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ABSTRACT The firing instants of single motor units (MUs) can be identified by decomposing
electromyograms (EMG) detected with intramuscular or grids of surface electrodes. The latter is sometimes
preferred due to its larger detection volume and non-invasiveness. When the interest is in firing instants
and not in investigating the activity of specific MUs, in-silico studies have shown that deconvolution of a
single surface EMG is a low cost method providing reliable information. In this study, we explored this
possibility by testing the experimental validity of deconvolution by comparison with decomposition of
multichannel surface EMG. A single kernel deconvolution method is proposed to estimate the cumulative
firings of the MUs from bipolar surface EMGs collected from the biceps brachii of 10 healthy subjects,
recorded during contractions of different force levels and an endurance test. Different parameters were
tested: force levels, inter-electrode distance, electrode size and location. Validity was assessed by correlating
the cumulative firings (after 5-45 Hz band-pass filtering) between the proposed, deconvolution approach
and the already validated, EMG decomposition. For all conditions tested, decomposition and deconvolution
provided correlation coefficients of about 40%. When considering experimental signals reconstructed with
the firings of decomposed MUs, markedly higher correlation values were obtained (median correlations of
90%). High correlation (about 80%) was obtained even when a signal with large interference was built by
adding about 90 MU action potential trains, decomposed from different EMGs of our dataset with same
contraction levels. Analysis of residual root mean squared error (median across tests of about 40% and
15% for decomposition and deconvolution, respectively) together with the good estimation on reconstructed
signals with high interference suggest that deconvolution may identify additional contributions that are not
explained by decomposition. This additional information provided by deconvolution may justify in part the
discrepancy when comparing the outputs of the two methods applied to the original signals. The cumulative
firing instants associated with action potentials can be accurately estimated with the deconvolution of a single
bipolar surface EMG.

INDEX TERMS Surface EMG, decomposition, deconvolution.

The associate editor coordinating the review of this manuscript and
approving it for publication was Hasan S. Mir.

I. INTRODUCTION
Investigating the mechanisms governing the control of motor
units (MU) is important in many fields. For example, MUs
firing properties have been shown to change with training [1],
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force [2], fatigue [3], [4], pain [5] and pathology [6]. Indeed,
the cumulative spike trains of theMUs reflect the overall drive
of the muscle of interest and the extraction of the information
they include from the entire EMG provided useful insights
into muscular central control [7], [8], [9], [10]. Moreover, the
study of recruitment and rate coding of MUs has broadened
our knowledge on cortico-muscular synchronization [11],
common drive [12] or common synaptic input [13], intra-
muscle and inter-muscles coherence [14], [15] and muscle
synergies [16], [17].

Advanced processing methods allow to decompose the
interference EMG into the contribution of single MUs [18].
The possibility of studying single MUs is useful to extract
information on muscle activity, e.g., to improve the estima-
tion of muscle force [19], [20], contraction velocity [21], joint
angle [22] and in the control of a myoelectric prosthesis [23],
[24], [25], [26]. Twomain approaches have been conducted to
decode single MUs activations: decomposition of intramus-
cular EMG [27] and decomposition of surface EMG detected
with grids of electrodes [28]. Being non-invasive, this high-
density approach [29], [30], [31] has garnered the interest
of both clinical and technical users [32], [33]. However,
notwithstanding the important insights into the neuromuscu-
lar control strategies obtained with decomposition of high-
density EMGs [18], this approach requires using grids of
electrodes with dedicated amplifiers and computationally
intensive processing techniques.

In spite of the limited spatial sampling, circumstances
often impose the use of the traditional bipolar montage (also
called single-differential, SD). Bipolar EMGs are easy to use,
minimally restrain movements and require small resources
of memory and power, likely explaining its overwhelming
popularity in applied fields (e.g., ergonomics [34], sport
science [35], gait analysis [36] and clinics [37]). In con-
trast to high-density EMGs, bipolar recordings offer little,
if any, possibility of identifying single MUs: the temporal
summation of action potentials of different MUs is unlikely
resolved for a single detection point. Nevertheless, if interest
lies in the instants at which the target muscle has been
excited, regardless of where depolarization took place within
the muscle, the process of labelling the excitation instants1

according to specific MUs is not required. For example,
the energy of frequencies up to about 40 Hz was suggested
to reflect the average firing rate of MUs recruited during
submaximal, voluntary contractions [7], [8]. In order to
extend the range of applicability to higher contraction levels,
different methods were proposed, including rectification [38]
(which was questioned due to its non-linear nature [9])
and identification of non-propagating components [10], [39]
(which requires monopolar recordings).

