, the steepest descent method:
Steepest Descent : Start at a point P0. As many times as needed, move from point Pi to the point Pi+1

by minimizing along the line from Pi in the direction of the local downhill gradient −∇f(Pi).
The problem with the steepest descent method is that the method will perform many small steps in
going down a long, narrow valley, even if the valley is a perfect quadratic form. You might have hoped
that, say in two dimensions, your first step would take you to the valley floor, the second step directly
down the long axis; but remember that the new gradient at the minimum point of any line minimization
is perpendicular to the direction just traversed. Therefore, with the steepest descent method, you must
make a right angle turn, which does not, in general, take you to the minimum (see Figure 8.1).
We really want a way of proceeding not down the new gradient, but rather in a direction that is somehow
constructed to be conjugate to the old gradient, and, insofar as possible, to all previous directions
traversed. Methods that accomplish this construction are called conjugate gradient methods.
First of all, we have to build a method to find conjugate directions. We can perform this task thinking
that the conjugate gradient method is also studied as a technique for solving linear algebraic equations
by minimizing a quadratic form.[115] That formalism can also be applied to the problem of minimizing a
function approximated by the quadratic form (8.2). Recall that, starting with an arbitrary initial vector
g0, and letting h0 = g0, the conjugate gradient method constructs two sequences of vectors from the
recurrence formula

gi+1 = gi − λiA · hi hi+1 = gi+1 + γihi i = 0, 1, 2, ... (8.8)

197

8.1. Review on quasi-Newton methods Chapter 8. Fast Inertial Relaxation Engine (FIRE)

Figure 8.1: (a) Steepest descent method in a long, narrow valley. In this case, steepest descent is nonetheless
an inefficient strategy, taking many steps to reach the valley floor. (b) Magnified view of one step: A step starts
off in the local gradient direction, perpendicular to the contour lines, and traverses a straight line until a local
minimum is reached, where the traverse is parallel to the local contour lines.

The vectors satisfy the orthogonality and conjugacy conditions

gi · gj = 0 hi ·A · hj = 0 gi · hj = 0 with j < i (8.9)

The scalars λi and γi are given by

λi =
gi · gi

hi ·A · hi
=

gi · hi
hi ·A · hi

(8.10)

γi =
gi+1 · gi+1

gi · gi
(8.11)

A self-contained derivation of these results in the context of function minimization is given by Polak.[116]
Now suppose that the Hessian matrix A in equation (8.2) is known. Then we could use the construction
(8.8) to find successively conjugate directions hi along which to line-minimize. After N such, we would
efficiently have arrived at the minimum of the quadratic form. But we don’t know the matrix A.

Here is a remarkable theorem to save the day: Suppose that gi = −∇f(Pi) for some point Pi, where
the function f is of the form (8.2). Suppose that we proceed from Pi along the direction hi to the
local minimum of f located at some point Pi+1 and then set gi+1 = −∇f(Pi+1). Then, this gi+1 is the
same vector as would have been constructed by equation (8.8). (And we have constructed it without
knowledge of the matrix A)
Proof: By equation (8.4) we have

gi = −∇f(Pi) = −A ·Pi + b (8.12)

gi+1 = −∇f(Pi+1) = −A · (Pi + λhi) + b = (−A ·Pi + b)− λA · hi = gi − λA · hi (8.13)

with λ chosen to take us to the line minimum. But at the line minimum

hi · ∇f(Pi+1) = −hi · gi+1 = 0 (8.14)

This latter equation is easily combined with (8.13) to solve for λ:

hi · gi+1 = hi · gi − λhi ·A · hi = 0 → λ =
gi · hi

hi ·A · hi
(8.15)

This result is exactly the expression (8.10). But with this value of λ, the vector gi+1 in (8.13) becomes
the same as (8.8), q.e.d.

We have, then, the basis of an algorithm that requires neither knowledge of the Hessian matrix A, nor
even the storage necessary to store such a matrix. A sequence of directions hi is constructed, using only
line minimizations, evaluations of the gradient vector, and an auxiliary vector to store the latest in the

198

Chapter 8. Fast Inertial Relaxation Engine (FIRE) 8.1. Review on quasi-Newton methods

sequence of the vectors gi. The algorithm described so far is the original Fletcher-Reeves version of the
conjugate gradient algorithm. Later, Polak and Ribiere introduced one tiny, but sometimes significant,
change. They proposed using the form

γi =
(gi+1 − gi) · gi+1

gi · gi
(8.16)

instead of equation (8.11). This expression seems to be exactly equivalent to (8.11) because of the
orthogonality conditions (8.9). Indeed, the two expressions are exactly equal for exact quadratic forms.
In the real world, however, your function is not exactly a quadratic form. Arriving at the supposed
minimum of the quadratic form, you may still need to proceed for another set of iterations. There
is some evidence[117] that the Polak-Ribiere formula accomplishes the transition to further iterations
more gracefully: when it runs out of steam, it tends to reset h to be down the local gradient, which is
equivalent to beginning the conjugate-gradient procedure anew.

8.1.2 Broyden-Fletcher-Goldfarb-Shanno (BFGS) method

The Broyden-Fletcher-Goldfarb-Shanno (Bfgs) minimization scheme is one of the variable metric meth-
ods in multidimensions. The goal of variable metric methods, which are sometimes called quasi-Newton
methods, is not different from the goal of conjugate gradient methods: to accumulate information from
successive line minimizations so that N such line minimizations lead to the exact minimum of a quadratic
form in N dimensions. In that case, the method will also be quadratically convergent for more general
smooth functions.
Both variable metric and conjugate gradient methods require that you are able to compute the gradient of
the involved function, or first partial derivatives, at arbitrary points. The variable metric approach differs
from the conjugate gradient in the way that it stores and updates the information that is accumulated.
Instead of requiring intermediate storage on the order of N , the number of dimensions, it requires a
matrix of size N ×N . Generally, for any moderate N , this is an entirely trivial disadvantage.
Variable metric methods come in two main flavors. One is the Davidon-Fletcher-Powell (Dfp) algorithm
(sometimes referred to as simply Fletcher-Powell). The other goes by the name Broyden-Fletcher-
Goldfarb-Shanno (Bfgs). The Bfgs and Dfp schemes differ only in details of their roundoff error,
convergence tolerances, and similar dirty issues which are outside of our scope. However, it has become
generally recognized that, empirically, the Bfgs scheme is superior in these details. In the following, the
Bfgs method will be described.

As before, imagine that the arbitrary function f(x) can be locally approximated by the quadratic form
of equation (8.2). However, no information about the values of the quadratic form parameters A and
b are given, except insofar as we can glean such information from the function evaluations and line
minimizations.
The basic idea of the variable metric method is to build up, iteratively, a good approximation to the
inverse Hessian matrix A−1, that is, to construct a sequence of matrices Hi with the property

lim
i→∞

Hi = A−1 (8.17)

Even better if the limit is achieved after N iterations instead of ∞.
The reason that variable metric methods are sometimes called quasi-Newton methods can now be ex-
plained. Consider finding a minimum by using Newton method to search for a zero of the gradient of
the function. Near the current point xi, we have, up to second order

f(x) = f(xi) + (x− xi) · ∇f(xi) +
1

2
(x− xi) ·A · (x− xi) (8.18)

and the gradient is
∇f(x) = ∇f(xi) + A · (x− xi) (8.19)

In Newton method the gradient of f(x) is set to zero, ∇f(x) = 0, to determine the next iteration point:

x− xi = −A−1 · ∇f(xi) (8.20)

199

8.1. Review on quasi-Newton methods Chapter 8. Fast Inertial Relaxation Engine (FIRE)

The left-hand side in (8.20) is the finite step we need take to get to the exact minimum; the right-hand
side is known once we have accumulated an accurate H ≈ A−1. The quasi in quasi-Newton is because
the actual Hessian matrix is not used in the method, but instead the current approximation of it is
used. This is often better than using the true Hessian. This paradoxical result can be understood by
considering the descent directions of f at xi. These are the directions p along which f decreases, so that
∇f · p < 0. For the Newton direction (8.20) to be a descent direction, it must holds

∇f(xi) · (x− xi) = −(x− xi) ·A · (x− xi) < 0 (8.21)

that is, A must be positive definite. In general, far from a minimum, we have no guarantee that
the Hessian is positive definite. Taking the actual Newton step with the real Hessian can move us to
points where the function is increasing in value. The idea behind quasi-Newton methods is to start
with a positive definite, symmetric approximation to A (usually the unit matrix) and build up the
approximating Hi matrices in such a way that the matrix Hi remains positive definite and symmetric.
Far from the minimum, this guarantees that we always move in a downhill direction. Close to the
minimum, the updating formula approaches the true Hessian and we enjoy the quadratic convergence
of Newton method. When we are not close enough to the minimum, taking the full Newton step p
even with a positive definite A need not decrease the function; we may move too far for the quadratic
approximation to be valid. All we are guaranteed is that initially f decreases as we move in the Newton
direction. A backtracking strategy can be used to choose a step along the direction of the Newton step
p, but not necessarily all the way.
The Dfp algorithm for taking Hi into Hi+1 is not derived rigorously here; reminding to Ref. [118] for
clear derivations. Following Brodlie (see Ref. [117]), we will give the following heuristic motivation of
the procedure. Following equation (8.20), the following vector can be defined:

x− xi+1 = −A−1 · ∇f(xi+1) (8.22)

and subtracting the previous equation to the equation (8.20) results

xi+1 − xi = A−1 · (∇fi+1 −∇fi) (8.23)

where ∇fj ≡ ∇f(xj). Having made the step from xi to xi+1, we might reasonably want to require that
the new approximation Hi+1 satisfies (8.23) as if it were actually A−1, that is,

xi+1 − xi = Hi+1 · (∇fi+1 −∇fi) (8.24)

We might also imagine that the updating formula should be of the form Hi+1 = Hi+ correction. Now,
the question regards what objects are around out of which to construct a correction term. Most notable
are the two vectors (xi+1 − xi) and (∇fi+1 −∇fi), as well as Hi. There are not infinitely many natural
ways of making a matrix out of these objects, especially if (8.24) must hold! One such way, the DFP
updating formula, is:

HDFP
i+1 = Hi +

(xi+1 − xi)⊗ (xi+1 − xi)

(xi+1 − xi) · (∇fi+1 −∇fi)
− [Hi · (∇fi+1 −∇fi)]⊗ [Hi · (∇fi+1 −∇fi)]

(∇fi+1 −∇fi) ·Hi · (∇fi+1 −∇fi)
(8.25)

where the symbol ⊗ denotes the outer or direct product of two vectors, which defines a matrix so that
the ij component of u⊗ v is uivj .
The Bfgs updating formula is exactly the same, but with one additional term, that is:

HBFGS
i+1 = HDFP

i+1 + [(∇fi+1 −∇fi) ·Hi · (∇fi+1 −∇fi)] u⊗ u (8.26)

where u is defined as the vector

u ≡ (xi+1 − xi)

(xi+1 − xi) · (∇fi+1 −∇fi)
− Hi · (∇fi+1 −∇fi)

(∇fi+1 −∇fi) ·Hi · (∇fi+1 −∇fi)
(8.27)

You will have to take on faith (or else consult Ref. [118] for details of) the deep result that equation
(8.25), with or without the additional term of equation (8.26), does in fact converge to A−1 in N steps,
if the function f is a quadratic form.

200

Chapter 8. Fast Inertial Relaxation Engine (FIRE) 8.2. The Fire algorithm

8.1.3 Structural optimization methods in the CRYSTAL code

In the Crystal code, geometry optimization calculations are performed using the nuclear forces com-
puted through the Hellmann-Feynman theorem[30] as analytical gradient with respect to atomic coor-
dinates, within a quasi-Newton algorithm combined with two kinds of Hessian updating schemes: the
Schlegel’s (Sh)[119] and the Broyden-Fletcher-Goldfarb-Shanno (Bfgs) formulae.[108, 109, 110, 111, 112]
Convergence criteria for Sh and Bfgs structural optimizations are based on (i) the root mean square and
(ii) the absolute value of the largest component of both the estimated displacements and the gradients
of energy functional with respect to the nuclear positions. All these four quantities, which are used to
check the convergence of the optimization process, are computed in normal coordinates.[120, 121]

8.2 The FIRE structural optimization method

The current state-of-the-art methods for structural optimization are mostly based on some approximate
representation for the Hessian matrix to determine line search directions, as described in Section 8.1.
Also variants of molecular dynamics (Md) concepts which systematically remove kinetic energy from
the system are commonly applied for minimization purposes.[122, 123, 124] Interestingly, relaxation
methods based on Md has been thought to be good for practical realization, but not very competitive
with the aforementioned sophisticated algorithms, and for this reason they have often been introduced
as by-products of secondary importance in regular articles,[122, 123, 124] not receiving the attention
they deserve. However, in 2006 Erik Bitzek et al.[125] introduced a simple, yet powerful Md scheme
for structural relaxation, which has been called Fast Inertial Relaxation Engine (Fire). The Fire algo-
rithm is based on molecular dynamics concepts, with additional velocity modifications and adaptive time
steps. In their work, E. Bitzek et al.[125, 126] arrived at the conclusion that, in atomistic simulations,
pseudo-dynamics relaxation schemes often exhibit better performance and accuracy in finding local min-
ima than line-search-based descent algorithms like steepest descent or conjugate gradient. Furthermore,
Fire has been proved to be significantly faster than standard implementations of the conjugate gradi-
ent method and often competitive with more sophisticated quasi-Newton schemes typically used in ab
initio calculations.[125] Therefore the Fire algorithm, in its basic[125] and improved[126] implementa-
tion, seems to be a promising structural optimization method. The advantages of Fire approach with
respect to the quasi-Newton algorithms are further discussed in Section 8.2.3. In the following, the basic
theoretical framework on which the Fire scheme relies is outlined.

8.2.1 The FIRE algorithm

In a system withN nuclei of massm, whose positions is associated to the coordinates x = (x1, x2, ..., x3N),
the Potential Energy Surface (Pes) described by E(x) is a map E : R3N → R that assigns to each atomic
configuration x a potential energy value E(x). Finding a minimum of the multidimensional function
E(x) with respect to the atomic coordinates x corresponds to finding a minimum in the Pes, that is a
set of coordinates for the atomic systems representing the configuration x which minimizes the potential
energy of the system at 0 K. The Fire algorithm is based on the definition of an equation of motion for
the nuclei with the form

v̇(t) =
F(x(t))

m
− γ(t)‖v(t)‖{v̂(t)− F(x(t))} (8.28)

where boldface quantities denote 3N vectors, hats indicate unit vectors, ‖v(t)‖ is the Euclidean norm
of the velocity vector, and γ(t) is a scalar function of time t. In particular, v(t) = ẋ(t) is the vector
containing the 3N velocity components along the (x, y, z) direction of the N nuclei at time t, v̂(t) is the
velocity versor, which can be written as

v̂(t) =
v(t)

‖v(t)‖
(8.29)

i.e. it is a unit vector with the same direction of the velocity vector. F(x(t)) is the force vector, containing
the 3N force components acting on the nuclei at time t for a given nuclear configuration x(t), and it is
computed as the analytical gradient of the potential energy functional, following the Hellmann-Feynman
theorem.[30]

201

8.2. The Fire algorithm Chapter 8. Fast Inertial Relaxation Engine (FIRE)

The equation of motion (8.28) has to be intended as an equation which predicts the position and the
velocity at a certain time t of the entire system of N nuclei in the Pes. Obviously, the equation of motion
modifies each position and velocity component of the N nuclei, bringing the atomic system from the con-
figuration x(t) = (x1(t), x2(t), ..., x3N (t)) at time t to a configuration x(t′) = (x1(t′), x2(t′), ..., x3N (t′))
at time t′ > t.
The first term on the right hand side of equation (8.28) represents regular Newtonian dynamics. In order
to understand the effect of the second term in (8.28), the physical meaning of the force vector has to be
analyzed. Since the gradient of the energy functional E(x(t)) points in the maximum energy direction
in the Pes, the nuclear forces computed as F(x(t)) = −∇E(x(t)) points in the direction that minimizes
the potential energy. Taking this interpretation into account, two consequences can be constructed:

(i) the effect of the second term in equation (8.28) is to reduce the angle between v(t) and F(x(t)),
which is the direction of the steepest descent at x(t);

(ii) uphill and downhill motion of the system in the Pes can be detected by evaluating the direction of
the system trajectory on the potential energy surface, identified by the velocity vector v(t) = ẋ(t),
and computing the scalar product between this velocity and the nuclear forces F(x(t)). This
quantity, called the power factor P (t) and defined as

P (t) = F(x(t)) · v(t) (8.30)

is greater than zero whenever the nuclear velocity points in a direction of energy minimization, i.e.
whenever the angle between the nuclear force F(x(t)) and the velocity v(t) vectors is in the range
(0, π). Otherwise, if the power factor P (t) = F(x(t)) · v(t) ≤ 0, the equation of motion brings the
system in a direction opposite to the direction of the steepest descent identified by F(x(t)), i.e.
the system is brought in a point x(t′) with energy greater than the potential energy in the point
x(t) at a previous time t < t′, so that this kind of motion has to be avoided if the final goal is to
minimize the energy.

On the base of these considerations, the recommended strategy related to the equation of motion (8.28)
is to introduce acceleration in a direction that is steeper than the current direction of motion, via the
function γ(t), if the power P (t) is positive, otherwise, in order to avoid uphill trajectories, the algorithm
simply stops the motion as soon as the power factor becomes negative, by setting all the velocities equal
to zero (v = 0). On the other hand, γ(t) should not be too large, because the current velocities carry
information about the reasonable average descent direction and energy scale.

In order to obtain an equation for the new positions and velocities at a certain time t′ > t, knowing the
values of these quantities at a previous time t, the differential equation (8.28), rewritten as

v̇(t) ≡ dv(t)

dt
=

F(x(t))

m
− γ(t)‖v(t)‖{v̂(t)− F̂(x(t))} with the initial condition v(t = 0) = 0 (8.31)

has to be resolved. This is an ordinary differential equation, which, together with a specified value
(called the initial condition) of the unknown function at a given point in the domain of the solution,
defines an initial value problem. The simplest method for solving numerically an initial value problem
is the explicit Euler method, which is a first order method consisting in the replacement of the temporal
derivative by finite differences:

dv(t)

dt
=
v(t+ dt)− v(t)

dt
=

F(x(t))

m
− γ(t)‖v(t)‖{v̂(t)− F̂(x(t))}

=
F(x(t))

m
− γ(t)‖v(t)‖

{
v(t)

‖v(t)‖
− F(x(t))

‖F(x(t))‖

}

=
F(x(t))

m
− γ(t)v(t) + γ(t)

‖v(t)‖
‖F(x(t))‖

F(x(t)) (8.32)

So that we can obtain the set of velocities of the nuclei in the system at time t + dt with the following
formula

v(t+ dt) =
F(x(t))

m
dt− γ(t)dtv(t) + v(t) + γ(t)dt

‖v(t)‖
‖F(x(t))‖

F(x(t))

202

Chapter 8. Fast Inertial Relaxation Engine (FIRE) 8.2. The Fire algorithm

=
F(x(t))

m
dt+ (1− γ(t)dt)v(t) + γ(t)dt

‖v(t)‖
‖F(x(t))‖

F(x(t))

=
F(x(t))

m
dt+ (1− α)v(t) + α

‖v(t)‖
‖F(x(t))‖

F(x(t)) (8.33)

in which the dimensionless quantity α = γ(t) dt has been defined.
It was shown that combining a discretized version of equation (8.28) with an adaptive time step scheme
yields a simple and competitive optimization algorithm,[127] which results in a minimization scheme
for multidimensional functions E(x1, ..., x3N) that is competitive in speed with the above mentioned
sophisticated optimizers.
The numerical treatment of the algorithm is simple. Both the timestep dt and the mixing factor α
are treated as dynamically adaptive quantities. The parameter α is particularly important since it is
the mixing factor between velocities and forces, stating the contribution of the forces on the nuclei in
velocity modification. The Md trajectory is therefore continuously readjusted by two kinds of velocity
modifications, driven by the value of the power factor P (t):

a) if P (t) > 0 (uphill motion) the system is frozen setting all velocities to zero (v = 0), the timestep
dt is substantially reduced by a factor dtdec in order to have a smooth restart and the mixing factor
α is reset to its initial value αin;

b) if P (t) ≤ 0 (downhill motion) a simple mixing of the global 3N -dimensional velocity and force
vectors is done, following the equation

v → (1− α)v + αF̂‖v‖ (8.34)

derived in (8.33) from the Euler-discretization of the last term in equation (8.28) with timestep dt.
If the number of steps until the case P (t) ≤ 0 is encountered is greater than Ndel, the dynamics
is accelerated by increasing the timestep by a factor dtinc (up to a maximum value dtmax) and by
decreasing the mixing parameter α through a factor fα.

Figure 8.2: Pseudo-code for Fire algorithm, taken from Ref. [126].

The pseudo-code for the algorithm is reported in Figure 8.2. It has to be noted that in this kind of
structural relaxation algorithm an accurate calculation of the atomic trajectories is not necessary, and
the adaptive timestep allows Fire to increase dt until either the largest stable timestep dtmax is reached,
or an energy minimum along the current direction of motion (P (t) ≤ 0) is encountered. Furthermore,

203

8.2. The Fire algorithm Chapter 8. Fast Inertial Relaxation Engine (FIRE)

the short latency time of Ndel Fire steps before accelerating the dynamics is important for the stability
of the algorithm.

Special attention needs to be paid to the global nature of the algorithm, which assumes that all degrees
of freedom are comparable. In particular, the power factor P (t) is a global parameter for the atomic
system, and it is at the same time very important because on the basis of its value the dynamics is
accelerated, decelerated or it is suddenly frozen. The power factor, defined in equation (8.30) as the
scalar product of the force and the velocity vectors, is explicitly computed as the summation over all
the atoms of the scalar product of the force acting on a specific atom times the velocity of that specific
atom (scalar product of the 3N dimensional force and velocity vectors), so that it can be expressed more
precisely as

P (t) =

N∑
i=1

Fi(x(t)) · vi(t) =

N∑
i=1

[
F (xi(t)) vx,i + F (yi(t)) vy,i + F (zi(t)) vz,i

]
(8.35)

with
Fi(x(t)) = (F (xi(t)), F (yi(t)), F (zi(t))) and vi(t) = (vx,i, vy,i, vz,i) (8.36)

where Fi(x(t)) is the force applied on the i-th atom and vi(t) is the velocity vector which contains the
velocity components of a given i-th atom. Then the power factor seems to be a global scalar property of
an atomic systems, and a quantity driven by the intensity of each contribute rather than by the statistics,
e.g. if there are four atoms for which Pi(t) is negative, and only one for which Pi(t) is positive, but
the last contribute is greater than the sum of the first 4 negative terms, the global power P (t) results
positive.

8.2.2 FIRE2.0 algorithm

The Fire2.0 algorithm is an improvement of the previously described basic version of the Fire scheme.
Starting from the basic Fire, three important modifications are performed with this new Fire2.0
algorithm, which are described in the following.

(i) Correcting uphill motion
An important principle of Fire is to set the velocity vector to zero as soon as the power factor
P (t) becomes negative. However, due to discrete time integration, the system will have already
gone uphill before P (t) < 0 is detected. One could correct this uphill motion by moving backwards
for one entire timestep dt and then restarting the motion at time t− dt. This will undo the uphill
motion as expected, but could keep the trajectory too far from where P (t) = 0. A less aggressive
correction is to move backward for half a timestep (0.5dt).

(ii) Adjustments for improved stability
The second modification is to perform the mixing of velocity and force vectors v → (1−α)v+αF̂‖v‖
just before the last part of the time integration scheme, instead of at the beginning of the step.
Note that this modification has no effect if Fire is used together with the Euler explicit integrator.

(iii) Additional stopping criteria
An additional stopping criteria has been implemented in Fire2.0 in order to avoid unnecessary
looping, when it appears that further relaxation is impossible. This could happen when the system
is stuck in a narrow valley, bouncing back and forth from the walls but never reaching the bottom.
The criterion is the number of consecutive iterations with P (t) < 0. The minimization is stopped
if this number exceeds a threshold.

8.2.3 Advantages in using FIRE algorithm

Quasi-Newton optimization methods as Bfgs has been widely used and proved to be effective in a wide
range of different applications. Nevertheless, it is worth to note that in these methods (i) the potential
energy surface is locally described with a function expanded up to its second order derivative (i.e. the
Pes is approximated to be of quadratic form), (ii) the calculation of the approximated Hessian matrix
requires a computational cost which scales approximately linearly with the system size and (iii) the

204

Chapter 8. Fast Inertial Relaxation Engine (FIRE) 8.3. Implementation of Fire in Crystal code

search for transition states turned out to be particularly thorny.
At the same time, the Fire method has been proved to be a simple and robust algorithm based on
molecular dynamics concepts and seems to be promising both in its basic[125] and improved[126] imple-
mentation. It has been demonstrated to be a useful tool in numerous atomistic studies, including Dft
based simulations of chemically complex systems,[128, 129, 130, 131] significantly faster than standard
implementation of the Conjugate Gradient (Cg) algorithm and often competitive with more sophisti-
cated quasi-Newton schemes as typified by the Bfgs method.[125, 132] Moreover, it seems very well
suited for transition state calculations in conjunction with the Nudged Elastic Band method,[133] and
apparently it works efficiently in the case of noisy potential energy surface, where Bfgs minimization
often fails.[134]
Furthermore, the Fire scheme (i) does not require any approximation of the shape of the potential
energy surface, possibly resulting in better performances for systems which are far from the equilibrium,
(ii) does not involve the approximation of the Hessian matrix, conceivably leading to a reduction of
the computational cost as the size of the system increases and (iii) could eventually take into account
temperature effects by exploiting the whole Born-Oppenheimer Md machinary.
On the heels of these results, Fire algorithm has been implemented in several atomistic simulation
packages, like Lammps,[135] Gromacs,[136] Imd,[137] Dl poly,[138] Eon,[139] or Ase.[140]
In order to complement Crystal’s abilities and overcome some of its limitations, we turned our attention
to this novel Fire method, with the aim of implementing and testing the efficiency of the algorithm in the
framework of the Crystal code, expanding the code capabilities in performing structural optimization
calculations.

8.3 Implementation of FIRE in the CRYSTAL code

The Fire algorithm for structural minimization has been implemented in the Molecular Dynamics
module of the Crystal code. For technical details about the code, see Appendix B, Section B.5. In the
following, the Md integrator chosen for the velocities and positions updating and the stopping criteria
adopted for Fire optimization are described and justified. Then, a screening of the main Fire adjustable
parameters has been performed, in order to select the best set of values and establish default parameters
for the algorithm.

8.3.1 Molecular Dynamics integrator

In Ref. [125] it was suggested that Fire can be used in conjunction with any common Md integra-
tor. However, Fire implements a variable time-stepping. Therefore, the integrator must be robust
against a change of timestep during integration. As highlighted also by F. Shuang et al.,[132] the Md
integrator chosen to update positions and velocities at each iteration has a relevant influence on the
performance of Fire minimization procedure. For example, a simple Euler explicit integration scheme is
not suitable. Symplectic schemes like Euler semi-implicit (also called symplectic Euler), Leapfrog or Ve-
locity Verlet are more robust against varying timesteps. In particular, the Velocity Verlet integrator has
been demonstrated to be an optimal choice along with Fire optimization, showing good efficiency and
convergence.[132, 126] Thanks to its robust behavior, the Velocity Verlet integrator has been adopted as
default molecular dynamics integrator in the implementation of Fire algorithm in the Crystal code.

8.3.2 Convergence criteria

Four kind of convergence criteria are implemented in the Crystal code for Fire structural minimization,
respectively based on (i) the normalized euclidean norm (i.e. the root mean square) of nuclear forces
vector, given by

Frms =
‖F‖√

3N
=

1√
3N

[
N∑
i=1

(F 2
x,i + F 2

y,i + F 2
z,i)

]1/2

(8.37)

and computed in cartesian coordinates, (ii) the difference in energy between two consecutive optimization
steps, (iii) the maximum and (iv) root-mean-square displacement of the atomic positions between the
n-th step and the previous (n − 1)-th one, both computed in cartesian coordinates. By default, when

205

8.3. Implementation of Fire in Crystal code Chapter 8. Fast Inertial Relaxation Engine (FIRE)

these four conditions are all satisfied at a time, Fire optimization is considered complete. However, it
is also possible for the users to adopt only one of these convergence criteria, and to modify the default
values of the thresholds, using specific input keywords reported in the manual in Appendix E, Section
E.2. Nevertheless, the normalized euclidean norm of cartesian nuclear forces, computed as in Eq. (8.37),
has proven to be a reliable and sufficiently strict check to assess the degree of relaxation in Fire,[126]
and it is therefore used as the only convergence criterion in all the simulations performed in this work.

8.3.3 Setting of FIRE default parameters

The adjustable parameters in Fire algorithm are
(i) the initial value αin of the mixing parameter to be used in equation (8.33),
(ii) the initial timestep dtin,
(iii) its maximum value dtmax = dtin · tmax,
(iv) the number Ndel of self-consistent cycles (SCF) and force evaluations (GRAD) to be performed, after
a stop due to P (t) ≤ 0, before accelerating the dynamics again.
It is worth to note that a good assessment of the set of parameters, namely (αin, dtin, tmax, Ndel), is
essential to fully exploit the efficiency of Fire optimization scheme, but, within a wide range of variability
of these parameters, it does not affect the reliability of the final results. Based on our experience, and
with reference to four systems of different dimensionality, i.e. a water molecule, a water polymer, a 2D
slab of ice and a urea crystal, modeled through a Pbe functional, a 3-steps procedure is proposed to
disentangled the effect of the different parameters and adjust their values. In all cases, the goal is to
minimize the number of iterations Nstep (in each step, a self-consistent cycle (SCF) procedure and an
energy gradient calculation (GRAD) are performed), as follows:
(i) for a given dtin and Ndel, different values of tmax are explored (as in Figs. 8.3a,d and 8.4a,d) in order
to choose its optimal value;
(ii) then, given the best value of tmax (and fixing Ndel), different dtin are evaluated in the range [0.1, 3.0]
fs, to define its best value (Figs. 8.3b,e and 8.4b,e);
(iii) finally, having fixed the optimal values of tmax and dtin, Ndel can be varied in the range [0, 10], as
shown in Figs. 8.3c,f and 8.4c,f. The best value for αin is automatically derived from the overall analysis
of all the trends obtained.
A very similar behavior of the number of total iterations Nstep as a functions of the initial mixing
factor αin for points (i), (ii) and (iii) is obtained with all the atomic systems considered, suggesting that
the best set of Fire parameters does not depend on the dimensionality of the system. Furthermore,
despite the difference in the number of iterations necessary to reach convergence, the reliability of Fire in
finding the minimum energy structure is preserved. Therefore, a set of parameters that provides excellent
performance and is optimal for a wide range of systems, different in size, dimension and chemical-physical
properties, can be defined. These default values, obviously modifiable from Input, are shown in Table 8.1.

Parameter Keyword Default value

αin Alphastart 0.30
dtin Dtstart 1.0 (fs)
tmax Tmax 1.0
Ndel Ndelay 0
αdec Alphashrink 0.99
dtinc Dtgrow 1.1
dtdec Dtshrink 0.5

Table 8.1: Crystal default values for Fire algorithm parameters, with the correspondent keywords that can be
used in Input to modify their values.

It is worth to note that all the Fire parameters screening is here performed using PBE functional. How-
ever, from a preliminary analysis in the case of water molecule and urea crystal with B3LYP functional, the
best set of Fire parameters results slightly dependent on the kind of exchange-correlation functional em-
ployed. For the case of water molecule, for instance, the best set of Fire parameters (αin, dtin, tmax, Ndel)

206

Chapter 8. Fast Inertial Relaxation Engine (FIRE) 8.3. Implementation of Fire in Crystal code

 30

 40

 50

 60

 70

 80

 90

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

dtin = 1.0 fs Ndel = 0

a)
N
st
ep

αin

tmax in range [1.0, 10.0]

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

tmax = 1.0 Ndel = 0

b)

N
st
ep

αin

dtin
0.5 fs
1.0 fs
2.0 fs
3.0 fs

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

dtin = 2.0 fs tmax = 1.0

c)

N
st
ep

αin

Ndel
 0
 2
 3
 5

 50

 100

 150

 200

 250

 300

 350

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

dtin = 1.0 fs Ndel = 0

d)

N
st
ep

αin

tmax
 1
 2

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

tmax = 1.0 Ndel = 0

e)

N
st
ep

αin

dtin
0.1 fs
0.5 fs
1.0 fs
2.0 fs
3.0 fs

 50

 100

 150

 200

 250

 300

 350

 400

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

dtin = 1.0 fs tmax = 1.0

f)

N
st
ep

αin

Ndel
 0
 2
 3
 5

 10

Figure 8.3: Fire parameters (αin, dtin, tmax, Ndel) for (left panel) water molecule (0D system, 3 atoms) and
(right panel) water polymer (1D system, 6 atoms): screening and setting of the default values.

with PBE and B3LYP functional is, respectively, (0.35, 2.0, 1.0, 0) and (0.20, 1.0, 1.0, 0), leading to a cor-
responding total number of optimization steps equal to 26 and 32.
Finally, the default values for the αdec, dtinc and dtdec factors, used to accelerate or decrease the entity
of the atomic motion, are those originally proposed by Bitzek et al.[125, 126]

8.3.4 Computational details

All the calculations reported in this work are performed with a beta version of the Crystal program for
ab initio quantum chemistry and physics of solid state, based on the public version of the code.[120] All
the considered atomic systems are treated in the frame of the Density Functional Theory (Dft), adopt-
ing the gradient-corrected Perdew-Burke-Ernzerhof (Pbe) functional,[93] except the crambin molecule
that is described through Hartree-Fock (Hf) Hamiltonian with three semiclassical corrections (D3, gCP,
SRB), which are added to the Hf energies (and atomic and cell gradients) within the so called Hf3c
method.[141, 142, 143] Moreover, to better describe the ice slab with CO molecules and the amorphous
ice, in conjunction with Pbe functional, London-type pairwise empirical correction to the energy for
dispersive interactions as proposed by Grimme[94] and as modified for molecular crystals,[144] is con-
sidered, in order to include long-range dispersion contributions to the computed ab initio total energy
and gradients. Furthermore, hybrid functionals such as B3LYP,[102] HSE06[145, 93] and PBE0[103] have
been used to model the crystalline urea system.

207

8.3. Implementation of Fire in Crystal code Chapter 8. Fast Inertial Relaxation Engine (FIRE)

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

dtin = 1.0 fs Ndel = 0

a)
N
st
ep

αin

tmax
 1
 2

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

tmax = 1.0 Ndel = 0

b)

N
st
ep

αin

dtin
0.1 fs
0.5 fs
1.0 fs
2.0 fs

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

dtin = 2.0 fs tmax = 1.0

c)

N
st
ep

αin

Ndel
 0
 2
 3
 5

 10

 20

 40

 60

 80

 100

 120

 140

 160

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

dtin = 1.0 fs Ndel = 0

d)

N
st
ep

αin

tmax
 1
 2

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

tmax = 1.0 Ndel = 0

e)

N
st
ep

αin

dtin
0.1 fs
0.5 fs
1.0 fs
2.0 fs
3.0 fs

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

dtin = 1.0 fs tmax = 1.0

f)

N
st
ep

αin

Ndel
 0
 2
 3
 5

 10

Figure 8.4: Fire parameters (αin, dtin, tmax, Ndel) for (left panel) water slab (2D system, 24 atoms) and (right
panel) urea molecular crystal (3D system, 16 atoms): screening and setting of the default values.

All-electron basis sets, consisting of contracted Gaussian-type atomic orbital functions (A.O.) are used
for all the atoms and are reported in the SM.
The Dft exchange-correlation contribution was evaluated by numerical integration over the unit cell
volume, using a pruned grid,[105, 106] with a number of radial and angular points reported in Table 2
of the SM for the different analyzed atomic systems. The diagonalization of the Hamiltonian matrix and
the integration over the reciprocal space is carried out using the Monkhorst-Pack mesh,[107] consisting
in a grid of k-points defined in the Irreducible part of the first Brillouin Zone (Ibz). The Coulomb and
exchange series, summed in direct space, are truncated using overlap criteria thresholds. The number of
k-points in the Ibz, together with the overlap criteria thresholds for Coulomb and exchange series, and
the thresholds for the self-consistent field algorithm convergence on the total energy per unit cell, used
for the different atomic systems, are reported in Table 2 of the SM.
The tempered ice 3D system has been obtained using a beta develop version of Crystal Molecular
Dynamics module (derived from the Crystal17 public release[120]),[127] starting from the initial con-
figuration of crystalline ice and performing a 80 steps (16 fs) Nve Md simulation, with a timestep of
0.2 fs and an initial temperature of 1800 K (the temperature at the 80-th step is equal to 816.5 K).
Geometry optimization is performed using analytical gradients with respect to atomic coordinates, within
a quasi-Newtonian algorithm combined with two kinds of Hessian updating schemes: the Schlegel’s
(Sh)[119] and the Broyden-Fletcher-Goldfarb-Shanno (Bfgs) formulae.[108, 109, 110, 111, 112] Only
atomic coordinates are optimized, to allow comparison with Fire structural minimization. Convergence

208

Chapter 8. Fast Inertial Relaxation Engine (FIRE) 8.4. Results and Discussions

criteria for Sh and Bfgs structural optimizations are based on the root mean square and absolute value
of the largest component of both the estimated displacements and the gradients of energy functional
with respect to the nuclear positions, both computed in normal coordinates. In this framework, the
Crystal17 default convergence thresholds and minimization parameters have been adopted.[120, 121]

8.4 Results and Discussions

The performance of Fire algorithm, at constant volume and lattice parameters, has been evaluated
for systems with different dimensionality, number of atoms and kind of chemical bond. The geometry
optimization on the same set of systems has been also performed with quasi-Newton Sh and Bfgs
updating schemes, removing the symmetry of the systems, if necessary, to allow a reliable comparison
with Fire procedure. Information on each system (geometry structures, basis sets and computational
settings) are reported in the Supplementary Material (SM). The number of optimization steps up to
convergence, Nstep, the root mean square of final forces, Frms, of last iteration atomic displacements,
drms, and of bond lengths difference between Sh or Fire and Bfgs, ∆brms, are summarized in Table
8.2. The number of degrees of freedom in Fire structural optimizations is equal to three times the
number of atoms Nat in the reference cell unit, while for Sh and Bfgs equals (3Nat − 6) for molecules
and (3Nat − 3) for periodic systems.

The specific parameters adopted in Fire for each system are reported in Table 3 of the SM. As regards
the general performances, the results show that each single Fire optimization cycle (SCF ⊕ GRAD) has
a less computational cost than the corresponding Sh and Bfgs one which involves also the updating of
the Hessian matrix, and the saving in CPU time increases with the system size. At the same time, Fire
takes more iterations to reach convergence, so that its efficiency is comparable with the Bfgs one when
the increasing in the number of iterations is counterbalanced by the decreasing in the computational
cost of each step. Nevertheless, for almost all the systems, Fire performs better than quasi-Newton Sh
updating scheme.

As for the reliability of the results, i.e. the capability of finding stationary minima in the Pes, the
agreement on the final energies and atomic positions between Fire and Bfgs is within the accuracy
of the computational set up. The overall root mean square differences between bonds of the structures
obtained with Fire and Bfgs, ∆brms, are of the same order of magnitude of the final root mean square
displacements, drms, suggesting that the optimized geometries obtained with the two procedures can be
considered equivalent.

Different behaviors in the minimization process were observed and deserve few comments. With reference
to the prototypical cases of tempered ice and urea bulk, the mixing factor α, timestep dt, euclidean norm
of the 3N velocities vector and the power factor are plotted in Fig. 8.5 as a functions of the number of
minimization steps.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80

FIRE step

Tempered ice (3D)

mixing factor α
timestep dt (fs)

P(t) (1.5⋅103 Ha/au time)
||v|| (150 Ha/Bohr)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35

FIRE step

Urea molecular crystal (3D)

mixing factor α
timestep dt (fs)

P(t) (1.5⋅103 Ha/au time)
||v|| (150 Ha/Bohr)

Figure 8.5: Behavior of Fire parameters during the structural optimization of the tempered ice (left panel) and
urea molecular crystal (right panel). The values of power factor and of euclidean norm of velocities vector have
been amplified by a factor 1.5 · 103 and 150, respectively, to allow comparison with the other parameters.

In the tempered ice, left panel, after the initial balancing of the system obtained in 10 iterations by

209

8.4. Results and Discussions Chapter 8. Fast Inertial Relaxation Engine (FIRE)

System Nat Nstep Tratio
Frms drms ∆brms ∆E

[Ha/Bohr] [Bohr] [Bohr] [eV/atom]

H2O (0D)

Sh 7 1.1 1.76 ·10−7 1.0 ·10−5 1.9 ·10−5 1.0 ·10−12

3 Bfgs 6 – 3.74 ·10−6 4.3 ·10−4 – –

Fire 26 2.8 4.31 ·10−7 2.8 ·10−6 1.9 ·10−5 -9.1 ·10−10

Water Polymer (1D) 6

Sh 26 1.3 1.60 ·10−5 1.0 ·10−3 7.0 ·10−4 1.8 ·10−7

Bfgs 21 – 1.32 ·10−5 8.6 ·10−4 – –

Fire 65 2.6 5.62 ·10−6 2.4 ·10−5 2.2 ·10−4 3.4 ·10−7

Urea (0D) 8

Sh 42 9.0 9.04 ·10−5 8.1 ·10−4 1.6 ·10−2 -1.0 ·10−2

Bfgs 5 – 1.39 ·10−5 2.8 ·10−4 – –

Fire 55 8.2 9.29 ·10−6 9.8 ·10−7 1.0 ·10−4 -4.0 ·10−8

Urea (3D) 16

Sh 43 2.7 3.13 ·10−6 1.9 ·10−4 5.7 ·10−5 7.8 ·10−7

Bfgs 17 – 1.24 ·10−5 4.6 ·10−4 – –

Fire 37 2.1 9.85 ·10−6 5.4 ·10−6 5.0 ·10−4 -5.2 ·10−8

Water Slab (2D) 24

Sh 78 2.5 1.10 ·10−5 5.9 ·10−4 2.5 ·10−4 2.9 ·10−7

Bfgs 32 – 1.42 ·10−5 1.1 ·10−3 – –

Fire 139 4.1 9.93 ·10−6 4.1 ·10−5 2.2 ·10−4 -5.6 ·10−7

Tempered Ice (3D) 24

Sh 106 2.6 9.14 ·10−6 4.1 ·10−4 2.6 ·10−4 -7.6 ·10−8

Bfgs 41 – 1.12 ·10−5 9.2 ·10−4 – –

Fire 84 1.9 9.85 ·10−6 5.2 ·10−4 2.6 ·10−4 -6.7 ·10−6

Ice Slab with CO (2D) 32
Bfgs 234 – 5.31 ·10−5 5.0 ·10−4 – –

Fire 1180 4.1 1.27 ·10−4 8.6 ·10−4 5.3 ·10−3 -2.6 ·10−4

Amorphous Ice (3D) 126
Bfgs 125 – 2.90 ·10−5 8.1 ·10−4 – –

Fire 177 1.2 9.80 ·10−6 1.0 ·10−3 1.4 ·10−2 1.3 ·10−4

Crambin (0D) 642
Bfgs 530 – 1.18 ·10−5 3.1 ·10−4 – –

Fire 530 0.8 8.54 ·10−5 2.1 ·10−3 3.5 ·10−3 6.7 ·10−4

Table 8.2: Number of optimization steps Nstep, computational time ratio Tratio = TFire,Sh/TBfgs, root mean

square of final forces Frms = ‖F‖/
√

3N and of atomic displacements drms in the last cycle, root mean square
of bond lengths differences ∆b = bFire,Sh − bBfgs, and energy difference ∆E = EFire − EBfgs which results from
structural optimizations performed within Sh, Bfgs and Fire schemes for different atomic systems with Nat
atoms.

efficiently accumulating the inertia, the maximum timestep is reached and both the mixing factor α
and the velocities decrease monotonously till convergence. On the contrary, the velocity v(t) of the
urea crystal, right panel, brings the trajectory to an uphill motion in the Pes several times, so that the
timestep is periodically decreased by a factor dtdec, and reaches its maximum value in a nearly stable
way only after 27 iterations. A change in the number of equilibration steps, Ndel, from 0 to 5, does not
modify the behavior of α and dt during the minimization of both systems but, within the accuracy on
energies and forces, the number of iterations Nstep increases slightly, passing from 84 to 86 and from 37
to 44, respectively, for tempered ice and urea crystal.
Then, in order to test the robustness and scalability of Fire, given the same set of computational pa-
rameters (basis set, Dft functional, Fire setting as in Table 8.1), structural optimizations of crystalline
urea supercells of increasing size were performed. The results, reported in Table 8.3, show that in the
case of Fire the number of iterations does not depend on the system size, so that the efficiency of
Fire algorithm gradually reaches the Bfgs one, succeeded in overtaking Bfgs computational cost for a
number of atoms greater than 192 (3×2×2 supercell). Interestingly enough, both the internal accuracy,
∆Ẽ, and the agreement with Bfgs results, ∆E, are preserved, moving from 16 to 192 atoms (with a
corresponding number of atomic orbitals in the basis set equal to 152 and 1824, respectively).

Finally, the dependence of Fire efficiency on different exchange-correlation functionals, which determine

210

Chapter 8. Fast Inertial Relaxation Engine (FIRE) 8.5. Conclusions and Perspectives

Supercell Nat NAOs Nstep N̄w Tratio d̄rms [Bohr] ∆Ẽ
[

eV
atom

]
∆E

[
eV

atom

]
1×1×1 16 152

Bfgs 17 6 – 1.20 ·10−2 – –

Fire 37 5 2.11 1.61 ·10−3 – -5.95 ·10−8

Fire2.0 36 5 1.93 1.81 ·10−3 – 6.86 ·10−7

2×1×1 32 304

Bfgs 21 7 – 1.56 ·10−2 9.42 ·10−7 –

Fire 37 5 1.68 1.60 ·10−3 -2.76 ·10−7 1.16 ·10−6

Fire2.0 35 6 1.52 1.85 ·10−3 2.79 ·10−7 1.35 ·10−6

2×2×1 64 608

Bfgs 20 8 – 2.03 ·10−2 3.38 ·10−6 –

Fire 37 6 1.59 1.60 ·10−3 -5.21 ·10−7 3.84 ·10−6

Fire2.0 35 6 1.47 1.85 ·10−3 7.60 ·10−8 3.99 ·10−6

3×2×1 96 912

Bfgs 29 7 – 9.73 ·10−3 1.34 ·10−6 –

Fire 37 6 1.05 1.61 ·10−3 -4.56 ·10−7 1.73 ·10−6

Fire2.0 35 6 1.01 1.85 ·10−3 4.59 ·10−9 2.02 ·10−6

2×2×2 128 1216

Bfgs 25 8 – 1.48 ·10−2 6.01 ·10−6 –

Fire 37 7 1.11 1.61 ·10−3 1.92 ·10−6 4.03 ·10−6

Fire2.0 33 7 1.04 1.96 ·10−3 2.48 ·10−6 4.22 ·10−6

3×2×2 192 1824

Bfgs 29 9 – 1.00 ·10−2 3.19 ·10−6 –

Fire 37 7 0.95 1.61 ·10−3 1.90 ·10−6 1.23 ·10−6

Fire2.0 33 7 0.90 1.96 ·10−3 2.51 ·10−6 1.37 ·10−6

Table 8.3: Number of atoms Nat in the supercell, number of atomic orbitals NAOs in the basis set, number of
optimization steps Nstep, average number of self-consistent cycles for ground state wavefunction calculation N̄w,
ratio of total computational times Tratio = TFire/TBfgs, mean of root-mean-square of atomic displacements d̄rms,
internal check on energy computed by means of the formula ∆Ẽ = E16

opt/16−ENatopt /Nat and final energy difference
between the two methods ∆E = EFire−EBfgs, for different urea molecular crystal (3D) supercell sizes. The mean
values N̄w and d̄rms are computed by averaging over, respectively, the Nw and drms values for all the optimization
steps. Cartesian coordinates of optimized atomic structures are reported in Figures 19-24 of the Supplementary
Material of Ref. [127].

the shape of the Pes, was investigated. The influence of the functional on the best setting of Fire
computational parameters (i.e. αin, dtin, tmax and Ndel) was already pointed out in Section 8.3.3.
Nevertheless, in order to perform a comparison on the same ground, the structural optimization of
urea crystal was performed with PBE, B3LYP, HSE06 and PBE0 functionals, adopting the Fire default
values optimized for PBE (see Table 8.1). The results, summarized in Table 8.4, show that, despite the
predictable increase in the computational time due to the non-optimal tuning of the Fire parameters, the
geometries and energies obtained with different functionals are in good agreement with the corresponding
Bfgs ones, confirming the general portability and robustness of the Fire optimization procedure.

8.5 Conclusions and Perspectives

In this work, we have described the implementation of Fire algorithm and assessed its efficiency and
reliability in the Crystal code. Fire is a structural optimization method based on Molecular Dynamics
concepts, introduced by E. Bitzek et al.[125] as an alternative scheme to quasi-Newton line-search based
minimization algorithms. The interest for this novel method is threefold. First, it does not rely on
any approximation on the shape of the Pes, possibly resulting in good convergence behavior regard-
less the Pes form. Secondly, it does not involve the Hessian approximation, maybe leading to a less
computational cost than Sh and Bfgs schemes. Finally, being based on Md approach, the inclusion of
temperature in structural optimization could be straightforward.
First of all, a screening of the four Fire adjustable parameters has been realized through structural
optimizations of atomic systems with different dimensionality, identifying a set of robust default values.
Then, structural optimizations of atomic systems with different number of atoms, dimensionality and
kind of bonds have been performed with Fire algorithm. The accuracy of Fire in finding energy minima

211

8.5. Conclusions and Perspectives Chapter 8. Fast Inertial Relaxation Engine (FIRE)

Functional Nstep N̄w Tratio d̄rms [Bohr] Frms

[
Ha

Bohr

]
d erms [Bohr] ∆E

[
eV

atom

]
PBE

Bfgs 17 6 – 1.20 ·10−2 1.24 ·10−5 4.6 ·10−4 –

Fire 37 5 2.1 1.61 ·10−3 9.85 ·10−6 5.4 ·10−6 -5.20 ·10−8

Fire2.0 36 5 1.9 1.81 ·10−3 8.47 ·10−6 1.3 ·10−6 6.95 ·10−7

B3LYP

Bfgs 17 5 – 3.62 ·10−3 2.81 ·10−5 3.1 ·10−4 –

Fire 43 4 2.4 7.15 ·10−4 8.54 ·10−6 1.5 ·10−4 1.56 ·10−8

Fire2.0 43 4 2.4 7.79 ·10−4 9.62 ·10−6 1.7 ·10−4 -2.64 ·10−7

HSE06

Bfgs 16 5 – 4.43 ·10−3 2.44 ·10−5 5.6 ·10−4 –

Fire 58 4 3.4 4.61 ·10−4 9.61 ·10−6 1.8 ·10−4 1.95 ·10−6

Fire2.0 50 4 3.0 5.30 ·10−4 9.62 ·10−6 1.8 ·10−4 2.08 ·10−6

PBE0

Bfgs 14 6 – 4.49 ·10−3 2.69 ·10−5 4.6 ·10−4 –

Fire 56 4 3.7 4.60 ·10−4 9.73 ·10−6 1.4 ·10−4 6.34 ·10−7

Fire2.0 48 4 3.2 5.31 ·10−4 9.37 ·10−6 1.5 ·10−4 9.41 ·10−7

Table 8.4: Number of optimization steps Nstep, average of self-consistent cycles for ground state wavefunction
calculation N̄w, computational time ratio Tratio = TFire/TBfgs, mean of root-mean-square of atomic displacements
d̄rms, final root mean square of nuclear forces Frms = ‖F‖/

√
3N and of last step atomic displacements d erms,

and energy difference ∆E = EFire − EBfgs which results from structural optimizations of urea crystal (16 atoms)
performed with Fire and Bfgs, for different exchange-correlation functionals. Cartesian coordinates of optimized
atomic structures are reported in Figures 25-28 of the Supplementary Material of Ref. [127].

of the Pes for these systems has been demonstrated comparing the total energy and geometry of Fire
final structures with those obtained with quasi-Newton Sh and Bfgs schemes. The reliability of Fire in
minimize the Pes shaped by different functionals, such as PBE, B3LYP, HSE06 and PBE0 has been proven
for the case of urea molecular crystal. Finally, as regards the computational time, we can conclude that
Fire structural optimization has generally a greater computational cost than the correspondent Bfgs
one, due to the fact that it implies more iterations to reach convergence. Nevertheless, a single Fire step
has a less computational cost than a Sh or Bfgs one, so that the overall Fire minimization becomes the
most efficient one when the increasing of the computational cost due to a greater number of iterations
is compensated by a reduction of timings in performing each single step.
This study sets the ground for further improvements of the efficiency of Fire in the Crystal code, by
means of its optimized version Fire2.0,[126] which has demonstrated to be significantly faster than the
original one.[126] Furthermore, the fact that Fire algorithm is based on Md concepts could paved the
way for other important implementations, namely, a finite temperature structural optimization algorithm
and the Nudged Elastic Band method for transition states calculations.

212

Chapter 9

Ab initio calculation of electronic
transport properties with semiclassical
Boltzmann transport theory

This chapter is devoted to the description of the theoretical framework and the practical algorithms that
can be used to compute ab initio electronic transport properties of condensed matter systems, with the
aim to develop an efficient version of the code (in terms of memory usage), based on Massive Parallel
Processing approach.
In this context, Section 9.1 contains a brief explanation of the semiclassical theory of transport pro-
cesses in solids, which relied on Boltzmann equation. This equation can be easily demonstrated with the
introduction an electronic distribution function and the calculation of its derivative with respect time
and it can be used, together with semiclassical equations of motion, to describe transport properties
of materials, such as current density or electrical conductivity. The theoretical framework underlying
the calculation of ab initio electronic transport properties, based on the semiclassical approximation, is
described in Section 9.2, as implemented in the Crystal code. A new orbital rotational invariant for-
mulation for the definition of the band velocities is discovered and justified. In Section 9.3, the Massive
Parallel Processing algorithm applied to the electronic transport properties calculation is then described.
Finally, Section 9.4 reports some results for the comparison of the new implemented parallelization with
the strategy already developed in the public version of the code. The aim of this section is also to under-
line the importance of the novel invariant formulation for the band velocities definition, supporting this
theoretical findings with calculations performed on Silicon bulk structure. The last part of this chapter,
Section 9.5, is devoted to solve a problem related to the parallelized procedure already implemented in
the public version of the code, due to the creation of input/output units which occupy large part of
the disk space during the calculation. The description of the solution found to that problem and the
associated implemented algorithm is then described, and calculations on some tests cases are performed
in order to prove the accuracy and the computational time of the new version with respect to the public
one.

9.1 Boltzmann transport theory

9.1.1 Distribution function and BBGKY hierarchy

Consider the Hamiltonian dynamics for N identical point particles, given by

H =
1

2m

N∑
i=1

p2
i +

N∑
i=1

vext(ri) +
∑
i<j

Vint(ri − rj) (9.1)

where the potential vext illustrates the presence of an external force F = −∇vext acting equally on all
particles and the term Vint is the potential associated to two-body interactions between particles. The
quantity of interest is the probability distribution function f(ri,pi; t), defined over the 2N dimensional
phase space and its evolution in time under the Hamiltonian (9.1). The function f(ri,pi; t) represents

213

9.1. Boltzmann transport theory Chapter 9. Electronic transport properties

the probability that the system will be found in the vicinity of the point (ri,pi). As with all probabilities,
the function is normalized as ∫

dV f(ri,pi; t) = 1 con dV =
N∏
i=1

dri dpi (9.2)

Furthermore, because the probability is locally conserved, it must obey a continuity equation in phase
space. Inserting the Hamilton equations in the continuity formula, it is obtained that the evaluation
of f(ri,pi; t) with respect the Hamiltonian field X̄H must be equal to zero, i.e. it must be verified the
expression

〈X̄H, df〉 =
∂f

∂t
+

N∑
i=1

(
∂f

∂ri
· ∂H
∂pi
− ∂f

∂pi
· ∂H
∂ri

)
= 0 (9.3)

The formula (9.3) is called Liouville equation: it is the statement that probability does not change along
any trajectory in phase space. The mathematical expression (9.3) is often written using the Poisson
bracket

df

dt
=
∂f

∂t
− {H, f} = 0 (9.4)

It is convenient to define a one-particle non equilibrium distribution function, that captures the expected
number of parting lying at some point (r,p), such as the function

f1(r,p; t) = N

∫ N∏
i=2

dri dpi f(r, r2, ..., rN ,p,p2, ...,pN ; t) (9.5)

and to make the calculations with this function instead of the probability distribution for all N particles.
The distribution f1(r,p; t) is defined such as the quantity f1(r,p; t) dr dp counts the number of particles
that can be found at time t in the infinitesimal phase space volume dr dp in the neighborhood of the
point (r,p). The factor N that sits in front of the equation (9.5) ensures that f1 is normalized as

N =

∫
dr dp f1(r,p; t) (9.6)

To understand how the one-particle distribution function changes with time, the equation (9.5) can be
derived with respect time, so it is obtained

∂f1

∂t
= N

∫ N∏
i=2

dri dpi
∂f

∂t
= N

∫ N∏
i=2

dri dpi {H, f} (9.7)

where the last identity is written by means of equation (9.4). The Poisson bracket can then be calculated
explicitly using the Hamiltonian (4.6) as

∂f1

∂t
= N

∫ N∏
i=2

dri dpi

[
−

N∑
j=1

pj
m
· ∂f
∂rj

+

N∑
j=1

∂vext
∂rj

· ∂f
∂pj

+
N∑
j=1

∑
k<l

∂Vint(rk − rl)
∂rj

· ∂f
∂pj

]
(9.8)

Now, whenever j = 2, ..., N the previous equation can always be integrated by parts to move the
derivative away from f and onto the other terms. In each case the result is simply zero because when the
derivative is with respect to rj , the other terms depend only on pi and vice-versa. Only the terms that
involve derivatives with respect to r1 and p1 remain, because they can’t be integrated by parts. The
phase space coordinate subscript 1 becomes a free index, so the notation r1 ≡ r e p1 ≡ p is legitimized.
Then equation (9.8) becomes

∂f1

∂t
= N

∫ N∏
i=2

dri dpi

[
− p
m
· ∂f
∂r

+
∂vext(r)

∂r
· ∂f
∂p

+

N∑
k=2

∂Vint(r − rk)
∂r

· ∂f
∂p

]
(9.9)

214

Chapter 9. Electronic transport properties 9.1. Boltzmann transport theory

Define the single particle hamiltonian:

H1 =
p2

2m
+ vext(r) (9.10)

that includes the interaction between one particle and the external force field, but it knows nothing
about the interaction with the other particles. All of that information is contained in the last term
of the right member of equation (9.9). Thanks to the definition (9.10) the first two terms of the right
member in (9.9) can be seen as the Poisson bracket between H1 and f1, so (9.9) reduces to

∂f1

∂t
= {H1, f1}+N

∫ N∏
i=2

dri dpi

N∑
k=2

∂Vint(r − rk)
∂r

· ∂f
∂p
. (9.11)

The evolution of the one-particle non equilibrium distribution function is then described by a Liouville-
like equation, together with an extra term

∂f1

∂t
= {H1, f1}+

(
∂f1

∂t

)
coll

(9.12)

The first term is sometimes referred to as the streaming term. It tells you how the particles move in the
absence of collisions. The second term, known as the collision integral, is given by the second term in
(9.11) and contains the summation of the interaction potential of one particle with each of the others.
In fact, because all the particles are the same, each of the (N -1) terms in the summation in equation
(9.11) are identical, so it can be written(

∂f1

∂t

)
coll

= N(N − 1)

∫
dr2 dp2

∂Vint(r − r2)

∂r
· ∂
∂p

∫ N∏
i=3

dri dpi f(r, r2, ...,p,p2, ...; t) (9.13)

It is now clear that the collision integral can’t be expressed in terms of the one-particle distribution
function. Indeed, as the name suggests, the collision integral captures the interactions (or collisions) of
one particle with another. Yet f1 contains no information about where any of the other particles are
in relation to the first. However some of that information is contained in the two-particle distribution
function

f2(r1, r2,p1,p2; t) ≡ N(N − 1)

∫ N∏
i=3

dri dpi f(r1, r2, ...,p1,p2, ...; t) (9.14)

With this definition, the collision integral is written simply as(
∂f1

∂t

)
coll

=

∫
dr2 dp2

∂Vint(r − r2)

∂r
· ∂f2

∂p
(9.15)

The upshot of all of this is that if you want to know how the one-particle distribution function evolves,
you also need to know something about the two-particle distribution function. Repeating the same
calculation, it is not hard to demonstrate that f2 evolves in time by a Liouville-like equation with a
corrective term that depends on the three particle distribution function f3, and so on. In general, the
n-particle distribution function

fn(r1, ..., rn,p1, ...,pn; t) =
N !

(N − n)!

∫ N∏
i=n+1

dri dpi f(r1, ..., rN ,p1, ...,pN ; t) (9.16)

obeys the equation

∂fn
∂t

= {Hn, fn}+
N∑
i=1

∫
drn+1 dpn+1

∂Vint(ri − rn+1)

∂ri
· ∂fn+1

∂pi
(9.17)

where the effective n-body hamiltonian includes the external force and any interactions between the n
particles, but neglects interactions with any particles outside of this set

Hn =
n∑
i=1

(
p2
i

2m
+ vext(ri)

)
+
∑
i<j≤n

Vint(ri − rj) (9.18)

215

9.1. Boltzmann transport theory Chapter 9. Electronic transport properties

The equations (9.16)-(9.18) are known as the BBGKY hierarchy, and they are telling that any group of
n particles evolves in a Hamiltonian fashion, corrected by the sum of the interactions of each one of the
n particles in the group with one of the particles outside that group.

9.1.2 Expression for the collision integral in a crystal

The main problem in finding a solution for the equation (9.17) is to resolve the collision integral. In
particular, it would be convenient to write the collision term in (9.12) as a function of the one-particle
probability distribution f1.
In order to deal with this problem, two different time scales can be distinguished. One is the time between
collision, τ , known as the scattering time or relaxation time. The second is the collision time, τcoll, which
is roughly the time it takes for the process of collision between particles to occur. In situations where

τ � τcoll (9.19)

it should be expected that, for much of the time, f1 simply follows its hamiltonian evolution with
occasional perturbations by the collisions. The collisions can be seen, at the same time, as abrupt,
instantaneous events. In this regime the collision integral should reflect the rate at which these collisions
occur.
To define an expression for the collision integral in a crystal system the one particle distribution function
f1 needs to be rephrased in terms of position r and wave vector k of the electrons. Then the quantity
τ(r,k) ≡ τα(r,k) is the relaxation time of an electron in the band α in the phase space point (r,k). It
can be assumed that the collisions are well localized in space and time, so that the scatterings occurring
at (r, t) are determined by properties of the solid in the immediate vicinity of (r, t).
The scattering probability is written in terms of the quantity Wk,k′ . The probability in an infinitesimal
time interval dt that an electron with wave vector k is scattered into any one of the group of levels (with
the same spin) contained in the infinitesimal k-space volume element dk′ about k′, assuming that these
levels are all unoccupied, is

Wk,k′ dt dk
′

(2π)3
(9.20)

The particular form taken by Wk,k′ depends on the particular scattering mechanism being described,
and in general it has a quite complex structure, that may also depend on the electronic distribution
function f1.
Since Wk,k′ dk

′/(2π)3 is the probability per unit time that an electron with wave vector k will be
scattered into the group of levels with the same spin contained in dk′ about k′, given that these levels
are all unoccupied, the actual rate of transition must be reduced by the fraction of these levels that
actually are unoccupied. The total probability per unit time for a collision is given by summing over all
final wave vectors k′ obtaining

1

τ(r,k)
=

∫
dk′

(2π)3
Wk,k′ [1− f1(r,k′; t)] (9.21)

It is clear from (9.21) that the relaxation time τ(r,k) depends on the particular form assumed by the non
equilibrium distribution function f1. In order to define the collision integral, two different contributions
to the scattering can be analyzed:
(i) Since dt/τ(r,k) is the probability that any electron in the neighborhood of k is scattered in the time
interval dt, then the total number of electrons per unit volume in dk about k that suffer a collision is just
dt/τ(r,k) times the number of electrons per unit volume in dk about k, equal to f1(r,k; t)dk/(2π)3, so
that

Icollout = −f1(r,k′; t)

τ(r,p)
= −f1(r,k′; t)

∫
dk′

(2π)3
Wk,k′ [1− f1(r,k′; t)] (9.22)

where the integral has been labeled with subscript out because, since dk is infinitesimal, the effect of
any collision of an electron in the volume is to remove it from that volume element.
(ii) Electrons not only scatter out of the level k as seen before, but are also scattered into it from
other levels thanks to collisions. To evaluate this contribution, consider the electrons that, just prior

216

Chapter 9. Electronic transport properties 9.1. Boltzmann transport theory

to the collision, were in the volume element dk′ about k′. The above-mentioned contribution will be
proportional to that number of electrons, to the fraction of non occupied levels with wave vector k,
and to the fraction of particles with wave vector dk′ about k′ that would be scattered into dk about
k. Therefore the total number of electrons arriving in the volume element dk about k from the volume
element dk′ about k′ as the result of a collision in the time interval dt is

Icollin = [1− f1(r,k; t)]

∫
dk′

(2π)3
Wk′,k f1(r,k′; t) (9.23)

The sum of these two contributions is called collision integral. Omitting the spatial of the distribution
function and of the relaxation time, as well as the time dependence of the distribution function, it can
be adopted the notation f1(r,k; t) ≡ f1(k), τ(r,k) ≡ τ(k), and it can be written(

∂f1(k)

∂t

)
coll

= −
∫

dk′

(2π)3
{Wk,k′ f1(k)[1− f1(k′)]−Wk′,k f1(k′)[1− f1(k)]} (9.24)

In the majority of practical cases it is used the so called “relaxation-time approximation”, so that the
equation (9.24) is simplified to (

∂f1(k)

∂t

)
coll

= − [f1(k)− f1,eq(k)]

τ(k)
(9.25)

This approximation represents quantitatively the fact that it is the role of collisions to restore local
equilibrium after a collision in a time of the order of the relaxation time. In case of electrons in metals
the equilibrium distribution is given by the Fermi-Dirac function for the electronic band with energy ε

f1(k) = f1,eq(ε(k), µ(r), T (r)) ≡ f1,eq(ε, µ, T) =
1

e(ε(k)−ξ(r))/kT (r) + 1
(9.26)

where ξ is the chemical potential, T is the temperature, k is the Boltzmann constant and the notation
f1 represents the fact that the Fermi-Dirac distribution must be seen as a single electron distribution
function.

9.1.3 Boltzmann equation

Boltzmann equation is given by the previous expression (9.12), that is

∂f1

∂t
= {H1, f1}+

(
∂f1

∂t

)
coll

(9.27)

where f1 is the single particle distribution function, that in general depends on coordinates (r, k) in
phase space and on time t. In the relaxation-time approximation the collision integral can be written as
in (9.25). In this case the Boltzmann equation becomes:

∂f1

∂t
= {H1, f1} −

[f1 − f1,eq]

τ
(9.28)

where τ in general depends on r and k, while f1,eq is the equilibrium single particle probability distri-
bution function. Rewriting the expression (9.28) as

∂f1

∂t
+
f1

τ
= {H1, f1}+

f1,eq

τ
(9.29)

it assumes explicitly the form of a first order non-homogeneous differential equation.
Consider a physical system of a solid. Equation (9.29) can be resolved for a distribution function f1

depending on r, k, on time t and associated to a given energy ε, whose general expression is f1 ≡
f(ε, r,k, t) (the Fermi-Dirac equilibrium distribution form (9.26) is a time-independent example of this
kind of function). In order to write the solution of (9.29) in a simple way the relaxation time τα can
be considered as independent of time t′ at which the collision takes place, and the distribution function
f1 appearing in the Poisson bracket can be considered as the equilibrium distribution function for the

217

9.1. Boltzmann transport theory Chapter 9. Electronic transport properties

electronic band α: {H1, f1} ≡ {H1, feq}, since this is the streaming term describing the evolution of
distribution function in the absence of collisions. Then the solution of the differential equation allows an
explicit expression for the form of the non equilibrium electronic distribution function at time t, given
by

f(ε, r,k, t) = feq(r,k) +

∫ t

−∞
dt′ e−(t−t′)/τ(ε(k)) {H1, feq}r,p (9.30)

where the relaxation time depends on wave vector only through the energy term ε(k).
The Poisson bracket in (9.30) can be made explicit by means of the Hamilton equations, obtaining the
following expression

{H1, feq}r,p =
∂H1

∂r
· ∂feq
∂p
− ∂H1

∂p
· ∂feq
∂r

= −ṗ · ∂feq
∂p
− ṙ · ∂feq

∂r
(9.31)

Furthermore, the semiclassical equation of motion for the particles in solids can be introduced

ṙ = vα(k) =
1

h̄

∂εα(k)

∂k
; h̄k̇ = −e

[
E(r, t) +

1

c
vα(k)×H(r, t)

]
= F(r,k, t) (9.32)

where E is the electric field, H is the magnetic field and vα is the group velocity of the electronic band
α. Substituting these semiclassical equations in (9.31), it can be written as

{H1, feq} = −1

h̄
F(r,k, t) · ∂feq

∂k
− vα(k) · ∂feq

∂r
(9.33)

If the distribution function feq(r,k) is given by the Fermi Dirac distribution (9.26), the changes of
variables in the derivative of the distribution function in (9.33) permit to obtain the following expression

{H1, feq} = −∂feq
∂ε

vα(k) ·
[
F(r,k, t)−∇ξ −

(
ε(k)− ξ

T

)
∇T
]

(9.34)

Substituting (9.34) in (9.30) the previous equation (9.30) becomes

f(r,k, t) = feq(r,k) +

∫ t

−∞
dt′ e−(t−t′)/τ(ε(k))

(
−∂feq
∂ε

)
vα(k(t′)) ·

·
[
F(r,k, t′)−∇ξ(t′)−

(
ε(k)− ξ

T

)
∇T (t′)

]
(9.35)

Restricting the equation (9.35) to the case of zero magnetic field, H = 0, the force F(r,k, t′) depends
only on electric field. Furthermore, in the absence of magnetic fields the wave vector k(t′) will be
time independent, reducing to k, and the integral in (9.35) becomes trivial for static electric field and
temperature gradients. In addition, if the electric field is spatially uniform (so E(r) = E) and the
temperature is constant throughout the system, the previous equation can be reduced to

f(k) ≈ feq(k)− eE · vα(k) τ(ε(k))

(
−∂feq
∂ε

)
(9.36)

In the following this relaxation-time approximation formula will be used to calculate the transport
properties of interest for solid state systems.

9.1.4 Current density and electrical conductivity

The number of electrons per unit volume in the infinitesimal three-dimensional element dk is equal to
f(k)dk/4π3. The current density in the electronic band α is then given by

jα = −e
∫

dk

4π3
vα(k) f(k) (9.37)

where the band index dependence of the velocity is been transported in the parenthesis, i.e. vα(k), in
order to avoid confusion with the velocity components. Since each partially filled band makes such a

218

Chapter 9. Electronic transport properties 9.1. Boltzmann transport theory

contribution to the current density, the total current density is the sum of these contributions over all
bands. Inserting the form (9.36) in the equation (9.37), the following relation between current density
and electric field can be obtained

jαµ =
∑
ν

σαµνEν (9.38)

where σα is a two-rank tensor. The explicit expression for the conductivity tensor components related
to the electronic band α is given by

σαµν = e2

∫
dk

4π3
τ(εα(k)) vµ(α,k) vν(α,k)

(
−∂feq
∂ε

)
ε=εα(k)

. (9.39)

where the velocities are defined by deriving the energy band structure with respect to a given k point
in a given direction, that is

ṙµ = vµ(α,k) =
1

h̄

∂εα(k)

∂kµ
(9.40)

The total electrical conductivity is the sum over all partially filled bands that contribute to the current
density (9.37), i.e.

σµν =
∑
α

σµν(α). (9.41)

If j is parallel to E the electrical conductivity tensor σ is diagonal: σµν = σδµν . This is generally
true in crystals of cubic symmetry. Furthermore, since the Fermi function feqα has negligible derivative
except when the energy ε is within kT of the Fermi energy εF , filled bands make no contribution to
the conductivity, as expected. Finally, because of the dependence of the Fermi-Dirac distribution on the
chemical potential and the temperature, the conductivity can be viewed as a function of these parameters,
σ(µ, T). Mapping the integral (9.39) in the energy domain, the electrical conductivity results

σµν(ξ, T) = e2

∫ ∞
−∞

dε

(
−∂feq(ε, ξ, T)

∂ε

)
Ξµν(ε), (9.42)

with the definition of the quantity

Ξµν(ε) =
1

v

∑
α,k

τ(εα(k)) vµ(α,k) vν(α,k) δ(ε− εα(k)), (9.43)

where v is the volume of the Brillouin zone, and the summation is over all bands α and over all the
Brillouin zone. The quantity Ξµν(ε) is called transport distribution function (TDF). In first-principles
calculations is assumed that the lifetime τ(εα(k)) is independent both of α and k, and is chosen the
value τ = τ(εα(k)) by fitting the experimental values for, e.g., the experimental electrical conductivity
at a given temperature.

The derivative of the Fermi-Dirac equilibrium function is easily computed analytically starting from the
form of the equilibrium function

feq(ε, ξ, T) =
1

e(ε(k)−ξ(r))/kT (r) + 1
→ ∂feq(ε, ξ, T)

∂ε
= − 1

kT

(
e(ε(k)−ξ(r))/kT (r)

[e(ε(k)−ξ(r))/kT (r) + 1]2

)
(9.44)

so that equation (9.42) can be written more explicitly as

σµν(ξ, T) =
e2

kT

∫ ∞
−∞

dε
e(ε(k)−ξ(r))/kT (r)

[e(ε(k)−ξ(r))/kT (r) + 1]2
Σµν(ε) (9.45)

In practical implementation, the integral in the energy domain in equation (9.45) is replaced by a discrete
summation, in the following way

σµν(ξ, T) = e2
nε∑
i=1

(
−∂feq(εi, ξ, T)

∂εi

)
Ξµν(εi) ∆εi =

e2

kT

nε∑
i=1

e(εi(k)−ξ(r))/kT (r)

[e(εi(k)−ξ(r))/kT (r) + 1]2
Σµν(εi) ∆εi

(9.46)

219

9.1. Boltzmann transport theory Chapter 9. Electronic transport properties

9.1.4.1 Generalization to a multiband approach

Transport in materials is described assuming that electrons can be treated as free particles whose dis-
persion is the actual band structure of the material. One typically relies on the semiclassical Boltzmann
equation within the standard long-wave approximation, for which Bloch electrons are presented as lo-
calized wave packets comprised of a single band near the Fermi level. The theory further relies on the
equations of motion for the wave packet center in order to derive various transport properties. Realistic
band structures of materials, however, can have several bands near the Fermi level and can contain
crossing points or local degeneracies.
On the other hand, several researchers have considered Bloch electron wave packets extending over mul-
tiple energy bands (see, for example, Ref. [146]). Indeed, it has been shown that the equations of motion
for the centers of such multiband wave packets are different than those in the single band wave packet
case. In this framework, the semiclassical Boltzmann needs to be reconsidered and reviewed in light
of these discoveries. To this end, research findings strongly suggest that the single band semiclassical
transport theory may need to be expanded to capture multiband effects from the materials electronic
structure.

The starting point is the approximate equation for the distribution function

f(k) ≈ feq(k)− e
(
−∂feq
∂ε

) nd∑
α=1

E · vα(k) τ(εα(k)) (9.47)

where nd is the number of degenerate states with energy εα(k). In the following, this relaxation-time
approximation formula will be used to calculate the transport properties of interest for solid state systems.

The number of electrons per unit volume in the infinitesimal three-dimensional element dk is equal to
f(k)dk/4π3. The current density in the electronic band α is then given by

j = −e
∫

dk

4π3
f(k) ⊗

nd∑
β=1

vβ(k) (9.48)

Substituting the expression (9.47) for the distribution function in (9.48) gives

j = −e
∫

dk

4π3
feq(k) + e2

(
−∂feq
∂ε

)
E ·

[
nd∑
α=1

vα(k) τ(εα(k)) ⊗
nd∑
β=1

vβ(k)

]
(9.49)

The manipulation of the previous formula leads to the expression

j = −e
∫

dk

4π3
feq(k) + e2 τ

∫
dk

4π3

(
−∂feq
∂ε

)
E ·

[
nd∑
α=1

vα(k) ⊗
nd∑
β=1

vβ(k)

]

= −e
∫

dk

4π3
feq(k) + e2 τ E ·

∫
dk

4π3

(
−∂feq
∂ε

) nd∑
α=1

vα(k) ⊗
nd∑
β=1

vβ(k)

= −e
∫

dk

4π3
feq(k) + E ·

[
e2 τ

∫
dk

4π3

(
−∂feq
∂ε

) nd∑
α=1

vα(k) ⊗
nd∑
β=1

vβ(k)

] (9.50)

Therefore, taking the component λ of the previous equation that describes the current density gives

jλ = −e
∫

dk

4π3
feq(k) +

{
e2 τ

∫
dk

4π3

(
−∂feq
∂ε

)[nd∑
α=1

vα(k) ⊗
nd∑
β=1

vβ(k)

]
λν

}
· Eν

= −e
∫

dk

4π3
feq(k) +

{
e2 τ

∫
dk

4π3

(
−∂feq
∂ε

)[nd∑
α=1

nd∑
β=1

vα(k) ⊗ vβ(k)

]
λν

}
· Eν

= −e
∫

dk

4π3
feq(k) +

{
e2 τ

∫
dk

4π3

(
−∂feq
∂ε

) nd∑
α=1

nd∑
β=1

[vα(k) ⊗ vβ(k)]λν

}
· Eν

(9.51)

220

Chapter 9. Electronic transport properties 9.1. Boltzmann transport theory

Finally, by applying the definition of the tensor product in the previous expression, a glimpse on the
form of the current density component which takes into account also degenerate states can be given by
the formula

jλ = −e
∫

dk

4π3
feq(k) +

{
e2 τ

∫
dk

4π3

(
−∂feq
∂ε

)[nd∑
α=1

vλ,α(k)

nd∑
β=1

vν,β(k)

] }
· Eν (9.52)

Since each partially filled band makes such a contribution to the current density, the total current density
is the sum of these contributions over all bands. Inserting the form (9.47) in the equation (9.48), the
following relation between current density and electric field can be obtained

jµ =
∑
ν

σµν Eν (9.53)

where σ is a two-rank tensor.
The explicit expression for the conductivity tensor components is thus given by

σµν = e2 τ

∫
dk

4π3

(
−∂feq
∂ε

)[nd∑
α=1

vλ,α(k)

nd∑
β=1

vν,β(k)

]
(9.54)

221

9.2. Band velocities in the Crystal code Chapter 9. Electronic transport properties

9.2 Band velocities calculation in the CRYSTAL code

Band velocities, defined in equation (9.40) and used in the transport distribution function (9.43) for
the calculation of electronic properties, can be obtained in practical implementations according to the
Pople analytical method,[147, 18] which consists of differentiating by the wave vector k the generalized
eigenvalue problem and the orthogonalization condition. Therefore, the starting point are the expressions
for the generalized eigenvalue problem and the orthogonalization condition associated, respectively given
by

F(k)C(k) = S(k)C(k)E(k) (9.55)

C†(k)S(k)C(k) = 1 (9.56)

Differentiating both equations (9.55) and (9.56) with respect to the wave vector k leads to

Ḟ(k)C(k) + F(k)Ċ(k) = Ṡ(k)C(k)E(k) + S(k)Ċ(k)E(k) + S(k)C(k)Ė(k) (9.57)

Ċ†(k)S(k)C(k) + C†(k)Ṡ(k)C(k) + C†(k)S(k)Ċ(k) = 0 (9.58)

where the dot over the matrices indicates the derivatives with respect to the wave vector k. Using a
localized Gaussian-type basis set for the expansion of the Kohn-Sham one-electron orbitals, the Fock
and the overlap matrices are computed in the direct space. From the knowledge of the cell-dependent
Fock and overlap elements in the direct space, their expression in the reciprocal space can be obtained
by applying the Fourier transforms, so that the k vector derivatives of the Fock and overlap matrices
can be easily obtained as

Ḟ(k) =
∑
{g}

i gF(g) eik·g (9.59)

and similarly,

Ṡ(k) =
∑
{g}

i g S(g) eik·g (9.60)

where g is a lattice vector in direct space, while F(g) and S(g) are the Fock and the overlap matrices in
the direct space, respectively. By assuming that

Ċ(k) = C(k)U(k) (9.61)

and by multiplying equation (9.57) on the left by C†(k), the adjoint of C(k), the differentiation of the
eigenvalue problem (9.57) can be rewritten as

C†(k)Ḟ(k)C(k) + C†(k) F(k)C(k)︸ ︷︷ ︸
= S(k)C(k)E(k)

U(k) = C†(k)Ṡ(k)C(k)E(k) + C†(k)S(k)C(k)U(k)E(k)

+ C†(k)S(k)C(k)Ė(k)

C†(k)Ḟ(k)C(k) + C†(k)S(k)C(k)︸ ︷︷ ︸
= 1

E(k)U(k) = C†(k)Ṡ(k)C(k)E(k) + C†(k)S(k)C(k)︸ ︷︷ ︸
= 1

U(k)E(k)

+ C†(k)S(k)C(k)︸ ︷︷ ︸
= 1

Ė(k) (9.62)

Using the assumption (9.61) also in equation (9.58), the differentiation of the orthogonalization condition
(9.58) can be rewritten as

[C(k)U(k)]†S(k)C(k) + C†(k)Ṡ(k)C(k) + C†(k)S(k)C(k)U(k) = 0 (9.63)

U†(k) C†(k)S(k)C(k)︸ ︷︷ ︸
= 1

+C†(k)Ṡ(k)C(k) + C†(k)S(k)C(k)︸ ︷︷ ︸
= 1

U(k) = 0 (9.64)

The orthogonalization condition (9.56) permits to simplify the previous equations (9.62) and (9.64)
respectively as follows

C†(k)Ḟ(k)C(k) + E(k)U(k) = C†(k)Ṡ(k)C(k)E(k) + U(k)E(k) + Ė(k) (9.65)

222

Chapter 9. Electronic transport properties 9.2. Band velocities in the Crystal code

U†(k) + C†(k)Ṡ(k)C(k) + U(k) = 0 (9.66)

Using the following definitions

G(k) = C†(k)Ḟ(k)C(k) and R(k) = C†(k)Ṡ(k)C(k) (9.67)

the differential form of the eigenvalue problem (9.65) and the differential form of the orthogonalization
condition (9.66) becomes

G(k) + E(k)U(k) = R(k)E(k) + U(k)E(k) + Ė(k) (9.68)

U†(k) + R(k) + U(k) = 0 (9.69)

Starting from these last two equations, the desired values in the matrices U(k) and Ė(k) can thus be
obtained. In particular, the diagonal terms of U(k) matrix can be derived from the differentiation of
the orthogonalization condition (9.69) as

U†(k) + U(k) = −R(k) → Uαα(k) = −1

2
Rαα(k)

while the off-diagonal terms of the same matrix U(k) can be derived from the differentiation expression
of the generalized eigenvalue problem (9.68) as

U(k)E(k)−E(k)U(k) = G(k)−R(k)E(k)− Ė(k)

Uαβ(k)εβ(k)− εα(k)Uαβ(k) = Gαβ(k)−Rαβ(k)εβ(k)− Ėαβ(k) → Uαβ(k) =
Gαβ(k)−Rαβ(k)εβ(k)

εβ(k)− εα(k)

where α, β are the band indexes, and it has been supposed that the matrices E(k) and its derivative with
respect to the wave vectors Ė(k) are both diagonal matrices, so that the values εn(k) (with n = α, β)
are the diagonal elements of the matrix E(k), and the off-diagonal elements Eαβ(k) and Ėαβ(k) are all
equal to zero, that is Eαβ(k) = Ėαβ(k) = 0.
Therefore, the diagonal elements ε̇n(k) (with n = α, β) of the matrix Ė(k), which are the band velocities
defined in (9.40), can be computed considering the diagonal elements of the matrix expression for the
differentiation of the generalized eigenvalue problem (9.68), so as

Gαα(k) + εα(k)Uαα(k) = Rαα(k)εα(k) + Uαα(k)εα(k) + ε̇α(k)

Gαα(k) = Rαα(k)εα(k) + ε̇α(k) → ε̇α(k) = Gαα(k)−Rαα(k)εα(k)

Resuming the results obtained, the desired values for the elements of the matrices U(k) and Ė(k) can
be obtained using the following three equations

Uαα(k) = −1

2
Rαα(k) (9.70)

Uαβ(k) =
Gαβ(k)−Rαβ(k)εβ(k)

εβ(k)− εα(k)
(9.71)

ε̇α(k) = Gαα(k)−Rαα(k)εα(k) (9.72)

where α, β are the band indexes (quantum numbers). Equation (9.72) is particularly important, because
it defines a practical way to compute the band velocities (9.40) starting from the values of the diagonal
elements of the Fock, the overlap and the coefficients matrices which are the results of the self-consistent
procedure towards the electronic ground state. Indeed, using the definitions (9.67), equation (9.72) can
be written more explicitly as

ε̇α(k) = [C†(k)Ḟ(k)C(k)]αα − [C†(k)Ṡ(k)C(k)]αα εα(k) (9.73)

Equation (9.73) is the general expression for the derivative of the band structure form with respect to
a generic wave vector. Indeed, the band velocities expression (9.40) can be recovered by making the
derivative functional form in equation (9.73) more explicit, that is

∂εα(k)

∂kµ
= h̄ vµ,α(k) =

[
C†(k)

∂F(k)

∂kµ
C(k)

]
αα

−
[
C†(k)

∂S(k)

∂kµ
C(k)

]
αα

εα(k) µ = x, y, z (9.74)

223

9.2. Band velocities in the Crystal code Chapter 9. Electronic transport properties

where µ = x, y, z are the three spatial Cartesian directions in the reciprocal space. Taking into account
the eigenvalues matrix E(k), which is a diagonal matrix with the α-th elements on the diagonal equal
to the eigenvalue εα(k), the previous expression can be equivalently rewritten as

∂εα(k)

∂kµ
= h̄ vµ,α(k) =

[
C†(k)

∂F(k)

∂kµ
C(k)

]
αα

−
[
C†(k)

∂S(k)

∂kµ
C(k) E(k)

]
αα

µ = x, y, z (9.75)

Therefore, the band velocities are given by

vµ,α(k) =
1

h̄

∂εα(k)

∂kµ
=

1

h̄

{[
C†(k)

∂F(k)

∂kµ
C(k)

]
αα

−
[
C†(k)

∂S(k)

∂kµ
C(k) E(k)

]
αα

}
(9.76)

where µ = x, y, z are the three spatial Cartesian directions in the reciprocal space.

The band velocities are real numbers. In order to demonstrate this property of the band velocities, it
is convenient to perform the calculation with the whole matrices in the expression, i.e. considering the
formula

h̄vµ(k) = C†(k)
∂F(k)

∂kµ
C(k)−C†(k)

∂S(k)

∂kµ
C(k) E(k) µ = x, y, z (9.77)

and then studying the final equations by restricting the case to only the diagonal elements of the matrices
involved. Furthermore, the notation can be further simplified by expressing the derivatives of the Kohn-
Sham and of the overlap matrices with respect to the kµ components in reciprocal space (with µ = x, y, z)
in a shortest notation such as

h̄vµ(k) = C†(k) ∂µF(k) C(k)−C†(k) ∂µS(k) C(k) E(k) µ = x, y, z (9.78)

The overlap C(k), the Kohn-Sham derivatives ∂µF(k) and the overlap derivatives ∂µS(k) matrices
contain, in general, complex numbers, and can therefore be written as the sum of a real and an imaginary
part, in the following way

C(k) = Cr(k) + iCi(k) ∂µF(k) = ∂µFr(k) + i ∂µFi(k) ∂µS(k) = ∂µSr(k) + i ∂µSi(k)

where the first term of each expression is a purely real matrix and the second term is a purely real matrix
multiplied by the imaginary unit i to give the purely imaginary part of the associated matrix on the left
hand sides. On the other hand, the eigenvalues are purely real, so that the eigenvalues matrix E(k)
has to be considered as a purely real numbers diagonal matrix. Taking into account the formula (9.78)
and expanding each term as a sum of its purely real and purely imaginary parts, as previously reported,
leads to the following expression

C†(k) ∂µF(k) C(k)−C†(k) ∂µS(k) C(k) E(k)

= [Cr(k) + iCi(k)]†[∂µFr(k) + i ∂µFi(k)][Cr(k) + iCi(k)]

− [Cr(k) + iCi(k)]†[∂µSr(k) + i ∂µSi(k)][Cr(k) + iCi(k)] E(k)

= [C†r(k) ∂µFr(k) + iC†r(k) ∂µFi(k)− iC†i (k) ∂µFr(k) + C†i (k) ∂µFi(k)][Cr(k) + iCi(k)]

− [C†r(k) ∂µSr(k) + iC†r(k) ∂µSi(k)− iC†i (k) ∂µSr(k) + C†i (k) ∂µSi(k)][Cr(k) + iCi(k)] E(k)

= C†r(k) ∂µFr(k) Cr(k) + iC†r(k) ∂µFi(k) Cr(k)− iC†i (k) ∂µFr(k) Cr(k) + C†i (k) ∂µFi(k) Cr(k)

+ iC†r(k) ∂µFr(k) Ci(k)−C†r(k) ∂µFi(k) Ci(k) + C†i (k) ∂µFr(k) Ci(k) + iC†i (k) ∂µFi(k) Ci(k)

− [C†r(k) ∂µSr(k) Cr(k) E(k) + iC†r(k) ∂µSi(k) Cr(k) E(k)− iC†i (k) ∂µSr(k) Cr(k) E(k)

+ C†i (k) ∂µSi(k) Cr(k) E(k) + iC†r(k) ∂µSr(k) Ci(k) E(k)−C†r(k) ∂µSi(k) Ci(k) E(k)

+ C†i (k) ∂µSr(k) Ci(k) E(k) + iC†i (k) ∂µSi(k) Ci(k) E(k)] (9.79)

where the property of the conjugate transpose operation applied on two general matrices

(A + B)† = A† + B† (9.80)

224

Chapter 9. Electronic transport properties 9.2. Band velocities in the Crystal code

which is valid for any two matrices A and B of the same dimensions, has been used (indeed, the
conjugate transpose respects addition). Therefore, collecting all the purely real matrix products in a
square parenthesis and the remaining purely imaginary matrix products in a second square parenthesis
results in

C†(k) ∂µF(k) C(k)−C†(k) ∂µS(k) C(k) E(k)

= [tCr(k) ∂µFr(k) Cr(k) + tCi(k) ∂µFi(k) Cr(k)− tCr(k) ∂µFi(k) Ci(k) + tCi(k) ∂µFr(k) Ci(k)

− tCr(k) ∂µSr(k) Cr(k) E(k)− tCi(k) ∂µSi(k) Cr(k) E(k) + tCr(k) ∂µSi(k) Ci(k) E(k)

− tCi(k) ∂µSr(k) Ci(k) E(k)]

+ i [tCr(k) ∂µFi(k) Cr(k)− tCi(k) ∂µFr(k) Cr(k) + tCr(k) ∂µFr(k) Ci(k) + tCi(k) ∂µFi(k) Ci(k)

− tCr(k) ∂µSi(k) Cr(k) E(k) + tCi(k) ∂µSr(k) Cr(k) E(k)− tCr(k) ∂µSr(k) Ci(k) E(k)

− tCi(k) ∂µSi(k) Ci(k) E(k)] (9.81)

where it is used the fact that the conjugate transpose operations in (9.79) coincides with the simpler
transpose operation because all the matrices in the final expression in equation (9.79) (and so in (9.81))
contain purely real numbers representing the coefficients associated to the real and the imaginary part.
Therefore, the first and second square brackets in equation (9.81) identify, respectively, the matrix prod-
ucts that give the purely real terms and the matrix products which give the purely imaginary part of
the band velocities.

