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“The real cycle you’re working on is a cycle called yourself.
The machine that appears to be ‘out there’ and the person that
appears to be ‘in here’ are not two separate things. They grow
toward Quality or fall away from Quality together.”

- Robert M. Pirsig, Zen and the Art of Motorcycle Maintenance: An Inquiry into Values
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Abstract

As the volume of digital data available for analysis and simulation continues
to surge, the realm of I/O-intensive HPC workflows is poised for rapid expan-
sion. This trend, however, threatens to widen the performance gap between
computing, memory, and storage technologies, underscoring the criticality of
our research.

A workflow describes a sequence of application steps and their control/-
data dependencies. In the HPC context, data dependencies are usually
streamlined by storing data files in the distributed storage system in pro-
ducer steps and read out by consumer steps afterward. However, with the
increasing gap between the computation speed and the speed of the central
storage system and the ever-increasing amount of data produced in scientific
applications, sharing files between workflow steps through the file system
is costly. Burst buffers and user-space ad-hoc file systems have been pro-
posed to increase the available I/O bandwidth and reduce the contention on
the shared file system by leveraging fast local storage. However, workflow
steps need to be executed orderly according to the data dependency graph,
and it could be difficult, or even impossible, to exploit pipeline parallelism
among them. In-situ workflows were proposed to mitigate or avoid the cost
of profoundly relying on the file system as communication media and enable
temporal parallelism between workflow steps. In in-situ workflows, multi-
ple steps are executed concurrently; data dependencies are accomplished by
sidestepping the file system through explicit coordination mechanisms among
workflow steps.

However, it is not always desirable, or even possible (e.g., legacy code),
to rewrite or patch existing workflows to enable in-situ orchestration by
using specific frameworks. For this reason, we propose CAPIO (Cross-
Application Programmable I/O), a middleware capable of transparently in-
jecting I/O streaming capabilities into file-based workflows, improving the
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computation-I/O overlap without modifying the business code. The contri-
bution is twofold: at design time, a new I/O coordination language allows
users to annotate workflow data dependencies with synchronization seman-
tics; at run time, a user-space software layer automatically turns a batch
execution into a streaming execution according to the semantics expressed
in the configuration file. CAPIO has been tested on synthetic benchmarks
simulating typical I/O workflow patterns and three real-world workflows.
The results show how CAPIO provides performance improvements in data-
intensive workflows that extensively use the file system as a communication
medium.

Looking ahead, tools like CAPIO could reshape HPC workflow orchestra-
tion strategies. For instance, they might enable the distribution of pre-and
post-processing I/O-intensive phases across computation phases, fostering
better overlap between steps by reducing applications’ peak I/O demands.
This prospect underscores the transformative potential of our research.
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Chapter 1

Introduction

The fundamental shift in computational dynamics, marked by the cessation
of Moore’s Law [1] in recent years, has underscored the indispensability of
parallel and distributed computing for addressing complex computational
challenges. Leveraging a high number of nodes, along with the multiple
processors and the numerous cores across processors, is pivotal for tackling
forthcoming scientific and engineering challenges.

High-performance computing (HPC) systems comprise many machines
connected to a high-speed network and equipped with multicore CPUs, of-
ten supplemented with accelerators like FPGA and GPUs. These systems,
characterized by their substantial cost, are designed for concurrent use by
multiple users. Users rely on job schedulers, such as Slurm [2], to execute
their programs across a specified number of nodes. Given the heterogeneous
nature of hardware within HPC systems, using programming languages and
libraries that offer portability across different architectures is imperative.

Thanks to distributed file systems, HPC systems endeavor to optimize
parallel access to data, thereby surpassing conventional file systems in effi-
ciency. Notwithstanding advancements in processor speeds, data access rates
on disks continue to lag, perpetuating I/O as a bottleneck in applications
with intensive I/O demands.

The gap between computational speed and I/O speed is poised to widen,
posing challenges for data-intensive workflows on HPC platforms, spanning
scientific workflows [3, 4] to AI applications [5, 6, 7]. Sharing files between
workflow steps through the central file system has become a costly operation
[8]. Various tools and technologies have emerged to address these issues.
For instance, Burst Buffers [9], fast secondary memories like SSDs in com-
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putation nodes, offer a local disk solution to enhance workflow performance
beyond reliance on distributed file systems. Ad-hoc filesystems [10], tempo-
rary user-space filesystems with a lifespan tied to workflow execution, aim
to overcome distributed filesystem limitations by relaxing POSIX semantics
and leveraging burst buffers or the shared memory of the nodes.