The possibility of collectively assessing the firing rate of
populations ofMUs from a single bipolar EMGmotivated the

1Excitation instants is used here to explicitly distinguish trains of impulses
corresponding to the firing instants of specific MUs from the sum of all
impulses from all active MUs (cumulative firing instants).

emergence of a deconvolution method, sought for identifying
the cumulative firing instants of whichever source could be
excited [40], [41]. While the application of deconvolution to
simulated EMGs has shown promising outcomes, similarly
encouraging results on experimental EMGs are limited to
the preliminary observation that better myoelectric control
may be obtained with EMG deconvolution rather than with
original EMGs [42]. An experimental validation of EMG
deconvolution is thus warranted before it can be considered
for the identification of excitation instants from experimental
bipolar EMGs.

This study aims therefore at validating the deconvolution
method applied to a bipolar EMG against the gold standard
for MU identification in surface EMG: decomposition of
high-density EMG. We specifically assess whether the
deconvolution method identifies the firing instants of biceps
brachii MUs decomposed from experimental EMGs with an
automated, validated procedure. Focus is placed on the firing
instants, regardless of their sources. The following workflow
is followed.

1. Recording of surface EMG during contractions at
different force levels and endurance from a 2D electrode grid
in monopolar configuration.

2. Decomposition of recorded EMGs, using the informa-
tion from the entire electrode grid.

3. Computation of bipolar signals from the recorded high-
density data, with different inter-electrode distance, electrode
size and location.

4. Deconvolution of single bipolar EMGs.
5. Comparison of information obtained from single-channel

deconvolution and decomposition of the high-density signals,
both in terms of average MU discharges estimated and signal
power explained.

6. Generation of high interference signals as sums of MU
action potential (MUAP) trains identified by decomposition
to test deconvolution on challenging data with known firing
statistics.

Our results suggest that deconvolution may provide a
physiologically plausible estimation of the cumulative trains
of excitation instants from a single bipolar EMG.

After this introduction, the manuscript proceeds with a
Methods section, describing the experimental recordings, the
processing methods (namely, decomposition and deconvo-
lution) and the tests for comparison. Then, the Results and
Discussion sections show and interpret (respectively) the
outcomes of our research. A final summary of our work is
given in the Conclusions section.

II. METHODS
A. EXPERIMENTAL PROTOCOL
Ten healthy males (mean age 25 years, range 22-28 years)
participated to the experiments. None reported any previous
musculoskeletal pathologies. All subjects provided written,
informed consent prior to undertaking the experiment. Data
were recorded in accordancewith theDeclaration ofHelsinki.
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The study was approved by the Ethical Committee of
University of Torino (approval no: 510190).

EMG signals were acquired from the biceps brachii during
isometric contractions at different force levels. Before the
acquisition, participants were asked to perform two maximal
voluntary contractions (MVC), resting two minutes in-
between. Then, they performed two isometric contractions at
different force levels: 10%MVC, 30%MVC, 50%MVC and
70% MVC resting 2 minutes in-between. Participants were
asked to maintain a constant force for 15 s during the 70%
MVC trials and for 20 s otherwise, while provided with visual
force feedback overlaid on a trapezoidal, reference signal.
The trapezoidal profile imposed reaching with a fixed rate
of 10% MVC/s the submaximal, target plateau (to be kept
for 15 or 20 s, as detailed above) and then come back to
rest (again with a rate of 10% MVC/s). Finally, the subject
performed a fatiguing isometric contraction to exhaustion
with a force level of 60% MVC. The test ended when the
subject was unable to maintain the force over 90% of the
target level for 3 s.

Figure 1 shows the experimental setup.

B. MEASUREMENTS
EMGs were acquired in monopolar configuration with a
2D grid of 64 electrodes (13 × 5; one electrode missing
on the proximo-lateral edge; 8 mm interelectrode distance
(IED)). The electrode grid was placed on the biceps brachii
and the reference electrode on the acromion, after carefully
cleaning the skin with abrasive paste. The grid was secured
to the skin with adhesive pad, which holes in correspondence
of electrodes were filled with conductive paste. The five
columns of the grid of electrodes were aligned parallel
to the muscle fibers and the grid was centered over the
muscle bulge. Signals were band-pass filtered (0.7-500
Hz), amplified (gain 150), and then sampled at 2048 Hz
with a 16 bit A/D converter (Quattrocento EMG amplifier,
OTBioelettronica, Turin, Italy).