9.2.1 Properties of reciprocal space representation of ∂µF and ∂µS matrices

First of all, the properties of the derivative of the Kohn-Sham and overlap matrices has to be computed.
In particular, it can be demonstrated that the derivative matrices are Hermitian. Indeed, let Fγρ(g)
and Sγρ(g) be the (γ, ρ) elements of the direct space representation of respectively the Kohn-Sham
and overlap matrices at lattice vector g, and similarly for Fγρ(k) and Sγρ(k) for the reciprocal space
representation. A couple of useful properties of the direct space representation are

Fγρ(g) = Fργ(−g) and Sγρ(g) = Sργ(−g) i.e. simmetry (9.82)

Fγρ(g) ∈ R and Sγρ(g) ∈ R ∀ γ, ρ, g i.e. matrices reality (9.83)

that is, the direct space Kohn-Sham and overlap matrices are symmetric and purely real. In order to
compute the properties of the matrices when a Fourier Transform operation is applied on them, the
calculations in the following will be carried out for the Kohn-Sham matrix (the same result can be then
applied to the overlap matrix). The summation for the Fourier Transform can be split into the zero g
vector case, a sum over positive g vectors and a sum over negative g vectors. The last two parts are
most conveniently done by both going over all g vectors except the zero vector, and halving the result,
obtaining

Fγρ(k) =
∑
{g}

Fγρ(g) eik·g = Fγρ(0) eik·0 +
1

2

∑
{g 6=0}

[Fγρ(g) eik·g + Fγρ(−g) e−ik·g]

= Fγρ(0) +
1

2

∑
{g 6=0}

[Fγρ(g) eik·g + Fγρ(−g) e−ik·g]

(9.84)

Now consider the diagonal elements of the Kohn-Sham matrix above:

Fγγ(k) =
∑
{g}

Fγγ(g) eik·g = Fγγ(0) +
1

2

∑
{g 6=0}

[Fγγ(g) eik·g + Fγγ(−g) e−ik·g]

= Fγγ(0) +
1

2

∑
{g 6=0}

[Fγγ(g) eik·g + Fγγ(g) e−ik·g]

= Fγγ(0) +
∑
{g 6=0}

Fγγ(g)R(eik·g)

(9.85)

225

9.2. Band velocities in the Crystal code Chapter 9. Electronic transport properties

Since the Kohn-Sham and the overlap matrices have the same properties (9.82) and (9.83) in the real
space, then the previous procedure can be applied as well to the overlap matrix, obtaining the same
result. Therefore, since the elements of the Kohn-Sham and the overlap matrices are real in the direct
space, the previous calculations show that the diagonal elements of Fγρ(k) and Sγρ(k) are purely real
at all the reciprocal space points k.

By differentiating the Kohn-Sham matrix elements with respect to the components of the reciprocal
space lattice vectors,

∂Fγρ(k)

∂kµ
≡ ∂µFγρ(k) =

∑
{g}

i gµ Fγρ(g) eik·g

= i0Fγρ(0) eik·0 +
i

2

∑
{g 6=0}

[gµ Fγρ(g) eik·g − gµ Fγρ(−g) e−ik·g]

=
i

2

∑
{g 6=0}

[gµ Fγρ(g) eik·g − gµ Fγρ(−g) e−ik·g]

=
i

2

∑
{g 6=0}

[gµ Fγρ(g) eik·g − gµ Fργ(g) e−ik·g] µ = x, y, z

(9.86)

the following expression is obtained

∂µFγρ(k) =
i

2

∑
{g 6=0}

[gµ Fγρ(g) eik·g − gµ Fργ(g) e−ik·g] µ = x, y, z (9.87)

where the symmetry property (9.82) of the Kohn-Sham matrix has been used. At the same time, the
conjugate transpose of each element (9.87) is given by

∂F ∗ργ(k)

∂kµ
≡ ∂µF ∗ργ(k) = −

∑
{g}

i gµ F
∗
ργ(g) e−ik·g = −

∑
{g}

i gµ Fργ(g) e−ik·g

= −i0Fργ(0) e−ik·0 − i

2

∑
{g 6=0}

[gµ Fργ(g) e−ik·g − gµ Fργ(−g) eik·g]

=
i

2

∑
{g 6=0}

[gµ Fργ(−g) eik·g − gµ Fργ(g) e−ik·g]

=
i

2

∑
{g 6=0}

[gµ Fγρ(g) eik·g − gµ Fργ(g) e−ik·g]
eq. (9.87)

= ∂µFγρ(k)

(9.88)

that is equal to the element of the matrix in (9.87) without the conjugate transpose. It follows that the
derivative of the reciprocal space representation of the Kohn-Sham matrix with respect to a reciprocal
space point component is an Hermitian matrix. A well-known property of the Hermitian matrices is to
have only real elements on the main diagonal. This can be demonstrated very easily in the specific case
of the Kohn-Sham matrix derivative, by taking the diagonal elements in equation (9.87)

∂µFγγ(k) =
i

2

∑
{g 6=0}

[gµ Fγγ(g) eik·g − gµ Fγγ(g) e−ik·g] = i
∑
{g 6=0}

gµ Fγγ(g) I(eik·g) ∈ R (9.89)

The same relation can be computed for the diagonal elements of the overlap matrix in the reciprocal
space. Thus at real k points, where the complex exponential is real for all g, the diagonal elements of
the Kohn-Sham and overlap reciprocal space matrices are zero. At complex k points they are purely
real, from the product of i with the imaginary part of the complex exponential.

Since the Kohn-Sham and the overlap matrices have the same properties (9.82) and (9.83) in the real
space, then the previous procedure can be also applied to the overlap matrix, obtaining the same result.
Therefore, it has been demonstrated that the derivatives of the reciprocal space representations of the

226

Chapter 9. Electronic transport properties 9.2. Band velocities in the Crystal code

Kohn-Sham and the overlap matrices with respect to a reciprocal space point component are Hermitian
matrices, that is

∂µFγρ(k) = ∂µF
∗
ργ(k) → ∂µF = ∂µF

†

∂µSγρ(k) = ∂µS
∗
ργ(k) → ∂µS = ∂µS

† (9.90)

Finally, from the expressions previously derived for the derivatives of the Kohn-Sham and overlap recip-
rocal matrices, that are reported here below

∂µFγρ(k) =
i

2

∑
{g 6=0}

[gµ Fγρ(g) eik·g − gµ Fργ(g) e−ik·g] ∈ C (9.91)

∂µSγρ(k) =
i

2

∑
{g 6=0}

[gµ Sγρ(g) eik·g − gµ Sργ(g) e−ik·g] ∈ C (9.92)

∂µFγγ(k) =
i

2

∑
{g 6=0}

[gµ Fγγ(g) eik·g − gµ Fγγ(g) e−ik·g] = i
∑
{g 6=0}

gµ Fγγ(g) I(eik·g) ∈ R (9.93)

∂µSγγ(k) =
i

2

∑
{g 6=0}

[gµ Sγγ(g) eik·g − gµ Sγγ(g) e−ik·g] = i
∑
{g 6=0}

gµ Sγγ(g) I(eik·g) ∈ R (9.94)

it can be easily noted that real k points, which have an exponential expression that is purely real, have a
non-zero contribution only in the off-diagonal elements (9.91) and (9.92). Therefore the band velocities,
given by the difference of the Kohn-Sham diagonal elements (9.93) and the overlap diagonal elements
(9.94) multiplied by the eigenvalues, are non-zero only for complex reciprocal space points k, which
have a non-zero imaginary part in the exponential expansion. Thus only the complex k points give
a contribution in the band velocities calculation (while for real k points the diagonal elements (9.93)
and (9.94), i.e. the band velocities, are zero), so that in practical implementations only the complex
reciprocal space points in the Brillouin zone can be considered.

9.2.2 The reality of band velocities

Since the band velocities are defined by the equation (9.74), only the diagonal elements of the matrix
products in the expression (9.81) have to be considered. From the Hermitian property of the derivatives
of the reciprocal space representation of the Kohn-Sham and overlap matrices demonstrated in Section
9.2.1, it follows that

(i) the diagonal elements of the derivatives matrices ∂µF(k) and ∂µS(k) are purely real numbers, so
that the diagonal elements of the imaginary part of the reciprocal space Kohn-Sham and overlap
derivative matrices are identically equal to zero, that is

[∂µFi(k)]αα = 0 and [∂µSi(k)]αα = 0 (9.95)

(ii) the real part of reciprocal space Kohn-Sham and overlap derivative matrices is symmetric, while
the imaginary part is antisymmetric, namely,

∂µFr(k) and ∂µSr(k) are symmetric matrices

∂µFi(k) and ∂µSi(k) are antisymmetric matrices
(9.96)

For any antisymmetric matrix A (i.e. for any matrix A whose elements are so that Aγρ = −Aργ), it can
be demonstrated that

A ∈ Rn,n is antisymmetric → tC A C is antisymmetric ∀ C ∈ Rn,m (9.97)

227

9.2. Band velocities in the Crystal code Chapter 9. Electronic transport properties

The proof is the following:

(tC A C)αβ = t(Cαγ)AγρCρβ = CγαAγρCρβ = −CγαAργ Cρβ = −CγαAργ t(Cβρ)

= − t(Cβρ)Aργ Cγα = −(tC A C)βα
(9.98)

where the Einstein notation has been used for the indexes. It is obvious to see that, for the diagonal
elements (with α = β) of the previous antisymmetric matrix product, the following relations are true

(tC A C)αα = −(tC A C)αα → (tC A C)αα = 0 ∀ A ∈ Rn,n antisymmetric and ∀ C ∈ Rn,m

as a consequence of the previous demonstration. Indeed, it is a well-known property of the antisymmetric
matrices to have the elements on the diagonal equal to zero.

If ∂µF(k) and ∂µS(k) are Hermitian, their imaginary parts ∂µFi(k) and ∂µSi(k) are antisymmetric.
Therefore, as a consequence of the antisymmetry of the purely imaginary parts of the derivative of the
Kohn-Sham matrix with respect to a component of a reciprocal space vector, the diagonal elements of
the following matrix products, that belongs to the imaginary part in the expression (9.81) are identically
equal to zero, that is

∂µFi(k) antisymmetric → [tCr(k) ∂µFi(k) Cr(k)]αα = 0 (9.99)

∂µFi(k) antisymmetric → [tCi(k) ∂µFi(k) Ci(k)]αα = 0 (9.100)

∂µSi(k) antisymmetric → [tCr(k) ∂µSi(k) Cr(k) E(k)]αα

= [tCr(k) ∂µSi(k) Cr(k)]αα εα(k) = 0
(9.101)

∂µSi(k) antisymmetric → [tCi(k) ∂µSi(k) Ci(k) E(k)]αα

= [tCi(k) ∂µSi(k) Ci(k)]αα εα(k) = 0
(9.102)

For any symmetric matrix A (i.e. for any matrix A whose elements are so that Aγρ = Aργ), it can be
demonstrated that

A ∈ Rn,m is symmetric → tC A B is symmetric ∀ C ∈ Rn,p and ∀ B ∈ Rm,q (9.103)

The proof is the following:

(tC A B)αβ = t(Cαγ)AγρBρβ = CγαAγρBρβ = CγαAργ Bρβ = CγαAργ
t(Bβρ)

= t(Bβρ)Aργ Cγα = (tB A C)βα
(9.104)

where the Einstein notation has been used for the indexes. It is obvious to see that, for the diagonal
elements (with α = β) of the previous symmetric matrix product, the following relations are true

(tC A B)αα = (tB A C)αα ∀ A ∈ Rn,m symmetric and ∀ C ∈ Rn,p and ∀ B ∈ Rm,q (9.105)

as a consequence of the previous demonstration.

If ∂µF(k) and ∂µS(k) are Hermitian, their real part ∂µFr(k) and ∂µSr(k) are symmetric.
Therefore, as a consequence of the symmetry of the purely real parts of the derivative of the Kohn-
Sham reciprocal matrix with respect to a component of a reciprocal space vector, each one of the four
remaining matrix products that belongs to the imaginary part in the expression (9.81) have diagonal
elements identically equal to their opposite sign counterpart, that is

∂µFr(k) symmetric → [tCi(k) ∂µFr(k) Cr(k)]αα = [tCr(k) ∂µFr(k) Ci(k)]αα (9.106)

∂µSr(k) symmetric → [tCi(k) ∂µSr(k) Cr(k)]αα = [tCr(k) ∂µSr(k) Ci(k)]αα (9.107)

where the hermiticity of the Kohn-Sham and overlap reciprocal matrix derivatives has been used.

228

Chapter 9. Electronic transport properties 9.2. Band velocities in the Crystal code

In this way, the four remaining elements in the purely imaginary part (last square parenthesis) in equation
(9.81) have diagonal terms that cancel each other, namely,

[tCi(k) ∂µFr(k) Cr(k)]αα − [tCr(k) ∂µFr(k) Ci(k)]αα = 0 (9.108)

and
− [tCi(k) ∂µSr(k) Cr(k) E(k)]αα + [tCr(k) ∂µSr(k) Ci(k) E(k)]αα

= −[tCi(k) ∂µSr(k) Cr(k)]αα εα(k) + [tCr(k) ∂µSr(k) Ci(k)]αα εα(k)

= {−[tCi(k) ∂µSr(k) Cr(k)]αα + [tCr(k) ∂µSr(k) Ci(k)]αα } εα(k) = 0

(9.109)

where the eigenvalues matrix E(k) is a diagonal matrix whose only non-zero elements are the eigenval-
ues εα(k) on the diagonal (therefore, the product of the diagonal elements of the three-matrices product
in (9.109) by the diagonal eigenvalues matrix is separable, and the relation (9.2.2) can be used before
multiplying by the diagonal eigenvalue matrix, as done in (9.109)).

Consider now the matrix products associated to the purely real part in (9.81).

For any symmetric matrix A (i.e. for any matrix A whose elements are so that Aγρ = Aργ), it can be
demonstrated that

A ∈ Rn,n is symmetric → tC A C is symmetric ∀ C ∈ Rn,m (9.110)

The proof is the following:

(tC A C)αβ = t(Cαγ)AγρCρβ = CγαAγρCρβ = CγαAργ Cρβ = CγαAργ
t(Cβρ)

= t(Cβρ)Aργ Cγα = (tC A C)βα
(9.111)

where the Einstein notation has been used for the indexes. It is obvious to see that, for the diagonal
elements (with α = β) of the previous symmetric matrix product, the following relation is true

in general (tC A C)αα 6= 0 ∀ A ∈ Rn,n antisymmetric and ∀ C ∈ Rn,m (9.112)

as a consequence of the previous demonstration. Indeed, the symmetric matrices have diagonal elements
generally different to zero.

Therefore, as a consequence of the symmetry of the purely real parts of the derivative of the Kohn-Sham
reciprocal matrix with respect to a component of a reciprocal space vector, four matrix products that
belongs to the purely real part in the expression (9.81) have diagonal elements generally different from
zero, that is

∂µFr(k) symmetric → [tCr(k) ∂µFr(k) Cr(k)]αα 6= 0 (9.113)

∂µFr(k) symmetric → [tCi(k) ∂µFr(k) Ci(k)]αα 6= 0 (9.114)

∂µSr(k) symmetric → [tCr(k) ∂µSr(k) Cr(k) E(k)]αα

= [tCr(k) ∂µSr(k) Cr(k)]αα εα(k) 6= 0
(9.115)

∂µSr(k) symmetric → [tCi(k) ∂µSr(k) Ci(k) E(k)]αα

= [tCi(k) ∂µSr(k) Ci(k)]αα εα(k) 6= 0
(9.116)

For any antisymmetric matrix A (i.e. for any matrix A whose elements are so that Aγρ = −Aργ), it can
be demonstrated that

A ∈ Rn,m is antisymmetric → tC A B is antisymmetric ∀ C ∈ Rn,p and ∀ B ∈ Rm,q (9.117)

The proof is the following:

(tC A B)αβ = t(Cαγ)AγρBρβ = CγαAγρBρβ = −CγαAργ Bρβ = −CγαAργ t(Bβρ)

= − t(Bβρ)Aργ Cγα = −(tB A C)βα
(9.118)

229

9.2. Band velocities in the Crystal code Chapter 9. Electronic transport properties

where the Einstein notation has been used for the indexes. It is obvious to see that, for the diagonal
elements (with α = β) of the previous antisymmetric matrix product, the following relations are true

(tC A B)αα = −(tB A C)αα ∀ A ∈ Rn,m antisymmetric and ∀ C ∈ Rn,p and ∀ B ∈ Rm,q

as a consequence of the previous demonstration.

Therefore, as a consequence of the antisymmetry of the purely imaginary parts of the derivative of the
Kohn-Sham reciprocal matrix with respect to a component of a reciprocal space vector, four matrix
products that belongs to the purely real part in the expression (9.81) have diagonal elements identically
equal to their opposite sign counterpart, that is

∂µFi(k) antisymmetric → [tCi(k) ∂µFi(k) Cr(k)]αα = [tCr(k) ∂µFi(k) Ci(k)]αα (9.119)

∂µSi(k) antisymmetric → [tCi(k) ∂µSi(k) Cr(k)]αα = [tCr(k) ∂µSi(k) Ci(k)]αα (9.120)

where the hermiticity of the Kohn-Sham and overlap reciprocal matrix derivatives has been used.
In this way, four elements in the purely real part (first square parenthesis) in equation (9.81) have
diagonal terms that cancel each other, namely,

−[tCi(k) ∂µFi(k) Cr(k)]αα + [tCr(k) ∂µFi(k) Ci(k)]αα = 0 (9.121)

and
[tCi(k) ∂µSi(k) Cr(k) E(k)]αα − [tCr(k) ∂µSi(k) Ci(k) E(k)]αα

= [tCi(k) ∂µSi(k) Cr(k)]αα εα(k)− [tCr(k) ∂µSi(k) Ci(k)]αα εα(k)

= { [tCi(k) ∂µSi(k) Cr(k)]αα − [tCr(k) ∂µSi(k) Ci(k)]αα } εα(k) = 0

(9.122)

where the eigenvalues matrix E(k) is a diagonal matrix whose only non-zero elements are the eigenvalues
εα(k) on the diagonal.

Following the results obtained, the previous expression (9.81) is reduced to four purely real terms (matrix
products), namely,

[C†(k) ∂µF(k) C(k)]αα − [C†(k) ∂µS(k) C(k) E(k)]αα

= { [tCr(k) ∂µFr(k) Cr(k)]αα + [tCi(k) ∂µFr(k) Ci(k)]αα

− [tCr(k) ∂µSr(k) Cr(k) E(k)]αα − [tCi(k) ∂µSr(k) Ci(k) E(k)]αα }
(9.123)

As a consequence, the band velocities (9.76), given by

vµ,α(k) ≡ vµ(α,k) =
1

h̄

∂εα(k)

∂kµ
=

1

h̄
{[C†(k) ∂µF(k) C(k)]αα − [C†(k) ∂µS(k) C(k) E(k)]αα}

=
1

h̄
{ [tCr(k) ∂µFr(k) Cr(k)]αα + [tCi(k) ∂µFr(k) Ci(k)]αα

− [tCr(k) ∂µSr(k) Cr(k) E(k)]αα − [tCi(k) ∂µSr(k) Ci(k) E(k)]αα }

(9.124)

are purely real numbers.
In the equation (9.124) the diagonal elements of the band velocities are computed, that is

vµ,α(k) ≡ vµ(α,k) = 〈αk|v̂µ|αk〉 (9.125)

The global character of the band velocities matrix, which includes also the off-diagonal elements,

vµ,αβ(k) ≡ vµ(αβ,k) = 〈αk|v̂µ|βk〉 (9.126)

can be written by generalizing (9.76) obtaining

vµ,αβ(k) ≡ vµ(αβ,k) =
1

h̄
{[C†(k) ∂µF(k) C(k)]αβ − [C†(k) ∂µS(k) C(k) E(k)]αβ} (9.127)

230

Chapter 9. Electronic transport properties 9.2. Band velocities in the Crystal code

recovering the whole matrix

vµ(k) =
1

h̄
{C†(k) ∂µF(k) C(k)−C†(k) ∂µS(k) C(k) E(k)} µ = x, y, z (9.128)

Since the matrices ∂µF(k) and ∂µS(k) are Hermitian, as demonstrated in Section 9.2.1, and the eigen-
values C(k) are unitary matrices, the following theorem can be demonstrated and it can be used to
study the properties of the band velocities matrix (9.128).

Theorem. A unitary similarity transformation applied to an Hermitian matrix preservers hermiticity.

Proof. If A is Hermitian (i.e. A = A†) and the matrix C is unitary (i.e. C†C = CC† = 1), then the
matrix product

B = C†AC (9.129)

has an Hermitian adjoint given by

B† = (C†AC)† = C†A†(C†)† = C†A†C = C†AC = B (9.130)

Therefore, the matrix product B in equation (9.129) is Hermitian.

As a consequence of this theorem, since the band velocities (9.128) are a sum of similarity transformations
applied to the Hermitian matrices ∂µF(k) and ∂µS(k), the band velocities matrix is itself Hermitian.
Therefore, the diagonal elements of the band velocities matrix are purely real, as demonstrated before,
while the off-diagonal elements are generally complex numbers, with a symmetric purely real part and
an anti-symmetric purely imaginary part.

9.2.3 Implementation in the CRYSTAL code

The elements of the Kohn-Sham and overlap reciprocal matrices derivatives with respect to a reciprocal
space component, whose mathematical expressions have been computed in (9.86), are given by

∂µFγρ(k) =
i

2

∑
{g}

[gµ Fγρ(g) eik·g − gµ Fργ(g) e−ik·g] (9.131)

∂µSγρ(k) =
i

2

∑
{g}

[gµ Sγρ(g) eik·g − gµ Sργ(g) e−ik·g] (9.132)

where for simplicity the summation over all g vectors has been extended to the case g = 0 as the zero
vector components are all zeros (thus giving a null contribution to the summation). In the practical
implementation, the code works with the matrix elements

∂̃µFγρ(k) =
1

2

∑
{g}

[gµ Fγρ(g) eik·g − gµ Fργ(g) e−ik·g] = −i ∂µFγρ(k) (9.133)

∂̃µSγρ(k) =
1

2

∑
{g}

[gµ Sγρ(g) eik·g − gµ Sργ(g) e−ik·g] = −i ∂µSγρ(k) (9.134)

These new defined matrices will be called in the following modified Kohn-Sham and overlap reciprocal
matrix derivatives with respect to a reciprocal space point component.
As demonstrated in (9.88), the matrix ∂µF(k) is Hermitian. Therefore, the matrix ∂̃µF(k) = {∂̃µFγρ(k)}
whose elements have the expression in equation (9.133) is anti-Hermitian. This can be also demonstrated
very easily by computing the expression for the conjugate transpose of the elements in equation (9.133),
that is

∂̃µF
∗
ργ(k) =

1

2

∑
{g}

[gµ Fργ(g) e−ik·g − gµ Fγρ(g) eik·g] = −∂̃µFγρ(k) → ∂̃µF
† = −∂̃µF (9.135)

231

9.2. Band velocities in the Crystal code Chapter 9. Electronic transport properties

The same reasoning can be applied to the derivative of the reciprocal space overlap matrix,

∂̃µS
∗
ργ(k) =

1

2

∑
{g}

[gµ Sργ(g) e−ik·g − gµ Sγρ(g) eik·g] = −∂̃µSγρ(k) → ∂̃µS
† = −∂̃µS (9.136)

By computing the diagonal elements of the matrices ∂̃µF and ∂̃µS, it can be easily demonstrated, as in
(9.89), that

∂̃µFγγ(k) =
∑
{g 6=0}

gµ Fγγ(g) I(eik·g) and ∂̃µSγγ(k) =
∑
{g 6=0}

gµ Sγγ(g) I(eik·g) (9.137)

Thus the diagonal elements of the Kohn-Sham and overlap matrix derivatives are zero at real k points
(as already pointed out at the end of Section 9.2.1) and in the code these diagonal elements (9.137) are
purely imaginary at complex k points.

Furthermore, there is a relation between the real and the imaginary parts of the matrices ∂µF and ∂̃µF,
as well as between the real and the imaginary parts of the matrices ∂µS and ∂̃µS, namely,

∂̃µF = ∂̃µFr + i ∂̃µFi = −i ∂µF = −i [∂µFr + i ∂µFi] = −i ∂µFr + ∂µFi

→ ∂̃µFr = ∂µFi and ∂̃µFi = −∂µFr

(9.138)

∂̃µS = ∂̃µSr + i ∂̃µSi = −i ∂µS = −i [∂µSr + i ∂µSi] = −i ∂µSr + ∂µSi

→ ∂̃µSr = ∂µSi and ∂̃µSi = −∂µSr
(9.139)

By inserting these equivalences into the equation (9.124), the following expression is obtained for the
band velocities as functions of the new defined anti-Hermitian matrices (9.133) and (9.134),

vµ,α(k) ≡ vµ(α,k) = −1

h̄
{ [tCr(k) ∂̃µFi(k) Cr(k)]αα + [tCi(k) ∂̃µFi(k) Ci(k)]αα

− [tCr(k) ∂̃µSi(k) Cr(k) E(k)]αα − [tCi(k) ∂̃µSi(k) Ci(k) E(k)]αα }
(9.140)

The previous expression for the band velocities can be demonstrated starting from the equation

C†(k) ∂̃µF(k) C(k)−C†(k) ∂̃µS(k) C(k) E(k)

= [tCr(k) ∂̃µFr(k) Cr(k) + tCi(k) ∂̃µFi(k) Cr(k)− tCr(k) ∂̃µFi(k) Ci(k) + tCi(k) ∂̃µFr(k) Ci(k)

− tCr(k) ∂̃µSr(k) Cr(k) E(k)− tCi(k) ∂̃µSi(k) Cr(k) E(k) + tCr(k) ∂̃µSi(k) Ci(k) E(k)

− tCi(k) ∂̃µSr(k) Ci(k) E(k)]

+ i [tCr(k) ∂̃µFi(k) Cr(k)− tCi(k) ∂̃µFr(k) Cr(k) + tCr(k) ∂̃µFr(k) Ci(k) + tCi(k) ∂̃µFi(k) Ci(k)

− tCr(k) ∂̃µSi(k) Cr(k) E(k) + tCi(k) ∂̃µSr(k) Cr(k) E(k)− tCr(k) ∂̃µSr(k) Ci(k) E(k)

− tCi(k) ∂̃µSi(k) Ci(k) E(k)] (9.141)

which is a modification of equation (9.81), where instead of using the Hermitian matrices ∂µF(k) and
∂µS(k) as in equation (9.81), their anti-Hermitian counterparts ∂̃µF(k) and ∂̃µS(k) have been used.
Equation (9.141) is the expression practically adopted in the Crystal code to compute the band veloc-
ities.

From the anti-Hermitian property of the modified Kohn-Sham and overlap reciprocal space matrices
derivatives previously defined, it follows that

(i) the diagonal elements of the derivatives matrices ∂̃µF(k) and ∂̃µS(k) are purely imaginary numbers,
so that the diagonal elements of the real part of the reciprocal space Kohn-Sham and overlap
derivative matrices are identically equal to zero, that is

[∂̃µFr(k)]αα = 0 and [∂̃µSr(k)]αα = 0 (9.142)

232

Chapter 9. Electronic transport properties 9.2. Band velocities in the Crystal code

(ii) the imaginary part of the modified Kohn-Sham and overlap reciprocal space derivative matrices is
symmetric, while the real part is antisymmetric, namely,

∂̃µFi(k) and ∂̃µSi(k) are symmetric matrices

∂̃µFr(k) and ∂̃µSr(k) are antisymmetric matrices
(9.143)

Using the reality and the symmetry properties of the matrices, it can be demonstrated (see equations
(9.98) for the proof) that

(tC A C)αα = −(tC A C)αα → (tC A C)αα = 0 ∀ A ∈ Rn,n antisymmetric and ∀ C ∈ Rn,m

If ∂̃µF(k) and ∂̃µS(k) are anti-Hermitian, their real parts ∂̃µFr(k) and ∂̃µSr(k) are antisymmetric.
Therefore, as a consequence of the antisymmetry of the purely real parts of the modified derivative of
the Kohn-Sham matrix with respect to a component of a reciprocal space vector, the diagonal elements
of the following matrix products, that belongs to the real part in the expression (9.141) are identically
equal to zero, that is

∂̃µFr(k) antisymmetric → [tCr(k) ∂̃µFr(k) Cr(k)]αα = 0 (9.144)

∂̃µFr(k) antisymmetric → [tCi(k) ∂̃µFr(k) Ci(k)]αα = 0 (9.145)

∂̃µSr(k) antisymmetric → [tCr(k) ∂̃µSr(k) Cr(k) E(k)]αα

= [tCr(k) ∂̃µSr(k) Cr(k)]αα εα(k) = 0
(9.146)

∂̃µSr(k) antisymmetric → [tCi(k) ∂̃µSr(k) Ci(k) E(k)]αα

= [tCi(k) ∂̃µSr(k) Ci(k)]αα εα(k) = 0
(9.147)

Furthermore, as demonstrated in equations (9.104),

(tC A B)αα = (tB A C)αα ∀ A ∈ Rn,m symmetric and ∀ C ∈ Rn,p and ∀ B ∈ Rm,q (9.148)

If ∂̃µF(k) and ∂̃µS(k) are anti-Hermitian, their imaginary parts ∂̃µFi(k) and ∂̃µSi(k) are symmetric.
Therefore, as a consequence of the symmetry of the purely imaginary parts of the modified derivative of
the Kohn-Sham reciprocal matrix with respect to a component of a reciprocal space vector, each one of
the four remaining matrix products that belongs to the real part in the expression (9.141) have diagonal
elements identically equal to their opposite sign counterpart, that is

∂̃µFi(k) symmetric → [tCi(k) ∂̃µFi(k) Cr(k)]αα = [tCr(k) ∂̃µFi(k) Ci(k)]αα (9.149)

∂̃µSi(k) symmetric → [tCi(k) ∂̃µSi(k) Cr(k)]αα = [tCr(k) ∂̃µSi(k) Ci(k)]αα (9.150)

where the anti-hermiticity of the modified Kohn-Sham and overlap reciprocal matrix derivatives has
been used. In this way, the four remaining elements in the purely real part (first square parenthesis) in
equation (9.141) have diagonal terms that cancel each other, namely,

[tCi(k) ∂̃µFi(k) Cr(k)]αα − [tCr(k) ∂̃µFi(k) Ci(k)]αα = 0 (9.151)

and
− [tCi(k) ∂̃µSi(k) Cr(k) E(k)]αα + [tCr(k) ∂̃µSi(k) Ci(k) E(k)]αα

= −[tCi(k) ∂̃µSi(k) Cr(k)]αα εα(k) + [tCr(k) ∂̃µSi(k) Ci(k)]αα εα(k)

= {−[tCi(k) ∂̃µSi(k) Cr(k)]αα + [tCr(k) ∂̃µSi(k) Ci(k)]αα } εα(k) = 0

(9.152)

where the eigenvalues matrix E(k) is a diagonal matrix whose only non-zero elements are the eigenval-
ues εα(k) on the diagonal (therefore, the product of the diagonal elements of the three-matrices product
in (9.109) by the diagonal eigenvalues matrix is separable, and the relation (9.2.2) can be used before
multiplying by the diagonal eigenvalue matrix, as done in (9.152)).

Consider now the matrix products associated to the purely imaginary part in equation (9.141).

233

9.2. Band velocities in the Crystal code Chapter 9. Electronic transport properties

As demonstrated in equations (9.111),

in general (tC A C)αα 6= 0 ∀ A ∈ Rn,n antisymmetric and ∀ C ∈ Rn,m (9.153)

Therefore, as a consequence of the symmetry of the purely imaginary parts of the derivative of the
modified Kohn-Sham reciprocal matrix with respect to a component of a reciprocal space vector, four
matrix products that belongs to the purely imaginary part in the expression (9.141) have diagonal
elements generally different from zero, that is

∂̃µFi(k) symmetric → [tCr(k) ∂̃µFi(k) Cr(k)]αα 6= 0 (9.154)

∂̃µFi(k) symmetric → [tCi(k) ∂̃µFi(k) Ci(k)]αα 6= 0 (9.155)

∂̃µSi(k) symmetric → [tCr(k) ∂̃µSi(k) Cr(k) E(k)]αα

= [tCr(k) ∂̃µSi(k) Cr(k)]αα εα(k) 6= 0
(9.156)

∂̃µSi(k) symmetric → [tCi(k) ∂̃µSi(k) Ci(k) E(k)]αα

= [tCi(k) ∂̃µSi(k) Ci(k)]αα εα(k) 6= 0
(9.157)

Finally, as demonstrated in equations (9.111),

(tC A B)αα = −(tB A C)αα ∀ A ∈ Rn,m antisymmetric and ∀ C ∈ Rn,p and ∀ B ∈ Rm,q

Therefore, as a consequence of the antisymmetry of the purely real parts of the modified derivative of
the Kohn-Sham reciprocal matrix with respect to a component of a reciprocal space vector, four matrix
products that belongs to the purely imaginary part in the expression (9.141) have diagonal elements
identically equal to their opposite sign counterpart, that is

∂̃µFr(k) antisymmetric → [tCi(k) ∂̃µFr(k) Cr(k)]αα = [tCr(k) ∂̃µFr(k) Ci(k)]αα (9.158)

∂̃µSr(k) antisymmetric → [tCi(k) ∂̃µSr(k) Cr(k)]αα = [tCr(k) ∂̃µSr(k) Ci(k)]αα (9.159)

where the anti-hermiticity of the modified Kohn-Sham and overlap reciprocal matrix derivatives has
been used.
In this way, four elements in the purely imaginary part (last square parenthesis) in equation (9.141) have
diagonal terms that cancel each other, namely,

−[tCi(k) ∂̃µFr(k) Cr(k)]αα + [tCr(k) ∂̃µFr(k) Ci(k)]αα = 0 (9.160)

and
[tCi(k) ∂̃µSr(k) Cr(k) E(k)]αα − [tCr(k) ∂̃µSr(k) Ci(k) E(k)]αα

= [tCi(k) ∂̃µSr(k) Cr(k)]αα εα(k)− [tCr(k) ∂̃µSr(k) Ci(k)]αα εα(k)

= { [tCi(k) ∂̃µSr(k) Cr(k)]αα − [tCr(k) ∂̃µSr(k) Ci(k)]αα } εα(k) = 0

(9.161)

where the eigenvalues matrix E(k) is a diagonal matrix whose only non-zero elements are the eigenvalues
εα(k) on the diagonal.

Following the results obtained, the previous expression (9.81) is reduced to four purely imaginary terms
(matrix products), namely,

[C†(k) ∂̃µF(k) C(k)]αα − [C†(k) ∂̃µS(k) C(k) E(k)]αα

= i { [tCr(k) ∂̃µFi(k) Cr(k)]αα + [tCi(k) ∂̃µFi(k) Ci(k)]αα

− [tCr(k) ∂̃µSi(k) Cr(k) E(k)]αα − [tCi(k) ∂̃µSi(k) Ci(k) E(k)]αα }
(9.162)

Once the previous expression has been computed, it has to be multiplied by i/h̄ in order to recover the
correct band velocities expression (9.140).

234

Chapter 9. Electronic transport properties 9.2. Band velocities in the Crystal code

9.2.4 Orbital rotations and transport properties

The normalized eigenvectors C(k) that results from the diagonalization problem are not unique. Indeed,

(i) for each and every eigenvector there is a random phase with magnitude unity eiφ

(ii) within a degenerate set of eigenvectors any post-applied unitary transformation (that corresponds
to a rotation) to the set is also a set of orthonormalized eigenvectors with the same eigenvalues

An element of the matrix vµ which contains the band velocities can be computed starting from equation
(9.76), that is reported below

vµ,α(k) =
1

h̄

∂εα(k)

∂kµ
=

1

h̄

{[
C†(k)

∂F(k)

∂kµ
C(k)

]
αα

−
[
C†(k)

∂S(k)

∂kµ
C(k) E(k)

]
αα

}
(9.163)

where µ = x, y, z is the direction of the derivative in the reciprocal space. Taking into account also the
off-diagonal elements, the previous expression becomes

vµ(k) =
1

h̄

{
C†(k)

∂F(k)

∂kµ
C(k)−C†(k)

∂S(k)

∂kµ
C(k) E(k)

}
(9.164)

Using the following notation

ðµF(k) ≡ 1

h̄

∂F(k)

∂kµ
and ðµS(k) ≡ 1

h̄

∂S(k)

∂kµ
(9.165)

equation (9.164) can be rewritten as

vµ(k) = C†(k) ðµF(k) C(k)−C†(k) ðµS(k) C(k) E(k) (9.166)

Therefore, an element vµ,αβ(k) of the matrix vµ(k) defined in (9.166) is given by

vµ,αβ(k) =
m∑
γ=1

m∑
ρ=1

C†αγ(k) ðµFγρ(k) Cρβ(k)−
m∑
γ=1

m∑
ρ=1

C†αγ(k) ðµSγρ(k) Cρβ(k) εβ(k)

=

m∑
γ=1

m∑
ρ=1

C†αγ(k) [ðµFγρ(k)− ðµSγρ(k) εβ(k)]Cρβ(k)

=

m∑
γ=1

C†αγ(k)

m∑
ρ=1

[ðµFγρ(k)− ðµSγρ(k) εβ(k)]Cρβ(k)

(9.167)

where m are the number of the basis functions (atomic orbitals) and εβ(k) are the diagonal elements of
the diagonal eigenvalue matrix E(k) = {Eαβ δαβ ≡ εβ}.

9.2.4.1 Off-diagonal elements of band velocities and random phases of the eigenvectors

First consider the effect of the random phase on the band velocity matrix vµ. The expression for each
element of vµ has been computed in equation (9.167) and it is given by

vµ,αβ(k) =

m∑
γ=1

C†αγ(k)
m∑
ρ=1

[ðµFγρ(k)− ðµSγρ(k) εβ(k)]Cρβ(k) (9.168)

where m are the number of atomic orbitals. Consider a related matrix uµ which differs solely by each
eigenvectors having a different random phase, that is

uµ,αβ(k) =

m∑
γ=1

e−iφα C†αγ(k)

m∑
ρ=1

[ðµFγρ(k)− ðµSγρ(k) εβ(k)] eiφβ Cρβ(k) = ei(φβ−φα) vµ,αβ(k) (9.169)

Thus it is clear that, due to the random phase, the off-diagonal elements of vµ(k) may vary when
calculated using eigenvectors from different diagonalizers, even for pairs of non-degenerate eigenvalues.
However, the random phase does not affect the diagonal terms. This is not a big worry as only the
diagonal terms have a physical meaning in the band velocities calculation using the Boltzmann transport
equations theory.

235

9.2. Band velocities in the Crystal code Chapter 9. Electronic transport properties

9.2.4.2 Diagonal elements of band velocities and rotations within degenerate sets of or-
bitals

The i-th diagonal element of the band velocity is given by

vµ,αα(k) =
m∑
γ=1

C†αγ(k)
m∑
ρ=1

[ðµFγρ(k)− ðµSγρ(k) εα(k)]Cρα(k) (9.170)

where m are the number of atomic orbitals. For non-degenerate eigenvalues εα(k) each diagonal element
is unique. However, if εα(k) is part of a degenerate set, the correspondent eigenvectors are no longer
unique, and the effect of taking different linear combinations of the eigenvectors within the degenerate
states has to be considered. As such consider a dg degenerate state with energy ε(k) in a system with
M basis functions. The eigenvectors within the degenerate set can be expressed as

D(k) = C(k) Q(k) (9.171)

where C is the M × dg matrix containing the original eigenvectors, D is a M × dg matrix containing the
rotated eigenvectors, and Q is a dg × dg unitary but otherwise arbitrary matrix.
Thus a new band velocities matrix uµ(k) for the set of degenerate states with the rotates eigenvectors
can be defined using (9.171) as

uµ,αα(k) =
m∑
γ=1

D†αγ(k)
m∑
ρ=1

[ðµFγρ(k)− ðµSγρ(k) ε(k)]Dρα(k)

=

m∑
γ=1

dg∑
λ=1

Q†αλ(k)C†λγ(k)

m∑
ρ=1

[ðµFγρ(k)− ðµSγρ(k) ε(k)]

dg∑
η=1

Cρη(k)Qηα(k)

=

dg∑
λ=1

dg∑
η=1

Q†αλ(k)
m∑
ρ=1

C†λρ(k)
∑
n

[ðµFγρ(k)− ðµSγρ(k) ε(k)]Cρη(k)︸ ︷︷ ︸
= vµ,λη(k) [see eq. (9.168)]

Qηα(k)

=

dg∑
λ=1

dg∑
η=1

Q†αλ(k) vµ,λη(k) Qηα(k)

(9.172)

Therefore, the result is that the rotated velocities (9.172) are clearly different from the original ones
given by equation (9.170). However, since Q(k) is unitary, it satisfies the relation

dg∑
α=1

Q†αλ(k)Qηα(k) =

dg∑
α=1

Qηα(k)Q†αλ(k) = δλη (9.173)

It follows that

Tr[uµ(k)] =

dg∑
α=1

uµ,αα(k) =

dg∑
α=1

dg∑
λ=1

dg∑
η=1

Q†αλ(k) vµ,λη(k) Qηα(k)

=

dg∑
λ=1

dg∑
η=1

vµ,λη(k)

dg∑
α=1

Q†αλ(k) Qηα(k) =

dg∑
λ=1

dg∑
η=1

vµ,λη(k) δλβ′

=

dg∑
λ=1

vµ,λλ(k) =

dg∑
α=1

vµ,αα(k) = Tr[vµ(k)]

(9.174)

where in the last identity the dummy index r has been changed to i so that the comparison between the
first and the last members of the previous equation (9.174) can be seen more explicitly.
Labeling the diagonal elements of the matrices uµ and vµ with only one index, as will be done also in
the following treatment, the previous findings can be written as

Tr[uµ(k)] =

dg∑
α=1

uµ,α(k) ≡
dg∑
α=1

uµ,αα(k) =

dg∑
α=1

vµ,αα(k) ≡
dg∑
α=1

vµ,α(k) = Tr[vµ(k)] (9.175)

236

Chapter 9. Electronic transport properties 9.2. Band velocities in the Crystal code

where {uµ,αα ≡ uµ,α} and {vµ,αα ≡ vµ,α} are the diagonal elements of the band velocities matrix. There-
fore, while within a degenerate set of states the individual band velocities are not invariant with respect
to the eigenvector rotations within the degenerate set, the sum (i.e. the trace) of the velocities is in-
variant. This is not entirely surprising, but it does have consequences for the next stage of the calculation.

Consider equation (7) from G. Sansone et al.[22], reported here below

Ξµλ(ε) = τ
∑
k

1

nk

m∑
α=1

vµ,α(k) vλ,α(k) δ(ε− εα(k)) (9.176)

where the delta function means that the sum is over the degenerate set of states at energy ε = εα(k).
With no degeneracy there is no problem. However, when there is a degeneracy it seems from the above
discussion that the transport distribution function Ξ is not invariant with respect to rotations within
degenerate sets of eigenvectors. Indeed, considering the band velocities matrix uµ(k) for a set of dg
degenerate states, whose elements are given by (9.172), the transport distribution function computed
for those velocities is given by

Ξ̃µλ(ε) = τ
∑
k

1

nk

m∑
α=1

uµ,α(k)uλ,α(k) δ(ε− εα(k)) (9.177)

= τ
∑
k

1

nk

m∑
α=1

dg∑
λ=1

dg∑
η=1

Q†αλ(k) vµ,λη(k) Qηα(k)

dg∑
κ=1

dg∑
ζ=1

Q†ακ(k) vλ,κζ(k) Qζα(k) δ(ε− εα(k))

= τ
∑
k

1

nk

m∑
α=1

dg∑
λ=1

dg∑
η=1

dg∑
κ=1

dg∑
ζ=1

Q†αλ(k)Q†ακ(k) vµ,λη(k) vλ,κζ(k)Qηα(k) Qζα(k) δ(ε− εα(k))

6= Ξµλ(ε)

that is not invariant with respect to rotations within degenerate sets of eigenvectors. This could lead
to an incorrect result for the calculation of the transport distribution function in the case of energy
degeneracy. Looking at the previous equation (9.177) and comparing the final expression with the
transport distribution formula (9.176), it can be noted that the first step towards an orbital rotation
invariant formula for the transport distribution function is to disentangle the indexes α associated to
the bands quantum number in the velocities uµ,α(k) and uλ,α(k), so that also the indexes of the related
unitary matrices Q(k) can be separated and the property (9.173) can be used, recovering the same
expression for the transport distribution function but with the velocities vµ,α(k) and vλ,α(k) instead of
those associated to a degenerate set. Indeed, if the calculation is performed following the equation

Ξµλ(ε) = τ
∑
k

1

nk

m∑
α=1

vµ,α(k) δ(ε− εα(k))

m∑
β=1

vλ,β(k) δ(ε− εβ(k)) (9.178)

then the form of the transport distribution function results to be invariant with respect to rotations
within a degenerate set. This can be demonstrated considering the band velocities matrix uµ(k) for a
set of dg degenerate states, whose elements are given by (9.172), and computing the previous expression
(9.178) for this degenerate set,

Ξ̃µλ(ε) = τ
∑
k

1

nk

m∑
α=1

uµ,α(k) δ(ε− εα(k))

m∑
β=1

uλ,β(k) δ(ε− εβ(k)) (9.179)

= τ
∑
k

1

nk

m∑
α=1

dg∑
λ=1

dg∑
η=1

Q†αr(k) vµ,λη(k)Qηα(k) δ(ε− εα(k))

m∑
β=1

dg∑
κ=1

dg∑
ζ=1

Q†βκ(k) vλ,κζ(k)Qζβ(k) δ(ε− εβ(k))

= τ
∑
k

1

nk

dg∑
λ=1

dg∑
η=1

vµ,λη(k)
m∑
α=1

Q†αλ(k)Qηα(k) δ(ε− εα(k))

dg∑
κ=1

dg∑
ζ=1

vλ,κζ(k)

m∑
β=1

Q†βκ(k)Qζβ(k) δ(ε− εβ(k))

= τ
∑
k

1

nk

dg∑
λ=1

dg∑
η=1

vµ,λη(k)

dg∑
α=1

Q†αλ(k)Qsα(k)

dg∑
κ=1

dg∑
ζ=1

vλ,κζ(k)

dg∑
β=1

Q†βκ(k)Qζβ(k)

237

9.2. Band velocities in the Crystal code Chapter 9. Electronic transport properties

= τ
∑
k

1

nk

dg∑
λ=1

dg∑
η=1

vµ,λη(k) δλη

dg∑
κ=1

dg∑
ζ=1

vλ,κζ(k) δκζ

= τ
∑
k

1

nk

dg∑
λ=1

vµ,λλ(k)

dg∑
κ=1

vλ,κκ(k) = τ
∑
k

1

nk

dg∑
α=1

vµ,α(k)

dg∑
β=1

vλ,β(k)

= τ
∑
k

1

nk

m∑
α=1

vµ,α(k) δ(ε− εα(k))
m∑
β=1

vλ,β(k) δ(ε− εβ(k)) = Ξµλ(ε)

so that equation (9.178) is recovered also in the case of a degenerate set. Finally, it is worth noting that
in the non-degenerate case, equation (9.178) reduces to the form (9.176).

238

Chapter 9. Electronic transport properties 9.3. Massively Parallel Processing implementation

9.3 Massively Parallel Processing implementation

The main step in the calculation of the electronic transport properties is the definition of the transport
distribution function

Ξ̃µλ(ε) = τ
∑
k

1

nk

m∑
α=1

uµ,α(k) δ(ε− εα(k))

m∑
β=1

uλ,β(k) δ(ε− εβ(k)) (9.180)

In the Crystal code, the Massively Parallel Processing is exploited in the calculation of the band veloc-
ities uµ,α(k), µ = x, y, z. Indeed, the band velocity defined in a reciprocal space point k is independent
from all the other band velocities defined in any one of the other reciprocal space points. Therefore, the
calculation of the band velocities can be easily divided among processors, so that each process computes
the band velocity contribution for a given reciprocal space point k and a given spin σ = ↑, ↓. In the
following, the reciprocal space point for a given spin will be labeled by the couple (k, σ).

Two different cases can be considered:

(i) the number of reciprocal space points (k, σ) is equal or greater than the number of processors
used for the calculation. In this case, the entire information of the band velocities for one or more
(k, σ) points is stored on one single processor, i.e. each processor computes and own the memory
of one or more band velocities uµ,α(k) (µ = x, y, z and α = 1, ...,m) associated to one or more
couples (k, σ). The reciprocal space points (k, σ) are distributed as uniformly as possible among
processors. The order of distribution is the following: for a given spin σ, the reciprocal space points
are assigned alternatively one after another to one processor in an ordered manner until the list
of processors terminates, then this list is started again and the assignation continues in the same
ordered manner, and so on.

(ii) the number of reciprocal space points (k, σ) is less than the number of processors used for the
calculation. In this case, the computation and the memory of a single band velocity uµ,α(k)
(µ = x, y, z and α = 1, ...,m) associated to a couple (k, σ) is divided among a group of processes,
i.e. the entire information of the band velocity for a given (k, σ) point is stored on multiple
processors belonging to a given group. Each reciprocal space point (k, σ) is assigned to a group
of processors using the hypothesis that the memory and timings needed for the computation of
the band velocity for a complex k point is twice the amount needed for a real k point. With this
splitting method some processors can remain idle during the calculation.

The example of the KMnF3 crystalline open shell system reported in Table 9.1 is explicative of both the
splitting cases (i) and (ii).
After the parallel calculation of the band velocities for each (k, σ) point, performed using the massive
parallelization method described above, the calculation of the transport distribution function (9.180) is
implemented through the following procedure:

1. Global sum of the generated band velocities by the current group of processors, using the commu-
nicator for that group.

2. Parallelization over the processors in that group the adding in of the contributions from the band
velocities into the transport distribution function, so that each n-th processor Pn contributes in
the transport distribution function by the following quantity:

Ξ̃
P(n)
µλ (ε) = τ

∑
k

1

nk

m∑
α= cr(n)+1

cs(n)

uµ,α(k) δ(ε− εα(k))
m∑

β= cr(n)+1
cs(n)

uλ,β(k) δ(ε− εβ(k)) (9.181)

where cr(n) is the rank of the processor Pn ≡ P(n) in its own communicator, cs(n) is the size of
the communicator to which the processor Pn belongs and the second line in the summation is the
step assigned to the integer i, so that the sum is over α = cr(n) + 1, cr(n) + 1 + cs(n), cr(n) +
1 + 2cs(n), ...,M and the calculation of the transport distribution function is distributed among

239

9.3. Massively Parallel Processing implementation Chapter 9. Electronic transport properties

System : KMnF3 - SHRINK 4 4 → 10 k points (20 (k, σ) couples) in the IBZ

Spin σ k point
Ranks Ranks

case(i) : 3 processors case (ii) : 66 processors

1 (0, 0, 0) R 0 0 - 1
1 (1, 0, 0) C 1 2 - 3 - 4 - 5
1 (2, 0, 0) R 2 6 - 7
1 (1, 1, 0) C 0 8 - 9 - 10 - 11
1 (2, 1, 0) C 1 12 - 13 - 14 - 15
1 (2, 2, 0) R 2 16 - 17
1 (1, 1, 1) C 0 18 - 19 - 20 - 21
1 (2, 1, 1) C 1 22 - 23 - 24 - 25
1 (2, 2, 1) C 2 26 - 27 - 28 - 29
1 (2, 2, 2) R 0 30 - 31
2 (0, 0, 0) R 1 32 - 33
2 (1, 0, 0) C 2 34 - 35 - 36 - 37
2 (2, 0, 0) R 0 38 - 39
2 (1, 1, 0) C 1 40 - 41 - 42 - 43
2 (2, 1, 0) C 2 44 - 45 - 46 - 47
2 (2, 2, 0) R 0 48 - 49
2 (1, 1, 1) C 1 50 - 51 - 52 - 53
2 (2, 1, 1) C 2 54 - 55 - 56 - 57
2 (2, 2, 1) C 0 58 - 59 - 60 - 61
2 (2, 2, 2) R 1 62 - 63

Idle processors : 0 2

Table 9.1: Distribution of the reciprocal space points (k, σ) among processors within Massive Parallel Processing
method for the case of crystalline KMnF3 (open shell) system. The ranks within the parent communicator map
onto the (k, σ) points as described by the last two columns of the table, for the two cases with the number of
processors less (i) and greater (ii) than the number of (k, σ) couples used to perform the electronic transport
properties calculation.

processors according to the rank of the processor in the communicator (each processor add a
contribution in the transport distribution function from a given set of bands ruled by the index α,
that is, ruled by the rank of the processor in its communicator).

3. Summation of all the values from all processors and distribution of the result back to all processors
through a Gsum (Mpi Allreduce) at the end of the calculation for all the reciprocal space points,
as there are no replicated contributions to the transport distribution function.

The parallelization strategy is illustrated in Figure 9.1 for the more general case (ii), with a number of
processors greater than the number of irreducible k points.

240

Chapter 9. Electronic transport properties 9.3. Massively Parallel Processing implementation

Communicator 0 (cs = 2)

Irreducible point k1

uµ,{α}(k1), uµ,{α}(k
1
1), ..., uµ,{α}(k

s1
1)

cr(0) = 0
cs(0) = 2

P0

∗
0
∗
0
∗
0
∗
0
.
.
.

cr(1) = 1
cs(1) = 2

P1

0
∗
0
∗
0
∗
0
∗
.
.
.

Communicator 0 (cs = 2)

Irreducible point k1

uµ,{α}(k1), uµ,{α}(k
1
1), ..., uµ,{α}(k

s1
1)

cr(0) = 0
cs(0) = 2

P0

∗
∗
∗
∗
∗
∗
∗
∗
.
.
.

cr(1) = 1
cs(1) = 2

P1

∗
∗
∗
∗
∗
∗
∗
∗
.
.
.

Communicator 0 (cs = 2)

Irreducible point k1

cr(0) = 0
cs(0) = 2

P0

Ξ̃P0
µλ(ε)

cr(1) = 1
cs(1) = 2

P1

Ξ̃P1
µλ(ε)

Communicator 1 (cs = 4)

Irreducible point k2

uµ,{α}(k2), uµ,{α}(k
1
2), ..., uµ,{α}(k

s2
2)

cr(2) = 0
cs(2) = 4

P2

∗
0
0
0
∗
0
0
0
.
.
.

cr(3) = 1
cs(3) = 4

P3

0
∗
0
0
0
∗
0
0
.
.
.

cr(4) = 2
cs(4) = 4

P4

0
0
∗
0
0
0
∗
0
.
.
.

cr(5) = 3
cs(5) = 4

P5

0
0
0
∗
0
0
0
∗
.
.
.

Communicator 1 (cs = 4)

Irreducible point k2

uµ,{α}(k2), uµ,{α}(k
1
2), ..., uµ,{α}(k

s2
2)

cr(2) = 0
cs(2) = 4

P2

∗
∗
∗
∗
∗
∗
∗
∗
.
.
.

cr(3) = 1
cs(3) = 4

P3

∗
∗
∗
∗
∗
∗
∗
∗
.
.
.

cr(4) = 2
cs(4) = 4

P4

∗
∗
∗
∗
∗
∗
∗
∗
.
.
.

cr(5) = 3
cs(5) = 4

P5

∗
∗
∗
∗
∗
∗
∗
∗
.
.
.

Communicator 1 (cs = 4)

Irreducible point k2

cr(2) = 0
cs(2) = 4

P2

Ξ̃P2
µλ(ε)

cr(3) = 1
cs(3) = 4

P3

Ξ̃P3
µλ(ε)

cr(4) = 2
cs(4) = 4

P4

Ξ̃P0
µλ(ε)

cr(5) = 3
cs(5) = 4

P5

Ξ̃P0
µλ(ε)

Communicator 2 (cs = 2)

Irreducible point k3

uµ,{α}(k3), uµ,{α}(k
1
3), ..., uµ,{α}(k

s3
3)

cr(6) = 0
cs(6) = 2

P6

∗
0
∗
0
∗
0
∗
0
.
.
.

cr(7) = 1
cs(7) = 2

P7

0
∗
0
∗
0
∗
0
∗
.
.
.

Communicator 2 (cs = 2)

Irreducible point k3

uµ,{i}(k3), uµ,{i}(k
1
3), ..., uµ,{i}(k

s3
3)

cr(6) = 0
cs(6) = 2

P6

∗
∗
∗
∗
∗
∗
∗
∗
.
.
.

cr(7) = 1
cs(7) = 2

P7

∗
∗
∗
∗
∗
∗
∗
∗
.
.
.

Communicator 3 (cs = 2)

Irreducible point k3

cr(6) = 0
cs(6) = 2

P6

Ξ̃P6
µλ(ε)

cr(7) = 1
cs(7) = 2

P7

Ξ̃P7
µλ(ε)

Gsum = Mpi Allreduce(Mpi Sum) → Ξ̃µλ(ε)

Figure 9.1: Massive parallelization strategy for the calculation of the transport distribution function in the
Crystal code, for the more general case with a number of processors np = 8 greater than the number of irreducible
k points nk = 3. The distribution among processors in the band velocities and transport distribution function
calculations has been performed on the base of the band index, namely, each processor owns the values for a
certain set of bands {α} (* indicates double precision real values). For this subset of bands {α}, each processor
owns the values of uµ,{α}(kβ), uµ,{α}(k

1
β), ..., uµ,{α}(k

sβ
β), where µ = x, y, z is the reciprocal space direction of the

band velocities and sj (j = 1, ..., nk) are the number of reducible k points generated from the j-th irreducible
one. The transport distribution function is finally distributed among processors as in equation (9.180), then each
contribution from each processor is summed up and the result is redistributed back to all processes.

241

9.4. Results and Discussion: the famous case of silicon Chapter 9. Electronic transport properties

9.4 Results and Discussion: the famous case of silicon

9.4.1 Band structure

Figure 9.2 reports the band structure of crystalline silicon computed with Dft (Pbe functional), a
basis set of 26 atomic orbitals (basis set 6-21 modified, with one s shell and three sp shells for each
silicon atom), 47 k points sampling in the irreducible Brillouin zone, a convergence on energy in Scf
procedure equal to 10−8 Ha and thresholds for the calculation of Coulomb and exchange integrals given
by (6, 6, 20, 20, 20).
The final energy gap obtained with these computational parameters is equal to 0.7659 eV.
The top of the valence band is in Γ point with an energy of -3.07103 eV, while the bottom of the
conduction band in k = (2/5, 2/5, 0) has a energy equal to -2.30517 eV.

 -0.60

 -0.40

 -0.20

 0.00

 0.20

 0.40

 0.60

 0.80

 1.00

 1.20

 1.40

X W L Γ X

E
n
e
rg

y
 -

 E
Fe

rm
i (

H
a
)

Figure 9.2: Band structure of crystalline silicon computed with Dft (Pbe functional), 47 k points sampling in
the irreducible Brillouin zone and a convergence on energy in Scf calculation equal to 10−8 Ha. The form of the
Brillouin zone is reported in the right panel.

9.4.2 Comparison of P and MPP band velocities

The calculation of the band velocities and of the electronic transport properties are performed using a
value of NEWK equal to 20 20, that corresponds to 256 reciprocal k points in the irreducible Brillouin
zone and to a number of reciprocal k points for the sampling of the transport distribution function equal
to 203 = 8000 k. The chemical potential range and the energy range of distribution function for transport
properties calculation are both chosen to be equal to (−14.0, 8.0) eV, with a step of 0.01 eV. This energy
range allows to include in the calculation of the electronic transport properties the contribution from
the four valence and the first four non occupied (virtual) electronic bands. The value of the relaxation
constant τ within the relation time approximation is taken equal to its default value of 10 fs.
Comparisons are performed between the parallel (P) and the massive parallel (MPP) versions of the
Crystal code, by comparing the values of diagonal elements

fµ(k) ≡ [C†(k) ∂µF(k) C(k)]αα µ = x, y, z (9.182)

sµ(k) ≡ [C†(k) ∂µS(k) C(k)]αα µ = x, y, z (9.183)

and of band velocities values

vµ(k) ≡ [C†(k) ∂µF(k) C(k)]αα − [C†(k) ∂µS(k) C(k)]αα εα µ = x, y, z (9.184)

between the two versions, where C(k) are the eigenvectors, F(k) and S(k) are respectively the Kohn-
Sham and overlap matrices related to a given k point, εα are the correspondent eigenvalues and the

242

Chapter 9. Electronic transport properties 9.4. Results and Discussion: the famous case of silicon

symbol ∂µ represents the derivative with respect to the reciprocal lattice vector component kµ (µ =
x, y, z). The absolute values of the difference between the P and Mpp diagonal elements in (9.182) and
(9.183) and in the band velocities (9.184) are indicated in the following and given by

dF,µ(k) = abs{ [fµ(k)]P − [fµ(k)]MPP } (9.185)

dS,µ(k) = abs{ [sµ(k)]P − [sµ(k)]MPP } (9.186)

dv,µ(k) = abs{ [vµ(k)]P − [vµ(k)]MPP } (9.187)

All the calculations (P and Mpp) are performed using the same fort.9 file (generated through a Pcrystal
calculation) containing the information on the electronic ground state wavefunction. An example of
the values of the quantities (9.182), (9.183), (9.184) for a particular k point in a particular Cartesian
direction (µ = x), in the case of both P and Mpp calculations, are reported in Table 9.2.

Silicon Bulk - k point with indexes (is1, is2, is3) = (0, 0, 1) [SHRINK 20 20] - Cartesian direction µ = x

P MPP
I(fµ(k)) I(sµ(k)) I(vµ(k)) I(fµ(k)) I(sµ(k)) I(vµ(k)) ε

[Ha·Bohr] [Bohr] [Ha·Bohr] [Ha·Bohr] [Bohr] [Ha·Bohr] Ha

0.0017551002 -0.0000267834 0.0000038400 0.0017551097 -0.0000267835 0.0000038401 -65.3860984455
-0.0030914781 0.0000477327 0.0000295726 -0.0030914959 0.0000477330 0.0000295725 -65.3860304417
0.0096770572 -0.0019195593 0.0000196901 0.0096769942 -0.0019195467 0.0000196902 -5.0310335746

-0.0047061348 0.0009424140 0.0000349847 -0.0047061386 0.0009424148 0.0000349849 -5.0308246709
-0.0029258608 0.0008619852 0.0000411614 -0.0023344966 0.0006917704 0.0000466329 -3.4420803620
-0.0023344962 0.0006917703 0.0000466329 -0.0029258603 0.0008619850 0.0000411614 -3.4420803620

0.0042228743 -0.0012309345 -0.0000140980 0.0042229355 -0.0012309620 -0.0000141315 -3.4420776812
0.0001437066 -0.0000457736 -0.0000138213 0.0001436448 -0.0000457460 -0.0000137879 -3.4414543683

0.0022759250 -0.0006729136 -0.0000398761 0.0022759325 -0.0006729158 -0.0000398760 -3.4414536770
0.0014916679 -0.0004397002 -0.0000215399 0.0014916660 -0.0004396996 -0.0000215399 -3.4414536770
-0.0962409761 0.1220341696 -0.0263027961 -0.0962408998 0.1220340398 -0.0263027942 -0.5731032566
0.4833324139 -1.3968158290 0.3033795644 0.4833324192 -1.3968158480 0.3033795672 -0.1288307634

0.0298856400 -0.0962859882 0.0187342614 0.1633076821 -0.5178094186 0.1033374933 -0.1158151757
0.1633076821 -0.5178094186 0.1033374933 0.0298856400 -0.0962859882 0.0187342614 -0.1158151757
-0.0282754964 0.1309942294 -0.0255218501 -0.0282754958 0.1309942263 -0.0255218496 -0.0210211271

-0.0323812838 0.2008055355 -0.0281842969 -0.0323812838 0.2008055355 -0.0281842969 -0.0209007527
-0.1451161250 0.7082922249 -0.1303122844 -0.1451161250 0.7082922249 -0.1303122844 -0.0209007527

-0.2381474744 0.8708491389 -0.2442567491 -0.2381474469 0.8708491798 -0.2442567219 0.0070153077
-0.0373795303 0.1520528576 -0.0779715862 -0.0373795309 0.1520528547 -0.0779715860 0.2669601644
-0.6230940960 -1.1887758304 0.3519055382 -0.6230940859 -1.1887758296 0.3519055476 0.8201711452

-0.8703705908 -0.7715183957 -0.2187750830 -1.1289501620 -1.2425370854 -0.0795499303 0.8445625037
-1.5255750597 -1.9650138797 0.1340019823 -1.2669954885 -1.4939951900 -0.0052231704 0.8445625037

0.5724374921 0.7211093633 -0.0404352875 0.5724374487 0.7211094870 -0.0404354361 0.8499026789
1.5225730636 1.9999557347 -0.2431263144 1.5225730564 1.9999557367 -0.2431263235 0.8828692292
0.6521235567 0.7518346128 -0.0116480885 0.6521235582 0.7518346124 -0.0116480866 0.8828692292

0.2588799979 0.6470054955 -0.3200602372 0.2588799979 0.6470054709 -0.3200602153 0.8947995638

Sum over the degenerate states:

-0.0052603570 0.0015537555 0.0000877943 -0.0052603569 0.0015537554 0.0000877943 -3.4420803620
0.0037675929 -0.0011126138 -0.0000614160 0.0037675985 -0.0011126154 -0.0000614159 -3.4414536770
0.1931933221 -0.6140954068 0.1220717547 0.1931933221 -0.6140954068 0.1220717547 -0.1158151757

-0.1774974088 0.9090977604 -0.1584965813 -0.1774974088 0.9090977604 -0.1584965813 -0.0209007527
-2.3959456505 -2.7365322754 -0.0847731007 -2.3959456505 -2.7365322754 -0.0847731007 0.8445625037
2.1746966203 2.7517903475 -0.2547744029 2.1746966146 2.7517903491 -0.2547744101 0.8828692292

Table 9.2: Imaginary parts I(fµ(k)), I(sµ(k)) and I(vµ(k)) of the quantities in equations (9.182), (9.183), (9.184)
computed along the Cartesian direction (µ = x) in the reciprocal space, for the particular k point with indexes
(0, 0, 1) (Cartesian coordinates (0, 0, 1/20) in the reciprocal space), obtained using the Parallel version (P) and
the Massive Parallel (Mpp) method. The real parts of the reported quantities are all equal to zero. In the last
column, the correspondent eigenvectors (nao = 26) are also reported.

243

9.4. Results and Discussion: the famous case of silicon Chapter 9. Electronic transport properties

As highlighted in Table 9.2, some values of the imaginary part of the quantities (9.182), (9.183) and
(9.184) computed using the P version, that are all associated to degenerate eigenvalues, differ from the
corresponding values obtained using the Mpp code. However, as reported in the last part of the table,
by summing up over degenerate states the imaginary parts of the quantities (9.182), (9.183) and (9.184)
that differs among each other leads to equal results between the P and the Mpp version.
Considering this single example, the necessity of taking the trace for the correct description of the de-
generate states clearly emerges. At the same time, taking into account the whole calculation of the
electronic transport properties for the case of Silicon bulk crystal, the maximum values of the differ-
ences (9.185), (9.186) and (9.187) obtained using the trace for degenerate states in the evaluation of
the transport distribution function, as in equation (9.178), and without the trace as in equation (9.176)
are reported in Table 9.3. As already noted, significant differences appear when the standard formula
(9.176) is applied, while using equation (9.178) decreases considerably these discrepancies.
In the next section, the importance in taking into account the invariant formulation (9.178) when dealing
with degenerate states is pointed out, by applying electronic transport properties calculation on a unit
cell of Silicon bulk, and comparing the final thermoelectric properties when the non invariant equation
(9.176) or the orbital invariant formula (9.178) is used in the calculation of the transport distribution
function. Since in this case the aim is to analyze the role of the form of the equations involved in
the calculation, without considering effects possibly due to different kinds of implementations, both the
formulations (orbital invariant and not invariant) are applied in the parallel (P) version of the Crystal
code.

max{dF,µ(k)} [Ha·Bohr] max{dS,µ(k)]} [Bohr] max{dv,µ(k)} [Ha·Bohr]

Without trace 1.80216794 3.00830516 8.66729501 ·10−1

With trace 3.97392868 ·10−5 1.15729535 ·10−5 4.06469000 ·10−7

Table 9.3: Maximum values found for the quantities in equations (9.185), (9.186) and (9.187) (representing the
differences in the main quantities involved in the transport electronic properties calculation between P and MPP
codes) with and without the trace computed on degenerate states. The number of values compared per each
quantity is equal to 203 · 3 · 26 = 624000, representing the nao = 26 band velocities along the three Cartesian
directions at each k point (nk = 203) in the transport distribution function reciprocal space sampling net. The
eigenvalues at each k point are considered degenerate within a threshold of 10−10 Ha.

9.4.3 Effect of band degeneracy on the electronic transport properties

In this section, a comparison of the transport distribution function computed with the equation (7) from
G. Sansone et al.[22], given by

Ξµλ(ε) = τ
∑
k

1

nk

m∑
α=1

vµ,α(k) vλ,α(k) δ(ε− εi(k)) (9.188)

that is not invariant under rotations of the eigenvectors, with the orbital rotation invariant formulation
of the transport distribution function, given by

Ξµλ(ε) = τ
∑
k

1

nk

m∑
α=1

vµ,α(k) δ(ε− εα(k))
m∑
β=1

vλ,β(k) δ(ε− εβ(k)) (9.189)

is analyzed. These two formulations have been both implemented in the parallel (P) version of the Crys-
tal code, so that the effects possibly coming from different kinds of implementations can be excluded,
and the role of the two formulation on the thermoelectric properties can be evaluated consistently. It is
worth noting that the two indexes of the band velocities {vµ,α(k)} in equations (9.188) and (9.189) are
associated to the direction in the reciprocal space µ = x, y, z and to the atomic orbital α = 1, ...,m = nao,
where nao are the number of atomic orbitals included in the basis set.
Starting from the transport distribution function, the expressions of the three so-called transport coeffi-
cients, namely, the electrical conductivity σ, the Seebeck coefficient S, and the electron contribution to

244

Chapter 9. Electronic transport properties 9.4. Results and Discussion: the famous case of silicon

Units Pproperties : trace vs no trace

[eV· fs/(h̄2Å)]
max{∆Ξ} 6.98669

Ξ trace [eq. (9.189)] 13.97338
Ξ no trace [eq. (9.188)] 6.98669

energy ε [eV] 3.70
n. degeneracy 1

degeneracy order 2

[1/(Ω·m)]
max{∆σ} 2.49860 ·106

σ trace 1.95473 ·107

σ no trace 1.70487 ·107

energy ε [eV] 3.70
n. degeneracy 1

degeneracy order 2

Table 9.4: Maximum differences found in the transport electronic properties between two Pproperties calcula-
tions with and without the trace computed on degenerate states. Ξ is the transport distribution function (Tdf)
and σ is the electrical conductivity. The eigenvalues at each k point are considered degenerate within a threshold
of 10−12 Ha. The energy ε correspondent to the point on the Tdf energy grid where the maximum difference is
found is also reported, together with the degeneracy order found at that point.

the thermal conductivity κel, can be derived from Boltzmann semiclassical transport theory (see Section
9.1). The components of the correspondent matrices are given by the following expressions

σµλ(ξ;T) =

∫
dε

(
−∂feq(ε, ξ, T)

∂ε

)
Ξµλ(ε) (9.190)

[σS]µλ(ξ;T) =
1

T

∫
dε

(
−∂feq(ε, ξ, T)

∂ε

)
(ε− ξ) Ξµλ(ε) (9.191)

(κel)µλ(ξ;T) =
1

T

∫
dε

(
−∂feq(ε, ξ, T)

∂ε

)
(ε− ξ)2 Ξµλ(ε) (9.192)

where ξ is the chemical potential, T is the temperature, µ = x, y, z and ν = x, y, z are the Cartesian
directions in the reciprocal space, feq is the Fermi-Dirac distribution function and Ξµν(ε) is the transport
distribution function.
As test case, the unit cell of Silicon bulk system (see computational details in Section 9.4.1) is considered.
The maximum difference found in the values of the transport distribution function Ξ and the electronic
conductivity σ are reported in Table 9.4, together with the correspondent values involved in the maxi-
mum difference, the associated eigenvalue and its degeneracy order. As shown in the Table, significant
differences are found between the Pproperties calculations using the different formulations (9.188) and
(9.189), all in correspondence with a degenerate eigenvalue. In order to evaluate the contribution of these
differences in the thermoelectric properties, the electron conductivity components σxx, σyy and σzz and
the Seebeck coefficient components Sxx, Syy and Szz of the unit cell of Silicon bulk are computed with
Pproperties executable using the orbital rotational invariant formula (9.189) with trace as well as the
non invariant equation (9.188) without trace, and they are reported in Figures 9.3, 9.4 and 9.5, respec-
tively. As shown by the figure, very few differences can be noted in the thermoelectric features, as well as
in the overall trend. However, two important comments must be done. First of all, looking at the values
of the maximum differences found in the corresponding quantities for the two calculations, reported
in Table 9.5, significant differences can be noted, especially in the quantity σS and in the electronic
contribution to the thermal conductivity κel, and the association between the maximum difference and
a degenerate energy value is lost (due to the presence of powers of the difference (ε−ξ) in the definitions
of the quantities (9.191) and (9.192), which shift the eigenvalues energies by the chemical potential).
Secondly, looking at the three equivalent components xx, yy and zz of the Seebeck coefficient, reported
in Figure 9.6, it can be noted that the isotropy of the Silicon cubic system is perfectly reproduced for
the three components only if the invariant formulation (9.189) is used. All these findings highlight the
importance to consider the correct orbital rotational invariant formulation when degenerate states are
involved.

245

9.4. Results and Discussion: the famous case of silicon Chapter 9. Electronic transport properties

15 10 5 0 5 10
Chemical potential [eV]

0

1

2

3

4

5

El
ec

tro
n

co
nd

uc
tiv

ity

xx
 [1

07 1
/O

hm
/m

] trace
no trace

4.0 3.5 3.0 2.5 2.0 1.5
Chemical potential [eV]

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Se
eb

ec
k

co
ef

fic
ie

nt
 S

xx
 [1

0
3 V

/K
]

trace
no trace

Figure 9.3: Electron conductivity component σxx (left panel) and Seebeck coefficient component Sxx (right panel)
computed with Pproperties executable using formula (9.189) with trace (red lines) and formula (9.188) without
trace (black lines).

15 10 5 0 5 10
Chemical potential [eV]

0

1

2

3

4

5

El
ec

tro
n

co
nd

uc
tiv

ity

yy
 [1

07 1
/O

hm
/m

] trace
no trace

4.0 3.5 3.0 2.5 2.0 1.5
Chemical potential [eV]

1.5

1.0

0.5

0.0

0.5

1.0

1.5
Se

eb
ec

k
co

ef
fic

ie
nt

 S
yy

 [1
0

3 V
/K

]
trace
no trace

Figure 9.4: Electron conductivity component σyy (left panel) and Seebeck coefficient component Syy (right panel)
computed with Pproperties executable using formula (9.189) with trace (red lines) and formula (9.188) without
trace (black lines).

15 10 5 0 5 10
Chemical potential [eV]

0

1

2

3

4

5

El
ec

tro
n

co
nd

uc
tiv

ity

zz
 [1

07 1
/O

hm
/m

] trace
no trace

4.0 3.5 3.0 2.5 2.0 1.5
Chemical potential [eV]

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Se
eb

ec
k

co
ef

fic
ie

nt
 S

zz
 [1

0
3 V

/K
]

trace
no trace

Figure 9.5: Electron conductivity component σzz (left panel) and Seebeck coefficient component Szz (right panel)
computed with Pproperties executable using formula (9.189) with trace (red lines) and formula (9.188) without
trace (black lines).

246

Chapter 9. Electronic transport properties 9.4. Results and Discussion: the famous case of silicon

4.0 3.5 3.0 2.5 2.0 1.5
Chemical potential [eV]

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Se
eb

ec
k

co
ef

fic
ie

nt
 [1

0
3 V

/K
]

Sxx (trace)
Syy (trace)
Szz (trace)

4.0 3.5 3.0 2.5 2.0 1.5
Chemical potential [eV]

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Se
eb

ec
k

co
ef

fic
ie

nt
 [1

0
3 V

/K
]

Sxx (no trace)
Syy (no trace)
Szz (no trace)

Figure 9.6: Seebeck conductivity components Sxx, Syy, Szz computed with Pproperties executable using formula
(9.189) with trace (left panel) and formula (9.188) without trace (right panel). The right panel shows that, using
formula (9.188) without trace, the isotropy of the Silicon bulk cubic system is not perfectly reproduced.

Units Pproperties : trace vs no trace

[A/(m·K)]
max{∆(σS)} 1.92808 ·102

(σS) trace -9.41794 ·102

(σS) no trace -1.13460 ·103

energy ε [eV] 3.66
n. degeneracy 0

degeneracy order 0

[V/K]
max{∆S} 2.45126 ·10−4

S trace -3.36452 ·10−4

S no trace -9.13265 ·10−5

energy ε [eV] -2.68
n. degeneracy 0

degeneracy order 0

[W/(m·K)]
max{∆κel} 9.77808
κel trace 1.35113 ·102

κel no trace 1.25335 ·102

energy ε [eV] 5.09
n. degeneracy 0

degeneracy order 0

Table 9.5: Maximum differences found in the transport electronic properties between two Pproperties calcula-
tions with and without the trace computed on degenerate states. σ is the electrical conductivity, S is the Seebeck
coefficient, and κel is the electron contribution to the thermal conductivity. The eigenvalues at each k point
are considered degenerate within a threshold of 10−12 Ha. The energy ε correspondent to the point on the Tdf
energy grid where the maximum difference is found is also reported for each transport property, together with the
degeneracy order found at that point.

247

9.5. Parallel implementation: problems and solutions Chapter 9. Electronic transport properties

9.5 Parallel implementation: problems and solutions

The parallel version of Crystal code, in its public version, writes on units 70 (fort.70 files) the eigenvec-
tors Cred(k) associated to reducible reciprocal k points generated, through the symmetry of the space
group, starting from the reducible k points and the associated eigenvectors Cirr(k).
In a typical electronic transport properties calculation, where a dense grid in the reciprocal space has to
be used to obtain accurate results, the generation of these fort.70 files can become problematic in terms
of disk space usage. Indeed, each file fort.70 contains the eigenvectors, stored in the matrix Cred(k)
with dimension n2

ao, where nao is the number of orbitals) of each reducible k point, for each reducible k
points in the dense reciprocal space mesh.
In Crystal, each floating point number is a kind selected real kind(13, 100) which corresponds to 8
bytes of storage for each floating point number. Therefore, if nk is the total number of reducible k points
in the dense reciprocal space mesh, each processor generates a fort.70 file with dimension

disk usage for each fort.70 file (same for each processor) : 8nk · nao · nao bytes (9.193)

In the calculation of electronic transport properties for large defective systems, as for example in the
case of half-Heusler ZrNiSn of TiNiSn thermoelectric material with interstitial or substitutional defects,
which requires a supercell approach to model a reasonable concentration of defects, the generation of
fort.70 files can be as large as or can even easily exceed the total storage capacity of a single node
of a modern supercomputer, thus preventing the possibility to conclude the calculation of electronic
transport properties. A solution to this problem has been found in the rewriting of the part of the code
where the fort.70 files were generated, substituting this part with a version that does not use files to
store the information required about the eigenvector related to each reducible reciprocal space point,
but instead computes on the fly the eigenvector for each reciprocal space point in the dense mesh used
for the calculation.

The calculation of the eigenvectors for reducible k points in the public version of Crystal is performed
in the subroutine SMAT, where the computed eigenvectors C(kred) are also written in fort.70 files. In
particular, the eigenvectors for reducible k points are computed in the subroutines ESTROF, ESTROE

(for complex k points, see Appendix F, Sections F.13 and F.14) and ESTROG (for real k points, see
Appendix F, Section F.15), starting from the eigenvectors C(kirr) of the irreducible k points (read from
fort.8 files) and the symmetry operators of the lattice space group. Each irreducible k point generates
a pool of reducible k points on the base of space group symmetries, so that by applying the symmetry
operators on the eigenvector C(kirr) of the reducible k point all the other eigenvectors will be generated
by rotation. For example, in the case of silicon bulk using a mesh of 4 × 4 × 4 = 64 reciprocal space
points, the first real irreducible k point Γ = (0, 0, 0) ∈ R generates only the same point (0, 0, 0) through
the identity symmetry operator, the real irreducible point k = (2, 0, 0) generates the same point through
the identity symmetry operator and the points (0, 2, 0), (2, 2, 2) and (0, 0, 2) through the symmetry
operators with indexes 2, 3 and 4, respectively, while the real irreducible point k = (2, 2, 0) generates
the same point itself through the identity symmetry operator, the points (0, 2, 2) and (2, 0, 2) through
the symmetry operators 5 and 6, respectively (see Appendix F, Table F.32). At the same time, the
complex irreducible k point (1, 0, 0) generates the same point through the identity symmetry operator,
and the points (0, 1, 0), (3, 3, 3), (0, 0, 1), (0, 3, 0), (3, 0, 0), (1, 1, 1) and (0, 0, 3) by means of the symmetry
operators with indexes 2, 3, 4, 13, 14, 15 and 16, respectively (see Appendix F, Table F.30, where also
all the other reciprocal space points kred generated by the (iirr,k)-th point with symmetry operator of
index isym are reported for the case of silicon bulk using a mesh of 64 k points). For all these reducible
reciprocal space points generated, the correspondent eigenvector is computed and written on fort.70
files. After that, in subroutine TDF CALC of boltzatorb.f90 module a loop over the mesh of reducible
k points is performed, the eigenvector for each reciprocal space point is read from fort.70 files and the
band velocities are computed (see Workflow 1).
As a first attempt to rewrite the code without the creation of input/output fort.70 units, a new subroutine
SMAT SINGLEK has been written (see Workflow 2), following the pattern of the SMAT subroutine, but
computing on the fly the eigenvector C(kred) associated to each reducible k point, and using it immediatly
in the loop over the reducible reciprocal space points mesh in the subroutine TDF CALC (boltzatorb.f90
module), as described in Workflow 2. This solution represents only a first attempt to rewrite the code

248

Chapter 9. Electronic transport properties 9.5. Parallel implementation: problems and solutions

without the usage of fort.70 input/output files, but it is easily to see that the new code can slow down
the calculation with respect to the old implementation. Indeed, the new version is based on the loop
over reducible reciprocal space points: for each reducible k point kred, the subroutine SMAT SINGLEK is
called, where a loop over the irreducible k points is performed, within which a loop over the symmetry
operators is executed until the (iirr,k)-th irreducible reciprocal space point and the (isym)-th symmetry
operator that generates the input kred point required at that point of the TDF CALC loop is found, so
that, using the correspondent symmetry operator, the eigenvector C(kred) can be computed by means
of subroutines ESTROF, ESTROE or ESTROG and subsequently used to compute the band velocities in
that reciprocal space point kred (see Workflow 2). This procedure, differently from the old one, does
not generates a pool of reducible k points looping on the symmetry operators for a given irreducible
k point, but instead it searches, for each reducible k point, the irreducible k point and the symmetry
operator which generate it, by means of a loop over the symmetry operators for a given irreducible k
point, so that the symmetry operator found can be used to compute the eigenvector associated to that
reducible k point. This can, obviously, slow down the calculation with respect to the old version, but
this difference can be in part reduced by exploiting the parallelization over processors in performing the
loop over the reducible reciprocal space points mesh, also implemented in the old version of the code.
The tests performed in the following section in order to compare the results and the timings obtained
for the electronic transport properties will highlight these differences in computational timings between
the old and the new version of the code.
Moreover, in the new version of the code, the creation of fort.70 files for input/output has been disabled by
default, but the users can also recover the old version by using the keyword IOACTIVE in the BOLTZTRA

section.

9.5.1 Test cases: results and discussion

In order to test the new implementation, a comparison of the quantities

Ξµλ(ε) = τ
∑
k

1

nk

m∑
α=1

vµ,α(k) vλ,α(k) δ(ε− εi(k)) (9.194)

σµλ(ξ, T) =

∫
dε

(
−∂feq(ε, ξ, T)

∂ε

)
Ξµλ(ε) (9.195)

[σS]µλ(ξ, T) =
1

T

∫
dε

(
−∂feq(ε, ξ, T)

∂ε

)
(ε− ξ) Ξµλ(ε) (9.196)

(κel)µλ(ξ, T) =
1

T

∫
dε

(
−∂feq(ε, ξ, T)

∂ε

)
(ε− ξ)2 Ξµλ(ε) (9.197)

Pµλ(ξ, T) = σµλ(ξ, T) [Sµλ(ξ, T)]2 (9.198)

between the parallel version (P-OLD SVN 1335 public) with input/output in fort.70 files and the parallel
version (P-NEW SVN 1286 develop) of the Crystal code with the new implementation is performed,
where Ξ(ε) is the transport distribution function, σ(ξ, T) is the electronic conductivity, S(ξ, T) is the
Seebeck coefficient, κel(ξ, T) is the electronic contribution to the thermal conductivity and P (ξ, T) is
the power factor for a given chemical potential ξ and a given temperature T , while feq(ε, ξ, T) is the
Fermi distribution and εi are the Hartree-Fock or Kohn-Sham eigenvalues. The absolute values of the
difference between all these quantities, as listed in the following, are considered, in order to compare the
two versions of the code.

d[σ(ξ, T)] = abs{ [σ(ξ, T)]P-NEW − [σ(ξ, T)]P-OLD } File: SIGMA.DAT (9.199)

d[σS(ξ, T)] = abs{ [σS(ξ, T)]P-NEW − [σS(ξ, T)]P-OLD } File: SIGMAS.DAT (9.200)

d[S(ξ, T)] = abs{ [S(ξ, T)]P-NEW − [S(ξ, T)]P-OLD } File: SEEBECK.DAT (9.201)

d[κel(ξ, T)] = abs{ [κel(ξ, T)]P-NEW − [κel(ξ, T)]P-OLD } File: KAPPA.DAT (9.202)

d[P (ξ, T)] = abs{ [P (ξ, T)]P-NEW − [P (ξ, T)]P-OLD } File: POWER.DAT (9.203)

249

9.5. Parallel implementation: problems and solutions Chapter 9. Electronic transport properties

All the atomic systems considered as test cases are reported in Table 9.6, together with the computational
parameters kept constant during all the simulations (number of symmetry operators, number of orbitals,
thresholds for Coulomb and exchange integrals and theoretical methods used).

System name System nsym nao Tolinteg Method

S1 Silicon (3D) 48 18 6 6 6 6 12 Hf
S2 Silicon (3D) 48 18 6 6 20 20 20 Dft (Becke-Pz)
S3 Lithium (3D) 48 9 6 6 20 20 20 Dft (Pwgga)
S4 KMnF3 (3D) 48 83 7 7 7 7 14 Uhf
S5 Berillium (2D) 12 40 6 6 6 6 12 Hf
S6 Formamide (1D) 2 114 6 6 20 20 20 Dft (Lda-Pz)

Table 9.6: Name of the atomic systems used as test cases, number of symmetry operators nsym, number of atomic
orbitals nao per unit cell, values of the thresholds Tolinteg for Coulomb and exchange integrals evaluations and
theoretical method used.

The results of the tests, all performed on 8 processors with Intel(R) Xeon(R) CPU E5420@2.50GHz, are
reported in Table 9.7.
As already envisaged, the new version P-NEW of the code is slower than the public one, for all the
test cases considered and all the calculations using different reciprocal space grids. In particular, the
computational time difference is significant for the case of Silicon bulk (systems S1 and S2).
This difference in execution time has to be searched in the structure of the two algorithms. Indeed, in the
public version, the main loop which computes all the eigenvectors associated to the reducible reciprocal
space point kred is a loop over the irreducible reciprocal space points kirr, so that for each irreducible
point kirr a pool of reducible reciprocal vectors kred is generated. The parallelization is applied in the
SMAT subroutine, for the reading of the eigenvectors related to the irreducible reciprocal space point from
fort.8 files and the calculation of the associated pool of eigenvectors for the reducible reciprocal points.
After that, the parallelization among processors is applied in the loop over reducible reciprocal points
kred, where the associated eigenvectors are read from files fort.70 and the band velocities are computed.
On the contrary, in the new version the main loop is the one over the reducible reciprocal points kred. At
the beginning of the loop, a parallelization over processors is applied in the SMAT SINGLEK subroutine,
in the same way as in the original SMAT routine. In the SMAT SINGLEK subroutine a loop over the
irreducible reciprocal space points kirr is performed in a parallel way (each processor deals with a pool
of reciprocal space points) until the irreducible kirr vector that generates the required reducible kred
point is found, and the associated eigenvector computed. Once found, the main body of the loop over
the reducible kred points is executed in a parallel way, with a parallelization strategy equal to the one
adopted in the public version P-PUB.
In this framework, even if the computational cost required by the new version P-NEW is greater than
the one implied by the public version P-PUB, the efficiency of the new implemented algorithm should
increase by increasing the number of processors involved in the calculation more than the correspondent
efficiency of the public version.
On the other hand, this novel implementation permits to perform electronic transport properties cal-
culations on a large mesh of reciprocal space points, without limiting the calculation due to the out of
space memory error caused by the generation of fort.70 input/output files.
Moreover, the new implementation paves the way to further improvement in the organization of the
algorithm for the calculation of rotated eigenvectors associated to the reducible reciprocal space points,
thus leading to an increased efficiency of the overall computational timings with respect to the actual
public version.