From the application perspective, different APIs have been developed to
enhance I/O parallelism, including MPI I/O [11], Dataspaces [12], Damaris [13],
ADIOS2 [14], and more. A shift in paradigm from classic batch workflows,
where each program executes after the termination of programs producing its
input, to in-situ workflows [15, 16, 17], where workflow steps run concurrently
and communicate data in a streaming fashion, has become common. Adapt-
ing legacy code for concurrent execution with synchronization mechanisms,
especially with low-level APIs like POSIX, can be challenging. ADIOS2 ad-
dresses this issue by providing a high-level API, but even this can be complex
when modifying legacy code.

To simplify this process, we introduce a new tool called CAPIO (Cross-
Application Programmable I/O) [18]. CAPIO transforms a batch workflow
into a streaming workflow without requiring code modifications. The user
only needs to write, using the CAPIO coordination language, a configuration
file describing the workflow’s data dependencies (which programs read/write
which files) and the required synchronization using the CAPIO coordination
language. The CAPIO runtime captures application system calls and en-
forces synchronization between workflow applications described in the con-
figuration file, allowing users to execute a workflow initially designed for
batch execution concurrently by merely writing a configuration file instead
of modifying the I/O code.

Overlapping computation and I/O can significantly improve the perfor-
mance of entire workflows. This will be demonstrated in the experimental
chapter (6) using real-world workflows. For example, the 1000 Genomes
workflow consists of several steps where each step must wait for the previous
step to finish to ensure that all the input data has been produced. By using
middleware such as ADIOS2 and CAPIO, we can overlap the execution of
these steps; as soon as a token of input data is produced by one step, it can
be consumed by the following step. While ADIOS2 (and POSIX) rely on a
computational approach, CAPIO relies on a declarative approach. Another
common situation where overlapping I/O and computation is useful is when
a scientific simulation is followed by an analysis or visualization step. In-
stead of waiting for the scientific simulation to complete, the analysis step
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CHAPTER 1. INTRODUCTION

can be executed concurrently with the simulation, starting to analyze a piece
of information as soon as it is produced. In this thesis, a real-world work-
flow named the Weather Forecast Workflow, which falls into this category,
will be discussed. In the original workflow, the simulation was followed by
the analysis and visualization tasks, and the user could only start seeing the
weather predictions after the simulation was completed. Instead, with CA-
PIO, as soon as the simulation produces data for an hour, that output can
be visualized by the user.

1.1 Coordination languages

Coordination languages express and coordinate different computations using
communication and synchronization primitives. In endogenous coordination
languages, coordination is expressed within the computation, while in ex-
ogenous coordination, computation and coordination are separated [19]. Co-
ordination is expressed through communication primitives such as send and
receive for message passing or through synchronization mechanisms such as
semaphores, monitors, and barriers.

Coordination languages allow the user to communicate and synchronize
during computations, while others define coordination rules triggered by spe-
cific actions or events. These languages offer syntactic constructs to facilitate
synchronization and data communication. While some languages abstract
communication and synchronization details, relying on predefined patterns,
others take a more low-level approach, providing a variety of mechanisms for
synchronization and communication.

Linda [20] is among the most influential coordination languages, abstract-
ing synchronization through shared tuple spaces for communication between
processes. In recent years, higher-level languages based on the skeleton ap-
proach [21, 22] have gained popularity. These languages allow users to pro-
gram using parallel patterns without requiring synchronization and commu-
nication details. Examples of such languages include P3L [23], FastFlow [24],
GRPPI [25] SkePU [26] and more [27, 28, 29]. Coordination languages are
not only used for parallel computation but also for coordinating input/output
operations. For instance, Common Workflow Language (CWL) [30] specifies
the data dependencies among workflow modules and is utilized by work-
flow management systems. The CAPIO coordination language is the first
language that transforms a batch workflow into an in-situ workflow using a
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1.2. RESEARCH QUESTIONS

declarative approach. Chapter 2 delves into coordination languages in greater
detail.

1.2 Research questions

This work aims to answer the following research questions:

� Q1: Given a workflow composed of steps that communicate using files
and are normally executed sequentially based on data dependencies, is
it possible to execute these steps concurrently, enabling streaming com-
munication without modifying the code, while ensuring the correctness
of the results by externally imposing synchronization mechanisms?