C. SIGNAL PROCESSING
Data were first pre-processed with a zero-lag, band-pass
filter (5)-350 Hz; 4th order Butterworth). Then, the firing
patterns of singleMUswere extracted frommonopolar EMGs
using an automated and validated decomposition algorithm
[30], [31]. The output was used as reference to test the
deconvolution algorithm, which was applied to single bipolar
EMGs. Descriptions of the processing methods and of the
tests are provided below.

1) DECOMPOSITION OF MULTICHANNEL SURFACE EMG
We used the algorithm DEMUSE to decompose the recorded
EMGs into constituent MUAP trains [30], [31]. The method
was previously validated [43] and tested in different applica-
tions [44].

We can write the interference EMG as the asynchronous
summation of different MUAPs

sC (t) =

N∑
m=1

Jm∑
j=1

MC,m(t − τmj) + nC (t) (1)

where sC (t) is the monopolar EMG detected by the electrode
C , N is the number of active MUs, MC,m is the action
potential from the mth MU, firing Jm times, τmj is the jth time
in which the mth MU fired and nC (t) is an additive noise
(notice that variations of MUAP shapes, e.g., induced by
fatigue, have been neglected). Decomposition identifies the
firing pattern of different MUs using the Convolution Kernel
Compensation method [30], which compensates different
MUAP shapes and reconstructs the pulse trains directly.
After estimating the firing patterns of different MUs, the
corresponding MUAP of each MU detected at each electrode
location can be retrieved by averaging. This allows for the
spatio-temporal characterization of single MUs, providing
information on their discharge properties [1], [2], [3], [4], [5],
[6], as well as of the distribution of their fibers within the
muscle [45], [46]. Moreover, the identified MUAP trains can
be summed to build an estimation of the original signal (thus,
allowing to evaluate the percentage amount of the original
data which was decoded by the algorithm).

Decomposed signals were used to estimate the cumulative
firing that could be extracted from the single SD channel used
for deconvolution, as described below.

2) SINGLE CHANNEL DECONVOLUTION
The deconvolution of bipolar EMGs has been introduced
in [40] (to which the reader can refer for details). A short
introduction to the method is here provided.

Consider an SD channel s(t) = sC1 (t) − sC2 (t), defined as
the difference between the monopolar signals from channels
C1 andC2. In this study, it was defined by selecting electrodes
beyond the most distal innervation zone (IZ) with different
IEDs, or over it and the distal tendon in the case of the test
of belly tendon configuration (see below the detailed list of
tests). From Equation (1), we obtain the considered SD signal
as

s(t) =

N∑
m=1

Mm(t) ∗ Fm(t) + n(t) (2)

whereMm(t) = MC1,m(t)−MC2,m(t) is the m
th MUAP in SD

configuration, ∗ indicates the convolution operator, Fm(t) =
Jm∑
j=1

δ(t − τmj) is the firing pattern of the mth MU and n(t) =

nC1 (t) − nC2 (t) is the additive noise.
A single kernel is used to approximate the waveforms of

different MUAPs, obtaining the following approximation

s(t) ≈ K (t) ∗ f (t) (3)

where K (t) is the kernel and f (t) =

N∑
m=1

Jm∑
j=1

Amδ(t − τmj) the

estimated cumulative firing pattern, representing the firings
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FIGURE 1. Experimental setup. A) Representation of the experimental custom-made brace and the electrode array placed on the biceps brachii of the
subject. B) Example of trapezoidal visual force feedback and single monopolar EMG recorded during the contraction. C) Representation of the
experimental protocol.

of all active MUs, weighted by the amplitudes {Am}
N
m=1 of

their MUAPs as they are recorded by the considered pair
of electrodes [40]. The presence of noise and the shape
differences among MUAPs of different MUs makes the
model only an approximation. However, simulation tests
revealed that this model may provide reliable information
on the biophysics underlying the generation of the recorded
signal [40].