250

Chapter 9. Electronic transport properties 9.5. Parallel implementation: problems and solutions

System: S1 Silicon (nao = 18)

nk 512 4096 32768 64000 110592 175616 262144 373248

Tcpu P-NEW [s/proc] 1.12 4.05 49.43 138.06 341.18 780.14 1733.86 3621.57

Tcpu P-PUB [s/proc] 0.80 1.10 3.43 6.05 26.76 75.30 161.06 538.28

fort.70 P-PUB [bytes] 1327104 10616832 84934656 165888000 286654464 455196672 679477248 967458816

System: S2 Silicon (nao = 18)

nk 512 4096 32768 64000 110592 175616 262144 373248

Tcpu P-NEW [s/proc] 1.12 4.20 49.92 138.80 349.51 779.71 1745.10 3624.56

Tcpu P-PUB [s/proc] 0.81 1.09 3.44 6.07 31.69 76.46 165.92 421.14

fort.70 P-PUB [bytes] 1327104 10616832 84934656 165888000 286654464 455196672 679477248 967458816

System: S3 Lithium (nao = 9)

nk 512 4096 13824 32768 64000 110592 140608 175616

Tcpu P-NEW [s/proc] 0.97 2.58 9.60 34.55 109.10 266.99 412.31 728.83

Tcpu P-PUB [s/proc] 0.79 0.94 1.70 4.39 12.14 31.26 48.16 963.27

fort.70 P-PUB [bytes] 331776 2654208 8957952 21233664 41472000 71663616 91113984 113799168

System: S4 KMnF3 (nao = 83)

nk 128 1024 8192 16000 27648 43904 65536 93312

Tcpu P-NEW [s/proc] 3.85 26.42 240.84 502.62 937.78 1614.15 2642.08 4186.83

Tcpu P-PUB [s/proc] 1.87 5.04 54.48 126.61 229.33 420.56 784.41 1079.32

fort.70 P-PUB [bytes] 7054336 56434688 451477504 881792000 1523736576 2419637248 3611820032 5142610944

System: S5 Berillium (nao = 40)

nk 256 576 2304 4096 6724 15376 26896 33124

Tcpu P-NEW [s/proc] 1.45 2.39 7.76 13.92 23.78 69.97 184.26 274.05

Tcpu P-PUB [s/proc] 0.84 0.98 1.77 2.67 4.09 14.86 36.44 49.59

fort.70 P-PUB [bytes] 3276800 7372800 29491200 52428800
86118400

196812800 344268800
424038400

86016000 423936000

System: S6 Formamide (nao = 114)

nk 10 120 180 240 360 420 500 1000

Tcpu P-NEW [s/proc] 0.96 3.48 4.89 6.39 9.51 11.12 13.27 28.50

Tcpu P-PUB [s/proc] 0.83 1.38 1.69 2.00 2.60 2.90 3.30 6.52

fort.70 P-PUB [bytes]
1663488

12476160
19130112

24952320 37428480
44082432 52399872

103968000
831744 18298368 43250688 51568128

Table 9.7: Computational time (seconds per processor) required by electronic transport properties calculation
using the public version of the code (P-PUB) and the new version of the code (P-NEW) without input/output
in file fort.70 units. For the public version of the code, the weight in bytes of the fort.70 files per each processor
is also reported. The cases where two values of disk usage are listed for a given simulation regard two different
weights of fort.70 files generated by different groups of processors.

251

9.5. Parallel implementation: problems and solutions Chapter 9. Electronic transport properties

Workflow 1. Workflow of the code with output writing to fort.70 files

boltzatorb.f90 (module boltzao)
subroutine TDF CALC

—————–

open fort.70 files

call allocate smat servi [allocate vectors Cirr(k) and Cred(k) (dimension: 2n2
ao)]

call smat(.true.)

libxj.f
subroutine SMAT

—————–

Loop 1 (for closed shell systems) or 2 (for open shell systems) times : .

• define number of occupied states nocc

Loop over all irreducible k points (index iirr,k) : .

• separate the case of complex and real k points

• read from fort.8 the eigenvector Cirr(k) of the irreducible k point (each k point is read by only one processor)

• broadcast the eigenvector Cirr(k) of the irreducible k point from the processor that read it to all processors

Loop over all symmetry operators (index isym) : .

• generate reducible k points kred from irreducible ones kirr using the symmetry operator isym

• reconstuct the eigenvector Cred(k) of reducible k points by applying symmetry operator isym on irreducible
eigenvector Cirr(k) [subroutines ESTROF ESTROE and ESTROG]

• write the eigenvectors Cred(k) of reducible k points on fort.70 files (parallelized over processors if boltzao active)

boltzatorb.f90 (module boltzao)
subroutine TDF CALC

—————–

call free smat servi [deallocate vectors Cirr(k) and Cred(k) (2n2
ao) containing the HF/KS eigenvectors]

call sdig [compute Sirr(g) and trasform Sirr(g)→ Sred(g)]

call frota(fg irr, fg red, idimf, isize fg red, uhf, ’F’) [transform Firr(g)→ Fred(g)]

Loop 1 (for closed shell systems) or 2 (for open shell systems) times (parallelized over processors) : .

Loop over all reducible k points (index ired,k) (parallelized over processors) : .

• read eigenvectors Cred(k) from files fort.70

• call velocity effmass calc [Cred(k) ≡ C(k)] :

– Fourier transform F(g)→ ∂µF(k) µ = x, y, z

– compute fµ(k) ≡ [C†(k) ∂µF(k) C(k)]αα µ = x, y, z

– Fourier transform S(g)→ ∂µS(k) µ = x, y, z

– compute sµ(k) ≡ [C†(k) ∂µS(k) C(k)]αα µ = x, y, z

• compute the band velocities :

vµ(k) ≡ fµ(k)− sµ(k) = [C†(k) ∂µF(k) C(k)]αα − [C†(k) ∂µS(k) C(k)]αα εα µ = x, y, z

• compute number of carriers nc(µ, T)

• compute Transport Distribution Function Ξµν(ε) [see equations (9.176) and (9.178)]

call gsum(nc(µ, T)) and call gsum(Ξµν(ε)) → collect data from all processors

252

Chapter 9. Electronic transport properties 9.5. Parallel implementation: problems and solutions

Workflow 2. Workflow of the code without output writing to fort.70 files

boltzatorb.f90 (module boltzao)
subroutine TDF CALC

—————–

call sdig [compute Sirr(g) and trasform Sirr(g)→ Sred(g)]

call frota(fg irr, fg red, idimf, isize fg red, uhf, ’F’) [transform Firr(g)→ Fred(g)]

Loop 1 (for closed shell systems) or 2 (for open shell systems) times : .

Loop over all reducible k points kred (index ired,k) : .

• call SMAT SINGLEK :

– find the irreducible k point and the symmetry operator isym that generate the reducible k point kred

– read from fort.8 the eigenvector of the irreducible k point (each k point is read by only one processor)

– broadcast the eigenvector of the irreducible k point from the processor that read it to all processors

– reconstuct the eigenvector Cred(k) of reducible k points by applying symmetry operator isym on
irreducible eigenvector Cirr(k) [subroutines ESTROF ESTROE and ESTROG]

• call velocity effmass calc (parallelized over processors) [Cred(k) ≡ C(k)] :

– Fourier transform F(g)→ ∂µF(k) µ = x, y, z

– compute fµ(k) ≡ [C†(k) ∂µF(k) C(k)]αα µ = x, y, z

– Fourier transform S(g)→ ∂µS(k) µ = x, y, z

– compute sµ(k) ≡ [C†(k) ∂µS(k) C(k)]αα µ = x, y, z

• compute the band velocities (parallelized over processors) [Cred(k) ≡ C(k)] :

vµ(k) ≡ fµ(k)− sµ(k) = [C†(k) ∂µF(k) C(k)]αα − [C†(k) ∂µS(k) C(k)]αα εα µ = x, y, z

• compute number of carriers nc(µ, T) (parallelized over processors)

• compute Transport Distribution Function Ξµν(ε) (parallelized over processors)

call gsum(nc(µ, T)) and call gsum(Ξµν(ε)) → collect data from all processors

libxj.f
subroutine SMAT SINGLEK

—————–

Loop over all irreducible k points (index iirr,k) : .

• separate the case of complex and real k points

Loop over all symmetry operators (index isym) : .

• find the index of the irreducible k point kirr and the symmetry operator isym that generate the reducible
k point kred

Read from fort.8 the eigenvector Cirr(k) of the irreducible k point (each k point is read by only one processor)

Broadcast the eigenvector of the irreducible k point from the processor that read it to all processors

Separate the case of complex and real k points and Reconstuct the eigenvector Cred(k) of the reducible k points
by applying symmetry operator isym on irreducible eigenvector Cirr(k)

[subroutines ESTROF ESTROE and ESTROG]

253

9.5. Parallel implementation: problems and solutions Chapter 9. Electronic transport properties

254

Chapter 10

Conclusions and future perspectives

The theoretical foundation for the formalization and the definition of different ensembles in molecular
dynamics simulations has been made uniform and general. Starting from a Lagrangian and Hamilto-
nian formulation, the equations of motion have been derived and integrated in a symplectic way on
the base of the Suzuki-Trotter decomposition method.[34, 35] This theoretical procedure is general,
and can be used to find the equations of motion and the correspondent time propagation algorithm
for all the ensembles of interest. In particular, the microcanonical, canonical and isothermal-isobaric
ensembles have been formalized and successively implemented in the Crystal code. For the purpose
of demonstrating the capabilities of molecular dynamics module in the Crystal code, calculations on
the proton-ordered ice crystalline structure and the liquid-like (H2O)32 periodic cubic system have been
performed in microcanonical and canonical ensembles. These two models are representative of hydrogen
bonded environments, that are known to be very difficult to characterize, thus being the starting test
cases to validate computational methods and the corresponding practical implementation in quantum
mechanical packages. At the same time, these systems are very well known and extensively studied,
thus permitting a strict comparison with the results find in existing literature. First of all, the accuracy
in terms of the drift in the conserved quantity and the related standard deviation has been evaluated,
for all the molecular dynamics simulations in both the microcanonical (NVE) and the canonical (NVT)
ensembles. The data demonstrate the presence of a very small drift in the conserved quantity, com-
parable with that obtained using other ab initio molecular dynamics codes,[148, 149, 150] and a good
temperature control reproduced by the NVT ensemble. The calculation of dynamical properties from
the post processing of molecular dynamics trajectory has been also very useful to evaluate the accuracy
and capabilities of the Born-Oppenheimer Molecular Dynamics implementation. The results, expecially
using B3LYP functional, are in good agreement with both experimental findings and theoretical calcu-
lations found in literature using other quantum mechanical codes. These results demonstrate that also
the dynamical properties can be accurately determined from both the microcanonical and the canonical
(Nosé thermostat) ensembles, as implemented in the Crystal code. All these theoretical novelties and
the results obtained by means of Born-Oppenheimer molecular dynamics with the algorithms imple-
mented in the Crystal code lead to the publication of the article:
C. Ribaldone and S. Casassa, Born-Oppenheimer Molecular Dynamics with Linear Combination of
Atomic Orbitals and Hybrid Functionals for Condensed Matter Simulations Made Possible. Theory
and Performance for the Microcanonical and Canonical Ensembles, Journal of Chemical Theory and
Computation, accepted manuscript (January 2024), DOI: https://doi.org/10.1021/acs.jctc.3c01231.

As regards the Fast Inertial Relaxation Engine structural optimization method, its implementation, in
the basic and improved versions, has been described and its efficiency and reliability in the framework
of the Crystal code has been assessed. A screening of the four Fire adjustable parameters has been
realized through structural optimizations of atomic systems with different dimensionality, identifying a
set of robust default values. Then, structural optimizations of atomic systems with different number of
atoms, dimensionality and kind of bonds have been performed with Fire algorithm. The accuracy of
Fire in finding energy minima of the potential energy surface (Pes) for these systems has been demon-
strated comparing the total energy and geometry of Fire final structures with those obtained with
quasi-Newton Broyden-Fletcher-Goldfarb-Shanno (Bfgs) scheme, already implemented in the Crystal

255

https://doi.org/10.1021/acs.jctc.3c01231

Chapter 10. Conclusions and future perspectives

code. The reliability of Fire in minimizing the Pes shaped by different functionals, such as PBE,
B3LYP, HSE06 and PBE0 has been proven for the case of urea molecular crystal. Finally, as regards
the computational time, the conclusion it that the Fire structural optimization method has generally
a greater computational cost than the correspondent Bfgs one, due to the fact that it employs more
iterations to reach convergence. Nevertheless, a single Fire step has a less computational cost than a
Bfgs one, so that the overall Fire minimization becomes the most efficient one when the increasing
of the computational cost due to a greater number of iterations is compensated for by a reduction of
timings in performing each single step. This study paves the way for other important implementations,
namely, a finite temperature structural optimization algorithm and the Nudged Elastic Band method
for transition states calculations. These results lead to the publication of the article:
C. Ribaldone and S. Casassa, Fast Inertial Relaxation Engine in the Crystal code, AIP Advances 12,
015323 (2022), DOI: https://doi.org/10.1063/5.0082185.

As regards the electronic transport properties, the Massive Parallel Processing (Mpp) approach has been
implemented in the Crystal code, exploiting the independence of the points in the reciprocal space in
order to parallelize the calculation of the band velocities, thus improving the capability of the code to
compute transport properties on dense reciprocal grids. In the route through the implementation of
Mpp transport properties calculations, the influence of the presence of degenerate electronic states in
the band structure has been addressed. In particular, it has to be underlined that the formula reported
in the article by G. Sansone et al.[22] and currently used in the Crystal code for the calculation of the
transport distribution function is not invariant under rotation of atomic orbitals in the case of degenerate
electronic states. For this reason, an atomic orbitals rotational invariant formula has been suggested for
the calculation of the transport distribution function, which reduces itself to the standard formulation
when the electronic states are not degenerate. The necessity of this correction in the formula for the
transport distribution function has been also confirmed by other recent theoretical studies.[146] Since the
transport distribution function is a key quantity used to compute all the electronic transport properties,
the effect of the correct formula in degenerate cases has to be assessed in the calculation of the transport
coefficients. For this reason, a series of crystalline materials with a certain level of degeneracy in the
band structures have been analyzed, from the basic crystalline silicon case to the SrTiO3 cubic perovskite
crystal. Very little changes in the final results obtained using the invariant formulation have been found
for the electronic conductivity and the Seebeck coefficient with respect to the non invariant formulation.
More interestingly, the isotropy of the Seebeck coefficient is perfectly reproduced for isotropic crystalline
systems using the invariant formulation, while anisotropic effects appear in the Seebeck coefficients along
the three spatial directions when using the non invariant formulation. A further analysis of these effects
has to be performed, exploring different materials with high degeneracy in the band structures, where
the effect of degenerate states could be important and could affect in a significant way the electronic
transport properties.

256

https://doi.org/10.1063/5.0082185

Appendices

257

Appendix A

Notation stuffs and demonstrations

A.1 Maxwell-Boltzmann distribution

In 1860, James Clerk Maxwell published a derivation[151] of what it is now called the Maxwellian
velocity distribution, the distribution of molecular speeds in an ideal gas in thermal equilibrium. The
Maxwell-Boltzmann function describes the distribution of velocities in a non-interacting gas of particles.
Remarkably, the Maxwell distribution also holds in the presence of any interactions. In fact, Maxwell
original derivation[151] of the distribution makes no reference to any properties of the gas.
Let N be the whole number of particles. Let vx, vy, vz be the components of the velocity of each particle
in three spatial directions, and let the number of particles for which vx lies in the interval (vx, vx + dvx)
be Nf(vx)dvx, where f(vx) is a function of vx to be determined. The number of particles for which vy
lies in the interval (vy, vy + dvy) will be Nf(vy)dvy; and the number for which vz lies in the interval
(vz, vz + dvz) will be Nf(vz)dvz, where f always stands for the same function.
The essential ingredient of the demonstration was an assumption, motivated by symmetry and math-
ematical considerations, that the velocity-space number density of atoms as a function of speed must
factor into separate, identical functions of the Cartesian velocity components. Indeed, the existence of
the velocity vx does not in any way affect that of the velocities vy or vz, since these are all at right
angles to each other and independent, so that the number of particles whose velocity lies between vx
and vx + dvx, and also between vy and vy + dvy, and also between vz and vz + dvz, is

Nf(vx)f(vy)f(vz) dvx dvy dvz (A.1)

Suppose that the N particles start from the origin at the same instant, then this will be the number in
the element of volume (dvx dvy dvz) after unit of time, and the number referred to unit of volume will be

Nf(vx)f(vy)f(vz) (A.2)

But the orientation of the coordinates frame of reference is perfectly arbitrary, and therefore this number
must depend on the distance from the origin alone. Indeed, rotational symmetry means that the form of
the velocities components distributions in the x, y, z directions has to be the same. However, rotational
invariance also requires that the full distribution can not depend on the direction of the velocity, but it
can only depend on the speed

v =
√
v2
x + v2

y + v2
z (A.3)

This means that the form of two functions have to be found, F̃ (v) and f(vj) with j = x, y, z, such that

NF̃ (v) dvx dvy dvz = Nf(vx)f(vy)f(vz) dvx dvy dvz (A.4)

Therefore, the distribution of velocities in the atomic system can be written as

F̃ (v) = f(vx)f(vy)f(vz) (A.5)

It does not look as if there is enough information to solve this equation for both F̃ (v) and f(vj), with
j = x, y, z. But, remarkably, there is only one solution. By differentiation of equation (A.5), the following

259

A.1. Maxwell-Boltzmann distribution Appendix A. Notation stuffs and demonstrations

expression is obtained

∂F̃ (v)

∂vx
=
dF̃ (v)

dv

∂v

∂vx
=
dF̃ (v)

dv

vx
v

=
df(vx)

dvx
f(vy)f(vz) (A.6)

Rewriting the last equivalence of the previous equation leads to

dF̃ (v)

dv

vx
v

=
df(vx)

dvx
f(vy)f(vz) (A.7)

Dividing this expression by the factor vxF̃ (v) = vxf(vx)f(vy)f(vz) gives

1

vF̃ (v)

dF̃ (v)

dv
=

1

vxf(vx)

df(vx)

dvx
(A.8)

Following the same calculations for vy and vz components, two other equations can be found,

1

vF̃ (v)

dF̃ (v)

dv
=

1

vyf(vy)

df(vy)

dvy

1

vF̃ (v)

dF̃ (v)

dv
=

1

vzf(vz)

df(vz)

dvz
(A.9)

which are consequences of the symmetry between velocity components. Given the mathematical in-
dependence of the velocity components, each of the equal terms in (A.8) and (A.9) must in fact be
constant,

1

vF̃ (v)

dF̃ (v)

dv
= constant (A.10)

Upon integration, one finds

F̃ (v) = Ae±Bv
2

(A.11)

where A > 0, B > 0 and the positive or negative sign in the exponent depends on the sign of the
constant chosen in equation (A.10). If the positive sign is chosen in the exponent, then the number of
particles will increase with the velocity, so that the whole number of particles is find to be infinite. For
this reason, the negative sign has to be chosen in equation (A.11), leading to the solution

F̃ (v) = Ae−Bv
2

(A.12)

where A and B are positive constants. The insertion of the solution (A.12) in equations (A.8) and (A.9)
leads to

1

vjf(vj)

df(vj)

dvj
= −2B j = x, y, z (A.13)

and the solution of the previous differential equation is given by

f(vj) = C e−Bv
2
j j = x, y, z (A.14)

where the constant C can be determined inserting the solutions (A.12) and (A.14) in the relation (A.5),

F̃ (v) = Ae−Bv
2

= f(vx)f(vy)f(vz) = C3 e−Bv
2
x e−Bv

2
y e−Bv

2
z = C3 e−B(v2

x+v2
y+v2

z) = C3 e−Bv
2

→ C = A1/3

Finally, inserting this expression for the constant in the solution (A.14) gives the following distribution
for each velocity component

f(vj) = A1/3 e−Bv
2
j j = x, y, z (A.15)

This procedure shows that the functional form of the velocity distributions in an atomic system arises
from the rotational invariance condition (A.5) alone. Using (A.12) and (A.4), the probability that one
atom has a velocity component along x that lies between vx and vx + dvx, a velocity component along

260

Appendix A. Notation stuffs and demonstrations A.1. Maxwell-Boltzmann distribution

y that lies between the values vy and vy + dvy, and a velocity component along z that lies in the range
of values vz and vz + dvz, is given by

F̃ (v) dvx dvy dvz = Ae−Bv
2
dvx dvy dvz (A.16)

The positive normalization factor A as a function of the positive constant B can be determined by
insisting that the probabilities sum to one, namely,∫ ∞

−∞

∫ ∞
−∞

∫ ∞
−∞

F̃ (v) dvx dvy dvz = 1 (A.17)

Inserting the form (A.12) of the function F̃ (v) in the previous integrals and solving them leads to∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

F̃ (v) dvx dvy dvz = A

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

e−Bv
2
dvx dvy dvz

= A

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

e−B(v2
x+v2

y+v2
z) dvx dvy dvz = A

∫ ∞
−∞

e−Bv
2
x dvx︸ ︷︷ ︸

=
√
π/B

∫ ∞
−∞

e−Bv
2
y dvy︸ ︷︷ ︸

=
√
π/B

∫ ∞
−∞

e−Bv
2
z dvz︸ ︷︷ ︸

=
√
π/B

Therefore, the positive normalization constant A is given by∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

F̃ (v) dvx dvy dvz = A

(
π

B

)3/2

= 1 → A =

(
B

π

)3/2

(A.18)

At the same time, from the theorem of the equipartition of energy the average kinetic energy of the
atomic system can be written as

1

2
m 〈v2〉 =

3

2
kbTa (A.19)

where Ta is the actual temperature of the system, given by the instantaneous velocity distribution. The
average square speed of the particles can thus the be expressed as

〈v2〉 =

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

v2 F̃ (v) dvx dvy dvz =
3kbTa
m

(A.20)

where the first identity above has been written following the definition of average quantity in a system
with probability density function equal to F̃ (v), and the last identity above has been written following
the equipartition theorem (A.19). From the condition (A.20), the positive constant B can be derived, so
that the value of the positive normalization factor A in (A.18) will be found, and the velocity distribution
(A.12) will be completely defined. Indeed, the solution of the integrals in (A.20) is∫ ∞

−∞

∫ ∞
−∞

∫ ∞
−∞

v2 F̃ (v) dvx dvy dvz =

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

(v2
x + v2

y + v2
z) F̃ (v) dvx dvy dvz (A.21)

=
∑

j=x,y,z

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

v2
j F̃ (v) dvx dvy dvz = A

∑
j=x,y,z

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

v2
j e
−B(v2

x+v2
y+v2

z) dvx dvy dvz

Since the three integrals j = x, y, z have the same form, the solution for the case j = x is derived in the
following, while for the other two integrals the solution can be extended with minor differences.

j = x :

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

v2
x e
−B(v2

x+v2
y+v2

z) dvx dvy dvz =

∫ ∞
−∞

e−Bv
2
z dvz︸ ︷︷ ︸

=
√
π/B

∫ ∞
−∞

e−Bv
2
z dvz︸ ︷︷ ︸

=
√
π/B

∫ ∞
−∞

v2
x e
−Bv2

x dvx

=

√
π

B

√
π

B

∫ ∞
−∞

v2
x e
−Bv2

x dvx =
π

B

(
− vx

2B
e−Bv

2
x

∣∣∣∞
−∞

+
1

2B

∫ ∞
−∞

e−Bv
2
x dvx︸ ︷︷ ︸

=
√
π/B

)
=

1

2B

(
π

B

)3/2

where the first integral in the second line with integration variable dvx has been solved by parts.

261

A.1. Maxwell-Boltzmann distribution Appendix A. Notation stuffs and demonstrations

The same result is obtained for j = y, z, namely,

j = y :

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

v2
y e
−B(v2

x+v2
y+v2

z) dvx dvy dvz =
1

2B

(
π

B

)3/2

and

j = z :

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

v2
z e
−B(v2

x+v2
y+v2

z) dvx dvy dvz =
1

2B

(
π

B

)3/2

Finally, substituting these results in (A.21), the solution of the integrals can be written as

〈v2〉 =

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

ṽ2 F (v) dvx dvy dvz = A

[
1

2B

(
π

B

)3/2

+
1

2B

(
π

B

)3/2

+
1

2B

(
π

B

)3/2
]

=
3A

2B

(
π

B

)3/2

Using equation (A.20) derived from the theorem of energy equipartition, the previous product of constant
will be equal to

3A

2B

(
π

B

)3/2

= 〈v2〉 =

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

ṽ2 F (v) dvx dvy dvz =
3kbTa
m

(A.22)

The constant B can be finally derived substituting the expression for the normalization constant A as a
function of B, given by expression (A.18), in the previous equation

3A

2B

(
π

B

)3/2

=
3

2B

(
B

π

)3/2(π
B

)3/2

=
3

2B
=

3kbTa
m

→ B =
m

2kbTa
(A.23)

Recollecting the results obtained, the probability density function for the velocity speed in an atomic
system (in a Cartesian coordinates reference frame) is

F̃ (v) = Ae−Bv
2

(A.24)

where the normalization constant A and the exponential factor B are both positive constants, that
are derived from the probability density function normalization condition and the theorem of energy
equipartition to be equal to, respectively,

B =
m

2kbTa
A =

(
B

π

)3/2

=

(
m

2πkbTa

)3/2

(A.25)

Using these positive constants, the probability density function for the velocity speed in an atomic system
(in a Cartesian coordinates reference frame) assumes the form

F̃ (v) =

(
m

2πkbTa

)3/2

e−mv
2/(2kbTa) =

(
m

2πkbTa

)3/2

e−m(v2
x+v2

y+v2
z)/(2kbTa) (A.26)

The probability (A.16) is expressed in Cartesian coordinates in the space of the velocity. However, the
variable v defined by (A.3) has the form of a typical radial variable, and it is therefore more convenient
to rewrite the probability (A.16) using spherical coordinates. The change of variable from Cartesian to
spherical coordinates can lead to a probability function F (v) dv that depends only on the velocity variable
(A.3), and not on the velocity vectors components, thus representing and satisfying the space rotational
invariance required. Starting from the probability density function (A.26) whose form has been just
derived, and proceeding with the change of variables in the same way as in Section 3.1 (see equation
(3.37) and the derivation below it), the probability density function associated to the distribution of
velocity modulus in a classical atomic system can be written as

F (v) = 4π

(
m

2πkbTa

)3/2

v2 e−mv
2/(2kbTa) (A.27)

and the probability that an atom in the system has a velocity modulus whose value lies in the range
(v, v + dv) will be given, using spherical coordinates, by F (v)dv (see equation (3.38)).

262

Appendix A. Notation stuffs and demonstrations A.1. Maxwell-Boltzmann distribution

A.1.1 Initial nuclear velocities distribution: extension and examples

As demonstrated in Section 3.1, by using the Box-Muller algorithm the probability density function
for the collection of 3N random numbers ui (where N is the number of atoms in the system) is a
standard normal distribution with the form (3.23). In order to obtain the correspondent distribution for
physical meaningful nuclear velocities variables vi, the transformation (3.25) has to be performed, finally
obtaining a set of initial random nuclear velocities components distributed following the normalized
Gaussian probability density functions (3.28). Each one of the three components of the nuclear velocities
for the collection of atoms follows a own Gaussian distribution, given by the three probability density
functions in (3.30)-(3.32). Therefore, it can be stated that the three components of the velocity vectors
follow, respectively, the three probability density functions

f(vj) =

√
m

2πkbTa
e−mv

2
j /(2kbTa) j = x, y, z (A.28)

The three probability density functions (A.28) for the nuclear velocities components have a Gaussian
form with standard deviation given by

σ =

√
2kbTa
m

(A.29)

Therefore, their standard deviations depend on the atomic mass m and on the temperature Ta of the
system. The greater the atomic mass, the less the standard deviation, the stricter the dispersion of the
Gaussian distribution. Conversely, the greater the temperature of the system, the greater the standard
deviation, the broader the dispersion of the Gaussian. The value of the system temperature Ta has an
effect also on the intensity (on the maximum point) of the Gaussian. The grater the temperature Ta,
the less the value of the standard deviation σ, the greater the multiplicative coefficient associated to the
Gaussian distributions (A.28), the greater the maximum intensity of the Gaussian distributions.
The product of the three probability density functions (A.28), transformed from Cartesian to spherical
coordinate reference frame, gives the probability density function followed by the nuclear velocities
vectors modulus, described by the form (3.39), reported here below for completeness

F (v) = 4π

(
m

2πkbTa

)3/2

v2 e−mv
2/(2kbTa) (A.30)

where v is the modulus of the velocity vector associated to the nuclei, given by

v = ‖v‖ =
√
v2
x + v2

y + v2
z (A.31)

Figure A.1 reports the histogram for the three components of nuclear velocities and for the modulus of
the nuclear velocities initialized for a 20×10×10 supercell (N = 4000 atoms) of Silicon crystalline system
with an initial temperature equal to Ta = 600 K (upper panel) and Ta = 1200 K (lower panel). The
black curves in the first three left panels (upper and lower) are the functions obtained by plotting the
normalized Gaussian distributions with probability density functions (A.28), and the black curves in the
last panel (upper and lower) are the Maxwell-Boltzmann distributions with probability density functions
of the form (A.30). The input values for the nuclear velocities in all the plotted functions are a number
of N points equally spaced in the interval [-0.02,0.02] Å/fs for the velocity components distribution, and
in the interval [0.0,0.025] Å/fs for the Maxwell-Boltzmann distributions, while the input values for the
masses m are all equal to the mass of Silicon atom.
The case of silicon supercell system is simple, since only one atomic mass population is involved, so
that the distributions with probability density functions of the form (A.28) and (A.30) can be used
directly, imposing the mass m to be equal to the Silicon mass. A more complicated case is a crystalline
system with 12 water molecules, where two different atomic masses are considered: the hydrogen mass
mh and the oxygen mass mo, where mh < mo. In this case, since two different masses are involved, the
distributions (A.28) have to be divided in two Gaussian functions, one for the hydrogen subsystem and
the other one for the oxygen subsystem, namely,

f(vx) = f(vx,h) + f(vx,o) =

√
mh

2πkbTa,h
e−mhv

2
x,h/(2kbTa,h) +

√
mo

2πkbTa,o
e−mov

2
x,o/(2kbTa,o) (A.32)

263

A.1. Maxwell-Boltzmann distribution Appendix A. Notation stuffs and demonstrations

f(vy) = f(vy,h) + f(vy,o) =

√
mh

2πkbTa,h
e−mhv

2
y,h/(2kbTa,h) +

√
mo

2πkbTa,o
e−mov

2
y,o/(2kbTa,o) (A.33)

f(vz) = f(vz,h) + f(vz,o) =

√
mh

2πkbTa,h
e−mhv

2
z,h/(2kbTa,h) +

√
mo

2πkbTa,o
e−mov

2
z,o/(2kbTa,o) (A.34)

where (vx,h, vy,h, vz,h) and (vx,o, vy,o, vz,o) are respectively the velocity components of the hydrogen and
oxygen atoms, Ta,h is the temperature related to the hydrogen subsystem, while Ta,o is the temperature
of the oxygen atoms subsystem. In the same way, the Maxwell-Boltzmann distribution with probability
density function (A.30) becomes the sum of two Maxwell-Boltzmann distributions (i.e. the sum of two
probability density functions with form given by (A.30)), with two different associated temperatures
(Ta,h and Ta,o) and two different atomic masses, that is

F (v) = 4π

(
mh

2πkbTa,h

)3/2

v2
h e
−mhv2

h/(2kbTa,h) + 4π

(
mo

2πkbTa,o

)3/2

v2
o e
−mov2

o/(2kbTa,o) (A.35)

where vh and vo are the modulus of the velocities for the hydrogen and the oxygen atoms, respectively,

vh = ‖vh‖ =
√
v2
x,h + v2

y,h + v2
z,h vo = ‖vo‖ =

√
v2
x,o + v2

y,o + v2
z,o (A.36)

The generalization of the previous equations to a number ns of atomic species in the system is straight-
forward. The Gaussian distributions associated to the three components vj , j = x, y, z of the nuclear
velocities have, in the general case of ns number of atomic species in the system, the following three
probability density functions

f(vj) =

ns∑
α=1

f(vj,α) =

ns∑
α=1

√
mα

2πkbTa,α
e−mαv

2
j,α/(2kbTa,α) j = x, y, z (A.37)

where the temperature Ta,α is the actual temperature related to the α-th atomic element subsystem.
In the same way, the Maxwell-Boltzmann distribution for the modulus of the nuclear velocities, in the
general case of ns number of atomic species in the system, is associated to the following probability
density function

F (v) = 4π

ns∑
α=1

(
mα

2πkbTa,α

)3/2

v2
α e
−mαv2

α/(2kbTa,α) (A.38)

where vα are the modulus of the velocities for all the atoms of the α-th species (element).
This separation of the probability density function on the base of the atomic masses values which form
the system is well reproduced in Figure A.2, where the histograms for the three components of nuclear
velocities and for the modulus of the nuclear velocities initialized for a 4 × 4 × 4 supercell (N = 2304
atoms) of the Bernal-Folwer ice (768 oxygen atoms and 1536 hydrogen atoms) with an initial temperature
equal to Ta = 600 K (upper panel) and Ta = 1200 K (lower panel) are reported. The blue and black
curves in the first three panels of Figure A.2 are the functions obtained by plotting, respectively, the
first and the second terms in (A.32)-(A.34). Since the mass of the oxygen is greater than the mass of the
hydrogen atom (mo > mh), then the Gaussian distributions associated to the hydrogen atoms have a
probability density function with a greater standard deviation (blue curves) with respect to the oxygen
atoms (black curves), i.e. σo < σh. In the last panel of Figure A.2, the blue and black curves are,
respectively, the first and the second term of the Maxwell-Boltzmann distribution in (A.35). The input
values for the nuclear velocities in all the plotted functions are a number of N points equally spaced in
the interval [-0.10,0.10] Å/fs for the velocity component distributions and in the interval [0.00,0.14] Å/fs
for the Maxwell-Boltzmann distribution, and the input masses are the mass mh of the hydrogen atom
for the blue curves and the mass mo of the oxygen atom for the black curves.
The effect of the temperature is visible both in Figure A.2 and Figure A.1, moving from the upper to the
lower panel. Indeed, increasing the temperature, the standard deviations of the distributions increase,
so that the probability density functions are broader for a larger temperature (lower panels). At the
same time, increasing the temperature, the maximum value of the distributions decreases.

264

Appendix A. Notation stuffs and demonstrations A.1. Maxwell-Boltzmann distribution

Ta = 600 K

Ta = 1200 K

Figure A.1: System: 20 × 10 × 10 silicon supercell (N = 4000 atoms), temperature Ta = 600 K (upper panel)
and Ta = 1200 K (lower panel). In the first three panels from the left, histograms for the velocity components
distributions f(vx), f(vy) and f(vz) are reported. Black curves in the first three left panels (upper and lower)
are the functions (A.28) sampled at equal points in the interval [-0.02,0.02] Å/fs. In the last right panel (upper
and lower), the distribution for the modulus of the nuclear velocities F (v) is reported, together with the Maxwell-
Boltzmann function (A.30) (black curve) sampled at equal points in the interval [0.0,0.025] Å/fs. Histograms are
plotted using the object hist in python (matplotlib.pyplot library), with 90 number of bins and relative width of
the bars as a fraction of the bin width equal to 1.0.

265

A.1. Maxwell-Boltzmann distribution Appendix A. Notation stuffs and demonstrations

Ta = 600 K

Ta = 1200 K

Figure A.2: System: 4 × 4 × 4 supercell of Bernal-Folwer crystalline ice (12 water molecules crystalline system,
N = 2304 atoms, 768 oxygen and 1536 hydrogen atoms), temperature Ta = 600 K (upper panel) and Ta = 1200 K
(lower panel). In the first three panels from the left, histograms for the velocity components distributions f(vx),
f(vy) and f(vz) are reported. Blue and black curves in the first three left panels (upper and lower) are respectively
the first and second terms in functions (A.32)-(A.34), sampled at equal points in the interval [-0.10,0.10] Å/fs. In
the last right panel (upper and lower), the distribution for the modulus of the nuclear velocities F (v) is reported,
together with the Maxwell-Boltzmann function (A.30) for the hydrogen atoms (blue curve) and the oxygen atoms
(black curve) sampled at equal points in the interval [0.0,0.14] Å/fs. Histograms are plotted using the object hist
in python (matplotlib.pyplot library), with 110 number of bins and relative width of the bars as a fraction of the
bin width equal to 1.0.

266

Appendix A. Notation stuffs and demonstrations A.1. Maxwell-Boltzmann distribution

A.1.2 Initial nuclear velocities rescaling

As explained in Chapter 5.5, Section 3.1.2, in order to match the initial target temperature T0 required by
the molecular dynamics simulation, the nuclear velocities {vij}, given by equation (3.24) and obtained
through the Box-Muller algorithm, after the subtraction of the center of mass velocity, have to be
rescaled. The calculation of the rescaling factor proceeds as described in Section 3.1.2. Here, it will be
demonstrated that the multiplicative factor

√
kbTa in equation (3.24) is a fictitious factor, that can be

completely ignored because it does not change the values of the initial nuclear velocities, thanks to the
rescaling procedure. To this end, it is defined a set of numbers {ũi} simply given by the standard normal
distributed random numbers {ui} normalized with respect to the square root of the atomic masses, so
that

ũi =
ui√
mi

i = 1, ..., 3N (A.39)

or, alternatively, changes the indexes as in equation (3.24), so that

ũ3(i−1)+j =
u3(i−1)+j√

mi
i = 1, ..., N and j = 1, 2, 3 (A.40)

In this way, two sets of initial velocities can be defined, which differs only for the multiplicative factor
proportional to the actual temperature, in the following way,

vij = ũ3(i−1)+j and vij = ũ3(i−1)+j

√
kbTa (i = 1, ..., N and j = 1, 2, 3) (A.41)

where Ta is the actual temperature given by the initial normal Gaussian distribution of random numbers
{ui}. In the following, it will be demonstrated that these two initialization ways for the nuclear velocities
are completely equivalent, that is, by (i) subtracting the center of mass velocity and by (ii) rescaling
with respect to the target temperature the initial velocities in (A.41) leads to the same set of numbers
for the nuclear velocities.

Proof.

Consider the first set of velocities in (A.41). Following the procedure described in Sections 3.1.1 and
3.1.2, the calculations performed on the first set of nuclear velocities in (A.41) are reported here below.

Box-Muller : u3(i−1)+j i = 1, ..., N j = 1, 2, 3

Initial velocities : vij(t0) = u3(i−1)+j

√
1

mi
= ũ3(i−1)+j i = 1, ..., N j = 1, 2, 3

COM velocity : vcij(t0) = vij(t0)− 1

m

N∑
i=1

mivij(t0) = ũ3(i−1)+j −
1

m

N∑
i=1

miũ3(i−1)+j ≡ ṽcij(t0)

Kinetic energy : Ek(t0) =
1

2

N∑
i=1

3∑
j=1

mi [ṽcij(t0)]2

Actual temperature : T (t0) =
2

gkb
Ek(t0) =

1

gkb

N∑
i=1

3∑
j=1

mi [ṽcij(t0)]2 ≡ T̃ (t0)

Temperature scaling : vinij (t0) = ṽcij(t0)

√
T0

T̃ (t0)
i = 1, ..., N j = 1, 2, 3

Consider now the second set of velocities in (A.41). Following the procedure described in Sections 3.1.1
and 3.1.2, the calculations performed on the second set of nuclear velocities in (A.41) are reported here
below, to be compared with the previous derivation.

Box-Muller : u3(i−1)+j i = 1, ..., N j = 1, 2, 3

267

A.1. Maxwell-Boltzmann distribution Appendix A. Notation stuffs and demonstrations

Kinetic energy : Ek =
1

2

N∑
i=1

3∑
j=1

mi u
2
3(i−1)+j

Actual temperature : Ta =
2

gkb
Ek(t0) =

1

gkb

N∑
i=1

3∑
j=1

mi u
2
3(i−1)+j

Initial velocities : vij(t0) = u3(i−1)+j

√
kbTa
mi

=
√
kbTa ũ3(i−1)+j i = 1, ..., N j = 1, 2, 3

COM velocity : vcij(t0) = vij(t0)− 1

m

N∑
i=1

mivij(t0) =
√
kbTa

[
ũ3(i−1)+j −

1

m

N∑
i=1

miũ3(i−1)+j︸ ︷︷ ︸
= ṽcij(t0)

]

Kinetic energy : Ek(t0) =
1

2

N∑
i=1

3∑
j=1

mi [vcij(t0)]2 =
kbTa

2

N∑
i=1

3∑
j=1

mi [ṽcij(t0)]2

Actual temperature : T (t0) =
2

gkb
Ek(t0) =

Ta
g

N∑
i=1

3∑
j=1

mi [ṽcij(t0)]2 = kbTa T̃ (t0)

Temperature scaling : vinij (t0) = vcij(t0)

√
T0

T (t0)
=
√
kbTa ṽ

c
ij(t0)

√
T0

kbTa T̃ (t0)
= ṽcij(t0)

√
T0

T̃ (t0)

c.v.d.

where ṽcij(t0) and T̃ (t0) are same the nuclear velocities scaled with respect to the center of mass velocity
and the same actual temperature at time t0 defined for the first set of initial velocities in (A.41) and
introduced in the first block of equations written in this proof. Note that in this last block of equations,
two additional calculations are performed with respect to the first block, that are required to compute
the actual temperature Ta (associated to the normal Gaussian distributed random numbers {u3(i−1)+j})
that is used for the definition of the second set of nuclear velocities vij(t0) in (A.41).
Finally, it can be stated that using the two sets of nuclear velocities (A.41) is equivalent, because they
both lead to the same expression for the initial nuclear velocities vinij (t0) to be used as initial condition
in a molecular dynamics simulation.

268

Appendix A. Notation stuffs and demonstrations A.2. Position and Velocity Verlet algorithms

A.2 Position and Velocity Verlet algorithms

Both position and velocity Verlet algorithms are finite-difference methods, that have been introduced
with the aim of solving second order differential equations.
Consider the case of a two-dimensional system described by the coordinates (x, y). Second order differ-
ential equations of the form

ÿ = f(x, y) (A.42)

with initial conditions

y(a) = α ẏ(a) = γ (A.43)

are very often encountered in mathematical physics. The equation (A.42) can be reduced to a set of
two simultaneous first-order differential equations using special methods. One can simply replace the
derivatives in the differential equation and initial conditions by symmetric difference approximations

ẏ(xn) ≈ yn+1 − yn−1

2h
(A.44)

ÿ(xn) ≈ 1

h
(ẏn+1/2 − ẏn−1/2) =

1

h

(
yn+1 − yn

h
− yn − yn−1

h

)
=
yn+1 − 2yn + yn−1

h2
(A.45)

If the notation fn = f(xn, yn) is used, a finite-difference solution for the second order differential equation
(A.42) can be written as

yn+1 − 2yn + yn−1 = h2 ÿ(xn) = h2 fn (A.46)

y0 = α y1 − y−1 = 2hγ (A.47)

where y−1 can be eliminated by means of equation (A.46) with n = 0, that is by means of the equation

y1 − 2y0 + y−1 = h2 f0 → y−1 = h2 f0 − y1 + 2y0 (A.48)

so that

y1 − y−1 = 2hγ → y1 − (h2 f0 − y1 + 2y0) = 2hγ → 2y1 − 2y0 = 2hγ + h2 f0 (A.49)

The method that leads to equation (A.46) is called explicit central difference method, and it is the
simplest member of the Störmer family of methods. The application of this method for solving the
Newton’s equations of motion of the form q̈ = f(q) for the motion of the nuclei in a condensed matter
system it is called position Verlet algorithm, since it has been introduced by L. Verlet[40] in 1967.1 The
starting procedure for this method is therefore

y0 = α y1 − y0 = hγ +
1

2
h2 f0 (A.50)

and then y2, y3, y4, etc. can be computed successively by means of equation (A.46), i.e.

yn+1 = 2yn − yn−1 + h2 fn (A.51)

Note that at each step there is an addition of the form O(1) + O(h2), this gives unfavorable rounding
errors when h is small. Furthermore, the algorithm defined by equation (A.51) is a two-step method,
since yn+1 is computed using yn and yn−1.
One should instead use another finite-difference method, called the summed form, which consists in
introducing the quantity

zn =
yn+1 − yn

h
(A.52)

1A curious fact is that Professor Loup Verlet, who later became interested in the history of science, discovered precisely
his method in several places in the classical literature, for example, in the calculations of logarithms and astronomical tables
by J. B. Delambre in 1792. Even more spectacular is the finding that the Verlet method was used in Newton’s Principia
from 1687 to prove Kepler’s second law. An especially clear account can be found in Feynman’s Messenger Lecture from
1964.

269

A.2. Position and Velocity Verlet algorithms Appendix A. Notation stuffs and demonstrations

so that, using equation (A.46), the following expression can be derived

zn − zn−1 =
yn+1 − yn

h
− yn − yn−1

h
=
yn+1 − 2yn + yn−1

h
= h fn (A.53)

Then the summed form is defined by the formulae

yn+1 = yn + hzn (A.54)

zn = zn−1 + h fn (A.55)

y0 = α z0 = γ +
1

2
h f0 (A.56)

This summed form is mathematically equivalent, but not numerically equivalent to the explicit central
difference method, since the summed form is superior on a computer finite precision computation.[115]
The application of the summed form method for solving the Newton’s equations of motion q̈ = f(q) for
the motion of the nuclei in a condensed matter system has been introduced by W. Swope et al.[39] in
1982, and it is called velocity Verlet algorithm, since it is a modification of the position Verlet algorithm
in which the nuclear velocity vn = q̇n appears directly in the equations to be iterated.

The following example clarify the reason for the superiority of the summed form on the explicit central
difference method as regards the numerical precision.
Take the differential equation

ÿ = k y(0) = 0.1 ẏ(0) = 0

where k = 0.654321, h = 0.01, n ≤ 100. Then one can easily show that 0.1 ≤ yn < 1. Suppose that
six-digit floating decimal arithmetic is used. For the explicit central difference method each operation
will be of the form:

2yn − yn−1 = 0.xxxxxx

+ h2 fn = 0.000065 4321

————————————–

yn+1 = 0.yyyyyy

The last four digits have no influence. In fact, the equation ÿ = 0.65 is treated instead of ÿ = 0.654321.
For the summed form, the inequality 0.1 < zn < 1 holds for n > 15. Hence most operations will be of
the form
In the calculation of z the last two digits of f are lost. This means roughly that for x > 0.15 the
equation ÿ = 0.6543 is treated. The resultant effect is roughly that the last two digits of z become
unreliable, hence the shift of z in the addition for y is of minor importance. A clue to an explanation
of the difference between the two algorithms is the role of z as a carrier of information from one step to
the next. There is still a loss of accuracy in the summed form, but one has the same kind of loss, for
instance, in numerical quadrature or with other methods for solving differential equations. One could
store z and y in double precision, while single precision is used in the computation of f , which is usually
the most time consuming part of the work. If such partial double precision is used, then the advantage
of the summed form is reduced.
In order to recover the explicit expression of the position and velocity Verlet algorithms, consider the
motion of one particle in a one dimensional space, described by the position q, with f(q) is the force
acting on the particle divided by its mass. The second order differential equation describing the classical
motion of the particle is a Newtonian equation of motion given by

q̈ = f(q) (A.57)

where the right-hand side f(q) does not depend on q̇. Equation (A.57) is usually given together with
some initial conditions, assigning a value to the particle position q0 and to its velocity q̇0 = v0 at the
initial time t0. Using the explicit central difference method, the second order differential equation (A.57)
can be resolved by an iterative procedure

qn+1 = 2qn − qn−1 + h2 fn (A.58)

270

Appendix A. Notation stuffs and demonstrations A.2. Position and Velocity Verlet algorithms

which results in the so-called position Verlet algorithm, that is a two-step method where qn+1 is deter-
mined whenever qn−1 and qn are known (geometrically, this amounts to determining an interpolating
parabola which, in the mid-point, assumes the second derivative prescribed by equation (A.57), see Fig-
ure A.3, left panel). This formulation is not very interesting. The second order ordinary differential
equation (A.57) can be transformed into a first order system of differential equations of dimension two,
by introducing the unknown function v = q̇, so that the system (A.57) becomes

q̇ = v v̇ = f(q) (A.59)

that represents an equation in the so-called phase space. In physics often this type of system is closely
related to the motion of a physical body. In this sense, the variable v can be seen as the velocity, and
the variable q as the displacement (as functions of the time) and f(q) describes some kind of force acting
on the physical body. The discrete approximation of the velocity v, indicated as vn, can be defined as a
function of the quantity zn (where zn has been defined in equation (A.52)) using equation (A.44) as

vn = q̇n =
qn+1 − qn−1

2h
=
zn + zn−1

2

eq. (A.55)
=

2zn − h fn
2

= zn −
h

2
fn (A.60)

so that, on the contrary, the quantity zn can be written as a function of the velocity vn as

zn = vn +
h

2
fn (A.61)

Applying equation (A.54), the solution of the second order differential equation (A.57) using the summed
form method can be written as

qn+1 = qn + hzn
eq. (A.61)

= qn + hvn +
h2

2
fn (A.62)

The explicit expression for the velocity vn+1 without the dependence on the zn+1 variable can be obtained
considering the two equations (written starting from (A.60))

vn = zn −
h

2
fn (A.63)

vn+1 = zn+1 −
h

2
fn+1 (A.64)

and subtracting the first one to the second one

vn+1 − vn = zn+1 − zn −
h

2
fn+1 +

h

2
fn (A.65)

The difference (zn+1 − zn) can be expressed as a function of fn and fn+1 using equation (A.55) with
index substitution n→ (n+ 1), so that

zn+1 = zn + h fn+1 → zn+1 − zn = h fn+1 (A.66)

Finally, the substitution of the difference (A.66) in (A.65) leads to the equation

vn+1 − vn = h fn+1 −
h

2
fn+1 +

h

2
fn =

h

2
(fn+1 + fn) (A.67)

and the velocity at step n+ 1 can be recovered from the velocity at the step n and the forces at n and
n+ 1 with the formula

vn+1 = vn +
h

2
(fn+1 + fn) (A.68)

Thus, it has been demonstrated that the solution of the second order differential equation (A.57) using
the summed form method leads to the so-called velocity Verlet algorithm, a one-step method (see Figure
A.3, right panel) that can be resumed by the following two equations

qn+1 = qn + hvn +
h2

2
fn (A.69)

vn+1 = vn +
h

2
(fn+1 + fn) (A.70)

These equations permit to evolve the equation of motion (A.57) in a discrete way, with a time step
represented by h, computing at each n-th step the position qn+1 and the velocity vn+1 of the particle for
the next (n + 1)-th step, using the forces fn and fn+1 acting on the same particle, respectively at the
n-th and at the (n+ 1)-th step.

271

A.3. Phase space notation Appendix A. Notation stuffs and demonstrations

Figure A.3: Two-step formulation (left) and one-step formulation (right) for the solution of the second order
differential equation (A.57), which gives rise to the so-called position and velocity Verlet algorithm, respectively.

A.3 Phase space notation

A point in phase space R2Nd, where Nd is the number of degrees of freedom, is given by the column
vector

x(t) ≡ t(q1(t), ..., qNd(t), p1(t), ..., pNd(t)) (A.71)

where the superscript t above indicates the transpose function. Using the Hamilton equations of motion,
the time derivative of (A.71) can be obtained using the equation

ẋ = M
∂H
∂x

=

(
0 1
−1 0

)
∂H
∂x

(A.72)

where ẋ and (∂H/∂x) are 2Nd×1 column matrices, while M is a 2Nd×2Nd skew-symmetric, orthogonal
block matrix, with 0 and 1 the d × d zero and identity matrices, respectively. Using equation (A.72),
the evolution of time of a the point x in the phase space can be expressed as

tẋ(t) =

(
∂H
∂p1

, ...,
∂H
∂pNd

,−∂H
∂q1

, ...,− ∂H
∂qNd

)
(A.73)

The number of degrees of freedom Nd depends on both the number of particle involved in the system
and the dimension of the space in which the particles move. For example, for N = 2 particles in d = 3
dimensions, the number of degrees of freedom are Nd = 3N = 6 and the matrix equation (A.72) on the
phase space R8 can be written explicitly as follows

q̇1

q̇2

q̇3

q̇4

q̇5

q̇6

ṗ1

ṗ2

ṗ3

ṗ4

ṗ5

ṗ6

=

0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1
−1 0 0 0 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 0 0 0 0

∂H/∂q1

∂H/∂q2

∂H/∂q3

∂H/∂q4

∂H/∂q5

∂H/∂q6

∂H/∂p1

∂H/∂p2

∂H/∂p3

∂H/∂p4

∂H/∂p5

∂H/∂p6

(A.74)

so that the Hamilton equations of motion can be recovered

q̇α =
∂H
∂pα

ṗα = − ∂H
∂qα

α = 1, ..., 6 (A.75)

However, it is convenient to collect the coordinates in vectors on the base of particle indexes, i.e. rewriting
the point x(t) in phase space as

x̃(t) ≡ t(q1(t), ..., qN (t),p1(t), ...,pN (t)) (A.76)

272

Appendix A. Notation stuffs and demonstrations A.3. Phase space notation

where

qi(t) = (q1+d(i−1)(t), ..., qd+d(i−1)(t))

pi(t) = (p1+d(i−1)(t), ..., pd+d(i−1)(t))
i = 1, ..., N and d = space dimension (A.77)

Using this new simplified notation, equation (A.74) can be rewritten as follows
q̇1

q̇2

ṗ1

ṗ2

 =

0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

∂H/∂q1

∂H/∂q2

∂H/∂p1

∂H/∂p2

 (A.78)

with q1 = (q1, q2, q3), q2 = (q4, q5, q6), p1 = (p1, p2, p3) and p2 = (p4, p5, p6). In this way, the Hamilton
equations of motion can be recovered

q̇i =
∂H
∂pi

ṗi = −∂H
∂qi

i = 1, ..., N (A.79)

so that equation (A.72) becomes

˙̃x(t) = M̃
∂H
∂x̃

=

(
0 1
−1 0

)
∂H
∂x̃

(A.80)

where the point x̃ in phase space is expressed by (A.76) and M̃ is a 2N×2N skew-symmetric, orthogonal
block matrix, with 0 and 1 the N×N zero and identity matrices, respectively. Moreover, if the expression
for a point in phase space would be written as a row vector instead of a column vector, that is

x̄(t) ≡ (q1(t), ..., qN (t),p1(t), ...,pN (t)) (A.81)

then the transpose of equation (A.80) has to be taken, leading to

x̄(t) = t ˙̃x(t) = t

(
M̃

∂H
∂x̃

)
= t

[(
0 1
−1 0

)
∂H
∂x̃

]
= t

(
∂H
∂x̃

)(
0 −1
1 0

)
≡ ∂H
∂x̄

M̄ (A.82)

where
∂H
∂x̄

=

(
∂H
∂p1

, ...,
∂H
∂pN

,
∂H
∂q1

, ...,
∂H
∂qN

)
and M̄ =

(
0 −1
1 0

)
(A.83)

2

2Note that if in the vector x̃(t) given by (A.76) the two sets of generalized coordinates invert their order, that is, if the
general expression of a phase space point is given by

x̃(t) ≡ t(p1(t), ...,pN (t), q1(t), ..., qN (t)) (A.84)

then the derivative of the first coordinates (momenta) have a minus sign and the derivative of the last coordinates (positions)
have a plus sign (according to Hamilton equations of motion), so that the transpose of matrix M̃ in equation (A.80) has to
be considered. Therefore, in this case equation (A.80) becomes

˙̃x(t) = M̃
∂H
∂x̃

=

(
0 −1
1 0

)
∂H
∂x̃

(A.85)

Furthermore, if the general expression of a phase space point is given by the row vector

x̄(t) ≡ (p1(t), ...,pN (t), q1(t), ..., qN (t)) (A.86)

that corresponds to the phase space point with expression (A.81) but with the two sets of generalized coordinates inverted
in the order, then to obtain the correct formula for the Hamilton equation, the transpose of the matrix expression (A.85)
has to be taken, leading to

x̄(t) = t ˙̃x(t) = t

(
M̃

∂H
∂x̃

)
= t

[(
0 −1
1 0

)
∂H
∂x̃

]
= t

(
∂H
∂x̃

) (
0 1
−1 0

)
≡ ∂H
∂x̄

M̄ (A.87)

where
∂H
∂x̄

=

(
∂H
∂p1

, ...,
∂H
∂pN

,
∂H
∂q1

, ...,
∂H
∂qN

)
and M̄ =

(
0 1
−1 0

)
(A.88)

273

A.4. Fluctuation-Dissipation Theorem Appendix A. Notation stuffs and demonstrations

A.4 Fluctuation-Dissipation Theorem

A reasonable physical assumption about the intensity of the random force Rα acting on the α-th nucleus
in a d dimensional system of N atoms can be made on the basis of the fluctuation-dissipation theorem,
that gives the relationship between a fluctuating force on some degree of freedom and the damping
coefficient that determines dissipation in this degree of freedom:

〈Rα(t)Rβ(t+ τ)〉 = 2mαγα kb T0 δ(τ)δαβ (A.89)

where T0 is the equilibrium temperature of the system in contact with a thermal bath. This theorem
can be proven by utilizing the Langevin equation

mαv̇α(t) = Fα(t)−mαγαvα(t) +Rα(t) α = 1, ..., Nd (A.90)

and omitting the interatomic force Fα as not participating in the dissipation process, so that the previous
equation becomes

mαv̇α(t) = −mαγαvα(t) +Rα(t) α = 1, ..., Nd (A.91)

The general solution of this equation reads

vα(t) = vα(0)e−γαt +
1

mα

∫ t

0
Rα(t′)e−γα(t−t′) dt′ α = 1, ..., Nd (A.92)

For a system in equilibrium conditions, the mean square value of this function is equal to

〈v2
α(t)〉 =

kbT0

mα
(A.93)

According to the ergodic hypothesis, the time-averaged quantities for a system in thermodynamic equi-
librium are equal to the corresponding ensemble average quantities, so that the ensemble mean value
of the velocity vα (A.93) can be also interpreted as the time-averaged nuclear velocity. Substituting
equation (A.92) into equation (A.93) where the ensemble average is utilized, yields

〈v2
α(t)〉 = 〈v2

α(0)〉 e−2γαt +
2

mα

∫ t

0
〈vα(0)Rα(t′)〉 e−γα(2t−t′) dt′

+
1

mαmβ

∫ t

0

∫ t

0
〈Rα(t′)Rβ(t′′)〉 e−γα(t−t′) e−γβ(t−t′′) dt′ dt′′

α = 1, ..., Nd (A.94)

In the previous expression

〈v2
α(t)〉 = 〈v2

α(0)〉 = kbT0/mα (A.95)

〈vα(0)Rα(t′)〉 = 0 (A.96)

〈Rα(t′)Rβ(t′′)〉 = a δ(t′ − t′′)δαβ (A.97)

Therefore, the relationship (A.94) can be reduced to

kbT0

mα
(1− e−2γαt) =

1

mαmβ

∫ t

0

∫ t

0
a δ(t′ − t′′)δαβ e−γα(t−t′) e−γβ(t−t′′) dt′ dt′′

kbT0

mα
(1− e−2γαt) =

1

m2
α

∫ t

0
a e−2γα(t−t′) dt′ =

a

m2
α

e−2γαt

∫ t

0
e2γαt′ dt′

kbT0

mα
(1− e−2γαt) =

a

m2
α

1

2γα
e−2γαt(e2γαt − 1) =

a

m2
α

1

2γα
(1− e−2γαt) (A.98)

so that the constant a takes the value
a = 2mαγα kb T0 (A.99)

Finally, inserting this value for the constant a in equation (A.97), the fluctuation-dissipation theorem
(A.89) is recovered in the form

〈Rα(t′)Rβ(t′′)〉 = 2mαγα kb T0 δ(t
′ − t′′)δαβ (A.100)

274

Appendix A. Notation stuffs and demonstrations A.4. Fluctuation-Dissipation Theorem

As follows from previous equations, dynamic properties of the random force Rα in Langevin equation
(A.91) can be summarized as

〈Rα(t)〉 = 0 〈Rα(t)Rβ(t′)〉 = 2mαγα kb T0 δ(t− t′)δαβ (A.101)

where T0 is the target system temperature. These relationships can be physically interpreted as follows:
(i) the function Rα(t) has no directional preference, (ii) the function Rα(t) is a Gaussian random function
of time with zero mean and variance 2mαγα kb T0 for all degrees of freedom interacting with the heat
bath; (iii) the force Rα(t) acting on degree of freedom α is uncorrelated with the force Rβ(t) which acts
on another degree of freedom β; (iv) the instantaneous value of Rα(t) is not affected by its preceding
values, i.e., the function Rα(t) is uncorrelated with its time history.
In practice, the random force Rα(t) can be sampled at each time step of a numerical simulation as a
random Gaussian variable with zero mean and variance (mean square amplitude) 2mαγα kb T0. The
sampling procedure is performed independently for each degree of freedom exposed to the thermal noise.
Furthermore, samples for two successive time steps are evaluated independent of each other.

275

A.5. Canonical transformation Appendix A. Notation stuffs and demonstrations

A.5 Canonical transformation

In the Hamiltonian formulation the generalized coordinates and momenta are independent variables.
Therefore, it is possible to introduce a transformation of both variables simultaneously. For example,
the transformation of the coordinates (q,p) to (Q,P) is denoted by

Q = Q(q,p)

P = P (q,p)
(A.102)

and the inverse transformation, (Q,P) into (q,p), is given by

q = q(Q,P)

p = p(Q,P)
(A.103)

Obviously, the value of any function of the phase space coordinates is unaffected by the coordinate
transformation. In the case of the Hamiltonian, this implies that

H(p, q) ≡ H[Q(q,p),P (q,p)] ≡ H′(P ,Q) (A.104)

In general, the equations of motion in the new coordinates are not of the canonical form, unless the
coordinate transformation is canonical (since time does not appear explicitly in these equations, they
are defined restricted canonical transformation). If the coordinate transformation is canonical, the
equations of motion for the new phase space coordinates (Q,P) are

Q̇ =

(
∂H′(P ,Q)

∂P

)
(A.105)

Ṗ = −
(
∂H′(P ,Q)

∂Q

)
(A.106)

From equation (A.102) and the Hamilton equations of motion for the coordinates (q,p) it follows that

Q̇ =

(
∂Q(q,p)

∂q

)
q̇ +

(
∂Q(q,p)

∂p

)
ṗ =

(
∂Q(q,p)

∂q

)(
∂H(p, q)

∂p

)
−
(
∂Q(q,p)

∂p

)(
∂H(p, q)

∂q

)
Equation (A.104) allows to write(

∂H′(P ,Q)

∂P

)
=

(
∂H(p, q)

∂p

)(
∂p(Q,P)

∂P

)
+

(
∂H(p, q)

∂q

)(
∂q(Q,P)

∂P

)
(A.107)

This equation can only be equal to expression (A.105) for Q̇ if(
∂Q(q,p)

∂q

)
=

(
∂p(Q,P)

∂P

)
and

(
∂Q(q,p)

∂p

)
= −

(
∂q(Q,P)

∂P

)
(A.108)

Similarly, from equation (A.102) and the Hamilton equations of motion for the coordinates (q,p) it
follows that

Ṗ =

(
∂P (q,p)

∂q

)
q̇ +

(
∂P (q,p)

∂p

)
ṗ =

(
∂P (q,p)

∂q

)(
∂H(p, q)

∂p

)
−
(
∂P (q,p)

∂p

)(
∂H(p, q)

∂q

)
Equation (A.104) allows to write(

∂H′(P ,Q)

∂Q

)
=

(
∂H(p, q)

∂p

)(
∂p(Q,P)

∂Q

)
+

(
∂H(p, q)

∂q

)(
∂q(Q,P)

∂Q

)
(A.109)

This equation can only be equal to expression (A.106) for Ṗ if(
∂P (q,p)

∂q

)
= −

(
∂p(Q,P)

∂Q

)
and

(
∂P (q,p)

∂p

)
=

(
∂q(Q,P)

∂Q

)
(A.110)

276

Appendix A. Notation stuffs and demonstrations A.6. Resolution of the Bromwich integral

A.6 Resolution of the Bromwich integral

The following integral has to be resolved∫ γ+ı∞

γ−ı∞
dt t−(N−1)d/2 exp

[
t

(
E − P 2

2m
− φ(ρ)

)]
(A.111)

The integral (A.111) can be traced back to the Bromwich integral, as shown in the following.
First of all, in order to simplify the derivation, the following notation is introduced

n =
d

2
(N − 1) (A.112)

s = E − P 2

2m
− φ(ρ) (A.113)

so that the integral (A.111) can be rewritten as∫ γ+ı∞

γ−ı∞
t−n ets dt =

∫ γ+ı∞

γ−ı∞

ets

tn
dt (A.114)

The solution to this integral can be found looking at the procedure to found the inverse Laplace transform.
If F (t) is known, but the original function f(s) is unknown and the transformation is not even listed in
the Mathematical Handbook of Formulas and Tables, the main task would then be to perform the inverse
operation

f(s) = L−1[F (t)] (A.115)

The inverse of the Laplace transformation can be given explicitly by computing the forward Laplace
transformation as

1√
2π

F (γ + ıω) =
1√
2π

∫ ∞
0

f(s) e−(γ+ıω)s ds =
1√
2π

∫ ∞
−∞

[f(s)Θ(s) e−γ s] e−ıωs ds (A.116)

where ı is the imaginary unit and, by means of the Θ(s) step function, the integration space has been
extended in the range (−∞, +∞), so that the corresponding Fourier transform can be easily seen to be
given by

f(s)Θ(s) e−γ s =
1√
2π

∫ ∞
−∞

1√
2π

F (γ + ıω) eiωs dω =
1

2π

∫ ∞
−∞

F (γ + ıω) eıωs dω (A.117)

It is then straightforward to obtain

f(s)Θ(s) =
1

2π

∫ ∞
−∞

F (γ + ıω) e(γ+ıω)s dω (A.118)

Finally, by setting the variable back to t = γ + ıω the previous integral can be rewritten as

f(s)Θ(s) =
1

2πı

∫ γ+ı∞

γ−ı∞
F (t) ets dt (A.119)

where dt = ı dω. The integral (A.119) is called the Bromwich integral or Bromwich formula. The
integration path goes vertically to the real axis, passing through x = γ. The path should be sufficiently
to the right of all the possible poles of the integrand F (t)ets, but one can displace the path to the left by
means of analytic continuation. In some physical problems it is practically useful to displace the path to
the left (<(t) < 0) so that the integrand of the inverse transformation F (t)ets goes to zero at the both
ends of the integration path.
Therefore, by comparing the integral (A.114) which has to be solved with the equation (A.119), the
explicit form of the function F (t) in the case of interest can be written as

F (t) =
1

tn
with n > 0 (A.120)

277

A.6. Resolution of the Bromwich integral Appendix A. Notation stuffs and demonstrations

Looking at the Mathematical Handbook of Formulas and Tables, the function F (t) corresponds to a
Laplace transform of the function f(s) given by

L−1[F (t)] = L−1

[
1

tn

]
=
sn−1

Γ(n)
= f(s) where n > 0 (A.121)

Finally, substituting the explicit form for the function F (t) and f(s) in equation (A.119)

sn−1

Γ(n)
Θ(s) =

1

2πı

∫ γ+ı∞

γ−ı∞

ets

tn
dt (A.122)

and comparing this expression with the integral (A.114) which has to be solved leads to the solution∫ γ+ı∞

γ−ı∞

ets

tn
dt =

2πı

Γ(n)
sn−1 Θ(s) (A.123)

Moreover, by changing the variables in (A.123) following the transformations (A.112) and (A.113), the
solution to the integral (A.111) can be finally written as∫ γ+ı∞

γ−ı∞
dt t−(N−1)d/2 exp

[
t

(
E − P 2

2m
− φ(ρ)

)]
=

2πı

Γ[(N − 1)d/2]

(
E − P 2

2m
− φ(ρ)

)(N−1)d/2−1

Θ

(
E − P 2

2m
− φ(ρ)

) (A.124)

278

Appendix A. Notation stuffs and demonstrations A.7. Nosé-Hoover statistical mechanical ensemble

A.7 Ensemble generated by Nosé-Hoover equations of motion

The partition function Z for a system of N identical particles is obtained by integrating the equilibrium
distribution function f(x1, x2, ...) over the whole phase space following the formula

Z =
1

N ! (2πh̄)3N

∫
dx1

∫
dx2...f(x1, x2, ...) ≡ ζ

∫
dx1

∫
dx2...ρ(x1, x2, ...) (A.125)

where h̄ is the reduced Planck constant3 and xi are generalized coordinates. The constant factors for the
equilibrium distribution and the partition functions are hereafter labeled as ζ = 1/[N ! (2πh̄)3N]. The
projection of the equilibrium distribution function from the space (x1, x2) onto the space x1 is carried
out by integrating with respect to the variable x2 as

f(x1) =

∫
dx2 f(x1, x2) (A.126)

In particular, the aim is to find the distribution function f(q,p) that is projected from the extended
system onto the physical three dimensional (d = 3) system, in order to characterize the real ensemble
of particles. In the extended system, the total Hamiltonian of equation (5.247) is conserved. Therefore,
this method produces a microcanonical ensemble and the distribution function in virtual variables is
expressed as

f(p̃, q̃, p̃s, s̃) = δ(H̃ − E) (A.127)

Accordingly, the partition function is

Z = ζ

∫
dp̃s

∫
ds̃

∫
dp̃

∫
dq̃ δ

(
N∑
i=1

p̃2
i

2mis̃2
+ φ(q̃) +

p̃2
s

2Q
+ gkbT0 ln s̃− E

)
(A.128)

where the integration variables abbreviations dq̃ = dq̃1dq̃2 · · · dq̃N and dp̃ = dp̃1dp̃2 · · · dp̃N have been
used in the integral to simplify the notation. Then, the virtual momenta p̃i and positions q̃i can be
transformed to the real variables pi = p̃i/s and qi = q̃i, while the degree of freedom s̃ has the same
expression in both virtual and real systems of reference, as reported in (5.244), s̃ = s. With these
transformations, the volume element changes as

dp̃ dq̃ = s3N dp dq (A.129)

Hence the partition function becomes

Z = ζ

∫
dp̃s

∫
dp

∫
dq

∫
ds s3N δ

(
N∑
i=1

p2
i

2mi
+ φ(q) +

p̃2
s

2Q
+ gkbT0 ln s− E

)
(A.130)

or equivalently, using the shortest notation

H0(p̃/s, q̃) =

N∑
i=1

p̃2
i

2mis̃2
+ φ(q̃) → H0(p, q) =

N∑
i=1

p2
i

2mi
+ φ(q) (A.131)

the partition function in real variables can be written more simply as

Z = ζ

∫
dp̃s

∫
dp

∫
dq

∫
ds s3N δ

(
H0(p, q) +

p̃2
s

2Q
+ gkbT0 ln s− E

)
(A.132)

3The only slightly odd thing is the factor of 1/(2πh̄)3N that sits out front. It is a quantity that needs to be there
simply on dimensional grounds. Indeed, Z should be dimensionless so h = 2πh̄ must have dimension (length·momentum)
or, equivalently, Joules per seconds (J·s). The actual value of h won’t matter for any physical observable, like heat capacity,
because these quantities are always computed by taking logZ and then differentiating. Despite this, there is actually a
correct value for h: it is Planck’s constant, h = 2πh̄ ≈ 6.6 ·10−34 J·s. It is very strange to see Planck’s constant in a formula
that is supposed to be classical. In fact, it is a vestigial object. It is redundant, serving only as a reminder of where the
classical world came from. And the classical world came from the quantum.

279

A.7. Nosé-Hoover statistical mechanical ensemble Appendix A. Notation stuffs and demonstrations

Since the argument of the δ function in the above equation has only one zero as a function of the variable
s, a convenient equivalence relation can be employed to simplify the integral, that is

δ[h(s)] =
δ(s− s0)

h′(s0)
(A.133)

where s0 is the zero of function h(s) in the argument of the Dirac function, and h′(s0) is the derivative
of the function h(s) evaluated in the point s0, which has to be read, inside the integral, as the function
h′(s), so that the expressions for these two objects are

s0 = exp

[
− 1

gkbT0

(
H0(p, q) +

p̃2
s

2Q
− E

)]
and h′(s) =

gkbT0

s
(A.134)

Using the relation (A.133) and the expressions (A.134) in (A.132), the partition function can be rewritten
as

Z =
ζ

gkbT0

∫
dp̃s

∫
dp

∫
dq

∫
ds s3N+1 δ(s− s0) =

ζ

gkbT0

∫
dp̃s

∫
dp

∫
dq s3N+1

0 (A.135)

=
ζ

gkbT0

∫
dp̃s

∫
dp

∫
dq exp

[
−3N + 1

gkbT0

(
H0(p, q) +

p̃2
s

2Q
− E

)]
=

ζ

gkbT0
exp

[(
3N + 1

gkbT0

)
E

] ∫
dp̃s exp

[
−
(

3N + 1

gkbT0

)
p̃2
s

2Q

]
︸ ︷︷ ︸

= constant

∫
dp

∫
dq exp

[
−
(

3N + 1

gkbT0

)
H0(p, q)

]

where the constant terms and integrals have been collected before the rest of the integral expression as
above. Defining the constant g = (3N + 1), the partition function generated by the equations of motion
(5.249)-(5.252) in virtual time sampling becomes

g = 3N + 1 : Z =
ζ

gkbT0
exp

(
E

kbT0

)∫
dp̃s exp

[
−
(

1

kbT0

)
p̃2
s

2Q

]
︸ ︷︷ ︸

= constant

∫
dp

∫
dq exp

[
−
(
H0(p, q)

kbT0

)]

Then, carrying out the integration with respect to p̃s variable,4

g = 3N + 1 : Z =
ζ

gkbT0
exp

(
E

kbT0

)
(2πQkbT0)1/2

∫
dp

∫
dq exp

[
−
(
H0(p, q)

kbT0

)]
=
ζ

g

(
2πQ

kbT0

)1/2

exp

(
E

kbT0

)
︸ ︷︷ ︸

= constant C

∫
dp

∫
dq exp

[
−
(
H0(p, q)

kbT0

)]

and grouping all the constant factors, labeling them equal to C, the partition function in virtual time
sampling results equal to

g = 3N + 1 : Z = C

∫
dp

∫
dq exp

[
−
(
H0(p, q)

kbT0

)]
(A.137)

Therefore, if the number of degrees of freedom is set equal to g = 3N + 1, then the partition function
of the extended system is equivalent to that of the physical system in the canonical (Nvt) ensemble,
except for a constant factor, and the equilibrium distribution function is

g = 3N + 1 : f(p, q) = exp

[
−
(
H0(p, q)

kbT0

)]
(A.138)

4The integral with respect to the variable p̃s is a Gaussian integral with a solution given by

I0(a) =

∫ ∞
−∞

e−a x
2

dx =

√
π

a
(A.136)

280

Appendix A. Notation stuffs and demonstrations A.7. Nosé-Hoover statistical mechanical ensemble

With the quasi-ergodic hypothesis which relates the time average along the trajectory to the ensemble
average, the averages of any static quantities expressed as functions of q̃i, p̃i/s along the trajectory
determined by equations (5.249)-(5.252), are exactly those in the canonical ensemble iff the number of
degrees of freedom are set equal to g = 3N + 1

lim
t0→∞

1

t0

∫ t0

0
A(p̃/s, q̃) dt̃ = 〈A(p̃/s, q̃)〉 g=3N+1

= 〈A(p̃/s, q̃)〉c ≡ 〈A(p, q)〉c (A.139)

where 〈...〉 and 〈...〉c denote the ensemble average in the extended system and in the canonical ensemble,
respectively. The first equivalence in equation (A.139) is achieved by sampling data points at integer
multiples of the virtual time unit ∆t̃. This is called virtual time sampling. In this sampling, the real
time interval of each time step is unequal. However, in practical molecular dynamics simulation is will
be more convenient to sample at equal intervals in real time. As demonstrated in Appendix A, Section
A.11.1, if the sampling is performed using equal intervals in real time t, with

t1 =

∫ t0

0
dt̃/s (A.140)

the result is a weighted average in the extended system that is equivalent to a weighted average of the
physical system in the canonical ensemble iff the number of degrees of freedom are set equal to g = 3N

lim
t1→∞

1

t1

∫ t1

0
A(p̃/s, q̃) dt =

〈A(p̃/s, q̃)/s〉
〈1/s〉

g=3N
= 〈A(p̃/s, q̃)〉c ≡ 〈A(p, q)〉c (A.141)

Therefore, in virtual time sampling, g should be equal to 3N + 1, and in real time sampling, g must be
equal to 3N .

A.7.1 Ensemble with linear momentum conservation

The ensemble generated by the molecular dynamics method depends on the boundary conditions.[152]
For particle in a box the ensemble generated is the traditional microcanonical (or canonical) ensemble
where only the total energy of the system (or the energy associated to the pseudo-Hamiltonian (5.247)) is
conserved. If the periodic boundary conditions are employed in the simulations, the ensemble is no longer
strictly microcanonical (or canonical) because in this case the total linear momentum is also conserved.
Indeed, even though Newton equations of motion also satisfy the conservation of the total angular
momentum, periodic boundary conditions destroy the conservation of the total angular momentum.[29]
In some cases, the neglect of the conservation of the total momentum will introduce only a small amount
of error in the interpretation of molecular dynamics simulation results.[153] However, there are cases
where the conservation of the total momentum should play a crucial role in determining the nature of
an ensemble generated by the molecular dynamics method. The extended system method of Nosé is
precisely such a case.[63] The generation of a canonical ensemble from an ergodic extended system is
guaranteed by the Nosé derivation within the Hamiltonian formalism.[46] However, in this derivation,
only the conservation of the total extended system energy is used, and the conservation of the total
virtual linear momentum and the total virtual angular momentum are ignored.[46] One can safely ignore
the conservation of the total virtual angular momentum because it is not conserved during the simulation
if a periodic boundary condition is used.[152] However, one cannot ignore the conservation of the total
virtual linear momentum because this is conserved during numerical simulations. Therefore the Nosé
treatment is no longer strictly valid for actual extended system method simulations. Consequently, any
theoretical proof which will determine the conditions under which one can obtain the canonical ensemble
of a physical system from the extended system method must include the conservation of the total virtual
linear momentum as well as the conservation of the total energy of the extended system.
In the following, a generalization of the Nosé treatment including the conservation of the total virtual
linear momentum will be presented, and an analytical prove that a canonical ensemble is generated from
the extended system only if the total virtual linear momentum is zero will be given. This generalized
Nosé treatment shows that the physical system satisfying a canonical ensemble is a (N − 1) particle
system with a different mass spectrum from that of the original N particle physical system.
For the proof, the ergodicity of the extended system is assumed, so that the extended system partition

281

A.7. Nosé-Hoover statistical mechanical ensemble Appendix A. Notation stuffs and demonstrations

function has a microcanonical ensemble form of energy δ function and linear momentum δ function. The
partition function of an ergodic extended system is

Z = ζ

∫
dp̃s

∫
ds̃

∫ ∫ N∏
i=1

dp̃i dq̃i δ

(
H0(p̃/s, q̃) +

p̃2
s

2Q
+ gkbT0 ln s̃− E

)
δ

(
N∑
i=1

p̃i − P̃0

)
(A.142)

where ζ = 1/[N ! (2πh̄)3N] is a normalization constant for the partition function, P̃0 is the total linear
angular momenta, while H0(p̃/s, q̃) is given by (A.131) and it contains the first two terms (nuclear
kinetic and potential) of the extended system Hamiltonian defined in equation (5.247). By introducing
the center of mass momenta,

κ̃i = p̃i − P̃0/N (A.143)

the kinetic energy term becomes a sum of the relative kinetic energy and the kinetic energy of the center
of mass follows:

N∑
i=1

p̃2
i

2mis̃2
=

N∑
i=1

κ̃2
i

2mis̃2
+

P̃2
0

2ms̃2
where m =

N∑
i=1

mi (A.144)

The partition function can be reformulated using the center of mass momenta (A.143), that is

Z = ζ

∫
dp̃s

∫
ds̃

∫ ∫ N∏
i=1

dκ̃i dq̃i δ(Hes − E) δ

(
N∑
i=1

κ̃i

)
(A.145)

where Hes is the Hamiltonian in the extended system given by

Hes =
N∑
i=1

κ̃2
i

2mis̃2
+

P̃2
0

2Ms̃2
+ φ(q̃) +

p̃2
s

2Q
+ gkbT0 ln s̃ (A.146)

The momentum delta function in (A.145) can be eliminated by performing an integration over the
variable κ̃N , in the following way

Z = ζ

∫
dp̃s

∫
ds̃

∫ N∏
i=1

dq̃i

∫ N−1∏
i=1

dκ̃i

∫
dκ̃N δ(Hes − E) δ

(
N−1∑
i=1

κ̃i + κ̃N

)

= ζ

∫
dp̃s

∫
ds̃

∫ N∏
i=1

dq̃i

∫ N−1∏
i=1

dκ̃i δ(H′es − E)

(A.147)

where the Hamiltonian Hes has been transformed into the Hamiltonian H ′es by the application of the
momentum delta function, so that the argument of the remaining energy delta function in the last
expression in (A.147) results equal to

H′es − E =

N−1∑
i=1

κ̃2
i

2mis̃2
+

1

2mN s̃2

(
N−1∑
i=1

κ̃i

)2

+
P̃2

0

2ms̃2
+ φ(q̃) +

p̃2
s

2Q
+ gkbT0 ln s̃− E (A.148)

The first two terms in the previous equation can be rearranged as

N−1∑
i=1

κ̃2
i

2mis̃2
+

1

2mN s̃2

(
N−1∑
i=1

κ̃i

)2

=
1

2 s̃2

(
1

mN
+

N−1∑
j=1

1

mj
δij

)(
N−1∑
i=1

κ̃i

)2

(A.149)

Therefore, in order to rewrite more conveniently these two terms, the diagonalization of the inverse mass
matrix

(M−1)ij =
1

mN
+

N−1∑
j=1

1

mj
δij (A.150)

282

Appendix A. Notation stuffs and demonstrations A.7. Nosé-Hoover statistical mechanical ensemble

has to be performed, introducing normal mode momenta π̃i such that

N−1∑
i=1

κ̃2
i

2mis̃2
+

1

2mN s̃2

(
N−1∑
i=1

κ̃i

)2

=

N−1∑
i=1

π̃2
i

2µis̃2
(A.151)

After this diagonalization, the partition function becomes

Z = ζ

∫
dp̃s

∫
ds̃

∫ N−1∏
i=1

dπ̃i

∫ N∏
i=1

dq̃i δ

(
N−1∑
i=1

π̃2
i

2µis̃2
+

P̃2
0

2ms̃2
+ φ(q̃) +

p̃2
s

2Q
+ gkbT0 ln s̃− E

)
(A.152)

Finally, one introduces the physical spatial positions qi = q̃i, the physical momenta pi = π̃i/s̃, and the
variable s = s̃, so that the variable s in the nuclear kinetic energy term (i.e. in the first term of the delta
function argument in (A.152)) can be eliminated, and the following form for partition function is then
obtained:

Z = ζ

∫
dp̃s

∫ N−1∏
i=1

dpi

∫ N∏
i=1

dqi

∫
ds s3N−3 δ

(
N−1∑
i=1

p2
i

2µi
+

P̃2
0

2ms2
+φ(q)+

p̃2
s

2Q
+gkbT0 ln s−E

)
(A.153)

The integral above has a similar form to the one in the original formulation of Nosé, equation (A.130),
except for the presence of the center of mass kinetic energy term in the argument of the energy delta
function, and the integration over 3N − 3 momentum variables instead of 3N . In general, if the total
linear momentum is different from zero, P̃0 6= 0, the argument of the energy delta function has two roots
with respect to the variable s, which can be called s1 and s2 (see Figure A.4), so that the function h(s)
in the above integral can be rewritten using the relation

δ[h(s)] =
2∑
i=1

δ(s− si)
|−K0/s3 + gkbT0/s|s=si

where K0 =
P̃2

0

m
(A.154)

where the denominator in the expression above is given by the derivative of the delta function argument
in (A.153) with respect to the variable s.

Figure A.4: Two solutions of the equation K0/s
2 + gkbT0 ln s = E0 with K0 6= 0 (left panel) and the solution of

the same equation with K0 = 0 (right panel).

Then, using the relation (A.154) to easily find a convenient form for the partition function, equation
(A.153) becomes

Z = ζ

∫
dp̃s

∫ N−1∏
i=1

dpi

∫ N∏
i=1

dqi

∫
ds s3N−3

2∑
i=1

δ(s− si)
|−K0/s3 + gkbT0/s|s=si

= ζ

∫
dp̃s

∫ N−1∏
i=1

dpi

∫ N∏
i=1

dqi

2∑
i=1

s3N−3
i

|−K0/s3 + gkbT0/s|s=si

(A.155)

However, it is easy to see in the expression above that the integrand is not the Boltzmann factor of a
physical Hamiltonian.

283

A.7. Nosé-Hoover statistical mechanical ensemble Appendix A. Notation stuffs and demonstrations

In the case P̃0 = 0, the problem simplifies considerably, since the partition function (A.153) can now be
written as

Z = ζ

∫
dp̃s

∫ N−1∏
i=1

dpi

∫ N∏
i=1

dqi

∫
ds s3N−3 δ

(
N−1∑
i=1

p2
i

2µi
+ φ(q) +

p̃2
s

2Q
+ gkbT0 ln s− E

)
(A.156)

and the integration over the variable s can be trivially performed using the relation (A.133) for the delta
function in the integrand: the zero of the function that is the energy delta argument,

h(s) =
N−1∑
i=1

p2
i

2µi
+ φ(q) +

p̃2
s

2Q
+ gkbT0 ln s− E (A.157)

is equal to

h(s0) = 0 ↔ s0 = exp

[
− 1

gkbT0
+
¯

(
N−1∑
i=1

p2
i

2µi
+ φ(q) +

p̃2
s

2Q
− E

)]
(A.158)

Inserting this expression for s0 in (A.133) and then using the relation in the partition function integrand
(A.156) leads to

Z = ζ

∫
dp̃s

∫ N−1∏
i=1

dpi

∫ N∏
i=1

dqi

∫
ds s3N−3 s

gkbT0
δ(s− s0) =

ζ

gkbT0

∫
dp̃s

∫ N−1∏
i=1

dpi

∫ N∏
i=1

dqi s
3N−2
0

=
ζ

gkbT0

∫
dp̃s

∫ N−1∏
i=1

dpi

∫ N∏
i=1

dqi exp

[
−3N − 2

gkbT0

(N−1∑
i=1

p2
i

2µi
+ φ(q) +

p̃2
s

2Q
− E

)]
=

ζ

gkbT0
exp

[(
3N − 2

g

)
E

kbT0

] ∫
dp̃s exp

[
−
(

3N − 2

g

)
1

kbT0

p̃2
s

2Q

]
︸ ︷︷ ︸

= constant

×

×
∫ N−1∏

i=1

dpi

∫ N∏
i=1

dqi exp

[
−
(

3N − 2

g

)
H ′′0 (p, q)

kbT0

]
where the physical Hamiltonian has been labeled as

H′′0(p, q) =
N−1∑
i=1

p2
i

2µi
+ φ(q) (A.159)

The same result can be obtained starting from the more general expression (A.155) and imposing K0 = 0
in the equation. Since P̃0 = 0, there is only one root s0, so that the summation in (A.155) reduces to a
single term i = 1 with si = s0, leading to the same result. Finally, if g = 3N − 2 is chosen, the partition
function assumes the form

g = 3N − 2 : Z =
ζ

gkbT0
exp

(
E

kbT0

)∫
dp̃s exp

[
−
(

1

kbT0

)
p̃2
s

2Q

] ∫ N−1∏
i=1

dpi

∫ N∏
i=1

dqi exp

(
−H

′′
0(p, q)

kbT0

)

=
ζ

gkbT0
exp

(
E

kbT0

)
(2πQkbT0)1/2

∫ N−1∏
i=1

dpi

∫ N∏
i=1

dqi exp

(
−H

′′
0(p, q)

kbT0

)

=
ζ

g

(
2πQ

kbT0

)1/2

exp

(
E

kbT0

)
︸ ︷︷ ︸

= constant C

∫ N−1∏
i=1

dpi

∫ N∏
i=1

dqi exp

(
−H

′′
0(p, q)

kbT0

)

where the integral with respect to p̃s variable has been performed from the first to the second line of the
expressions above, and the Hamiltonian H′′0(p, q), given by (A.159), has been introduces. Grouping all
the constant factors in front of the relevant integral, and labeling these constant factors C, the partition
function finally results equal to

g = 3N − 2 : Z = C

∫ N−1∏
i=1

dpi

∫ N∏
i=1

dqi exp

[
−
(
H′′0(p, q)

kbT0

)]
(A.160)

284

Appendix A. Notation stuffs and demonstrations A.7. Nosé-Hoover statistical mechanical ensemble

The correspondent equilibrium distribution function is

g = 3N − 2 : f(p, q) = exp

[
−
(
H′′0(p, q)

kbT0

)]
= exp

[
− 1

kbT0

(
N−1∑
i=1

p2
i

2µi
+ φ(q)

)]
(A.161)

The partition function and the equilibrium distribution function obtained in this way corresponds to a
canonical ensemble of the (N−1) particle system with mass spectrum {µi}, starting from the N particle
system with the mass spectrum {mi}, only if the total linear virtual momentum is zero.
The equilibrium distribution function (A.161) and the partition function (A.160) can be used to compute
ensemble averages in the canonical ensemble that corresponds, assuming the ergodicity hypothesis, with
time averages over the molecular dynamics simulation trajectory, performing a sampling data points at
integer multiples of the virtual time unit ∆t̃. In order to obtain a partition function for a sampling in
real time unit ∆t, starting from the expression for the partition function (A.156), the same procedure
reported in Appendix A, Section A.11.1, can be followed. The partition function that leads to a canonical
ensemble form of the ensemble average (A.291) corresponding to a real time sampling has obviously the
same form as the previous derived partition function (A.160), if the number of degrees of freedom are set
equal to g = 3N − 3. Therefore, a value of g = 3N − 3 has to be used in practical simulations, in order
to sample correctly the canonical ensemble in the real physical system using the equations of motion
(5.249)-(5.252). However, these equations are expressed with virtual variables referred to the extended
system. In Section 5.3.4.1, the equations of motion will be computed in real variables, associated to the
physical system, and the correspondent conserved quantity form is derived.
Therefore, it has been demonstrated that if the extended system is ergodic and if the total linear
virtual momentum of the N particle physical system is zero, then the extended system method will
generate a canonical ensemble for a (N − 1) particle system with a different mass spectrum.[63] In
general, the new masses are different from the original nuclear masses. For the special case of N
identical original nuclear masses mi = m, one finds a final mass spectrum µi = m for i = 1, ..., N − 2
and µN−1 = m/N . This new mass spectrum will introduce, in principle, an error in calculations of the
dynamical properties. Of course, the conventional molecular dynamics introduces the same error,5 and as
N becomes large, the contribution of the light mass becomes unimportant in practical considerations. As
far as thermodynamic averages are concerned, the difference of mass spectra is always irrelevant because
of the equipartition theorem. The only significant change relevant to the thermodynamic averages is
the reduction of the number of degrees of freedom from 3N to 3N − 3. Therefore, the consequences
of a different mass spectrum are irrelevant to thermodynamic averages, but relevant to the dynamical
properties and relaxation times of the system.[63]
As previously demonstrated, if P̃0 6= 0, then the physical system does not satisfy a canonical ensemble.
Since the total linear momentum is conserved by the equations of motion (5.249)-(5.252), it can be set
to zero at the beginning of the simulation. In this way, the total linear momentum will be conserved
near to zero values (due to floating errors in computer simulations) for the whole molecular dynamics
trajectory. However, the canonical ensemble sampling by the dynamics trajectory is satisfied even if the
total linear momentum has small deviations from the zero value. Indeed, if |P̃0| is small, the following
approximation can be made. For small |P̃0|, s1 is very small so that

s3N−3
1 << s3N−3

2

Hence the first integral containing s1 in the partition function (A.155) can be neglected. The remaining
integral containing s2 can be approximated as follows:∣∣−K0/s

3
2 + gkbT0/s2

∣∣ ≈ |gkbT0/s2| (A.162)

since K0/s
2
2 << gkbT0 for small |P̃0|. After these two approximations, the partition function reduces to

the partition function of zero total momentum, with a correction of order O(K0/gkbT0). The reliability

5It can be performed a demonstration similar to that outlined in this section, applying it to the conventional molecular
dynamics equations of motion, starting from a partition function similar to that in equation (A.145) with both energy
conservation and linear total momentum conservation delta functions of a physical system. For this case, however, the
integration of the momentum delta function leads to the microcanonical ensemble of the (N − 1) particle system with the
mass spectrum {µi} whether P̃0 = 0 or not.[63]

285

A.7. Nosé-Hoover statistical mechanical ensemble Appendix A. Notation stuffs and demonstrations

of these approximations is also confirmed by theoretical simulations performed by K. Cho et al.[63]
with different values of the center of mass kinetic energy. They found that, for a small center of mass
kinetic energy (〈K0/s

2〉 ≤ T0) the results for the computation of average moments of the instantaneous
temperature and thermostat kinetic energy fluctuations are found to be quite similar to those of zero
total momentum. This reasoning suggests that quite a good approximate canonical ensemble can be
generated with nonzero total linear momentum, even if the total momentum is on the order of the
external temperature. However, as the center of mass kinetic energy increases (〈K0/s

2〉 >> T0), the
deviation from the canonical ensemble values becomes large.[63] These analysis guarantee the numerical
stability of generating a canonical ensemble by the extended system method in practical applications
where computational errors inevitably introduce a small nonzero total linear momentum.

286

Appendix A. Notation stuffs and demonstrations A.8. Ferrario statistical mechanical ensemble

A.8 Ensemble generated by Ferrario equations of motion

Consider a system of N particles moving in a three dimensional space (d = 3). The time trajectory
generated by the equations of motion (5.451)-(5.456) corresponds, by invoking the ergodic hypothesis,
to a microcanonical ensemble distribution for the extended system in the virtual phase space. Therefore,
the distribution function in virtual variables is given by

f(p̃, q̃, p̃v, ṽ, p̃s, s̃) = δ(H̃ − E) (A.163)

However, the properties of interest can be quite generally expressed as ensemble averages of an observable
f(p, q, v) that is projected from the extended system onto the physical system, in order to characterize
the real ensemble of particles. Accordingly to the distribution function (A.163), the partition function is

Z = ζ

∫
dp̃v

∫
dṽ

∫
dp̃s

∫
ds̃

∫
dp̃

∫
dq̃ δ(H̃(p̃, q̃, p̃s, s̃, p̃v, ṽ)− E) (A.164)

where ζ = 1/[N ! (2πh̄)3N] is a normalization factor for the partition function, the integration variables
abbreviations dq̃ = dq̃1dq̃2 · · · dq̃N and dp̃ = dp̃1dp̃2 · · · dp̃N have been used in the integral to simplify
the notation and the Hamiltonian in the argument of the delta function has the form in (5.450). Then,
the virtual coordinates can be transformed to the real variables using the relations[78]

qi = v1/3 q̃i pi =
p̃i

sv1/3
v = ṽ pv =

p̃v
s

(A.165)

s = s̃ ps = p̃s t =

∫ t dt̃

s
(A.166)

With these transformations, the volume element changes as

dp̃ dq̃ dp̃v dṽ dp̃s ds̃ = s3N+1 dp dq dpv dv dps ds (A.167)

Consequently, the Hamiltonian virtual variables form (5.450), converted in real coordinates frame of
reference using the relations (A.165) and (A.166), is given by

H(p, q, ps, s, pv, v) =

N∑
i=1

p2
i

2mi
+ φ({qi}, v) +

p2
v

2W
+ P0v +

p2
s

2Q
+ gkbT0 ln s

= H0(p, q, v) +
p2
v

2W
+ P0v +

p2
s

2Q
+ gkbT0 ln s

(A.168)

where the shortest notation

H0(p, q, v) =
N∑
i=1

p2
i

2mi
+ φ({qi}, v) (A.169)

has been used. Applying the change of variables to the partition function, its expression in real coordi-
nates becomes

Z = ζ

∫
dpv

∫
dv

∫
dps

∫
ds

∫
dp

∫
dq s3N+1 δ

(
H0(p, q, v) +

p2
v

2W
+ P0v +

p2
s

2Q
+ gkbT0 ln s− E

)
The argument of the δ function in the above equation, taken as a function of the variable s, has only
one zero. Therefore, a convenient equivalence relation can be employed to simplify the integral, that is

δ[h(s)] =
δ(s− s0)

h′(s0)
(A.170)

where s0 is the zero of function h(s) in the argument of the Dirac function, and h′(s0) is the derivative of
the function h(s) evaluated in the point s0, which has to be read, inside the integral (i.e. before applying

287

A.8. Ferrario statistical mechanical ensemble Appendix A. Notation stuffs and demonstrations

the delta function δ(s − s0) in the integral), as the function h′(s). Looking at the partition function
form, the expressions for the zero of the function h(s) and its derivative are

s0 = exp

[
− 1

gkbT0

(
H0(p, q, v) +

p2
v

2W
+ P0v +

p2
s

2Q
− E

)]
and h′(s) =

gkbT0

s
(A.171)

Using the relation (A.170) and the expressions (A.171) in the previous partition function form, it becomes

Z =
ζ

gkbT0

∫
dpv

∫
dv

∫
dps

∫
dp

∫
dq

∫
ds s3N+2 δ(s− s0)

=
ζ

gkbT0

∫
dpv

∫
dv

∫
dps

∫
dp

∫
dq s3N+2

0

=
ζ

gkbT0

∫
dpv

∫
dv

∫
dps

∫
dp

∫
dq exp

[
−3N + 2

gkbT0

(
H0(p, q, v) +

p2
v

2W
+ P0v +

p2
s

2Q
− E

)]
= Cg

∫
dv

∫
dp

∫
dq exp

{
−
(

3N + 2

gkbT0

)
[H0(p, q, v) + P0v]

}
(A.172)

where the constant terms and integrals that has been collected before the rest of the integral expression
and is given by

Cg =
ζ

gkbT0
exp

[(
3N + 2

gkbT0

)
E

] ∫
dpv exp

[
−
(

3N + 2

gkbT0

)
p2
v

2W

] ∫
dps exp

[
−
(

3N + 2

gkbT0

)
p2
s

2Q

]
(A.173)

Defining the constant g = (3N + 2), the partition function becomes

g = 3N + 2 : Z = C

∫
dv

∫
dp

∫
dq exp

[
−
(
H0(p, q, v) + P0v

kbT0

)]
(A.174)

with the constant C given by

g = 3N + 2 : C =
ζ

gkbT0
exp

(
E

kbT0

)∫
dpv exp

[
−
(

1

kbT0

)
p2
v

2W

] ∫
dps exp

[
−
(

1

kbT0

)
p2
s

2Q

]
=

ζ

gkbT0
exp

(
E

kbT0

)
(2πW kbT0)1/2 (2πQkbT0)1/2 =

2πζ

g

√
WQ exp

(
E

kbT0

)
where the integration over pv and ps variables are carried out very easily. Therefore, the partition
function generated by the equations of motion (5.451)-(5.456) in virtual time sampling can be written,
in the real physical coordinates frame of reference, as

g = 3N + 2 : Z =
2πζ

g

√
WQ exp

(
E

kbT0

)
︸ ︷︷ ︸

= constant C

∫
dv

∫
dp

∫
dq exp

[
−
(
H0(p, q, v) + P0v

kbT0

)]
(A.175)

Therefore, if the number of degrees of freedom is set equal to g = 3N + 2, then the partition function of
the extended system is equivalent to that of the physical system in the constant temperature and constant
pressure (Npt) ensemble, except for a constant factor, and the equilibrium distribution function is

g = 3N + 2 : f(p, q, v) = exp

[
−
(
H0(p, q, v) + P0v

kbT0

)]
(A.176)

In conclusion, it has been demonstrated that the time averages computed over the dynamical trajectory
obtained by integrating the equations of motion (5.451)-(5.456) numerically are equivalent, if the motion
is ergodic, to the Npt ensemble averages, iff the number of degrees of freedom are set equal to g = 3N+2,
that is

lim
t0→∞

1

t0

∫ t0

0
A(p, q, v) dt̃ = 〈A(p, q, v)〉 g=3N+2

= 〈A(p, q, v)〉Npt (A.177)

where 〈...〉 and 〈...〉Npt denote the ensemble average in the extended system and in the constant tem-
perature and constant pressure (Npt) ensemble, respectively. The first equivalence in equation (A.177)

288

Appendix A. Notation stuffs and demonstrations A.8. Ferrario statistical mechanical ensemble

is achieved by sampling data points at integer multiples of the virtual time unit ∆t̃. This is called
virtual time sampling. In this sampling, the real time interval of each time step is unequal. However,
in practical molecular dynamics simulation is will be more convenient to sample at equal intervals in
real time. As demonstrated in Appendix A, Section A.11 (or in Section 5.4, subsection 5.4.1.4), if the
sampling is performed using equal intervals in real time t, with

t1 =

∫ t0

0
dt̃/s (A.178)

the result is a weighted average in the extended system that is equivalent to a weighted average of the
physical system in the canonical ensemble iff the number of degrees of freedom are set equal to g = 3N+1

lim
t1→∞

1

t1

∫ t1

0
A(p, q, v) dt =

〈A(p, q, v)/s〉
〈1/s〉

g=3N+1
= 〈A(p, q, v)〉Npt (A.179)

Therefore, in virtual time sampling, g should be equal to 3N + 2, and in real time sampling, g must be
equal to 3N +1. The choice of g = 3N +1 for real variables sampling stems from the fact that, including
the barostat, the number of thermostated degrees of freedom is 3N + 1.

A.8.1 Ensemble with linear momentum conservation

As previously explained and demonstrated in Section A.7.1, the ensemble generated by the molecular
dynamics method depends on the boundary conditions.[152] For particle in a box subject to the equations
of motion (5.451)-(5.456), the ensemble generated is the traditional constant temperature and constant
pressure (Npt) ensemble, where only to the Hamiltonian (5.450)) (or its non-Hamiltonian (A.168) in real
physical variables) is conserved. Due to the conservation of the linear total momentum, Md methods
produce ensembles that deviate slightly from the statistical mechanical ensembles. Indeed, if the periodic
boundary conditions are employed in the simulations, the ensemble is no longer strictly the standard Npt
ensemble because in this case the total linear momentum is also conserved.6 There are cases where the
conservation of the total momentum should play a crucial role in determining the nature of an ensemble
generated by the molecular dynamics method. The extended system method of Nosé is precisely such
a case: its generalization to conservation of linear total momentum has been discussed in Section A.7.1
following the demonstration of Ref. [63]. Since the Ferrario approach to a constant temperature and
pressure Md method explained above (see Section 5.4.1) is based on the extended system technique as
the Nosé-Hoover thermostat approach, it is obvious to extend the treatment for the conservation of total
linear momentum also to this method, following the procedure in Section (A.7.1).
In the following, a generalization of the Ferrario treatment including the conservation of the total virtual
linear momentum will be presented, and an analytical prove that a constant temperature and pressure
(Npt) ensemble is generated from the extended system only if the total virtual linear momentum is zero
will be given. This generalized Ferrario treatment shows that the physical system satisfying a canonical
ensemble is a (N −1) particle system with a different mass spectrum from that of the original N particle
physical system.
For the proof, the ergodicity of the extended system is assumed, so that the extended system partition
function is associated to a microcanonical ensemble in the energy and in the linear momentum through
delta functions forms. The partition function of an ergodic extended system subject to equations of
motion with form given by (5.451)-(5.456) is

Z = ζ

∫
dp̃v

∫
dṽ

∫
dp̃s

∫
ds̃

∫ ∫ N∏
i=1

dp̃i dq̃i δ(Hes − E) δ

(
N∑
i=1

p̃i − P̃0

)
(A.180)

where ζ = 1/[N ! (2πh̄)3N] is a normalization constant for the partition function, P̃0 is the total linear
angular momenta, while Hes is the Hamiltonian of the extended system expressed in virtual variables,
given by (5.450) and here reported

Hes =
1

2

N∑
i=1

p̃2
i

mi s̃2 ṽ2/3
+ φ({ṽ1/3q̃i}, ṽ) +

p̃2
v

2s̃2W
+ P0ṽ +

p̃2
s

2Q
+ gkbT0 ln s̃ (A.181)

6Remember: Even though Newtonian equations of motion also satisfy the conservation of the total angular momentum,
periodic boundary conditions destroy the conservation of the total angular momentum.[29]

289

A.8. Ferrario statistical mechanical ensemble Appendix A. Notation stuffs and demonstrations

By introducing the center of mass momenta,

κ̃i = p̃i − P̃0/N (A.182)

the kinetic energy term in (A.181) becomes a sum of the relative kinetic energy and the kinetic energy
of the center of mass follows:

N∑
i=1

p̃2
i

2mis̃2 ṽ2/3
=

N∑
i=1

κ̃2
i

2mis̃2 ṽ2/3
+

P̃2
0

2ms̃2 ṽ2/3
where m =

N∑
i=1

mi (A.183)

The partition function can be reformulated using the center of mass momenta (A.182), that is

Z = ζ

∫
dp̃v

∫
dṽ

∫
dp̃s

∫
ds̃

∫ ∫ N∏
i=1

dκ̃i dq̃i δ(Hes − E) δ

(
N∑
i=1

κ̃i

)
(A.184)

The momentum delta function in (A.184) can be eliminated by performing an integration over the
variable κ̃N , in the following way

Z = ζ

∫
dp̃v

∫
dṽ

∫
dp̃s

∫
ds̃

∫ N∏
i=1

dq̃i

∫ N−1∏
i=1

dκ̃i

∫
dκ̃N δ(Hes − E) δ

(
N−1∑
i=1

κ̃i + κ̃N

)

= ζ

∫
dp̃v

∫
dṽ

∫
dp̃s

∫
ds̃

∫ N∏
i=1

dq̃i

∫ N−1∏
i=1

dκ̃i δ(H′es − E)

(A.185)

where the Hamiltonian Hes has been transformed into the Hamiltonian H′es by the application of the
momentum delta function in the integration over the variable κ̃N , so that the argument of the remaining
energy delta function in the last expression in (A.185) contains the Hamiltonian H′es and results equal
to

H′es − E =

N−1∑
i=1

κ̃2
i

2mis̃2 ṽ2/3
+

1

2mN s̃2 ṽ2/3

(
N−1∑
i=1

κ̃i

)2

+
P̃2

0

2ms̃2 ṽ2/3
+ φ({ṽ1/3q̃i}, ṽ)

+
p̃2
v

2s̃2W
+ P0ṽ +

p̃2
s

2Q
+ gkbT0 ln s̃− E

(A.186)

The first two terms in the previous equation can be rearranged as

N−1∑
i=1

κ̃2
i

2mis̃2 ṽ2/3
+

1

2mN s̃2 ṽ2/3

(
N−1∑
i=1

κ̃i

)2

=
1

2 s̃2 ṽ2/3

(
1

mN
+

N−1∑
j=1

1

mj
δij

)(
N−1∑
i=1

κ̃i

)2

(A.187)

In order to rewrite more conveniently this two terms, a diagonalization of the inverse mass matrix

(M−1)ij =
1

mN
+

N−1∑
j=1

1

mj
δij (A.188)

can be performed, introducing normal mode momenta π̃i such that

N−1∑
i=1

κ̃2
i

2mis̃2 ṽ2/3
+

1

2mN s̃2 ṽ2/3

(
N−1∑
i=1

κ̃i

)2

=

N−1∑
i=1

π̃2
i

2µis̃2 ṽ2/3
(A.189)

After the diagonalization of the inverse mass matrix, the partition function becomes

Z = ζ

∫
dp̃v

∫
dṽ

∫
dp̃s

∫
ds̃

∫ N−1∏
i=1

dπ̃i

N∏
i=1

∫
dq̃i δ

(
N−1∑
i=1

π̃2
i

2µis̃2 ṽ2/3
+

P̃2
0

2ms̃2 ṽ2/3
+ φ({ṽ1/3q̃i}, ṽ)

+
p̃2
v

2s̃2W
+ P0ṽ +

p̃2
s

2Q
+ gkbT0 ln s̃− E

)
(A.190)

290

Appendix A. Notation stuffs and demonstrations A.8. Ferrario statistical mechanical ensemble

Finally, one introduces the physical spatial positions and momenta as given by the transformations
(A.165), so that

qi = v1/3 q̃i pi =
π̃i

sv1/3
(A.191)

together with the equivalence between virtual and real frame of reference for the variables associated to
the thermostat and the barostat, as given by (A.165) and (A.166),

s = s̃ ps = p̃s v = ṽ (A.192)

Moreover, the transformation in (A.165) from virtual to real frame of reference for the variable pv
associated to the barostat momentum is essential to eliminate the dependence from the variable s in the
delta function argument,

pv = p̃v/s (A.193)

The introduction of these transformations from virtual to real variables leads to the elimination of the
variable s in the nuclear kinetic energy term (i.e. in the first term of the delta function argument in
(A.190)), so that the partition function (A.190) takes the form

Z = ζ

∫
dpv

∫
dv

∫
dps

∫
ds

∫ N−1∏
i=1

dpi

∫ N∏
i=1

dqi s
3N−2 v−1 δ

(
N−1∑
i=1

p2
i

2µi
+

P̃2
0

2ms2 v2/3
+ φ({qi}, v)

+
p2
v

2W
+ P0v +

p2
s

2Q
+ gkbT0 ln s− E

)
(A.194)

where the change of variables is responsible for the comparison of Jacobian terms in the integrals above,
that can be justified with the following calculation

dp̃v dṽ dp̃s ds̃

N−1∏
i=1

dπ̃i

N∏
i=1

dq̃i = s dpv dv dps ds

N−1∏
i=1

(sv1/3)3N−3 dpi

N∏
i=1

(v−1/3)3Ndqi

= s3N−2 v−1 dpv dv dps ds
N−1∏
i=1

dpi

(A.195)

The integrand in (A.194) has a similar form to the one in the original Ferrario formulation, except for the
presence of the center of mass kinetic energy term in the argument of the energy delta function, and the
integration over 3N − 3 momentum variables instead of 3N . In general, if the total linear momentum is
different from zero, P̃0 6= 0, the argument of the energy delta function has two roots with respect to the
variable s, which can be called s1 and s2, and the function h(s) in the above integral can be rewritten
using the relation

δ[h(s)] =

2∑
i=1

δ(s− si)
|−K0/s3 + gkbT0/s|s=si

where K0 =
P̃2

0

mv2/3
(A.196)

where the denominator in the expression above is given by the derivative of the delta function argument
in (A.194) with respect to the variable s. Then, using the relation (A.196), the partition function form
in equation (A.194) can be written as

Z = ζ

∫
dpv

∫
dv

∫
dps

∫ N−1∏
i=1

dpi

∫ N∏
i=1

dqi v
−1

∫
ds s3N−2

2∑
i=1

δ(s− si)
|−K0/s3 + gkbT0/s|s=si

= ζ

∫
dpv

∫
dv

∫
dps

∫ N−1∏
i=1

dpi

∫ N∏
i=1

dqi v
−1

2∑
i=1

s3N−2
i

|−K0/s3 + gkbT0/s|s=si

(A.197)

However, it is easy to see in the expression above that the integrand has not a Boltzmann form related to
a physical Hamiltonian, from which the constant temperature and pressure (Npt) ensemble distribution
function can be derived.

291

A.8. Ferrario statistical mechanical ensemble Appendix A. Notation stuffs and demonstrations

On the other hand, in the case P̃0 = 0, the problem simplifies considerably, since the partition function
(A.194) can now be written as

Z = ζ

∫
dpv

∫
dv

∫
dps

∫
ds

∫ N−1∏
i=1

dpi

∫ N∏
i=1

dqi s
3N−2 v−1 δ

(
N−1∑
i=1

p2
i

2µi
+ φ({qi}, v)

+
p2
v

2W
+ P0v +

p2
s

2Q
+ gkbT0 ln s− E

) (A.198)

and the integration over the variable s can be trivially performed using the relation (A.170) for the delta
function in the integrand: the zero of the function that is the energy delta argument,

h(s) =

N−1∑
i=1

p2
i

2µi
+ φ(q, v) +

p2
v

2W
+ P0v +

p2
s

2Q
+ gkbT0 ln s− E (A.199)

is equal to

h(s0) = 0 ↔ s0 = exp

[
− 1

gkbT0

(
N−1∑
i=1

p2
i

2µi
+ φ(q, v) +

p2
v

2W
+ P0v +

p2
s

2Q
− E

)]
(A.200)

Inserting this expression for s0 in (A.170) and then using the relation in the partition function integrand
(A.198) leads to

Z = ζ

∫
dpv

∫
dv

∫
dps

∫ N−1∏
i=1

dpi

∫ N∏
i=1

dqi

∫
ds s3N−2 v−1 s

gkbT0
δ(s− s0)

=
ζ

gkbT0

∫
dpv

∫
dv

∫
dps

∫ N−1∏
i=1

dpi

∫ N∏
i=1

dqi s
3N−1
0 v−1

=
ζ

gkbT0

∫
dpv

∫
dv

∫
dps

∫ N−1∏
i=1

dpi

∫ N∏
i=1

dqi
1

v
exp

[
−3N − 1

gkbT0

(
H′′0(p, q, v) +

p2
v

2W
+ P0v +

p2
s

2Q
− E

)]

=
ζ

gkbT0
exp

[(
3N − 1

g

)
E

kbT0

] ∫
dpv exp

[
−
(

3N − 1

g

)
1

kbT0

p2
v

2W

] ∫
dps exp

[
−
(

3N − 1

g

)
1

kbT0

p2
s

2Q

]
︸ ︷︷ ︸

= constant

×

×
∫
dv

∫ N−1∏
i=1

dpi

∫ N∏
i=1

dqi exp

[
−
(

3N − 1

g

)
H′′0(p, q, v) + P0v

kbT0
− ln v

]

where the real variable Hamiltonian has been labeled as

H′′0(p, q, v) =
N−1∑
i=1

p2
i

2µi
+ φ(q, v) (A.201)

The same result can be obtained starting from the more general expression (A.197) and imposing K0 = 0
in the equation. Since P̃0 = 0, there is only one root s0 for the delta function argument in the partition
function (A.194), so that the summation in (A.197) reduces to a single term i = 1 with si = s0, leading
to the same result as with the derivation above. Finally, if g = 3N − 1 is chosen, the partition function
assumes the form

g = 3N − 1 : Z =
ζ

gkbT0
exp

(
E

kbT0

)∫
dpv exp

(
− 1

kbT0

p2
v

2W

)∫
dps exp

(
− 1

kbT0

p2
s

2Q

)
×

×
∫
dv

∫ N−1∏
i=1

dpi

∫ N∏
i=1

dqi exp

[
−
(
H′′0(p, q, v) + P0v

kbT0

)
− ln v

] (A.202)

292

Appendix A. Notation stuffs and demonstrations A.8. Ferrario statistical mechanical ensemble

where the integral with respect to pv and ps variables are simple Gaussian integrals that can be easily
performed, so that the partition function is given by

g = 3N − 1 : Z =
ζ

gkbT0
exp

(
E

kbT0

)
(2πW kbT0)1/2(2πQkbT0)1/2 ×

×
∫
dv

∫ N−1∏
i=1

dpi

∫ N∏
i=1

dqi exp

[
−
(
H′′0(p, q, v) + P0v

kbT0

)
− ln v

] (A.203)

resulting in the final form

g = 3N − 1 : Z =
2πζ

g
exp

(
E

kbT0

)√
WQ︸ ︷︷ ︸

= constant C

∫
dv

∫ N−1∏
i=1

dpi

∫
dq exp

[
−
(
H′′0(p, q, v) + P0v

kbT0

)
− ln v

]

where the variable of integration given by the product of N position coordinates has been simplified
using the notation dq = dq1 dq2 · · · dqN . Therefore, grouping all the constant factors in front of the
relevant integral, and labeling these constant factors C, the partition function finally results equal to

g = 3N − 1 : Z = C

∫
dv

∫ N−1∏
i=1

dpi

∫
dq exp

[
−
(
H′′0(p, q, v) + P0v

kbT0
+ ln v

)]
(A.204)

The correspondent equilibrium distribution function is

g = 3N − 1 : f(p, q, v) = exp

[
−
(
H′′0(p, q, v) + P0v

kbT0
+ ln v

)]
(A.205)

where the Hamiltonian function is given by (A.201), so that the explicit form of the distribution function
is given by the expression

g = 3N − 1 : f(p, q, v) = exp

[
− 1

kbT0

(
N−1∑
i=1

p2
i

2µi
+ φ(q, v) + P0v

)
− ln v

]
(A.206)

The partition function and the equilibrium distribution function obtained in this way does not correspond
to a isothermal-isobaric ensemble of the (N − 1) particle system with mass spectrum {µi}, as instead
obtained for the canonical ensemble generated by the Nosé-Hoover equations of motion with linear
momentum conservation, derived in Appendix A.7.1. Indeed, the distribution function (A.205) differs
from the correct isothermal-isobaric equilibrium distribution function, whose form is given by equation
(A.176), for the term ln v in the argument of the exponential, that can be written as a factor 1/v in front
of the correct isothermal-isobaric distribution function, that is

g = 3N − 1 : f(p, q, v) =
1

v
exp

[
−
(
H′′0(p, q, v) + P0v

kbT0

)]
(A.207)

This additional term 1/v derives from the Jacobian computed in (A.195), and used for the change of
variable from the virtual to the real set of coordinates. Anyway, the equilibrium distribution function
(A.206) and the partition function (A.204) can be used to compute ensemble averages that corresponds,
assuming the ergodicity hypothesis, with time averages over the molecular dynamics simulation trajec-
tory, performing a sampling data points at integer multiples of the virtual time unit ∆t̃. In order to
obtain a partition function for a sampling in real time unit ∆t, starting from the expression for the
partition function (A.198), the same procedure reported in Appendix A, Section A.11, can be followed.
The partition function that leads to a distribution function of the form in equation (A.206), but that
corresponds to a real time sampling, has obviously the same form as the previous derived partition
function (A.204), with the number of degrees of freedom set equal to g = 3N − 2. Therefore, a value of
g = 3N − 2 has to be used in practical simulations.

293

A.8. Ferrario statistical mechanical ensemble Appendix A. Notation stuffs and demonstrations

A.8.2 Solution of integral (5.569) with respect to variable pv

Starting from the partition function (5.569), that is reported here below,

Z(N,C1, C2) =
ζ

C2

√
Q

2

∫
dπ

∫
dρ

∫
dΠ

∫
dpv

∫
dv

1

v(N−1)+1/d

(
C2

Π

)(N−1)d+2

×

×
[
C1 −H0(π,Π,ρ)− p2

v

2W
− P0v − gkbT0 ln

(
C2

Π v1/d

)]−1/2
(A.208)

the following substitution can be performed

pv =
√

2W a sin θ with − π

2
≤ θ ≤ π

2
(A.209)

where

a2 = C1 −H0(π,Π,ρ)− P0v − gkbT0 ln

(
C2

Π v1/d

)
(A.210)

Differentiating both members of equation (A.209) leads to

dpv =
√

2W a cos θ dθ (A.211)

Using the definition (A.209) and (A.210), together with the equation (A.211) in the partition function
form (A.208), it becomes

Z(N,C1, C2) =
ζ

C2

√
Q

2

∫
dπ

∫
dρ

∫
dΠ

∫
dv

∫ π/2

−π/2
dθ

1

v(N−1)+1/d

(
C2

Π

)(N−1)d+2 √
2W a cos θ√
a2 − a2 sin2 θ

=
ζ

C2

√
QW

∫
dπ

∫
dρ

∫
dΠ

∫
dv

1

v(N−1)+1/d

(
C2

Π

)(N−1)d+2 ∫ π/2

−π/2
dθ

cos θ√
1− sin2 θ

The last integral in the previous equation can be easily solved with the substitution

t = sin θ dt = cos θ dθ cos θ =
√

1− t2 dθ =
dt√

1− t2
(A.212)

so that the integral can be rewritten as∫ π/2

−π/2
dθ

cos θ√
1− sin2 θ

=

∫ 1

−1

dt√
1− t2

√
1− t2√
1− t2

=

∫ 1

−1

1√
1− t2

dt = arcsin(t)|t=1
t=−1=

π

2
−
(
−π

2

)
= π

Therefore, the integral with respect to the variable pv is given by∫
dpv

[
C1 −H0(π,Π,ρ)− p2

v

2W
− P0v − gkbT0 ln

(
C2

Π v1/d

)]−1/2

= π
√

2W (A.213)

and the partition function (A.208) becomes

Z(N,P0, T, C1, C2) =
πζ

C2

√
QW

∫
dπ

∫
dρ

∫
dΠ

∫
dv

1

v(N−1)+1/d

(
C2

Π

)(N−1)d+2

(A.214)

294

Appendix A. Notation stuffs and demonstrations A.8. Ferrario statistical mechanical ensemble

A.8.3 Conserved quantities

Consider the Ferrario equations of motion (5.506) - (5.511), that are reported here below

dqi
dt

=
pi
mi

+
qi
vd

dv

dt
=
pi
mi

+
qi
vd

pv
W

i = 1, ..., N (A.215)

dpi
dt

= − ∂φ
∂qi
− pi

s

ds

dt
− pi
vd

vd

dt
= − ∂φ

∂qi
− pi

ps
Q
− pi
vd

pv
W

i = 1, ..., N (A.216)

dv

dt
=
pv
W

(A.217)

dpv
dt

=
1

vd

N∑
i=1

(
p2
i

mi
− ∂φ

∂qi
· qi
)
−∂φ
∂v
− P0 −

pvps
Q
≡ Fv −

pvps
Q

(A.218)

dη

dt
=
ps
Q

(A.219)

dps
dt

=
N∑
i=1

p2
i

mi
+
p2
v

W
− gkbT0 ≡ Fs (A.220)

where the two force variables used in equations (A.218) and (A.220) are given by

Fv ≡
1

vd

N∑
i=1

(
p2
i

mi
− ∂φ

∂qi
· qi
)
−∂φ
∂v
− P0 Fs ≡

N∑
i=1

p2
i

mi
+
p2
v

W
− gkbT0 (A.221)

where all the positions and momenta in (A.215) - (A.220) and (A.221) are d dimensional vectors.

The aim of this section is to analyze some quantities, that are extensions of the conservation of total
linear and angular momentum which are conserved for the Hamiltonian flow generated by the simple
Hamiltonian equations of motion, and to perform calculations in order to understand if these quantities
can be constant of motion for the non Hamiltonian flow generated by the Ferrario equations of motion
(A.215) - (A.220). These quantities are

P eη (A.222)

P v1/d eη (A.223)

L eη (A.224)

L v1/d eη (A.225)

As it can be observed, all these quantities are extensions of the expression for the total linear and
angular momentum (which are conserved for the Hamiltonian flow generated by the simple Hamiltonian
equations of motion), with the inclusion of thermostat and barostat degrees of freedom via the variables
η and v, respectively. The calculation is simple: the total time derivative of each quantity is taken, the
equations of motion (A.215) - (A.220) are used to find a final expression for this derivative, and finally
a condition which involves the total force acting on the system or similar is search so that the computed
time derivative is zero. Obviously, this condition has to be related to some symmetry property of the
system.

The total time derivatives of quantities (A.223) and (A.224) have been already computed in equations
(5.518) and (5.524). These two derivations permit to conclude that (A.223) and (A.224) are conserved
quantities for the non Hamiltonian flow generated by the equations of motion (A.215) - (A.220), iff the
conditions (5.515) and (5.521) are satisfied, respectively. In the following, the calculations of the total
derivatives of the quantities (A.222) and (A.225) permit to conclude that they are not constant of motion
for the Ferrario time evolution equations (A.215) - (A.220), i.e. it is not possible to find a condition
related to a symmetry property of the physical system for which the total time derivatives of the two
quantities (A.222) and (A.225) are equal to zero.

Total time derivative of quantity (A.222):

d

dt
(P eη) = Ṗ eη + P eη η̇

295

A.8. Ferrario statistical mechanical ensemble Appendix A. Notation stuffs and demonstrations

= eη

(
N∑
i=1

dpi
dt

+
ps
Q

P

)

= eη

[
N∑
i=1

(
− ∂φ
∂qi
− pi

ps
Q
− pi
vd

pv
W

)
+
ps
Q

P

]

= eη

(
N∑
i=1

Fi −
ps
Q

N∑
i=1

pi −
1

vd

pv
W

N∑
i=1

pi +
ps
Q

P

)

= eη

(
N∑
i=1

Fi −
ps
Q

P +
1

vd

pv
W

P +
ps
Q

P

)
= eη

(
N∑
i=1

Fi +
1

vd

pv
W

P

)
(A.226)

Total time derivative of quantity (A.223): see derivation (5.518)

Total time derivative of quantity (A.224): see derivation (5.524)

Total time derivative of quantity (A.225):

d

dt
(L v1/d eη) = L̇ v1/d eη +

1

d
L v1/d−1 eη v̇ + L v1/d eη η̇

= eη v1/d

[
N∑
i=1

(
dqi
dt
∧ pi + qi ∧

dpi
dt

)
+

1

vd

pv
W

L +
ps
Q

L

]

= eη v1/d

[
N∑
i=1

(
pi
mi
∧ pi +

pv
vdW

qi ∧ pi − qi ∧
∂φ

∂qi
− ps
Q
qi ∧ pi −

pv
vdW

qi ∧ pi

)
+

1

vd

pv
W

L +
ps
Q

L

]

= eη v1/d

(
−

N∑
i=1

qi ∧
∂φ

∂qi
− ps
Q

N∑
i=1

qi ∧ pi +
1

vd

pv
W

L +
ps
Q

L

)

= eη v1/d

(
N∑
i=1

qi ∧ Fi −
ps
Q

L +
1

vd

pv
W

L +
ps
Q

L

)
= eη v1/d

(
N∑
i=1

qi ∧ Fi +
1

vd

pv
W

L

)
(A.227)

296

Appendix A. Notation stuffs and demonstrations A.9. Gaussian thermostat through extended system

A.9 Gaussian thermostat through extended system

In Section 5.3.1 the simple scaling technique has been introduced. The basic principle of this method
is the introduction of the Langevin equation of motion (5.174) on which the non-holonomic constraint
(5.165) on the instantaneous kinetic energy has been imposed. This method can produce the canonical
distribution in the coordinate space if g = 3N − 1 is set, for a system of N particles moving in a three
dimensional system (d = 3). In the following, the previous assessment will be demonstrated in detail
starting from the extended system method as introduced by S. Nosé.[46]
The distribution function in momentum space is usually simple and the contribution of this term can
be easily calculated in the canonical ensemble. Therefore, any method that produces the canonical
distribution, even if only in coordinate space, can be useful in some situations. The standard way for
this approach is to constrain the total instantaneous kinetic energy term

1

2

N∑
i=1

miv
2
i (t) =

1

2

N∑
i=1

mi

(
dqi
dt

)2

=
g

2
kbT0 (A.228)

where kb is the Boltzmann constant, T0 the temperature of the heat bath and the parameter g is
essentially equal to the number of degrees of freedom of the physical system (however, its exact value will
be chosen to satisfy the canonical distribution of configurations exactly at equilibrium). Fluctuations of
the total kinetic energy are suppressed by imposing constraint (A.228). An additional degree of freedom
s is introduced, that acts as an external system on the physical system of N particles, together with the
virtual variables q̃i, p̃i, s̃ and t̃ which are related to the real variables qi, pi and t by

qi = q̃i pi = p̃i/s s = s̃ t̃ =

∫ t dt

s
(A.229)

The Hamiltonian of the extended system of the particles and the variable s̃ = s in terms of the virtual
variables is postulated as

H̃ =
N∑
i=1

p̃2
i

2mis̃2
+ φ(q̃) +

p̃2
s

2Q
+ gkbT0 lns̃ (A.230)

where p̃s is the conjugate momentum of s̃ = s and Q is a parameter of dimension energy·(time)2 that
behaves as a mass for the motion of s̃ = s. The Hamiltonian (A.230) is constrained by the conditions

∂H̃
∂s̃

= −1

s

[
N∑
i=1

p̃2
i

mis̃2
− gkbT0

]
= 0 (A.231)

∂H̃
∂p̃s

=
p̃s
Q

= 0 (A.232)

Equation (A.232) is trivial, and the term p̃2
s/2Q will be ignored hereafter. The equations of motion for

q̃i and p̃i have the form

dq̃i

dt̃
=
∂H̃
∂p̃i

+
∂H̃
∂s̃

∂s̃

∂p̃i
=
∂H̃
∂p̃i

=
p̃i
mis̃2

(A.233)

dp̃i

dt̃
= −∂H̃

∂q̃i
− ∂H̃
∂s̃

∂s̃

∂q̃i
= −∂H̃

∂q̃i
= −∂φ(q̃)

∂q̃i
(A.234)

but the value of s̃ = s must be determined from the constraint (A.231), that is

s̃ = s =

[
1

gkbT0

N∑
i=1

p̃2
i

mi

]1/2

≡ s̃0 = s0 (A.235)

The Hamiltonian (A.230) is conserved by the previous defined equations of motion, indeed

dH̃
dt̃

=

N∑
i=1

(
∂H̃
∂p̃i

dp̃i

dt̃
+
∂H̃
∂q̃i

dq̃i

dt̃

)
+
∂H̃
∂p̃s

dp̃s

dt̃
+
∂H̃
∂s̃

ds̃

dt̃
= 0 (A.236)

297

A.9. Gaussian thermostat through extended system Appendix A. Notation stuffs and demonstrations

The partition function in this case is equal to

Z = ζ

∫
ds̃

∫
dp̃

∫
dq̃ δ(H− E)δ(s̃− s̃0) (A.237)

= ζ

∫
ds̃

∫
dp̃

∫
dq̃ δ[H0(p̃/s̃, q̃) + gkbT0 lns̃− E] δ(s̃− s̃0) (A.238)

where ζ = 1/[N ! (2πh̄)3N] is a normalization constant for the partition function, the second delta function
represents the constraint (A.231) for the value of the variable s̃ = s, while H0(p̃/s̃, q̃) corresponds to the
first two terms in the complete Hamiltonian (A.230) and s0 is the value of s defined by the constraint
in (A.235), namely,

H0(p̃/s̃, q̃) =
N∑
i=1

p̃2
i

2mis̃2
+ φ(q̃) and s0 =

[
1

gkbT0

N∑
i=1

p̃2
i

mi

]1/2

(A.239)

Taking into account that s̃ = s, the partition function (A.237) can rewritten slightly simplifying the
notations as

Z = ζ

∫
ds

∫
dp̃

∫
dq̃ δ[H0(p̃/s, q̃) + gkbT0 lns− E] δ(s− s0) (A.240)

The last delta function in (A.240) can be manipulated using the relation

δ(s− s0) =
∣∣h′(s)∣∣ δ[h(s)] (A.241)

where s0 is the root of the function h(s) and h′(s) is the derivative of the function h(s) with respect to
s variable. It is easy to find a function h(s) whose only root is s0 with expression given by equation
(A.235), that is

δ(s− s0) = sgkbT0 δ

(
1

2
s2gkbT0 −

N∑
i=1

p̃2
i

2mi

)
(A.242)

The partition function (A.237) then becomes

Z = ζ

∫
ds

∫
dp̃

∫
dq̃ δ[H0(p̃/s, q̃) + gkbT0 lns− E] sgkbT0 δ

(
1

2
s2gkbT0 −

N∑
i=1

p̃2
i

2mi

)
(A.243)

With the transformations q̃i = qi and p̃i = spi from the virtual to the real coordinates, the previous
expression becomes

Z = ζ

∫
ds

∫
s3N dp

∫
dq δ[H0(p, q) + gkbT0 lns− E] sgkbT0

1

s2
δ

(
1

2
gkbT0 −

N∑
i=1

p2
i

2mi

)
(A.244)

where for the last delta function has been used the relation δ(ax) = δ(x)/|a| to divide its argument
in (A.243) by the factor s2 and perform the transformation between the virtual and real coordinates.
Simplifying the equation above, re-introducing the complete expression for H0(p, q) given by (A.239)
and applying the last delta function on the argument of the first delta function in the integral leads to

Z = ζ

∫
ds

∫
s3N−1 dp

∫
dq δ[H0(p, q) + gkbT0 lns− E] gkbT0 δ

(
1

2
gkbT0 −

N∑
i=1

p2
i

2mi

)

= ζ

∫
ds

∫
s3N−1 dp

∫
dq δ

(
N∑
i=1

p2
i

2mi
+ φ(q) + gkbT0 lns− E

)
gkbT0 δ

(
1

2
gkbT0 −

N∑
i=1

p2
i

2mi

)

= ζ

∫
dp δ

(
1

2
gkbT0 −

N∑
i=1

p2
i

2mi

)∫
dq

∫
s3N−1 gkbT0 δ

(
1

2
gkbT0 + φ(q) + gkbT0 lns− E

)

298

Appendix A. Notation stuffs and demonstrations A.9. Gaussian thermostat through extended system

The argument h(s) of the last delta function has a root s0 given by

h(s0) = 0 → s0 = exp

[
−1

g

(
gkbT0

2
+ φ(q)− E

)
1

kbT0

]
(A.245)

and the derivative of the function with respect to s variable is equal to

h′(s) = gkbT0/s (A.246)

Therefore, using the inverse relation of (A.241), namely,

δ[h(s)] =
δ(s− s0)

|h′(s)|
(A.247)

on the last delta function in the previous expression for the partition function, it becomes

Z = ζ

∫
dp δ

(
1

2
gkbT0 −

N∑
i=1

p2
i

2mi

)∫
dq

∫
s3N−1 gkbT0

s

gkbT0
δ(s− s0)

= ζ

∫
dp δ

(
1

2
gkbT0 −

N∑
i=1

p2
i

2mi

)∫
dq s3N

0

= ζ

∫
dp δ

(
1

2
gkbT0 −

N∑
i=1

p2
i

2mi

)∫
dq exp

[
−3N

g

(
gkbT0

2
+ φ(q)− E

)
1

kbT0

]

= ζ exp

[
−3N

g

(
g

2
− E

kbT0

)]∫
dp δ

(
N∑
i=1

p2
i

2mi
− 1

2
gkbT0

)∫
dq exp

[
−3N

g

(
φ(q)

kbT0

)]

Therefore, the partition function is given by the equation

Z = ζ exp

[
−3N

g

(
g

2
− E

kbT0

)]∫
dp δ

(
N∑
i=1

p2
i

2mi
− 1

2
gkbT0

)∫
dq exp

[
−3N

g

(
φ(q)

kbT0

)]
(A.248)

where the exponent outside the integrals is a constant factor. If g = 3N , the partition function reported
above becomes

Z = ζ exp

[
−
(

3N

2
− E

kbT0

)]∫
dp δ

(
N∑
i=1

p2
i

2mi
− 1

2
gkbT0

)∫
dq exp

[
−
(
φ(q)

kbT0

)]
(A.249)

which corresponds to the equilibrium distribution function

f(q,p) = δ

(
N∑
i=1

p2
i

2mi
− 1

2
gkbT0

)
exp

[
−
(
φ(q)

kbT0

)]
(A.250)

Therefore, the equations of motion (A.233) and (A.234) with the constraint (A.235) produce the canonical
distribution in coordinate space.

A.9.1 Equations of motion in real variables

The transformation laws between real and virtual variables, given by (A.229), can be used to write the
equations of motion (A.233) and (A.234) for the real physical variables qi, pi and t as follows

dqi
dt

= s
dq̃i

dt̃
=

p̃i
mis

=
pi
mi

(A.251)

dpi
dt

= s
dpi

dt̃
= s

d

dt̃

(
p̃i
s

)
= −∂φ(q)

∂qi
− ds

dt̃
pi (A.252)

299

A.10. Equations of motion integration Appendix A. Notation stuffs and demonstrations

The derivative ds/dt̃ is obtained via the differentiation of equation (A.231), that is

N∑
i=1

p̃2
i

mis2
− gkbT0 = 0 →

N∑
i=1

p̃2
i

mi
− s2gkbT0 = 0 (A.253)

d

dt̃

[
N∑
i=1

p̃2
i

mi
− s2gkbT0

]
= 0 →

N∑
i=1

p̃i
mi

dp̃i

dt̃
= gkbT0s

ds

dt̃
(A.254)

and using the transformations qi = q̃i and pi = p̃i/s and the equation of motion (A.234), the time
derivative of the variable s is given by

ds

dt̃
=

1

gkbT0

N∑
i=1

pi
mi

(
−∂φ(q)

∂qi

)
(A.255)

Finally, substituting this expression in (A.252), the equations of motion in real physical variables become

dqi
dt

=
pi
mi

(A.256)

dpi
dt

= −∂φ(q)

∂qi
+

[
1

gkbT0

N∑
i=1

pi
mi

(
∂φ(q)

∂qi

)]
· pi = Fi(q)−

[
1

gkbT0

N∑
i=1

vi · Fi(q)

]
· pi (A.257)

where in the last equivalence the derivative of the potential with respect to the i-th nuclear positions
has been identified with minus the force acting on the i-th nucleus, i.e.

Fi(q) = −∂φ(q)

∂qi
(A.258)

Rewriting the equation of motion (A.257) for the velocities instead of the momenta pi = mivi, and
recovering the fact that the positions qi ≡ qi(t) and the velocities vi ≡ vi(t) are time-dependent functions,
the equation of motion (A.257) can be written as

mi
dvi(t)

dt
= Fi(q(t))− mi

gkbT0

[
N∑
i=1

vi(t) · Fi(q(t))

]
· vi(t) (A.259)

which perfectly coincides with the equation of motion (5.177) introduced for the simple scaling velocity
thermostat in Section 5.3.2.

A.10 Integration of the equations of motion

The Liouville approach introduced in Section 4.2 permits to obtain in a simple way the integrator
associated to a given equations of motion, which can be used in a computational program to propagate
in time the positions and momenta of the nuclei in a condensed matter system during a molecular
dynamics simulation. As usual, the first step is to write the Hamilton equations of motion associated to
our ensemble, in this case equations (5.171) and (5.172), which are here rewritten for completeness

dqi
dt

=
pi
mi

dpi
dt

= −∂φ(q)

∂qi
− γpi = Fi(q(t))− γpi

i = 1, ..., N

(A.260)

(A.261)

Then, the total Liouville operator is written, following equation (4.62), as

iL = Γ̇ · ∂
∂Γ

= (q̇, ṗ) ·
(
∂

∂q
,
∂

∂p

)
=

Nd∑
α=1

[
q̇α

∂

∂qα
+ ṗα

∂

∂pα

]

=

N∑
i=1

[
q̇i ·

∂

∂qi
+ ṗi ·

∂

∂pi

]
≡

N∑
i=1

[
q̇i · ∇qi + ṗi · ∇pi

]

300

Appendix A. Notation stuffs and demonstrations A.10. Equations of motion integration

where d is the dimensionality of the system. Substituting the expressions for the Hamilton equations
of motion (A.260) and (A.261) in the equation above, the Liouville operator for the case of Gaussian
thermostat equations of motion is given by

iL =
N∑
i=1

[
pi(t)

mi
· ∇qi + [Fi(q(t))− γpi(t)] · ∇pi

]
(A.262)

which can be recalled as the sum of two contributions

iL = iL1 + iL2 (A.263)

where

iL1 =

N∑
i=1

pi(t)

mi
· ∇qi and iL2 =

N∑
i=1

[Fi(q(t))− γpi(t)] · ∇pi (A.264)

The approximate evolution of the system ruled by the Gaussian thermostat equations of motion over a
time step ∆t is obtained by acting with a Suzuki-Trotter factorized operator with the form

eiL∆t ≈ eiL2∆t/2eiL1∆teiL2∆t/2 (A.265)

on an initial condition q(0),p(0). The action of each of the operators in this factorization can be
evaluated analytically. First of all, the action of the operator exp(iL2∆t/2) refers to the evolution of
the momenta, hence it propagates the positions pi(t). The equations of motion (A.261), which are here
reported as

ṗi(t) = Fi(q(t))− γpi i = 1, ..., N (A.266)

or equivalently, using a more simple notation,

ṗα(t) = Fα(q(t))− γpα(t) α = 1, ..., Nd (A.267)

(where d is the number of degrees of freedom) can be used to solve analytically the evolution of the
momenta pi(t) for ∆t/2 by solving the coupled first order differential equations (with qi(t) and Fi(q(t))
held fixed at their value at time t). Considering the expression (5.176) for the coefficient γ, the momentum
propagation is given by

ṗα(t) = Fα(q(t))−

[
1

gkbT0

N∑
i=1

pi(t)

mi
· Fi(q(t))

]
pα(t) = Fα(q(t))− ḣ(t)pα(t) α = 1, ..., Nd (A.268)

where the nuclear positions q = (q1, ..., qα), α = 1, ..., Nd are held fixed.
Defining a function

y(t) =
y(0) + a

∫ t
0 e

h(t′) dt′

eh(t)
(A.269)

its time derivative is

ẏ(t) =
aeh(t) eh(t) − [y(0) + a

∫ t
0 e

h(t′) dt′]eh(t)ḣ(t)

(eh(t))2
= a− y(t)ḣ(t) (A.270)

where a is a constant value with respect to time. Hence, the function form (A.269) generates a derivative
with the same form given by (A.268), so that it can be assumed to has the right form for the solution of
the differential equations (A.268). From the comparison between (A.270) and the equations of motion
(A.268) the constant a and the function h(t) can be identified as

a = Fα(q(t)) ḣ(t) =
1

gkbT0

N∑
i=1

pi(t)

mi
· Fi(q(t)) (A.271)

Hence the solution to (A.268) can be written in the form (A.269) as

pα(t) =
pα(0) + Fα(q(t))

∫ t
0 e

h(t′) dt′

eh(t)
(A.272)

301

A.10. Equations of motion integration Appendix A. Notation stuffs and demonstrations

Furthermore, defining

ṡ(t) = eh(t) → s(t) =

∫ t

0
eh(t′) dt′ (A.273)

the equation (A.272) can be rewritten more simply as

pα(t) =
pα(0) + Fα(q(t))s(t)

ṡ(t)
(A.274)

Further deriving the function ṡ(t) one gets

s̈(t) =
d

dt
(eh(t)) = eh(t) ḣ(t) = ṡ(t) ḣ(t) (A.275)

and substituting the expression for the derivative of h(t) given by (A.271) the previous equation becomes

s̈(t) =
d

dt
(eh(t)) =

[
1

gkbT0

N∑
i=1

pi(t)

mi
· Fi(q(t))

]
ṡ(t) =

[
1

gkbT0

N∑
i=1

pi(t)ṡ(t)

mi
· Fi(q(t))

]
(A.276)

Since equation (A.274) can be written as

pi(t)ṡ(t) = pi(0) + Fi(q(t))s(t) (A.277)

the second derivative s̈(t) in (A.276) results equal to

s̈(t) =
d

dt
(eh(t)) =

1

gkbT0

N∑
i=1

pi(0)

mi
· Fi(q(t)) +

s(t)

gkbT0

N∑
i=1

1

mi
[Fi(q(t)) · Fi(q(t))] (A.278)

The second order differential equation of the form

s̈(t) = a+ bs(t) (A.279)

has a solution

s(t) =
a

b

(
cosh(t

√
b)− 1

)
+

1√
b

sinh(t
√
b) (A.280)

where

a =
1

gkbT0

N∑
i=1

pi(0)

mi
· Fi(q(t)) and b =

1

gkbT0

N∑
i=1

1

mi
[Fi(q(t)) · Fi(q(t))] (A.281)

Similarly, one can calculate exactly the expression for ṡ(t) by deriving equation (A.280), so that the
propagation in time for the nuclear momenta, given by (A.274), is completely defined. Therefore,
the operator exp(iL2∆t/2) is applied by simply evaluating equation (A.280) and its derivative at time
t = ∆t/2, when it is applied on momenta coordinates, while the nuclear positions are let unaltered by
the same operator, i.e.

eiL2∆t/2 pi(t) =
pi(t) + Fi(q(t))s(∆t/2)

ṡ(∆t/2)
(A.282)

eiL2∆t/2 qi(t) = qi(t) (A.283)

Then, following the operators order in Trotter expansion (A.265), the action of the operator exp(iL1∆t)
on a state Γ = (q,p) yields (see Section 4.2.1)

eiL1∆t pi(t) = pi(t) (A.284)

eiL1∆t qi(t) = qi(t) + ∆t
pi(t)

mi
(A.285)

so that the application of this second operator lets the momenta coordinates unvaried but produces a
translation for the nuclear positions during the propagation.

302

Appendix A. Notation stuffs and demonstrations A.10. Equations of motion integration

The combined action of the three operators in the Trotter factorization (A.265) leads to the following
reversible, kinetic energy conserving algorithm for integrating the isokinetic equations:

Step 0. Evaluate new values for : s(∆t/2), ṡ(∆t/2)

Step 1. Propagator eiL2∆t/2 : vi(t)←
1

ṡ(∆t/2)

[
vi(t) + s(∆t/2)

Fi(q(t))

mi

]

Step 2. Propagator eiL1∆t : qi(t+ ∆t)← qi(t) + ∆t
pi(t)

mi

Step 3. Updating forces : Fi[{qi(t)}]← Fi[{qi(t+ ∆t)}]

Step 4. Evaluate new values for : s(∆t/2), ṡ(∆t/2)

Step 5. Propagator eiL2∆t/2 : vi(t+ ∆t)← 1

ṡ(∆t/2)

[
vi(t) + s(∆t/2)

Fi(q(t+ ∆t))

mi

]

i = 1, ..., N

Note that s(∆t/2) and ṡ(∆t/2) are evaluated by substituting the present momentum and the forces
into equation (A.281) with t = ∆t/2. The symbol ← indicates that on the computer, the values on the
left-hand side are overwritten in memory by the values on the right-hand side.

303

A.11. From virtual to real sampling Appendix A. Notation stuffs and demonstrations

A.11 From virtual to real sampling

A.11.1 Nosé-Hoover thermostat

In the extended methods, an additional degree of freedom s is introduced which acts as an external
system on the physical system of N particles in three dimensions (d = 3), with real coordinates qi,
masses mi (i = 1, ..., N) and potential energy φ(q). Virtual variables are also introduced (positions q̃i,
momenta p̃i and time t̃), which are related to the real variables (qi, pi and t) by

qi = q̃i pi = p̃i/s s = s̃ t̃ =

∫ t dt

s
(A.286)

The virtual variables define the extended system, while the real variables describe the real physical
system. In the following, the ensemble average of a given observable in the extended system will be
compared and related to the ensemble average of the same observable in the real physical system.
In Section 5.3.4 has been demonstrated that, with the quasi-ergodic hypothesis, which relates the time
average along the trajectory to the ensemble average, the averages of any static quantities expressed as
functions of p̃i/s, q̃i along the trajectory determined by the equations of motion, are exactly those in
the canonical ensemble:

lim
t0→∞

1

t0

∫ t0

0
A(p̃/s, q̃) dt̃ = 〈A(p̃/s, q̃)〉 g=3N+1

= 〈A(p̃/s, q̃)〉c (A.287)

where 〈...〉 and 〈...〉c denote the ensemble average in the extended system and in the canonical ensemble,
respectively. The first equivalence in equation (A.287) is achieved by sampling data points at integer
multiples of the virtual time unit ∆t̃. This sampling is called virtual time sampling. In this sampling, the
virtual time interval of each time step is equal, but the real time interval of each time step is unequal. In
particular, given the partition function in the canonical ensemble (A.137) and the associated equilibrium
distribution function (A.138), the ensemble average (A.287) is written as

〈A(p̃/s, q̃)〉 ≡ 〈A(p, q)〉 g=3N+1
= 〈A(p, q)〉c =

1

Z

{
C

∫
dp

∫
dq A(p, q) exp

[
−
(
H0(p, q)

kbT0

)]}
(A.288)

However, it will be more convenient in practical molecular dynamics simulations to sample at equal
intervals in real time. In the following, the transition from virtual to real time sampling will be performed,
and the formula (A.141) of Section 5.3.4 will be demonstrated.
If the sample has to be performed using equal intervals in real time t with

t1 =

∫ t0

0

dt̃

s
(A.289)

the result is a weighted average

lim
t1→∞

1

t1

∫ t1

0
A(p̃/s, q̃) dt = lim

t1→∞

t0
t1

1

t0

∫ t0

0
A(p̃/s, q̃)

dt̃

s
=

[
lim
t0→∞

1

t0

∫ t0

0
A(p̃/s, q̃)

dt̃

s

](
lim
t0→∞

t1
t0

)−1

=

[
lim
t0→∞

1

t0

∫ t0

0
A(p̃/s, q̃)

dt̃

s

](
lim
t0→∞

1

t0

∫ t0

0

dt̃

s

)−1

=
〈A(p̃/s, q̃)/s〉
〈1/s〉

In order to compute the last average above, equation (A.135) for the partition function can be used,
which is here reported for completeness

Z =
ζ

gkbT0

∫
dp̃s

∫
dp

∫
dq

∫
ds s3N+1 δ(s− s0) (A.290)

304

Appendix A. Notation stuffs and demonstrations A.11. From virtual to real sampling

With this partition function, the ensemble average sampled in real variables becomes

〈A(p̃/s, q̃)/s〉
〈1/s〉

≡ 〈A(p, q)/s〉
〈1/s〉

=

1
Z

ζ
gkbT0

∫
dps

∫
dp
∫
dq
∫
ds [A(p, q)/s] s3N+1 δ(s− s0)

1
Z

ζ
gkbT0

∫
dps

∫
dp
∫
dq
∫
ds (1/s) s3N+1 δ(s− s0)

=

∫
dps

∫
dp
∫
dq
∫
ds A(p, q) s3N δ(s− s0)∫

dps
∫
dp
∫
dq
∫
ds s3N δ(s− s0)

=

∫
dps

∫
dp
∫
dq A(p, q) s3N

0∫
dps

∫
dp
∫
dq s3N

0

(A.291)

Substituting the expression for s0, that is the zero of the function h(s) as computed in equation (A.134),
and reported in the following,

s0 = exp

[
− 1

gkbT0

(
H0(p, q) +

p̃2
s

2Q
− E

)]
(A.292)

in the last equation in (A.291), the result is

〈A(p̃/s, q̃)/s〉
〈1/s〉

≡ 〈A(p, q)/s〉
〈1/s〉

=
1

Z

ζ

gkbT0
exp

[(
3N

gkbT0

)
E

] ∫
dp̃s exp

[
−
(

3N

gkbT0

)
p̃2
s

2Q

]
︸ ︷︷ ︸

= constant

∫
dp

∫
dq A(p, q) exp

[
−
(

3N

gkbT0

)
H0(p, q)

]

where the constant terms and integrals has been collected before the rest of the integral expression as
above and the partition Z is given by

Z =
ζ

gkbT0
exp

[(
3N

gkbT0

)
E

] ∫
dp̃s exp

[
−
(

3N

gkbT0

)
p̃2
s

2Q

]
︸ ︷︷ ︸

= constant

∫
dp

∫
dq exp

[
−
(

3N

gkbT0

)
H0(p, q)

]

(A.293)

Defining the constant g = 3N , the partition function generated by the equations of motion (5.249)-(5.252)
in real time sampling becomes

g = 3N : Z =
ζ

gkbT0
exp

(
E

kbT0

)∫
dp̃s exp

[
−
(

1

kbT0

)
p̃2
s

2Q

]
︸ ︷︷ ︸

= constant C

∫
dp

∫
dq exp

[
−
(
H0(p, q)

kbT0

)]

and grouping all the constant factors, labeling them equal to C, the partition function in real time
sampling results equal to

g = 3N : Z = C

∫
dp

∫
dq exp

[
−
(
H0(p, q)

kbT0

)]
(A.294)

Using these results, if the number of degrees of freedom is fixed to a value g = 3N , the ensemble average
in real time sampling (A.291) takes the same form as the ensemble average in virtual time sampling
with g = 3N + 1, given by equation (A.11.1), i.e. a form equal to the ensemble average in the canonical
ensemble, that is

〈A(p̃/s, q̃)/s〉
〈1/s〉

≡ 〈A(p, q)/s〉
〈1/s〉

g=3N
= 〈A(p, q)〉c =

1

Z

{
C

∫
dp

∫
dq A(p, q) exp

[
−
(
H0(p, q)

kbT0

)]}

where the Hamiltonian in the exponential argument is given by equation (A.131) as the sum of the
nuclear kinetic and potential energy

H0(p, q) =

N∑
i=1

p2
i

2mi
+ φ(q) (A.295)

305

A.11. From virtual to real sampling Appendix A. Notation stuffs and demonstrations

Therefore, the formulae of the ensemble averages for the virtual and real time sampling (t.s.) are

virtual t.s. lim
t0→∞

1

t0

∫ t0

0
A(p̃/s, q̃) dt̃ = 〈A(p̃/s, q̃)〉 g=3N+1

= 〈A(p̃/s, q̃)〉c ≡ 〈A(p, q)〉c (A.296)

real t.s. lim
t1→∞

1

t1

∫ t1

0
A(p̃/s, q̃) dt =

〈A(p̃/s, q̃)/s〉
〈1/s〉

g=3N
= 〈A(p̃/s, q̃)〉c ≡ 〈A(p, q)〉c (A.297)

306

Appendix A. Notation stuffs and demonstrations A.12. Integrator for Nosé-Hoover thermostat

A.12 Alternative integrator for Nosé-Hoover equations of motion

Form of the time propagator operator using the Suzuki-Trotter decomposition scheme:

eiLτ ≈ eiL5 τ/4 eiL4 τ/2 eiL5 τ/4 eiL3 τ/2 eiL2 τ/2 eiL1 τ ·
· eiL2 τ/2 eiL3 τ/2 eiL5 τ/4 eiL4 τ/2 eiL5 τ/4 +O(τ11)

(A.298)

so that a phase space point evolves following the equation

Γ(t0 + τ) ≈ eiL5 τ/4 eiL4 τ/2 eiL5 τ/4 eiL3 τ/2 eiL2 τ/2 eiL1 τ ·
· eiL2 τ/2 eiL3 τ/2 eiL5 τ/4 eiL4 τ/2 eiL5 τ/4 Γ(t0) +O(τ11)

(A.299)

For the specific forms of the Liouville operators {Li} (i = 1, ..., 5) see equations (5.283) and (5.284) in
Section 5.3.4.2.

Starting point (initial conditions) : qi(t), pi(t), Fi[{qi(t)}], η(t), pη(t)

Step 1. Propagator eiL5∆t/4 : pη(t+ ∆t/4)← pη(t) +
∆t

4

(
N∑
i=1

p2
i (t)

mi
− gkbT0

)

Step 2. Propagator eiL4∆t/2 : η(t+ ∆t/2)← η(t) +
∆t

2Q
pη(t+ ∆t/4)

Step 3. Propagator eiL5∆t/4 : pη(t+ ∆t/2)← pη(t+ ∆t/4) +
∆t

4

(
N∑
i=1

p2
i (t)

mi
− gkbT0

)

Step 4. Propagator eiL3∆t/2 : pi(t+ ∆t/2)← pi(t) exp

[
−∆t

2Q
pη(t+ ∆t/2)

]

Step 5. Propagator eiL2∆t/2 : pi(t+ ∆t/2)← pi(t+ ∆t/2) +
∆t

2
Fi[{qi(t)}]

Step 6. Propagator eiL1∆t : qi(t+ ∆t)← qi(t) +
∆t

mi
pi(t+ ∆t/2)

Step 7. Updating forces : compute Fi[{qi(t+ ∆t)}]

Step 8. Propagator eiL2∆t/2 : pi(t+ ∆t)← pi(t+ ∆t/2) +
∆t

2
Fi[{qi(t+ ∆t)}]

Step 9. Propagator eiL3∆t/2 : pi(t+ ∆t)← pi(t+ ∆t) exp

[
−∆t

2Q
pη(t+ ∆t/2)

]

Step 10. Propagator eiL5∆t/4 : pη(t+ 3∆t/4)← pη(t+ ∆t/2) +
∆t

4

(
N∑
i=1

p2
i (t+ ∆t)

mi
− gkbT0

)

Step 11. Propagator eiL4∆t/2 : η(t+ ∆t)← η(t+ ∆t/2) +
∆t

2Q
pη(t+ 3∆t/4)

Step 12. Propagator eiL5∆t/4 : pη(t+ ∆t)← pη(t+ 3∆t/4) +
∆t

4

(
N∑
i=1

p2
i (t+ ∆t)

mi
− gkbT0

)

Table A.1: Nosé-Hoover thermostat integrator algorithm (vverlet nose I0), applied ∀ i = 1, ..., N .

307

A.12. Integrator for Nosé-Hoover thermostat Appendix A. Notation stuffs and demonstrations

308

Appendix B

Molecular Dynamics module details

B.1 Code workflow (moldyn.f90)

Subroutine: readMD

comments mark code

physical constants a0 = par(32)·1.0e-10 float
upres = ha/(a03)
pconv = 1.0 float/(upres*1.0e-9 float)
xconv = par(32)
vconv = xconv·tconv

defaults naf = inf(24)
nfree = 3·naf - 3
nsteps = 1000
timestep = 0.1 float*tconv ! fs → a.u.
temperature = 300 ! K
nve = .true.
thstat = 0
nvt = .false.
nose integ = 1
npt = .false.
npt integ = 0
vrtprt = .false.
cellprt = .false.
norot = .false.
guessp = .true.
mdrest = .false.
mdfixind = .false.
openfiles = .true.
comprt = .false.
timingprt = .false.
initvelprt = .false.
velandstop = .false.
xyzunits = .false.
debug = .false.
computePcf = .false.
analysisMD = .false.

default for fragment inf(129) = inf(24) ! number of active atoms: all
inf129 = inf(129)
fragment = .false.

internal check timedef = .false.

read the input file read the input file, cases for the different keywords
if a keyword is not find in the case statements : an error is printed in the output file and the code stops
for the list of keywords: see Manual in Section E.1

309

B.1. Code workflow (moldyn.f90) Appendix B. Molecular Dynamics module details

Subroutine: md

comment mark code

write header call headmd : write in output the header of the Moldyn module
open i/o files if(openfiles) : open files with Md trajectory info

if a restart is required, the files are opened as :
fort.221, fort.188, fort.189, fort.190 and fort.191 : opened with status old, because they have to be read
fort.222, fort.192, fort.193, fort.186 and fort.187 : opened in append mode

which ensemble print in output the ensemble of the simulation, the conserved quantity and the integrator used for the
equations of motion, on the base of the input keyword and logical variables initialized in subroutine
readMd

initialize call initialize : initialize positions, velocities and energies
if mdfixind = true if fixind strategy used, inf(15) = 2
if guessp = true if guess the density matrix, inf(57) = 2
integrate the eom loop on the number of steps with call to the subroutine move (call move) for the integration of the

equations of motion, calculation of kinetic energy, temperature and update of trajectories data files
finalize call finalMD : after the end of Md simulation a post processing analysis of the trajectory can be performed

(pair correlation function, frequency, self-diffusion coefficient)
print final timings print the final time (call timvrs) in output file and close the main output file unit (ioutmd)

Subroutine: headmd

comments mark code

write conversion units the header of the Md module is written in output file, with conversion factors to atomic units explicitly
given and written in a table on the output file

310

Appendix B. Molecular Dynamics module details B.1. Code workflow (moldyn.f90)

Subroutine: initialize

comments mark code

checks on geometry check on the input system geometry that should be P1 (inf(2) = 1) :
if inf(2) /= 1 then call symmremo moldyn for removal of the symmetry in direct and reciprocal space

allocation begin allocate: vector mass(naf), matrix vel(3,naf), matrix forces(3,naf)
if fragment (0) if fragment, allocate matrices xaallat(3,naf), velallat(3,naf) and forcesallat(3,naf)
masses initialization initialization of (mass(i), i = 1,naf) vector with the masses of each atom

calculation of total mass of the system (totmass)
if norot if Norot keyword is used (system rotations not allowed):

if(inf(10).eq.0) nfree = nfree - 3 (for 0D systems: g ← g − 3)
if(inf(10).eq.1) nfree = nfree - 1 (for 1D systems: g ← g − 1)

p1 printings print in the output file :
naf (number of atoms), nfree (number of degrees of freedom) and totmass

scratch values initialize to zero : timepre = 0. float, nstepre = 0
initialize virtual degrees initialization to zero of virtual variables (degrees of freedom) for Nvt and Npt ensembles
initialize with restarting
begin –

if(mdrest) initialize with restarting : reading of the trajectory files for restarting positions, velocities,
time and eventually virtual degrees of freedom
call readEn, call readPos, call readVel
if(vrtprt) call readVirt
if(cellprt) call readCell

if fragment (1)
end –

if(fragment) call reset velfa :
if fragment, reset to zero the velocities of the nuclei not included in the fragment

step index and time istep = nstepre and time = timepre
p2 printings print in the output file :

timestep, number of steps, initial temperature,
if(thstat.eq.2) i.e. if Berendsen thermostat, rise time of thermostat
if(nvt) or if(npt) thermostat info from input file

if(npt) cicp if(npt) call parlat(paret,tmpinv,mdcell) [see Chapter F, Section F.4] :
initialization of mdcell(1:7) vector with initial cell parameters and volume of the unit cell

p3 printings print in the output file :
initial virtual degrees of freedom, initial nuclear positions
if(fragment) print info on the atoms in the fragment (moving atoms)
if(.not.mdrest) write in the output info about random Gaussian initialization of the nuclear velocities

initialize from scratch
begin –

if(.not.mdrest) Box-Muller algorithm for nuclear velocities initialization (see paragraph B.1.1)
vel(j,i) = uran·sqrt(kbT/mass(i)) where uran is the random number Gaussian-distributed

if fragment (3) if(fragment) call reset velfa :
if fragment, reset to zero the velocities of the nuclei not included in the fragment

if initvelprt 0 if(initvelprt) write atomic masses and random nuclear velocities on file fort.193 (call printmat)
velocities translated write in output file that the nuclear velocities are translated with respect to the center of mass motion

call vel tranremo : the nuclear velocities are translated with respect to the center of mass motion
if initvelprt 1 if(initvelprt) write the velocity of the center of mass and write the translated nuclear velocities on file

fort.193 (call printmat)
remove system rotation
begin –

if(norot) :
write in output file that system rotation components are removed from the nuclear velocities
call vel rotremo : the system rotation components are removed from the nuclear velocities
(this option is valid only for 0D and 1D systems)

if initvelprt 2 if(initvelprt) write translated nuclear velocities on file fort.193 (call printmat)
end –
scwrttt compute kinetic energy and temperature (compute kinene(andtemp), see paragraph B.1.2),

then scale the initial nuclear velocities with respect to the target temperature (see paragraph B.1.2)
if initvelprt 3 if(initvelprt) write the temperature computed from translated nuclear velocities and the scaling factor

on file fort.193
end –
p4 printings print in the output file initial nuclear velocities (both for restarted simulation and from scratch)
if initvelprt 4 if(initvelprt) write the initial nuclear velocities on file fort.193 (call printmat)
compute the kinetic computation of the kinetic energy and temperature

(call compute kinene(andtemp), see paragraph B.1.2)
p5 printings print in the output file :

initial temperature

311

B.1. Code workflow (moldyn.f90) Appendix B. Molecular Dynamics module details

if testing if(velandstop) :
write in the output file a warning with testvel directive,
call md closefiles : close files, call md deallocate : deallocate vectors and matrices,
call stoppp : write end time elapsed, write termination date and stop (exit the code)

time for first Scf begin call cpu time(tbeg firstscf) : time at the beginning of the first Scf cycle
compute energy and forces call moldyn scf driver : compute initial energy and forces (first main call to Crystal)
time for first Scf end call cpu time(tend firstscf) : time at the end of the first Scf cycle
cctfs cpu time init = tend firstscf - tbeg firstscf : compute Cpu time for the first Scf cycle
com motion if(comprt) call compute com :

calculation of position com(1:3), velocity vcom(1:3), momentum sump(1:3) of system center of mass
ccq compute conserved call compute conserved : compute conserved quantity (ensemble dependent)
initialize trajectory files
begin –

end –

if((.not.mdrest).and.openfiles), i.e. if not restart and if openfiles :
call update traj real : initialize trajectory files with energies, positions, velocities and timings
if(vrtprt) call update traj vrt : if virtual variables are used, initialize file with virtual variables
if(iameq0) call extprt(‘fort.34’) : create (or overwrite) fort.34 file with geometry data settings

p6 printings redirect Scf output on file Scfout.log, write on output that the redirection is done, write on output
the name of the file created during the Md simulation, write on output that the Md simulation is
started and print the first line with data (energies, temperature, timings) of the output file Md table

Subroutine: symmremo moldyn

comments mark code

delete the use of symmetry removal of symmetry in direct and reciprocal spaces

Subroutine: readEn

comments mark code

analyze file en read the file fort.221 (Energies.dat, see Section B.3) and save relevant data (nstepre and timepre):
rewind the file
read the first row (header of the file)
read the Md step 0 (initial energies, temperature and time)
read the file until Eof
save the number of previous steps (nstepre) and the number of previous time (timepre)
write in output file that the total time of previous Md run is restarted from file fort.221
compute the number of lines (nline) expected in the file
broadcast nstepre and timepre

Subroutine: readPos

comments mark code

analyze file pos read the file fort.188 (Positions.dat, see Section B.3) and save relevant data (last Md step positions):
rewind the file
read the first naf+1 rows (naf = number of atoms)
read naf rows with positions at Md step 0 (initial positions)
read nstepre·naf rows with positions at each Md step
save the nuclear positions of the last Md step in xa(1:3,1:naf) matrix
write in output file that the positions are restarted from last Md run from file fort.188
broadcast xa(3,naf) matrix

312

Appendix B. Molecular Dynamics module details B.1. Code workflow (moldyn.f90)

Subroutine: readVel

comments mark code

analyze file vel read the file fort.189 (Velocities.dat, see Section B.3) and save relevant data (last Md step velocities):
rewind the file
read the first naf+1 rows (naf = number of atoms)
read naf rows with velocities at Md step 0 (initial velocities)
read nstepre·naf rows with velocities at each Md step
save the nuclear velocities of the last Md step in vel(1:3,1:naf) matrix
write in output file that the velocities are restarted from last Md run from file fort.189
broadcast vel(3,naf) matrix

Subroutine: readVirt

comments mark code

analyze file virt
begin – if(nvt) then

read file fort.190 (Virtual.dat, see Section B.3) and save relevant data (last Md step virtual Dof):
rewind the file
read the first 10 rows (header with data)
read the first row with initial virtual Dof at Md step 0 (initial virtual degrees of freedom)
read nstepre rows with virtual degrees of freedom at each Md step
save the virtual degrees of freedom of the last Md step (p nose, zeta nose)
write in output file that the virtual Dof are restarted from last Md run from file fort.190
write in output file the value of the virtual Dof of the last Md run saved from file fort.190

end – broadcast p nose and zeta nose
begin – if(npt) then

read file fort.190 (Virtual.dat, see Section B.3) and save relevant data (last Md step virtual Dof):
rewind the file
read the first 18 rows (header with data)
read the first row with initial virtual Dof at Md step 0 (initial virtual degrees of freedom)
read nstepre rows with virtual degrees of freedom at each Md step
save the virtual degrees of freedom of the last Md step (p nose, zeta nose, p barost, mdcell(7) = volume)
write in output file that the virtual Dof are restarted from last Md run from file fort.190
write in output file the value of the virtual Dof of the last Md run saved from file fort.190

end – broadcast p nose, zeta nose, p barost, mdcell(7)

313

B.1. Code workflow (moldyn.f90) Appendix B. Molecular Dynamics module details

Subroutine: vel tranremo

comments mark code

if fragment if(fragment) call removefrozat(.false.,.true.,.false.,.true.) :
remove from vel(3,naf) matrix the velocities of fixed atoms
remove from mass(naf) vector the masses of fixed atoms

subtract com velocity subtraction of the center of mass velocity from each nuclear velocity (the components of center of mass
velocity are subtracted to the correspondent components of the nuclear velocities)

Pj =

NF∑
i=1

mi vji vji ← vji −
Pj
M

where j = x, y, z M =

N∑
i=1

mi (B.1)

with NF = number of atoms free to move
if fragment if(fragment) call insertfrozat(.false.,.false.,.true.,.true.,.false.,.true.) :

insert in vel(3,inf(129)) matrix the velocities of fixed atoms
insert in mass(inf(129)) vector the masses of fixed atoms

Subroutine: vel rotremo

comments mark code

inf(10) = 0 if(inf(10).eq.0) (if the system is an isolated molecule 0D)
begin – write in the output file that the option Norot has been selected

allocate matrices : xa com(3,naf) (xcji), vel com(3,naf) (vcji)
if(fragment) allocate matrices : xa comall(3,naf), vel comall(3,naf)
compute position of the center of mass:

pcj =
1

M

N∑
i=1

mi xji M =

N∑
i=1

mi j = x, y, z (B.2)

compute nuclear positions with respect to the center of mass:

xcji = xji − pcj j = x, y, z i = 1, ..., N (B.3)

if(fragment) call removefrozat(.false.,.true.,.false.,.true.)
compute velocity of the center of mass:

kcj =
1

M

NF∑
i=1

mi vji M =

N∑
i=1

mi j = x, y, z (B.4)

with NF = number of atoms free to move
if(fragment) call removefrozat mat(vel com,vel comall,natfree)
compute nuclear velocities with respect to the center of mass:

vcji = vji − kcj j = x, y, z i = 1, ..., inf(129) (B.5)

if(fragment) call insertmodfrozat mat(vel com,vel comall,natfree)
if(fragment) call insertfrozat(.false.,.false.,.true.,.false.,.false.,.true.)
compute angular momentum angmom(1:3):

L =

N∑
i=1

mi (xci ∧ vci) (B.6)

314

Appendix B. Molecular Dynamics module details B.1. Code workflow (moldyn.f90)

compute momentum of inertia inertm(1:3,1:3):

sqnorm = mi(x
c
i · xci) = mi[(x

c
1i)

2 + (xc2i)
2 + (xc3i)

2] (B.7)

I11 =

N∑
i=1

{mi [(xc1i)
2 + (xc2i)

2 + (xc3i)
2]−mi (xc1i)

2} =

N∑
i=1

mi [(xc2i)
2 + (xc3i)

2] (B.8)

I12 = −
N∑
i=1

[mi (xc1i)(x
c
2i)] (B.9)

I13 = −
N∑
i=1

[mi (xc1i)(x
c
3i)] (B.10)

I21 = −
N∑
i=1

[mi (xc2i)(x
c
1i)] (B.11)

I22 =

N∑
i=1

{mi [(xc1i)
2 + (xc2i)

2 + (xc3i)
2]−mi (xc2i)

2} =

N∑
i=1

mi [(xc1i)
2 + (xc3i)

2] (B.12)

I23 = −
N∑
i=1

[mi (xc2i)(x
c
3i)] (B.13)

I31 = −
N∑
i=1

[mi (xc3i)(x
c
1i)] (B.14)

I32 = −
N∑
i=1

[mi (xc3i)(x
c
2i)] (B.15)

I33 =

N∑
i=1

{mi [(xc1i)
2 + (xc2i)

2 + (xc3i)
2]−mi (xc3i)

2} =

N∑
i=1

mi [(xc1i)
2 + (xc2i)

2] (B.16)

call minv(inertm,3,inertmod) : compute the inverse of angular momentum matrix I−1

compute angular velocities angv(1:3):

ω1 = I−1
11 L1 + I−1

12 L2 + I−1
13 L3 (B.17)

ω2 = I−1
21 L1 + I−1

22 L2 + I−1
23 L3 (B.18)

ω3 = I−1
31 L1 + I−1

32 L2 + I−1
33 L3 (B.19)

write on output file that nuclear velocities are shifted with respect to system angular velocity components
if(fragment) :
call removefrozat(.false.,.true.,.false.,.false.) and call removefrozat mat(xa com,xa comall,natfree)
remove system angular velocity components from nuclear velocities:

tmp(1 : 3) = t = ω ∧ xci i = 1, ..., inf(129) (B.20)

if(initvelprt) write the nuclear tangential rotational velocity tmp(1:3) per each atom on file fort.193

vji ← vji − tj = vji − (ω ∧ xci) · ej j = x, y, z i = 1, ..., inf(129) (B.21)

if(fragment) :
call insertfrozat(.false.,.false.,.true.,.true.,.false.,.false.) and call insertfrozat mat(xa com,xa comall)
recompute the angular momentum with the new velocities vji

L =

N∑
i=1

mi (xci ∧ vi) (B.22)

if(fragment) deallocate matrices : vel comall(3,naf), xa comall(3,naf)
end – deallocate matrices : vel com(3,naf) (vcji), xa com(3,naf) (xcji)

315

B.1. Code workflow (moldyn.f90) Appendix B. Molecular Dynamics module details

inf(10) = 1 if(inf(10).eq.1) (if the system is a polymer 1D)
begin – write in the output file that the option Norot has been selected

allocate matrices : xa com(3,naf) (xcji), vel com(3,naf) (vcji)
if(fragment) allocate matrices : xa comall(3,naf), vel comall(3,naf)
compute position of the center of mass:

pcx = 0 and pcj =
1

M

N∑
i=1

mi xji M =

N∑
i=1

mi j = y, z (B.23)

compute nuclear positions with respect to the center of mass:

xcxi ≡ xc1i = 0 and xcji = xji − pcj j = y, z i = 1, ..., N (B.24)

if(fragment) call removefrozat(.false.,.true.,.false.,.true.)
compute velocity of the center of mass:

kcx = 0 and kcj =
1

M

NF∑
i=1

mi vji M =

N∑
i=1

mi j = y, z (B.25)

with NF = number of atoms free to move
if(fragment) call removefrozat mat(vel com,vel comall,natfree)
compute nuclear velocities with respect to the center of mass:

vcxi ≡ vc1i = 0 and vcji = vji − kcj j = y, z i = 1, ..., inf(129) (B.26)

if(fragment) call insertmodfrozat mat(vel com,vel comall,natfree)
if(fragment) call insertfrozat(.false.,.false.,.true.,.false.,.false.,.true.)
compute angular momentum angmom(1:3):

L1 ≡ Lx =

N∑
i=1

mi (xc2iv
c
3i − xc3ivc2i) L2 ≡ Ly = 0 L3 ≡ Lz = 0 (B.27)

compute momentum of inertia inertmod:

sqnorm = mi[(x
c
2i)

2 + (xc3i)
2] (B.28)

I11 ≡ Ixx =
N∑
i=1

mi [(xc2i)
2 + (xc3i)

2] (B.29)

compute angular velocities angv(1:3):

ω1 ≡ ωx = L1/I11 ≡ Lx/Ixx ω2 ≡ ωy = 0 ω3 ≡ ωz = 0 (B.30)

write on output file that nuclear velocities are shifted with respect to system angular velocity x component
if(fragment) :
call insertfrozat(.false.,.false.,.true.,.true.,.false.,.false.) and call insertfrozat mat(xa com,xa comall)
remove system angular velocity x component from nuclear velocities:

tmp(1 : 3) = t = ω ∧ xci i = 1, ..., inf(129) (B.31)

if(initvelprt) write the nuclear tangential rotational velocity tmp(1:3) per each atom on file fort.193

vji ← vji − tj = vji − (ω ∧ xci) · ej j = y, z i = 1, ..., inf(129) (B.32)

if(fragment) :
call insertfrozat(.false.,.true.,.true.,.false.,.false.) and call insertfrozat mat(xa com,xa comall,natfree)

316

Appendix B. Molecular Dynamics module details B.1. Code workflow (moldyn.f90)

recompute the angular momentum with the new velocities vji

L1 ≡ Lx =

N∑
i=1

mi (xc2iv3i − xc3iv2i) L2 ≡ Ly = 0 L3 ≡ Lz = 0 (B.33)

end – deallocation of xcji and vcji matrices

Subroutine: compute com

comments mark code

cpv com linmom pc ≡ com(1:3) = 0. float (global variable)
vc ≡ vcom(1:3) = 0. float (global variable)
P ≡ sump(1:3) = 0. float (global variable)
compute center of mass position:

pc =
1

M

N∑
i=1

mi xi M =

N∑
i=1

mi (B.34)

compute center of mass velocity:

vc =
1

M

N∑
i=1

mi vi M =

N∑
i=1

mi (B.35)

compute system total linear momentum:

P =

N∑
i=1

mi vi (B.36)

compute kinetic energy of the center of mass

Eck =
1

2
M(vc)2 =

1

2
M [(vc1)2 + (vc2)2 + (vc3)2] (B.37)

Subroutine: compute conserved

comments mark code

computed conserved compute conserved quantity (ensemble dependent) :
begin – if(nve) conserved = kinetic + energy (C = Ek + Ep)
end – if((thstat.eq.1).or.(thstat.eq.2)) conserved = kinetic (C = Ek)

else if(nvt) conserved = kinetic + energy + kins + pots (C = Ek + Ep + p2
n/(2Q) + gkbT0η)

else if(npt.and.(npt integ.eq.0)) then
conserved = kinetic + energy + kins + pots + kinv + potv
(C = Ek + Ep + p2

n/(2Q) + gkbT0η + p2
v/(2W) + P0v)

endif

317

B.1. Code workflow (moldyn.f90) Appendix B. Molecular Dynamics module details

Subroutine: update traj real

comments mark code

pyes logical variable pyes = (istep.eq.0)
UE Update energies file: fort.221

if(pyes) write file header (1 row)
update trajectory at each step :
step - - time - - Ek - - Ep - - Et = Ek + Ep - - conserved - - T

UP Update positions file: fort.188
if(pyes) write file header (N + 1 rows) :
1r: number of atoms
Nr: atom index, atomic number, mass [atomic unit]
write nuclear positions at each step [Angstrom]: ((xa(j,i)*par(32), j=1,3), i=1,naf) :
x(i) - - y(i) - - z(i) i = 1, ..., N (N lines per step)

UV Update velocities file: fort.189
if(pyes) write file header (N + 1 rows) :
1r: number of atoms
Nr: atom index, atomic number, mass [atomic unit]
write nuclear velocities at each step [Angstrom/fs]: ((vel(j,i)*par(32)*tconv, j=1,3), i=1,naf) :
vx(i) - - vy(i) - - vz(i) i = 1, ..., N (N lines per step)

UT Update timings if(timingprt)
file: fort.222
if(pyes) write file header (1 row)
update trajectory at each step :
step - - time - - TCpu - - Ncycles

UXYZ Update if(xyzunits)
file: fort.186
update positions block at each step :
1r: number of atoms
1r: “STEP =” - - step - - “TIME [fs] =” - - time - - “E [HA] =” - - conserved
Nr: i-th atomic symbol - - x(i) - - y(i) - - z(i) [Angstrom] (i = 1, ..., N)
file: fort.187
update velocities block at each step :
1r: number of atoms
1r: “STEP =” - - step - - “TIME [fs] =” - - time - - “E [HA] =” - - conserved
Nr: i-th atomic symbol - - vx(i) - - vy(i) - - vz(i) [Angstrom/fs] (i = 1, ..., N)

UMDC Update cell if(cellprt)
file: fort.191
if(pyes) write file header (8 rows)
write cell parameters info at each step :
1r: “STEP =” - - step - - “TIME [fs] =” - - time - - “E [HA] =” - - conserved
3r: update lattice parameters : (paret(i,j)*par(32), j=1,3)
1r: update lattice parameters a, b, c [Angstrom] : (mdcell(i)*par(32), i=1,3)
1r: update lattice parameters α, β, γ [degrees] : (mdcell(i), i=4,6)
1r: update primitive cell volume [Angstrom3] : mdcell(7)*(par(32)**3)

UCOM Update if(comprt)
file: fort.192
if(pyes) write file header (3 rows) :
1r: string header
1r: total mass of the system [Hartree a.u. (me)]
1r: string header
update center of mass info at each step :
step - - pcx - - pcy - - pcz - - Px - - Py - - Pz - - Eck

318

Appendix B. Molecular Dynamics module details B.1. Code workflow (moldyn.f90)

Subroutine: update traj vrt

comments mark code

pyes virt logical variable pyes = (istep.eq.0)
begin – if(nvt)

if(pyes) write file header (10 rows)
update trajectory at each step :

end – step - - time - - p nose (ps) - - kins - - zeta nose (η) - - pots
begin – if(npt)

if(pyes) write file header (18 rows)
update trajectory at each step :

end – step - - p nose (pn) - - kins - - zeta nose (η) - - pots - - p barost - - kinv - - mdcell(7) - - potv

Subroutine: printmat(mat,row,col,conv,outfile)

if conversion factor if(present(conv)) write(outfile,100) i, nat(i), symbat(nat(i)), (mat(j,i)·conv,j=1,row) with i=1,...,ncol
else if else write(outfile,100) i, nat(i), symbat(nat(i)), (mat(j,i),j=1,row) with i=1,...,ncol

Subroutine: extprt(filename)

see subroutine extprt(filename) in libxf com.f :
rewind and update (overwrite) file fort.34 with system geometry setting and details

319

B.1. Code workflow (moldyn.f90) Appendix B. Molecular Dynamics module details

Subroutine: move

comments mark code

compute md time time = timepre + (istep-nstepre)·timestep/tconv : compute Md time at each step
t = t0 + (n− n0)∆t

time for a Md step begin if(iameq0) call cpu time(tbeg move) : time at the beginning of a Md step
eom int integration of equations of motion :

if(nve) call vverlet Nve
if(thstat.eq.1) call vverlet Nve + call velrescale
if(thstat.eq.2) call vverlet Nve + call berendsen
if(nvt) and if(nose integ.eq.0) call vverlet nose I0
if(nvt) and if(nose integ.eq.1) call vverlet nose I1
if(npt) and if(npt integ.eq.0) call vverlet npt I0

if fragment if(fragment) call reset velfa :
if fragment, reset to zero the velocities of the nuclei not included in the fragment

calculate kt calculate kinetic energy and temperature (call compute kinene(andtemp), see paragraph B.1.2)
compute cq call compute conserved : compute conserved quantity (ensemble dependent)
time for a Md step end if(iameq0) call cpu time(tend move) : time at the end of a Md step
cctms cpuSteptime = tend move - tbeg move : compute Cpu time for a Md step
com motion update if(comprt) call compute com :

calculation of position com(1:3), velocity vcom(1:3), momentum sump(1:3) of system center of mass
update out file update output file Md table with energies, temperature and timings
update traj files if(openfiles) :
begin – call update traj real : update trajectory files with energies, positions, velocities and timings

if(vrtprt) call update traj vrt : if virtual variables are used, update file with virtual variables
end – if(iameq0) call extprt(‘fort.34’) : overwrite fort.34 file with geometry data settings

Subroutine: vverlet NVE

comments mark code

fragment atom remove 0 if(fragment) call removefrozat(.true.,.true.,.true.,.true.)
new nuclear positions calculation of nuclear positions at time t+ ∆t:

vji ← vji +
∆t

2

Fji
mi

i = 1, ..., inf(129) j = x, y, z (B.38)

xji ← xji + ∆t vji i = 1, ..., inf(129) j = x, y, z (B.39)

fragment atom insert 0 if(fragment) call insertfrozat(.true.,.true.,.true.,.true.,.true.,.true.)
cfe calculation call moldyn scf driver : calculation of new forces Fji (forces(3:naf)) and potential energy Ep (energy)
fragment atom remove 1 if(fragment) call removefrozat(.false.,.true.,.true.,.true.)
new nuclear velocities calculation of nuclear velocities at time t+ ∆t:

vji ← vji +
∆t

2

Fji
mi

i = 1, ..., inf(129) j = x, y, z (B.40)

fragment atom insert 1 if(fragment) call insertfrozat(.false.,.false.,.true.,.true.,.true.,.true.)