The kernel was written as the first derivative of a Gaussian
function, as this shape resembles that of MUAPs recorded
in SD configuration [47] (the adaptation of the shape of the
kernel to the signal could be an interesting development, left
for future investigation). The power spectral density (PSD) of
the first derivative of a Gaussian function is

Ġ(t) =
d
dt

e−
t2

2σ2

√
2πσ 2

→ F[Ġ(t)] = j2π fe−2π2f 2σ 2

→ PSD = |F[Ġ(t)]|2 = 4π2f 2e−4π2f 2σ 2
(4)

where F indicates the Fourier transform. In order to estimate
the optimal variance σ 2, the slope of the following 1D curve
was computed

0(f 2) =

(
f 2, log

PSD
4π2f 2

)
(5)

for the PSD of the specific EMG to be processed, considering
the frequency range in which most of the power is found,
i.e., in (FMed − Fstd , FMed + 2Fstd ), where FMed is the
median frequency and Fstd the standard deviation of the

PSD (previous tests showed that this range provides stable
results [41]).
Given the kernel, the cumulative firing pattern f (t) in

Equation (3) was computed by deconvolution. As preliminary
step, the following energetic functional with Tykonov regu-
larization [48] was considered

argminf̂ (t)

∥∥∥s(t) − K (t) ∗ f̂ (t)
∥∥∥2
2
+ α

∥∥∥f̂ (t)∥∥∥2
2

(6)

where α is the regularization parameter. The problem was
discretized writing convolution as the multiplication of the
unknown sampled cumulative firing with a matrix as in [40],
[49], and [50]

AX ≈ b (7)

where A is a lower triangular Toeplitz matrix collecting the
samples of the kernel, b = {bi} = {s(ti)} is the vector of
recorded data samples and X the unknown time distribution
of firings.

After this sampling, the functional to be minimized in (6)
is

∥AX − b∥2 + α∥X∥
2

=

∥∥∥∥[
A

√
αI

]
X −

[
b
0

]∥∥∥∥2 = ∥BX − c∥2

(8)

where

B =

[
A

√
αI

]
, c =

[
b
0

]
(9)
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with solution

X = (BTB)−1BT b = (ATA+ αI )−1AT b (10)

The 1% of the maximum eigenvalue of ATA was chosen
as regularization parameter α, so as to limit the condition
number of the matrix ATA + αI to 100 (this choice was
supported by a fine tuning performed in previous studies,
based on simulations [40], [41]).

In order to get a solution more sparse (thus, better
resembling a firing pattern) and robust to outliers [51], the L1
norm was used instead of the L2. The solution was obtained
by the iterative reweighted least square (IRLS) method [48],
starting from the solution of the L2 problem and making
10 iterations to minimize the following error functional∥∥∥∥[

A
√

αI

]
X −

[
b
0

]∥∥∥∥
L1

=

=

∥∥∥∥W T
·

([
A

√
αI

]
X −

[
b
0

])∥∥∥∥2
L2

(11)

where W , initialized as the identity and updated for each
iteration, should be equal to the reciprocal of the square root
of the absolute error at convergence. The estimated solution
was also imposed to be positive at each iteration, by assigning
zero to negative values.

Splitting properly the signal in short overlapping epochs,
it is possible to decrease the computational cost, getting
virtually the output of the algorithm in real time [40] (even
if offline processing was considered in this work).

3) TESTS
Individual SD EMGs from the grid were chosen to be
processed by the deconvolution algorithm. The choice was
based on visual analysis of the signals collected with the
electrode grid. The selected channel was chosen beyond the
most distal IZ, in order to consider a region in which all action
potentials propagated in the same direction.

The decomposition algorithm provided firing instants of
different labelled MUs. Their corresponding action poten-
tials were estimated for each electrode by spike triggered
averaging. Then, by convolution of the firing patterns with
the corresponding action potential, the MUAP trains were
obtained.

Given the decomposition of the EMGs into MUAP trains,
tests of deconvolution were performed either on the original
data from the selected channel or on reconstructed signals,
defined as the sum of the MUAP trains detected by EMG
decomposition. Below is a list of all tests performed and their
rationale.

1) Spatial filter selectivity: EMGs with different IEDs,
ranging from 8 mm to 32 mm. Rationale: the effect
of the selectivity of the bipolar spatial filter on
deconvolution is tested.

2) Belly-tendon sampling: two large square electrodes
were simulated, summing the potential recorded by

different electrodes,2 displaced over regions of dimen-
sions 2 × 2 (IEDs, corresponding to a covered
surface of 8 × 8 mm2, i.e., 0.64 cm2), 3 × 3
(2.56 cm2) and 4 × 4 (5.76 cm2); the two large square
electrodes were placed over the IZ and the most distal
tendon, respectively. Rationale: using large electrodes
in belly-tendon configuration is a common practice
in some clinical settings [49], [50], so that exploring
the value of deconvolution in this scenario can be
important.

3) The solutions provided by the deconvolution algorithm
were compared for different columns of the grid (with
the aim of testing the sensitivity of the output of the
algorithm to a displacement of the detection channel
in the direction transverse to the muscle fibers). The
algorithm was applied to SD signals characterized
by different IEDs, i.e., 8 mm, 16 mm and 24 mm.
Rationale: repeatability of information extraction is
crucial in any biomedical application. When repeating
a measurement of surface EMG on the same subject,
it is possible to identify some points of repere (e.g.,
some anatomical details, including the location of IZ
and tendons), but a displacement in direction transverse
to the muscle fibers is difficult to avoid. This test is
aimed to reveal the sensitivity of deconvolution in case
of transverse displacements and as a function of the
selectivity of the filter (i.e., the IED of the bipolar
detection).

4) Test on signals of high interference, simulated by
adding many experimental MUAP trains: five interfer-
ence signals in increasing order of complexity were
constructed, by summing the trains of MUAPs detected
by decomposing different data. White Gaussian noise
of different power has been added to obtain signals
with different SNRs, i.e., 20 dB, 10 dB and 5 dB.
Rationale: surface EMGs with high interference are the
most difficult to be processed and even the decom-
position algorithm can have problems in decoding all
information included. Using signals obtained by adding
experimental MUAPs is a way to test deconvolution on
high interference data having a reference output.

D. COMPARISON OF CUMULATIVE SPIKES FROM
DECOMPOSITION AND DECONVOLUTION
We compared the cumulative weighted firings (CWF) of
decomposition and the output of deconvolution. To build
the CWF, the firing patterns of the MUs identified by
decomposition were weighted by the root mean squared
(RMS) of their MUAPs (as detected by the SD channel
processed by deconvolution), estimated by spike triggered
averaging, and summed up. The obtained time series were
filtered between 5-45 Hz. Beyond this frequency range,

2Notice that a metallization imposes constant potential under it, thus
affecting the signal that it is sensing. Thus, summing the potentials from
different electrodes is only an approximation of the recording obtained by a
large electrode covering an area sampled by those electrodes.
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it is not reasonable that deconvolution can provide reliable
estimations. However, notice that information about MU
firing rate is included in such a range. The two filtered
time series (obtained respectively by decomposition and
deconvolution) were compared by the correlation coefficient,
which was explored by statistical analysis.

To correct the skewness in the data distribution, the
statistics were performed on log-transformed data. Then the
Shapiro-Wilk tests confirmed normality of the distributions.
Thus, to test our experimental questions we performed a
series of repeated measure ANOVAs with the following
factors: type of signal (binary variable indicating either raw
data or reconstructed), force level (5 levels: 10%, 30%, 50%,
70% of MVC and 60% for the endurance test), size of
electrodes (3 levels: 2 × 2, 3 × 3, 4 × 4), IED (3 levels: 8,
16 and 24 mm), and transverse electrode distance (3 levels:
8, 16 and 24 mm). The Greenhouse-Geisser correction was
adopted when sphericity was violated. The effect size was
determined using partial η2.

III. RESULTS
An example of the processing procedure is shown in Figure 2.
The monopolar EMGs from the entire grid of electrodes
were decomposed. The CWF estimated by decomposition of
monopolar EMGs and the output of deconvolution algorithm,
applied to a single, SD EMG, were compared. The correlation
coefficient of these time series was computed.

The distributions of correlation coefficients between
CWFs from decomposition and single channel deconvolution
(both filtered in the range 5-45 Hz) are shown in Figure 3,
considering a single SD EMG with 8 mm IED, for each
force level and the endurance contraction. Both original and
reconstructed signals were considered. There was a large
significant difference between original and reconstructed
signals (F(1,9) = 173.8, P < 0.001; η2 = 0.951), while there
were no differences between force levels (F(1.9,17.1) = 2.3,
P = 0.131; η2 = 0.204).

The distributions of correlation coefficients of CWF from
decomposition and deconvolution are shown in Figure 4,
considering a belly-tendon detection. Using larger electrodes
(simulated by summing the potentials from more electrodes
in the grid), the detection volume slightly increases and the
signal becomes smoother. However, the correlation between
the outputs of decomposition and deconvolution did not
depend on the electrode size (F(2,18) = 0.1, P = 0.815, η2

= 0.009).
Figure 5 shows the distributions of the correlation coeffi-

cients computed between CWFs estimated by decomposition
and deconvolution, considering different IEDs and thus dif-
ferent detection volumes. There was a significant interaction
between input signal and IED (F(1.3,11.7) = 9.0, P =

0.008; η2 = 0.503). The correlation coefficients increased
with IED, but the increment was larger for original than
for reconstructed data. However, the correlation coefficients
remained higher for reconstructed than original signals
(F(1,9) = 90.0, P < 0.001; η2 = 0.909).