320

Appendix B. Molecular Dynamics module details B.1. Code workflow (moldyn.f90)

Subroutine: simplevel scale

comments mark code

avoid flying ice cube call vel tranremo : remove center of mass linear velocity from nuclear velocities (remove translations)
if((inf(10).eq.0).or.(inf(10).eq.1)) call vel rotremo :
remove center of mass angular velocity from nuclear velocities (remove rotations)

compute temperature compute kinetic energy and temperature (call compute kinene(andtemp))

Ek =
1

2

N∑
i=1

3∑
j=1

mi v
2
ji j = x, y, z(≡ 1, 2, 3) (B.41)

T =
2

gkb
Ek (B.42)

simple scaling factor compute scaling factor

λ =

√
T0

T
with T0 = target temperature (B.43)

scale nuclear velocities scale nuclear velocities with respect to the computed scaling factor

vji ← λvji j = x, y, z i = 1, ..., N (B.44)

Subroutine: berendsen scale

comments mark code

avoid flying ice cube call vel tranremo : remove center of mass linear velocity from nuclear velocities (remove translations)
if((inf(10).eq.0).or.(inf(10).eq.1)) call vel rotremo :
remove center of mass angular velocity from nuclear velocities (remove rotations)

compute temperature compute kinetic energy and temperature (call compute kinene(andtemp))

Ek =
1

2

N∑
i=1

3∑
j=1

mi v
2
ji j = x, y, z(≡ 1, 2, 3) (B.45)

T =
2

gkb
Ek (B.46)

berendsen scaling factor compute Berendsen scaling factor

λ =

√
1 +

∆t

τ

(
T0

T
− 1

)
with T0 = target temperature and τ = rise time (B.47)

scale nuclear velocities scale nuclear velocities with respect to the computed scaling factor

vji ← λvji j = x, y, z i = 1, ..., N (B.48)

321

B.1. Code workflow (moldyn.f90) Appendix B. Molecular Dynamics module details

Subroutine: vverlet nose I0

comments mark code

compute kinetic energy compute kinetic energy (call compute kinene(notemp))

Ek =
1

2

N∑
i=1

3∑
j=1

mi v
2
ji j = x, y, z(≡ 1, 2, 3) (B.49)

Fn(dt/2) Fn(dt/2) = 2Ek − gkbT0

eta(dt/2) and pn(dt/2) update η and pn

pn ← pn +
∆t

4
Fn(dt/2) (B.50)

η(dt/2)← η +
∆t

2

pn
Q

(B.51)

pn(dt/2)← pn +
∆t

4
Fn(dt/2) (B.52)

sn(dt/2) sn(dt/2) = exp[−pn ∆t/(2Q)]
fragment atom remove if(fragment) call removefrozat(.true.,.true.,.true.,.true.)
v(dt/2) and q(dt) update velocities and positions

vji ← vji · sn(dt/2) i = 1, ..., inf(129) and j = x, y, z (B.53)

vji(dt/2)← vji +
∆t

2

Fji
mi

i = 1, ..., inf(129) and j = x, y, z (B.54)

xji(dt)← xji + vji ∆t i = 1, ..., inf(129) and j = x, y, z (B.55)

fragment atom insert if(fragment) call insertfrozat(.true.,.true.,.true.,.true.,.true.,.true.)
scf call moldyn scf driver
fragment atom remove if(fragment) call removefrozat(.false.,.true.,.true.,.true.)
v(dt) update velocities

vji ← vji +
∆t

2

Fji
mi

i = 1, ..., inf(129) and j = x, y, z (B.56)

vji(dt)← vji · sn(dt/2) i = 1, ..., inf(129) and j = x, y, z (B.57)

fragment atom insert if(fragment) call insertfrozat(.false.,.false.,.true.,.true.,.true.,.true.)
compute kinetic energy compute kinetic energy (call compute kinene(notemp))

Ek =
1

2

N∑
i=1

3∑
j=1

mi v
2
ji j = x, y, z(≡ 1, 2, 3) (B.58)

Fn(dt) Fn(dt) = 2Ek − gkbT0

eta(dt) and pn(dt) update η and pn

pn ← pn +
∆t

4
Fn(dt) (B.59)

η(dt)← η +
∆t

2

pn
Q

(B.60)

pn(dt)← pn +
∆t

4
Fn(dt) (B.61)

322

Appendix B. Molecular Dynamics module details B.1. Code workflow (moldyn.f90)

Subroutine: vverlet nose I1

comments mark code

compute kinetic energy compute kinetic energy (call compute kinene(notemp))

Ek =
1

2

N∑
i=1

3∑
j=1

mi v
2
ji j = x, y, z(≡ 1, 2, 3) (B.62)

Fn(dt/2) Fn(dt/2) = 2Ek − gkbT0

pn(dt/2) and eta(dt/2) update pn and η

pn(dt/2)← pn +
∆t

2
Fn(dt/2) (B.63)

η(dt/2)← η +
∆t

2

pn
Q

(B.64)

sn(dt/2) sn(dt/2) = exp[−pn ∆t/(2Q)]
fragment atom remove if(fragment) call removefrozat(.true.,.true.,.true.,.true.)
v(dt/2) and q(dt) update velocities and positions

vji ← vji · sn(dt/2) i = 1, ..., inf(129) and j = x, y, z (B.65)

vji(dt/2)← vji +
∆t

2

Fji
mi

i = 1, ..., inf(129) and j = x, y, z (B.66)

xji(dt)← xji + vji ∆t i = 1, ..., inf(129) and j = x, y, z (B.67)

fragment atom insert if(fragment) call insertfrozat(.true.,.true.,.true.,.true.,.true.,.true.)
scf call moldyn scf driver
fragment atom remove if(fragment) call removefrozat(.false.,.true.,.true.,.true.)
v(dt) update velocities

vji ← vji +
∆t

2

Fji
mi

i = 1, ..., inf(129) and j = x, y, z (B.68)

vji(dt)← vji · sn(dt/2) i = 1, ..., inf(129) and j = x, y, z (B.69)

fragment atom insert if(fragment) call insertfrozat(.false.,.false.,.true.,.true.,.true.,.true.)
compute kinetic energy compute kinetic energy (call compute kinene(notemp))

Ek =
1

2

N∑
i=1

3∑
j=1

mi v
2
ji j = x, y, z(≡ 1, 2, 3) (B.70)

Fn(dt) Fn(dt) = 2Ek − gkbT0

eta(dt) and pn(dt) update η and pn

η(dt)← η +
∆t

2

pn
Q

(B.71)

pn(dt)← pn +
∆t

2
Fn(dt) (B.72)

323

B.1. Code workflow (moldyn.f90) Appendix B. Molecular Dynamics module details

Subroutine: vverlet npt I0

comments mark code

save the previous volume vol0 = mdcell(7) = v(0)
compute xF

L =

N∑
i=1

3∑
j=1

xji Fji j = x, y, z(≡ 1, 2, 3) (B.73)

compute kinetic energy compute kinetic energy (call compute kinene(notemp))

Ek =
1

2

N∑
i=1

3∑
j=1

mi v
2
ji j = x, y, z(≡ 1, 2, 3) (B.74)

F eta(0) Fn(0) = 2Ek + p2
v/W − gkbT0

F v(0) Fv(0) = [1/(3v(0))](2Ek + L)− P0

p eta(dt/2) update pn

pn(dt/2)← pn +
∆t

2
Fn(0) (B.75)

s n(dt/2) sn(dt/2) =
∆t

2

pn
Q

eta(dt/2) update η

η(dt/2)← η + sn(dt/2) (B.76)

p v(dt/2) update pv

pv(dt/2)← pv e
−sn(dt/2) +

∆t

2
Fv(0) (B.77)

s v(dt/2) sv(dt/2) =
∆t

2

pv(dt/2)

3v(0)W
fragment atom remove 0 if(fragment) call removefrozat(.true.,.true.,.true.,.true.)
p i(dt/2) v i(dt/2) update nuclear velocities and positions

vji(dt/2)← vji e
−sn(dt/2)−sv(dt/2) i = 1, ..., inf(129) and j = x, y, z (B.78)

vji(dt/2)← vji(dt/2) +
∆t

2

Fji
mi

i = 1, ..., inf(129) and j = x, y, z (B.79)

volume(dt/2) update volume

v(dt/2)← v(0) +
∆t

2

pv
W

(B.80)

update dlv update direct lattice vectors paret (3,3) matrix

paret← paret · 3

√
v(dt/2)

v(0)
(B.81)

compute new cell call parlat(paret,tmpinv,mdcell) : recompute cell lattice parameters

s v(dt/2) sv(dt/2) =
∆t

2

pv(dt/2)

3v(dt/2)W

324

Appendix B. Molecular Dynamics module details B.1. Code workflow (moldyn.f90)

r i(dt) update nuclear positions

xji(dt/2)← xji e
sv(dt/2) + vji ∆t i = 1, ..., inf(129) and j = x, y, z (B.82)

xji(dt)← xji(dt/2) esv(dt/2) i = 1, ..., inf(129) and j = x, y, z (B.83)

fragment atom insert 0 if(fragment) call insertfrozat(.true.,.true.,.true.,.true.,.true.,.true.)
scf call moldyn scf driver
save volume vol1 = mdcell(7) = v(dt/2)
volume(dt) update volume

v(dt)← v(dt/2) +
∆t

2

pv
W

(B.84)

update dlv update direct lattice vectors paret (3,3) matrix

paret← paret · 3

√
v(dt)

v(dt/2)
(B.85)

compute new cell call parlat(paret,tmpinv,mdcell) : recompute cell lattice parameters

s v(dt) sv(dt) =
∆t

2

pv(dt/2)

3v(dt)W
fragment atom remove 1 if(fragment) call removefrozat(.false.,.true.,.true.,.true.)
p i(dt) v i(dt) update nuclear velocities and positions

vji(dt/2)← vji(dt/2) +
∆t

2

Fji
mi

i = 1, ..., inf(129) and j = x, y, z (B.86)

vji(dt)← vji(dt/2) e−sn(dt/2)−sv(dt) i = 1, ..., inf(129) and j = x, y, z (B.87)

fragment atom insert 1 if(fragment) call insertfrozat(.false.,.false.,.true.,.true.,.true.,.true.)
compute xF

L =

N∑
i=1

3∑
j=1

xji Fji j = x, y, z(≡ 1, 2, 3) (B.88)

compute kinetic energy compute kinetic energy (call compute kinene(notemp))

Ek =
1

2

N∑
i=1

3∑
j=1

mi v
2
ji j = x, y, z(≡ 1, 2, 3) (B.89)

F v(dt) Fv(dt) = [1/(3v(dt))](2Ek + L)− P0

p v(dt) update pv

pv(dt)← [pv(dt/2) +
∆t

2
Fv(dt)] e

−sn(dt/2) (B.90)

eta(dt) update η

η(dt)← η(dt/2) + sn(dt/2) (B.91)

F eta(dt) Fn(dt) = 2Ek + p2
v/W − gkbT0

p eta(dt) update pn

pn(dt)← pn(dt/2) +
∆t

2
Fn(dt) (B.92)

325

B.1. Code workflow (moldyn.f90) Appendix B. Molecular Dynamics module details

assign to par(5) par(5) = mdcell(7) :
assign to par(5) the actual volume so that the actual volume can be used in Scf calculation

Subroutine: removefrozat mat(mat,matallat,natfree)

comments mark code

be sure matrix be sure matrix matallat have the correct dimensions : it must be a (3,naf) matrix
if not, deallocate matallat and allocate it with the correct (3,naf) dimensions

save all matallat(:,:) = mat(:,:) : copy the content of mat in matallat (mat → matallat)
deallocate the (3,inf(24)) call crydealloc(mat,znamz,‘MAT’) : deallocate the matrix mat
allocate the (3,inf(129)) call cryalloc(mat,3,inf(129),znamz,‘MAT’) : allocate the matrix mat with dimensions (3,inf(129))
save in the mat if(any(natfree == i)) mat(j,k) = matallat(j,i) with j=1,2,3 and k=1,...,inf(129) :

save in the reshaped matrix mat only the elements with index contained in natfree vector
(natfree vector has dimension = inf(129))
! output :
! (3,inf(24)) matrix matallat with all data,
! (3,inf(129)) matrix mat with data only of those atoms whose index is contained in natfree vector

Subroutine: removefrozat vec(vec,vecallat,natfree)

comments mark code

be sure vector be sure vector vecallat has the correct dimension : it must be a (naf) vector
if not, deallocate vecallat and allocate it with the correct (naf) dimension

save all vecallat(:) = vec(:) : copy the content of vec in vecallat (vec → vecallat)
deallocate the (inf(24)) call crydealloc(vec,znamz,‘VEC’) : deallocate the vector vec
allocate the (inf(129)) call cryalloc(vec,inf(129),znamz,‘VEC’) : allocate the vector vec with dimension (inf(129))
save in the vec if(any(natfree == i)) vec(k) = vecallat(i) with i=1,...,naf and k=1,...,inf(129) :

save in the reshaped vector vec only the elements with index contained in natfree vector
(natfree vector has dimension = inf(129))
! output :
! (inf(24)) vector vecallat with all data,
! (inf(129)) vector vec with data only of those atoms whose index is contained in natfree vector

Subroutine: removefrozat(l1,l2,l3,l4)

comments mark code

if(l1 == .true.) call removefrozat mat(xa,xaallat,natfree)
if(l2 == .true.) call removefrozat mat(vel,velallat,natfree)
if(l3 == .true.) call removefrozat mat(forces,forcesallat,natfree)
if(l4 == .true.) call removefrozat vec(mass,massallat,natfree)

326

Appendix B. Molecular Dynamics module details B.1. Code workflow (moldyn.f90)

Subroutine: insertmodfrozat mat(mat,matallat,natfree)

comments mark code

refresh values if(any(natfree == i)) matallat(j,i) = mat(j,k) with j=1,2,3 and k=1,...,inf(129) :
refresh values in matallat with values in mat related to moving atoms
(moving atoms = atoms with index in natfree)

deallocate the (3,inf(129)) call crydealloc(mat,znamz,‘MAT’) : deallocate the matrix mat
allocate the (3,inf(24)) call cryalloc(mat,3,inf(24),znamz,‘MAT’)
save all mat(:,:) = matallat(:,:) : copy the content of matallat in the reshaped matrix mat (matallat→ mat)

! output :
! (3,inf(24)) matrix matallat with all data,
! (3,inf(24)) matrix mat with all data (moving and frozen atoms)

Subroutine: insertfrozat mat(mat,matallat)

comments mark code

deallocate the (3,inf(129)) call crydealloc(mat,znamz,‘MAT’) : deallocate the matrix mat
allocate the (3,inf(24)) call cryalloc(mat,3,inf(24),znamz,‘MAT’)
save all mat(:,:) = matallat(:,:) : copy the content of matallat in the reshaped matrix mat (matallat→ mat)

! output :
! (3,inf(24)) matrix matallat with all data,
! (3,inf(24)) matrix mat with all data (moving and frozen atoms)

Subroutine: insertfrozat vec(vec,vecallat)

comments mark code

deallocate the (inf(129)) call crydealloc(vec,znamz,‘VEC’) : deallocate the vector vec
allocate the (inf(24)) call cryalloc(vec,inf(24),znamz,‘VEC’)
save all vec(:) = vecallat(:) : copy the content of vecallat in the reshaped vector vec (vecallat → vec)

! output :
! (inf(24)) vector vecallat with all data,
! (inf(24)) vector vec with all data (moving and frozen atoms)

Subroutine: insertfrozat(l1,m1,l2,m2,l3,l4)

comments mark code

if(l1 == .true.) :
if(m1 == .true.) call insertmodfrozat mat(xa,xaallat,natfree)
else (m1 == .false.) call insertfrozat mat(xa,xaallat)
if(l2 == .true.) :
if(m2 == .true.) call insertmodfrozat mat(vel,velallat,natfree)
else (m2 == .false.) call insertfrozat mat(vel,velallat)
if(l3 == .true.) call insertfrozat mat(forces,forcesallat)
if(l4 == .true.) call insertfrozat vec(mass,massallat)

327

B.1. Code workflow (moldyn.f90) Appendix B. Molecular Dynamics module details

Subroutine: finalMD

comments mark code

final output strings write in the output file that the Md calculation is ended (the job is done)
if(mdrest) write the previous and the total number of Md steps

close i/o files call md closefiles :
close all the file units opened, they will be eventually reopened in the post processing subroutines

Post-processing if(computePcf == .true.) call pcf md : compute pair correlation functions
if(analysisMD == .true.) call analysis md : perform analysis of Md trajectory

deallocate v/m call md deallocate : deallocation of vectors and matrices allocated (the deallocation proceeds in inverse
order with respect to the allocation order, following the stack architecture)

Subroutine: md closefiles

comments mark code

close i/o files close all the output files opened in subroutine md and written (updated) in the moldyn module

Subroutine: md deallocate(znamz)

comments mark code

deallocate v/m deallocate all the vectors and matrices allocated and used in the moldyn module
the input argument znamz is a character containing the name of the subroutine in which this function is called

Subroutine: moldyn scf driver

comments mark code

proc dependency call make processor dependent suffix(suffix)
London subroutine call gupdte : update geometry (shell positions, G vectors list and such)
if not mdfixind if(.not.mdfixind) call int screen(1) : reclassify the integrals
integral calculation call int calc : calculation of the integrals
basis set infos if(guessp) lprint(72) = 0 : deactivates the print of the basis set infos after the first Scf cycle
scf cycle call scf : perform the Scf cycle
if too many cycles if(inf(35).eq.1) :

if it is the first Scf cycle, then stop with error ‘FIRST SCF ENDED WITH TOO MANY CYCLES’
if it is not the first Scf cycle and Guessp option is used, then restart Scf with atomic guess →
→ if even with atomic guess the Scf ends with too many cycles, then stop with error
‘SCF RESTARTED WITH ATOMIC P - ENDED WITH TOO MANY CYCLES’
→ otherwise (if Scf converges well) continue to the next Md step
if it is not the first Scf cycle and Guessp option is not used, it means that the convergence failed even
with an atomic guess, then stop with error ‘SCF ENDED WITH TOO MANY CYCLES’

save final P(g) matrix if(guessp) :
call outo3b(iunit(20)) : print on file fort.20 the final Scf density matrix (ground state density matrix)
rewind(iunit(20)) : rewind the fort.20 unit file

set energy and forces energy = par(6) : save final Scf (ground state) energy
forces(j,i) = atnug((i-1)*3+j) [i=1,naf ; j=1,3] : define forces (global matrix of the Moldyn module) from
Crystal global array atnug in which final Scf (ground state) forces acting on the nuclei are allocated

free memory call tidy memory : deallocate arrays and/or matrices left allocated
(if(inf(170).eq.2) and if(allocated(itreni))) call free dft batches and call crydealloc(itreni,znamz,‘itreni’)

{xij} = pos =

x1 x2 ... xn

y1 y2 ... yn

z1 z2 ... zn

 units: [Bohr] (B.93)

{vij} = vel =

v1
x v2

x ... vn
x

v1
y v2

y ... vn
y

v1
z v2

z ... vn
z

 units: [Bohr/(a.u. time)] (B.94)

328

Appendix B. Molecular Dynamics module details B.1. Code workflow (moldyn.f90)

B.1.1 Box-Muller implementation

u1, u2 random numbers

vij = cos(2πu1)
√
−2 · log(u2) (B.95)

vij ← vij

√
kbT

mi
i = 1, ..., N j = x, y, z (B.96)

units:

kb [Ha/K] (Eh/T) T [K] mi [u] (me) → vij [
√

Ha/u] (
√
Eh/me)

momentum pij = mivij (h̄/a0) mass mi (me) velocity vij (a0Eh/h̄)

→ h̄/a0 = me a0Eh/h̄ → me = h̄2/(a2
0Eh)

→ vij (
√
Eh/me =

√
a2

0E
2
h/h̄

2 = a0Eh/h̄)

B.1.2 Kinetic energy and temperature calculations

Kinetic energy : Ek(t) =
1

2

N∑
i=1

3∑
j=1

miv
2
ij(t) j = x, y, z(≡ 1, 2, 3) (B.97)

Temperature : T (t) =
2

gkb
Ek(t) (B.98)

Initial temperature scaling : vij ← vij

√
T

T (t)
i = 1, ..., N j = x, y, z (B.99)

where T is the initial target temperature.

329

B.2. Constants and conversion units Appendix B. Molecular Dynamics module details

B.2 Constants and conversion units

Variable Value [real(float)] Description Nist link

Declared and initialized as global parameters in module moldyn

0. emass 5.48579909065·10−4 1 [me] = emass [u=Dalton] https://physics.nist.gov/emass
1. amu 1.0/emass 1 [u] = amu [me] derived from 0.
2. ha 4.3597447222071·10−18 1 [Ha] = ha [Joules] https://physics.nist.gov/ha
3. kb joules 1.380649·10−23 Boltzmann constant [Joules/K] https://physics.nist.gov/kb joules
4. kboltz kb joules/ha Boltzmann constant [Hartree/K] derived from 2. and 3.
5. avonum 6.02214076·1023 Avogadro constant [1/mol] https://physics.nist.gov/avonum
6. kb kJmol kb joules·avonum·10−3 Boltzmann constant [kJ/(mol K)] derived from 3. and 5.
7. utime 2.4188843265857·10−17 1 [a.u. time] = utime [sec] https://physics.nist.gov/utime
8. tconv 1.0/(utime·1015) 1 [fs] = tconv [a.u. time] derived from 7.

Declared as global variables in module moldyn and initialized in subroutines readMD and readFIRE

9. a0 par(32)·10−10 1 [Bohr radius] = a0 [m] https://physics.nist.gov/a0
10. upres ha/(a03) 1 [a.u. pres] = upres [Pa] derived from 2. and 9.
11. pconv 1.0/(upres·10−9) 1 [GPa] = pconv [a.u. pres] derived from 10.
12. xconv par(32) = 0.5291772083 1 [Bohr radius] = xconv [Angstrom] internal code constant
13. vconv xconv·tconv 1 [a.u. vel] = vconv [Angstrom/fs] derived from 8. and 12.

Table B.36: Variables used as conversion factors, the correspondent assigned values, module and/or subroutine
in which they are initialized and description.

[au] vji · vconv → vji [Angstrom/fs]
[Angstrom/fs] vji / vconv → vji [au]

[au length] xji · xconv → t [Angstrom]
[Angstrom] xji / xconv → t [au length]

[au time] t / tconv → t [fs]
[fs] t · tconv → t [au time]

CRYSTAL code

Input : temperature T0 [K] and oscillation time τ [fs]
Constants : Boltzmann constant kb [Ha/K] - tc conversion from fs to au time

Q = 2gkbT0

(
tc τ

2π

)2

(Ha/K)(K)(au time)2 = Ha(au time)2

VASP code script

Input : temperature T0 [K] and oscillation time τ [fs]
Default : τ = 40 fs
Constants : Boltzmann constant kb [eV/K] with 1 eV = e J where e is the electron charge

Q = 2g kb e T0

(
10−15 τ

2π

)2

(J/K)(K)(sec2) = J(sec2)

330

https://physics.nist.gov/cgi-bin/cuu/Value?meu|search_for=electron+mass
https://physics.nist.gov/cgi-bin/cuu/Value?hr|search_for=atomnuc!
https://physics.nist.gov/cgi-bin/cuu/Value?k|search_for=physchem_in!
https://physics.nist.gov/cgi-bin/cuu/Value?na|search_for=physchem_in!
https://physics.nist.gov/cgi-bin/cuu/Value?aut
https://physics.nist.gov/cgi-bin/cuu/Value?bohrrada0

Appendix B. Molecular Dynamics module details B.3. Output files

B.3 Output files

The files created by the molecular dynamics module are reported in the following table.

File name old unit NVE Rescaling Berendsen NVT NPT Keyword Condition to activate

ENERGIES.DAT fort.221 T T T T T none none (active by default)
POSITIONS.DAT fort.188 T T T T T none none (active by default)
VELOCITIES.DAT fort.189 T T T T T none none (active by default)
TIMES.DAT fort.222 F F F F F TIMEPRT timingprt = true
VIRTUAL.DAT fort.190 F F F T T none vrtprt = true
MDCELL.DAT fort.191 F F F F T none cellprt = true
COM.DAT fort.192 F F F F F COMPRT comprt = true
ATCHARGES.DAT – F F F F F CHARGESPRT chargesprt = true
INITVEL.DAT fort.193 F F F F F INVELPRT initvelprt = true
POSITIONS.XYZ fort.186 F F F F F XYZUNITS xyzunits = true
VELOCITIES.XYZ fort.187 F F F F F XYZUNITS xyzunits = true

Table B.37: T : printing of file enabled by default. F : printing of file disabled by default, to activate the
print use the keyword in the penultimate column, which enables the logical condition in the last column.
The filed printed by default (T) are necessary to restart the calculation, so that they can change on the
base of the ensemble.

The files required to restart a molecular dynamics calculations are reported in the following table.

Ensemble Files necessary for restart Information contained

NVE ENERGIES.DAT nstepre - timepre
POSITIONS.DAT xa (positions matrix)
VELOCITIES.DAT vel (velocities matrix)

NVT ENERGIES.DAT nstepre - timepre
POSITIONS.DAT xa (positions matrix)
VELOCITIES.DAT vel (velocities matrix)
VIRTUAL.DAT zeta nose - p nose

NPT ENERGIES.DAT nstepre - timepre
POSITIONS.DAT xa (positions matrix)
VELOCITIES.DAT vel (velocities matrix)
VIRTUAL.DAT zeta nose - p nose - p barost - dEdV
MDCELL.DAT a, b, c, α, β, γ

331

B.4. Merging moldyn post.f90 in Crystal Appendix B. Molecular Dynamics module details

B.4 Merging the moldyn post.f90 library in CRYSTAL code

In order to insert the subroutine pcf md in the Crystal code, the module moldyn post is created in the
moldyn post.f90 library. The created module is very useful for two different purposes:

(i) it makes the code more generalizable, i.e. if other molecular dynamics post processing calculations
will be implemented in the future, they can be collected in the same module moldyn post of the
library moldyn post.f90

(ii) it makes the module moldyn in the library moldyn.f90 more readable, because it contains only the
molecular dynamics main calculations, letting all the post processing subroutines to be declared
and written apart (i.e. in the moldyn post.f90 library, moldyn post module)

The makefile and the following libraries are then modified in the way explained below, in order to include
the moldyn post.f90 library:

1. makefile:

(a) add the new object file in the variable MODF90 (→ Free format Fortran 90 modules)
after the $(OBJDIR)/moldyn.o string:

MODF90 = $(OBJDIR)/moldyn post.o

(b) add the new object file in the variable SCFCOM (→ Files common to crystal / Pcrystal /
MPPcrystal, but not properties) after the $(OBJDIR)/moldyn.o string:

SCFCOM = $(OBJDIR)/moldyn post.o

(c) add the new object file in the variable PROPS:

PROPS = $(OBJDIR)/moldyn post.o

(d) add the new object file as a new link to the moldyn object in the cerber section:

$(OBJDIR)/moldyn.o: moldyn.f90 $(COMMONDEP) $(OBJDIR)/moldyn post.o

(e) add the following line in the cerber section:

$(OBJDIR)/moldyn post.o: moldyn post.f90

2. properties.f90:

(a) add the following line in the subroutine f90main3:

Use moldyn post

(b) add the following lines in the subroutine f90main3 (inside the do while(ok)):

case (’PCFMD’)

call pcf md

3. crystal.f90:

(a) add the following line in the subroutine f90main:

Use moldyn post

In this way, the subroutine for the calculation of the pair correlation function can be used both in the
Crystal input files .d12 and .d3, i.e. both as a post processing calculation in the main input file .d12
(with the initial keyword PCFMD and the closing keyword END inside the MD section), and as a post
processing calculation in the properties file .d3 (with the same keywords used in the .d12 file). This
has the advantage that, if the user wants to perform a molecular dynamics calculation and, after that,
compute the pair correlation function, he/she can insert the PCFMD section in the MD section in the
file .d12, otherwise, if the user has already done a molecular dynamics simulation and have already
been generated the POSITIONS.DAT file, he/she can use use the PCFMD section in the .d3 file, reading
and analyzing the trajectory file without performing a new molecular dynamics simulation. Inside the
PCFMD section, the keywords which can be inserted are the same for both the .d12 and the .d3 files (see
manual in Appendix E.1).

332

Appendix B. Molecular Dynamics module details B.4. Merging moldyn post.f90 in Crystal

B.4.1 The module read moldyn post module: reading of the input file

A module read moldyn post module is implemented in moldyn post.f90 library, which contains a series of
subroutines for the reading of the input file sections dedicated to the post processing calculations that can
be done after a molecular dynamic simulation. In particular, the subroutines in read moldyn post module
read the keywords in the input file .d12 or .d3 for the calculation of the radial pair correlation function,
the analysis of the trajectory, the calculation of the velocity autocorrelation function and of the power
spectrum. The activation of the reading subroutines and the subsequent calculation of the associated
quantities are triggered by the initial keywords PCFMD, ANALYSIS, AVCORR or FREQCALC in the input
file .d12 or .d3, and terminated with the keyword END. The other keywords useful for the setting of the
parameters for the calculations have to be enclosed in each section, and reported more specifically in the
manual in Appendix E.1.

B.4.2 Molecular dynamics and post processing calculations using input file .d12

In order to make the subroutines in read moldyn post module module visible by the Crystal code when
reading the input files .d12, a new case is added in the subroutine readMD (module read moldyn module,
library moldyn.f90), so that if the keywords for the post processing are read in the input file inside the
MOLDYN section, a specific subroutine in read moldyn post module module is called and executed. At the
same time, if for example the keyword PCFMD is present in the input file, in the readMD subroutine the
flag computePcf for the computation of the pair correlation function is turned on (i.e. it assumes the value
.true.). Then, during the execution of the md subroutine in the library moldyn.f90, the subroutine finalMD
is in turns called: at the end of this subroutine, if the flag computePcf is true, then the subroutine pcf md
is called and the calculation of the radial pair correlation functions is performed. The same workflow
is followed (using other logical variables to active the calling to the specific subroutines) when the
keywords ANALYSIS, AVCORR or FREQCALC are used in the input file for the analysis of the trajectory,
the calculation of the velocity autocorrelation function and of the power spectrum, respectively. The
scheme of the links between libraries and subroutines for this part is reported in Figure B.1.

As seen in Figure B.1, the first library called by the Crystal code is input.f90, which reads the keywords
in the input file .d12. If the keyword MOLDYN is found, then the 189-th element of the vector inf is set
equal to one and the subroutine readMD is called and executed. This subroutine reads all the keywords
in the input file under the section MOLDYN until the END keyword is find. If among the keywords read
by readMD there is, for example, the string PCFMD, then the logical variable computePcf is set true and
the subroutine readMD post pcf of read moldyn post module module is called, which finally reads all the
keyword of the PCF section, until the END word is found. Subsequently, the Crystal code call the
libraries crystal.f90 and crystal06.f90. If the 189-th element of the vector inf is different by zero, then
the subroutine md is called and executed. In the last part of that subroutine, the subroutine finalMD
is executed, and the calculation of the radial pair correlation functions is done here, with a call to the
pcf md subroutine of the library moldyn post.f90. The same workflow is also followed by the others post
processing properties.

333

B.4. Merging moldyn post.f90 in Crystal Appendix B. Molecular Dynamics module details

INPUT FILE .d12

...
MOLDYN
...
PCFMD
...
END
ANALYSIS
...
END
AVCORR
...
END
FREQCALC
...
END
...
END
ENDGEOM
...

input.f90
subroutine crysta(CONTEXT)

case(‘MOLDYN’)
inf(189) = 1
...
call readMd
...

module read moldyn module
(in moldyn post.f90)
subroutine readMd

performMd = .true.
...
case(‘PCFMD’)

computePcf = .true.
call readMd post pcf

case(‘ANALYSIS’)
analysisMd = .true.
call readMd post analysis

case(‘AVCORR’)
velAutocorr = .true.
call readMd post avcorr

case(‘FREQCALC’)
powerSpectra = .true.
call readMd post pows(norot)

...

crystal.f90 - crystal06.f90
subroutine f90main

mdrun = inf(189).eq.1
...
elseif(mdrun) then

call md
...

module moldyn module
(in moldyn.f90)
subroutine md
...
call finalMd
...

module read moldyn post module
(in moldyn post.f90)
subroutine readMd post pcf
subroutine readMd post analysis
subroutine readMd post avcorr
subroutine readMd post pows(norot)

module moldyn module
(in moldyn.f90)
subroutine finalMd

if(computePcf == .true.)
call pcf md

if(analysisMd == .true.)
call analysis md

if(velAutocorr == .true.)
call velocity autocorr md

if(powerSpectra == .true.)
call power spectra md

...

module moldyn post.f90
subroutine pcf md
subroutine analysis md
subroutine velocity autocorr md
subroutine power spectra md

1 2

4

5

3

6

7

Figure B.1: Links and dependencies of libraries and subroutines involved in the calculation of the radial pair correlation
function, the analysis of the trajectory and the calculation of the velocity autocorrelation function and of the power spectrum
(post processing analysis calculation derived from the molecular dynamics trajectories), starting from the input file .d12.
The MOLDYN section block must be the last section of the geometry block.

334

Appendix B. Molecular Dynamics module details B.4. Merging moldyn post.f90 in Crystal

B.4.3 Post processing calculations starting from the input file .d3

In order to compute the post processing properties starting from the properties file .d3, a call first to
specific subroutines in read moldyn post module module for the reading and then to the subroutines in
moldyn post module for the calculation is done in the library properties.f90, which reads the input file
.d3. The scheme for the calculation of the radial pair correlation function, the analysis of the trajectory,
the calculation of the velocity autocorrelation function and the power spectrum, from the input file .d3,
is reported in Figure B.2.

INPUT FILE .d3

...
PCFMD
...
END
ANALYSIS
...
END
AVCORR
...
END
FREQCALC
...
END
...
END

properties.f90
subroutine f90main3

...
case(‘PCFMD’)

call readMd post pcf
call pcf md

case(‘ANALYSIS’)
call readMd post analysis
call analysis md

case(‘AVCORR’)
call readMd post avcorr
call velocity autocorr md

case(‘FREQCALC’)
call readMd post pows(norot)
call power spectra md

...

module read moldyn post module
(in moldyn post.f90)
subroutine readMd post pcf
subroutine readMd post analysis
subroutine readMd post avcorr
subroutine readMd post pows(norot)

module moldyn post
(in moldyn post.f90)
subroutine pcf md
subroutine analysis md
subroutine velocity autocorr md
subroutine power spectra md

1 2

Figure B.2: Links and dependencies of libraries and subroutines involved in the calculation of the radial pair correlation
function, the analysis of the trajectory and the calculation of the velocity autocorrelation function and of the power spectrum
(post processing analysis calculation derived from the molecular dynamics trajectories), starting from the input file .d3.

The specific subroutines of read moldyn post module read the correspondent sections in the input file .d3
until the END keyword is found. The second END keyword (marked in red in Figure B.2) is referred to
the end of the properties section. After that the reading of the input file is done, the parameters for
the calculation of the selected post processing properties are set, and the calling to the subroutines of
moldyn post module performed in the library properties.f90 finally execute the correspondent calculation.

335

B.5. Fire in Crystal code Appendix B. Molecular Dynamics module details

B.5 FIRE algorithm in the framework of the CRYSTAL code

In this section the implementation of the Fire algorithm in the Crystal code is described. The
subroutine fire accomplishes the task of structural minimization with Fire algorithm. It is a public
subroutine of the fire module module (in moldyn.f90), and it is called by the subroutine f90main in
crystal.f90 and crystal06.f90 if the logical variable firerun = inf(189).eq.2 is .true. (this logical variable
is defined in input.f90 and it is initialized to .true. if the keyword Fire is used in the input file). In
this framework, the use of the keyword Fire in the input file, with a subsequent minimization using
the fire subroutine, is not connected to the use of the keyword MOLDYN in the input file that performs
a molecular dynamics simulation. The subroutine fire is therefore disconnected with respect to the
subroutine moldyn, indeed, the belong to two different modules in moldyn.f90. At the same time, the
Fire algorithm is a structural minimization tool which uses molecular dynamics concepts to find the
optimized geometry of a structure. Therefore, the Fire algorithm needs to use some molecular dynamics
integrator, such as the Velocity Verlet algorithm, which has been already implemented in the subroutine
vverlet NVE in the moldyn module module. Therefore, the subroutine fire for the Fire algorithm has
been implemented inside the fire module in the moldyn.f90 library. In this framework, some global
variables and constants defined in the declaration and initialization part of the moldyn module are shared
between the fire and the md subroutines. Since the fire subroutine and the md subroutine are mutually
exclusive, the possibility of conflict between global variables initialized in one of these two subroutines
is automatically excluded: if the code call the md subroutine, the fire subroutine is not called, and vice
versa, so that the global variables declared in the first part of the moldyn module are initialized in the
md subroutine or in the fire subroutine.

INPUT FILE .d12

...
FIRE
...
END
ENDGEOM
...

input.f90
subroutine crysta(CONTEXT)

case(‘FIRE’)
inf(189) = 2
...
call readFire
...

module moldyn module
(in moldyn.f90)
subroutine readFire

crystal.f90 - crystal06.f90
subroutine f90main

firerun = inf(189).eq.2
...
elseif(firerun) then

call fire
...

module fire module
(in moldyn.f90)
subroutine fire

1 2

3

4

Figure B.3: Links and dependencies of the modules and subroutines involved in the Fire structural minimization
algorithm, starting from the input file .d12, are sketched in the scheme. The order of subroutines calls is indicated
through numbers near the connecting arrows of the diagram. The Fire section block must be the last section of
the geometry block.

B.5.1 Module fire module

The implementation of the Fire algorithm, described in Chapter 8, is carried out in the fire module
module, whose source code is written in moldyn.f90. In the following, a description of this source code
and of the Fire algorithms it contains is given. The dependencies and connections of the Moldyn
module with the other parts of the Crystal code outside the module are specified in Section B.5. In

336

Appendix B. Molecular Dynamics module details B.5. Fire in Crystal code

the following, the main steps in the execution statements of each subroutine used for the Fire algorithm
are described.

B.5.1.1 Subroutine fire

The subroutine fire is the main subroutine of the fire module module which performs a structural relax-
ation using molecular dynamics concepts: in this subroutine, the main body of the Fire algorithm is
written and the other important subroutines for this algorithm are called (such as the subroutine vver-
let NVE for the molecular dynamics integration, the subroutine moldyn scf driver for the self consistent
cycle, the calculation of forces and energies, and the subroutine testcon fire for the check of the con-
vergence of the Fire algorithm). The subroutine fire is a public subroutine of the fire module module,
and it is called by the subroutine f90main in crystal.f90 and crystal06.f90 if the logical variable firerun =
inf(189).eq.2 is .true. (this logical variable is defined in input.f90 and it is set to .true. if the keyword Fire
is used in the input file). In the following, the subroutine fire, which implements the Fire algorithm, is
described.

Check on the input geometry An initial check on the input geometry is done at the beginning of
the subroutine fire. The Fire algorithm is based on molecular dynamics concepts, assigning to each atom
an equation of motion which would lead the whole atomic structure towards a minimum in the potential
energy surface. As a consequence, symmetry properties of the crystalline or molecular structure are not
exploited in the algorithm itself. In this framework, the input atomic structure has supposed not to
have any symmetry (the symmetry is removed, the space group is set to P1). If a space group different
from P1 (no symmetry) is inserted in the input file, the code stops printing in the output an explanatory
error:

ERROR **** Fire (MD-LIKE) **** ONLY P1 SYMMETRY SUPPORTED

Open of input/output files The following files (units) are opened:

• fort.188 in which the positions of the nuclei for each step will be written

• fort.189 in which the velocities of the nuclei for each step will be written

If required in the input file through the keyword XYZUNITS, open the files:

• fort.186 in which the positions of the nuclei for each step will be written

• fort.187 in which the velocities of the nuclei for each step will be written

These two files are in a format that can be written by external programs, such as VMD (Visual Molecular
Dynamics), with which the positions of the nuclei step by step can be visualized.

Initialization of positions, velocities and forces In this part, the important quantities needed for
the calculation are declared, such as the number of atoms, the mass of each atom and the total mass of
the system, the initial positions and velocities of the nuclei. In the Crystal code, the initial positions
of the nuclei are read in the input file and allocated in the matrix pos, that is a 3×n pos matrix (where
n is the number of atoms) in which the positions of the nuclei are stored as follows:

pos =

x1 x2 ... xn

y1 y2 ... yn

z1 z2 ... zn

 units: [Bohr] (B.100)

The velocities of the nuclei are allocated in the matrix vel, which is a 3×n matrix in which the elements
are organized as follows:

vel =

v1
x v2

x ... vn
x

v1
y v2

y ... vn
y

v1
z v2

z ... vn
z

 units: [Bohr/(a.u. time)] (B.101)

337

B.5. Fire in Crystal code Appendix B. Molecular Dynamics module details

At the beginning of the algorithm, the velocities of the nuclei are set all equal to zero (vel = 0.0), so
that the velocities matrix are here initialized to a zeros matrix.
Then, the calculation of the maximum and minimum timestep, the computation of the thresholds on
energy and on the euclidean norm of nuclei forces are performed, on the basis on input values or default
values set in readFire subroutine. All these initial information, together with the masses of the atoms,
the initial positions of the nuclei and the initial parameters for the Fire algorithm (defined in the input
file of by default in readFire subroutine), which constitute the initial setup for the algorithm, are printed
in the output file.

Calculation of the initial forces on the nuclei Once the initial positions and velocities have been
defined, the code proceeds with the calculation of forces on the nuclei. The subroutine moldyn scf driver,
defined in moldyn.f90, is called to execute the following tasks: (i) perform a self consistent calculation
which find the ground state electronic wavefunction for that particular nuclear configuration, (ii) compute
the forces on the nuclei with the Hellman-Feynman theorem. At the end of this process, an initial set of
positions, velocities and forces are defined, together with the initial parameters for Fire algorithm and
with the thresholds on quantities which are used as stopping criteria for the algorithm.

Fire algorithm: main body The main body of the Fire algorithm is then implemented. If in
the input file the keyword Fire is used, then the basic Fire algorithm is performed. This task is
accomplished through the function firealg1, which is called at this point by the fire subroutine. The
subroutine firealg1 is described in Section B.5.1.2.

Writing final information Once the Fire algorithm finishes, the program exits the firealg1 subrou-
tine and returns to the fire subroutine. At this point, all the final important information related to the
optimized atomic structure are printed in the output file: the final band gap or the Fermi energy, the
list of the nearest neighbors in the first five shell for each atom and the final optimized geometry (with
positions of all the nuclei belonging to the asymmetric unit given in Angstrom units). Finally, all the
vectors and matrices used for the calculation are deallocated (using the crydealloc subroutine, which
deallocates vectors and matrices initially allocated with the cryalloc subroutine).

B.5.1.2 Subroutine firealg1

The subroutine firealg1 implements the main body of the basic Fire algorithm, introduced in Ref. [125]
and described in Ref. [127]. The pseudo code of the Fire algorithm in the Crystal code, together with
the list of tasks performed by the firealg1 subroutine, is sketched in the flowchart reported in the following
page. The firealg1 calls two important subroutines: (i) the vverlet NVE subroutine, which performs the
integration of the equation of motion through the Velocity Verlet algorithm and also performs a single
point energy calculation (by calling the moldyn scf driver subroutine) in order to compute a new set of
forces used in the Velocity Verlet integration; and (ii) the testcon fire subroutine, which prints in the
standard output the state of the convergence on the four quantities of interest (the maximum value and
the root-mean-square of the nuclei displacements, the euclidean norm of the 3×naf forces vector and the
difference between)

B.5.1.3 Subroutine readFire

If in the input file the keyword Fire is found in input.f90, the subroutine readFire is called by that
same module. The subroutine readFire sets the default values for some input variables and reads all
the keywords and numbers in the input file between the Fire keyword and the terminating END string,
through a series of case statements. If the user writes a keyword in the input file (in the section reserved
to the minimization setup with the Fire algorithm) which is not found among all those listed in the
subroutine readFire, the code stops, printing in the standard output an explanatory error.
The list of allowed keywords and default values are reported in Section E.2.

338

Appendix B. Molecular Dynamics module details B.5. Fire in Crystal code

libopt.f
SUBROUTINE CONOPT

The input file in the block OPTGEOM ... END is read.
In particular, the variable inf(115) is here initialized depending on
the time the type of geometry optimization performed

FULLOPTG algorithm

geometry.f
SUBROUTINE SYMMETRIZE DIR

moldyn.f90
SUBROUTINE readFire

The input file in the block Fire ... END is read.
The variable GENSAED MD is set to true if the user wants to
perform a structural optimization of both the atomic coordinates
and the cell parameters, or a structural optimization of the cell
parameters only, otherwise it is false

Fire algorithm

geometry.f
SUBROUTINE GENERATE SAED(LOGIK)

The symmetry allowed elastic distortions are generated

libopt.f
SUBROUTINE OPTGEN

CALL SCF

The SCF cycle is performed at each optimization step

moldyn.f90
SUBROUTINE MOLDYN SCF DRIVER

CALL SCF

The SCF cycle is performed at each optimization step

libx5 scf.f
SUBROUTINE SCF

libforce6.f
SUBROUTINE TOTGRA C

CALL SYMMETRIZE GRAD C

libforce6.f
SUBROUTINE SYMMETRIZE GRAD C

Compute cartesian forces in Hartree/Bohr (analytical)

Compute symmetry allowed forces (analytical), atomic part and cell part
(gradient of energy with respect to the cell parameters)

Compute stress tensor in Hartree/Bohr3

...

Figure B.4: Workflow of the main subroutines invoked for the calculation of the gradient of the energy with respect to the
nuclei positions and the cell parameters. The FULLOPTG (left) and the Fire (right) algorithms call the same subroutines,
they differ only at the beginning and when the SCF calculation is performed.

339

subroutine: readFire

Initial parameters

maxcycle Mc (keyword: MAXCYCLE)
ndelay Nd (keyword: NDELAY)
alphastart αin (keyword: ALPHASTART)
alphashrink fα (keyword: ALPHASHRINK)
dtstart dtin (keyword: DTSTART)
dtgrow finc (keyword: DTGROW)
dtshrink fdec (keyword: DTSHRINK)
tmax tmax (keyword: TMAX)

Thresholds

onlyfrth (keyword: ONLYFRTH)
expfthr tf (keyword: TOLFORCE)
onlyenth (keyword: ONLYENTH)
expethr te (keyword: TOLDEE)
onlydsth (keyword: ONLYDSTH)
thdrms tdrms (keyword: TOLDEX)
thdmax tdmax = thdrms · 1.5 float
ncstpcon nstc (keyword: NCSTPCON)

subroutine: fire

Check on the symmetry of the input system: only P1 space group supported

Initialization of initial positions x(t0) of the nuclei

Initialization of initial velocities v(t0) of the nuclei: vel(3,naf) = 0.0 float

dtmax dtmax = dtin · tmax

ethr = 10−te

fthr = 10−tf

Calculation of the initial energy and initial forces F(x(t0)) on the nuclei (using
Hellman-Feynman theorem on the electronic ground state, moldyn scf driver
subroutine)
calltoforce = 1

call firealg1

subroutine: firealg1

npgzero NP>0 = 0
fictime t = 0.0 float
alphanow α = αin
dtnow dt = dtin
nconv = 0
deltae ∆E = energy (initial energy)

Print information on actual nuclei coordinates, velocities, forces and energy
with call write cofoven fire, the nuclei displacements, actual timestep dt and α
parameter

! Fire LOOP BEGIN

do i = 1, Mc

P (t) = F(x(t)) · v(t) ! compute power
energyprev = energy ! save current energy
if P (t) > 0 then ! downhill motion

NP>0 = NP>0 + 1
v(t) = (1− α)v(t) + αF(x(t))‖v(t)‖/‖F(x(t))‖
if NP>0 > Nd then ! equilibration

dtnow dt = min(dt finc, dtmax) ! increase the timestep
alphanow α = αfα ! decrease alpha

endif
print motion information

else if P (t) ≤ 0 then ! uphill motion
NP>0 = 0
vel(3,naf) = 0.0 float ! freeze the velocities
dtnow dt = dt fdec ! decrease the timestep
alphanow α = αin ! reset alpha to alphastart
print motion information

endif
t = t + dtnow ! increase fictitious time
xa prev = xa ! save current nuclei positions
call vverlet nve ! MD integration and energy calculation
calltoforce = calltoforce + 1

Print information on actual nuclei coordinates, velocities, forces and energy
with call write cofoven fire, the nuclei displacements, actual timestep dt and
α parameter

∆E = energyprev - energy ! compute energy difference between steps
eunormf = ‖F(x(t))‖/

√
3N ! compute forces vector euclidean norm

! compute RMS of nuclei displacements:
ds = xa - xa prev
displa(:) = sqrt(ds(1,:)2 + ds(2,:)2 + ds(3,:)2)
dmax = maxval(displa(1:naf))
drms = sqrt(sum(displa2)/size(displa))

call testcon fire ! check the convergence

if(firefinish) exit ! if Fire ended (converged or maxcycle)
! exit the Fire loop

enddo

! Fire LOOP END

subroutine: vverlet nve

! calculation of new positions x(t+ dt)
! v(t+ dt/2) = v(t) + (dt/2)(F (x(t))/m)
! x(t+ dt) = x(t) + dt · v(t+ dt/2)
do i = 1,naf

do k = 1,3
vel(k,i) = vel(k,i) + (dt/2) [F(k,i)/mass(i)]
xa(k,i) = xa(k,i) + dt vel(k,i)

enddo
enddo

! calculation of new energy and forces F (x(t+dt))
call moldyn scf driver

! calculation of new velocities v(t+ dt)
! v(t+ dt) = v(t+ dt/2) + (dt/2)(F (x(t+ dt))/m)
do i = 1,naf

do k = 1,3
vel(k,i) = vel(k,i) + (dt/2) [F(k,i)/mass(i)]

enddo
enddo

subroutine: testcon fire

fireconv = .false.
firefinish = .false.

nconv prev = nconv

if(onlyfrth == .true.) then
if(eunormf ≤ fthr) nconv = nconv + 1

else if(onlyenth == .true.) then
if(|∆E| ≤ ethr) nconv = nconv + 1

else if(onlydsth == .true.) then
if(dmax ≤ thdmax .and. drms ≤ thdrms) then

nconv = nconv + 1
endif

else if(eunormf ≤ fthr .and. |∆E| ≤ ethr .and. &
dmax ≤ thdmax .and. drms ≤ thdrms) then

nconv = nconv + 1
endif

if(nconv == ncstpcon) then
fireconv = .true.
firefinish = .true.

else if(nconv == nconv prev) then
nconv = 0

endif

! compute actual number of Fire steps
nstepfire = calltoforce - 1

if(nstepfire == maxcycle Mc) firefinish = .true.

If Fire is finished (converged or reached maxcy-
cle), then print info in the standard output file subroutine: fire

Print the info on the optimized final geometry: band gap or Fermi energy, list
of nearest neighbors and positions of the nuclei in the final optimized geometry

subroutine: readFire

Initial parameters

maxcycle Mc (keyword: MAXCYCLE)
ndelay Nd (keyword: NDELAY)
nplezeromax Nmax

P≤0 (keyword: NPLEZMAX)
alphastart αin (keyword: ALPHASTART)
alphashrink fα (keyword: ALPHASHRINK)
dtstart dtin (keyword: DTSTART)
dtgrow finc (keyword: DTGROW)
dtshrink fdec (keyword: DTSHRINK)
tmax tmax (keyword: TMAX)
tmin tmin (keyword: TMIN)

Thresholds

onlyfrth (keyword: ONLYFRTH)
expfthr tf (keyword: TOLFORCE)
onlyenth (keyword: ONLYENTH)
expethr te (keyword: TOLDEE)
onlydsth (keyword: ONLYDSTH)
thdrms tdrms (keyword: TOLDEX)
thdmax tdmax = thdrms · 1.5 float
ncstpcon nstc (keyword: NCSTPCON)

subroutine: fire

Check on the symmetry of the input system: only P1 space group supported

Initialization of initial positions x(t0) of the nuclei

Initialization of initial velocities v(t0) of the nuclei: vel(3,naf) = 0.0 float

dtmax dtmax = dtin · tmax
dtmin dtmin = dtin · tmin

ethr = 10−te

fthr = 10−tf

Calculation of the initial energy and initial forces F(x(t0)) on the nuclei (using
Hellman-Feynman theorem on the electronic ground state, moldyn scf driver
subroutine)
calltoforce = 1

call firealg2

subroutine: firealg2

npgzero NP>0 = 0
nplezero NP≤0 = 0
fictime t = 0.0 float
alphanow α = αin
dtnow dt = dtin
nconv = 0
deltae ∆E = energy (initial energy)

Print information on actual nuclei coordinates, velocities, forces and energy
with call write cofoven fire, the nuclei displacements, actual timestep dt and α
parameter

! Fire LOOP BEGIN

do i = 1, Mc

P (t) = F(x(t)) · v(t) ! compute power
energyprev = energy ! save current energy
if P (t) > 0 then ! downhill motion

NP>0 = NP>0 + 1
if NP>0 > Nd then ! equilibration

dtnow dt = min(dt finc, dtmax) ! increase the timestep
alphanow α = αfα ! decrease alpha

endif
print motion information

else if P (t) ≤ 0 then ! uphill motion
NP>0 = 0
vel(3,naf) = 0.0 float ! freeze the velocities
dtnow dt = dt fdec ! decrease the timestep
alphanow α = αin ! reset alpha to alphastart
print motion information

endif
t = t + dtnow ! increase fictitious time
xa prev = xa ! save current nuclei positions
call vverlet firealg2(alphanow) ! MD integration and energy

calculation
calltoforce = calltoforce + 1

Print information on actual nuclei coordinates, velocities, forces and energy
with call write cofoven fire, the nuclei displacements, actual timestep dt and
α parameter

∆E = energyprev - energy ! compute energy difference between steps
eunormf = ‖F(x(t))‖/

√
3N ! compute forces vector euclidean norm

! compute RMS of nuclei displacements:
ds = xa - xa prev
displa(:) = sqrt(ds(1,:)2 + ds(2,:)2 + ds(3,:)2)
dmax = maxval(displa(1:naf))
drms = sqrt(sum(displa2)/size(displa))

call testcon fire ! check the convergence

if(firefinish) exit ! if Fire ended (converged or maxcycle)
! exit the Fire loop

enddo

! Fire LOOP END

subroutine: vverlet firealg2(alphanow)

! mixing and calculation of new positions x(t+ dt)
! v(t+ dt/2) = v(t) + (dt/2)(F (x(t))/m)
! v(t) = (1− α)v(t) + αF(x(t))‖v(t)‖/‖F(x(t))‖
! x(t+ dt) = x(t) + dt · v(t+ dt/2)
do i = 1,naf

do k = 1,3
vel(k,i) = vel(k,i) + (dt/2) [F(k,i)/mass(i)]
vel(k,i) = (1 - α) vel(k,i) + α F(k,i) ‖vel‖/‖F‖
xa(k,i) = xa(k,i) + dt vel(k,i)

enddo
enddo

! calculation of new energy and forces F (x(t+ dt))
call moldyn scf driver

! calculation of new velocities v(t+ dt)
! v(t+ dt) = v(t+ dt/2) + (dt/2)(F (x(t+ dt))/m)
do i = 1,naf

do k = 1,3
vel(k,i) = vel(k,i) + (dt/2) [F(k,i)/mass(i)]

enddo
enddo

subroutine: testcon fire

fireconv = .false.
firefinish = .false.

nconv prev = nconv

if(onlyfrth == .true.) then
if(eunormf ≤ fthr) nconv = nconv + 1

else if(onlyenth == .true.) then
if(|∆E| ≤ ethr) nconv = nconv + 1

else if(onlydsth == .true.) then
if(dmax ≤ thdmax .and. drms ≤ thdrms) then

nconv = nconv + 1
endif

else if(eunormf ≤ fthr .and. |∆E| ≤ ethr .and. &
dmax ≤ thdmax .and. drms ≤ thdrms) then

nconv = nconv + 1
endif

if(nconv == ncstpcon) then
fireconv = .true.
firefinish = .true.

else if(nconv == nconv prev) then
nconv = 0

endif

! compute actual number of Fire steps
nstepfire = calltoforce - 1

if(nstepfire == maxcycle Mc) firefinish = .true.

If Fire is finished (converged or reached maxcycle),
then print info in the standard output file

subroutine: fire

Print the info on the optimized final geometry: band gap or Fermi energy, list
of nearest neighbors and positions of the nuclei in the final optimized geometry

B.5. Fire in Crystal code Appendix B. Molecular Dynamics module details

B.5.2 Changes in libopt.f library and memory opt.f90 module

In Crystal code, the implementation of the Conjugate gradient (Cg) and Broyden-Fletcher-Goldfarb-
Shanno (Bfgs) Hessian updating algorithms for minimization is performed in the libopt.f library. In
order to compare the Cg and Bfgs hessian updating schemes with the Fire algorithm for structural
minimization, it is necessary to introduce the same quantities adopted in Fire algorithm as stopping
criteria, i.e. the maximum nuclei displacements and the root-mean-square displacement, together with
the euclidean norm of the 3N forces vector, as defined in Chapter 8. In this way, when the Cg or Bfgs
algorithm complete their calculation of an optimized atomic structure, these quantities are printed at
convergence and the efficiency of the Hessian updating schemes minimization can be compared with
the Fire one through these quantities. In the Hessian updating schemes, the convenient system of
coordinates for both the gradients and the displacements is the system of normal coordinates, while the
more convenient one in the case of Fire algorithm is the system of cartesian coordinates. Therefore, even
if the maximum value and the root-mean-square of the displacements are already computed quantity in
Cg and Bfgs schemes, they are computed in normal coordinates which are not useful for a comparison
with the same quantities in the Fire algorithm. Therefore, the calculation of the maximum value of
the nuclei displacements (in cartesian coordinates), of the root-mean-square of the nuclei displacements
(in cartesian coordinated) and the euclidean norm of the 3N forces vector is implemented in the libopt.f
library. The stopping criteria for Cg and Bfgs remains the default one, based on the absolute value of
the largest component of both nuclei displacements and gradients and on the root-mean-square of both
the nuclei displacements and the gradients. Therefore, the printed information about the maximum
value and root-mean-square of the displacements and the euclidean norm of atomic forces vector are not
used, in the Cg and Bfgs schemes, as stopping criteria. The intervention made for comparison purposes
in the libopt.f library is therefore a question of merely printing some information.
Some new keywords are introduced to switch on these printing options related to the calculation and
the output writings of the quantities described above, which allow comparison between the Cg or Bfgs
algorithms and the Fire minimization scheme. In the subroutine CONOPT of the libopt.f library, the
input keywords related to the geometry optimization (OPTGEOM) are read from the input file, so that the
case statements for the new keywords are added in this subroutine. Since the global variables common to
all the subroutines in libopt.f library are declared in the Memory opt module written in memory opt.f90,
also this module is modified, with the insertion of the four variables, each corresponding to an input
keyword which is a variable used both by the subroutine OPTGEN and by the subroutine CONOPT in
the libopt.f library. Overall, the modifications done in the libopt.f library and in memory opt.f90 module
are listed below (in the following page), together with the new keywords introduced. The new keywords
have to be inserted in the OPTGEOM block section of the input file.

rec variable meaning

• A FIREUP activate the writing in the standard output file (per each optimization step) of
the four convergence criteria adopted by the Fire algorithm, which is (i) the
value of the euclidean norm of the 3N nuclei forces vector, (ii) the difference in
energy between two consecutive optimization steps, (iii) the largest value of the
nuclei displacements (in cartesian coordinates), (iv) the root-mean-square of the
nuclei displacements (in cartesian coordinates). The value of the thresholds on
the different convergence criteria are the default ones associated with the three
keywords described below [default: false]

• A THEUNORMF modify the threshold on the euclidean norm of 3N forces vector computed in
cartesian coordinates

∗ THEUNORMF ‖F‖ < 10−THEUNORMF eV/Å [default: 10]
• A THDEF modify the threshold on the energy change between optimization steps

∗ THDEFIRE |∆E|< 10−THDEFIRE Ha [default: 8]
• A THDRMSF modify the threshold on the RMS of the nuclei displacements computed in carte-

sian coordinates (units: Bohr)
∗ THDRMS FIRE maximum RMS of the nuclei displacements computed in cartesian coordinates

[default: 0.0012 Bohr]

342

Appendix B. Molecular Dynamics module details B.5. Fire in Crystal code

Modification to the libopt.f library and memory opt.f90 module to allow comparison of
stopping criteria in CG or BFGS updating scheme in geometry optimization with respect
to the Fire structural minimization algorithm −→ commented as : ! CRBL

Modifications done in the memory opt.f90 module (module Memory opt):

1. (! FALG1 block) declaration of the following global variables (global variables for the module):

(a) (logical) fireup : for the printing of (i) the euclidean norm nuclei forces vector, (ii) the difference
in the total energy between two consecutive optimization steps and (iii) the maximum value
and the root-mean square of the nuclei displacements per each Cg or Bfgs step, with the
state of convergence (satisfied or failed) on these four quantities, with respect to the default
associated thresholds

(b) (real) theunormf : threshold related to the euclidean norm of the nuclei 3×naf forces vector

(c) (real) thdefire : threshold related to the difference in the total energy between two consecutive
optimization steps

(d) (real) thdmax fire : threshold related to the maximum value of the nuclei displacement

(e) (real) thdrms fire : threshold related to the root-mean square of the nuclei displacements

Modifications done in the libopt.f library (subroutine CONOPT which reads input OPTGEOM section
keywords):

1. (! FALG2 block) set of the default thresholds associated to the variables fireup, thdmax fire, thdrms fire,
theunormf and thdefire

2. (! FALG3 block) add of five case statements for the following five new keywords:

(a) keyword FireUP: allow the printing of (i) the maximum value and the root-mean square of
the nuclei displacements, (ii) the difference in the total energy between two steps and (iii) the
euclidean norm nuclei forces vector per each Cg or Bfgs step, with the state of convergence
(satisfied or failed) on these four quantities, with respect to the default associated thresholds

(b) keyword THEUNORMF: modify the threshold related to the euclidean norm of the nuclei 3×naf
forces vector (variable theunormf in the code)

(c) keyword THDEF: modify the threshold related to the difference in the total energy of two
consecutive optimization steps (variable thdefire in the code)

(d) keyword THDRMSF: modify the threshold related to the root-mean square of the nuclei dis-
placements (variable thdrms fire in the code). The value associated to thdrms fire influences
the value of the threshold related to the maximum value of the nuclei displacement (variable
thdmax fire in the code), in the following way: thdmax fire = 1.5 · thdrms fire

Modifications done in the libopt.f library (subroutine OPTGEN which performs standard geometry
optimization):

1. (! FALG4 block) declaration of

(a) matrices xa prevfire and xa diff (dimension 3× naf)

(b) vector displa fire (dimension naf)

(c) real variables dmax fire, drms fire, eunormf, en prevfire and de fire

2. (! FALG5 block) only if fireup == .true. : allocation (using subroutine CRYALLOC) of

(a) matrices xa prevfire and xa diff (dimension 3× naf)

(b) vector displa fire (dimension naf)

343

B.5. Fire in Crystal code Appendix B. Molecular Dynamics module details

3. (! FALG6 block) only if fireup == .true. : first optimization cycle: calculation of the euclidean
norm of the initial nuclei forces vector eunormf and check for the convergence (this is no a stopping
criteria, only printings information about the success of the convergence check or about its failure)

4. (! FALG7 block) only if fireup == .true. : storage of the positions of the nuclei of the current
(i−1)-th step in matrix xa prevfire, and storage of the value of the total energy of the current (i−1)-
th step in the variable en prevfire, before moving atoms in the i-th step through the minimization
algorithm

5. (! FALG8 block) only if fireup == .true. : compute the relevant quantities and check convergence:

(a) per each minimization step, calculation of the euclidean norm of nuclei forces vector eunormf
(in cartesian coordinates as reference system, and atomic units), calculation of the difference
in total energy de fire between the actual i-th step and the previous (i−1)-th one, calculation
of the maximum value of nuclei displacements dmax fire and the root-mean-square of nuclei
displacements drms fire (in cartesian coordinates as reference system, and atomic units)

(b) per each minimization step, comparison between the quantities computed in point (a) and the
correspondent thresholds set by default or read from the input file in subroutine CONOPT

(libopt.f library), and check for the convergence (this is no a stopping criteria, only printings
information about the success of the convergence check or about its failure)

The part of the code which performs the previous (a) and (b) tasks, together with the first
convergence check on euclidean force norm described at point 3. and the format statements
used in this section (and described at point 7.) is reported in the following picture

6. (! FALG9 block) only if fireup == .true. : deallocation (using subroutine CRYDEALLOC) of

(a) matrices xa prevfire and xa diff (dimension 3× naf)

(b) vector displa fire (dimension naf)

7. (! FALG10 block) definition of some printings format for writing in the output the values of the
quantities computed (maximum value and root-mean-square of the nuclei displacements, euclidean
norm of the nuclei forces vector and the difference in total energy between two consecutive steps),
the associated thresholds and the state of the convergence process

344

Appendix B. Molecular Dynamics module details B.5. Fire in Crystal code

B.5.3 Changes in geometry.f and libforce6.f libraries

Modifications A and B to perform FULLOPTG and CELLONLY with Fire (i.e. to compute
the energy gradient with respect to cell parameters):

A. Modification to the geometry.f library in order to call the subroutine generate saed in
Fire minimization −→ commented as : ! CRBL

The subroutine generate saed computes the symmetry allowed elastic distortion, useful for the optimiza-
tion of the cell parameters and volume in Fire algorithm (FULLOPTG and CELLONLY Fire structural
optimization options can thus be activated in this way)

Modifications done in the geometry.f library (subroutine SYMMETRIZE DIR):

1. (! FALG11 block) In order to compute the symmetry allowed elastic distortion (so that the variable
nsaed != 0) the subroutine generate saed(logik) has to be used. This is done at the beginning
of the computation, in the subroutine symmetrize dir in geometry.f library, if some conditions
are respected. Among these conditions, a further one is adjoined, that is, if the logical variable
gensaed md is true, then the subroutine generate saed(logik) is called, otherwise not (if the other
conditions are not fulfilled). This logical variable is declared in the moldyn interface module (in
moldyn.f90) and set to true in subroutine readFire in moldyn.f90, if the keyword FULLOPTG or
CELLONLY is found in the input file in the FIRE ... END block (i.e., if the user wants to perform,
respectively, a geometry optimization of both the atomic coordinates and the cell parameters or a
structural optimization of the cell parameters only, using the Fire minimization scheme).

The part of the code modified in geometry.f is reported in the figures below

B. Modification to the libforce6.f library in order to disable the deallocation of the matrix
forze c when FULLOPTG or CELLONLY minimization is performed with Fire algorithm −→
commented as : ! CRBL

Modifications done in the libforce6.f library (subroutine TOTGRA C):

1. (! FALG12 block) In order to perform a variable cell structural optimization, the information on
the energy gradients with respect to the components of the lattice vectors has to be collected.
The energy gradients with respect to the cell vectors components are computed in subroutines
totgra c and symmetrize grad c in libforce6.f library, and they are stored in forze c vector, whose
size depends on the dimension of the system (forze c vector has 9, 4 and 1 components for 3D, 2D
and 1D systems, respectively). In order to pick the information about the values of forze c vector
elements in the moldyn module, and in particular in the moldyn scf driver subroutine, (i) the module
cellgrad memory has to be used to include the variables initialized in that module, and (ii) the vector
forze c has to be yet allocated, filled with values and read inside the moldyn scf driver subroutine.
However, at the end of the totgra c subroutine, the forze c vector is deallocated if inf(194).eq.0
(inf(194) is related to elastic calculation options), so that, if that condition is respected (as in the
case of a Fire minimization calculation), the information about the energy cell gradients in forze c
vector is destroyed. In order to made available the forze c vector after the subroutine totgra c, a
condition is added for the deallocation of that vector. The first change in the subroutine totgra c is
the insertion of the use of moldyn interface module, to include a logical variable dealloc forcell md
that defines a new condition for the deallocation of forze c vector at the end of the subroutine. The
changes made in totgra c and on the condition for the deallocation of forze c vector are reported
in the following two pieces of code.

345

B.5. Fire in Crystal code Appendix B. Molecular Dynamics module details

The variable dealloc forcell md is a logical variable declared in the moldyn interface module in mol-
dyn.f90 and it is initialized there as .true.. It becomes .false. when the keyword FULLOPTG and
CELLONLY are used in the Fire ... END block of the input file, i.e. when a variable cell struc-
tural optimization is performed and the vector forze c has to be available in the moldyn scf driver
subroutine in moldyn.f90.

WARNING: since at the beginning of totgra c subroutine the vector forze c is allocated, and
since the subroutine totgra c is called at each self consistent cycle by the subroutine SCF, then
the allocation of the vector forze c is done at each self consistent cycle. Thus, in the case of a
FULLOPTG or CELLONLY Fire minimization calculation (inf(201) = 1), the vector forze c has to
be deallocated in moldyn.f90 before another self consistent cycle is performed through the calling
of the subroutine SCF, which in turns calls the subroutine totgra c where the vector forze c is
allocated. This deallocation is done in the subroutine moldyn scf driver (defined in moldyn.f90),
after that the forze c vector has been saved in another vector (forcell), which is a global variable
in the moldyn module and it is used to update the components of the lattice vectors during the
optimization (this task is performed by the subroutine update cell). Defining a new vector forcell
in which the information contained in forze c vector is stored is more expensive in the code in
terms of memory use, but, at the same time, it makes the code clearer, and avoid the risk to stain
the values contained in the vector forze c. Note that the cost in memory is very low in all cases,
because the vector forze c has at most 9 components (and at least only one). Finally, in the case
of a ATOMONLY Fire minimization calculation, instead, inf(201) = 0 in moldyn.f90, so that the
self consistent cycle is performed by the subroutine SCF by calling the subroutine totgra, so the
problem does not subsist in this case.

346

Appendix B. Molecular Dynamics module details B.6. Black list of changes

B.6 Black List of changes in CRYSTAL SVN DEV1218

Modified version: Crystal SVN DEV1218

For Moldyn algorithm purpose (moldyn module module):
Personal changes are released in the code under the comment: ! CRBL

1. input.f90 [subroutine crysta(CONTEXT)]

2. crystal.f90 [subroutine f90main]

3. crystal06.f90 [subroutine f90main]

4. moldyn.f90 is the main of molecular dynamics implementation

5. moldyn post.f90 is the main of post-processing molecular dynamics implementation

For Fire algorithm purpose (fire module module):
Personal changes are released in the code under the comment: ! CRBL

Other comments (if distinctive of the changes) are reported below

1. input.f90 [subroutine crysta(CONTEXT)]

2. crystal.f90 [subroutine f90main]

3. crystal06.f90 [subroutine f90main]

4. memory opt.f90 [memory opt module] comment ! FALG1

5. libopt.f [subroutine conopt] comment ! FALG2 and ! FALG3

[subroutine optgen] comment ! FALG4, ! FALG5, ! FALG6, ! FALG7, ! FALG8, ! FALG9 and ! FALG10

6. geometry.f [subroutine symmetrize dir] comment ! FALG11

7. libforce6.f [subroutine totgra c] comment ! FALG12

8. moldyn.f90 is the main of structural optimization implementation with Fire algorithm

The makefile has been modified

Bug fix in subvdwd3.f related to HF3C functional

347

B.6. Black list of changes Appendix B. Molecular Dynamics module details

348

Appendix C

Electronic Transport Properties module
details

C.1 Code workflow (boltzatorb.f90) for ab initio electronic transport
properties calculation

d = inf(10) dimensionality of the system
tensdim = d · (d+ 1)/2 ≡ dsym
matdim = d

In the following, the dimensionality of the system is taken equal to d = 3

Allocated arrays and matrices :

• tdf(dsym, ε, χ) ≡ Ξ (dsym, ε, χ) χ = 1, ..., χmax [χmax = 1 closed and χmax = 2 open shell]

• int array(dsym, ε)

• elcond(dsym, µ, T)

• elcond mat(d, d)

• sigmas(dsym, µ, T)

• sigmas mat(d, d)

• seebeck(d2, µ, T)

• seebeck mat(d, d)

• kappa(dsym, µ, T)

• power(d2, µ, T)

The Transport Distribution Function tdf(dsym, ε, χ) ≡ Ξ (dsym, ε, χ) is stored as follows :

1. if d = 1 : Ξ(1, ε, χ) =
(
Ξxx

)
=
(
Ξ11

)
2. if d = 2 : Ξ(3, ε, χ) =

(
Ξxx Ξxy Ξyy

)
=
(
Ξ11 Ξ12 Ξ22

)
3. if d = 3 : Ξ(6, ε, χ) =

(
Ξxx Ξxy Ξxz Ξyy Ξyz Ξzz

)
=
(
Ξ11 Ξ12 Ξ13 Ξ22 Ξ23 Ξ33

)

349

C.1. Code workflow (boltzatorb.f90) Appendix C. Electronic Transport Properties module details

Tasks performed :

1. Calculation of the array

int array 1(: , ε) =

(
−∂feq(ε, µ, T)

∂ε

)
Ξ(: , ε, α) (C.1)

2. Calculation of elcond array (electrical conductivity σ)

elcond(: , µ, T) =

nε∑
ε=1

(
−∂feq(ε, µ, T)

∂ε

)
Ξ(: , ε, α)︸ ︷︷ ︸

= int array 1(: ,ε)

∆ε (C.2)

elcond(dsym, µ, T) =
(
σ1 σ2 . . . σdsym

)
(C.3)

σij(µ, T) =

∫
dε

(
−∂feq(ε, µ, T)

∂ε

)
Ξij(ε) (C.4)

3. Calculation of the array

int array 2(: , ε) =

(
−∂feq(ε, µ, T)

∂ε

)
Ξ(: , ε, α)︸ ︷︷ ︸

= int array 1

(ε− µ) (C.5)

4. Calculation of sigmas array (electrical conductivity σ times Seebeck coefficient S)

sigmas(: , µ, T) =
1

T

nε∑
ε=1

(
−∂feq(ε, µ, T)

∂ε

)
Ξ(: , ε, α) (ε− µ)︸ ︷︷ ︸

= int array 2(: ,ε)

∆ε (C.6)

sigmas(dsym, µ, T) =
[
(σ S)1 (σ S)2 . . . (σ S)dsym

]
(C.7)

Σij(µ, T) ≡ (σ S)ij(µ, T) =
1

T

∫
dε

(
−∂feq(ε, µ, T)

∂ε

)
Ξij(ε) (ε− µ) (C.8)

5. Calculation of elcond mat matrix by symmetrization of elcond array :

Example : d = 3 (dsym = 6)

elcond(6, µ, T) =
(
σ1 σ2 σ3 σ4 σ5 σ6

)
elcond mat(3, 3) =

σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 =

σ1 σ2 σ3

σ2 σ4 σ5

σ3 σ5 σ6

6. Calculation of sigmas mat matrix by symmetrization of sigmas array :

Example : d = 3 (dsym = 6)

sigmas(6, µ, T) =
[
(σ S)1 (σ S)2 (σ S)3 (σ S)4 (σ S)5 (σ S)6

]
sigmas mat(3, 3) =

Σ11 Σ12 Σ13

Σ21 Σ22 Σ23

Σ31 Σ32 Σ33

 =

(σ S)1 (σ S)2 (σ S)3

(σ S)2 (σ S)4 (σ S)5

(σ S)3 (σ S)5 (σ S)6

350

Appendix C. Electronic Transport Properties module details C.1. Code workflow (boltzatorb.f90)

7. Calculation of the Seebeck coefficient S :

Σ(µ, T) ≡ (σS)(µ, T) =
1

T

∫
dε

(
−∂feq(ε, µ, T)

∂ε

)
Ξ(ε) (ε− µ) (C.9)

σ−1(µ, T) Σ(µ, T) = σ−1(µ, T)

[
1

T

∫
dε

(
−∂feq(ε, µ, T)

∂ε

)
Ξ(ε) (ε− µ)

]
(C.10)

S(µ, T) = σ−1(µ, T)

[
1

T

∫
dε

(
−∂feq(ε, µ, T)

∂ε

)
Ξ(ε) (ε− µ)

]
≡ σ−1(µ, T) Σ(µ, T) (C.11)

Three cases, on the base of the system dimensionality, that are

(a) if d = 1 :

S11 = −Σ11

σ11
→ seebeck mat(1, 1) = S11

(b) if d = 2 :

det(σ) = σ11 σ22 − σ12 σ12

σ−1(µ, T) =
1

det(σ)

(
σ22 −σ12

−σ12 σ11

)
S(µ, T) = −σ−1(µ, T) Σ(µ, T) [matmul Fortran intrinsic function]

→ seebeck mat(2, 2) =

(
S11 S12

S21 S22

)
(c) if d = 3 :

calculation of σ−1(µ, T) using Crystal function inv mat3→ σ−1(µ, T)

S(µ, T) = −σ−1(µ, T) Σ(µ, T) [matmul Fortran intrinsic function]

→ seebeck mat(3, 3) =

S11 S12 S13

S21 S22 S23

S31 S32 S33

Note : the sign of the Seebeck coefficient matrix has been inverted because the electron charge is
negative (−e < 0)

8. Reshape of Seebeck matrix in array : seebeck(:, µ, T) = pack(seebeck mat, .true.)

if d = 1 → seebeck(1, µ, T) =
(
S11

)
(C.12)

if d = 2 → seebeck(4, µ, T) =
(
S11 S21 S12 S22

)
(C.13)

if d = 3 → seebeck(9, µ, T) =
(
S11 S21 S31 S12 S22 S32 S13 S23 S33

)
(C.14)

9. Calculation of the array

int array 3(: , ε) =

(
−∂feq(ε, µ, T)

∂ε

)
Ξ(: , ε, α) (ε− µ)︸ ︷︷ ︸

= int array 2

(ε− µ) (C.15)

351

C.1. Code workflow (boltzatorb.f90) Appendix C. Electronic Transport Properties module details

10. Calculation of kappa array (electrical contribution to the thermal conductivity κ) :

kappa(: , µ, T) =
1

T

nε∑
ε=1

(
−∂feq(ε, µ, T)

∂ε

)
Ξ(: , ε, α) (ε− µ)2︸ ︷︷ ︸

= int array 3(: ,ε)

∆ε (C.16)

kappa(dsym, µ, T) =
[
κ1 κ2 . . . κdsym

]
(C.17)

κij(µ, T) =
1

T

∫
dε

(
−∂feq(ε, µ, T)

∂ε

)
Ξij(ε) (ε− µ)2 (C.18)

11. Calculation of the power array (power factor P) :
power(ij, :, :) = elcond mat(j, i) * seebeck(ij, :, :)**2

(a) if d = 1 (dsym = 1) :

elcond(1, µ, T) =
(
σ1

)
elcond mat(1, 1) =

(
σ11

)
=
(
σ1

)
seebeck(1, µ, T) =

(
S11

)
= S1

power(1, µ, T) = σ11 (S1)2 = σ11 (S11)2 = Pxx

(b) if d = 2 (dsym = 3) :

elcond(3, µ, T) =
(
σ1 σ2 σ3

)
elcond mat(2, 2) =

(
σ11 σ12

σ21 σ22

)
=

(
σ1 σ2

σ2 σ3

)
seebeck(4, µ, T) =

(
S11 S21 S12 S22

)
=
(
S1 S2 S3 S4

)
power(4, µ, T) =

[
σ11(S1)2 σ21(S2)2 σ12(S3)2 σ22(S4)2

]
=
[
σ11(S11)2 σ21(S21)2 σ12(S12)2 σ22(S22)2

]
=
[
Pxx Pyx Pxy Pyy

]
(c) if d = 3 (dsym = 6) :

elcond(6, µ, T) =
(
σ1 σ2 σ3 σ4 σ5 σ6

)
elcond mat(3, 3) =

σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 =

σ1 σ2 σ3

σ2 σ4 σ5

σ3 σ5 σ6

seebeck(9, µ, T) =

(
S11 S21 S31 S12 S22 S32 S13 S23 S33

)
=
(
S1 S2 S3 S4 S5 S6 S7 S8 S9

)
power(9, µ, T) =

=
[
σ11 S

2
1 σ21 S

2
2 σ31 S

2
3 σ12 S

2
4 σ22 S

2
5 σ32 S

2
6 σ13 S

2
7 σ23 S

2
8 σ33 S

2
9

]
=
[
σ11 S

2
11 σ21 S

2
21 σ31 S

2
31 σ12 S

2
12 σ22 S

2
22 σ32 S

2
32 σ13 S

2
13 σ23 S

2
23 σ33 S

2
33

]
=
[
Pxx Pyx Pzx Pxy Pyy Pzy Pxz Pyz Pzz

]
352

Appendix C. Electronic Transport Properties module details C.2. Bug report 1 (boltzatorb.f90)

C.2 Bug report 1 (boltzatorb.f90)

Summary : In boltzatorb.f90 the array power was being multiplied by the array elcond. In 2 and 3
dimensions these have incompatible dimensions, thus the operation is illegal. The bug is detected by the
gnu compiler when debugging flags are turned on, but not by the Intel compiler

d = inf(10) dimensionality of the system

tensdim = d · (d+ 1)/2

matdim = d

In the following, the dimensionality of the system is taken equal to d = 3

Allocated arrays and matrices :

• elcond(6, µ, T)

• elcond mat(3, 3)

• seebeck(9, µ, T)

• seebeck mat(3, 3)

• power(9, µ, T)

Tasks performed :

1. Calculation of elcond three-dimensional array :

elcond(6, µ, T) =
(
σ1 σ2 σ3 σ4 σ5 σ6

)
(C.19)

2. Calculation of elcond mat matrix by symmetrization of elcond array :

elcond mat(3, 3) =

σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 =

σ1 σ2 σ3

σ2 σ4 σ5

σ3 σ5 σ6

 (C.20)

3. Calculation of Seebeck matrix :

seebeck mat(3, 3) =

S11 S12 S13

S21 S22 S23

S31 S32 S33

 (C.21)

4. Reshape of Seebeck matrix in array : seebeck(:, µ, T) = pack(seebeck mat, .true.)

seebeck(9, µ, T) =
(
S11 S21 S31 S12 S22 S32 S13 S23 S33

)
(C.22)

5. Calculation of the power factor : power = elcond*seebeck**2
the power factor is allocated as a three dimensional array power(9, µ, T) is here reshaped in a
three dimensional array with dimension along the first direction equal to 6 instead of 9, that is it
becomes power(6, µ, T)

power(6, µ, T) =
(
σ1 S

2
11 σ2 S

2
21 σ3 S

2
31 σ4 S

2
12 σ5 S

2
22 σ6 S

2
32

)
=
(
σ11 S

2
11 σ21 S

2
21 σ31 S

2
31 σ22 S

2
12 σ32 S

2
22 σ33 S

2
32

) (C.23)

353

C.2. Bug report 1 (boltzatorb.f90) Appendix C. Electronic Transport Properties module details

6. New formula for the power factor :

power(9, µ, T)

=
(
σ11 S

2
11 σ21 S

2
21 σ31 S

2
31 σ12 S

2
12 σ22 S

2
22 σ32 S

2
32 σ13 S

2
13 σ23 S

2
23 σ33 S

2
33

)
=
(
σ1 S

2
11 σ2 S

2
21 σ3 S

2
31 σ2 S

2
12 σ4 S

2
22 σ5 S

2
32 σ3 S

2
13 σ5 S

2
23 σ6 S

2
33

)

C.2.1 Tests

Version : SVN DEV1286 Pcrystal
ARCH file used for compiling : Linux-mpigfortran-debug.inc

• Test case 0.
Silicon crystalline system
– Input files : silicon bug.d12 and silicon bug.d3
– Output files : silicon bug.out and silicon bug.outp
The output file of the property calculation contains the error message

Version : SVN DEV1288 Pcrystal
ARCH file used for compiling : Linux-ifort openmpi i64 clut debug.inc

• Test case 1.
Bi2Te3 hexagonal crystalline system
– Input files : bi2te3.d12 and bi2te3.d3
– Output files : bi2te3.out and bi2te3.outp
The output file .outp does not show the error message (the compilator hides it)
See Figure C.1 for debug printings from output file (that follows the equations above)

• Test case 2.
TiNiSn cubic crystalline system
– Input files : tinisn pbe.d12 and tinisn pbe.d3
– Output files : tinisn pbe.out and tinisn pbe.outp
The output file .outp does not show the error message (the compilator hides it)
See Figure C.7 for debug printings from output file (that follows the equations above)

354

Appendix C. Electronic Transport Properties module details C.2. Bug report 1 (boltzatorb.f90)

TDF CALCULATION IN PROGRESS...

TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT SMAT TELAPSE 216.26 TCPU 215.50

TDF CALCULATION PERFORMED

TDF CALCULATED ALONG THE XX,XY,YY,XZ,YZ,ZZ DIRECTIONS

TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT TDF_CALC TELAPSE 401.64 TCPU 400.83

**

TEMPERATURE : 251 CHEMICAL POTENTIAL : 3

**

SHAPE ELCOND 6 251 3

elcond(1) : 1.46083411E+07

elcond(2) : -1.26883724E+01

elcond(3) : -8.37828986E-03

elcond(4) : 1.46083264E+07

elcond(5) : 1.45115969E-02

elcond(6) : 1.54662534E+07

SHAPE ELCOND_MAT 3 3

1.46083411E+07 -1.26883724E+01 -8.37828986E-03

-1.26883724E+01 1.46083264E+07 1.45115969E-02

-8.37828986E-03 1.45115969E-02 1.54662534E+07

SHAPE SEEBECK_MAT 3 3

3.06841583E-06 -4.20263040E-10 1.60397202E-14

-4.20263040E-10 3.06793055E-06 -2.77821951E-14

2.70552851E-14 -4.68606794E-14 -1.89078758E-05

SHAPE SEEBECK 9 251 3

seebeck(1) : 3.06841583E-06

seebeck(2) : -4.20263040E-10

seebeck(3) : 2.70552851E-14

seebeck(4) : -4.20263040E-10

seebeck(5) : 3.06793055E-06

seebeck(6) : -4.68606794E-14

seebeck(7) : 1.60397202E-14

seebeck(8) : -2.77821951E-14

seebeck(9) : -1.89078758E-05

SHAPE POWER BEFORE MULTIPLICATION 9 251 3

HERE THE CALCULATION POWER = ELCOND*SEEBECK**2 IS PERFORMED ...

SHAPE POWER AFTER CALCULATION 6 251 3

power(1) : 1.37540098E-04

power(2) : -2.24103330E-18

power(3) : -6.13281142E-30

power(4) : 2.58013756E-12

power(5) : 1.36586021E-13

power(6) : 3.39627059E-20

CORRECT FORMULA FOR POWER

SHAPE POWER 9 251 3

power(1) : 1.37540098E-04

power(2) : -2.24103330E-18

power(3) : -6.13281142E-30

power(4) : -2.24103330E-18

power(5) : 1.37496459E-04

power(6) : 3.18663534E-29

power(7) : -2.15550461E-30

power(8) : 1.12007814E-29

power(9) : 5.52930575E-03

**

Figure C.1: Debug printings for transport properties calculation of Bi2Te3 hexagonal crystalline system.

355

C.2. Bug report 1 (boltzatorb.f90) Appendix C. Electronic Transport Properties module details

TDF CALCULATION IN PROGRESS...

TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT SMAT TELAPSE 3.15 TCPU 3.04

TDF CALCULATION PERFORMED

TDF CALCULATED ALONG THE XX,XY,YY,XZ,YZ,ZZ DIRECTIONS

TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT TDF_CALC TELAPSE 11.35 TCPU 11.24

**

TEMPERATURE : 901 CHEMICAL POTENTIAL : 7

**

SHAPE ELCOND 6 901 7

elcond(1) : 6.38287317E+06

elcond(2) : 6.62217137E-09

elcond(3) : 5.92912316E-09

elcond(4) : 6.38287317E+06

elcond(5) : 9.42029139E-09

elcond(6) : 6.48535517E+06

SHAPE ELCOND_MAT 3 3

6.38287317E+06 6.62217137E-09 5.92912316E-09

6.62217137E-09 6.38287317E+06 9.42029139E-09

5.92912316E-09 9.42029139E-09 6.48535517E+06

SHAPE SEEBECK_MAT 3 3

3.17238219E-05 -3.73551138E-20 -2.28927716E-20

-3.73551138E-20 3.17238219E-05 4.25945896E-20

-2.30756210E-20 4.10562336E-20 3.11281283E-05

SHAPE SEEBECK 9 901 7

seebeck(1) : 3.17238219E-05

seebeck(2) : -3.73551138E-20

seebeck(3) : -2.30756210E-20

seebeck(4) : -3.73551138E-20

seebeck(5) : 3.17238219E-05

seebeck(6) : 4.10562336E-20

seebeck(7) : -2.28927716E-20

seebeck(8) : 4.25945896E-20

seebeck(9) : 3.11281283E-05

SHAPE POWER BEFORE MULTIPLICATION 9 901 7

HERE THE CALCULATION POWER = ELCOND*SEEBECK**2 IS PERFORMED ...

SHAPE POWER AFTER CALCULATION 6 901 7

power(1) : 6.42372913E-03

power(2) : 9.24060793E-48

power(3) : 3.15716491E-48

power(4) : 8.90669014E-33

power(5) : 9.48058948E-18

power(6) : 1.09318075E-32

CORRECT FORMULA FOR POWER

SHAPE POWER 9 901 7

power(1) : 6.42372913E-03

power(2) : 9.24060793E-48

power(3) : 3.15716491E-48

power(4) : 9.24060793E-48

power(5) : 6.42372913E-03

power(6) : 1.58789780E-47

power(7) : 3.10732889E-48

power(8) : 1.70912259E-47

power(9) : 6.28405217E-03

**

Figure C.2: Debug printings for transport properties calculation of TiNiSn cubic crystalline system.

356

Appendix C. Electronic Transport Properties module details C.3. Bug report 1 (boltzatorb.f90)

C.3 Bug report 1 (boltzatorb.f90)

Summary : In boltzatorb.f90 the arrays elcond and sigmas are used to define the symmetric matrices
elcond mat and sigmas mat. However, the way in which the indexes are computed for the mapping
from the arrays to the matrices is not general. In particular, it is wrong for the case of two-dimensional
systems. The bug is detected by the Gnu compiler and by the Intel compiler when debugging flags are
turned on.

d = matdim = inf(10) dimensionality of the system
t = tensdim = d · (d+ 1)/2

Allocated arrays and matrices :

• elcond(t, µ, T)

• elcond mat(d, d)

• sigmas(t, µ, T)

• sigmas mat(d, d)

Tasks performed : (case d = 3 → t = 6)

1. Calculation of elcond three-dimensional array :

elcond(6, µ, T) =
(
σ1 σ2 σ3 σ4 σ5 σ6

)
(C.24)

2. Calculation of elcond mat matrix by symmetrization of elcond array :

elcond mat(3, 3) =

σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 =

σ1 σ2 σ3

σ2 σ4 σ5

σ3 σ5 σ6

 (C.25)

Algorithm used:

. do i = 1, inf(10)

. do j = 1, i

. rpunt = i+ (j − 1) · j/2(j−2)

. elcond mat(i, j) = elcond(rpunt, ichempot, itemp)

. elcond mat(j, i) = elcond mat(i, j)

. enddo

. enddo

3. The same steps 1. and 2. are performed for the array sigmas and the matrix sigmas mat, and the
mapping between the array and the matrix is done using the same algorithm described before.

Problem :
In the case of system dimensionality equal to d = 2 → t = 3, the elcond array is given by

elcond(3, µ, T) =
(
σ1 σ2 σ3

)
(C.26)

However, the previous algorithm performs the following map from the elcond array to elcond mat
matrix:

elcond mat(2, 2) =

(
σ11 σ12

σ21 σ22

)
=

(
σ1 σ2

σ2 σ4

)
(C.27)

But the σ4 element has not been defined nor calculated, so that the σ22 element in the matrix is
not correctly computed.

357

C.3. Bug report 1 (boltzatorb.f90) Appendix C. Electronic Transport Properties module details

Suggested formula :

! elcond to elcond_mat mapping

ij = 1

k = 1

do i = 1, inf(10)

do j = k, inf(10)

elcond_mat(i, j) = elcond(ij, ichempot, itemp)

elcond_mat(j, i) = elcond_mat(i, j)

ij = ij + 1

enddo

k = k + 1

enddo

! sigmas to sigmas_mat mapping

ij = 1

k = 1

do i = 1, inf(10)

do j = k, inf(10)

sigmas_mat(i, j) = sigmas(ij, ichempot, itemp)

sigmas_mat(j, i) = sigmas_mat(i, j)

ij = ij + 1

enddo

k = k + 1

enddo

Figure C.3: Formula for the mapping from arrays to symmetric matrices.

Other nasty bug :
The logical variable info det in boltzatorb.f90 has been declared but not always initialized. It is
initialized to true only if a series of if statements are satisfied. If none of these conditions are
satisfied, the variable remains initialized and when it is used later on in the code, the program
does not know what value has to be assigned to it
The error associated to this bug is detected with the Intel compiler only if debug flags are activated
(see Linux-ifort openmpi i64 clut debug.inc)
Suggestion : initialized info det = .false. at the beginning of boltzao main subroutine

C.3.1 Tests

Version : SVN DEV1288 Pcrystal
ARCH file used for compiling : Linux-ifort openmpi i64 clut debug.inc

• Test case 0.
Berillium 4 layers slab system

Calculations run with public version:
– Input files : P test06.d12 and P test06.d3
– Output files : P test06.out and P test06.outp
The output file of the property calculation contains the error message (see Figure C.4)

Calculations run with new version:
– Input files : P test06.d12 and P test06 bug fix.d3
– Output files : P test06.out and P test06 bug fix.outp
See Figure C.5 for debug printings in the output file (that follows the algorithm in Figure C.3)

358

Appendix C. Electronic Transport Properties module details C.3. Bug report 1 (boltzatorb.f90)

• Test case 1.
TiNiSn cubic crystalline system

Calculations run with old version:
– Input files : tinisn pbe.d12 and tinisn pbe bug fix.d3
– Output files : tinisn pbe.out and tinisn pbe.outp
See Figure C.6 for debug printings in the output file (that follows the algorithm in Figure C.3)

Calculations run with new version:
– Input files : tinisn pbe.d12 and tinisn pbe bug fix.d3
– Output files : tinisn pbe.out and tinisn pbe bug fix.outp

See Figure C.7 for debug printings in the output file
(that follows the algorithm in Figure C.3).

TDF CALCULATION IN PROGRESS...

TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT SMAT TELAPSE 0.72 TCPU 0.69

TDF CALCULATION PERFORMED

TDF CALCULATED ALONG THE XX,XY,YY DIRECTIONS

TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT TDF_CALC TELAPSE 0.93 TCPU 0.90

forrtl: severe (408): fort: (2): Subscript #1 of the array ELCOND has value 4 which is greater than the upper bound of 3

Image PC Routine Line Source

Pproperties-30044 000000000D78F00F Unknown Unknown Unknown

Pproperties-30044 00000000012400F8 boltzao_mp_boltza 392 boltzatorb.f90

Pproperties-30044 000000000040F47B f90main3_ 299 properties.f90

Pproperties-30044 00000000004197CE MAIN__ 3 properties.f90

Pproperties-30044 000000000040DA22 Unknown Unknown Unknown

libc-2.28.so 00007FE2839EB09B __libc_start_main Unknown Unknown

Pproperties-30044 000000000040D92A Unknown Unknown Unknown

forrtl: severe (408): fort: (2): Subscript #1 of the array ELCOND has value 4 which is greater than the upper bound of 3

Figure C.4: Error in the output file for transport properties calculation of Berillium 4 layers slab system (public
version).

359

C.3. Bug report 1 (boltzatorb.f90) Appendix C. Electronic Transport Properties module details

TDF CALCULATION IN PROGRESS...

TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT SMAT TELAPSE 0.71 TCPU 0.68

TDF CALCULATION PERFORMED

TDF CALCULATED ALONG THE XX,XY,YY DIRECTIONS

TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT TDF_CALC TELAPSE 0.92 TCPU 0.89

** NEW VERSION : BEGIN **************

elcond to elcond_mat ****************

i = 1 j = 1 ij = 1

i = 1 j = 2 ij = 2

i = 2 j = 2 ij = 3

elcond to elcond_mat ****************

sigmas to sigmas_mat ****************

i = 1 j = 1 ij = 1

i = 1 j = 2 ij = 2

i = 2 j = 2 ij = 3

sigmas to sigmas_mat ****************

**

TEMPERATURE : 801 CHEMICAL POTENTIAL : 1

**

SHAPE ELCOND 3 801 1

elcond(1) : 0.00000000E+00

elcond(2) : 0.00000000E+00

elcond(3) : 0.00000000E+00

SHAPE ELCOND_MAT 2 2

0.00000000E+00 0.00000000E+00

0.00000000E+00 0.00000000E+00

SHAPE SIGMAS 3 801 1

sigmas(1) : 0.00000000E+00

sigmas(2) : 0.00000000E+00

sigmas(3) : 0.00000000E+00

SHAPE SIGMAS_MAT 2 2

0.00000000E+00 0.00000000E+00

0.00000000E+00 0.00000000E+00

** NEW VERSION : END ****************

Figure C.5: Debug printings for transport properties calculation of Berillium 4 layers slab system (new version).

360

Appendix C. Electronic Transport Properties module details C.3. Bug report 1 (boltzatorb.f90)

TDF CALCULATION IN PROGRESS...

TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT SMAT TELAPSE 3.15 TCPU 3.04

TDF CALCULATION PERFORMED

TDF CALCULATED ALONG THE XX,XY,YY,XZ,YZ,ZZ DIRECTIONS

TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT TDF_CALC TELAPSE 11.35 TCPU 11.24

**

TEMPERATURE : 901 CHEMICAL POTENTIAL : 7

**

SHAPE ELCOND 6 901 7

elcond(1) : 6.38287317E+06

elcond(2) : 6.62217137E-09

elcond(3) : 5.92912316E-09

elcond(4) : 6.38287317E+06

elcond(5) : 9.42029139E-09

elcond(6) : 6.48535517E+06

SHAPE ELCOND_MAT 3 3

6.38287317E+06 6.62217137E-09 5.92912316E-09

6.62217137E-09 6.38287317E+06 9.42029139E-09

5.92912316E-09 9.42029139E-09 6.48535517E+06

SHAPE SEEBECK_MAT 3 3

3.17238219E-05 -3.73551138E-20 -2.28927716E-20

-3.73551138E-20 3.17238219E-05 4.25945896E-20

-2.30756210E-20 4.10562336E-20 3.11281283E-05

SHAPE SEEBECK 9 901 7

seebeck(1) : 3.17238219E-05

seebeck(2) : -3.73551138E-20

seebeck(3) : -2.30756210E-20

seebeck(4) : -3.73551138E-20

seebeck(5) : 3.17238219E-05

seebeck(6) : 4.10562336E-20

seebeck(7) : -2.28927716E-20

seebeck(8) : 4.25945896E-20

seebeck(9) : 3.11281283E-05

SHAPE POWER BEFORE MULTIPLICATION 9 901 7

HERE THE CALCULATION POWER = ELCOND*SEEBECK**2 IS PERFORMED ...

SHAPE POWER AFTER CALCULATION 6 901 7

power(1) : 6.42372913E-03

power(2) : 9.24060793E-48

power(3) : 3.15716491E-48

power(4) : 8.90669014E-33

power(5) : 9.48058948E-18

power(6) : 1.09318075E-32

CORRECT FORMULA FOR POWER

SHAPE POWER 9 901 7

power(1) : 6.42372913E-03

power(2) : 9.24060793E-48

power(3) : 3.15716491E-48

power(4) : 9.24060793E-48

power(5) : 6.42372913E-03

power(6) : 1.58789780E-47

power(7) : 3.10732889E-48

power(8) : 1.70912259E-47

power(9) : 6.28405217E-03

**

Figure C.6: Debug printings for transport properties calculation of TiNiSn cubic crystalline system (old version).

361

C.3. Bug report 1 (boltzatorb.f90) Appendix C. Electronic Transport Properties module details

TDF CALCULATION IN PROGRESS...

TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT SMAT TELAPSE 9.33 TCPU 8.68

TDF CALCULATION PERFORMED

TDF CALCULATED ALONG THE XX,XY,YY,XZ,YZ,ZZ DIRECTIONS

TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT TDF_CALC TELAPSE 76.57 TCPU 75.91

** NEW VERSION : BEGIN **************

elcond to elcond_mat ****************

i = 1 j = 1 ij = 1

i = 1 j = 2 ij = 2

i = 1 j = 3 ij = 3

i = 2 j = 2 ij = 4

i = 2 j = 3 ij = 5

i = 3 j = 3 ij = 6

elcond to elcond_mat ****************

sigmas to sigmas_mat ****************

i = 1 j = 1 ij = 1

i = 1 j = 2 ij = 2

i = 1 j = 3 ij = 3

i = 2 j = 2 ij = 4

i = 2 j = 3 ij = 5

i = 3 j = 3 ij = 6

sigmas to sigmas_mat ****************

**

TEMPERATURE : 901 CHEMICAL POTENTIAL : 7

**

SHAPE ELCOND 6 901 7

elcond(1) : 1.72601733E+00

elcond(2) : 1.09543857E-15

elcond(3) : 1.72629800E-15

elcond(4) : 1.72601733E+00

elcond(5) : 6.31295301E-16

elcond(6) : 1.75373006E+00

SHAPE ELCOND_MAT 3 3

1.72601733E+00 1.09543857E-15 1.72629800E-15

1.09543857E-15 1.72601733E+00 6.31295301E-16

1.72629800E-15 6.31295301E-16 1.75373006E+00

SHAPE SIGMAS 6 901 7

sigmas(1) : -5.47563016E-05

sigmas(2) : -1.02263160E-19

sigmas(3) : -1.17625237E-19

sigmas(4) : -5.47563016E-05

sigmas(5) : -4.94336450E-20

sigmas(6) : -5.45907657E-05

SHAPE SIGMAS_MAT 3 3

-5.47563016E-05 -1.02263160E-19 -1.17625237E-19

-1.02263160E-19 -5.47563016E-05 -4.94336450E-20

-1.17625237E-19 -4.94336450E-20 -5.45907657E-05

** NEW VERSION : END ****************

Figure C.7: Debug printings for transport properties calculation of TiNiSn cubic crystalline system (new version).

362

Appendix D

Computational parameters and input
setup for molecular dynamics
simulations

The computational parameters adopted in structural optimizations and molecular dynamics (MD) sim-
ulations for the two systems (crystalline ice with Pna21 space group (P-ice) and liquid-like cubic system
with 32 water molecules [(H2O)32]) are reported in Table D.1. Details about the cell parameters, the
optimized geometry configuration, Crystal Input Block 3 (related to the Hamiltonian and the asso-
ciated computational parameters) and the MD Section of Input Block 1 as used in the simulations are
given in Sections D.1 and D.2, for each atomic system analyzed. The nuclear positions obtained with a
full structural optimization, used as starting geometry for the molecular dynamics simulations of the the
P-ice crystal, are reported in the Supporting Information of Ref. [92], together with the initial nuclear
positions used as starting geometry for the molecular dynamics simulations for the (H2O)32 liquid water
periodic system.

System Basis set Functional TOLDEE TOLINTEG nk Grid

P-ice (3D)

Gatti[104] PBE 8 10 10 20 20 20 112 XXLGRID
Gatti[104] PBE-D3 8 10 10 20 20 20 112 XXLGRID
Gatti[104] PBE0 8 10 10 20 20 20 112 XXLGRID
Gatti[104] B3LYP 8 10 10 20 20 20 112 XXLGRID
Gatti[104] B3LYP-D3 8 10 10 20 20 20 112 XXLGRID

(H2O)32 (3D)

Gatti[104] PBE 8 10 10 20 20 20 36 XXLGRID
Gatti[104] PBE-D3 8 10 10 20 20 20 36 XXLGRID
Gatti[104] PBE0 8 10 10 20 20 20 36 XXLGRID
Gatti[104] B3LYP 8 10 10 20 20 20 36 XXLGRID
Gatti[104] B3LYP-D3 8 10 10 20 20 20 36 XXLGRID

Table D.1: Basis set, exchange-correlation functional, threshold on total energy (TOLDEE), thresholds for
Coulomb and exchange integrals overlap criteria (TOLINTEG), number of k-points in the IBZ (nk) and DFT

grid used in structural optimizations and molecular dynamics simulations for different systems. The first two
values of TOLINTEG parameters are referred to Coulomb integrals, while the last three set the thresholds for
Hartree-Fock exchange integrals. The XXLGRID pruned grid for DFT integration have 99 radial points, with a
maximum number of 1454 angular points in the region relevant for chemical bonding. For further details see
Crystal23 Manual.[114]

363

D.1. Crystalline ice (P-ice) Appendix D. Computational parameters and input setup

D.1 Crystalline ice with Pna21
space group (P-ice) - 3D system

Space group: P1

Number of atoms in the asymmetric unit cell: 24
Basis set for oxygen and hydrogen: Gatti basis set[104]

Crystal Block 3

DFT
B3LYP
XXLGRID
END
TOLINTEG
10 10 20 20 20
SHRINK
6 6
FMIXING
30
TOLDEE
8
SCFDIR
ENDSCF

Crystal Block 1 MD Section
(NVE ensemble)

MOLDYN
TIMESTEP
0.15
NSTEPS
6667
TEMP
300
COMPRT
INVELPRT
TIMEPRT
XYZUNITS
ENDMD

Crystal Block 1 MD Section
(NVT ensemble)

MOLDYN
TIMESTEP
0.15
NSTEPS
6667
TEMP
300
NVT
300 20.0
COMPRT
INVELPRT
TIMEPRT
XYZUNITS
ENDMD

Table D.2: Crystal Input Block 3 for the setup of self-consistent calculation used for structural optimization and
molecular dynamics simulations (left panel) with B3LYP functional (for the other functionals the same identical
input is used except for the name of the functional), MD Section in Input Block 1 used for molecular dynamics
calculations with timestep of 0.15 fs, for a total simulation time of 1.0 ps in the NVE (central panel) and NVT

(right panel) ensembles, both with an initial temperature of T = 300 K.

initial PBE PBE-D3 B3LYP B3LYP-D3 PBE0 PBE0-D3

∆E [eV] 0.000 -0.3564 -0.4831 -0.0927 -0.2059 -0.1541 -0.9079
a [Å] 7.362568 7.027025 6.947098 7.168653 7.048932 7.081031 7.002097
b [Å] 7.744386 7.468170 7.387431 7.592544 7.474845 7.501811 7.421250
c [Å] 4.533529 4.303437 4.258816 4.396057 4.335274 4.349973 4.307872
v [Å3] 258.495338 225.840116 218.567598 239.269961 228.424197 231.072971 223.855616
α [◦] 90.000000 89.996140 90.000096 89.994506 89.994755 90.001785 89.999219
β [◦] 90.000000 89.998355 90.003458 90.001829 90.005460 90.006733 90.007456
γ [◦] 90.000000 89.996947 89.994200 90.000491 89.998431 89.998143 89.994863

Functional Ein [Ha] Efin [Ha] Ein
g [eV] Efin

g [eV]

PBE -610.9384020285 -610.9515008155 6.0364 5.9117
PBE-D3 -610.9646513252 -610.9824040682 6.0364 5.8996
B3LYP -611.3073988797 -611.3108045671 8.1569 8.0853

B3LYP-D3 -611.3445446430 -611.3521108944 8.1569 8.0469
PBE0 -610.9515213552 -610.9571845752 8.8405 8.7541

PBE0-D3 -610.9515213550 -610.9848880396 8.8405 8.7268

Table D.3: Cell parameters (upper table), total energy per unit cell and direct energy band gap (lower table) of
the P-ice crystal, before and after the geometry optimization with different functionals. Precision on the absolute
energy values is fixed by the self-consistent threshold value of 10−8 Ha (i.e. TOLDEE equal to 8). In the upper
table, the energy gained by means of structural optimization with respect to the initial nuclear configuration
(computed as ∆E = Efin − Ein) is also reported for each functional considered.

364

Appendix D. Computational parameters and input setup D.2. Liquid-like water

D.2 Liquid-like water (H2O)32 - 3D system

Space group: P1

Number of atoms in the asymmetric unit cell: 96
Basis set for oxygen and hydrogen: Gatti basis set[104]

Crystal Block 3

DFT
B3LYP
XXLGRID
END
TOLINTEG
10 10 20 20 20
SHRINK
4 4
FMIXING
30
TOLDEE
8
SCFDIR
ENDSCF

Crystal Block 1 MD Section
(NVE ensemble)

MOLDYN
TIMESTEP
0.25
NSTEPS
4000
TEMP
300
COMPRT
INVELPRT
TIMEPRT
XYZUNITS
ENDMD

Crystal Block 1 MD Section
(NVT ensemble)

MOLDYN
TIMESTEP
0.25
NSTEPS
4000
TEMP
300
NVT
300 38.0
COMPRT
INVELPRT
TIMEPRT
XYZUNITS
ENDMD

Table D.4: Crystal Input Block 3 for the setup of self-consistent calculation used for molecular dynamics
simulations (left panel) with B3LYP functional (for the other functionals the same identical input is used except
for the name of the functional), MD Section in Input Block 1 used for molecular dynamics calculations with timestep
of 0.25 fs, for a total simulation time of 1.0 ps in the NVE (central panel) and NVT (right panel) ensembles, both
with an initial temperature of T = 300 K. The input file for the simulation in NVT ensemble with T = 600 K
is exactly equal to that reported in the right panel, except for the initial temperature value, modified using the
keyword TEMP.

The lattice parameter for the cubic cell in which the 32 water molecules have been modeled is computed
on the basis of the water density ρ under ambient conditions, which is equal to 1 g/cm3. The value of
the lattice parameter a is then computed with the formula

ρ =
m

a3
→ a = 3

√
m

ρ
= 3

√
(mh +mo)nw

ρNA
(D.1)

where m is the mass of nw water molecules, mh is the hydrogen mass, mo is the oxygen mass and NA is
the Avogadro constant, namely,

mh = 1.0080 g/mol

mo = 15.999 g/mol

NA = 0.602214076 · 1024

ρ = 1.0 g/cm3 = 10−24 g/Å3

Inserting these data in the formula (D.1), the lattice parameter a = b = c of the cubic system can be
computed as

ab = c = 3

√
(2 · 1.0080 + 15.999) · 32 g

0.602214076 g/Å
3 = 9.855 Å (D.2)

365

D.2. Liquid-like water Appendix D. Computational parameters and input setup

366

Appendix E

Manuals

E.1 Molecular dynamics : manual and keywords

rec variable meaning

• A NSTEPS number of molecular dynamics steps [default: 1000]
∗ NSTEPS

• A TIMESTEP time step for integration of nuclear equations of motion [default: 0.1 fs]
∗ TIMESTEP

• A TEMP initial temperature [default: 300 K]
∗ TEMPERATURE

• A INVELKT logical keyword [default: false]
using this keyword, the initial nuclear velocities are multiplied by

√
kbT just

after being initialized through the Box-Muller algorithm
• A NEWSEEDVEL logical keyword [default: false]

using this keyword, a new seed is generated for the initialization of the initial
nuclear velocities (initialized through the Box-Muller algorithm). This keyword
is useful to generate different sets of initial nuclear velocities if the compiler
used to compile the code generates an executable that returns always the same
set of random numbers

• A VELOCITIES initial nuclear velocities given from input file
insert a number of input records equal to the number of atoms n

∗ LB(i), vx(i), vy(i), vz(i), i=1,n label and initial velocity components (along each direction) of the each nucleus

• A ZEROINITF logical keyword [default: false]
using this keyword, the initial nuclear forces are set all equal to zero

• A DEGFREE set the number of degrees of freedom g to be considered in the calculation of
the temperature and of all the other molecular dynamics quantities
[default: see Table 5.12]

∗ INPUT NFREE number of degrees of freedom

• A THERMOST type of thermostat that can be set
∗ TEMPCONST constant temperature to be maintained by the thermostat [K]

THSTAT type of thermostat :
1 = simple scaling
2 = Berendsen thermostat

if thstat = 2
∗ TS rise time of Berendsen thermostat (it must be larger than the time step) [fs]

• A YESFLY if true, at each step of the simple scaling and the Berendsen thermostat methods,
the center of mass rotational and translational velocities components are not
subtracted from the nuclear velocities (flying ice cube effect) [default: false]

• A NVT Nosé-Hoover thermostat (Nvt ensemble)
∗ TEMPCONST constant temperature to be maintained by the thermostat [K]

TS time associated to the thermostat mass [fs]
• A NVTINT keyword allowed only after the keyword Nose [default: 1]

∗ NOSE INTEG procedure for integration of nuclear equations of motion in Nvt ensemble :
0 = integrator I0 NVT (see Table A.1)
1 = integrator I1 NVT (see Table 5.5)

367

E.1. Molecular dynamics : manual and keywords Appendix E. Manuals

• A NPT thermostat and barostat (Npt ensemble)
∗ TEMPCONST constant temperature to be maintained by the thermostat [K]

TS time associated to the thermostat mass [fs]
PRESCONST constant pressure to be maintained by the barostat [GPa]
TV time associated to the barostat mass [fs]

• A NPTINT keyword allowed only after the keyword Npt [default: 0]
∗ NPT INTEG procedure for integration of nuclear equations of motion in Npt ensemble :

0 = integrator I0 NPT (see Table 5.8)
• A NOROT logical keyword allowed only for 0D and 1D systems [default: false]

using this keyword, the 0D and 1D systems are not allowed to rotate during
the molecular dynamics simulation (center of mass angular velocity subtracted
from nuclear velocities)

• A GUESSP logical keyword [default: false]
by default, the density matrix guess at each molecular dynamics step is taken
to be the atomic one. If this keyword is used, the density matrix at each step is
taken to be the final density matrix of the previous step (for the first molecular
dynamics step, the atomic guess is used)

• A INITGUESSP logical keyword [default: false]
by default, the density matrix guess at the first molecular dynamics step is taken
to be the atomic density matrix guess. If this keyword is used, the density matrix
used at the first molecular dynamics step is read from file fort.20 (calculation
restarted with external density matrix from file fort.20)

• A RESTART logical keyword [default: false]
using this keyword, the molecular dynamics calculation is restarted from a pre-
vious run (some restarting units are needed, depending on the calculation)

• A FIXIND logical keyword [default: false]
by default, the Coulomb and exchange integrals involved in the calculation
(based on the system geometry and on input thresholds), are computed at
each step of a molecular dynamics simulation, since the geometry changes at
each step. Using this keyword, the integrals are computed only once, at the
beginning of the calculation, and they are not updated during the molecular
dynamics simulation

• A COMPRT set to true the logical variable for the printing of file fort.192 with center of mass
position, velocity and kinetic energy information at each step [default: false]

• A MASSPRT set to true the logical variable for the printing of the atomic masses in the
output file [default: false]

• A CHARGESPRT set to true the logical variable for the printing of the atomic charges in file
ATCHARGES.DAT [default: false]

• A TIMEPRT set to true the logical variable for the printing of file fort.222 with the number
of Scf cycles and the time for a complete Scf cycle at each step [default: false]

• A INVELPRT set to true the logical variable for the printing of file fort.193 with information
on values of initial nuclear velocities (before and after the shifting with respect
to center of mass velocity, before and after the rescaling with respect to initial
temperature) [default: false]

• A TESTVEL test of initial nuclear velocities distribution: the code computes the initial nu-
clear velocities distribution, print information about this calculation in the out-
put file fort.193 (as for the keyword Initvelprt) and then it stops. This
keyword can be used to test and study the initial nuclear velocities distribution
of the Molecular Dynamics module, which represents an important part of the
nuclear equations of motion initial conditions [default: false]

• A XYZUNITS activate the creation of files fort.186 e fort.187, containing respectively the nu-
clear positions and velocities at each step (useful to visualize the trajectories
during optimization) [default: false]

• A DEBUG activate debug modality : more info in output printings [default: false]

• A FRAGMENT partial molecular dynamics simulation [default: global molecular dynamics]
∗ NF number of atoms free to move

if NF > 0 insert NF input records
∗ LB(i), i=1,NF labels of the atoms to move

if NF < 0 insert two input indexes
∗ IFRAGSTART, IFRAGSTOP atoms starting from label ifragstart to label ifragstop are free to move

• A ISOTOPES atomic masses modified

368

Appendix E. Manuals E.1. Molecular dynamics : manual and keywords

∗ NL number of atoms whose atomic mass must be modified
insert NL input records

∗ LB(i), AMASS(i), i=1,NL label and new atomic mass (amu) of the atom

• A PCFMD activate the post processing analysis of molecular dynamics trajectory in order
to compute the Pair Correlation Function [default: false]

• A ANALYSIS activate the post processing analysis of molecular dynamics trajectory in order
to compute mean values and standard deviations of energies and temperature
[default: false]

• A AVCORR activate the post processing analysis of molecular dynamics trajectory in order
to compute the Velocity Autocorrelation Function [default: false]

• A FREQCALC activate the post processing analysis of molecular dynamics trajectory in order
to compute the Vibrational Density of States (Power Spectrum) [default: false]

369

E.2. Fire : Manual and keywords Appendix E. Manuals

E.2 Fast Inertial Relaxation Engine : manual and keywords

rec variable meaning

• A BASIC activate the basic Fire algorithm. If this keyword is not inserted, the
improved Fire2.0 algorithm is used by default.

• A ONLYFRTH activate the stopping criteria only on the basis of the convergence with
respect to the euclidean norm of 3N forces vector of the actual Fire step
[default: false]

• A TOLFORCE modify the threshold on the euclidean norm of 3N forces vector computed
in cartesian coordinates

∗ EXPFTHR ‖F‖ < 10−EXPFTHR Ha/Bohr [default: 10]
• A ONLYENTH activate the stopping criteria only on the basis of the convergence with

respect to the energy difference between two Fire steps
[default: false]

• A TOLDEE threshold on the energy change between two optimization Fire steps
∗ EXPETHR |∆E|< 10−EXPETHR Ha [default: 8]

• A ONLYDSTH activate the stopping criteria only on the basis of the convergence with
respect to the maximum and the root-mean-square of the nuclei displace-
ments [default: false]

• A TOLDEX convergence criterion on the RMS of the nuclei displacements computed
in cartesian coordinates (units: Bohr)

∗ THDRMS maximum RMS of the nuclei displacements computed in cartesian coor-
dinates [default: 0.0012 Bohr]

• A NCSTPCON modify the number of consecutive steps the convergence criteria have to be
satisfied before stopping and considering the minimization as converged

∗ NCSTPCON number of consecutive steps the convergence criteria have to be satisfied
before stopping the minimization [default: 2]

• A MAXCYCLE modify the maximum number of Fire iterations
∗ MAXCYCLE maximum number of iterations [default: 500]

• A NPLEZMAX only for Fire 2.0 method: modify the number of consecutive steps the
power factor is negative or equal to zero (P (t) ≤ 0) before stopping the
Fire research of the Pes minimum (if the power factor continue to remain
negative or equal to zero, probably the system is stuck in a narrow valley
in the Pes)

∗ NPLEZEROMAX number of consecutive steps the power factor is negative or equal to zero
(P (t) ≤ 0) before stopping the minimization [default: 2000]

• A TMAX modify the maximum value of the timestep so that dtmax = TMAX · dtin
∗ TMAX factor used to compute the maximum value of the timestep [default: 10.0]

• A TMIN only for Fire 2.0 method: modify the minimum value of the timestep so
that dtmin = TMIN · dtin

∗ TMIN factor used to compute the minimum value of the timestep [default: 0.02]
• A NDELAY modify the number of steps to wait after the power factor became negative

(P (t) < 0) before increasing the timestep
∗ NDELAY number of steps to wait after the power factor became negative (P (t) < 0)

before increasing the timestep [default: 5]
• A DTSTART modify the initial value of the timestep dtin (units: fs)

∗ DTSTART initial value of the timestep [default: ...]
• A DTGROW modify the factor by which the timestep is eventually increased

∗ DTGROW factor by which the timestep is eventually increased [default: 1.1]
• A DTSHRINK modify the factor by which the timestep is eventually decreased

∗ DTSHRINK factor by which the timestep is eventually decreased [default: 0.5]
• A ALPHASTART modify the initial coefficient αin for velocities and forces vectors mixing

∗ ALPHASTART initial coefficient αin for velocities and forces vectors mixing [default: 0.25]
• A ALPHASHRINK modify the factor by which the coefficient α is eventually decreased

∗ ALPHASHRINK factor by which the coefficient α is eventually decreased [default: 0.99]

• A UNUCMASSES logical keyword [default = false]
using this keyword, all the atomic masses are set equal to 1 amu

• A NUCMASSES set all the atomic masses equal to a unique value specified below
∗ SAME MASS value of the atomic mass (amu)

370

Appendix E. Manuals E.2. Fire : Manual and keywords

• A ATOMICP at each Fire step, the density matrix P(G) is restarted by default from
the density matrix obtained at the end of the self-consistent (SCF) calcula-
tion of the previous step. This keyword deactivates the default restarting
option: if used, at each step the density matrix taken as input for SCF
calculation is constructed from an atomic guess

• A RESTART logical keyword [default: false]
using this keyword, the structural optimization calculation is restarted
from a previous run (some restarting units are needed)

• A INITGUESSP logical keyword [default: false]
by default, the density matrix guess at the first Fire step is taken to
be the atomic density matrix guess. If this keyword is used, the density
matrix used at the first Fire step is read from file fort.20 (calculation
restarted with external density matrix from file fort.20)

• A FIXIND logical keyword [default: false]
by default, the Coulomb and exchange integrals involved in the calculation
(based on the system geometry and on input thresholds), are computed at
each step of a Fire structural optimization, since the geometry changes
at each step. Using this keyword, the integrals are computed only once,
at the beginning of the calculation, and then they are not updated during
the Fire structural optimization

• A FRAGMENT Partial geometry optimization [default: global optimization]
∗ NL number of atoms free to move (to be optimized)

if NL > 0 insert NL input records
∗ LB(L), L=1,NL labels of the atoms to move

if NL < 0 insert two input indexes
∗ IFRAGSTART IFRAGSTOP atoms starting from label IFRAGSTART to label IFRAGSTOP are free

to move

• A ISOTOPES atomic masses modified
∗ NL number of atoms whose atomic mass must be modified

insert NL input records
∗ LB(i), AMASS(i), i=1,NL label and new atomic mass (amu) of the atom

• A XYZUNITS activate the creation of two .XYZ files: one with the nuclei positions and
one with the velocities of the nuclei at each Fire optimization step (useful
to visualize the trajectories during optimization)
[default: false]

• A FORCEPRT activate the printing in the standard output file of the cartesian forces on
the nuclei at each Fire optimization step [default: false]

• A VELPRT activate the printing in the standard output file of the cartesian velocities
of the nuclei at each Fire optimization step [default: false]

• A DISPLPRT activate the printing in the standard output file of the cartesian displace-
ments of the nuclei at each Fire optimization step
[default: false]

371

E.2. Fire : Manual and keywords Appendix E. Manuals

372

Appendix F

Documentation of some CRYSTAL core
subroutines

Contents

F.1 PRIMST (libx7 scf.f) . 373

F.2 MINV3 (libx5 com.f) . 375

F.3 INV123 (libx4 com.f) . 377

F.4 PARLAT(C,D,A) (libx6 com.f) . 379

F.5 MCM (libx5 com.f) . 381

F.6 VRSLAT (both1.f) . 382

F.7 EXPU (both4.f) . 384

F.8 EXPT (both4.f) . 386

F.9 SYMHEQ (libxa.f) . 388

F.10 SYMHER (libxa.f) . 390

F.11 GENERATE SAED (geometry.f) . 392

F.12 SMAT (libxj.f) . 400

F.13 ESTROF (both4.f) . 408

F.14 ESTROE (both4.f) . 411

F.15 ESTROG (both4.f) . 413

F.16 SMAT SINGLEK (libxj.f) . 415

F.1 Subroutine PRIMST (libx7 scf.f)

The subroutine PRIMST is called, for example, in input.f90 library, when keyword SYMMREMO is used, with the
aim to delete symmetry in solids.

line case SYMMREMO in input.f90 Crystal version: SVN DEV1218

1652 case (’SYMMREMO’)
!****
!**** DELETE THE USE OF SYMMETRY
!****
!CIPRM STORE THE NUMBER OF SYMMETRY OPERATORS IN INF(157)
INF(157)=INF(2) Save the previous number of symmetry operators in INF(157)
INF(2) = 1 Reset the number of symmetry operators = INF(2) to 1
CALL PRIMST See Table F.3
WRITE (IOUT,707) Print: USE OF SYMMETRY WILL BE SUBSEQUENTLY SUSPENDED

1661 LB5 = .TRUE. Logical variable LB5: if LB5.EQ.TRUE, CALL XYVINV
if LB5.EQ.TRUE and (LPRINT(4).NE.0), CALL XYVPRT

1799 707 FORMAT(/’ USE OF SYMMETRY WILL BE SUBSEQUENTLY SUSPENDED’)

Matrix W ≡ W1R is the conversion matrix from primitive to conventional (crystallographic) cell. It is
printed in the output file (in row order) through the subroutine COOPRT, as reported in the following

373

F.1. PRIMST (libx7 scf.f) Appendix F. Documentation of some CRYSTAL core subroutines

line SUBROUTINE PRIMST: defined in libx7 scf.f Crystal version: SVN DEV1218

306 SUBROUTINE PRIMST
USE NUMBERS
USE PARAME MODULE
USE PARINF MODULE
USE GVECT MODULE
IMPLICIT REAL(FLOAT) (A-H,O-Z)
C...
C... TO RECLASSIFY CELL AS PRIMITIVE
C...
INF(62)=1 INF(62) = numeric code for centering type : 1(P) 2(A) 3(B) 4(C) 5(F) 6(I) 7(R)
INF(63)=1 INF(63) = numeric code for crystal system

317 DO I=1,3
W1R(1,I)=0. FLOAT W ≡ W1R(3,3) conversion matrix from primitive to conventional cell
W1R(2,I)=0. FLOAT
W1R(3,I)=0. FLOAT Lines (317:322) : W1R is set equal to the unit matrix 1, i.e. the conventional
W1R(I,I)=1. FLOAT cell is forced to be the primitive cell

322 ENDDO
RETURN

324 END

Table F.3: Code and description of subroutine PRIMST (libx7 scf.f)

table.

line Lines 1184 and 1287-1288 of SUBROUTINE COOPRT: defined in both4.f Crystal version: SVN DEV1218

1184 WRITE(IOUT,204)((W1R(I,J),J=1,3),I=1,3) Writing matrix W1R in the output file
1287 204 FORMAT(/’ TRANSFORMATION MATRIX PRIMITIVE-CRYSTALLOGRAPHIC CELL’/
1288 *9F8.4/)

If ac1, ac2, ac3 are the direct lattice vectors of the conventional cell, and ap1, ap2, ap3 are the direct lattice
vectors of the primitive cell, then the conversion matrix W1R = W has to be applied on the primitive
direct lattice vectors to obtain the conventional direct lattice vectors, as follows(

ac1 ac2 ac3
)

=
(
ap1 ap2 ap3

)
W (F.1)

where aci = (acix, a
c
iy, a

c
iz) with i = 1, 2, 3 and the same for api vectors. The matrix W defined as

W =

W11 W12 W13

W21 W22 W23

W31 W32 W33

 (primitive → crystallographic cell) conversion matrix (F.2)

Analogously, applying the transpose operation matrix on both members of equation (F.1)ac1
ac2
ac3

 = tW

ap1
ap2
ap3

 → aci =

3∑
j=1

Wij apj with i = 1, 2, 3 (F.3)

which in components is read asac1x ac1y ac1z
ac2x ac2y ac2z
ac3x ac3y ac3z

 =

W11 W21 W31

W12 W22 W32

W13 W23 W33

ap1x ap1y ap1z
ap2x ap2y ap2z
ap3x ap3y ap3z

 (F.4)

In the same way as in (G.3), the fractional coordinates xc = (xc1, x
c
2, x

c
3) of a nucleus in the conventional

cell can be obtained from the fractional coordinates xp = (xp1, x
p
2, x

p
3) of the same nucleus in the primitive

cell through the equationxc1ac1xc2a
c
2

xc3a
c
3

 = tW

xp1ap1xp2a
p
2

xp3a
p
3

 → xcia
c
i =

3∑
j=1

Wij x
p
j apj with i = 1, 2, 3 (F.5)

374

Appendix F. Documentation of some CRYSTAL core subroutines F.2. MINV3 (libx5 com.f)

F.2 Subroutine MINV3 (libx5 com.f)

Input : (3,3) matrix P ; (3,3) matrix PINV ; real number DET.
The subroutine modifies the input values of PINV and DET, so that PINV matrix returns the inverse of
the input matrix P, and DET returns the determinant of the input matrix P.

line SUBROUTINE MINV3: defined in libx5 com.f Crystal version: SVN DEV1218

256 SUBROUTINE MINV3(P,PINV,DET)
C... CALCULATES DETERMINANT AND INVERSE OF 3 * 3 MATRIX
USE NUMBERS
IMPLICIT REAL(FLOAT) (A-H,O-Z)
PARAMETER (TOLL=1E-16 FLOAT)
DIMENSION P(3,3),PINV(3,3) P ≡ P : (3,3) matrix

262 F1=P(2,2)*P(3,3)-P(2,3)*P(3,2)
Lines 262-265: calculation of the determinant of a
(3,3) matrix, see eq. (F.7)

F2=P(2,3)*P(3,1)-P(2,1)*P(3,3)
F3=P(2,1)*P(3,2)-P(2,2)*P(3,1)

265 DET=P(1,1)*F1+P(1,2)*F2+P(1,3)*F3 DET ≡ det(P) computed as in eq. (F.7)
IF(ABS(DET).LT.TOLL)THEN If |det(P)| < 10−15, print an error in the output file
CALL ERRVRS(1,’MINV3 ’, and stop the program (because the inverse matrix
*’THE DETERMINANT OF THE DIRECT LATTICE VECTORS IS VERY SMALL’) cannot be safely calculated)
ELSE Else, compute the inverse of the (3,3) input matrix P

270 DETI=1. FLOAT/DET

Lines 270-282: calculation of the inverse of a (3,3)

matrix, see eqs. (F.8) and (F.9)

PINV(1,1)=F1*DETI
PINV(2,1)=F2*DETI
PINV(3,1)=F3*DETI
F1=P(1,1)*DETI
F2=P(1,2)*DETI
F3=P(1,3)*DETI
PINV(1,2)=F3*P(3,2)-F2*P(3,3)
PINV(2,2)=F1*P(3,3)-F3*P(3,1)
PINV(3,2)=F2*P(3,1)-F1*P(3,2)
PINV(1,3)=F2*P(2,3)-F3*P(2,2)
PINV(2,3)=F3*P(2,1)-F1*P(2,3)

282 PINV(3,3)=F1*P(2,2)-F2*P(2,1) PINV ≡ P−1 : (3,3) matrix
ENDIF
RETURN

285 END

Table F.6: Code and description of subroutine MINV3 (libx5 com.f)

The determinant of a matrix

P =

p11 p12 p13

p21 p22 p23

p31 p32 p33

 (F.6)

is computed as follows:

det(P) = p11[p22p33 − p23p32︸ ︷︷ ︸
= f1

]− p12[p21p33 − p23p31︸ ︷︷ ︸
=−f2

] + p13[p21p32 − p22p31︸ ︷︷ ︸
= f3

]

= p11f1 + p12f2 + p13f3

(F.7)

To compute the inverse of a (3,3) matrix the following procedure has to be followed:

1. Compute the transpose of the matrix P→ tP =

p11 p21 p31

p12 p22 p32

p13 p23 p33

2. Compute the matrix of cofactors of P→ A =

p22p33 − p32p23 p32p13 − p12p33 p12p23 − p22p13

p31p23 − p21p33 p11p33 − p31p13 p21p13 − p11p23

p21p32 − p31p22 p31p12 − p11p32 p11p22 − p21p12

which can be rewritten, using (F.7): A =

f1 p32p13 − p12p33 p12p23 − p22p13

f2 p11p33 − p31p13 p21p13 − p11p23

f3 p31p12 − p11p32 p11p22 − p21p12

375

F.2. MINV3 (libx5 com.f) Appendix F. Documentation of some CRYSTAL core subroutines

3. Divide A by det(P)→ P−1 =
1

det(P)

f1 p32p13 − p12p33 p12p23 − p22p13

f2 p11p33 − p31p13 p21p13 − p11p23

f3 p31p12 − p11p32 p11p22 − p21p12

 (F.8)

So that the inverse matrix P−1 has the following components:

P−1
11 = f1/det(P)

P−1
21 = f2/det(P)

P−1
31 = f3/det(P)

P−1
12 = [p32p13 − p12p33]/det(P)

P−1
22 = [p11p33 − p31p13]/det(P)

P−1
32 = [p31p12 − p11p32]/det(P)

P−1
13 = [p12p23 − p22p13]/det(P)

P−1
23 = [p21p13 − p11p23]/det(P)

P−1
33 = [p11p22 − p21p12]/det(P)

(F.9)

which corresponds to the calculations in lines 270-282 of the subroutine MINV3 previously reported (see
Table F.6).

NOTE: the determinant of a (3,3) matrix is equal to the 3-dimensional volume defined by the three
vectors whose components are the row-by-row components of the matrix itself

376

Appendix F. Documentation of some CRYSTAL core subroutines F.3. INV123 (libx4 com.f)

F.3 Subroutine INV123 (libx4 com.f)

Input : (3,3) matrix PARET ; (3,3) matrix P2INV ; real number VOL1 ; LDIM = INF(10) = system
dimensionality.
The subroutine modifies the input values of P2INV and VOL1, depending on the dimension LDIM of the
system, so that P2INV matrix returns the inverse of the input matrix PARET, and VOL1 the volume of
the system.

Note: PARET is a (3,3) matrix (in which only (LDIM,LDIM) elements are initialized) containing row-
by-row the direct lattice vectors of the primitive cell (in cartesian components) in Bohr units.

PARET MATRIX:
(3D CASE) PARET(1X) PARET(1Y) PARET(1Z)

PARET(2X) PARET(2Y) PARET(2Z)

PARET(3X) PARET(3Y) PARET(3Z)

(2D CASE) PARET(1X) PARET(1Y)

PARET(2X) PARET(2Y)

(1D CASE) PARET(1X)

line SUBROUTINE INV123: defined in libx4 com.f Crystal version: SVN DEV1218

208 SUBROUTINE INV123(PARET,P2INV,VOL1,LDIM) VOL1 ≡ v : volume, LDIM ≡ D dimension of the system
USE NUMBERS
IMPLICIT REAL(FLOAT) (A-H,O-Z)
PARAMETER (TOLL=1E-16 FLOAT)
DIMENSION PARET(3,3),P2INV(3,3) PARET ≡ a : (3,3) matrix, P2INV ≡ a−1 : (3,3) matrix

213 IF(LDIM.EQ.0)THEN If D = 0, v = 1
VOL1=1. FLOAT
ELSE

216 GOTO (3,4,5),LDIM
217 3 VOL1=PARET(1,1) Else if D = 1, v = a11

IF(ABS(VOL1).LT.TOLL)GOTO 999 if |v| < 10−15 print an error in the output file and exit

P2INV(1,1)=1. FLOAT/VOL1 else, P2INV(1,1) ≡ a−1
11 = 1/v = 1/a11

RETURN and return
221 4 VOL1=PARET(1,1)*PARET(2,2)-PARET(1,2)*PARET(2,1) Else if D = 2, v = a11a22 − a12a21

IF(ABS(VOL1).LT.TOLL)GOTO 999 if |v| < 10−15 print an error in the output file and exit
223 DETI=1. FLOAT/VOL1 else, compute the inverse of the (3,3) input matrix a as

P2INV(1,1)=PARET(2,2)*DETI it was a (2,2) matrix, see eq. (F.12)
P2INV(2,1)=-PARET(2,1)*DETI
P2INV(1,2)=-PARET(1,2)*DETI lines 223-227: calculation of the inverse of a (2,2)

227 P2INV(2,2)=PARET(1,1)*DETI matrix, see eq. (F.12)
RETURN and return

229 5 CALL MINV3(PARET,P2INV,VOL1) Else if D = 3, CALL MINV3 (see section F.2)
RETURN and return
999 CALL ERRVRS(1,’INV123’,
*’THE DETERMINANT OF THE DIRECT LATTICE VECTORS IS VERY SMALL’)
ENDIF Endif
RETURN

235 END

Table F.8: Code and description of subroutine INV123 (libx4 com.f)

If LDIM = 1, PARET ≡ a is a (3,3) matrix with the last two rows and the last two columns of zeros,
so that it can be considered a number PARET(1,1) = a11. In this case the volume is v = a11 (stored in
VOL1), the inverse is a−1

11 = 1/a11 (stored in P2INV(1,1) element).

If LDIM = 2, PARET ≡ a is a (3,3) matrix with the last row and the last column of zero, i.e. it can be
considered as a (2,2) matrix:

a =

(
a11 a12

a21 a22

)
(F.10)

so that the volume (stored in VOL1) is equal to the determinant of matrix a:

v = det(a) = a11a22 − a12a21 (F.11)

377

F.3. INV123 (libx4 com.f) Appendix F. Documentation of some CRYSTAL core subroutines

and the inverse a−1 is computed as

a−1 =
1

v

(
a22 −a12

−a21 a11

)
(F.12)

and stored in P2INV matrix.

If LDIM = 3, the subroutine MINV3 is called (see Section F.2), so that the determinant and the inverse
of the (3,3) input matrix is calculated, i.e. the inverse of the (3,3) matrix PARET ≡ a (stored in P2INV)
and its determinant (stored in VOL1) are computed.

378

Appendix F. Documentation of some CRYSTAL core subroutines F.4. PARLAT(C,D,A) (libx6 com.f)

F.4 Subroutine PARLAT(C,D,A) (libx6 com.f)

Input : (3,3) matrix C ; (3,3) matrix D ; 7-elements vector A.
The subroutine modifies the value of the input matrix C and of the input vector A, in particular (i) it
computes the lengths of the 3 vectors whose components are stored in each row of the matrix C, and it
saves the lengths of these vectors in the three elements A(k) with k = 1, 2, 3, (ii) it computes the three
fundamental angles between the three vectors and saves them in the three elements A(k) with k = 4, 5, 6,
and finally (iii) it computes the 3-dimensional volume defined by the three row-by-row vectors in matrix
C, saving the volume value in the element A(7), and it computes the inverse of the (3,3) matrix C,
storing this inverse in the (3,3) matrix D.

line SUBROUTINE PARLAT: defined in libx6 com.f Crystal version: SVN DEV1218

240 SUBROUTINE PARLAT(C,D,A)
USE NUMBERS
USE PARINF MODULE
IMPLICIT REAL(FLOAT) (A-H,O-Z)
DIMENSION C(3,3),D(3,3),A(7) Declaration of: (3,3) matrix C ; (3,3) matrix D ; 7-elements vector A
DO 2 I=1,3

246 2 A(I)=SQRT(C(I,1)*C(I,1)+C(I,2)*C(I,2)+C(I,3)*C(I,3)) Computation of the lattice parameters A(1), A(2), A(3), see eq. (F.15)
247 A(4)=ACOS((C(2,1)*C(3,1)+C(2,2)*C(3,2)+C(2,3)*C(3,3)) Computation of angle α = A(4) between 2-th and 3-th vectors of C matrix, see eq. (F.20)

*/(A(2)*A(3)))*PAR(33) PAR(33) = 1./PAR(3) ; PAR(3) = conversion factor degrees-radians = π/180.
249 A(5)=ACOS((C(1,1)*C(3,1)+C(1,2)*C(3,2)+C(1,3)*C(3,3)) Computation of angle β = A(5) between 1-th and 3-th vectors of C matrix, see eq. (F.21)

*/(A(1)*A(3)))*PAR(33)
251 A(6)=ACOS((C(1,1)*C(2,1)+C(1,2)*C(2,2)+C(1,3)*C(2,3)) Computation of angle γ = A(6) between 1-th and 2-th vectors of C matrix, see eq. (F.22)

*/(A(1)*A(2)))*PAR(33)
253 CALL INV123(C,D,A(7),INF(10)) Calculation of volume = A(7) defined by the row-by-row vectors in matrix C

RETURN (with subroutine INV123, see section F.3)
255 END

Table F.10: Code and description of subroutine PARLAT (libx6 com.f)

Given the (3,3) input matrix C defined as

C =

c11 c12 c13

c21 c22 c23

c31 c32 c33

 =

c1

c2

c3

 (F.13)

which, from a physical point of view, represents the direct lattice vectors of the primitive cell in cartesian
components (PARLAT matrix), the following quantities are computed and saved in the input A vector:

A(1) =
√
c2

11 + c2
12 + c2

13 A(2) =
√
c2

21 + c2
22 + c2

23 A(1) =
√
c2

31 + c2
32 + c2

33
(F.14)

which can be resumed in the following equation

A(i) =
√
c2
i1 + c2

i2 + c2
i3 with i = 1, 2, 3 (F.15)

and are the lengths of the three vectors c1, c2 and c3 whose components are stored in each line of
the matrix C. From a physical point of view, these computed lengths are the lengths of the lattice
parameters in the direct space, and the matrix C contains in each row a direct lattice vector. Then, in
lines 247-252, the three fundamental angles between the three vectors are computed, starting from the
following equation which relates the 3-dimensional vectors a and b with the angle âb between them

a · b = ‖a‖‖b‖cos(âb) (F.16)

where ‖a‖ and ‖b‖ are the lengths of the two vectors. In the same way,

angle α between c2 and c3 : cosα =
c2 · c3

‖c2‖‖c3‖
=
c21c31 + c22c32 + c23c33

‖c2‖‖c3‖
(F.17)

angle β between c1 and c3 : cosβ =
c1 · c3

‖c1‖‖c3‖
=
c11c31 + c12c32 + c13c33

‖c1‖‖c3‖
(F.18)

379

F.4. PARLAT(C,D,A) (libx6 com.f) Appendix F. Documentation of some CRYSTAL core subroutines

angle γ between c1 and c2 : cosγ =
c1 · c2

‖c1‖‖c2‖
=
c11c21 + c12c22 + c13c23

‖c1‖‖c2‖
(F.19)

Since the lengths of the vectors involved have been previously computed at line 246, they can be set
equal to ‖c1‖ = A(1), ‖c2‖ = A(2), ‖c3‖ = A(3), so that the angles α, β and γ can be computed from
the previous equations as:

angle α between c2 and c3 : α = A(4) = arcos

(
c21c31 + c22c32 + c23c33

A(2)A(3)

)
[degrees] (F.20)

angle β between c1 and c3 : β = A(5) = arcos

(
c11c31 + c12c32 + c13c33

A(1)A(3)

)
[degrees] (F.21)

angle γ between c1 and c2 : γ = A(6) = arcos

(
c11c21 + c12c22 + c13c23

A(1)A(2)

)
[degrees] (F.22)

These angles are saved in the 4-th, 5-th and 6-th elements of the vector A as indicated in the previous
equations (F.20)-(F.22).
Finally, at line 253 the subroutine INV123 is called (see Section F.3) with the following input parameters:

INV123(C,D,A(7),INF(10))

so that it modifies and returns the following quantities (depending on the system dimensionality INF(10)

given in input):

1. (3,3) matrix D = C−1 : inverse of the matrix C

2. real value A(7) : value of the 3-dimensional volume defined by the row-by-row vectors in matrix
C (i.e. by the three vectors ci, i = 1, 2, 3) in a 3-dimensional space

380

Appendix F. Documentation of some CRYSTAL core subroutines F.5. MCM (libx5 com.f)

F.5 Subroutine MCM (libx5 com.f)

Input : integers IS1, IS2, IS3 (shrinking factors) ; integers IS, ISJ1, ISJ2, ISJ3.
The subroutine modifies the values of the integers IS, ISJ1, ISJ2, ISJ3 on the base of the values of the
integers IS1, IS2, IS3 representing the shrinking factors.
The variable IS returns the maximum common multiple (mcm) among the shrinking factors IS1, IS2, IS3,
while ISJ1 = mcm(IS1,IS2,IS3)/IS1, ISJ2 = mcm(IS1,IS2,IS3)/IS2 and ISJ3 = mcm(IS1,IS2,IS3)/IS3.

line SUBROUTINE MCM: defined in libx5 com.f Crystal version: SVN DEV1218

238 SUBROUTINE MCM(IS1,IS2,IS3,IS,ISJ1,ISJ2,ISJ3)
USE NUMBERS
IMPLICIT REAL(FLOAT) (A-H,O-Z)
IS=IS1
N=IS2

243 1 DO 2 L=1,N BEGIN Loop to find the mcm among IS1, IS2 and IS3
M=IS*L
IF(MOD(M,N).EQ.0)GOTO 3
2 CONTINUE See text and (F.23) for the description of the algorithm
3 IS=M IS = M = mcm(IS1,IS2,IS3)
IF(N.EQ.IS3)GOTO 5
N=IS3

250 GOTO 1 END Loop to find the mcm among IS1, IS2 and IS3
5 ISJ1=M/IS1 ISJ1 = mcm(IS1,IS2,IS3)/IS1
ISJ2=M/IS2 ISJ2 = mcm(IS1,IS2,IS3)/IS1
ISJ3=M/N ISJ3 = mcm(IS1,IS2,IS3)/IS3
RETURN

255 END

Table F.12: Code and description of subroutine MCM (libx5 com.f)

The main part of this subroutine is the algorithm performed in lines 243-250 to find the maximum
common multiple (mcm) among the shrinking factors IS1, IS2, IS3. This is a simple algorithm and can
be schematized with a structured code paradigm as follows:

(F.23)

After that the maximum common multiple among the shrinking factors has been computed and stored
in the variable IS, other three variables are computed as follows:

ISJi =
mcm(IS1,IS2,IS3)

ISi
i = 1, 2, 3 (F.24)

The four integers IS, ISJ1, ISJ2, ISJ3 are passed as argument in the function and are modified by the
function itself, so they have an in-out intent and they are modified after the subroutine mcm is called in
the code.

381

F.6. VRSLAT (both1.f) Appendix F. Documentation of some CRYSTAL core subroutines

F.6 Subroutine VRSLAT (both1.f)

Input : (3,nk) matrix JJ containing the shrank coordinates of the points in the reciprocal space (where
nk is the number of k points considered in the reciprocal space) and shrinking factors IS1, IS2, IS3 have
to be previously initialized and well-defined.
The subroutine modifies (i) the vector LATVRS(NKF), where NKF is the number of k points, (ii) the
integer LATSUM, (iii) the following INF parameters: INF(88), INF(89), INF(90), INF(91), and (iv) the
vectors of real variables COSSMA(INF(88)) and SINSMA(INF(88)).

line SUBROUTINE VRSLAT: defined in both1.f Crystal version: SVN DEV1218

5074 SUBROUTINE VRSLAT
USE NUMBERS
USE PARAME MODULE
USE PARINF MODULE
USE RETIC MODULE
USE MEMORY USE
IMPLICIT REAL(FLOAT) (A-H,O-Z)
CHARACTER(LEN=6),PARAMETER :: ZNAMZ=’VRSLAT’
LATSUM=0

5083 DO K=1,NKF BEGIN loop on NKF = total number of k points
LATVRS(K)=0 LATVRS(K) = 0 if the K-th k point is complex
IF(MOD(JJ(1,K)*2,IS1).NE.0)CYCLE JJ(1,K) = kx for the K-th k point, IS1 = nx, see condition (F.28)
IF(MOD(JJ(2,K)*2,IS2).NE.0)CYCLE JJ(2,K) = ky for the K-th k point, IS2 = ny , see condition (F.29)
IF(MOD(JJ(3,K)*2,IS3).EQ.0)THEN JJ(3,K) = kz for the K-th k point, IS3 = nz , see condition (F.30)
LATVRS(K)=1 LATVRS(K) = 1 if the K-th k point is real
LATSUM=LATSUM+1 Increment LATSUM if the K-th k point is real
ENDIF

5091 ENDDO END loop on NKF = total number of k points
IF(LATSUM.EQ.NKF) THEN If LATSUM = NKF, then all the k points are real
INF(81)=1 INF(81) 6= 0, all k points are real
ELSE Else
INF(81)=0 INF(81) = 0, there is at least one k complex point
ENDIF Endif
CALL MCM(IS1,IS2,IS3,ISM,ISJ1,ISJ2,ISJ3) Computes the MCM among IS1, IS2 and IS3, see Section F.5
IF(ALLOCATED(COSSMA)) THEN
CALL CRYDEALLOC(COSSMA,ZNAMZ,’COSSMA’)
CALL CRYDEALLOC(SINSMA,ZNAMZ,’SINSMA’)
ENDIF
CALL CRYALLOC(COSSMA,ISM,ZNAMZ,’COSSMA’)
CALL CRYALLOC(SINSMA,ISM,ZNAMZ,’SINSMA’) Modified by MCM subroutine, see Section F.5:
INF(88)=ISM INF(88) = mcm(IS1,IS2,IS3)
INF(89)=ISJ1 INF(89) = mcm(IS1,IS2,IS3)/IS1
INF(90)=ISJ2 INF(90) = mcm(IS1,IS2,IS3)/IS2
INF(91)=ISJ3 INF(91) = mcm(IS1,IS2,IS3)/IS3
VRS=PAR(34)/ISM PAR(34) = 2·PAR(1) = 2π → VRS = 2π/mcm(IS1,IS2,IS3)
COSSMA(1)=1. FLOAT COSSMA(1) = 1 (K = 0 first k point : k = (0, 0, 0))
SINSMA(1)=0. FLOAT SINSMA(1) = 0 (K = 0 first k point : k = (0, 0, 0))
DO K=1,ISM-1 BEGIN Loop on K=1,mcm(IS1,IS2,IS3)-1
WRS=K*VRS
COSSMA(K+1)=COS(WRS) COSSMA(K+1) = COS(2πK/mcm(IS1,IS2,IS3))
SINSMA(K+1)=SIN(WRS) SINSMA(K+1) = SIN(2πK/mcm(IS1,IS2,IS3))
ENDDO END Loop on K=1,mcm(IS1,IS2,IS3)-1
RETURN
END

Table F.14: Code and description of subroutine VRSLAT (both1.f)

Consider a point g in the direct space and a point k in the reciprocal space defined as

g =
3∑
i=1

giai and k =
3∑
i=1

kibi i = 1, 2, 3 (= x, y, z) (F.25)

where ai and bi are the primitive lattice vectors in the direct and in the reciprocal space, respectively,
while gi ∈ N and ki are their components, respectively. A point k in the reciprocal space is defined real
or complex depending on the phase associated to it, that is written as

exp

[
i g ·

(
k

nk

)]
= exp

(
i

3∑
i=1

3∑
j=1

gi kj
nj

ai · bj
)

= exp

(
i

3∑
i=1

3∑
j=1

gi kj
nj

2πδij

)

382

Appendix F. Documentation of some CRYSTAL core subroutines F.6. VRSLAT (both1.f)

= exp

(
2π i

3∑
i=1

gi ki
ni

)
= exp

[
2π i

(
gx kx
nx

+
gy ky
ny

+
gz kz
nz

)]
= cos

[
π

(
gx

2kx
nx

+ gy
2ky
ny

+ gz
2kz
nz

)]
+ i sin

[
π

(
gx

2kx
nx

+ gy
2ky
ny

+ gz
2kz
nz

)]
(F.26)

where nk is the vector that defines the number of points in which the first Brillouine zone is sampled
along the three space directions, i.e. nk = (nx, ny, nz).
Since the terms gi are integers (gi ∈ N, i = x, y, z), the argument of the complex part in (F.26) is a
multiple of iπ if the terms 2ki/ni (i = x, y, z) are integer numbers. In this case, we can write

2ki
ni

= mi ∈ N (i = x, y, z) → sin

(
π

3∑
i=1

gi
2ki
mi

)
= 0 (F.27)

so that the complex part in (F.26) is zero, and the phase associated to the k point is real, so that the
correspondent k point is real. Otherwise, if the three conditions in (F.27) are not satisfied, the phase
associated to the k point is complex, so that the correspondent k point is complex.
The three conditions (F.27) about the phase factor are checked in lines 5083-5091, with a loop over the
total number of points in the reciprocal space. Per each k point, the following algorithm is applied:

DO K = 1,NKF

(i) if mod

(
2kx
nx

)
6= 0 → LATVRS(K) = 0 → K-th point k ∈ C (F.28)

(ii) if mod

(
2ky
ny

)
6= 0 → LATVRS(K) = 0 → K-th point k ∈ C (F.29)

(iii) if mod

(
2kz
nz

)
= 0 →

{
LATVRS(K) = 1

LATSUM++
→ K-th point k ∈ R (F.30)

ENDDO

In this way, if one of the ratios 2ki/ni (i = x, y, z) is not an integer, the entire sum in the arguments
in (F.26) is not an integer, then the complex part is not equal to zero and the K-th k point is complex
(LATVRS(K) = 0). Otherwise, if all the three ratios 2ki/ni (i = x, y, z) are integers, the sum in the
arguments in (F.26) is an integer, then the complex part is equal to zero, and the K-th k point is real
(LATVRS(K) = 1). The variable LATSUM counts the number of real k points.
Finally, the subroutine computes the cosine and the sine value associated at the k points using the

383

F.7. EXPU (both4.f) Appendix F. Documentation of some CRYSTAL core subroutines

F.7 Subroutine EXPU (both4.f)

Input : integers J1, J2 and J3 (components of the k point vector in the reciprocal space : J1 = JJ(1,

K) = kx(K), J2 = JJ(2, K) = ky(K) and J3 = JJ(3, K) = kz(K), with K = 1, ..., nk where nk is the total
number of k points in the reciprocal space and JJ is the (3, nk) matrix containing the shrank coordinates
of the correspondent k points in the reciprocal space).
The subroutine modifies the (2, INF(28)) matrix EX, where INF(28) is the maximum number of g vectors
for bielectronic integrals (which is set equal to INF(79) (= number of direct lattice vectors available) in
locali.f library, before calling the subroutine EXPU).
Notes: (i) the parameters INF(88), INF(89), INF(90) and INF(91) used here have been previously modified
by the VRSLAT subroutine, see Section F.6, (ii) the vectors COSSMA and SINSMA here used have been
previously initialized in the VRSLAT subroutine, see Section F.6.

Crystal version: SVN DEV1218

line SUBROUTINE EXPU: defined in both4.f Complex case of subroutine EXPT (see Section F.8)

5778 SUBROUTINE EXPU(J1,J2,J3)
USE NUMBERS
USE PARAME MODULE
USE PARINF MODULE
USE GVECT MODULE
USE RETIC MODULE
USE EXPO MODULE INF(28) = max g vectors for biel. integrals (in locali is set = INF(79))
IMPLICIT REAL(FLOAT) (A-H,O-Z) INF(88)-INF(91) modified by VRSLAT subroutine, see Section F.6
J1VRS=J1*INF(89) J1VRS = J1·INF(89) = J1·mcm(IS1,IS2,IS3)/IS1
J2VRS=J2*INF(90) J2VRS = J2·INF(90) = J2·mcm(IS1,IS2,IS3)/IS2
J3VRS=J3*INF(91) J3VRS = J3·INF(91) = J3·mcm(IS1,IS2,IS3)/IS3
ISM=INF(88) ISM = INF(88) = mcm(IS1,IS2,IS3)
IQ=ISM*8192 IQ = mcm(IS1,IS2,IS3)·8192
EX(1,1)=1. FLOAT COSSMA(1) = 1 → EX(1,1) = 1
EX(2,1)=0. FLOAT SINSMA(1) = 0 → EX(2,1) = 0
DO MG=2,INF(28),2 BEGIN Loop on MG = 2,INF(28),2 (direct lattice vectors available)

5794 JL=MOD(J1VRS*LG(1,MG)+J2VRS*LG(2,MG)+ Computation of index JL, see eq. (F.35)
*J3VRS*LG(3,MG)+IQ,ISM)
VRS=COSSMA(JL+1)
WRS=SINSMA(JL+1)
EX(1,MG)=VRS Initialization of EX(1,MG) and EX(2,MG), see eq.s (F.36)-(F.37)
EX(2,MG)=WRS
EX(1,MG+1)=VRS Initialization of EX(1,MG+1) and EX(2,MG+1), see eq.s (F.36)-(F.37)
EX(2,MG+1)=-WRS
ENDDO END Loop on MG = 2,INF(28),2 (direct lattice vectors available)
RETURN

5803 END

Table F.16: Code and description of subroutine EXPU (both4.f)

The subroutine initializes the matrix EX in the following way:

EX(1,1) = COSSMA(1) = 1 (F.31)

EX(2,1) = SINSMA(1) = 0 (F.32)

Considering the argument of the cosine and sine functions related to the exponents

exp

[
i g ·

(
k

nk

)]
= cos

[
π

(
gx

2kx
nx

+ gy
2ky
ny

+ gz
2kz
nz

)]
+ i sin

[
π

(
gx

2kx
nx

+ gy
2ky
ny

+ gz
2kz
nz

)]
(F.33)

they can be rewritten as follows

π

(
gx

2kx
nx

+ gy
2ky
ny

+ gz
2kz
nz

)
=

2π

m

(
gx kx

m

nx
+ gy ky

m

ny
+ gz kz

m

nz

)
(F.34)

where m = mcm(IS1,IS2,IS3) = mcm(nx, ny, nz). The index JL is computed at line 5794 with the equation

JL(g) = mod

(
kx gx

m

nx
+ ky gy

m

ny
+ kz gz

m

nz
+ 8192 ·m,m

)
∀ g (F.35)

384

Appendix F. Documentation of some CRYSTAL core subroutines F.7. EXPU (both4.f)

where g is the number of the direct lattice vectors available. The matrix EX is initialized as

EX(1,g) = COSSMA[JL(g)+1] EX(1,g+1) = COSSMA[JL(g)+1] (F.36)

EX(2,g) = SINSMA[JL(g)+1] EX(2,g+1) = −SINSMA[JL(g)+1] (F.37)

where COSSMA and SINSMA are vectors computed in subroutine VRSLAT (see Section F.6).

385

F.8. EXPT (both4.f) Appendix F. Documentation of some CRYSTAL core subroutines

F.8 Subroutine EXPT (both4.f)

Input : integers J1, J2 and J3 (components of the k point vector in the reciprocal space : J1 = JJ(1, K)

= kx(K), J2 = JJ(2, K) = ky(K) and J3 = JJ(3, K) = kz(K), with K = 1, ..., nk where nk are the number
of k points in the reciprocal space and JJ is the (3, nk) matrix containing the shrank coordinates of the
correspondent k points in the reciprocal space).
The subroutine modifies the (2, INF(28)) matrix EX, where INF(28) is the maximum number of g vectors
for bielectronic integrals (which is set equal to INF(79) (= number of direct lattice vectors available) in
locali.f library, before calling the subroutine EXPT).
Notes: (i) the parameters INF(88), INF(89), INF(90) and INF(91) used here have been previously modified
by the VRSLAT subroutine, see Section F.6, (ii) the vectors COSSMA and SINSMA here used have been
previously initialized in the VRSLAT subroutine, see Section F.6.

Crystal version: SVN DEV1218

line SUBROUTINE EXPT: defined in both4.f Real case of subroutine EXPU (see Section F.7)

5756 SUBROUTINE EXPT(J1,J2,J3)
USE NUMBERS
USE PARAME MODULE
USE PARINF MODULE
USE GVECT MODULE
USE RETIC MODULE
USE EXPO MODULE INF(28) = max g vectors for biel. integrals (in locali is set = INF(79))
IMPLICIT REAL(FLOAT) (A-H,O-Z) INF(88)-INF(91) modified by VRSLAT subroutine, see Section F.6
J1VRS=J1*INF(89) J1VRS = J1·INF(89) = J1·mcm(IS1,IS2,IS3)/IS1
J2VRS=J2*INF(90) J2VRS = J2·INF(90) = J2·mcm(IS1,IS2,IS3)/IS2
J3VRS=J3*INF(91) J3VRS = J3·INF(91) = J3·mcm(IS1,IS2,IS3)/IS3
ISM=INF(88) ISM = INF(88) = mcm(IS1,IS2,IS3)
IQ=ISM*8192 IQ = mcm(IS1,IS2,IS3)·8192
EX(1,1)=1. FLOAT COSSMA(1) = 1 → EX(1,1) = 1
DO MG=2,INF(28),2 BEGIN Loop on MG = 2,INF(28),2 (direct lattice vectors available)

5771 JL=MOD(J1VRS*LG(1,MG)+J2VRS*LG(2,MG)+ Computation of index JL, see eq. (F.42)
*J3VRS*LG(3,MG)+IQ,ISM)
VRS=COSSMA(JL+1)
EX(1,MG)=VRS Initialization of EX(1,MG) see eq. (F.43)
EX(1,MG+1)=VRS Initialization of EX(1,MG+1) see eq. (F.43)
ENDDO END Loop on MG = 2,INF(28),2 (direct lattice vectors available)
RETURN

5777 END

Table F.18: Code and description of subroutine EXPT (both4.f)

The subroutine initializes the matrix EX in the following way:

EX(1,1) = COSSMA(1) = 1 (F.38)

The subroutine EXPT is called when considering real k points (contrary to the subroutine EXPU, which
is called for complex k points, see Section F.7), so that the complex part in the following exponent
expression

exp

[
i g ·

(
k

nk

)]
= cos

[
π

(
gx

2kx
nx

+ gy
2ky
ny

+ gz
2kz
nz

)]
+ i sin

[
π

(
gx

2kx
nx

+ gy
2ky
ny

+ gz
2kz
nz

)]
(F.39)

is equal to zero (since the sine function is equal to zero for real k points). Equation (F.39) then becomes,
in the case of real k points:

exp

[
i g ·

(
k

nk

)]
= cos

[
π

(
gx

2kx
nx

+ gy
2ky
ny

+ gz
2kz
nz

)]
(F.40)

The argument of the cosine function in the previous equation can be rewritten as follows

π

(
gx

2kx
nx

+ gy
2ky
ny

+ gz
2kz
nz

)
=

2π

m

(
gx kx

m

nx
+ gy ky

m

ny
+ gz kz

m

nz

)
(F.41)

386

Appendix F. Documentation of some CRYSTAL core subroutines F.8. EXPT (both4.f)

where m = mcm(IS1,IS2,IS3) = mcm(nx, ny, nz). The index JL is computed at line 5771 following the
equation

JL(g) = mod

(
kx gx

m

nx
+ ky gy

m

ny
+ kz gz

m

nz
+ 8192 ·m,m

)
∀ g (F.42)

where g is the number of the direct lattice vectors available. The matrix EX is initialized as

EX(1,g) = COSSMA[JL(g)+1] EX(1,g+1) = COSSMA[JL(g)+1] (F.43)

where COSSMA and SINSMA are vectors computed in subroutine VRSLAT (see Section F.6).

387

F.9. SYMHEQ (libxa.f) Appendix F. Documentation of some CRYSTAL core subroutines

F.9 Subroutine SYMHEQ (libxa.f)

Input : NSIZE·NSIZE vector A (representing a (NSIZE,NSIZE) real-elements square matrix) with float
type elements, and integer NSIZE (which is equal to the number or rows = number of columns of the
real-elements square matrix associated to the input vector A).
The subroutine modifies the vector A, by making the correspondent matrix symmetric.

Crystal version: SVN DEV1218

line SUBROUTINE SYMHEQ: defined in libxa.f Real case of subroutine SYMHER (see Section F.10)

2 SUBROUTINE SYMHEQ(A,NSIZE) NSIZE ≡ n (number of rows and columns of the matrix Am)
USE NUMBERS
IMPLICIT REAL(FLOAT) (A-H,O-Z)
DIMENSION A(*)
MM=0 MM ≡ k = 0
DO M=2,NSIZE BEGIN Loop on m = 2,n (L1)
MM=MM+NSIZE k = k + n
NN=M NN ≡ s = m
DO N=1,M-1 BEGIN Loop on N = 1,m− 1 (L2)
A(MM+N)=A(NN) A(k +N) = A(s)
NN=NN+NSIZE s = s+ n
ENDDO END Loop on N = 1,m− 1
ENDDO END Loop on m = 2,n
RETURN

16 END

Table F.20: Code and description of subroutine SYMHEQ (libxa.f)

Example

Suppose that matrix Am is a real (3,3) matrix → n = 3
The matrix can be written in the following way:

Am =

a11 a12 a13

a21 a22 a23

a31 a32 a33

 (F.44)

and it can be rearranged as a 9-elements vector as

A =
(
a11 a12 a13 a21 a22 a23 a31 a32 a33

)
(F.45)

The subroutine SYMHEQ treats the matrix Am as a vector, in the same way as described previously in
expression (F.45) for the case of a real (3,3) matrix. The input vector A is then rearranged so that the
correspondent matrix Am becomes symmetric, and the result is overwritten in the same input vector A.
Let us follow the loops L1 and L2 (using the notation reported in Table F.20), to understand the logic
of this rearrangement:

k = 0

L1: m = 2

k = k + n = 0 + 3 = 3

s = m = 2

L2: N = 1

A(4) = A(2) −→ A =
(
a11 a12 a13 a12 a22 a23 a31 a32 a33

)
s = s+ n = 2 + 3 = 5

L1: m = 3

k = k + n = 3 + 3 = 6

s = m = 3

L2: N = 1

A(7) = A(3) −→ A =
(
a11 a12 a13 a12 a22 a23 a13 a32 a33

)
s = s+ n = 3 + 3 = 6

L2: N = 2

A(8) = A(6) −→ A =
(
a11 a12 a13 a12 a22 a23 a13 a23 a33

)
388

Appendix F. Documentation of some CRYSTAL core subroutines F.9. SYMHEQ (libxa.f)

s = s+ n = 6 + 6 = 12

Therefore, the output of the subroutine is

A =
(
a11 a12 a13 a12 a22 a23 a13 a23 a33

)
(F.46)

which can be read more easily if reshaped in a (3,3) matrix as follows:

Am =

a11 a12 a13

a12 a22 a23

a13 a23 a33

 (F.47)

which is a symmetric matrix (i.e. aij = aji with i = 1, 2, 3 and j = 1, 2, 3) constructed on the base of
the original matrix upper triangular elements (the original (input) matrix form is reported in (F.44)).

389

F.10. SYMHER (libxa.f) Appendix F. Documentation of some CRYSTAL core subroutines

F.10 Subroutine SYMHER (libxa.f)

Input : 2·NSIZE·NSIZE vector A (representing a (NSIZE,NSIZE) complex-elements square matrix) with
float type elements, and integer NSIZE (which is equal to the number or rows = number of columns of
the complex-elements square matrix associated to the input vector A).
The subroutine modifies the vector A, by making the correspondent matrix Hermitian.

Crystal version: SVN DEV1218

line SUBROUTINE SYMHER: defined in libxa.f Complex case of subroutine SYMHEQ (see Section F.9)

18 SUBROUTINE SYMHER(A,NSIZE) NSIZE ≡ n (number of rows and columns of the matrix Am)
USE NUMBERS
IMPLICIT REAL(FLOAT) (A-H,O-Z)
DIMENSION A(*)
N2=NSIZE+NSIZE N2 = 2·NSIZE = 2n
MM=0 MM ≡ k = 0
DO M=2,NSIZE BEGIN Loop on m = 2,n (L1)
MM=MM+N2 k = k + 2n
NN=M+M NN ≡ s = 2m
LL=MM LL ≡ r = k
DO N=1,M-1 BEGIN Loop on N = 1,m− 1 (L2)
LL=LL+2 r = r + 2
A(LL-1)=A(NN-1) A(r − 1) = A(s− 1)
A(LL)=-A(NN) A(r) = −A(s)
NN=NN+N2 s = s+ 2n
ENDDO END Loop on N = 1,m− 1
ENDDO END Loop on m = 2,n
RETURN

36 END

Table F.22: Code and description of subroutine SYMHER (libxa.f)

Example

Suppose that matrix A is a complex (3,3) matrix → n = 3
The matrix can be written as the sum of two matrices, one with real elements and the other one with
the coefficients associated to the complex part, in the following way:

Am =

a11 + i ac,11 a12 + i ac,12 a13 + i ac,13

a21 + i ac,21 a22 + i ac,22 a23 + i ac,23

a31 + i ac,31 a32 + i ac,32 a33 + i ac,33

 =

a11 a12 a13

a21 a22 a23

a31 a32 a33

+ i

ac,11 ac,12 ac,13

ac,21 ac,22 ac,23

ac,31 ac,32 ac,33

 (F.48)

and it can be rearranged as a 18-elements vector as

A = (a11 ac,11 a12 ac,12 a13 ac,13 a21 ac,21 a22 ac,22 a23 ac,23

a31 ac,31 a32 ac,32 a33 ac,33) (F.49)

The subroutine SYMHER treats the matrix Am as a vector, in the same way as described previously in
expression (F.49) for the case of a complex (3,3) matrix. The input vector A is then rearranged so that
the correspondent matrix Am becomes Hermitian, and the result is overwritten in the same input vector
A. Let us follow the loops L1 and L2 (using the notation reported in Table F.22), to understand the
logic of this rearrangement:

k = 0

L1: m = 2

k = k + 2n = 0 + 2 · 3 = 6

s = 2m = 2 · 2 = 4

r = k = 6

L2: N = 1

r = r + 2 = 6 + 2 = 8

A(7) = A(3)

A(8) = −A(4)

→ A = (a11 ac,11 a12 ac,12 a13 ac,13 a12 −ac,12 a22 ac,22 a23 ac,23 a31 ac,31 a32 ac,32 a33 ac,33)

390

Appendix F. Documentation of some CRYSTAL core subroutines F.10. SYMHER (libxa.f)

s = s+ 2n = 4 + 6 = 8

L1: m = 3

k = k + 2n = 6 + 6 = 12

s = 2m = 2 · 3 = 6

r = k = 12

L2: N = 1

r = r + 2 = 12 + 2 = 14

A(13) = A(5)

A(14) = −A(6)

→ A = (a11 ac,11 a12 ac,12 a13 ac,13 a12 −ac,12 a22 ac,22 a23 ac,23 a13 −ac,13 a32 ac,32 a33 ac,33)

s = s+ 2n = 6 + 6 = 12

L2: N = 2

r = r + 2 = 14 + 2 = 16

A(15) = A(11)

A(16) = −A(12)

→ A = (a11 ac,11 a12 ac,12 a13 ac,13 a12 −ac,12 a22 ac,22 a23 ac,23 a13 −ac,13 a23 −ac,23 a33 ac,33)

s = s+ 2n = 12 + 6 = 18

Therefore, the output of the subroutine is

A = (a11 ac,11 a12 ac,12 a13 ac,13 a12 −ac,12 a22 ac,22 a23 ac,23 a13 −ac,13 a23 −ac,23 a33 ac,33)

which can be read more easily if reshaped in a (3,3) matrix as follows:

Am =

a11 + i ac,11 a12 + i ac,12 a13 + i ac,13

a12 − i ac,12 a22 + i ac,22 a23 + i ac,23

a13 − i ac,13 a23 − i ac,23 a33 + i ac,33

 =

a11 a12 a13

a12 a22 a23

a13 a23 a33

+ i

 ac,11 ac,12 ac,13

−ac,12 ac,22 ac,23

−ac,13 −ac,23 ac,33

which is a Hermitian matrix (i.e. aij = a∗ji with i = 1, 2, 3 and j = 1, 2, 3) constructed on the base of the
original matrix upper triangular elements (the original (input) matrix form is reported in (F.48)).

391

F.11. GENERATE SAED (geometry.f) Appendix F. Documentation of some CRYSTAL core subroutines

F.11 Subroutine GENERATE SAED (geometry.f)

Input : logical variable LOGIK for printing options (the value of this input variable now does not change
anything, but once upon a time if the input variable LOGIK = true, the output matrix SAED(1:9,1:NSAED)

will be printed in the output file: see line 3465 that is now commented).
The subroutine modifies the matrix SAED(1:9,1:NSAED), saving in it the NSAED symmetrized orthonor-
mal symmetry allowed elastic distortions, each of which is represented by a 9-element vector (regarded
as a (NDIM,NDIM) matrix) containing the components of the symmetry allowed elastic distortions.

line SUBROUTINE GENERATE SAED: defined in geometry.f Crystal version: SVN DEV1218

3381 SUBROUTINE GENERATE SAED(LOGIK)
CVRS TO GENERATE THE SYMMETRY ALLOWED ELASTIC DISTORTIONS - 22/03/2002
C..modified for crystallographic cell deformations and partial
C..optimization - MicCat (20/04/2006)
USE NUMBERS
USE PARINF MODULE
USE XYVDIM MODULE
USE PARAL1 MODULE
USE SAED MODULE
USE MEMORY OPT
IMPLICIT REAL(FLOAT) (A-H,O-Z)
LOGICAL LOGIK,LOGIL,LOGIM NOTE: LOGIK input variable is used to define LOGIL variable but
DIMENSION TMPV(9),UMPV(9),VRSV(9) LOGIL is not used in this the subroutine
PARAMETER (TOL=1E-4 FLOAT)
CALL EXTGRP EXTGRP: EXTEND THE GROUP BY ADDING THE INVERSION OPERATOR (both4.f)
CALL MULTIP MULTIP: DETERMINE POINT GROUP MULTIPLICATION TABLE (libx5 com.f)
NDIM=INF(10) NDIM = INF(10) = dimension of the system
Clau NSAED=0

3399 IF(NDIM.EQ.0)RETURN Molecular case: if NDIM == 0, RETURN

C.. ELASTIC DISTORTION CORRESPONDING TO ISOTROPIC VOLUME CHANGE
! Mcat mods (inf(195))
MVF=INF(50) MVF = INF(50) = number of symmetry operations
LOGIL=IAMEQ0.AND.LOGIK LOGIL variable not used in this subroutine (lines 3465 and 3474 are commented)

3404 LOGIM=.FALSE. INF(195) = 1 → crystallographic deformation (a,b,c,α,β,γ)
3405 IF(INF(195).EQ.1)GOTO 22 If INF(195) = 1 (crystallographic deformation), then LOGIM = .TRUE., IVRS = 0
3406 TMPV(1:9)=0. FLOAT Initialize TMPV(1:9) as zeros vector

JVRS=1 JVRS ≡ jv = 1
DO I=1,NDIM BEGIN Loop on dimensions I = 1,NDIM
TMPV(JVRS)=1. FLOAT Initialize to 1 diagonal elements of TMPV(1:9) vector (seen as a (3,3) matrix), eq. (F.50)
JVRS=JVRS+4 jv = jv + 4 select diagonal elements with positions (NDIM,NDIM)

3411 ENDDO END Loop on dimensions I = 1,NDIM
3412 GOTO 1 GOTO 1 : Normalize elastic distortion ****
3413 22 LOGIM=.TRUE. 4 Case INF(195) = 1 : LOGIM = true
3414 IVRS=0 Case INF(195) = 1 : IVRS ≡ iv = 0

3415 C.. GENERATE THE UNSYMMETRIZED ELASTIC DISTORTIONS
3416 2 IF(IVRS.EQ.NDIM)GOTO 10 ! Mcat - it was return �� If iv == NDIM, then GOTO 10 44
3417 JVRS=IVRS*3 jv = 3iv
3418 IVRS=IVRS+1 iv = iv + 1
3419 KVRS=0 kv = 0
3420 3 IF(KVRS.EQ.IVRS)GOTO 2 � � � If kv == iv , then GOTO 2 ��
3421 LVRS=KVRS*3 lv = 3kv
3422 KVRS=KVRS+1 kv = kv + 1
3423 VRSV(1:9)=0. FLOAT Initialize VRSV(1:9) as zeros vector
3424 VRSV(IVRS+LVRS)=1. FLOAT VRSV(iv + lv) = 1
3425 VRSV(KVRS+JVRS)=1. FLOAT VRSV(kv + jv) = 1

3426 C SYMMETRIZE THIS ELASTIC DISTORTION
3427 TMPV(1:9)=VRSV(1:9) TMPV(1:9) = VRSV(1:9)
3428 DO I=2,MVF BEGIN Loop on number of symmetry operations I = 2,MVF

UMPV(1:9)=0. FLOAT Initialize matrix for temporary storing the product (F.51)-(F.52)
3430 CALL MXMB(XYV(1,I),1,3,VRSV,1,3,UMPV,1,3,NDIM,NDIM,NDIM)
3431 CALL MXMB(UMPV,1,3,XYV(1,I),3,1,TMPV,1,3,NDIM,NDIM,NDIM)
3432 ENDDO END Loop on number of symmetry operations I = 2,MVF

3433 C... SCHMIDT ORTHOGONALIZE PREVIOUS ELASTIC DISTORTIONS
3434 DO J=1,NSAED BEGIN Loop on symmetry allowed elastic distortions J = 1,NSAED

SUM=0. FLOAT Schmidt orthogonalization process begins, see eq. (F.53)
DO I=1,9
SUM=TMPV(I)*SAED(I,J)+SUM
ENDDO
TMPV(1:9)=TMPV(1:9)-SAED(1:9,J)*SUM Schmidt orthogonalization process ends, see eq. (F.53)

3440 ENDDO END Loop on symmetry allowed elastic distortions J = 1,NSAED

392

Appendix F. Documentation of some CRYSTAL core subroutines F.11. GENERATE SAED (geometry.f)

3443 C... NORMALIZE ELASTIC DISTORTION **** Normalize elastic distortion
3444 1 SUM=0. FLOAT s = 0

DO I=1,9

SUM=TMPV(I)**2+SUM s =
∑9
i=1 TMPV(i)2

ENDDO
3448 IF(SUM.LT.TOL)GOTO 3 If s < 10−4 then GOTO 3 � � �
3449 NSAED=NSAED+1 NSAED = NSAED + 1

3450 SUM=SQRT(1. FLOAT/SUM) s←
√

1/s
3451 SAED(1:9,NSAED)=TMPV(1:9)*SUM SAED(1:9,NSAED) = TMPV(1:9)·s : normalization (see eq. (F.54))

!Mcat ini
3453 IF(LOGIM)GOTO 3 If LOGIM = TRUE, then GOTO 3 � � �
3454 GOTO 22 GOTO 22 4
3455 10 CONTINUE 44 CONTINUE
3456 INF(120)=NSAED INF(120) = NSAED = number of symmetrized distortions
3457 IF(INF(63).EQ.2.AND.INF(195).EQ.1)THEN If space group INF(63) = 2 and crystallographic deformation (INF(195) = 1)

TMPV(1:9)=SAED(1:9,3)
SAED(1:9,3)=SAED(1:9,4) Exchange SAED(1:9,3) ↔ SAED(1:9,4)
SAED(1:9,4)=TMPV(1:9)

3461 ENDIF Endif
!Mcat end

3465 !!ale IF(LOGIL)THEN
3466 DO K=1,NSAED ! loop Mcat BEGIN Loop on symmetry allowed elastic distortions K = 1,NSAED

WRITE(IOUT,9999)K
LVRS=0
DO I=1,NDIM
WRITE(IOUT,8888)(SAED(LVRS+J,K),J=1,NDIM) Print the matrix SAED(1:9,1:NSAED) in the output file (see Fig. F.2)
LVRS=LVRS+3
ENDDO END Loop on symmetry allowed elastic distortions K = 1,NSAED

3473 ENDDO ! end loop Mcat
3474 !!ale ENDIF

! IF(LOGIM)GOTO 3 removed Mcat
! GOTO 22 removed Mcat 20 Apr 06

3481 9999 FORMAT(/’ SYMMETRY ALLOWED ELASTIC DISTORTION’,I2)
3482 8888 FORMAT(3F11.7)

! NFIXC = number of constraints relating pairs of cell deformations
NFIXC taken from input file in subroutine CONOPT , libopt.f library

3484 if(nfixc.eq.0)goto 11 If NFIXC = 0, no modification of SAED(1:9,1:NSAED) matrix, GOTO 11 �
do k=1,nfixc BEGIN Loop on fixed symmetrized cell deformations K = 1,NFIXC
if(ifixc1(k).eq.0)goto 12
sum=0. float
do l=1,9
saed(l,ifixc1(k))=coefc(ifixc1(k))*saed(l,ifixc1(k))+
*coefc(ifixc2(k))*saed(l,ifixc2(k))
sum=saed(l,ifixc1(k))**2+sum
enddo
sum=sqrt(1. float/sum)
saed(1:9,ifixc1(k))=saed(1:9,ifixc1(k))*sum
ifixc1(k)=0
12 if(ifixc2(k).eq.4.and.inf(63).eq.2)imon=1
enddo END Loop on fixed symmetrized cell deformations K = 1,NFIXC
do k=1,nfixc BEGIN Loop on fixed symmetrized cell deformations K = 1,NFIXC
do i=ifixc2(k),nsaed-1
saed(1:9,i)=saed(1:9,i+1)
enddo
do l=1,nfixc BEGIN Loop on fixed symmetrized cell deformations L = 1,NFIXC
if(ifixc2(l).gt.ifixc2(k)) ifixc2(l)=ifixc2(l)-1
enddo END Loop on fixed symmetrized cell deformations L = 1,NFIXC
nsaed=nsaed-1
enddo END Loop on fixed symmetrized cell deformations K = 1,NFIXC
do i=1,nsaed BEGIN Loop on symmetry allowed elastic distortions I = 1,NSAED
write(iout,99)i
write(iout,8888)(saed(l,i),l=1,9) Print the matrix SAED(1:9,1:NSAED) in the output file
enddo END Loop on symmetry allowed elastic distortions I = 1,NSAED
11 continue � CONTINUE
inf(120)=nsaed ! added to take into account Mcat nfixc INF(120) = NSAED
RETURN
99 FORMAT(/’ ACTIVE SYMMETRY ALLOWED ELASTIC DISTORTION’,I2)
END

TMPV is a vector with 9 elements, which has to be interpreted as a (3,3) matrix. It is initialized in lines
3406-3411 as a (NDIM,NDIM) unit matrix. The values of its elements depend on the dimensionality of
the system and are reported in equation (F.50).