The sensitivity of deconvolution when applied to different
channels, displaced in direction transverse to muscle fibers,
is reported in Figure 6. Correlation of estimations increased
with the IED of the channels (F(1.3,12.1) = 21.1, P < 0.001;
η2 = 0.702) and decreased with the distance among channels
(F(1,10) = 5.6, P = 0.036; η2 = 0.387).
Figure 7 shows a test on interference data built by summing

more MUAP trains resulting from the decomposition of
high-density EMGs (the number of MUAP trains summed
up is indicated in Figure 7A). To increase the degree
of interference in the resulting SD EMG, MUAP trains
decomposed from different subjects were summed. Different
levels of white Gaussian noise have also been included,
to further stress the algorithm. Correlation of actual CWF
and deconvolution was quite high, with a decrement when
increasing the number of MUAP trains considered, but still
getting values around 80% with the largest interference and
minimum SNR.

As shown in Figure 8, the trains of firings obtained
with decomposition and deconvolution do not allow to
reconstruct the original signal to equal extents. The ability of
deconvolution to extract a greater number of sources when
compared with decomposition is evident when overlaying
the MUAPs on the original signal (Figure 8A-B). Group
results confirm that, regardless of the contraction intensity,
and thus of the degree of interference, the residual energy
after removing the estimated from the original signal is
significantly lower when deconvoluting the target SD signal
than decomposing the high-density EMGs (Figure 8C; main
effect of contraction level: F(1,9) = 99.8, P < 0.001; η2

= 0.917). Deconvolution was also less sensitive to the
contraction level than decomposition (interaction effect:
F(1.2, 8.5) = 35.4, P < 0.001; η2 = 0.835).

IV. DISCUSSION
The study of MU recruitment and rate coding has advanced
our understanding in various applications, e.g., muscle force
[19], [20], speed of contraction [21], joint angle [22],
fatigue [52] and accuracy in the control of myoelectric pros-
theses [23], [24]. Various methods have been used to extract
this information, by decomposition of interference EMG into
MUAP trains [25], [26]. However, due to the complexity
of the acquisition system and the high computational cost,
the use of these methods in practical applications can be
inconvenient. Some recent approaches proposed even fast
processing [25], [26], but still are not suited to single bipolar
EMGs.

An innovative method was therefore proposed for the
estimation of the cumulative spike trains of MUs by
processing a single SD channel [40]. The new algorithm,
based on a single kernel deconvolution technique, is able
to roughly reconstruct the cumulative firing instants of the
active MUs. The simulation tests, previously conducted to
evaluate the accuracy and precision in the reconstruction,
have produced promising results [40]. Therefore, here we
evaluated the performance of the deconvolution algorithm
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FIGURE 2. Example of processing of an epoch of EMG. A) Original and pre-processed signal (i.e., filtered in the range 5-350 Hz). Single differential (SD)
channel manually selected from EMGs detected with a two-dimensional grid of electrodes. B) Decomposition and deconvolution of the same signal (a
single MUAP from decomposition is shown, together with the cumulative weighted firings - CWF - obtained considering all MUAPs decomposed). C)
Outputs of decomposition and deconvolution, filtered in the range 5-45 Hz, with indication of their correlation.

FIGURE 3. Distributions of correlation coefficients between CWF estimated by decomposition and single channel deconvolution, applied to both original
and reconstructed signals for 8 mm IED. A) Submaximal, trapezoidal contractions. B) Endurance contraction.

through experimental tests in order to understand the effective
capacity and applicability in the field. The algorithm was
applied to single channels taken from experimental EMGs
recorded through a 2D grid of 64 electrodes in monopolar
configuration, from the brachial biceps of 10 healthy subjects
during isometric contractions at different force levels and in
a fatiguing test. The output of single channel deconvolution
was compared to that of a validated decomposition algorithm

[30], [31]applied to signals recorded from the entire electrode
grid (Figure 2).