393

F.11. GENERATE SAED (geometry.f) Appendix F. Documentation of some CRYSTAL core subroutines

NDIM = 0 : subroutine returns

NDIM = 1 : TMPV =
(
1 0 0 0 0 0 0 0 0

)
→

1 0 0
0 0 0
0 0 0

NDIM = 2 : TMPV =

(
1 0 0 0 1 0 0 0 0

)
→

1 0 0
0 1 0
0 0 0

NDIM = 3 : TMPV =

(
1 0 0 0 1 0 0 0 1

)
→

1 0 0
0 1 0
0 0 1

(F.50)

This corresponds to the identity matrix for a (NDIM,NDIM) system and corresponds to the first (i.e. with
index NSAED = 1) elastic distortion, which is then normalized in lines 3444-3451 and saved in vector
SAED(1:9,1) of the matrix SAED(1:9,1:NSAED) at line 3451.

In lines 3416-3425 each unsymmetrized elastic distortion is created, and its elements are saved in the
VRSV(1:9) vector as well as in the TMPV(1:9) vector. These unsymmetrized elastic distortion are inde-
pendent of the space group of the system, so that they corresponds to a same set of matrices for all the
possible systems of a give dimension NDIM. At the same time, the set depends on the dimensionality
NDIM of the system considered. Then, once the dimension NDIM of the system is fixed, the set of
unsymmetrized elastic distortion is given by the set of matrices reported in Table F.24.

NDIM NSAED UNSYMMETRIZED ELASTIC DISTORTIONS

0 0 no elastic distortions (line 3399: IF(NDIM.EQ.0)RETURN)

1
2 if INF(195) = 0
1 if INF(195) = 1

VRSV = TMPV =
(
1 0 0 0 0 0 0 0 0

)
→

1 0 0
0 0 0
0 0 0

 (UED 10) only if INF(195) = 0

VRSV = TMPV =
(
1 0 0 0 0 0 0 0 0

)
→

1 0 0
0 0 0
0 0 0

 (UED 11)

2
4 if INF(195) = 0
3 if INF(195) = 1

VRSV = TMPV =
(
1 0 0 0 1 0 0 0 0

)
→

1 0 0
0 1 0
0 0 0

 (UED 20) only if INF(195) = 0

VRSV = TMPV =
(
1 0 0 0 0 0 0 0 0

)
→

1 0 0
0 0 0
0 0 0

 (UED 21)

VRSV = TMPV =
(
0 1 0 1 0 0 0 0 0

)
→

0 1 0
1 0 0
0 0 0

 (UED 22)

VRSV = TMPV =
(
0 0 0 0 1 0 0 0 0

)
→

0 0 0
0 1 0
0 0 0

 (UED 23)

3
7 if INF(195) = 0
6 if INF(195) = 1

VRSV = TMPV =
(
1 0 0 0 1 0 0 0 1

)
→

1 0 0
0 1 0
0 0 1

 (UED 30) only if INF(195) = 0

VRSV = TMPV =
(
1 0 0 0 0 0 0 0 0

)
→

1 0 0
0 0 0
0 0 0

 (UED 31)

VRSV = TMPV =
(
0 1 0 1 0 0 0 0 0

)
→

0 1 0
1 0 0
0 0 0

 (UED 32)

VRSV = TMPV =
(
0 0 0 0 1 0 0 0 0

)
→

0 0 0
0 1 0
0 0 0

 (UED 33)

VRSV = TMPV =
(
0 0 1 0 0 0 1 0 0

)
→

0 0 1
0 0 0
1 0 0

 (UED 34)

VRSV = TMPV =
(
0 0 0 0 0 1 0 1 0

)
→

0 0 0
0 0 1
0 1 0

 (UED 35)

VRSV = TMPV =
(
0 0 0 0 0 0 0 0 1

)
→

0 0 0
0 0 0
0 0 1

 (UED 36)

Table F.24: Unsymmetrized elastic distortion for systems with dimension NDIM.

In lines 3428-3432 the unsymmetrized elastic distortions (represented by the (3,3) matrix D which
corresponds to the 9-elements vector VRSV(1:9)) are symmetrized, i.e. transformed into the (3,3) matrices

394

Appendix F. Documentation of some CRYSTAL core subroutines F.11. GENERATE SAED (geometry.f)

Figure F.1: Example of the output file block in which the matrix XYV(1:9,I), I = 2,...,MVF (with MVF number of
symmetry operations) is printed out. The nine elements of the (3,3) matrix representing the symmetry operation
are printed row-by-row in the black box highlighted in the figure, for the 24 symmetry operations (case of 3D
graphite, space group: 194, P63/mmc). Printed by subroutine XYVSHORT, both4.f library (fractional units).

labeled by E (which correspond to the 9-elements vectors TMPV(1:9)) through the products performed
in lines 3430-3431 that can be formalized as

Xi · tD ·Xi = E where i = 2, ...,MVF (F.51)

XYV(1:9,I) · tVRSV(1:9) · XYV(1:9,I)→ TMPV(1:9) where I = 2, ...,MVF (F.52)

where XYV(1:9,I) matrices (correspondent to the (3,3) matrices Xi) are the rotation matrices associated
to each I-th and i-th symmetry operations [with (i, I) = 2,...,MVF where MVF are the number of
symmetry operations for the space group of the system]. The counter I starts from 2 since for I = 1
the vector XYV(1:9,1) is a (NDIM,NDIM) identity matrix, which left the unsymmetrized elastic distortion
D unvaried. The product (F.51) has to be performed for each NSAED-th elastic distortion represented
by the (3,3) matrix D or by the 9-elements vector VRSV(1:9) reported in Table F.24. The matrix
XYV(1:9,I), I = 2,...,MVF is printed in the output of the Crystal code as reported in Figure F.1 in the
case of graphite bulk (3D system).

In lines 3434-3440 the Schmidt orthogonalization process is carried out. Let B = (v1,v2, ...,vn) be a basis
set in a n-dimensional euclidean vector space. Starting from B it is possible to construct an orthonormal
basis set B′ = (e1, e2, ..., en) in the same space with the so called Gram-Schmidt orhonormalization
process:

ek = vers(vk − (vk · e1)e1)− ...− (vk · ek−1)ek−1)) k = 1, 2, ..., n (F.53)

where vers(v) = v/‖v‖ is the versor of the vector v. In our case, the vectors of the basis set B
are the TMPV(1:9) vectors, while the vectors of the orthonormalized basis set B′ are the SAED(1:9,n)

vectors, where n = 1, ...,NSAED. In this framework, the index J which runs over the NSAED in line
3434 corresponds to the index k of equation (F.53). In lines 3434-3440 only the orthogonalization is
performed, the versors are computed (and then the orthonormalization of the basis vectors SAED(1:9,n)

is completed) in lines 3444-3451. Indeed, in lines 3444-3451 the vector TMPV(1:9) with elastic distortions
is normalized and saved in matrix SAED(1:9,1:NSAED) through the formula:

SAED(1:9,n) = TMPV(1:9) · 1√∑9
i=1 TMPV2(i)

n = 1, ...,NSAED (F.54)

where NSAED is the number of allowed elastic distortions.

In lines 3466-3482 the matrix SAED(1:9,1:NSAED) is printed in the output file, in the format reported in
Figure F.2 for the case of a 3D system (silicon bulk) without symmetry (space group P1).

395

F.11. GENERATE SAED (geometry.f) Appendix F. Documentation of some CRYSTAL core subroutines

Figure F.2: Example of the output file block in which the matrix SAED(1:9,1:NSAED) containing the symmetry
allowed elastic distortions is printed (left panel), and geometry block of the input file for the 3D system (silicon
bulk) considered for the example.

Example

For example, in the case of a NDIM = 3 dimensional crystal system, the symmetrized elastic distortions
SAED(1:9,1:NSAED) are created line-by-line in the following way:

Case INF(195) = 0 : standard cell deformations (isotropic, constant volume)

lines operation

3397 NDIM = 3
3404 LOGIM = FALSE
3406-3411 Creation of (NDIM,NDIM) unit matrix rearranged in a 9-elements vector TMPV(1:9), see eq.s (UED 10), (UED 20), (UED 30)
3412 GOTO 1 →
→ 3444-3451 Normalize of the first elastic distortion (identity) TMPV(1:9) vector and save it in the element SAED(1:9,1), see eq. (F.54)
3449 NSAED = NSAED +1 = 0 + 1 = 1
3454 GOTO 22 →
→ 3413 LOGIM = TRUE
3414 iv = 0
3416 iv = 0 6= NDIM, continue
3417 jv = 3iv = 0
3418 iv = iv + 1 = 1
3419 kv = 0
3420 kv = 0 6= iv = 1, continue
3421 lv = 3kv = 0
3422 kv = kv + 1 = 1
3423 VRSV(1:9) = 0
3424 VRSV(1) = 1
3425 VRSV(1) = 1
3427 TMPV(1:9) = VRSV(1:9) → eq.s (UED 11), (UED 21), (UED 31)
3428-3432 Symmetrize the NSAED-th elastic distortion (with NSAED > 1), see eq. (F.51)
3434-3440 Schmidt orthogonalize the previous 1,...,NSAED elastic distortions, see eq. (F.53)
3444-3451 Normalize the NSAED-th elastic distortion and save it in the element SAED(1:9,NSAED) (with NSAED > 1), see eq. (F.54)
3449 NSAED = NSAED +1 = 1 + 1 = 2
3453 GOTO 3 →
→ 3420 kv = 1 = iv = 1, GOTO 2 →
→ 3416 iv = 1 6= NDIM, continue
3417 jv = 3iv = 3
3418 iv = iv + 1 = 2
3419 kv = 0
3420 kv = 0 6= iv = 2, continue
3421 lv = 3kv = 0
3422 kv = kv + 1 = 1
3423 VRSV(1:9) = 0
3424 VRSV(2) = 1
3425 VRSV(4) = 1
3427 TMPV(1:9) = VRSV(1:9) → eq.s (UED 22), (UED 32)
3428-3432 Symmetrize the NSAED-th elastic distortion (with NSAED > 1), see eq. (F.51)

396

Appendix F. Documentation of some CRYSTAL core subroutines F.11. GENERATE SAED (geometry.f)

3434-3440 Schmidt orthogonalize the previous 1,...,NSAED elastic distortions, see eq. (F.53)
3444-3451 Normalize the NSAED-th elastic distortion and save it in the element SAED(1:9,NSAED) (with NSAED > 1), see eq. (F.54)
3449 NSAED = NSAED + 1 = 2 + 1 = 3
3453 GOTO 3 →
→ 3420 kv = 1 6= iv = 2, continue
3421 lv = 3kv = 3
3422 kv = kv + 1 = 2
3423 VRSV(1:9) = 0
3424 VRSV(5) = 1
3425 VRSV(5) = 1
3427 TMPV(1:9) = VRSV(1:9) → eq.s (UED 23), (UED 33)
3428-3432 Symmetrize the NSAED-th elastic distortion (with NSAED > 1), see eq. (F.51)
3434-3440 Schmidt orthogonalize the previous 1,...,NSAED elastic distortions, see eq. (F.53)
3444-3451 Normalize the NSAED-th elastic distortion and save it in the element SAED(1:9,NSAED) (with NSAED > 1), see eq. (F.54)
3449 NSAED = NSAED + 1 = 3 + 1 = 4
3453 GOTO 3 →
→ 3420 kv = 2 = iv = 2, GOTO 2 →
→ 3416 iv = 2 6= NDIM, continue
3417 jv = 3iv = 6
3418 iv = iv + 1 = 3
3419 kv = 0
3420 kv = 0 6= iv = 3, continue
3421 lv = 3kv = 0
3422 kv = kv + 1 = 1
3423 VRSV(1:9) = 0
3424 VRSV(3) = 1
3425 VRSV(7) = 1
3427 TMPV(1:9) = VRSV(1:9) → eq.s (UED 34)
3428-3432 Symmetrize the NSAED-th elastic distortion (with NSAED > 1), see eq. (F.51)
3434-3440 Schmidt orthogonalize the previous 1,...,NSAED elastic distortions, see eq. (F.53)
3444-3451 Normalize the NSAED-th elastic distortion and save it in the element SAED(1:9,NSAED) (with NSAED > 1), see eq. (F.54)
3449 NSAED = NSAED + 1 = 4 + 1 = 5
3453 GOTO 3 →
→ 3420 kv = 1 6= iv = 3, continue
3421 lv = 3kv = 3
3422 kv = kv + 1 = 2
3423 VRSV(1:9) = 0
3424 VRSV(6) = 1
3425 VRSV(8) = 1
3427 TMPV(1:9) = VRSV(1:9) → (UED 35)
3428-3432 Symmetrize the NSAED-th elastic distortion (with NSAED > 1), see eq. (F.51)
3434-3440 Schmidt orthogonalize the previous 1,...,NSAED elastic distortions, see eq. (F.53)
3444-3451 Normalize the NSAED-th elastic distortion and save it in the element SAED(1:9,NSAED) (with NSAED > 1), see eq. (F.54)
3449 NSAED = NSAED + 1 = 5 + 1 = 6
3453 GOTO 3 →
→ 3420 kv = 2 6= iv = 3, continue
3421 lv = 3kv = 6
3422 kv = kv + 1 = 3
3423 VRSV(1:9) = 0
3424 VRSV(9) = 1
3425 VRSV(9) = 1
3427 TMPV(1:9) = VRSV(1:9) → eq.s (UED 36)
3428-3432 Symmetrize the NSAED-th elastic distortion (with NSAED > 1), see eq. (F.51)
3434-3440 Schmidt orthogonalize the previous 1,...,NSAED elastic distortions, see eq. (F.53)

3448 s =
∑9
i=1 TMPV(i)2 < 10−4, (not increment NSAED, not normalize and not save in SAED(1:9,NSAED)) GOTO 3 →

→ 3420 kv = 3 = iv = 3, GOTO 2 →
→ 3416 iv = 3 = NDIM, GOTO 10 →
→ 3455 continue
3456 INF(120) = NSAED = 6

397

F.11. GENERATE SAED (geometry.f) Appendix F. Documentation of some CRYSTAL core subroutines

Case INF(195) = 1 : crystallographic deformation (a,b,c,α,β,γ)

lines operation

3397 NDIM = 3
3404 LOGIM = FALSE
3405 INF(195) = 1, GOTO 22 →
→ 3413 LOGIM = TRUE
3414 iv = 0
3416 iv = 0 6= NDIM, continue
3417 jv = 3iv = 0
3418 iv = iv + 1 = 1
3419 kv = 0
3420 kv = 0 6= iv = 1, continue
3421 lv = 3kv = 0
3422 kv = kv + 1 = 1
3423 VRSV(1:9) = 0
3424 VRSV(1) = 1
3425 VRSV(1) = 1
3427 TMPV(1:9) = VRSV(1:9) → eq.s (UED 11), (UED 21), (UED 31)
3428-3432 Symmetrize the first elastic distortion (with NSAED = 1), see eq. (F.51)
3434-3440 Schmidt orthogonalize the first (NSAED = 1) elastic distortions, see eq. (F.53)
3444-3451 Normalize the first (NSAED = 1) elastic distortion and save it in the element SAED(1:9,1), see eq. (F.54)
3449 NSAED = NSAED +1 = 0 + 1 = 1
3453 GOTO 3 →
→ 3420 kv = 1 = iv = 1, GOTO 2 →
→ 3416 iv = 1 6= NDIM, continue
3417 jv = 3iv = 3
3418 iv = iv + 1 = 2
3419 kv = 0
3420 kv = 0 6= iv = 2, continue
3421 lv = 3kv = 0
3422 kv = kv + 1 = 1
3423 VRSV(1:9) = 0
3424 VRSV(2) = 1
3425 VRSV(4) = 1
3427 TMPV(1:9) = VRSV(1:9) → eq.s (UED 22), (UED 32)
3428-3432 Symmetrize the NSAED-th elastic distortion (with NSAED > 1), see eq. (F.51)
3434-3440 Schmidt orthogonalize the previous 1,...,NSAED elastic distortions, see eq. (F.53)
3444-3451 Normalize the NSAED-th elastic distortion and save it in the element SAED(1:9,NSAED) (with NSAED > 1), see eq. (F.54)
3449 NSAED = NSAED + 1 = 1 + 1 = 2
3453 GOTO 3 →
→ 3420 kv = 1 6= iv = 2, continue
3421 lv = 3kv = 3
3422 kv = kv + 1 = 2
3423 VRSV(1:9) = 0
3424 VRSV(5) = 1
3425 VRSV(5) = 1
3427 TMPV(1:9) = VRSV(1:9) → eq.s (UED 23), (UED 33)
3428-3432 Symmetrize the NSAED-th elastic distortion (with NSAED > 1), see eq. (F.51)
3434-3440 Schmidt orthogonalize the previous 1,...,NSAED elastic distortions, see eq. (F.53)
3444-3451 Normalize the NSAED-th elastic distortion and save it in the element SAED(1:9,NSAED) (with NSAED > 1), see eq. (F.54)
3449 NSAED = NSAED + 1 = 2 + 1 = 3
3453 GOTO 3 →
→ 3420 kv = 2 = iv = 2, GOTO 2 →
→ 3416 iv = 2 6= NDIM, continue
3417 jv = 3iv = 6
3418 iv = iv + 1 = 3
3419 kv = 0
3420 kv = 0 6= iv = 3, continue
3421 lv = 3kv = 0
3422 kv = kv + 1 = 1
3423 VRSV(1:9) = 0
3424 VRSV(3) = 1
3425 VRSV(7) = 1
3427 TMPV(1:9) = VRSV(1:9) → eq.s (UED 34)
3428-3432 Symmetrize the NSAED-th elastic distortion (with NSAED > 1), see eq. (F.51)
3434-3440 Schmidt orthogonalize the previous 1,...,NSAED elastic distortions, see eq. (F.53)
3444-3451 Normalize the NSAED-th elastic distortion and save it in the element SAED(1:9,NSAED) (with NSAED > 1), see eq. (F.54)
3449 NSAED = NSAED + 1 = 3 + 1 = 4
3453 GOTO 3 →
→ 3420 kv = 1 6= iv = 3, continue
3421 lv = 3kv = 3
3422 kv = kv + 1 = 2
3423 VRSV(1:9) = 0
3424 VRSV(6) = 1
3425 VRSV(8) = 1
3427 TMPV(1:9) = VRSV(1:9) → eq.s (UED 35)
3428-3432 Symmetrize the NSAED-th elastic distortion (with NSAED > 1), see eq. (F.51)

398

Appendix F. Documentation of some CRYSTAL core subroutines F.11. GENERATE SAED (geometry.f)

3434-3440 Schmidt orthogonalize the previous 1,...,NSAED elastic distortions, see eq. (F.53)
3444-3451 Normalize the NSAED-th elastic distortion and save it in the element SAED(1:9,NSAED) (with NSAED > 1), see eq. (F.54)
3449 NSAED = NSAED + 1 = 4 + 1 = 5
3453 GOTO 3 →
→ 3420 kv = 2 6= iv = 3, continue
3421 lv = 3kv = 6
3422 kv = kv + 1 = 3
3423 VRSV(1:9) = 0
3424 VRSV(9) = 1
3425 VRSV(9) = 1
3427 TMPV(1:9) = VRSV(1:9) → eq.s (UED 36)
3428-3432 Symmetrize the NSAED-th elastic distortion (with NSAED > 1), see eq. (F.51)
3434-3440 Schmidt orthogonalize the previous 1,...,NSAED elastic distortions, see eq. (F.53)
3444-3451 Normalize the NSAED-th elastic distortion and save it in the element SAED(1:9,NSAED) (with NSAED > 1), see eq. (F.54)
3449 NSAED = NSAED + 1 = 5 + 1 = 6
3453 GOTO 3 →
→ 3420 kv = 3 = iv = 3, GOTO 2 →
→ 3416 iv = 3 = NDIM, GOTO 10 →
→ 3455 continue
3456 INF(120) = NSAED = 6

Let us make an example for the calculation of symmetry allowed elastic distortions SAED(1:9,1:NSAED)
in a simple case. Consider the silicon bulk 3D system with space group P1 (→ number of symmetry
operators MVF = 1). In this case the rotation matrix to be considered for the calculation is only the
identity matrix

X1 =

1 0 0
0 1 0
0 0 1

 in the code: XYV(1:9,I) = (1 0 0 0 1 0 0 0 1) (F.55)

since no other symmetry operations are defined with P1 space group. The symmetrization of the elastic
distortions, performed in lines 3428-3432, is therefore skipped in this case. The set of symmetry allowed
distortions SAED(1:9,1:NSAED) for the case with P1 space group (only one symmetry operator MVF = 1)
is computed and reported in the following, for the case of standard cell deformations (isotropic, constant
volume : INF(195) = 0) and the case of crystallographic deformation (INF(195) = 1).

Case INF(195) = 0 : standard cell deformations (isotropic, constant volume)

lines operation

3406-3411 TMPV =
(
1 0 0 0 1 0 0 0 1

)
unit matrix

3412 GOTO 1→

→ 3444-3451
NSAED = 1
SAED(1:9,1) =

(
0.5773503 0 0 0 0.5773503 0 0 0 0.5773503

)
normalization

3413-3432 TMPV(1:9) = VRSV(1:9) =
(
1 0 0 0 0 0 0 0 0

)
unsymmetrized saed

3434-3440 TMPV(1:9) =
(
0.6666666 0 0 0 − 0.3333334 0 0 0 − 0.3333334

)
Schmidt orthogonalization

3444-3451
NSAED = 2
SAED(1:9,2) =

(
0.8164966 0 0 0 − 0.4082483 0 0 0 − 0.4082483

)
normalization

3453 GOTO 3 →
→ 3420-3432 TMPV(1:9) = VRSV(1:9) =

(
0 1 0 1 0 0 0 0 0

)
unsymmetrized saed

3434-3440 TMPV(1:9) =
(
0 1 0 1 0 0 0 0 0

)
Schmidt orthogonalization

3444-3451
NSAED = 3
SAED(1:9,3) =

(
0 0.7071068 0 0.7071068 0 0 0 0 0

)
normalization

3453 GOTO 3 →
→ 3420-3432 TMPV(1:9) = VRSV(1:9) =

(
0 0 0 0 1 0 0 0 0

)
unsymmetrized saed

3434-3440 TMPV(1:9) =
(
0.6666666 0 0 0 − 0.3333334 0 0 0 − 0.3333334

)
Schmidt orthogonalization

Finally, in lines 3484-3512 the matrix SAED(1:9,1:NSAED) is modified in the case optimization with con-
strained symmetrized cell deformation (3D only) is performed, in which there are NFIXC 6= 0 symmetrized
cell deformations to be fixed, taken from input (using the keyword FIXDEF, see subroutine CONOPT ,
libopt.f library). NFIXC is the number of constraints relating pairs of cell deformations, IFIXC1(i) and
IFIXC2(i), i = 1,...,NFIXC are the integer sequence number of the two constrained symmetrized cell
deformations, while COEFC(IFIXC1(i)) and COEFC(IFIXC2(i)), i = 1,...,NFIXC are the real coefficients
multiplying the two cell deformations in the linear combination constraint, taken from the input file.

399

F.12. SMAT (libxj.f) Appendix F. Documentation of some CRYSTAL core subroutines

F.12 Subroutine SMAT (libxj.f)

Input : logical variable BOLTZ ACTIVE, that is true if a calculation of electronic transport properties is
performed (see boltzatorb.f90 module).

SUBROUTINE SMAT: defined in libxj.f Crystal version: SVN DEV1286

SUBROUTINE SMAT(boltzao active)
C*** THIS ROUTINE WAS DERIVED FROM BMAT ROUTINE
USE NUMBERS
USE PARINF MODULE
USE RETIC MODULE
USE XYVDIM MODULE
USE POLARI MODULE
USE EXPO MODULE
USE PARAL1 MODULE
USE MEMORY USE
USE MOM MODULE, ONLY: MOM INPUT,BTOBTRUE
IMPLICIT REAL(FLOAT) (A-H,O-Z)
LOGICAL :: BOLTZAO ACTIVE
INTEGER :: NREC PROC (nx, ny , nz) = shrinking factors along (x, y, z)
MVF=INF(2) MVF = n = number of symmetry operators
NDF=INF(7) NDF = m = number of atomic orbitals
! NOCC=INF(148) This line is a comment
INF64=INF(64) INF64 = 0 closed shell / = 1 open shell
IS1IS2=IS1*IS2 IS1IS2 = s12 = nx · ny
IS123=IS1*IS2*IS3 IS123 = s123 = nx · ny · nz
NDFJJJ=NDF*NDF NDFJJJ = m2

NDFVRS=NDFJJJ+NDFJJJ NDFVRS = 2m2

NBINI=1 NBINI=1
NBFI=NDF NBFI = m
MBANDS=NBFI-NBINI+1 MBANDS = nb = m
IO10=IUNIT(8) IO10 = fort.8 [units where the eigenvectors related to irreducible k points are read]
! IO10=IUNIT(10) This is a comment [probably it is the old values for IO10]
IO70=IUNIT(70) IO70 = fort.70 [units where the eigenvectors related to reducible k points are written]
IF(BTOBTRUE)THEN Option activated for band to band transition calculations
IO10=IUNIT(153) [BTOBTRUE = false by default]
ENDIF INF(79) = ng = number of direct lattice vector
CALL CRYALLOC(EX,2,INF(79),’SMAT’,’EX’) allocation of the (2, ng) matrix EX [see Sections F.7 and F.8]
IS10=IS1*16 IS10 = 16 · nx
IS20=IS2*16 IS20 = 16 · ny
IS30=IS3*16 IS30 = 16 · nz
NORDER(1:IS1IS2*IS3*2)=0 NORDER(1 : 2 · nx · ny · nz) = 0
KK=0 Initialization of KK index [KK = 0]
DO IUNR=1,INF64+1 BEGIN loop IUNR = 1 closed shell / IUNR = 1,2 open shell
IF(INF64.EQ.0)THEN If closed shell → NOCC1 = number of electrons ne in the reference cell
NOCC1=INF(9) INF(9) = number of electrons ne in the reference cell
ELSE Else if open shell →
IF(IUNR.EQ.1)THEN if IUNR = 1 →
NOCC1=INF(9)+INF(95) → NOCC1 = ne + (nα − nβ) [INF(95) = (nα − nβ)]
ELSE else if IUNR = 2 →
NOCC1=INF(9)-INF(95) → NOCC1 = ne − (nα − nβ)
ENDIF endif
ENDIF Endif
NOCC=NOCC1/2 Number of fully occupied bands : NOCC = ns = NOCC1/2
DO 1010 K=1,NKF BEGIN loop over irreducible k points
KK=KK+1 Update the index KK → KK + 1 [index of the k point]
JR1=JJ(1,K) JR1 = kx (reciprocal space coordinates)
JR2=JJ(2,K) JR2 = ky (reciprocal space coordinates)
JR3=JJ(3,K) JR3 = kz (reciprocal space coordinates)
IF(LATVRS(K).NE.0)GOTO 889 LATVRS(K) = 0 / 1 if the K-th k point is complex / real
C........................ COMPLEX K-POINT LATVRS(K) = 0 [see Section F.6 for LATVRS(K) definition]
JPROC=0 All the processes initialize JPROC = 0
IF(.NOT.JDONE(KK))THEN If the process owns the management of the KK-th k point
CALL RREAD(IO10,A,NDFVRS) that process reads 2m2 real numbers from fort.8 file
JPROC=IAM that process save in JPROC its index = IAM [for all the other processes JPROC = 0]
ENDIF Endif
CALL IGSUM(JPROC,1) ! MPI ALLREDUCE (MPI SUM) Sums JPROC values from all processes and distributes the result back to all processes
CALL BROADCAST(A,NDFVRS,JPROC) Broadcast data in A(1:2m2) from process JPROC to all other processes
DO 776 MV=1,MVF BEGIN loop on the symmetry operators
MR1=MOD(IRR(1,1,MV)*JR1+IRR(1,2,MV)*JR2+IRR(1,3,MV)*JR3+IS10,IS1) see formula F.57
MR2=MOD(IRR(2,1,MV)*JR1+IRR(2,2,MV)*JR2+IRR(2,3,MV)*JR3+IS20,IS2) see formula F.58
MR3=MOD(IRR(3,1,MV)*JR1+IRR(3,2,MV)*JR2+IRR(3,3,MV)*JR3+IS30,IS3) see formula F.59
NREC=MR1+1+MR2*IS1+MR3*IS1IS2+(IUNR-1)*IS123 see formula F.60
IF(BOLTZAO ACTIVE) ENE INFO(NREC)= K if BOLTZAO ACTIVE → map the NREC-th reducible to the K-th irreducible k point
IF(NORDER(NREC).NE.0)GOTO 776 if the NREC-th k point (MR1, MR2, MR3) has already been generated → cycle 776
CALL EXPU(MR1,MR2,MR3) modify the matrix EX(1:ng) [see Section F.7]

400

Appendix F. Documentation of some CRYSTAL core subroutines F.12. SMAT (libxj.f)

NORDER(NREC)=2 → the NREC-th k point will be seen as already generated in the next cycles
CALL ESTROF(A,AR,NINV(MV),NBINI,NBFI,MBANDS) Rotate eigenvector A using NINV(MV) and save the result in AR [see Section F.13]
IF(BOLTZAO ACTIVE)THEN If BOLTZAO ACTIVE = true
IF(MOD(NREC-1,NPROC).EQ.IAM) THEN If the process index = mod(nrec - 1, nproc)
NREC PROC=INT((NREC-1)/NPROC)+1 select the process record view on the file
WRITE(UNIT=IO70,REC=NREC PROC)(AR(J),J=1,NDF*NDF*2) write 2m2 numbers on file fort.70 in the corresponding record
ENDIF Endif
ELSE Else if BOLTZAO ACTIVE = false
WRITE(UNIT=IO70,REC=NREC)(AR(J),J=1,NDF*NOCC*2) write on file fort.70 (no parallelism among processes)
ENDIF Endif
776 CONTINUE END loop on the symmetry operators
! IF(MVF.EQ.INF(1))GOTO 777 This line is a comment
JR1=MOD(IS1-JR1,IS1) see formula F.61
JR2=MOD(IS2-JR2,IS2) see formula F.62
JR3=MOD(IS3-JR3,IS3) see formula F.63
DO 778 MV=1,MVF BEGIN loop on the symmetry operators
MR1=MOD(IRR(1,1,MV)*JR1+IRR(1,2,MV)*JR2+IRR(1,3,MV)*JR3+IS10,IS1) see formula F.64
MR2=MOD(IRR(2,1,MV)*JR1+IRR(2,2,MV)*JR2+IRR(2,3,MV)*JR3+IS20,IS2) see formula F.65
MR3=MOD(IRR(3,1,MV)*JR1+IRR(3,2,MV)*JR2+IRR(3,3,MV)*JR3+IS30,IS3) see formula F.66
NREC=MR1+1+MR2*IS1+MR3*IS1IS2+(IUNR-1)*IS123 see formula F.67
IF(BOLTZAO ACTIVE) ENE INFO(NREC)=K if BOLTZAO ACTIVE → ENE INFO(NREC) = K
IF(NORDER(NREC).NE.0)GOTO 778 if NORDER(NREC) ! = 0 → go to 778 (cycle)
CALL EXPU(MR1,MR2,MR3) modify the matrix EX(1:ng) [see Section F.7]
NORDER(NREC)=2 NORDER(NREC) = 2
CALL ESTROE(A,AR,NINV(MV),NBINI,NBFI,MBANDS) Rotate eigenvector A using NINV(MV) and save the result in AR [see Section F.14]
IF(BOLTZAO ACTIVE)THEN If BOLTZAO ACTIVE = true
IF(MOD(NREC-1,NPROC).EQ.IAM) THEN If the process index = mod(nrec - 1, nproc)
NREC PROC=INT((NREC-1)/NPROC)+1 select the processor index
WRITE(UNIT=IO70,REC=NREC PROC)(AR(J),J=1,NDF*NDF*2) write 2m2 numbers on file fort.70 in the corresponding record
ENDIF Endif
ELSE Else if BOLTZAO ACTIVE = false
WRITE(UNIT=IO70,REC=NREC)(AR(J),J=1,NDF*NOCC*2) write on file fort.70 (no parallelism among processes)
ENDIF Endif
778 CONTINUE END loop on the symmetry operators
777 GOTO 1010
C.......................... REAL K-POINT LATVRS(K) 6= 0 [see Section F.6 for LATVRS(K) definition]
889 CONTINUE
JPROC=0 All the processes initialize JPROC = 0
IF(.NOT.JDONE(KK))THEN If the process owns the management of the KK-th k point
CALL RREAD(IO10,A,NDFJJJ) that process reads m2 real numbers from fort.8 file
JPROC=IAM that process save in JPROC its index = IAM [for all the other processes JPROC = 0]
ENDIF Endif
CALL IGSUM(JPROC,1) ! MPI ALLREDUCE (MPI SUM) Sums JPROC values from all processes and distributes the result back to all processes
CALL BROADCAST(A,NDFJJJ,JPROC) Broadcast data in A(1:m2) from process JPROC to all other processes
DO 886 MV=1,MVF BEGIN loop on the symmetry operators
MR1=MOD(IRR(1,1,MV)*JR1+IRR(1,2,MV)*JR2+IRR(1,3,MV)*JR3+IS10,IS1) see formula F.57
MR2=MOD(IRR(2,1,MV)*JR1+IRR(2,2,MV)*JR2+IRR(2,3,MV)*JR3+IS20,IS2) see formula F.58
MR3=MOD(IRR(3,1,MV)*JR1+IRR(3,2,MV)*JR2+IRR(3,3,MV)*JR3+IS30,IS3) see formula F.59
NREC=MR1+1+MR2*IS1+MR3*IS1IS2+(IUNR-1)*IS123 see formula F.60
IF(BOLTZAO ACTIVE) ENE INFO(NREC)=K if BOLTZAO ACTIVE → map the NREC-th reducible to the K-th irreducible k point
IF(NORDER(NREC).NE.0)GOTO 886 if the NREC-th k point (MR1, MR2, MR3) has already been generated → cycle 886
CALL EXPT(MR1,MR2,MR3) modify the matrix EX(1:ng) [see Section F.8]
NORDER(NREC)=1 → the NREC-th k point will be seen as already generated in the next cycles
CALL ESTROG(A,AR,NINV(MV),NBINI,NBFI,MBANDS) Rotate eigenvector A using NINV(MV) and save the result in AR [see Section F.15]
IF(BOLTZAO ACTIVE)THEN If BOLTZAO ACTIVE = true
IF(MOD(NREC-1,NPROC).EQ.IAM) THEN If the process index = mod(nrec - 1, nproc)
NREC PROC=INT((NREC-1)/NPROC)+1 select the process record view on the file
WRITE(UNIT=IO70,REC=NREC PROC)(AR(J),J=1,NDF*NDF) write 2m2 numbers on file fort.70 in the corresponding record
ENDIF Endif
ELSE Else if BOLTZAO ACTIVE = false
WRITE(UNIT=IO70,REC=NREC)(AR(J),J=1,NDF*NOCC) write on file fort.70 (no parallelism among processes)
ENDIF Endif
886 CONTINUE END loop on number of symmetry operators
1010 CONTINUE END loop over irreducible k points
ENDDO ! IUNR END loop IUNR
CALL CRYDEALLOC(EX,’SMAT’,’EX’) Deallocation of the (2, ng) matrix EX
REWIND IO10 Position the file associated with the specified unit IO10 to its initial point
RETURN
END

Note : The Fock/KS eigenvectors are computed at a number of k points in reciprocal space defined by
the shrinking factor IS and they are written unformatted in file fort.10 (in the basis of symmetry adapted
Bloch functions) and in file fort.8 (in the basis of AO).

401

F.12. SMAT (libxj.f) Appendix F. Documentation of some CRYSTAL core subroutines

IRR(i, j, µ) ≡ Aµij (F.56)

with i = 1, 2, 3 and j = 1, 2, 3 and µ = 1, ..., n where n is the number of symmetry operators

MR1 ≡ r1 = mod (kxA
µ
11 + ky A

µ
12 + kz A

µ
13 + 16nx , nx) (F.57)

MR2 ≡ r2 = mod (kxA
µ
21 + ky A

µ
22 + kz A

µ
23 + 16ny , ny) (F.58)

MR3 ≡ r3 = mod (kxA
µ
31 + ky A

µ
32 + kz A

µ
33 + 16nz , nz) (F.59)

nrec = r1 + 1 + nx r2 + nx ny r3 + nx ny nz (IUNR− 1) (F.60)

k̃x = mod (nx − kx , nx) = nx − kx − nx int

(
nx − kx
nx

)
= nx − kx − nx int

(
1− kx

nx

)
(F.61)

k̃y = mod (ny − ky , ny) = ny − ky − ny int

(
ny − ky
ny

)
= ny − ky − ny int

(
1− ky

ny

)
(F.62)

k̃z = mod (nz − kz , nz) = nz − kz − nz int

(
nz − kz
nz

)
= nz − kz − nz int

(
1− kz

nz

)
(F.63)

MR1 ≡ r̃1 = mod (k̃xA
µ
11 + k̃y A

µ
12 + k̃z A

µ
13 + 16nx , nx) (F.64)

MR2 ≡ r̃2 = mod (k̃xA
µ
21 + k̃y A

µ
22 + k̃z A

µ
23 + 16ny , ny) (F.65)

MR3 ≡ r̃3 = mod (k̃xA
µ
31 + k̃y A

µ
32 + k̃z A

µ
33 + 16nz , nz) (F.66)

nrec = r̃1 + 1 + nx r̃2 + nx ny r̃3 + nx ny nz (IUNR− 1) (F.67)

Input file si.d12 (Crystal executable)

TEST08 - SILICON BULK: STO-3G
CRYSTAL
0 0 0
227
5.42
1
14 .125 .125 .125
END
14 3
1 0 3 2. 0.
1 1 3 8. 0.
1 1 3 4. 0.
99 0
END
SHRINK
4 4
TOLDEE
7
END

Input file si.d3 (Properties executable)

NEWK
4 4
1 0
BOLTZTRA
TRANGE
300 300 100
MURANGE
-5.0 10.0 0.01
TDFRANGE
-5.0 10.0 0.01
END
END

Table F.29: Input file si.d12 (left panel) used to obtain the ground state electronic wavefunction and input file
si.d3 (right panel) for electronic transport properties calculation used in the example given in the next pages.

402

Appendix F. Documentation of some CRYSTAL core subroutines F.12. SMAT (libxj.f)

The subroutine SMAT modifies the vectors A(1 : n) and AR(1 : n) [where n = 2n2
ao in the case of

complex k points and n = n2
ao in the case of real k points] that are both global variables declared

in polari module.f90 module, allocated in subroutine allocate smat servi and deallocated in subroutine
free smat servi of the module polari module.f90. The vectors A(1 : n) and AR(1 : n) contain, respectively,
the eigenvector associated to an irreducible k point (read from files fort.8 units) and the eigenvector
associated to a reducible k point (written on files fort.70 units and generated by using symmetry operators
on the eigenvector of an irreducible k point). If BOLTZ ACTIVE is true, then the vector ENE INFO will
be also modified by this subroutine.

Example 1. Closed shell system (see input files in Table F.29).

Silicon Bulk (space group 227 - lattice parameters a = b = c = 5.42 Å)
SHRINK 4 4 → NKF = nk = 8 k points in the Irreducible Brillouin zone

• Calculation with nk = np = 8 processors
iam = 0 – jdone = T T T T T T T F
iam = 1 – jdone = T T T T T T F T
iam = 2 – jdone = T T T T T F T T
iam = 3 – jdone = T T T T F T T T
iam = 4 – jdone = T T T F T T T T
iam = 5 – jdone = T T F T T T T T
iam = 6 – jdone = T F T T T T T T
iam = 7 – jdone = F T T T T T T T

– (Process ↔ k point) association
iam = jproc = 0 ↔ ik = 8
iam = jproc = 1 ↔ ik = 7
iam = jproc = 2 ↔ ik = 6
iam = jproc = 3 ↔ ik = 5
iam = jproc = 4 ↔ ik = 4
iam = jproc = 5 ↔ ik = 3
iam = jproc = 6 ↔ ik = 2
iam = jproc = 7 ↔ ik = 1

• Calculation with nk > np = 4 processors
iam = 0 – jdone = T T T F T T T F
iam = 1 – jdone = T T F T T T F T
iam = 2 – jdone = T F T T T F T T
iam = 3 – jdone = F T T T F T T T

– (Process ↔ k point) association
iam = jproc = 0 ↔ ik = 4,8
iam = jproc = 1 ↔ ik = 3,7
iam = jproc = 2 ↔ ik = 2,6
iam = jproc = 3 ↔ ik = 1,5

• Calculation with nk < np = 14 processors
iam = 0 – jdone = T T T T T T T T
iam = 1 – jdone = T T T T T T T T
iam = 2 – jdone = T T T T T T T T
iam = 3 – jdone = T T T T T T T T
iam = 4 – jdone = T T T T T T T T
iam = 5 – jdone = T T T T T T T T
iam = 6 – jdone = T T T T T T T F
iam = 7 – jdone = T T T T T T F T
iam = 8 – jdone = T T T T T F T T
iam = 9 – jdone = T T T T F T T T
iam = 10 – jdone = T T T F T T T T
iam = 11 – jdone = T T F T T T T T
iam = 12 – jdone = T F T T T T T T
iam = 13 – jdone = F T T T T T T T

– (Process ↔ k point) association
jproc = 6 ↔ ik = 8
jproc = 7 ↔ ik = 7
jproc = 8 ↔ ik = 6
jproc = 9 ↔ ik = 5
jproc = 10 ↔ ik = 4
jproc = 11 ↔ ik = 3
jproc = 12 ↔ ik = 2
jproc = 13 ↔ ik = 1

• Calculation with nk > np = 3 processors
iam = 0 – jdone = T T F T T F T T
iam = 1 – jdone = T F T T F T T F
iam = 2 – jdone = F T T F T T F T

– (Process ↔ k point) association
iam = jproc = 0 ↔ ik = 3,6
iam = jproc = 1 ↔ ik = 2,5,8
iam = jproc = 2 ↔ ik = 1,4,7

For the case of open shell systems, the size of the vector jdone is doubled, and the second part of the
vector is replicated (so that both the α and β contributions are taken into account), see the Example 2
in the following.

403

F.12. SMAT (libxj.f) Appendix F. Documentation of some CRYSTAL core subroutines

isym iirr,k kred nrec

1 2 1 0 0 2
1 4 1 1 0 6
1 5 2 1 0 7
1 6 3 1 0 8
1 8 3 2 1 28

2 2 0 1 0 5
2 4 1 1 0 6
2 5 1 2 0 10
2 6 1 3 0 14
2 8 1 2 3 58

3 2 3 3 3 64
3 4 3 3 0 16
3 5 2 2 3 59
3 6 1 1 2 38
3 8 1 2 3 58

4 2 0 0 1 17
4 4 3 3 0 16
4 5 3 3 1 32
4 6 3 3 2 48
4 8 3 2 1 28

5 2 0 1 0 5
5 4 0 1 1 21
5 5 0 2 1 25
5 6 0 3 1 29
5 8 1 3 2 46

6 2 0 0 1 17
6 4 1 0 1 18
6 5 1 0 2 34
6 6 1 0 3 50
6 8 2 1 3 55

7 2 1 0 0 2
7 4 0 3 3 61
7 5 1 3 3 62
7 6 2 3 3 63
7 8 1 3 2 46

8 2 1 0 0 2
8 4 1 0 1 18
8 5 2 0 1 19
8 6 3 0 1 20
8 8 2 3 1 31

9 2 0 0 1 17
9 4 0 1 1 21
9 5 0 1 2 37
9 6 0 1 3 53
9 8 3 1 2 40

isym iirr,k kred nrec

10 2 3 3 3 64
10 4 3 0 3 52
10 5 2 3 2 47
10 6 1 2 1 26
10 8 2 3 1 31

11 2 3 3 3 64
11 4 0 3 3 61
11 5 3 2 2 44
11 6 2 1 1 23
11 8 3 1 2 40

12 2 0 1 0 5
12 4 3 0 3 52
12 5 3 1 3 56
12 6 3 2 3 60
12 8 2 1 3 55

13 2 0 3 0 13
13 4 3 3 0 16
13 5 3 2 0 12
13 6 3 1 0 8
13 8 2 1 3 55

14 2 3 0 0 4
14 4 3 3 0 16
14 5 2 3 0 15
14 6 1 3 0 14
14 8 2 3 1 31

15 2 1 1 1 22
15 4 1 1 0 6
15 5 2 2 1 27
15 6 3 3 2 48
15 8 2 3 1 31

16 2 0 0 3 49
16 4 1 1 0 6
16 5 1 1 3 54
16 6 1 1 2 38
16 8 2 1 3 55

17 2 3 0 0 4
17 4 3 0 3 52
17 5 2 0 3 51
17 6 1 0 3 50
17 8 1 3 2 46

18 2 0 0 3 49
18 4 0 3 3 61
18 5 0 3 2 45
18 6 0 3 1 29
18 8 3 2 1 28

isym iirr,k kred nrec

19 2 0 3 0 13
19 4 1 0 1 18
19 5 1 3 1 30
19 6 1 2 1 26
19 8 1 3 2 46

20 2 0 3 0 13
20 4 0 3 3 61
20 5 0 2 3 57
20 6 0 1 3 53
20 8 1 2 3 58

21 2 0 0 3 49
21 4 3 0 3 52
21 5 3 0 2 36
21 6 3 0 1 20
21 8 3 1 2 40

22 2 1 1 1 22
22 4 0 1 1 21
22 5 1 2 2 42
22 6 2 3 3 63
22 8 1 2 3 58

23 2 1 1 1 22
23 4 1 0 1 18
23 5 2 1 2 39
23 6 3 2 3 60
23 8 3 1 2 40

24 2 3 0 0 4
24 4 0 1 1 21
24 5 3 1 1 24
24 6 2 1 1 23
24 8 3 2 1 28

25 2 3 0 0 4
25 4 3 3 0 16
25 5 2 3 0 15
25 6 1 3 0 14
25 8 1 2 3 58

26 2 0 3 0 13
26 4 3 3 0 16
26 5 3 2 0 12
26 6 3 1 0 8
26 8 3 2 1 28

27 2 1 1 1 22
27 4 1 1 0 6
27 5 2 2 1 27
27 6 3 3 2 48
27 8 3 2 1 28

Table F.30: Indexes related to coordinates of the complex reducible k points kred ∈ C created from the
(iirr,k)-th irreducible ones through the (isym)-th symmetry operators and integer nrec, which gives the
record number to be written in the direct access file fort.70. The indexes of kred divided by the shrink
integers nx = ny = nz along the correspondent direction gives the Cartesian coordinates of the reciprocal
space point.

404

Appendix F. Documentation of some CRYSTAL core subroutines F.12. SMAT (libxj.f)

isym iirr,k kred nrec

28 2 0 0 3 49
28 4 1 1 0 6
28 5 1 1 3 54
28 6 1 1 2 38
28 8 1 2 3 58

29 2 0 3 0 13
29 4 0 3 3 61
29 5 0 2 3 57
29 6 0 1 3 53
29 8 3 1 2 40

30 2 0 0 3 49
30 4 3 0 3 52
30 5 3 0 2 36
30 6 3 0 1 20
30 8 2 3 1 31

31 2 3 0 0 4
31 4 0 1 1 21
31 5 3 1 1 24
31 6 2 1 1 23
31 8 3 1 2 40

32 2 3 0 0 4
32 4 3 0 3 52
32 5 2 0 3 51
32 6 1 0 3 50
32 8 2 1 3 55

33 2 0 0 3 49
33 4 0 3 3 61
33 5 0 3 2 45
33 6 0 3 1 29
33 8 1 3 2 46

34 2 1 1 1 22
34 4 1 0 1 18
34 5 2 1 2 39
34 6 3 2 3 60
34 8 2 1 3 55

35 2 1 1 1 22
35 4 0 1 1 21
35 5 1 2 2 42
35 6 2 3 3 63
35 8 1 3 2 46

36 2 0 3 0 13
36 4 1 0 1 18
36 5 1 3 1 30
36 6 1 2 1 26
36 8 2 3 1 31

isym iirr,k kred nrec

37 2 0 1 0 5
37 4 1 1 0 6
37 5 1 2 0 10
37 6 1 3 0 14
37 8 2 3 1 31

38 2 1 0 0 2
38 4 1 1 0 6
38 5 2 1 0 7
38 6 3 1 0 8
38 8 2 1 3 55

39 2 3 3 3 64
39 4 3 3 0 16
39 5 2 2 3 59
39 6 1 1 2 38
39 8 2 1 3 55

40 2 0 0 1 17
40 4 3 3 0 16
40 5 3 3 1 32
40 6 3 3 2 48
40 8 2 3 1 31

41 2 1 0 0 2
41 4 1 0 1 18
41 5 2 0 1 19
41 6 3 0 1 20
41 8 3 1 2 40

42 2 0 0 1 17
42 4 0 1 1 21
42 5 0 1 2 37
42 6 0 1 3 53
42 8 1 2 3 58

43 2 0 1 0 5
43 4 3 0 3 52
43 5 3 1 3 56
43 6 3 2 3 60
43 8 3 1 2 40

44 2 0 1 0 5
44 4 0 1 1 21
44 5 0 2 1 25
44 6 0 3 1 29
44 8 3 2 1 28

45 2 0 0 1 17
45 4 1 0 1 18
45 5 1 0 2 34
45 6 1 0 3 50
45 8 1 3 2 46

isym iirr,k kred nrec

46 2 3 3 3 64
46 4 0 3 3 61
46 5 3 2 2 44
46 6 2 1 1 23
46 8 3 2 1 28

47 2 3 3 3 64
47 4 3 0 3 52
47 5 2 3 2 47
47 6 1 2 1 26
47 8 1 3 2 46

48 2 1 0 0 2
48 4 0 3 3 61
48 5 1 3 3 62
48 6 2 3 3 63
48 8 1 2 3 58

Table F.31: (continuation of Table F.30) Indexes related to coordinates of the complex reducible k
points kred ∈ C created from the (iirr,k)-th irreducible ones through the (isym)-th symmetry operators
and integer nrec, which gives the record number to be written in the direct access file fort.70. The
indexes of kred divided by the shrink integers nx = ny = nz along the correspondent direction gives the
Cartesian coordinates of the reciprocal space point.

405

F.12. SMAT (libxj.f) Appendix F. Documentation of some CRYSTAL core subroutines

isym iirr,k kred nrec

1 1 0 0 0 1
1 3 2 0 0 3
1 7 2 2 0 11

2 1 0 0 0 1
2 3 0 2 0 9
2 7 2 2 0 11

3 1 0 0 0 1
3 3 2 2 2 43
3 7 2 2 0 11

4 1 0 0 0 1
4 3 0 0 2 33
4 7 2 2 0 11

5 1 0 0 0 1
5 3 0 2 0 9
5 7 0 2 2 41

6 1 0 0 0 1
6 3 0 0 2 33
6 7 2 0 2 35

7 1 0 0 0 1
7 3 2 0 0 3
7 7 0 2 2 41

8 1 0 0 0 1
8 3 2 0 0 3
8 7 2 0 2 35

9 1 0 0 0 1
9 3 0 0 2 33
9 7 0 2 2 41

10 1 0 0 0 1
10 3 2 2 2 43
10 7 2 0 2 35

11 1 0 0 0 1
11 3 2 2 2 43
11 7 0 2 2 41

12 1 0 0 0 1
12 3 0 2 0 9
12 7 2 0 2 35

13 1 0 0 0 1
13 3 0 2 0 9
13 7 2 2 0 11

14 1 0 0 0 1
14 3 2 0 0 3
14 7 2 2 0 11

isym iirr,k kred nrec

15 1 0 0 0 1
15 3 2 2 2 43
15 7 2 2 0 11

16 1 0 0 0 1
16 3 0 0 2 33
16 7 2 2 0 11

17 1 0 0 0 1
17 3 2 0 0 3
17 7 2 0 2 35

18 1 0 0 0 1
18 3 0 0 2 33
18 7 0 2 2 41

19 1 0 0 0 1
19 3 0 2 0 9
19 7 2 0 2 35

20 1 0 0 0 1
20 3 0 2 0 9
20 7 0 2 2 41

21 1 0 0 0 1
21 3 0 0 2 33
21 7 2 0 2 35

22 1 0 0 0 1
22 3 2 2 2 43
22 7 0 2 2 41

23 1 0 0 0 1
23 3 2 2 2 43
23 7 2 0 2 35

24 1 0 0 0 1
24 3 2 0 0 3
24 7 0 2 2 41

25 1 0 0 0 1
25 3 2 0 0 3
25 7 2 2 0 11

26 1 0 0 0 1
26 3 0 2 0 9
26 7 2 2 0 11

27 1 0 0 0 1
27 3 2 2 2 43
27 7 2 2 0 11

28 1 0 0 0 1
28 3 0 0 2 33
28 7 2 2 0 11

isym iirr,k kred nrec

29 1 0 0 0 1
29 3 0 2 0 9
29 7 0 2 2 41

30 1 0 0 0 1
30 3 0 0 2 33
30 7 2 0 2 35

31 1 0 0 0 1
31 3 2 0 0 3
31 7 0 2 2 41

32 1 0 0 0 1
32 3 2 0 0 3
32 7 2 0 2 35

33 1 0 0 0 1
33 3 0 0 2 33
33 7 0 2 2 41

34 1 0 0 0 1
34 3 2 2 2 43
34 7 2 0 2 35

35 1 0 0 0 1
35 3 2 2 2 43
35 7 0 2 2 41

36 1 0 0 0 1
36 3 0 2 0 9
36 7 2 0 2 35

37 1 0 0 0 1
37 3 0 2 0 9
37 7 2 2 0 11

38 1 0 0 0 1
38 3 2 0 0 3
38 7 2 2 0 11

39 1 0 0 0 1
39 3 2 2 2 43
39 7 2 2 0 11

40 1 0 0 0 1
40 3 0 0 2 33
40 7 2 2 0 11

41 1 0 0 0 1
41 3 2 0 0 3
41 7 2 0 2 35

42 1 0 0 0 1
42 3 0 0 2 33
42 7 0 2 2 41

Table F.32: Indexes related to coordinates of the real reducible k points kred ∈ R created from the
(iirr,k)-th irreducible ones through the (isym)-th symmetry operators and integer nrec, which gives the
record number to be written in the direct access file fort.70. The indexes of kred divided by the shrink
integers nx = ny = nz along the correspondent direction gives the Cartesian coordinates of the reciprocal
space point.

406

Appendix F. Documentation of some CRYSTAL core subroutines F.12. SMAT (libxj.f)

isym iirr,k kred nrec

43 1 0 0 0 1
43 3 0 2 0 9
43 7 2 0 2 35

44 1 0 0 0 1
44 3 0 2 0 9
44 7 0 2 2 41

45 1 0 0 0 1
45 3 0 0 2 33
45 7 2 0 2 35

isym iirr,k kred nrec

46 1 0 0 0 1
46 3 2 2 2 43
46 7 0 2 2 41

47 1 0 0 0 1
47 3 2 2 2 43
47 7 2 0 2 35

48 1 0 0 0 1
48 3 2 0 0 3
48 7 0 2 2 41

Table F.33: (continuation of Table F.32) Indexes related to coordinates of the real reducible k points
kred ∈ R created from the (iirr,k)-th irreducible ones through the (isym)-th symmetry operators and
integer nrec, which gives the record number to be written in the direct access file fort.70. The indexes of
kred divided by the shrink integers nx = ny = nz along the correspondent direction gives the Cartesian
coordinates of the reciprocal space point.

Example 2. Open shell system.

KMnF3 Bulk (space group 221 - lattice parameters a = b = c = 4.19 Å)
SHRINK 4 4 → NKF = nk = 10 k points in the Irreducible Brillouin zone

• Calculation with nk > np = 8 processors
iam = 0 – jdone = T T T T T T T F T T | T T T T T F T T T T
iam = 1 – jdone = T T T T T T F T T T | T T T T F T T T T T
iam = 2 – jdone = T T T T T F T T T T | T T T F T T T T T T
iam = 3 – jdone = T T T T F T T T T T | T T F T T T T T T T
iam = 4 – jdone = T T T F T T T T T T | T F T T T T T T T F
iam = 5 – jdone = T T F T T T T T T T | F T T T T T T T F T
iam = 6 – jdone = T F T T T T T T T F | T T T T T T T F T T
iam = 7 – jdone = F T T T T T T T F T | T T T T T T F T T T

– (Process ↔ k point) association
iam = jproc = 0 ↔ ik = 6β,8α
iam = jproc = 1 ↔ ik = 5β,7α
iam = jproc = 2 ↔ ik = 4β,6α
iam = jproc = 3 ↔ ik = 3β,5α
iam = jproc = 4 ↔ ik = 2β,4α,10β
iam = jproc = 5 ↔ ik = 1β,3α,9β
iam = jproc = 6 ↔ ik = 2α,8β,10α
iam = jproc = 7 ↔ ik = 1α,7β,9α

Therefore, in the case of open shell systems, the number of irreducible k points is basically doubled
in the jdone vector, so that the α and β contributions are both taken into account. In the previous
example there are 10 irreducible k points, but they are doubled so that in the vector jdone there are 20
elements, the first 10 and the last 10 values related to the α and the β components, respectively. In this
way, the 20 elements (10 α-k and 10 β-k points) are divided between processors using the methodology
illustrated in the example.

407

F.13. ESTROF (both4.f) Appendix F. Documentation of some CRYSTAL core subroutines

F.13 Subroutine ESTROF (both4.f)

Input : the real variables vectors A(1 : 2n2
ao) and AR(1 : 2n2

ao) where nao is the number of atomic orbitals
in the system, the integer MV that contains the index of the symmetry operator to be applied on the
input vector A, the integer NBINI that contains the index of the first band to be considered, the integer
NBFI that contains the index of the last band to be considered and the integer MBANDS that contains
the number of bands to be considered.
(in SMAT subroutine, this last input integer is defined as MBANDS = NBFI - NBINI + 1)
The subroutine modifies the elements of the vector AR in the range (1 : MBANDS ·nao), i.e. it modifies
AR(1 : MBANDS ·nao) by rotating these elements of the vector according to the symmetry operator of
the space group classified with index MV as given in the third input argument of the subroutine.

line SUBROUTINE ESTROF: defined in both4.f Crystal version: SVN DEV1286

6206 SUBROUTINE ESTROF(A,AR,MV,NBINI,NBFI,MBANDS)
USE NUMBERS
USE PARAME MODULE
USE PARINF MODULE
USE MEMORY SCREEN
USE ROTMATRIX
USE BASATO MODULE
USE EXPO MODULE MV = is (= index of the symmetry operator) as input argument
USE SOC NBINI = ibeg,b = initial band index as input argument
IMPLICIT REAL(FLOAT) (A-H,O-Z) NBFI = iend,b = final band index as input argument
DIMENSION A(*),AR(*) MBANDS = mb = total number of bands (states) as input argument
NDF=INF(7) INF(7) = nao = number of Atomic Orbitals (AOs)
INDBAS=(NBINI-1)*NDF INDBAS = initial index for basis set selection = (ibeg,b − 1)nao
NDF=NDF+NDF NDF = 2nao
IF(LSOC) INDBAS=(NBINI-1)*NDF if LSOC → INDBAS = 2 (ibeg,b − 1)nao
MVF=INF(2) MVF = INF(2) = ns = number of symmetry operators
AR(1:MBANDS*NDF)=0. FLOAT AR(1:MBANDS·NDF) = λi = 0 with i = 1, ...,mb · nao
DO LAVRS=1,INF(24) BEGIN loop on the number of atoms nat per unit cell
I=MGNAV(LAVRS,MV) index of the associated g vector
ECO=EX(1,I) cosin factor cos(α) of the I-th g vector for a given k point [see Sections F.7 - F.8]
ESI=EX(2,I) sin factor sin(α) of the I-th g vector for a given k point [see Sections F.7 - F.8]
DO LA=NSHPRI(LAVRS),NSHPRI(LAVRS+1)-1 BEGIN loop over shells associated to the LAVRS-th atom
ICA=NDQ(LAV(LA,MV))+INDBAS ICA = cumulative number of AOs + INDBAS (Crystal list order)
INF3=LAT(LA)*MVF+MV INF3 = LAT(LA) ·ns + is
ICO=NDQ(LA) ICO = cumulative number of AOs (Crystal list order)
DO I=MINZ(INF3)+1,MINZ(INF3+1) BEGIN loop on point group operators
VSI=TTO(I) TTO(I) = Tij vectorized
VCO=ECO*VSI VCO = Tij cos(k · g) ≡ Tij cos(α)
VSI=ESI*VSI VSI = Tij sin(k · g) ≡ Tij sin(α)
ICA1=(MMO(I)+ICA)*2 ICA1 = pointer to the index of the element of A vector to be used in the operation
ICA2=(MMOM(I)+ICO)*2 ICA2 = pointer to the index of the element of AR vector to be used in the operation
DO IND=NBINI,NBFI BEGIN loop on selected band indexes (IND = ibeg,b, ..., iend,b)
A1=A(ICA1-1) Real part of the eigenvector <(Cirr) associated to the irreducible k point
A2=A(ICA1) Imaginary part of the eigenvector =(Cirr) associated to the irreducible k point

6240 AR(ICA2-1)=A1*VCO-A2*VSI+AR(ICA2-1) AR(ICA2-1) = AR(ICA2-1) + A1 · Tij cos(α) - A2 · Tij sin(α) [see eq. (F.73)]
6241 AR(ICA2)=A1*VSI+A2*VCO+AR(ICA2) AR(ICA2) = AR(ICA2) + A1 · Tij sin(α) + A2 · Tij cos(α) [see eq. (F.74)]

ICA1=ICA1+NDF Increment the index ICA1 by 2nao
ICA2=ICA2+NDF Increment the index ICA2 by 2nao
ENDDO END loop on selected band indexes
ENDDO END loop on point group operators
ENDDO END loop over shells associated to the LAVRS-th atom
ENDDO END loop on number of atoms nat
RETURN

6249 END

Table F.35: Code and description of subroutine ESTROF (both4.f)

In the following, a description of the vectors and matrices appearing in the subroutine is given.
NSHPRI(I), I = 1, ..., (nat + 1) is a vector containing the cumulative number of shells (input order), so
that

NSHPRI(1) = 1 and NSHPRI(J) =

J>1∑
I=1

NSHPRI(I) (F.68)

LAT(I), I = 1, ..., nh (where nh is the number of shells) is the type of the I-th shell in input order, where

408

Appendix F. Documentation of some CRYSTAL core subroutines F.13. ESTROF (both4.f)

the value of the elements depends on the type of shell and it can be 0 for shell type S, 1 for shell type
SP, 2 for shell type P, 3 for shell type D and 4 for shell type F (0 → S; 1 → SP, 2 → P; 3 → D; 4 → F).

NDQ(I), I = 1, ..., (nh + 1) [where nh is the number of shells] is the cumulative number of atomic orbitals
(in input order), so that

NDQ(1) = 0 and NDQ(J) =
J>1∑
I=1

NDQ(I) (F.69)

MGNAV is a nat×ns matrix (number of atoms, number of point symmetry operators) that shows which
lattice vector brings back the µ-th atom in the zero-cell when the R̂−1 operator is applied to it. An
example of the MGNAV matrix is given in Figure F.3.

Figure F.3: MGNAV matrix for graphite, with NAF = 2 atoms in the unit cell and MVF = 12 operators.

LAV is a nh × ns matrix (number of shells, number of point symmetry operators) that shows on which
shell goes a shell by the effect of a symmetry operator R̂−1 (shells equivalent by translation do have the
same label; then for example in graphite shells labels are numbers from 1 to 4).

An example of the LAV matrix is given in Figure F.4.

Figure F.4: LAV matrix for the graphite example with LAF = 4 shells and MVF = 12 operators.

The vectors TTO, MMO, MMOM and MINZ are initialized in subroutine GSYM11, that defines the
symmetry operator matrices for all shell types and all operators, such that the total number of matrices
is given by the total number of symmetry operators MVF = inf(2) times the total number of shell types
(MXTP + 1, where MXTP = inf(175) is the label of the shell type with the maximum number of atomic
orbitals). These matrices are stored in compact form in the TTO vector (null terms are disregarded).
Three pointers, MMO, MMOM and MINZ are defined: they point, respectively, the row and the column
indices of non-null elements and the starting point of the point group operators. MMO and MMOM

have the same size as TTO and give for each TTO element the corresponding row and column indices in
the original representation matrices, respectively. MINZ is a MVF × (MXTP + 1) array and gives the
starting point for each operator and for each shell type in the TTO global array.

The two operations in lines 6240-6241 can be understood thinking that the eigenvectors C, that is given
in input by the vector A(1 : mb ·nao), contains both the real and imaginary part. If the (i−1)-th element
of the eigenvector A is an element contained in the real part of the eigenvector, the next one i.e. the
i-th element belongs to the imaginary part of the eigenvector A. Therefore, in line 6240 a real element
of the rotated eigenvector AR(1 : mb · nao) is calculated, while in the next line 6241 an element of its
imaginary part is computed, so that at the end both the real and the imaginary part of the eigenvector
A(1 : mb · nao) will be rotated according the the symmetry operator with index MV = is and stored in
the vector AR(1 : mb · nao). In order to rotate the eigenvector C, it has to be multiplied by the matrix
representing the symmetry operator T = {Tij} and by a phase exp(ik ·g) where k is the reciprocal space

409

F.13. ESTROF (both4.f) Appendix F. Documentation of some CRYSTAL core subroutines

point and g is the direct lattice vector. The phase factor can be also written as

eik·g = cos(k · g) + i sin(k · g) (F.70)

Moreover, considering the product of two complex numbers z1 = x1 + iy1 and z2 = x2 + iy2, given by

z1 z2 = (x1 + iy1)(x2 + iy2) = x1 x2 − y1 y2 + i(x1 y2 + x2 y1) (F.71)

it is easy to demonstrate that the real part <(z1z2) and the imaginary part =(z1z2) of the product can
be written as

<(z1z2) = <(z1)<(z2)−=(z1)=(z2) and =(z1z2) = <(z1)=(z2) + <(z2)=(z1) (F.72)

so that the real part and the imaginary part of the rotated eigenvector C T exp(ik · g) that is stored in
the vector AR(1 : mb · nao) can be computed as

<(C T eik·g) = <(C)<(T eik·g)−=(C)=(T eik·g) = <(C) T cos(k · g)−=(C) T sin(k · g) (F.73)

=(C T eik·g) = <(C)=(T eik·g) + =(C)<(T eik·g) = <(C) T sin(k · g) + =(C) T cos(k · g) (F.74)

where the matrix T is a real matrix and can be therefore associated to the phase part by applying the
formulae (F.72). Therefore, the following identities can be defined between the notation adopted in the
previous equations and the operations in the code in lines 6240-6241

[<(C)]ij = A1 = A(ICA1 - 1) and [=(C)]ij = A2 = A(ICA1) (F.75)

[<(C T eik·g)]kl = AR(ICA2 - 1) and [=(C T eik·g)]kl = AR(ICA2) (F.76)

Tmn cos(k · g) = VCO and Tmn sin(k · g) = VSI (F.77)

410

Appendix F. Documentation of some CRYSTAL core subroutines F.14. ESTROE (both4.f)

F.14 Subroutine ESTROE (both4.f)

Input : the real variables vectors A(1 : 2n2
ao) and AR(1 : 2n2

ao) where nao is the number of atomic orbitals
in the system, the integer MV that contains the index of the symmetry operator to be applied on the
input vector A, the integer NBINI that contains the index of the first band to be considered, the integer
NBFI that contains the index of the last band to be considered and the integer MBANDS that contains
the number of bands to be considered.
(in SMAT subroutine, this last input integer is defined as MBANDS = NBFI - NBINI + 1)
The subroutine modifies the elements of the vector AR in the range (1 : MBANDS ·nao), i.e. it modifies
AR(1 : MBANDS ·nao) by rotating these elements of the vector according to the symmetry operator of
the space group classified with index MV as given in the third input argument of the subroutine.

line SUBROUTINE ESTROE: defined in both4.f Crystal version: SVN DEV1286

6158 SUBROUTINE ESTROE(A,AR,MV,NBINI,NBFI,MBANDS)
USE NUMBERS
USE PARAME MODULE
USE PARINF MODULE
USE MEMORY SCREEN
USE ROTMATRIX
USE BASATO MODULE
USE EXPO MODULE MV = is (= index of the symmetry operator) as input argument
USE SOC NBINI = ibeg,b = initial band index as input argument
IMPLICIT REAL(FLOAT) (A-H,O-Z) NBFI = iend,b = final band index as input argument
DIMENSION A(*),AR(*) MBANDS = mb = total number of bands (states) as input argument
NDF=INF(7) INF(7) = nao = number of Atomic Orbitals (AOs)
INDBAS=(NBINI-1)*NDF INDBAS = initial index for basis set selection = (ibeg,b − 1)nao
NDF=NDF+NDF NDF = 2nao
IF(LSOC) INDBAS=(NBINI-1)*NDF if LSOC → INDBAS = 2 (ibeg,b − 1)nao
MVF=INF(2) MVF = INF(2) = ns = number of symmetry operators
AR(1:MBANDS*NDF)=0. FLOAT AR(1:MBANDS·NDF) = λi = 0 with i = 1, ...,mb · nao
DO LAVRS=1,INF(24) BEGIN loop on the number of atoms nat per unit cell
I=MGNAV(LAVRS,MV) index of the associated g vector
ECO=EX(1,I) cosin factor cos(α) of the I-th g vector for a given k point [see Sections F.7 - F.8]
ESI=EX(2,I) sin factor sin(α) of the I-th g vector for a given k point [see Sections F.7 - F.8]
DO LA=NSHPRI(LAVRS),NSHPRI(LAVRS+1)-1 BEGIN loop over shells associated to the LAVRS-th atom
ICA=NDQ(LAV(LA,MV))+INDBAS ICA = cumulative number of AOs + INDBAS (Crystal list order)
INF3=LAT(LA)*MVF+MV INF3 = LAT(LA) ·ns + is
ICO=NDQ(LA) ICO = cumulative number of AOs (Crystal list order)
DO I=MINZ(INF3)+1,MINZ(INF3+1) BEGIN loop on point group operators
VSI=TTO(I) TTO(I) = Tij vectorized
VCO=ECO*VSI VCO = Tij cos(k · g) ≡ Tij cos(α)
VSI=ESI*VSI VSI = Tij sin(k · g) ≡ Tij sin(α)
ICA1=(MMO(I)+ICA)*2 ICA1 = pointer to the index of the element of A vector to be used in the operation
ICA2=(MMOM(I)+ICO)*2 ICA2 = pointer to the index of the element of AR vector to be used in the operation
DO IND=NBINI,NBFI BEGIN loop on selected band indexes (IND = ibeg,b, ..., iend,b)
A1=A(ICA1-1) Real part of the eigenvector <(Cirr) associated to the irreducible k point
A2=A(ICA1) Imaginary part of the eigenvector =(Cirr) associated to the irreducible k point

6192 AR(ICA2-1)=A1*VCO+A2*VSI+AR(ICA2-1) AR(ICA2-1) = AR(ICA2-1) + A1 · Tij cos(α) + A2 · Tij sin(α) [see eq. (F.80)]
6193 AR(ICA2)=A1*VSI-A2*VCO+AR(ICA2) AR(ICA2) = AR(ICA2) + A1 · Tij sin(α) - A2 · Tij cos(α) [see eq. (F.81)]

ICA1=ICA1+NDF Increment the index ICA1 by 2nao
ICA2=ICA2+NDF Increment the index ICA2 by 2nao
ENDDO END loop on selected band indexes
ENDDO END loop on point group operators
ENDDO END loop over shells associated to the LAVRS-th atom
ENDDO END loop on number of atoms nat
RETURN

6201 END

Table F.37: Code and description of subroutine ESTROE (both4.f)

In order to fully understand the operation involved in the subroutine, see the comments on subroutine
ESTROF in Section F.13, where the meaning of the vectors and matrices also appearing in the subroutine
ESTROE is fully explained.
The difference between subroutine ESTROF (Section F.13) and the subroutine ESTROE is that, in the
last one, the product of a complex number z1 by the complex conjugate of another complex number z∗2
is considered, so that, instead of the product (F.72), the following product has to be taken into account

z1 z
∗
2 = (x1 + iy1)(x2 − iy2) = x1 x2 + y1 y2 + i(x2 y1 − x1 y2) (F.78)

411

F.14. ESTROE (both4.f) Appendix F. Documentation of some CRYSTAL core subroutines

Therefore, it is easy to demonstrate that the real part <(z1z
∗
2) and the imaginary part =(z1z

∗
2) of the

product can be written as

<(z1z
∗
2) = <(z1)<(z2) + =(z1)=(z2) and =(z1z

∗
2) = <(z2)=(z1)−<(z1)=(z2) (F.79)

so that the real part and the imaginary part of the rotated eigenvector C T exp(−ik · g) that is stored
in the vector AR(1 : mb · nao) can be computed as

<(C T e−ik·g) = <(C)<(T e−ik·g) +=(C)=(T e−ik·g) = <(C) T cos(k · g) +=(C) T sin(k · g) (F.80)

=(C T e−ik·g) = <(C)=(T e−ik·g)−=(C)<(T e−ik·g) = <(C) T sin(k · g)−=(C) T cos(k · g) (F.81)

where the matrix T is a real matrix and can be therefore associated to the phase part by applying the
formulae (F.72). Therefore, the following identities can be defined between the notation adopted in the
previous equations and the operations in the code in lines 6192-6193

[<(C)]ij = A1 = A(ICA1 - 1) and [=(C)]ij = A2 = A(ICA1) (F.82)

[<(C T e−ik·g)]kl = AR(ICA2 - 1) and [=(C T e−ik·g)]kl = AR(ICA2) (F.83)

Tmn cos(k · g) = VCO and Tmn sin(k · g) = VSI (F.84)

412

Appendix F. Documentation of some CRYSTAL core subroutines F.15. ESTROG (both4.f)

F.15 Subroutine ESTROG (both4.f)

Input : the real variables vectors A(1 : n2
ao) and AR(1 : n2

ao) where nao is the number of atomic orbitals
in the system, the integer MV that contains the index of the symmetry operator to be applied on the
input vector A, the integer NBINI that contains the index of the first band to be considered, the integer
NBFI that contains the index of the last band to be considered and the integer MBANDS that contains
the number of bands to be considered.
(in SMAT subroutine, this last input integer is defined as MBANDS = NBFI - NBINI + 1)
The subroutine modifies the elements of the vector AR in the range (1 : MBANDS ·nao), i.e. it modifies
AR(1 : MBANDS ·nao) by rotating these elements of the vector according to the symmetry operator of
the space group classified with index MV as given in the third input argument of the subroutine.

line SUBROUTINE ESTROG: defined in both4.f Crystal version: SVN DEV1286

6325 SUBROUTINE ESTROG(A,AR,MV,NBINI,NBFI,MBANDS)
USE NUMBERS
USE PARAME MODULE
USE PARINF MODULE
USE MEMORY SCREEN
USE ROTMATRIX MV = is (= index of the symmetry operator) as input argument
USE BASATO MODULE NBINI = ibeg,b = initial band index as input argument
USE EXPO MODULE NBFI = iend,b = final band index as input argument
IMPLICIT REAL(FLOAT) (A-H,O-Z) MBANDS = mb = total number of bands (states) as input argument
DIMENSION A(*),AR(*) MGNAV(LAVRS,MV) = index of the associated g vector
NDF=INF(7) INF(7) = nao = number of Atomic Orbitals (AOs)
MVF=INF(2) MVF = INF(2) = ns = number of symmetry operators
INDBAS=(NBINI-1)*NDF INDBAS = initial index for basis set selection = (ibeg,b − 1)nao
AR(1:MBANDS*NDF)=0. FLOAT AR(1:MBANDS·NDF) = λi = 0 with i = 1, ...,mb · nao
DO LAVRS=1,INF(24) BEGIN loop on the number of atoms nat per unit cell
ECO=EX(1,MGNAV(LAVRS,MV)) cosin factor cos(α) of the I-th g vector for a given k point [see Sections F.7 - F.8]
DO LA=NSHPRI(LAVRS),NSHPRI(LAVRS+1)-1 BEGIN loop over shells associated to the LAVRS-th atom
ICA=NDQ(LAV(LA,MV))+INDBAS ICA = cumulative number of AOs + INDBAS (Crystal list order)
ICO=NDQ(LA) ICO = cumulative number of AOs (Crystal list order)
INF3=LAT(LA)*MVF+MV INF3 = LAT(LA) ·ns + is
DO I=MINZ(INF3)+1,MINZ(INF3+1) BEGIN loop on point group operators
VCO=TTO(I)*ECO VCO = Tij cos(k · g) ≡ Tij cos(α)
ICA1=MMO(I)+ICA ICA1 = pointer to the index of the element of A vector to be used in the operation
ICA2=MMOM(I)+ICO ICA2 = pointer to the index of the element of AR vector to be used in the operation
DO IND=NBINI,NBFI BEGIN loop on selected band indexes (IND = ibeg,b, ..., iend,b)

6350 AR(ICA2)=A(ICA1)*VCO+AR(ICA2) AR(ICA2) = AR(ICA2) + A(ICA1) · Tij cos(α) [see eq. (F.74)]
ICA1=ICA1+NDF Increment the index ICA1 by nao
ICA2=ICA2+NDF Increment the index ICA2 by nao
ENDDO END loop on selected band indexes
ENDDO END loop on point group operators
ENDDO END loop over shells associated to the LAVRS-th atom
ENDDO END loop on number of atoms nat
RETURN

6358 END

Table F.39: Code and description of subroutine ESTROG (both4.f)

In order to fully understand the operation involved in the subroutine, see the comments on subroutine
ESTROF in Section F.13, where the meaning of the vectors and matrices also appearing in the subroutine
ESTROG is fully explained.
The difference between subroutine ESTROF (Section F.13) and the subroutine ESTROG is that the last
one involves only real quantities, being associated to operations on real reciprocal space points, so that
the exponential (F.70) becomes

Real reciprocal space point k → eik·g = cos(k · g) ∈ R (F.85)

and the correspondent eigenvector C is real (C ∈ R). Therefore, the rotation of the eigenvector C
through the symmetry operator with index MV whose matrix representation is given by T can be
computed as

C T eik·g = C T cos(k · g) ∈ R (F.86)

and the result can be stored in the vector AR(1 : mb · nao).
Therefore, the following identities can be defined between the notation adopted in the previous equations

413

F.15. ESTROG (both4.f) Appendix F. Documentation of some CRYSTAL core subroutines

and in the operations in the code in line 6350

(C)ij ≡ [<(C)]ij = A(ICA1) (F.87)

(C T eik·g)kl = AR(ICA2) (F.88)

Tmn cos(k · g) = VCO (F.89)

414

Appendix F. Documentation of some CRYSTAL core subroutines F.16. SMAT SINGLEK (libxj.f)

F.16 Subroutine SMAT SINGLEK (libxj.f)

Input : the vectors E IRR(1 : n) and E RED(1 : n) [where n = 2n2
ao in the case of complex k points and

n = n2
ao in the case of real k points], the integer IRC that is defined equal to zero for complex k points

or different from zero (equal to one) for real k points, the integers (IK1, IK2, IK3) containing the indexes
of the reducible k point whose associated eigenvector has to be computed, the index ISIGMA related to
closed shell case (ISIGMA = 1) or open shell case (ISIGMA = 2), the logical variable BOLTZ ACTIVE

that is true if a calculation of electronic transport properties is performed (see boltzatorb.f90 module),
the integer OUTF that specifies the index of the output file unit on which information are written and
the optional real variable TIME SMAT that contains (if present) the total CPU time required for the
execution of the subroutine.
The vectors E IRR(1 : n) and E RED(1 : n) contain, respectively, the eigenvector associated to an
irreducible k point and to the reducible k point generated using a particular symmetry operator on the
eigenvector of a particular irreducible k point.
The subroutine modifies the vectors E IRR(1 : n) and E RED(1 : n), together with the integer IRC that
is defined equal to zero or one if the irreducible k point that generates the reducible k point with indexes
(IK1, IK2, IK3) is a complex or a real k point, respectively. If the optional real variable TIME SMAT

is present, the subroutine modifies it so that its value will store the total CPU time required for the
execution of the subroutine. Moreover, if BOLTZ ACTIVE is true, then the vector ENE INFO will be also
modified by this subroutine.