Before discussing results arising from deconvolution and
decomposition methods, a technical note is warranted here.
Full experimental validation of our deconvolution method
would require the identification of firings of all MUs
located within the detection volume of the bipolar EMG
we considered here. Experimentally, we are not aware
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FIGURE 4. Distributions of correlation coefficients between CWF estimated by decomposition and deconvolution, applied to a single channel in
belly-tendon configuration with different electrode sizes: square electrodes of size 2 × 2 (IEDs), 3 × 3, 4 × 4. Original and reconstructed EMGs were
considered in A-C-E) and B-D-F), respectively. A-B) Examples of signals (same EMG epoch, either original or reconstructed). C-D) Distributions of
correlation coefficients in box and whisker plots considering submaximal, trapezoidal contractions. E-F) Distributions of correlation coefficients in the
case of 60% MVC endurance contractions.

of a gold standard against which we could assess our
deconvolution method. Intramuscular EMG, albeit being
the clinical reference for assessing neuromuscular control,
would provide a limited number of MUs.3 Owing to the
multiple detection points, each positing a larger detection
volume in relation to a single intramuscular recording, the
decomposition of high-density EMGs would be expected to
disclose the greatest number ofMUs. Different algorithms for
decomposition of surface EMGs have been developed [29],
[30], [31], [54]. We selected one specifically tailored for
decomposition of high-density surface EMG, likely yielding
the greatest number of MUs for creating the cumulative spike
train.

The tests were conducted both on the original signals
and on those reconstructed from decomposition estimates

3There is also an advanced high-density intramuscular electrode system
that can identify the activity of a large number ofMUs [53]. Its use to validate
deconvolution is an interesting future perspective.

(Figure 3). Moreover, we considered both recordings at
different effort levels and an endurance contraction, obtaining
similar performances: in fact, the algorithm adapts to the
signal (thus compensating the average effect of the volume
conductor on the sources) and its performance is not directly
impaired by factors like the number of active MUs, their
specific timing of activation or their progressive fatigue.
Many conditions have been considered, extracting different
SD channels from the 2D grid of electrodes and obtaining
quite stable indication across different dimensions of the
electrodes (Figure 4) and IEDs (Figure 5). Specifically,
a detection in belly-tendon configuration was considered
(Figure 4), showing stable results across different electrode
sizes. Notice that, by increasing the size of the electrodes
(here simulated by summing the signals from more physical
electrodes), the detection volume increases, thus representing
the activity of a larger portion of the investigated muscle,
with more contributions included to the recorded interference
signal. The correlation coefficients of estimations obtained
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FIGURE 5. Effect of IED on the correlation coefficients between CWF estimated by decomposition and deconvolution. Original and reconstructed EMGs
were considered in A-C) and B-D), respectively. A-B) Submaximal, trapezoidal contractions. C-D) 60% MVC endurance contraction.

FIGURE 6. Effect of electrode transverse location on the correlation coefficient between CWFs estimated by deconvolution. The deconvolutions of the
signals from the first column of the electrode grid were compared to those of the signals from other columns, with different transverse distances.
Different IEDs were considered. Both A-C) original and B-D) reconstructed EMGs have been processed. A-B) Submaximal, trapezoidal contractions.
C-D) Endurance test.
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FIGURE 7. Testing of the effect of the degree of interference EMGs. Signals were obtained summing MUAP trains decomposed from different subjects at
the same force levels. A different number of MUAP trains was summed, to test the effect of the degree of interference. Moreover, white Gaussian noise
was added, with different SNR. A) Number of motor units that make up the five interference signals, extracted from data recorded at different force
levels. B) Correlation of actual and estimated CWF (both filtered in the range 5-45 Hz) obtained by processing five simulated interference signals for each
test with an increasing number of motor units (indicated in A). White Gaussian noise was also added to the simulated interference signals, with different
SNRs. C) Examples of signals obtained summing a different number of trains of motor unit action potentials (MUAP). D) Example of a signal corrupted by
different levels of white Gaussian noise.

from the original signals were about 50%, but their median
values were over 80% when applied to reconstructed signals.
Belly-tendon configuration is used in many clinical scenar-
ios [49], [50] [55], indicating possible future applications of
the algorithm.

The detection volume is also increased when considering
a bipolar signal with larger IED: Figure 5 indicates a small
(but significant) increase of the match between the outputs
of decomposition and deconvolution in this condition, both
considering original and reconstructed data. Keeping small
the electrodes and enlarging only the IED in the direction
of the muscle fibers, the detection volume goes deeper,
without extending much in the transverse direction, as done
with the belly-tendon simulation above-mentioned. This way,
the interference (and consequently also phase cancellations)
is expected to increase less, which is possibly the reason
why enlarging the IED has more beneficial effects on
output reliability (in terms of matching with the output of
decomposition) than increasing electrode size, even if in both
cases the detection volume increases.

Furthermore, similar results were obtained by deconvolu-
tion when displacing the SD detection channel in transverse
direction (Figure 6), with higher correlation coefficients with
greater IED, due to the lower selectivity and thus larger
detection volume (e.g., more than 80% of median correlation,

considering an IED of 24 mm and a displacement of 16 mm).
This suggests that the estimations are not much sensitive
on the specific location of the detection channel, mostly if
a great IED is used. Thus, comparison of recordings taken
in different days on the same subject (thus, expecting some
displacement of the detection channel) could be feasible.

As correlation coefficients of the outputs of decompo-
sition and deconvolution is really high only if signals are
reconstructed and not using the original data, there could
be some concern about the performance of deconvolution
when managing data with large interference. Figure 7 shows
a test on interference data obtained by summing more MUAP
trains extracted from different recordings. Indeed, as only the
activity of few MUs could be recovered by decomposition of
a single acquisition, this was the only way to obtain complex
EMGs with great interference. Obviously, recovering MU
activity is more difficult when many contributions are super-
imposed, as phase cancellation is more important, so that
some of the information is erased. However, performances of
deconvolution with these signals show high correlation with
the CWF (even when including additional noise), suggesting
that part of the discrepancy between deconvolution and the
CWF from decomposition was due to the signal power not
explained by the latter. Indeed, decomposition can recover a
smaller portion of the energy included in the original signal
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FIGURE 8. Decomposition of high-density EMG vs deconvolution. A) Example of CWF obtained as the sum of the firing trains of 5 MUs identified by
decomposition and reconstruction of the processed signal as sum of MUAP trains. B) Same example signal as in A), but processed by deconvolution. C)
Box and whiskers plots of the entire datasets (indicating median, quartiles, outliers and range, obtained after removing outliers) showing the
distributions of root mean squared error (RMSE) between EMG and reconstruction obtained by either decomposition or deconvolution (single SD channel
manually selected for each recording, IED of 8 mm).

than deconvolution (Figure 8). These results, together with
the reliability of deconvolution in managing data with large
interference rebuilt from many decomposed MUAP trains
(Figure 7), suggest that the lower correlation with CWF
from decomposition of original than reconstructed signals is
in part due to the additional information accounted for by
deconvolution.

Additional future work is suggested to evaluate this inter-
esting indication. In fact, our results should be interpreted
with caution, keeping in mind the limitations of our study.
Deconvolution (like most processing methods) relies on an
interpretive model and the extent to which it is accurately
fitted is reflected in the goodness of the estimates provided.
In essence, the underlying model considers the EMG as
the sum of biphasic waveforms (i.e., the MUAPs) with
similar shapes, but with arbitrary amplitudes and times of
appearance. If these hypotheses are met with good accuracy,
deconvolution can estimate the kernel (approximating the
shape ofMUAPs) and give the EMG as the convolution of this

kernel with the estimated CWF (representing the amplitudes
and the time onsets of the different MUAP contributions).
To fit the hypotheses of deconvolution approach, we recorded
data from a muscle with parallel fibers and the bipolar
signals were extracted from positions beyond the most distal
IZ. However, there are more complicated conditions (e.g.,
tissue inhomogeneity, pinnate muscles, multiple IZs, bipolar
signals placed over the IZ, etc.) in which deconvolution
cannot provide reliable results (but in those cases even
the interpretation of the bipolar signal would be difficult).
An extension of deconvolution to accommodate a few kernels
(instead of a single one) has been proposed [41] (experimental
validation is still needed, but promising results in simulations
have been obtained). However, still experimental signals
may deviate greatly from simplifyingmodelling assumptions,
so that caution in the interpretation is always recommended.

Future works are suggested to further evaluate the accuracy
and usefulness of our innovative method. For example,
an indirect validation could be to use the estimated cumulative
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spike trains as indicators of muscle activity for downstream
applications, e.g., for joint angle regression and gesture
classification.

V. CONCLUSION
Deconvolution of bipolar surface EMG is a low-cost method,
both in terms of acquisition (requiring a single channel) and
processing (which can be achieved in real time). Comparison
tests with high-density EMG decomposition indicate that
it provides reliable information on MU activity. Further
validation is recommended in the future, e.g., by also
considering intramuscular EMG as a reference. However, our
results already clearly indicate that it is a promising method
for many application fields (including ergonomics, sports
science, clinics, myoelectric control), where information on
MU behavior is very important, but simple and reliable
acquisitions are required.
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