SUBROUTINE SMAT: defined in libxj.f Crystal version: SVN DEV1286

SUBROUTINE SMAT SINGLEK(E IRR, E RED, IRC, IK1, IK2, IK3, ISIGMA,
* BOLTZ ACTIVE, OUTF, TIME SMAT)

USE NUMBERS Declaration of modules used in the subroutine
USE PARINF MODULE
USE RETIC MODULE
USE XYVDIM MODULE
USE POLARI MODULE
USE EXPO MODULE
USE PARAL1 MODULE
USE MEMORY USE
USE TIMER MODULE
USE MOM MODULE, ONLY: MOM INPUT, BTOBTRUE

IMPLICIT NONE
INTEGER , INTENT(IN) :: IK1 Declaration of input, output and input-output variables
INTEGER , INTENT(IN) :: IK2
INTEGER , INTENT(IN) :: IK3
INTEGER , INTENT(IN) :: ISIGMA
LOGICAL , INTENT(IN) :: BOLTZ ACTIVE
INTEGER , INTENT(IN) :: OUTF
REAL(FLOAT), INTENT(INOUT) :: E IRR(*), E RED(*)
INTEGER , INTENT(INOUT) :: IRC
REAL(FLOAT), INTENT(INOUT), OPTIONAL :: TIME SMAT

INTEGER :: JR1, JR2, JR3, MV, MVF, NDF Declaration of local variables
INTEGER :: IS1IS2, IS123, NDFJJJ, NDFVRS
INTEGER :: NBINI, NBFI, MBANDS
INTEGER :: IS10, IS20, IS30
INTEGER :: MR1, MR2, MR3, NREC
INTEGER :: ID1, ID2, ID3
INTEGER :: JPROC, K, KCUM, ISPIN
INTEGER :: IND IRR, IND SYM
INTEGER :: NDATA, IO08
LOGICAL :: KFOUND
LOGICAL :: USE ESTROE, USE ESTROF
REAL(FLOAT) :: DCPU, TOTAL CPU
REAL(FLOAT) :: DELAPSE, TOTAL ELAPSED
REAL(FLOAT) :: TIME BEG, TIME END
CHARACTER(LEN = 12) :: NOMZ = ’SMAT ONEK’

CALL CPU TIME(TIME BEG) Initial CPU time TIME BEG to compute the total CPU time spent in this subroutine

MVF = INF(2) ! NUMBER OF SYMMETRY OPERATORS
NDF = INF(7) ! NUMBER OF ATOMIC ORBITALS (N.AOs)
! INF64 = INF(64) ! = 0 CLOSED SHELL / = 1 OPEN SHELL
IS1IS2 = IS1*IS2 ! IS1, IS2, IS3 = (nx, ny , nz) = SHRINKING FACTORS ALONG KX, KY, KZ → IS1IS2 = s12 = nx · ny

415

F.16. SMAT SINGLEK (libxj.f) Appendix F. Documentation of some CRYSTAL core subroutines

IS123 = IS1*IS2*IS3 IS123 = s123 = nx · ny · nz
NDFJJJ = NDF*NDF ! NDFJJJ = NAO**2 = m2

NDFVRS = NDFJJJ+NDFJJJ ! NDFVRS = 2*NAO**2 = 2m2

NBINI = 1 ! INITIAL BAND INDEX = 1
NBFI = NDF ! FINAL BAND INDEX = m
MBANDS = NBFI-NBINI+1 ! NUMBER OF TOTAL BANDS CONSIDERED (= N.AOs) = nb = m
IO08 = IUNIT(8) ! UNIT WHERE THE IRREDUCIBLE EIGENVECTORS ARE READ IO08 = fort.8
IF(BTOBTRUE) THEN ! LOGICAL RELATED TO THE MAXIMUM OVERLAP METHOD (MOM)
IO08 = IUNIT(153) [Option activated for band to band transition calculations]
ENDIF
IS10 = IS1*16 IS10 = 16 · nx
IS20 = IS2*16 IS20 = 16 · ny
IS30 = IS3*16 IS30 = 16 · nz
KFOUND = .FALSE. Logical variable initialized to false
USE ESTROF = .FALSE. Logical variable initialized to false
USE ESTROE = .FALSE. Logical variable initialized to false

! FOUND THE INDEX IND IRR OF THE IRREDUCIBLE K POINT THAT GENERATES THE (IK1, IK2, IK3) REDUCIBLE K POINT
! LOOP OVER IRREDUCIBLE K POINTS BEGIN
LOOP K IRR : DO K = 1, NKF BEGIN loop over irreducible k points
JR1 = JJ(1, K) ! KX RECIPROCAL COORDINATE OF THE IRR K POINT JR1 = kx
JR2 = JJ(2, K) ! KY RECIPROCAL COORDINATE OF THE IRR K POINT JR2 = ky
JR3 = JJ(3, K) ! KZ RECIPROCAL COORDINATE OF THE IRR K POINT JR3 = kz
IF(LATVRS(K) .EQ. 0) THEN ! ————————————————— COMPLEX K POINT CASE BEGIN LATVRS(K) = 0 [see Section F.6]
DO MV = 1, MVF ! LOOP OVER SYMMETRY OPERATOR BEGIN BEGIN loop on the symmetry operators
ID1 = IRR(1,1,MV)*JR1+IRR(1,2,MV)*JR2+IRR(1,3,MV)*JR3+IS10 see formula F.57
MR1 = MOD(ID1, IS1) see formula F.57
ID2 = IRR(2,1,MV)*JR1+IRR(2,2,MV)*JR2+IRR(2,3,MV)*JR3+IS20 see formula F.58
MR2 = MOD(ID2, IS2) see formula F.58
ID3 = IRR(3,1,MV)*JR1+ IRR(3,2,MV)*JR2+IRR(3,3,MV)*JR3+IS30 see formula F.59
MR3 = MOD(ID3, IS3) see formula F.59
IF(MR1 == IK1 .AND. MR2 == IK2 .AND. MR3 == IK3) THEN If indexes (MR1, MR2, MR3) are equal to input indexes (IK1, IK2, IK3) →
KFOUND = .TRUE. → set KFOUND = true
USE ESTROF = .TRUE. → set USE ESTROF = true
IRC = LATVRS(K) → IRC = LATVRS(K) = 0
IND IRR = K → save the index of irreducible k point in IND IRR
IND SYM = MV → save the index of the symmetry operator in IND SYM
NREC = MR1 + 1 + MR2*IS1 + MR3*IS1IS2 + (ISIGMA-1)*IS123 see formula F.60
EXIT LOOP K IRR ! THE LOOP OVER IRREDUCIBLE K POINTS EXIT loop over irreducible k points
ENDIF Endif
ENDDO ! LOOP OVER SYMMETRY OPERATOR END END loop on the symmetry operators
IF(.NOT.KFOUND) THEN If in the previous loop the input k point (IK1, IK2, IK3) is not found
JR1 = MOD(IS1-JR1, IS1) see formula F.61
JR2 = MOD(IS2-JR2, IS2) see formula F.62
JR3 = MOD(IS3-JR3, IS3) see formula F.63
DO MV = 1, MVF ! LOOP OVER SYMMETRY OPERATOR BEGIN BEGIN loop on the symmetry operators
ID1 = IRR(1,1,MV)*JR1+IRR(1,2,MV)*JR2+IRR(1,3,MV)*JR3+IS10 see formula F.64
MR1 = MOD(ID1, IS1) see formula F.64
ID2 = IRR(2,1,MV)*JR1+IRR(2,2,MV)*JR2+IRR(2,3,MV)*JR3+IS20 see formula F.65
MR2 = MOD(ID2, IS2) see formula F.65
ID3 = IRR(3,1,MV)*JR1+IRR(3,2,MV)*JR2+IRR(3,3,MV)*JR3+IS30 see formula F.66
MR3 = MOD(ID3, IS3) see formula F.66
IF(MR1 == IK1 .AND. MR2 == IK2 .AND. MR3 == IK3) THEN If indexes (MR1, MR2, MR3) are equal to input indexes (IK1, IK2, IK3) →
KFOUND = .TRUE. → set KFOUND = true
USE ESTROE = .TRUE. → set USE ESTROE = true
IRC = LATVRS(K) → IRC = LATVRS(K) = 0
IND IRR = K → save the index of irreducible k point in IND IRR
IND SYM = MV → save the index of the symmetry operator in IND SYM
NREC = MR1 + 1 + MR2*IS1 + MR3*IS1IS2 + (ISIGMA-1)*IS123 see formula F.67
EXIT LOOP K IRR ! THE LOOP OVER IRREDUCIBLE K POINTS EXIT loop over irreducible k points
ENDIF Endif
ENDDO ! LOOP OVER SYMMETRY OPERATOR END END loop on the symmetry operators
ENDIF ! NOT KFOUND PREVIOUSLY Endif
ENDIF ! ——————————————————————————— COMPLEX K POINT CASE END
IF(LATVRS(K) .NE. 0) THEN ! ————————————————– REAL K POINT CASE BEGIN
DO MV = 1, MVF ! LOOP OVER SYMMETRY OPERATOR BEGIN BEGIN loop on the symmetry operators
ID1 = IRR(1,1,MV)*JR1+IRR(1,2,MV)*JR2+IRR(1,3,MV)*JR3+IS10 see formula F.57
MR1 = MOD(ID1, IS1) see formula F.57
ID2 = IRR(2,1,MV)*JR1+IRR(2,2,MV)*JR2+IRR(2,3,MV)*JR3+IS20 see formula F.58
MR2 = MOD(ID2, IS2) see formula F.58
ID3 = IRR(3,1,MV)*JR1+IRR(3,2,MV)*JR2+IRR(3,3,MV)*JR3+IS30 see formula F.59
MR3 = MOD(ID3, IS3) see formula F.59
IF(MR1 == IK1 .AND. MR2 == IK2 .AND. MR3 == IK3) THEN If indexes (MR1, MR2, MR3) are equal to input indexes (IK1, IK2, IK3) →
KFOUND = .TRUE. → set KFOUND = true
IRC = LATVRS(K) → IRC = LATVRS(K) 6= 0
IND IRR = K → save the index of irreducible k point in IND IRR
IND SYM = MV save the index of the symmetry operator in IND SYM
NREC = MR1 + 1 + MR2*IS1 + MR3*IS1IS2 + (ISIGMA-1)*IS123 see formula F.60

416

Appendix F. Documentation of some CRYSTAL core subroutines F.16. SMAT SINGLEK (libxj.f)

EXIT LOOP K IRR ! THE LOOP OVER IRREDUCIBLE K POINTS EXIT loop over irreducible k points
ENDIF Endif
ENDDO ! LOOP OVER SYMMETRY OPERATOR END END loop on the symmetry operators
ENDIF ! ——————————————————————————– REAL K POINT CASE END
ENDDO LOOP K IRR END loop over irreducible k points
! LOOP OVER IRREDUCIBLE K POINTS END

IF KFOUND : IF(.NOT.KFOUND) THEN ! REDUCIBLE K POINT NOT FOUND If the input reducible k point (IK1, IK2, IK3) is not found →
IF(IAMEQ0) THEN → write using only the process with index zero
WRITE(OUTF, 14) IK1, IK2, IK3 → in the output file that the input k point is not found
ENDIF ! IAMEQ0
ELSE IF KFOUND ! REDUCIBLE K POINT FOUND Else if the input reducible k point (IK1, IK2, IK3) is found →
IF(BOLTZ ACTIVE) ENE INFO(NREC) = IND IRR → if BOLTZAO ACTIVE → map the NREC-th reducible to the K-th irreducible k point
IF(IAMEQ0) THEN → write using only the process with index zero
IF(LATVRS(IND IRR) .EQ. 0) THEN → [complex k point case]
WRITE(OUTF, 10) ’C’, MR1,MR2,MR3, ’C’, JR1,JR2,JR3, IND IRR → write indexes of reducible and irreducible k points
ELSE → [real k point case]
WRITE(OUTF, 10) ’R’, MR1,MR2,MR3, ’R’, JR1,JR2,JR3, IND IRR → write indexes of reducible and irreducible k points
ENDIF
WRITE(OUTF, 12) IND SYM, ISIGMA → write the index of the symmetry operator found and the input index ISIGMA [spin state]
ENDIF ! IAMEQ0

! READ THE FILE IO08 WITH EIGENVECTORS BEGIN
! ISIGMA = 1 CLOSED SHELL – ISIGMA = 2 OPEN SHELL
KCUM = 0 Initialization of KCUM index [KCUM = 0]
LOOP READ EIG : DO ISPIN = 1, ISIGMA BEGIN loop over spin state
DO K = 1, NKF BEGIN loop over irreducible k points
KCUM = KCUM + 1 Update the index KCUM → KCUM + 1 [index of the k point]
IF(LATVRS(K) .EQ. 0) THEN If LATVRS(K) = 0 → complex k point →
NDATA = NDFVRS → NDATA = 2m2

ELSE IF(LATVRS(K) .NE. 0) THEN Else if LATVRS(K) 6= 0 → real k point →
NDATA = NDFJJJ → NDATA = m2

ENDIF Endif
JPROC = 0 All the processes initialize JPROC = 0
IF(.NOT.JDONE(KCUM)) THEN ! PARALLEL READ : If the process owns the management of the KK-th k point
CALL RREAD(IO08, E IRR, NDATA) that process reads 2m2 real numbers from fort.8 file
JPROC = IAM that process save in JPROC its index = IAM [for all the other processes JPROC = 0]
ENDIF Endif
IF(K == IND IRR .AND. ISPIN == ISIGMA) EXIT LOOP READ EIG If the eigenvector correct irreducible k point is saved in E IRR → EXIT
ENDDO END loop over irreducible k points
ENDDO LOOP READ EIG END loop over spin state
! READ THE FILE IO08 WITH EIGENVECTORS END

! BROADCAST EIGENVECTOR THAT HAS BEEN READ BY THE JPROC-TH PROCESS
CALL IGSUM(JPROC, 1) ! MPI ALLREDUCE (MPI SUM) Sums JPROC values from all processes and distributes the result back to all processes
CALL BROADCAST(E IRR, NDATA, JPROC) Broadcast data in A(1:NDATA) from process JPROC to all other processes
REWIND IO08 Position the file associated with the specified unit IO08 to its initial point

IF(LATVRS(IND IRR) .EQ. 0) THEN ! ——————————————— COMPLEX K POINT CASE BEGIN LATVRS(K) = 0 [see Section F.6]
! COMPUTE e**(ikG) AND SAVE IN EX MATRIX ng = INF(79) = number of direct lattice vector
CALL EXPU(MR1, MR2, MR3) modify the matrix EX(1:ng) [see Section F.7]
IF(USE ESTROF) THEN Rotate eigenvector A using NINV(MV) and save the result in AR [see Section F.13]
! COMPUTE THE EIGENVECTOR E RED ASSOCIATED TO THE NREC-TH REDUCIBLE K POINT
! USING THE EIGENVECTOR E IRR OF THE IND IRR-TH IRREDUCIBLE K POINT AND THE MV-TH SYMMETRY OPERATOR
CALL ESTROF(E IRR, E RED, NINV(IND SYM), NBINI, NBFI, MBANDS) see Section F.13
ELSE IF(USE ESTROE) THEN Rotate eigenvector A using NINV(MV) and save the result in AR [see Section F.14]
! COMPUTE THE EIGENVECTOR E RED ASSOCIATED TO THE NREC-TH REDUCIBLE K POINT
! USING THE EIGENVECTOR E IRR OF THE IND IRR-TH IRREDUCIBLE K POINT AND THE MV-TH SYMMETRY OPERATOR
CALL ESTROE(E IRR, E RED, NINV(IND SYM), NBINI, NBFI, MBANDS) see Section F.14
ENDIF
ENDIF ! ————————————————————————————– COMPLEX K POINT CASE END
IF(LATVRS(IND IRR) .NE. 0) THEN ! ——————————————– REAL K POINT CASE BEGIN
! COMPUTE e**(ikG) AND SAVE IN EX MATRIX ng = INF(79) = number of direct lattice vector
CALL EXPT(MR1, MR2, MR3) modify the matrix EX(1:ng) [see Section F.8]
! COMPUTE THE EIGENVECTOR E RED ASSOCIATED TO THE NREC-TH REDUCIBLE K POINT
! USING THE EIGENVECTOR E IRR OF THE IND IRR-TH IRREDUCIBLE K POINT AND THE MV-TH SYMMETRY OPERATOR
CALL ESTROG(E IRR, E RED, NINV(IND SYM), NBINI, NBFI, MBANDS) Rotate eigenvector [see Section F.14]
ENDIF ! ————————————————————————————– REAL K POINT CASE END
ENDIF IF KFOUND

! WRITE TIMINGS IN THE OUTPUT FILE Write timings [TELAPSE and TCPU] using subroutine GET TIME DATA
CALL GET TIME DATA(DCPU, TOTAL CPU, DELAPSE, TOTAL ELAPSED) subroutine GET TIME DATA defined in machdep.F library
IF(IAMEQ0) WRITE(OUTF, 100) NOMZ, TOTAL ELAPSED, TOTAL CPU

CALL CPU TIME(TIME END) Final CPU time TIME END to compute the total CPU time spent in this subroutine
IF(PRESENT(TIME SMAT)) TIME SMAT = TIME END - TIME BEG Update input optional float variable TIME SMAT
IF(IAMEQ0) WRITE(OUTF, 200) TIME END - TIME BEG Write in the output file the total CPU time spent in this subroutine

417

F.16. SMAT SINGLEK (libxj.f) Appendix F. Documentation of some CRYSTAL core subroutines

RETURN Return the function
10 FORMAT(/1X, 79(’-’)/ Format statements
* 1X, ’>>>> REDUCIBLE K POINT : ’, 3(I0,2X),
* T64,’GENERATED BY >>>> ’
* /1X, ’ IRREDUCIBLE K POINT (’, A1, ’) : ’, 3(I0,2X),
* T64,’INDEX : ’, I0)
12 FORMAT(1X, ’ SYMMETRY OPERATOR : ’, I0,
* T64,’SIGMA : ’, I0,
* /1X, 79(’-’))
14 FORMAT(/1X, 79(’-’)/
* 1X,’>>>> REDUCIBLE K POINT (’, A1, ’) : ’, 3(I0,2X),
* ’ NOT FOUND TO BE GENERATED ’,
* /1X, 79(’-’))
100 FORMAT(1X,30(’T’),1X,A,T45,’TELAPSE’,F12.2,T64,’ TCPU’,F12.2)
200 FORMAT(1X,30(’T’),’ TIME ELAPSED IN SMAT ONEK : ’,ES16.9,’ SEC’)

END SUBROUTINE SMAT SINGLEK

418

Appendix G

Fort.98 unit information

properties.f90
subroutine f90main3
leggi = iopt(1:6).eq.‘RDFMWF’
leggi = true if the keyword RDFMWF is used
leggi = false if the keyword RDFMWF is not used
call init properties io(leggi) =⇒ libxs.f

subroutine init properties io(read formatted)
check of fort.98 or fort.9 file existence
if exists, open it
otherwise return error in output
if(read formatted) cerca e apre la fort.98
else cerca e apre la fort.9
endif

if(leggi) call convrt =⇒ libxc prop.f
subroutine convrt
print header (see Fig. G.1)
call inp12f =⇒ libxc prop.f

subroutine inp12f

read the fort.98 file

allocate vectors
broadcast information to all processors

call resprt(qtot) =⇒ props1.f
subroutine resprt(qtot)
print information (see Fig. G.2)

call basprt =⇒ libx1 com.f
subroutine basprt
print information (see Fig. G.3)

call genprt =⇒ both4.f
subroutine genprt
print information (see Fig. G.4)

if(iameq0) call outo3b(iunit(9)) =⇒ libxc com.f
subroutine outo3b(io09)
write formatted information on fort.9 file

Deallocation of vectors
call free basold =⇒ both4.f

subroutine free basold
(if allocated) deallocate vectors

libxc com.f
subroutine out12f

write the fort.98 file

Table G.1: The first part of the table describes the hierarchy of subroutines invoked if the keyword Rdfmwf
is used. The keyword Rdfmwf, entered in the first record of the properties input deck, reads formatted data
from file fort.98 and writes the corresponding unformatted data in file fort.9. In the second part of the table,
the hierarchy of subroutines calling for the printing of file fort.98 is outlined. Plain text is part of the source
code, descriptions about some parts of the source code are reported in italics, the names of the libraries and the
subroutines involved are written in bold.

419

Appendix G. Fort.98 unit information

* *

* * *

* FORMATTED WAVE FUNCTION DATA FROM FILE fort.98 *

* CONVERTED TO BINARY AND WRITTEN IN FILE fort.9 *

* *

Figure G.1: Header of the conversion from fort.98 to fort.9 file, printed in the output file. This part of the
output file is written by the subroutine convrt (libxc prop.f). The input file mgo.d3 used to generate this output
is reported in Figure G.5, right panel.

TEST

CRYSTAL - PROPERTIES - TYPE OF CALCULATION : RESTRICTED CLOSED SHELL

KOHN-SHAM HAMILTONIAN

(EXCHANGE)[CORRELATION] FUNCTIONAL:(PERDEW-BURKE-ERNZERHOF)[PERDEW-BURKE-ERNZERHOF]

DIRECT LATTICE VECTOR COMPONENTS (ANGSTROM)

0.00000 2.10500 2.10500

2.10500 0.00000 2.10500

2.10500 2.10500 0.00000

LATTICE PARAMETERS (ANGSTROM AND DEGREES) - PRIMITIVE CELL

A B C ALPHA BETA GAMMA VOLUME

2.97692 2.97692 2.97692 60.0000 60.0000 60.0000 18.65462

N. OF ATOMS PER CELL 2 COULOMB OVERLAP TOL (T1) 10** -6

NUMBER OF SHELLS 6 COULOMB PENETRATION TOL (T2) 10** -6

NUMBER OF AO 18 EXCHANGE OVERLAP TOL (T3) 10** 20

N. OF ELECTRONS PER CELL 20 EXCHANGE PSEUDO OVP (F(G)) (T4) 10** 20

CORE ELECTRONS PER CELL 12 EXCHANGE PSEUDO OVP (P(G)) (T5) 10** 20

N. OF SYMMETRY OPERATORS 48 POLE ORDER IN MONO ZONE 4

ATOM N.AT. SHELL X(A) Y(A) Z(A) EXAD N.ELECT.

1 12 MG 3 0.000 0.000 0.000 4.000E-01 10.104

2 8 O 3 2.105 2.105 2.105 2.100E-01 9.896

DE(K) 0.000E+00 ENERGY LEVEL SHIFTING 0.00000

TOTAL ENERGY -2.7528465266093E+02 CONVERGENCE ON ENER -3.763E-10

KIN. ENERGY 2.7408771812165E+02 VIR. COEFF. 1.04558917E+00

N. OF SCF CYCLES 7 FERMI ENERGY -0.111E+00

WEIGHT OF F(I) IN F(I+1) 30

SHRINK. FACT.(MONKH.) 8 8 8 SHRINKING FACTOR(GILAT NET) 8

NUMBER OF K POINTS IN THE IBZ 29 CELL VOLUME (A.U.) 125.887585

Figure G.2: Part of the output file written by the subroutine resprt (props1.f). The input file mgo.d3 used to
generate this output is reported in Figure G.5, right panel.

420

Appendix G. Fort.98 unit information

LOCAL ATOMIC FUNCTIONS BASIS SET

ATOM X(AU) Y(AU) Z(AU) N. TYPE EXPONENT S COEF P COEF D/F/G COEF

1 MG 0.000 0.000 0.000

1 S

6.837E+04 1.633E+00 0.000E+00 0.000E+00

9.699E+03 3.219E+00 0.000E+00 0.000E+00

2.041E+03 5.820E+00 0.000E+00 0.000E+00

5.299E+02 9.594E+00 0.000E+00 0.000E+00

1.592E+02 1.315E+01 0.000E+00 0.000E+00

5.468E+01 1.281E+01 0.000E+00 0.000E+00

2.124E+01 6.873E+00 0.000E+00 0.000E+00

8.746E+00 1.323E+00 0.000E+00 0.000E+00

2- 5 SP

1.568E+02-4.649E-01 1.485E+01 0.000E+00

3.103E+01-1.743E+00 1.632E+01 0.000E+00

9.645E+00-7.355E-01 1.240E+01 0.000E+00

3.711E+00 1.307E+00 6.127E+00 0.000E+00

1.612E+00 1.375E+00 2.351E+00 0.000E+00

6.429E-01 3.702E-01 4.648E-01 0.000E+00

6- 9 SP

4.000E-01 8.718E-01 1.103E+00 0.000E+00

2 O 3.978 3.978 3.978

10 S

4.000E+03 1.243E+00 0.000E+00 0.000E+00

1.356E+03 2.928E+00 0.000E+00 0.000E+00

2.485E+02 5.767E+00 0.000E+00 0.000E+00

6.953E+01 6.948E+00 0.000E+00 0.000E+00

2.389E+01 6.681E+00 0.000E+00 0.000E+00

9.276E+00 3.521E+00 0.000E+00 0.000E+00

3.820E+00 6.897E-01 0.000E+00 0.000E+00

1.235E+00 1.428E-01 0.000E+00 0.000E+00

11- 14 SP

5.219E+01-4.094E-01 5.793E+00 0.000E+00

1.033E+01-1.250E+00 5.862E+00 0.000E+00

3.210E+00-2.363E-01 3.933E+00 0.000E+00

1.235E+00 1.066E+00 2.039E+00 0.000E+00

5.364E-01 6.396E-01 5.711E-01 0.000E+00

15- 18 SP

2.100E-01 5.377E-01 4.928E-01 0.000E+00

Figure G.3: Part of the output file written by the subroutine basprt (libx1 com.f). The input file mgo.d3 used
to generate this output is reported in Figure G.5, right panel.

N. OF ATOMS PER CELL 2 COULOMB OVERLAP TOL (T1) 10** -6

NUMBER OF SHELLS 6 COULOMB PENETRATION TOL (T2) 10** -6

NUMBER OF AO 18 EXCHANGE OVERLAP TOL (T3) 10** 20

N. OF ELECTRONS PER CELL 20 EXCHANGE PSEUDO OVP (F(G)) (T4) 10** 20

CORE ELECTRONS PER CELL 12 EXCHANGE PSEUDO OVP (P(G)) (T5) 10** 20

N. OF SYMMETRY OPERATORS 48 POLE ORDER IN MONO ZONE 4

TYPE OF CALCULATION : RESTRICTED CLOSED SHELL

KOHN-SHAM HAMILTONIAN

(EXCHANGE)[CORRELATION] FUNCTIONAL:(PERDEW-BURKE-ERNZERHOF)[PERDEW-BURKE-ERNZERHOF]

Figure G.4: Part of the output file written by the subroutine genprt (both4.f). The input file mgo.d3 used to
generate this output is reported in Figure G.5, right panel.

421

Appendix G. Fort.98 unit information

TEST11 - MGO BULK

CRYSTAL

0 0 0

225

4.21

2

12 0. 0. 0.

8 0.5 0.5 0.5

END

12 3

0 0 8 2. 1.

68371.875 0.0002226

9699.34009 0.0018982

2041.176786 0.0110451

529.862906 0.0500627

159.186000 0.169123

54.6848 0.367031

21.2357 0.400410

8.74604 0.14987

0 1 6 8. 1.

156.795 -0.00624 0.00772

31.0339 -0.07882 0.06427

9.6453 -0.07992 0.2104

3.7109 0.29063 0.34314

1.61164 0.57164 0.3735

0.64294 0.30664 0.23286

0 1 1 0. 1.

0.4 1. 1.

8 3

0 0 8 2. 1.

4000. 0.00144

1355.58 0.00764

248.545 0.05370

69.5339 0.16818

23.8868 0.36039

9.27593 0.38612

3.82034 0.14712

1.23514 0.07105

0 1 5 8. 1.

52.1878 -0.00873 0.00922

10.3293 -0.08979 0.07068

3.21034 -0.04079 0.20433

1.23514 0.37666 0.34958

0.536420 0.42248 0.27774

0 1 1 0. 1.

0.210000 1. 1.

99 0

END

DFT

PBE

END

SHRINK

8 8

FMIXING

30

PPAN

END

RDFMWF

BAND

MGO - Path: Gamma-X-W-L-Gamma

4 8 60 7 14 1 0

0 0 0 4 0 4

4 0 4 4 2 6

4 2 6 4 4 4

4 4 4 0 0 0

END

Figure G.5: Input files mgo.d12 (left panel) and mgo.d3 (right panel) used to convert formatted file fort.98 to
binary fort.9 file (keyword Rdfmwf) and to compute the band structure of MgO crystal.

422

Appendix G. Fort.98 unit information

Variable Description

MVF number of symmetry operators extended to inversion
INF(2) number of symmetry operators
NAF number of atoms per unit cell
LAF number of shells
NPRIM number of primitives GTO
INF(5) maximum number of star of direct lattice vectors
INF(79) number of direct lattice vectors G available
INF(64) = 0 (closed shell), = 1 open shell
INF(228) number of elements of FG IRR array (RO)
INF(19) dimension of the vector F(G) or P(G) (G IRR)
MVLAF total number of shell couple sets Cs (after shell selection based on overlap criteria, the shell couples are reduced

according to hermiticity, and the remaining shells are classified in couple sets Cs containing symmetry-related shells)
MVLAF1 MVLAF+1
INF(39) maximum number of irreducible G vectors for a shell couple set type Cst

(shell couple set type remaining after shell selection based on overlap criteria, selection based on hermiticity,
classification by symmetry related couple sets and classification in type of couple sets by the couple behavior
under symmetry operators effect)

INF(133) number of different sets of irreducible G vectors
INF(37) maximum number of G vectors allocated on each shell couple type Ct + 1 = INF(145) + 1

(after shell selection based on overlap criteria, the remaining shell couples are classified in shell couples types Ct on
the base of the distance vector joining them)

INF(145) maximum number of G vectors allocated on each shell couple type Ct (after shell selection based on overlap criteria,
the remaining shell couples are classified in shell couples types Ct on the base of the distance vector joining them)

NNGIDMF INF(39)·INF(133)
MAX G COUPLES total number of couples of shells after the shell selection based on overlap criteria

Definitions
Star : a star is the set of direct G vectors with the same Euclidean norm ‖G‖
FG IRR : irreducible Fock matrix in the direct space (arranged and stored as a vector in the code)
PG IRR : irreducible density matrix in the direct space (arranged and stored as a vector in the code)

Table G.2: List of important variables and definitions used in Table G.3.

Variable Description Type Format Number of data

TITOLO CHARACTER A80 1

“LIMINF LIMTOL LIMPAR” CHARACTER

LIMINF LIMTOL LIMPAR INTEGERS 3I10 3

“INF” CHARACTER A6/

INF(I),I=1,LIMINFO array containing INF integers
(see INF manual)

INTEGERS (8I10) LIMINFO

“TOL” CHARACTER A6/

ITOL(I),I=1,LIMTOLO array containing tolerances integers INTEGERS (8I10) LIMTOLO

“PAR” CHARACTER A6,1P/

PAR(I),I=1,LIMPARO array containing PAR reals
(see PAR manual)

REALS (4E20.13) LIMPARO

“XYVGVE” CHARACTER A6,1P/

XYV(9*MVF) rotation matrices REALS (4E20.13) 9·MVF

TRASV(3*MVF) translators REALS (4E20.13) 3·MVF

PARET(9) direct lattice vectors cartesian
components (Bohr)

REALS (4E20.13) 9

W1R(9) transformation matrix from primitive
to crystallographic cell (see Section
G.0.1)

REALS (4E20.13) 9

“BASATO” CHARACTER A6,1P/

AZNUC(I), I=1,NAF array containing initial nuclear charges
for each atom (input/output order)

REALS (4E20.13) NAF

XA(I,J), I=1,3, J=1,NAF atomic positions (cartesian, Bohr)
(input/output order)

REALS (4E20.13) 3·NAF

CHE(I), I=1,LAF array containing initial formal electron
charges attributed to the shell
(output order)

REALS (4E20.13) LAF

423

Appendix G. Fort.98 unit information

EXAD(I), I=1,LAF array containing the last (minor)
exponent of the primitive GTF
(exponent of the most diffuse GTF in
each shell of each basis set, output
order)

REALS (4E20.13) LAF

XL(I,J), I=1,3, J=1,LAF atomic positions (cartesian, Bohr) of
the atom associated to the J-th shell
(output order)

REALS (4E20.13) 3·LAF

EXX(I), I=1,NPRIM array containing the exponents of the
primitive GTF (output order)

REALS (4E20.13) NPRIM

C1(I), I=1,NPRIM array in which each element is a
product of normalization factors for
the wavefunction and the linear
coefficients for the expansion of S
shells in primitive GFT (see Ref. 2)

REALS (4E20.13) NPRIM

C2(I), I=1,NPRIM array in which each element is a
product of normalization factors for
the wavefunction and the linear
coefficients for the expansion of P
shells in primitive GFT (see Ref. 2)

REALS (4E20.13) NPRIM

C3(I), I=1,NPRIM array in which each element is a
product of normalization factors for
the wavefunction and the linear
coefficients for the expansion of
D/F/G shells in primitive GFT (see
Ref. 2)

REALS (4E20.13) NPRIM

CMAX(I), I=1,NPRIM array in which each element is a
product of normalization factors for
the wavefunction and the linear
coefficients for the expansion of the
shells in primitive GFT (see Ref. 2)

REALS (4E20.13) NPRIM

C2W(I), I=1,NPRIM array in which each element is a
product of normalization factors for
the wavefunction and the linear
coefficients for the expansion of P
shells in primitive GFT (see Ref. 2)

REALS (4E20.13) NPRIM

C3W(I), I=1,NPRIM array in which each element is a
product of normalization factors for
the wavefunction and the linear
coefficients for the expansion of
D/F/G shells in primitive GFT (see
Ref. 2)

REALS (4E20.13) NPRIM

*** IF SOME ATOMS HAVE CORE PSEUDO-POTENTIALS

“INFPOT” CHARACTER A6/

II,JJ,ITYPSE II is the total number of primitive
GTF contained in all the
pseudo-potential basis sets used in
input
JJ = NANGECP = 6 (JJ has a value
of 6·ITYPSE). NANGECP is an
integer defined in the code as the
number of angular symmetry + 1
ITYPSE is the number of type of
pseudo-potentials basis sets used in
input

INTEGERS (8I10) 3

NPOT(I), I=1,II array containing the modulus of the
value of nkl (see eq. 3.18 Ref. 3) for
each GTF (modulus of integers
reported in columns labeled with N in
the table with pseudo-potential
information in the output file) (output
order, row-by-row)
(see Section G.0.2)

INTEGERS (8I10) II

NBTYP(I), I=1,JJ per each pseudo-potential basis set,
number of the primitive GTF of each
pseudo-potential shell
(output order, see table with
pseudo-potential information in the
output file)

INTEGERS (8I10) JJ

424

Appendix G. Fort.98 unit information

NSOM(I), I=1,ITYPSE+1 NSOM(1) = 0
NSOM(I) with I > 1 : cumulative
number of primitive GTF each input
pseudo-potential basis set
(output order, see table with
pseudo-potential information in the
output file)

INTEGERS (8I10) ITYPSE+1

APOT(I), I=1,II array containing the exponents of each
primitive GTF for each input pseudo-
potential basis set (αk in eq. 3.17 and
αkl in eq. 3.18, Ref. 3)
(output order, row-by-row, see table
with pseudo-potential information in
the output file)

REALS 1P,(4E20.13) II

CPOT(I), I=1,II array containing the coefficients of
each primitive GTF for each input
pseudo- potential basis set (Ck in eq.
3.17 and Ckl in eq. 3.18, Ref. 3)
(output order, row-by-row, see table
with pseudo-potential information in
the output file)

REALS 1P,(4E20.13) II

*** ENDIF SOME ATOMS HAVE CORE PSEUDO-POTENTIALS

*** IF KEYWORDS MOLEBSSE, MOLSPLIT OR ATOMBSSE ARE USED

“MOLBAR” CHARACTER A6,1P/

XBAR(I,J), I=1,3, J=1,NAF coordinates of the barycentre of the
molecular fragments (which coincides
with the atomic seeds for each
fragment defined in the input file)
(input/output order)

REALS (4E20.13) 3·NAF

N1MOL(I), I=1,NAF array containing two indices per each
fragment, which define the initial and
final atomic indices for the range of
atoms contained in each fragment
(input/output order)

INTEGERS (8I10) NAF

*** ENDIF KEYWORDS MOLEBSSE, MOLSPLIT OR ATOMBSSE ARE USED

“NINV” CHARACTER A6/

NINV(I), I=1,INF(2) index INV of the inverse matrix
(output order, see SYMMOPS part in
the output file)

INTEGERS (8I10) INF(2)

“BASATO” CHARACTER A6/

NAT(I), I=1,NAF atomic number INTEGERS (8I10) NAF

NSHPRI(I), I=1,NAF+1 NSHPRI(1) = 1

NSHPRI(J) =
∑J>1

I=1 NSHPRI(I)
cumulative number of shells (input
order)

INTEGERS (8I10) (NAF+1)

IPSEUD(I), I=1,NAF = 0 (all atoms are all electron)
= 1 (some atoms have core
pseudo-potentials)

INTEGERS (8I10) NAF

LAA(I), I=1,LAF+1 LAA(1) = 1

LAA(J) =
∑J>1

I=1 LAA(I)
cumulative number of gaussians
(input order)

INTEGERS (8I10) (LAF+1)

LAN(I), I=1,LAF number of gaussians of the I-th shell
(input order)

INTEGERS (8I10) LAF

LAT(I), I=1,LAF type of the I-th shell
0=S; 1=SP, 2=P; 3=D; 4=F (input
order)

INTEGERS (8I10) LAF

LATAO(I), I=1,LAF number of atomic orbitals of the I-th
shell (input order)

INTEGERS (8I10) LAF

NDQ(I), I=1,LAF+1 NDQ(1) = 0

NDQ(J) =
∑J>1

I=1 NDQ(I)
cumulative number of atomic orbitals
(input order)

INTEGERS (8I10) (LAF+1)

LATOAT(I), I=1,LAF array containing the indices of the
atom to which the I-th shell is
associated (input order)

INTEGERS (8I10) LAF

“SPINOR” CHARACTER A6/

ISPIN(I), I=1,NAF spin of the I-th atom at convergence
(final SCF atomic spins, output order)

INTEGERS (8I10) NAF

425

Appendix G. Fort.98 unit information

ICHMOD(I),I=1,NAF array containing integers different
from zero in the positions of the array
corresponding to the label of the
atoms (labels in output order) whose
electronic configuration has been
modified with the keyword Chemod
(see Section G.0.3)

INTEGERS (8I10) NAF

*** IF TYPE OF RUN IS != SCF (= TEST OF INPUT OR = RESTART)

“BASOLD” CHARACTER A6,1P/

PAROLD(9) direct lattice vectors cartesian
components (Bohr)

REALS (4E20.13) 9

TRASVO(3*INF(2)) translators REALS (4E20.13) 3·INF(2)

EXAOLD(I), I=1,LAF last (minor) exponent of the primitive
GTF (exponent of the most diffuse
GTF in each shell of each basis set,
input order)

REALS (4E20.13) LAF

XOLD(I,J), I=1,3, J=1,NAF atomic positions (cartesian, Bohr,
input order)

REALS (4E20.13) 3·NAF

XLOLD(I,J), I=1,3, J=1,LAF atomic positions (cartesian, Bohr) of
the atom associated to the J-th shell
(input order)

REALS (4E20.13) 3·LAF

HMODUS(I), I=1,INF(5)+1 array containing the square of the
Euclidean norm of the G vectors in
the I-th star, i.e. the values of ‖G‖2
for the direct vectors in the I-th star
HMODUS(1) is always equal to zero
HMODUS(INF(5)+1) = 1.0000E+025

REALS (4E20.13) (INF(5)+1)

XGOLD(I,J), I=1,3,
J=1,INF(79)

cartesian coordinates of the J-th
direct lattice vector G
(see Section 3.4 Ref. 1)

REALS (4E20.13) 3·INF(79)

*** ENDIF TYPE OF RUN IS != SCF (= TEST OF INPUT OR RESTART)

*** IF NUMBER OF ATOMS ”GHOSTIZED” != 0

“IGHOST” CHARACTER A6/

IGHOST(I), I=1,NAF array with elements equal to zero (if
the atom is not transformed into
ghost atom) or equal to the atomic
number of the atom (if the atom is
transformed into ghost atom)
(atomic indices in output order)

INTEGERS (8I10) NAF

*** ENDIF NUMBER OF ATOMS ”GHOSTIZED” != 0

CALL
RWRITF(IO98,QTOT,NAF)

write NAF atomic charges at
convergence (final SCF atomic
charges, output order)
(see Section G.0.19)

REALS 1P,4E21.13 NAF

CALL
RWRITF(IO98,FG,NTUF)

write FG IRR vector (see Section
G.0.19)
NTUF=(INF(64)+1)·INF(228)

REALS 1P,4E21.13 NTUF

CALL
RWRITF(IO98,PG,NTUT)

write PG IRR vector (see Section
G.0.19) NTUT=(INF(64)+1)·INF(19)

REALS 1P,4E21.13 NTUT

“NCF” CHARACTER A6/

NCF(I), I=1,MVLAF1 array of indexes which point to the
positions of the first couple for each
shell couple set Cs listed in LA3 and
LA4 arrays (see Section G.0.4)

INTEGERS (8I10) MVLAF1

“NSTATG” CHARACTER A6/

NSTATG(I), I=1,MVLAF1 NSTATG(1) = 0
array containing the starting point of
each couple set Cs in the irreducible
Fock and density matrices (equal
starting points for both Fock and
density matrices)
(see Section G.0.5)

INTEGERS (8I10) MVLAF1

“NSTAFG” CHARACTER A6/

NSTAFG(I), I=1,MVLAF1 NSTATG(1) = 0
array containing the cumulative
number of non-zero elements for each
couple set Cs in the irreducible Fock
matrix
(see Section G.0.6)

INTEGERS (8I10) MVLAF1

426

Appendix G. Fort.98 unit information

“LG” CHARACTER A6/

LG(J,I), J=1,3, I=1,INF(79) Bravais lattice vector indices
associated to each I-th direct lattice
vector G
(see Section 3.4 Ref. 1)

INTEGERS (8I10) 3·INF(79)

“IDIME” CHARACTER A6/

IDIME(I), I=1,MVLAF array containing the number of
G-stars to be considered for each
couple set Cs in the irreducible
density matrix
(see Section G.0.7)

INTEGERS (8I10) MVLAF

“IDIMF” CHARACTER A6/

IDIMF(I), I=1,MVLAF arrays containing the number of
G-stars to be considered for each
couple set Cs in the irreducible Fock
matrix
(see Section G.0.7)

INTEGERS (8I10) MVLAF

“LA3” CHARACTER A6/

LA3(I), I=1,LADIM array of indexes with labels of the first
shell of each shell couple C2

LADIM = NCF(MVLAF1)
(see Section G.0.8)

INTEGERS (8I10) LADIM

“LA4” CHARACTER A6/

LA4(I), I=1,LADIM array of indexes with labels of the
second shell of each shell couple C2

LADIM = NCF(MVLAF1)
(see Section G.0.9)

INTEGERS (8I10) LADIM

“IROF” CHARACTER A6/

IROF(I), I=1,MVLAF array of indexes that indicate the
starting point in the NNGI sequence
at which the list of the irreducible G
vectors for a couple set Cs begins
(see Section G.0.10)

INTEGERS (8I10) MVLAF

“NNGI” CHARACTER A6/

NNGI(I), I=1,NNGIDMF array containing the list of the
irreducible G vectors for each shell
couple set Cst (see Section G.0.11)

INTEGERS (8I10) NNGIDMF

“NSHGI” CHARACTER A6/

NSHGI(I), I=1,NNGIDMF array containing the indexes
corresponding to the number of
irreducible G vectors for each star of
each shell couple set Cst
(see Section G.0.12)

INTEGERS (8I10) NNGIDMF

“NNNC” CHARACTER A6/

NNNC(I),
I=1,MAX G COUPLES

NNNC(1) = 0
array with indexes pointing to the
starting position in the Pirr matrix
for each C1 shell couple. Note that
the indexes in the vector points to the
starting positions in the Pirr matrix
for each C1 shell couple, but are
referred to the construction of the
reducible Pred matrix, so the indexes
in the vector can assume
non-increasing values
(see Section G.0.13)

INTEGERS (8I10) MAX G COUPLES

“JPOINT” CHARACTER A6/

JPOINT(I),
I=1,MAX G COUPLES

array that relates each couple in C1 to
the index of the subset Cs it belongs
in the symmetry classification
(see Section G.0.14)

INTEGERS (8I10) MAX G COUPLES

“LA34V” CHARACTER A6/

LA34V(I),
I=1,MAX G COUPLES

array containing, for every couple of
shells C1, the starting point in
NQGSHG for the associated G vectors
(see Section G.0.15)

INTEGERS (8I10) MAX G COUPLES

“LA34F” CHARACTER A6/

427

Appendix G. Fort.98 unit information

LA34F number of type of independent couples
of shells Ct resulting from the distance
vector classification performed over
the selected shell couples C1

(see Section G.0.16)

INTEGERS (8I10) 1 INTEGERS

“NGSHG” CHARACTER A6/

NGSHG(I),
I=1,LA34F*INF(37)

array of indices which permit to find
the starting point of a star of a given
shell couple type Ct
(see Section G.0.17)

INTEGERS (8I10) LA34F·INF(37)

“NQGSHG” CHARACTER A6/

NQGSHG(I),
I=1,LA34F*INF(145)

array containing the ordered list of all
the G vectors for each shell couple
type Ct and each star
(see Section G.0.18)

INTEGERS (8I10) LA34F·INF(145)

REWIND IO98 (FORT.98)
CLOSE(IO98)

Table G.3: The first column contains variable name as written in the Crystal code, the second column reports
the description of the variable meaning, the third column records the type of variable (Fortran style), the fourth
column describes the format in which the variables are written in fort.98 file (Fortran style: A characters, I integers,
E real numbers in exponential notation), and the last column lists the length of each variable (i.e. the number of
data numbers contained in each variable). All the variables not explicitly defined in this table are reported and
described in Table G.2.

G.0.1 W1R

Matrix W ≡W1R is the conversion matrix from primitive to conventional (crystallographic) cell, defined
as

W =

W11 W12 W13

W21 W22 W23

W31 W32 W33

 (primitive → crystallographic cell) conversion matrix (G.1)

It is printed in the output file (in row order) through the subroutine COOPRT, as reported in the
following:

line Lines 1184 and 1287-1288 of SUBROUTINE COOPRT: defined in both4.f

1184 WRITE(IOUT,204)((W1R(I,J),J=1,3),I=1,3) Writing matrix W1R in the output file
1287 204 FORMAT(/’ TRANSFORMATION MATRIX PRIMITIVE-CRYSTALLOGRAPHIC CELL’/
1288 *9F8.4/)

so that we can find in the output file the components of the matrix W in equation (G.1) printed as(
W11 W12 W13 W21 W22 W23 W31 W32 W33

)
(G.2)

If ac1, ac2, ac3 are the direct lattice vectors of the conventional cell, and ap1, ap2, ap3 are the direct lattice
vectors of the primitive cell, then the conversion matrix W1R = W has to be applied on the primitive
direct lattice vectors to obtain the conventional direct lattice vectors, as followsac1

ac2
ac3

 = tW

ap1
ap2
ap3

 → aci =

3∑
j=1

Wij apj with i = 1, 2, 3 (G.3)

where aci = (acix, a
c
iy, a

c
iz) and api = (apix, a

p
iy, a

p
iz), with i = 1, 2, 3. Equation (G.3) can be rewritten more

explicitly in components asac1x ac1y ac1z
ac2x ac2y ac2z
ac3x ac3y ac3z

 =

W11 W21 W31

W12 W22 W32

W13 W23 W33

ap1x ap1y ap1z
ap2x ap2y ap2z
ap3x ap3y ap3z

 (G.4)

428

Appendix G. Fort.98 unit information

In the same way as in (G.3), the fractional coordinates xc = (xc1, x
c
2, x

c
3) of a nucleus in the conventional

cell can be obtained from the fractional coordinates xp = (xp1, x
p
2, x

p
3) of the same nucleus in the primitive

cell through the equationxc1ac1xc2a
c
2

xc3a
c
3

 = tW

xp1ap1xp2a
p
2

xp3a
p
3

 → xcia
c
i =

3∑
j=1

Wij x
p
j apj with i = 1, 2, 3 (G.5)

G.0.2 NPOT

Close to the nucleus, the term with l(l + 1)/r2 (from the angular part of the Schrödinger equation) is
dominant. This would explain why terms with a negative NPOT such as -2 appear: r−2. See Ref. [4].

G.0.3 ICHMOD

ICHMOD is an array with dimension equal to the number of atoms per unit cell, and it containing
integers in the position of the array corresponding to the label of the atoms (labels that are the indexed
of the atoms given in output order) whose electronic configuration has been modified with the keyword
CHEMOD in the input file. If the element i of the array is zero, then the electronic configuration of
the i-th atom has not been modified in input. If the element i of the array is k, then the electronic
configuration of the i-th atom is the k-th electronic configuration which has been modified in input with
the keyword CHEMOD. Thus, the values different from zero in ICHMOD array indentify the order in
which the atomic labels of the atoms whose electronic configuration has to be modified are given in the
input file.

G.0.4 NCF

After a first classification that reduces the number of shell couples according to the overlap criteria, the
selected shell couples in the unit cell are classified as a function of the vector joining them. Then, the set
of couples, resulting from previous selection, is reduced according to hermiticity. The remaining couples
are reorganized in symmetry related subsets. The labels of the first and second shells of these kind of
couples are stored in the LA3 and LA4 vectors, respectively. The starting point of each set in LA3 and
LA4 (each set is formed by a certain number of couples, the first couple can generate by symmetry all
the other couples) is given by the NCF array.
See Section 3.3 Ref. [1].

G.0.5 NSTATG

After a first classification that reduces the number of shell couples according to the overlap criteria
(C1: shell couples selected on overlap criteria), the selected shell couples in the unit cell are classified
as a function of the vector joining them. LA34F is the number of type of independent couples Ct of
shells (λi, λj) found by that classification. Then, the set of couples, resulting from previous selection, is
reduced according to hermiticity. The remaining couples C2 are reorganized in symmetry related subsets
Cs. Each subset Cs is formed by a certain number of couples, the first couple can generate by symmetry
all the other couples. The vector NSTATG contains the starting point of each couple subset Cs in the
irreducible Fock Firr and density Pirr matrices. In order to simplify the code, a fix allocation and the
same starting points of each couple subset Cs for both the irreducible matrices are chosen. The allocation
of both irreducible Fock and density matrices corresponds to the size of the irreducible density matrix
(the highest criterium is used): so, the irreducible Fock matrix will contain a lot of null terms.
See Section 3.7 Ref. [1].

G.0.6 NSTATFG

After a first classification that reduces the number of shell couples according to the overlap criteria
(C1: shell couples selected on overlap criteria), the selected shell couples in the unit cell are classified

429

Appendix G. Fort.98 unit information

as a function of the vector joining them. LA34F is the number of type of independent couples Ct of
shells (λi, λj) found by that classification. Then, the set of couples, resulting from previous selection,
is reduced according to hermiticity. The remaining couples C2 are reorganized in symmetry related
subsets Cs. Each subset Cs is formed by a certain number of couples, the first couple can generate by
symmetry all the other couples. The vector NSTATG contains the starting point of each couple subset
Cs in the irreducible Fock Firr and density Pirr matrices. In order to simplify the code, a fix allocation
and the same starting points of each couple subset Cs for both the irreducible matrices are chosen. The
allocation of both irreducible Fock and density matrices corresponds to the size of the irreducible density
matrix (the highest criterium is used): so, the irreducible Fock matrix will contain a lot of null terms.
The vector NSTATFG contains the cumulative number of non-zero elements for each couple subset Cs in
the irreducible Fock Firr matrix.
See Section 3.7 Ref. [1].

G.0.7 IDIME, IDIMF, IDMCOU

After a first classification that reduces the number of shell couples according to the overlap criteria
(C1: shell couples selected on overlap criteria), the selected shell couples in the unit cell are classified
as a function of the vector joining them. LA34F is the number of type of independent couples Ct of
shells (λi, λj) found by that classification. Then, the set of couples, resulting from previous selection,
is reduced according to hermiticity. The remaining couples C2 are reorganized in symmetry related
subsets Cs. Each subset Cs is formed by a certain number of couples, the first couple can generate by
symmetry all the other couples. The couple sets are then classified in type of couple sets Cst: couples
with the same Cst behave in the same way under symmetry operators effect. For each Cst a mother
couple set is defined, and corresponds to the first couple set of that Cst in the symmetry order. Note
that couple sets are classified under geometrical properties only. For each couple Ct, there will be a
maximum interacting distance, beyond which the considered shells do not interact anymore (overlap less
than a threshold): on the basis of the chosen thresholds, only a certain number of G for each couple Ct
will be considered, forming (λi, λj ,G) sets. Starting from the classification Cst of the couple of shells,
the previously selected vectors G are classified by symmetry, in order to find the irreducible ones for
each shell couple set Cst. IDIME, IDIMF, IDMCOU are three arrays containing, respectively, the number
of G-stars to be considered for each couple subset Cs in the irreducible density Pirr, irreducible Fock
Firr and overlap S matrices.
See Section 3.7 Ref. [1].

G.0.8 LA3

After a first classification that reduces the number of shell couples according to the overlap criteria (C1:
shell couples selected on overlap criteria), the selected shell couples in the unit cell are classified as a
function of the vector joining them. Then, the set of couples, resulting from previous selection, is reduced
according to hermiticity. The remaining couples C2 are reorganized in symmetry related subsets. Each
subset is formed by a certain number of couples, the first couple can generate by symmetry all the other
couples. The labels of the first shells of each couple in C2 are stored in LA3 vector.
See Section 3.3 Ref. [1].

G.0.9 LA4

After a first classification that reduces the number of shell couples according to the overlap criteria (C1:
shell couples selected on overlap criteria), the selected shell couples in the unit cell are classified as a
function of the vector joining them. Then, the set of couples, resulting from previous selection, is reduced
according to hermiticity. The remaining couples C2 are reorganized in symmetry related subsets. Each
subset is formed by a certain number of couples, the first couple can generate by symmetry all the other
couples. The labels of the second shells of each couple in C2 are stored in LA4 vector.
See Section 3.3 Ref. [1].

430

Appendix G. Fort.98 unit information

G.0.10 IROF

After a first classification that reduces the number of shell couples according to the overlap criteria (C1:
shell couples selected on overlap criteria), the selected shell couples in the unit cell are classified as a
function of the vector joining them. LA34F is the number of type of independent couples Ct of shells
(λi, λj) found by that classification. Then, the set of couples, resulting from previous selection, is reduced
according to hermiticity. The remaining couples C2 are reorganized in symmetry related subsets. Each
subset is formed by a certain number of couples, the first couple can generate by symmetry all the other
couples. The couple sets are then classified in type of couple sets Cst: couples with the same Cst behave
in the same way under symmetry operators effect. For each Cst a mother couple set is defined, and
corresponds to the first couple set of that Cst in the symmetry order. Note that couple sets are classified
under geometrical properties only. For each couple Ct, there will be a maximum interacting distance,
beyond which the considered shells do not interact anymore (overlap less than a threshold): on the basis
of the chosen thresholds, only a certain number of G for each couple Ct will be considered, forming
(λi, λj ,G) sets. Starting from the classification Cst of the couple of shells, the previously selected vectors
G are classified by symmetry, in order to find the irreducible ones for each shell couple set Cst. We need,
now, to identify the G vectors, for each shell couple set Cst, able to generate all the star of G vectors of
all the other symmetry related shell couple sets. The vector NNGI contains the list of the irreducible G
vectors for each shell couple set Cst. The vector IROF indicates the starting point in the NNGI sequence
at which the list of the irreducible G vectors for a couple set Cs begins.
See Section 3.7 Ref. [1].

G.0.11 NNGI

After a first classification that reduces the number of shell couples according to the overlap criteria (C1:
shell couples selected on overlap criteria), the selected shell couples in the unit cell are classified as a
function of the vector joining them. LA34F is the number of type of independent couples Ct of shells
(λi, λj) found by that classification. Then, the set of couples, resulting from previous selection, is reduced
according to hermiticity. The remaining couples C2 are reorganized in symmetry related subsets. Each
subset is formed by a certain number of couples, the first couple can generate by symmetry all the other
couples. The couple sets are then classified in type of couple sets Cst: couples with the same Cst behave
in the same way under symmetry operators effect. For each Cst a mother couple set is defined, and
corresponds to the first couple set of that Cst in the symmetry order. Note that couple sets are classified
under geometrical properties only. For each couple Ct, there will be a maximum interacting distance,
beyond which the considered shells do not interact anymore (overlap less than a threshold): on the basis
of the chosen thresholds, only a certain number of G for each couple Ct will be considered, forming
(λi, λj ,G) sets. Starting from the classification Cst of the couple of shells, the previously selected vectors
G are classified by symmetry, in order to find the irreducible ones for each shell couple set Cst. We need,
now, to identify the G vectors, for each shell couple set Cst, able to generate all the star of G vectors of
all the other symmetry related shell couple sets. The vector NNGI contains the list of the irreducible G
vectors for each shell couple set Cst.
See Section 3.6 Ref. [1].

G.0.12 NSHGI

After a first classification that reduces the number of shell couples according to the overlap criteria (C1:
shell couples selected on overlap criteria), the selected shell couples in the unit cell are classified as a
function of the vector joining them. LA34F is the number of type of independent couples Ct of shells
(λi, λj) found by that classification. Then, the set of couples, resulting from previous selection, is reduced
according to hermiticity. The remaining couples C2 are reorganized in symmetry related subsets. Each
subset is formed by a certain number of couples, the first couple can generate by symmetry all the other
couples. The couple sets are then classified in type of couple sets Cst: couples with the same Cst behave
in the same way under symmetry operators effect. For each Cst a mother couple set is defined, and
corresponds to the first couple set of that Cst in the symmetry order. Note that couple sets are classified
under geometrical properties only. For each couple Ct, there will be a maximum interacting distance,
beyond which the considered shells do not interact anymore (overlap less than a threshold): on the basis

431

Appendix G. Fort.98 unit information

of the chosen thresholds, only a certain number of G for each couple Ct will be considered, forming
(λi, λj ,G) sets. Starting from the classification Cst of the couple of shells, the previously selected vectors
G are classified by symmetry, in order to find the irreducible ones for each shell couple set Cst. We need,
now, to identify the G vectors, for each shell couple set Cst, able to generate all the star of G vectors
of all the other symmetry related shell couple sets. The vector NSHGI contains information on how the
irreducible G vectors are distributed in each star for each shell couple set Cst, i.e. it contains the indices
to identify (using the NNGI array) which are the irreducible G vectors for a given star of a given couple
set Cst. The indices in NSHGI array correspond to the number of irreducible G vectors for each star of
each shell couple set Cst.
See Section 3.6 Ref. [1].

G.0.13 NNNC

After a first classification that reduces the number of shell couples according to the overlap criteria
(C1: shell couples selected on overlap criteria), the selected shell couples in the unit cell are classified
as a function of the vector joining them. LA34F is the number of type of independent couples Ct of
shells (λi, λj) found by that classification. Then, the set of couples, resulting from previous selection, is
reduced according to hermiticity. The remaining couples C2 are reorganized in symmetry related subsets
Cs. Each subset Cs is formed by a certain number of couples, the first couple can generate by symmetry
all the other couples. The couple sets are then classified in type of couple sets Cst: couples with the
same Cst behave in the same way under symmetry operators effect. For each Cst a mother couple set is
defined, and corresponds to the first couple set of that Cst in the symmetry order. Note that couple sets
are classified under geometrical properties only. For each couple Ct, there will be a maximum interacting
distance, beyond which the considered shells do not interact anymore (overlap less than a threshold):
on the basis of the chosen thresholds, only a certain number of G for each couple Ct will be considered,
forming (λi, λj ,G) sets. Starting from the classification Cst of the couple of shells, the previously selected
vectors G are classified by symmetry, in order to find the irreducible ones for each shell couple set Cst.
The whole density matrix Pred is obtained by applying the point symmetry operators and then the
hermiticity to the irreducible matrix Pirr. All the couple (µi, µj , g̃) generated from the irreducible set,

with Sg̃
µi µj > Tmax1 (where Tmax1 is the maximum among T1, T4 and T5 Tolinteg thresholds), are

considered, and the NNNC array is built: it points the starting position in the Pirr matrix for each C1

shell couple, and its size corresponds to the total number of shell couples in the C1 couple sets. Note
that the indexes in NNNC vector points to the starting positions in the Pirr matrix for each C1 shell
couple, but are referred to the construction of the reducible Pred matrix, so the indexes in the vector
can assume non-increasing values.
See Section 3.7 Ref. [1].

G.0.14 JPOINT

After a first classification that reduces the number of shell couples according to the overlap criteria (C1:
shell couples selected on overlap criteria), the selected shell couples in the unit cell are classified as a
function of the vector joining them. Then, the set of couples, resulting from previous selection, is reduced
according to hermiticity. The remaining couples C2 are reorganized in symmetry related subsets. Each
subset is formed by a certain number of couples, the first couple can generate by symmetry all the
other couples. The vector JPOINT relates each couple in C1 to the index of the subset it belongs in the
symmetry classification.
See Section 3.3 Ref. [1].

G.0.15 LA34V

After a first classification that reduces the number of shell couples according to the overlap criteria (C1:
shell couples selected on overlap criteria), the selected shell couples in the unit cell are classified as a
function of the distance vector joining them. LA34F is the number of type of independent couples Ct
of shells (λi, λj) found by that classification. For each couple Ct, there will be a maximum interacting
distance, beyond which the considered shells do not interact anymore (overlap less than a threshold):

432

Appendix G. Fort.98 unit information

on the basis of the chosen thresholds, only a certain number of G for each couple Ct will be considered,
forming (λi, λj ,G) sets. In calculating the integrals, we will deal with the single C1 couples selected by
the overlap criteria. As the classification of the (λi, λj ,G) is performed per couple shell type, not for
each single couple C1, we must be able to go directly from the couple (λi, λj ,G) to its G organization,
skipping all passages leading a general couple to the reference couple. On this purpose, LA34X and
LA34V vectors have been calculated. For every couple of shells C1 LA34X shows the number of G-stars,
while LA34V contains the starting point in NQGSHG for the associated G vectors.
See Section 3.5 Ref. [1].

G.0.16 LA34F

After a first classification that reduces the number of shell couples according to the overlap criteria, the
selected shell couples C1 in the unit cell are classified as a function of the vector joining them. LA34F is
the number of type of independent couples of shells Ct resulting from the distance vector classification.
See Section 3.2 Ref. [1].

G.0.17 NGSHG

After a first classification that reduces the number of shell couples according to the overlap criteria (C1:
shell couples selected on overlap criteria), the selected shell couples in the unit cell are classified as a
function of the distance vector joining them. LA34F is the number of type of independent couples of
shells Ct found by that classification. For each couple Ct, there will be a maximum interacting distance,
beyond which the considered shells do not interact anymore (overlap less than a threshold): on the basis
of the chosen thresholds, only a certain number of G for each couple will be considered. For each couple
type we need to know the involved G vectors, their organization in stars and their label in the initial
definition sequence. This information is stored in two vectors: NQGSHG vector contains the ordered
list of all the G vectors for each shell couple type Ct and each star, NGSHG vector permits to find the
starting point of a star of a given shell couple type Ct.
See Section 3.5 Ref. [1].

G.0.18 NQGSHG

After a first classification that reduces the number of shell couples according to the overlap criteria (C1:
shell couples selected on overlap criteria), the selected shell couples in the unit cell are classified as a
function of the distance vector joining them. LA34F is the number of type of independent couples of
shells Ct found by that classification. For each couple Ct, there will be a maximum interacting distance,
beyond which the considered shells do not interact anymore (overlap less than a threshold): on the basis
of the chosen thresholds, only a certain number of G for each couple will be considered. For each couple
type we need to know the involved G vectors, their organization in stars and their label in the initial
definition sequence. NQGSHG vector contains the ordered list of all the G vectors for each shell couple
type Ct and each star. Note that all labels in NQGSHG refer to the labels attributed to each G vector
in its initial definition (same labels for the order of G vectors indices and coordinates in LG(I,J) and
XG(I,J), I=1,3, J=1,INF(79) matrices).
See Section 3.5 Ref. [1].

G.0.19 SUBROUTINE RWRITF

line SUBROUTINE RWRITF - defined in libxc com.f

1086 SUBROUTINE RWRITF(JOUT,A,N)
USE NUMBERS
IMPLICIT REAL(FLOAT) (A-H,O-Z)
DIMENSION A(N)
WRITE(JOUT,100)A
100 FORMAT(1P,4E21.13)
RETURN

1093 END

433

References for Appendix G

[1] Raffaella Demichelis and Roberto Dovesi, Discussion about some parts of the Crystal code - Work in
progress, version 1.0.1, 8 October, 2008

[2] Jacques Desmarais, Norms

[3] R. Dovesi et al., Crystal17 User’s Manual, 2018

[4] P. J. Hay and W. R. Wadt, Ab initio effective core potentials for molecular calculations. Potentials for the
transition metal atoms Sc to Hg, J. Chem. Phys. 82, 270, 1985, and discussion with Klaus Doll

434

Bibliography

[1] M. D. Towler, A. Zupan, M. Causà, Density functional theory in periodic systems using local
Gaussian basis sets, Comput. Phys. Commun. 98 (1996) 181–205.

[2] M. E. Tuckerman, Ab initio molecular dynamics: basic concepts, current trends and novel appli-
cations, J. Phys.: Condens. Matter 14 (2002) R1297.

[3] T. D. Kühne, Second generation Car-Parrinello molecular dynamics, Wiley Interdiscip. Rev. Com-
put. Mol. Sci. 4 (2014) 391–406.

[4] P. Carloni, U. Rothlisberger, M. Parrinello, The Role and Perspective of Ab Initio Molecular
Dynamics in the Study of Biological Systems, Acc. Chem. Res. 35 (2002) 455–464.

[5] T. Todorova, A. P. Seitsonen, J. Hutter, I.-F. W. Kuo, C. J. Mundy, Molecular Dynamics Simula-
tion of Liquid Water: Hybrid Density Functionals, J. Phys. Chem. B 110 (2006) 3685–3691.

[6] C. Zhang, D. Donadio, F. Gygi, G. Galli, First Principles Simulations of the Infrared Spectrum of
Liquid Water Using Hybrid Density Functionals, J. Chem. Theory Comput. 7 (2011) 1443–1449.

[7] R. A. DiStasio Jr., B. Santra, Z. Li, X. Wu, R. Car, The individual and collective effects of exact
exchange and dispersion interactions on the ab initio structure of liquid water, J. Chem. Phys. 141
(2014) 084502.

[8] F. Ambrosio, G. Miceli, A. Pasquarello, Structural, Dynamical, and Electronic Properties of Liquid
Water: A Hybrid Functional Study, J. Phys. Chem. B 120 (2016) 7456–7470.

[9] B. Santra, R. A. D. Jr., F. Martelli, R. Car, Local structure analysis in ab initio liquid water, Mol.
Phys. 113 (2015) 2829–2841.

[10] E. Sevgen, F. Giberti, H. Sidky, J. K. Whitmer, G. Galli, F. Gygi, J. J. de Pablo, Hierarchical
Coupling of First-Principles Molecular Dynamics with Advanced Sampling Methods, J. Chem.
Theory Comput. 14 (2018) 2881–2888.

[11] S. Mandal, J. Debnath, B. Meyer, N. N. Nair, Enhanced sampling and free energy calculations
with hybrid functionals and plane waves for chemical reactions, J. Chem. Phys. 149 (2018) 144113.

[12] S. Mandal, N. N. Nair, Efficient computation of free energy surfaces of chemical reactions using ab
initio molecular dynamics with hybrid functionals and plane waves, J. Comput. Chem. 41 (2020)
1790–1797.

[13] S. Chawla, G. A. Voth, Exact exchange in ab initio molecular dynamics: An efficient plane-wave
based algorithm, J. Chem. Phys. 108 (1998) 4697–4700.

[14] S. Mandal, N. N. Nair, Speeding-up ab initio molecular dynamics with hybrid functionals using
adaptively compressed exchange operator based multiple timestepping, J. Chem. Phys. 151 (2019)
151102.

[15] M. Guidon, F. Schiffmann, J. Hutter, J. VandeVondele, Ab initio molecular dynamics using hybrid
density functionals, J. Chem. Phys. 128 (2008) 214104.

435

Bibliography Bibliography

[16] H.-Y. Ko, J. Jia, B. Santra, X. Wu, R. Car, R. A. DiStasio Jr., Enabling Large-Scale Condensed-
Phase Hybrid Density Functional Theory Based Ab Initio Molecular Dynamics. I. Theory, Algo-
rithm, and Performance, J. Chem. Theory Comput. 16 (2020) 3757–3785.

[17] J. P. Heremans, M. S. Dresselhaus, L. E. Bell, D. T. Morelli, When thermoelectrics reached the
nanoscale, Nat. Nanotech. 8 (2013) 471–473.

[18] B. Champagne, J.-M. André, Determination of ab initio polarizabilities of polymers: Application
to polyethylene and polysilane, Int. J. Quantum Chem. 42 (1992) 1009–1024.

[19] P. Otto, F. L. Gu, J. Ladik, Calculation of ab initio dynamic hyperpolarizabilities of polymers, J.
Chem. Phys. 110 (1999) 2717–2726.

[20] T.-Y. Wu, On the nature of theories of irreversible processes, Int. J. Theor. Phys. 2 (1969) 325–343.

[21] R. Kubo, Statistical-mechanical theory of irreversible processes. I. General theory and simple
applications to magnetic and conduction problems, J. Phys. Soc. Jpn. 12 (1957) 570–586.

[22] G. Sansone, A. Ferretti, L. Maschio, Ab initio electronic transport and thermoelectric properties
of solids from full and range-separated hybrid functionals, J. Chem. Phys. 147 (2017) 114101.

[23] R. Orlando, M. Delle Piane, I. J. Bush, P. Ugliengo, M. Ferrabone, R. Dovesi, A new massively
parallel version of CRYSTAL for large systems on high performance computing architectures, J.
Comput. Chem. 33 (2012) 2276–2284.

[24] N. L. Doltsinis, D. Marx, First principles molecular dynamics involving excited states and nona-
diabatic transitions, J. Theor. Comput. Chem. 01 (2002) 319–349.

[25] J. C. Tully, Mixed quantum-classical dynamics: mean-field and surface-hopping in Classical and
Quantum Dynamics in Condensed Phase Simulations, 1998, pp. 489–514.

[26] G. E. P. Box, M. E. Muller, A note on the generation of random normal deviates, Ann. Math.
Stat. 29 (1958) 610–611.

[27] M. Fixman, Classical statistical mechanics of constraints: A theorem and application to polymers,
Proc. Natl. Acad. Sci. 71 (1974) 3050–3053.

[28] H. W. Graben, J. R. Ray, Unified treatment of adiabatic ensembles, Phys. Rev. A 43 (1991)
4100–4103.

[29] V. Kuzkin, On angular momentum balance for particle systems with periodic boundary conditions,
ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik
und Mechanik 95 (2014) 1290–1295.

[30] R. P. Feynman, Forces in molecules, Phys. Rev. 56 (1939) 340–343.

[31] M. Levy, Universal variational functionals of electron densities, first-order density matrices, and
natural spin-orbitals and solution of the v-representability problem, Proc. Natl. Acad. Sci. 76
(1979) 6062–6065.

[32] E. H. Lieb, Density functionals for Coulomb systems, Int. J. Quantum Chem. 24 (1983) 243–277.

[33] E. Noether, Invariante variationsprobleme, Nachr. Ges. Wiss. Göttingen, Mathematisch-
Physikalische Klasse 1918 (1918) 235–257.

[34] H. F. Trotter, On the product of semi-groups of operators, Proc. Amer. Math. Soc. 10 (1959)
545–551.

[35] M. Suzuki, Generalized Trotter’s formula and systematic approximants of exponential operators
and inner derivations with applications to many-body problems, Commun. Math. Phys. 51 (1976)
183–190.

436

Bibliography Bibliography

[36] B. A. Dubrovin, A. T. Fomenko, S. P. Novikov, Modern Geometry - Methods and Applications.
Part I. The Geometry of Surfaces, Transformation Groups, and Fields, Springer Science, 1984.

[37] M. E. Tuckerman, B. J. Berne, G. J. Martyna, Reply to comment on: Reversible multiple time
scale molecular dynamics, J. Chem. Phys. 99 (1993) 2278–2279.

[38] M. E. Tuckerman, Y. Liu, G. Ciccotti, G. J. Martyna, Non-Hamiltonian molecular dynamics:
Generalizing Hamiltonian phase space principles to non-Hamiltonian systems, J. Chem. Phys. 115
(2001) 1678–1702.

[39] W. Swope, H. Andersen, P. Berens, K. Wilson, A Computer Simulation Method for the Calculation
of Equilibrium Constants for the Formation of Physical Clusters of Molecules: Application to Small
Water Clusters, J. Chem. Phys. 76 (1982) 637–649.

[40] L. Verlet, Computer “experiments” on classical fluids. I. Thermodynamical properties of Lennard-
Jones molecules, Phys. Rev. 159 (1967) 98–103.

[41] J. R. Ray, H. Zhang, Correct microcanonical ensemble in molecular dynamics, Phys. Rev. E 59
(1999) 4781–4785.

[42] M. J. Uline, D. W. Siderius, D. S. Corti, On the generalized equipartition theorem in molecular
dynamics ensembles and the microcanonical thermodynamics of small systems, J. Chem. Phys.
128 (2008) 124301.

[43] E. M. Pearson, T. Halicioglu, W. A. Tiller, Laplace-transform technique for deriving thermody-
namic equations from the classical microcanonical ensemble, Phys. Rev. A 32 (1985) 3030–3039.

[44] L. V. Woodcock, Isothermal molecular dynamics calculations for liquid salts, Chem. Phys. Lett.
10 (1971) 257–261.

[45] H. C. Andersen, Molecular dynamics simulations at constant pressure and/or temperature, J.
Chem. Phys. 72 (1980) 2384–2393.

[46] S. Nosé, A unified formulation of the constant temperature molecular dynamics methods, J. Chem.
Phys. 81 (1984) 511–519.

[47] S. Nosé, Constant Temperature Molecular Dynamics Methods, Prog. Theor. Phys. Supplement
103 (1991) 1–46.

[48] S. Nosé, A molecular dynamics method for simulations in the canonical ensemble, Mol. Phys. 52
(1984) 255–268.

[49] J. M. Haile, S. Gupta, Extensions of the molecular dynamics simulation method. II. isothermal
systems, J. Chem. Phys. 79 (1983) 3067–3076.

[50] D. J. Evans, W. G. Hoover, B. H. Failor, B. Moran, A. J. C. Ladd, Nonequilibrium molecular
dynamics via Gauss’s principle of least constraint, Phys. Rev. A 28 (1983) 1016–1021.

[51] S. C. Harvey, R. K.-Z. Tan, T. E. Cheatham III, The flying ice cube: Velocity rescaling in molecular
dynamics leads to violation of energy equipartition, J. Comput. Chem. 19 (1998) 726–740.

[52] E. Braun, S. M. Moosavi, B. Smit, Anomalous effects of velocity rescaling algorithms: The flying
ice cube effect revisited, J. Chem. Theory Comput. 14 (2018) 5262–5272.

[53] G. Bussi, D. Donadio, M. Parrinello, Canonical sampling through velocity rescaling, J. Chem.
Phys. 126 (2007) 014101.

[54] H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, J. R. Haak, Molecular
dynamics with coupling to an external bath, J. Chem. Phys. 81 (1984) 3684–3690.

437

Bibliography Bibliography

[55] I. Fukuda, S. Queyroy, H. Nakamura, A robust, symmetric operator-composition integrator for
the Berendsen temperature-control molecular dynamics equation, J. Phys. Soc. Japan 89 (2020)
064004.

[56] D. S. Kleinerman, C. Czaplewski, A. Liwo, H. A. Scheraga, Implementations of Nosé–Hoover and
Nosé–Poincaré thermostats in mesoscopic dynamic simulations with the united-residue model of a
polypeptide chain, J. Chem. Phys. 128 (2008) 245103.

[57] T. Morishita, Fluctuation formulas in molecular-dynamics simulations with the weak coupling heat
bath, J. Chem. Phys. 113 (2000) 2976–2982.

[58] W. G. Hoover, Canonical dynamics: Equilibrium phase-space distributions, Phys. Rev. A 31 (1985)
1695–1697.

[59] D. J. Evans, B. L. Holian, The Nosé-Hoover thermostat, J. Chem. Phys. 83 (1985) 4069–4074.

[60] S. G. Itoh, T. Morishita, H. Okumura, Decomposition-order effects of time integrator on ensemble
averages for the Nosé-Hoover thermostat, J. Chem. Phys. 139 (2013) 064103.

[61] H. Ishida, A. Kidera, Constant temperature molecular dynamics of a protein in water by high-order
decomposition of the Liouville operator, J. Chem. Phys. 109 (1998) 3276–3284.

[62] G. S. Ezra, Reversible measure-preserving integrators for non-Hamiltonian systems, J. Chem. Phys.
125 (2006) 034104.

[63] K. Cho, J. D. Joannopoulos, L. Kleinman, Constant-temperature molecular dynamics with mo-
mentum conservation, Phys. Rev. E 47 (1993) 3145–3151.

[64] G. J. Martyna, M. L. Klein, M. Tuckerman, Nosé.Hoover chains: The canonical ensemble via
continuous dynamics, J. Chem. Phys. 97 (1992) 2635–2643.

[65] D. Kusnezov, A. Bulgac, W. Bauer, Canonical ensembles from chaos, Ann. Phys. 204 (1990) 155–
185.

[66] I. P. Hamilton, Modified Nosé-Hoover equation for a one-dimensional oscillator: Enforcement of
the virial theorem, Phys. Rev. A 42 (1990) 7467–7470.

[67] R. G. Winkler, Extended-phase-space isothermal molecular dynamics: Canonical harmonic oscil-
lator, Phys. Rev. A 45 (1992) 2250–2255.

[68] M. Suzuki, General Nonsymmetric Higher-Order Decomposition of Exponential Operators and
Symplectic Integrators, J. Phys. Soc. Jpn. 61 (1992) 3015–3019.

[69] M. Suzuki, Decomposition formulas of exponential operators and Lie exponentials with some ap-
plications to quantum mechanics and statistical physics, J. Math. Phys. 26 (1985) 601–612.

[70] M. Suzuki, General theory of fractal path integrals with applications to many-body theories and
statistical physics, J. Math. Phys. 32 (1991) 400–407.

[71] H. Yoshida, Construction of higher order symplectic integrators, Phys. Lett. A 150 (1990) 262–268.

[72] H. Goldstein, C. Poole, J. Safko, Classical Mechanics, 3rd ed., Am. J. Phys. 70 (2002) 782–783.

[73] S. Nosé, An extension of the canonical ensemble molecular dynamics method, Mol. Phys. 57 (1986)
187–191.

[74] M. Parrinello, A. Rahman, Crystal Structure and Pair Potentials: A Molecular-Dynamics Study,
Phys. Rev. Lett. 45 (1980) 1196–1199.

[75] S. Nosé, M. Klein, Constant pressure molecular dynamics for molecular systems, Mol. Phys. 50
(1983) 1055–1076.

438

Bibliography Bibliography

[76] M. Ferrario, J. Ryckaert, Constant pressure-constant temperature molecular dynamics for rigid
and partially rigid molecular systems, Mol. Phys. 54 (1985) 587–603.

[77] G. C. Simone Melchionna, B. L. Holian, Hoover NPT dynamics for systems varying in shape and
size, Mol. Phys. 78 (1993) 533–544.

[78] M. Ferrario, Thermodynamic Constraints, in Computer Simulation in Chemical Physics (p. 153-
171) by M. P. Allen, and D. J. Tildesley, 1st Edition, Springer, Dordrecht, 1993.

[79] G. J. Martyna, D. J. Tobias, M. L. Klein, Constant pressure molecular dynamics algorithms, J.
Chem. Phys. 101 (1994) 4177–4189.

[80] J. Jellinek, Dynamics for nonconservative systems: ergodicity beyond the microcanonical ensemble,
J. Phys. Chem. 92 (1988) 3163–3173.

[81] J. Jellinek, R. S. Berry, Generalization of Nosé’s isothermal molecular dynamics, Phys. Rev. A 38
(1988) 3069–3072.

[82] E. Forest, R. D. Ruth, Fourth-order symplectic integration, Phys. D: Nonlinear Phenom. 43 (1990)
105–117.

[83] M. Tuckerman, B. J. Berne, G. J. Martyna, Reversible multiple time scale molecular dynamics, J.
Chem. Phys. 97 (1992) 1990–2001.

[84] A. Sergi, M. Ferrario, D. Costa, Reversible integrators for basic extended system molecular dy-
namics, Mol. Phys. 97 (1999) 825–832.

[85] N. Wiener, Generalized harmonic analysis, Acta Math. 55 (1930) 117 – 258.

[86] A. Khintchine, Korrelationstheorie der stationären stochastischen Prozesse, Math. Ann. 109 (1934)
604–615.

[87] K. Wendler, M. Brehm, F. Malberg, B. Kirchner, L. Delle Site, Short Time Dynamics of Ionic
Liquids in AIMD-Based Power Spectra, J. Chem. Theory Comput. 8 (2012) 1570–1579.

[88] J. D. Bernal, R. H. Fowler, A Theory of Water and Ionic Solution, with Particular Reference to
Hydrogen and Hydroxyl Ions, J. Chem. Phys. 1 (2004) 515–548.

[89] L. Pauling, The Structure and Entropy of Ice and of Other Crystals with Some Randomness of
Atomic Arrangement, J. Am. Chem. Soc. 57 (1935) 2680–2684.

[90] Howe, R., The possible ordered structures of ice Ih, J. Phys. Colloques 48 (1987) C1–599–C1–604.

[91] C. Pisani, S. Casassa, P. Ugliengo, Proton-ordered ice structures at zero pressure. a quantum-
mechanical investigation, Chem. Phys. Lett. 253 (1996) 201–208.

[92] C. Ribaldone, S. Casassa, Born-Oppenheimer Molecular Dynamics with Linear Combination of
Atomic Orbitals and Hybrid Functionals for Condensed Matter Simulations Made Possible. Theory
and Performance for the Microcanonical and Canonical Ensembles, J. Chem. Theory Comput.
accepted manuscript.

[93] J. P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys.
Rev. Lett. 77 (1996) 3865–3868.

[94] S. Grimme, Semiempirical gga-type density functional constructed with a long-range dispersion
correction, J. Comput. Chem. 27 (2006) 1787–1799.

[95] S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization
of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, J. Chem. Phys. 132
(2010) 154104.

439

Bibliography Bibliography

[96] M. Sprik, J. Hutter, M. Parrinello, Ab initio molecular dynamics simulation of liquid water: Com-
parison of three gradient-corrected density functionals, J. Chem. Phys. 105 (1996) 1142–1152.

[97] E. Schwegler, J. C. Grossman, F. Gygi, G. Galli, Towards an assessment of the accuracy of density
functional theory for first principles simulations of water. II, J. Chem. Phys. 121 (2004) 5400–5409.

[98] R. Mills, Self-diffusion in normal and heavy water in the range 1-45◦, J. Phys. Chem. 77 (1973)
685–688.

[99] K. Krynicki, C. D. Green, D. W. Sawyer, Pressure and temperature dependence of self-diffusion
in water, Faraday Discuss. Chem. Soc. 66 (1978) 199–208.

[100] P. L. Silvestrelli, M. Parrinello, Structural, electronic, and bonding properties of liquid water from
first principles, J. Chem. Phys. 111 (1999) 3572–3580.

[101] A. K. Soper, The Radial Distribution Functions of Water as Derived from Radiation Total Scat-
tering Experiments: Is There Anything We Can Say for Sure?, ISRN Physical Chemistry 2013
(2013) 1–67.

[102] A. D. Becke, Density functional thermochemistry. III. The role of exact exchange, J. Chem. Phys.
98 (1993) 5648–5652.

[103] C. Adamo, V. Barone, Toward reliable density functional methods without adjustable parameters:
the PBE0 model, J. Chem. Phys. 110 (1999) 6158–6170.

[104] C. Gatti, V. R. Saunders, C. Roetti, Crystal field effects on the topological properties of the
electron density in molecular crystals: the case of urea, J. Chem. Phys. 101 (1994) 10686–10696.

[105] A. D. Becke, A multicenter numerical integration scheme for polyatomic molecules, J. Chem. Phys.
88 (1988) 2547–2553.

[106] M. D. Towler, A. Zupan, M. Causà, Density functional theory in periodic systems using local
gaussian basis sets, Comput. Phys. Commun. 98 (1996) 181–205.

[107] H. J. Monkhorst, J. D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13 (1976)
5188–5192.

[108] C. G. Broyden, The convergence of a class of double-rank minimization algorithms 1. General
considerations, IMA J. Appl. Math. 6 (1970) 76–90.

[109] C. G. Broyden, The convergence of a class of double-rank minimization algorithms 2. The new
algorithm, IMA J. Appl. Math. 6 (1970) 222–231.

[110] R. Fletcher, A new approach to variable metric algorithms, Comput. J. 13 (1970) 317–322.

[111] D. Goldfarb, A family of variable-metric methods derived by variational means, Math. Comput.
24 (1970) 23–26.

[112] D. Shanno, Conditioning of quasi-Newton methods for function minimization, Math. Comput. 24
(1970) 647–656.

[113] A. Erba, J. K. Desmarais, S. Casassa, B. Civalleri, L. Donà, I. J. Bush, B. Searle, L. Maschio,
L. Edith-Daga, A. Cossard, C. Ribaldone, E. Ascrizzi, N. L. Marana, J.-P. Flament, B. Kirtman,
CRYSTAL23: A Program for Computational Solid State Physics and Chemistry, J. Chem. Theory
Comput. 19 (2023) 6891–6932.

[114] R. Dovesi, V. R. Saunders, C. Roetti, R. Orlando, C. M. Zicovich-Wilson, F. Pascale, B. Cival-
leri, K. Doll, N. M. Harrison, I. J. Bush, P. D’Arco, M. Llunell, M. Causá, Y. Nöel, L. Mas-
chio, A. Erba, M. Rérat, S. Casassa, B. G. Searle, J. Desmarais, online crystal23 user’s manual,
www.crystal.unito.it/include/manuals/crystal23.pdf.

440

Bibliography Bibliography

[115] W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes in FORTRAN

77: The Art of Scientific Computing, 2nd Edition, Cambridge University Press, 1992.

[116] E. Polak, in: Computational Methods in Optimization: A Unified Approach, Vol. 77 of Mathe-
matics in Science and Engineering, Elsevier, 1971, pp. iv–xvii, 1–329.

[117] D. Jacobs, The state of the art in numerical analysis, Math. Comput. 32 (1977) 1325.

[118] E. Polak, in: Computational Methods in Optimization: A Unified Approach, Vol. 77 of Mathe-
matics in Science and Engineering, Elsevier, 1971, p. 56ff.

[119] H. B. Schlegel, Optimization of equilibrium geometries and transition structures, J. Comput. Chem.
3 (1982) 214–218.

[120] R. Dovesi, A. Erba, R. Orlando, C. Zicovich-Wilson, B. Civalleri, L. Maschio, M. Rérat, S. Casassa,
J. Baima, S. Salustro, B. Kirtman, Quantum-mechanical condensed matter simulations with crystal,
Wiley Interdiscip. Rev. Comput. Mol. Sci. 8 (2018) 1–36.

[121] R. Dovesi, V. R. Saunders, C. Roetti, R. Orlando, C. M. Zicovich-Wilson, F. Pascale,
B. Civalleri, K. Doll, N. M. Harrison, I. J. Bush, P. D’Arco, M. Llunel, M. Causà,
Y. Noel, L. Maschio, A. Erba, M. Rérat, S. Casassa, online crystal17 User’s Manual,
https://www.crystal.unito.it/manuals/crystal17.pdf (2018).

[122] J. R. Beeler, Radiation effects computer experiments, Defects in Solids, Elsevier, Oxford, 1983,
p. 27.

[123] H. Jónsson, G. Mills, W. Jacobsen, Nudged Elastic Band Method for Finding Minimum Energy
Paths of Transitions, in Classical and Quantum Dynamics in Condensed Phase Simulations, World
Scientific, 1998.

[124] J. H. A. Hagelaar, E. Bitzek, C. F. J. Flipse, P. Gumbsch, Atomistic simulations of the formation
and destruction of nanoindentation contacts in tungsten, Phys. Rev. B 73 (2006) 045425.

[125] E. Bitzek, P. Koskinen, F. Gähler, M. Moseler, P. Gumbsch, Structural relaxation made simple,
Phys. Rev. Lett. 97 (2006) 170201.

[126] J. Guénolé, W. G. Nöhring, A. Vaid, F. Houllé, Z. Xie, A. Prakash, E. Bitzek, Assessment and opti-
mization of the fast inertial relaxation engine (fire) for energy minimization in atomistic simulations
and its implementation in lammps, Comput. Mater. Sci. 175 (2020) 109584.

[127] C. Ribaldone, S. Casassa, Fast inertial relaxation engine in the CRYSTAL code, AIP Advances 12
(2022) 015323.

[128] P. Koskinen, S. Malola, H. Häkkinen, Self-passivating edge reconstructions of graphene, Phys. Rev.
Lett. 101 (2008) 115502.

[129] J. A. Flores-Livas, A. Sanna, E. K. Gross, High temperature superconductivity in sulfur and
selenium hydrides at high pressure, Eur. Phys. J. B 89 (2016) 1–7.

[130] M. Walter, M. Moseler, Ligand-protected gold alloy clusters: doping the superatom, J. Phys.
Chem. C 113 (2009) 15834–15837.

[131] J. A. Flores-Livas, M. Amsler, T. J. Lenosky, L. Lehtovaara, S. Botti, M. A. L. Marques,
S. Goedecker, High-pressure structures of disilane and their superconducting properties, Phys.
Rev. Lett. 108 (2012) 117004.

[132] F. Shuang, P. Xiao, R. Shi, F. Ke, Y. Bai, Influence of integration formulations on the performance
of the fast inertial relaxation engine (fire) method, Comput. Mater. Sci. 156 (2019) 135–141.

[133] D. Sheppard, R. Terrell, G. Henkelman, Optimization methods for finding minimum energy paths,
J. Chem. Phys. 128 (2008) 134106.

441

Bibliography Bibliography

[134] B. Schaefer, S. Alireza Ghasemi, S. Roy, S. Goedecker, Stabilized quasi- Newton optimization of
noisy potential energy surfaces, J. Chem. Phys. 142 (2015) 034112.

[135] S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys. 117
(1995) 1–19.

[136] M. J. Abraham, T. Murtola, R. Schulz, S. Páll, J. C. Smith, B. Hess, E. Lindahl, GROMACS: high
performance molecular simulations through multi-level parallelism from laptops to supercomputers,
SoftwareX 1-2 (2015) 19–25.

[137] J. Stadler, R. Mikulla, H. Trebin, IMD: a software package for molecular dynamics studies on
parallel computers, Int. J. Mod. Phys. C 08 (1997) 1131–1140.

[138] W. Smith, C. Yong, P. Rodger, DL POLY: application to molecular simulation, Mol. Simul. 28
(2002) 385–471.

[139] S. Chill, M. Welborn, R. Terrell, L. Zhang, J. Berthet, A. Pedersen, H. Jónsson, G. Henkelman,
EON: software for long time simulations of atomic scale systems, Model. Simul. Mat. Sci. Eng. 22
(2014) 055002.

[140] A. H. Larsen, J. J. Mortensen, J. Blomqvist, I. E. Castelli, R. Christensen, M. Dulak, J. Friis,
M. Groves, B. Hammer, C. Hargus, E. D. Hermes, P. C. Jennings, P. B. Jensen, J. Kermode,
J. Kitchin, E. L. Kolsbjerg, J. Kubal, K. Kaasbjerg, S. Lysgaard, J. B. Maronsson, T. Max-
son, T. Olsen, L. Pastewka, A. A. Peterson, C. Rostgaard, J. Schiøtz, O. Schütt, M. Strange,
K. Thygesen, T. Vegge, L. Vilhelmsen, M. Walter, Z. Zeng, K. W. Jacobsen, The atomic simula-
tion environment-a python library for working with atoms, J. Phys. Condens. Matter 29 (2017)
273002.

[141] R. Sure, S. Grimme, Corrected small basis set Hartree-Fock method for large systems, J. Comput.
Chem. 34 (2013) 1672–1685.

[142] J. Brandenburg, S. Grimme, Dispersion corrected Hartree-Fock and density functional theory for
organic crystal structure prediction, Top. Curr. Chem. 345 (2013) 1–23.

[143] M. Cutini, B. Civalleri, M. Corno, R. Orlando, J. Brandenburg, L. Maschio, P. Ugliengo, Assess-
ment of different quantum mechanical methods for the prediction of structure and cohesive energy
of molecular crystals, J. Chem. Theory Comput. 12 (2016) 3340–3352.

[144] B. Civalleri, C. M. Zicovich-Wilson, L. Valenzano, P. Ugliengo, B3LYP augmented with an empirical
dispersion term (B3LYP-D*) as applied to molecular crystals, CrystEngComm 10 (2008) 405–410.

[145] A. V. Krukau, O. A. Vydrov, A. F. Izmaylov, G. E. Scuseria, Influence of the exchange screening
parameter on the performance of screened hybrid functionals, J. Chem. Phys. 125 (2006) 224106.

[146] T. Stedman, L. M. Woods, Transport theory within a generalized Boltzmann equation for multi-
band wave packets, Phys. Rev. Res. 2 (2020) 033086.

[147] J. A. Pople, R. Krishnan, H. B. Schlegel, J. S. Binkley, Derivative studies in Hartree-Fock and
Møller-Plesset theories, Int. J. Quantum Chem. 16 (S13) (1979) 225–241.

[148] P. Steneteg, I. A. Abrikosov, V. Weber, A. M. N. Niklasson, Wavefunction extended lagrangian
Born-Oppenheimer molecular dynamics, Phys. Rev. B 82 (2010) 075110.

[149] X. Pan, R. Van, E. Epifanovsky, J. Liu, J. Pu, K. Nam, Y. Shao, Accelerating ab initio quantum
mechanical and molecular mechanical (QM/MM) molecular dynamics simulations with multiple
time step integration and a recalibrated semiempirical QM/MM Hamiltonian, J. Phys. Chem. B
126 (2022) 4226–4235.

[150] H.-S. Lee, M. E. Tuckerman, Dynamical properties of liquid water from ab initio molecular dy-
namics performed in the complete basis set limit, J. Chem. Phys. 126 (2007) 164501.

442

Bibliography Bibliography

[151] J. C. Maxwell, V. Illustrations of the dynamical theory of gases. – Part I. On the motions and
collisions of perfectly elastic spheres, The London, Edinburgh, and Dublin Philosophical Magazine
and Journal of Science 19 (1860) 19–32.

[152] D. C. Wallace, G. K. Straub, Ensemble corrections for the molecular-dynamics ensemble, Phys.
Rev. A (1983) 2201–2205.

[153] M. P. Allen, D. J. Tildesley, Computer simulation of liquids, 2nd Edition, Oxford University Press,
2017.

443

	Introduction
	Unifying molecular dynamics and electronic structure
	Initialization of quantities
	Initialization of nuclear positions and velocities
	Subtraction of total linear momentum
	Velocity rescaling with respect to target temperature

	Translations and rotations removal
	Removal of atomic systems translations
	Removal of molecular systems rotations
	Removal of polymer systems rotations

	Kinetic energy, net linear and angular momentum

	Equations of motion
	Hamilton formulation
	Hamilton equations of motion
	Symplectiness and canonical transformations
	Liouville theorem
	Liouville equation
	Liouville operator
	Liouville operator invariance under canonical transformations
	Time dependency in phase space
	First integrals of Hamilton equations of motion

	Generalized approach for equations of motion integration
	Suzuki-Trotter factorization scheme
	Action of the Liouville operators

	Statistical mechanics and equations of motion
	Hamiltonian dynamics
	Non Hamiltonian dynamics
	The generalized phase space analysis
	Other forms of the generalized Liouville equation

	Generation of statistical ensembles
	The microcanonical ensemble
	Equations of motion
	Integration of the equations of motion
	Conserved quantities
	Jacobi coordinates
	Statistical mechanical ensemble
	Periodic boundary conditions
	Periodic boundary conditions: a second derivation

	Calculation of temperature and the mean kinetic energy

	Generation of different ensembles
	The constraint methods
	The extended system methods

	Constant temperature approaches
	Gaussian thermostat
	Simple velocity rescaling
	Berendsen thermostat
	The Nosé-Hoover thermostat
	Nosé-Hoover chains

	Constant temperature and pressure approaches
	Ferrario thermostat and barostat

	Summary: ensembles and equations of motion

	Post processing of dynamics trajectory
	Radial Pair Correlation Function
	Theory
	Implementation

	Power Spectrum and Diffusion Coefficient
	Theory
	Implementation

	Molecular dynamics simulations: results and discussion
	Scaling efficiency
	Computational details

	Fast Inertial Relaxation Engine (FIRE)
	Review on quasi-Newton methods
	Conjugate Gradient method
	Broyden-Fletcher-Goldfarb-Shanno method
	Structural optimization methods in Crystal code

	The Fire algorithm
	The Fire algorithm
	Fire2.0 algorithm
	Advantages in using Fire algorithm

	Implementation of Fire in Crystal code
	Molecular Dynamics integrator
	Convergence criteria
	Setting of Fire default parameters
	Computational details

	Results and Discussions
	Conclusions and Perspectives

	Electronic transport properties
	Boltzmann transport theory
	Distribution function and Bbgky hierarchy
	Collision integral in solid state systems
	Boltzmann equation
	Current density and electrical conductivity

	Band velocities in the Crystal code
	Properties of reciprocal space representation of _F and _S matrices
	The reality of band velocities
	Implementation in the Crystal code
	Orbital rotations and transport properties

	Massively Parallel Processing implementation
	Results and Discussion: the famous case of silicon
	Band structure
	Comparison of P and MPP band velocities
	Effect of band degeneracy on the electronic transport properties

	Parallel implementation: problems and solutions
	Test cases: results and discussion

	Conclusions and future perspectives
	Appendices
	Notation stuffs and demonstrations
	Maxwell-Boltzmann distribution
	Initial nuclear velocities distribution
	Initial nuclear velocities rescaling

	Position and Velocity Verlet algorithms
	Phase space notation
	Fluctuation-Dissipation Theorem
	Canonical transformation
	Resolution of the Bromwich integral
	Nosé-Hoover statistical mechanical ensemble
	Ensemble with linear momentum conservation

	Ferrario statistical mechanical ensemble
	Ensemble with linear momentum conservation
	Solution of integral (5.569) with respect to variable p_v
	Conserved quantities

	Gaussian thermostat through extended system
	Equations of motion in real variables

	Equations of motion integration
	From virtual to real sampling
	Nosé-Hoover thermostat

	Integrator for Nosé-Hoover thermostat

	Molecular Dynamics module details
	Code workflow (moldyn.f90)
	Box-Muller implementation
	Kinetic energy and temperature calculations

	Constants and conversion units
	Output files
	Merging moldyn_post.f90 in Crystal
	The module read_moldyn_post_module: reading of the input file
	Calculations starting from the input file .d12
	Post processing calculations starting from the input file .d3

	Fire in Crystal code
	Module fire_module
	Changes in libopt.f library and memory_opt.f90 module
	Changes in geometry.f and libforce6.f libraries

	Black list of changes

	Electronic Transport Properties module details
	Code workflow (boltzatorb.f90)
	Bug report 1 (boltzatorb.f90)
	Tests

	Bug report 1 (boltzatorb.f90)
	Tests

	Computational parameters and input setup
	Crystalline ice (P-ice)
	Liquid-like water

	Manuals
	Molecular dynamics : manual and keywords
	Fire : Manual and keywords

	Documentation of some CRYSTAL core subroutines
	PRIMST (libx7_scf.f)
	MINV3 (libx5_com.f)
	INV123 (libx4_com.f)
	PARLAT(C,D,A) (libx6_com.f)
	MCM (libx5_com.f)
	VRSLAT (both1.f)
	EXPU (both4.f)
	EXPT (both4.f)
	SYMHEQ (libxa.f)
	SYMHER (libxa.f)
	GENERATE_SAED (geometry.f)
	SMAT (libxj.f)
	ESTROF (both4.f)
	ESTROE (both4.f)
	ESTROG (both4.f)
	SMAT_SINGLEK (libxj.f)

	Fort.98 unit information
	W1R
	NPOT
	ICHMOD
	NCF
	NSTATG
	NSTATFG
	IDIME, IDIMF, IDMCOU
	LA3
	LA4
	IROF
	NNGI
	NSHGI
	NNNC
	JPOINT
	LA34V
	LA34F
	NGSHG
	NQGSHG
	SUBROUTINE RWRITF

	Bibliography