� Q2: If the answer to the previous question is yes, how does the user
express the synchronization mechanism for streaming communication
without modifying the original code?

� Q3: Is it possible to implement a runtime in the current HPC hardware
and software stack to provide the features required by the previous
questions?

The next section provides an overview of the contributions of this thesis that
address these research questions.

1.3 Contributions and results

The contribution of this work is twofold:

1. An I/O coordination language named CAPIO language enables users
to transform a conventional workflow (where producer-consumer steps
are executed one after the other) into an in-situ workflow (where steps
are executed concurrently), exploiting streaming communication.

2. The development of a runtime system that leverages information from
the coordination language to facilitate transparent streaming commu-
nication.

The CAPIO coordination language delineates two fundamental aspects:

Firing-Rule. Determining when the content of a file can be read.
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CHAPTER 1. INTRODUCTION

Commit-Rule. Establishing when a file is deemed complete.

With this information, a process can ascertain when it is permissible to ac-
cess a file, even amid its ongoing generation. Consequently, the CAPIO
language empowers users to specify the data dependencies within workflows,
encompassing identifying files utilized and generated by individual applica-
tions. To facilitate streaming communication between specific applications
for designated files, users must also define the commit and firing rules for
those files.

The CAPIO language currently uses a JSON configuration file, which is
then conveyed to the CAPIO runtime. The CAPIO runtime guarantees the
accurate execution of the workflow by enforcing the streaming semantics as
stipulated by the commit and firing rules.

The Firing-Rule defines when the content of a file can be read. The
file’s content can be read when it will not be modified because the CAPIO
language ensures that an application reads the same data as if it were exe-
cuted after all the previous application steps in the workflow have concluded.
Therefore, the CAPIO language defines two Firing-Rules: “no-update” and
“update”. The “no-update” Firing-Rule ensures that when a process writes
data into a file section, that section will not be modified. With this rule, a
process can start reading a section of a file as soon as it is written by another
application, ensuring maximum streaming communication. The “update”
Firing-Rule expresses the situation when a process can modify the content
of a file multiple times. In this case, a process can read the file only when it
is considered completed (committed), i.e., when no more data is written.

The Commit-Rule defines when a file is considered committed. This
information is necessary to determine when a process can stop reading a
file because it receives an end-of-stream (EOS) signal. The CAPIO language
supports three Commit-Rules: 1) on-termination, 2) on-close, and 3) on-
file. The Commit-Rule “on-termination” for a file specifies that the file is
considered committed when all the writers of the file have terminated. It is
necessary when the user lacks knowledge about when no more data will be
added to a file by its writers, and therefore, the reader process has to wait
for their termination to be sure that the file is completed. The Commit-Rule
“on-close” ensures that a file is committed when a process closes it, which
is useful when a writer process opens a file, writes in it, and then closes
it without writing to it again. In this case, a reader can consider the file
completed after the writer closes it and stops reading it. It is also possible
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to define how often a file must be closed to be considered complete, which is
necessary when a process opens and closes a file multiple times while writing
to it. The last Commit-Rule is the “on-file” rule, which specifies that a file
is considered committed when another file is committed.

Both the Commit-Rule and the Firing-Rule must be defined for a file,
and every combination is allowed. For example, if the Commit-Rule for a
file is “on-close” and the Firing-Rule is “no-update”, it means that a reader
process can start reading the file as soon as data is written into it and will
receive an end-of-stream (EOS) signal when it reaches the end of it, and the
writer process has closed it. In this way, we achieve streaming communica-
tion even if the workflow was written to execute the reader and the writer
processes sequentially. With the Commit-Rule “on-termination” and Firing-
Rule “no-update”, a process can start reading a section of the file as soon
as it is written. At the same time, it will receive the EOS signal only after
all writers have concluded their execution. There are cases where streaming
communication is not possible due to the nature of the problem. For example,
if a file is updated multiple times, and the user does not know when it can be
considered committed because it is opened and closed an unknown number
of times, no streaming communication is possible. In this case, the correct
rules are the Commit-Rule “on-termination” and the Firing-Rule “update”.
These rules are guaranteed to provide correct results since they impose batch
execution. With the definition of the Commit-Rule and the Firing-Rule, it
is possible to concurrently run two programs that communicate using files
without the need to implement synchronization mechanisms inside the ap-
plications’ code.

The Commit-Rules for directories work slightly differently, and it will
be discussed in Chapter 4, where the syntax and semantics of the CAPIO
language are presented in detail.

The second contribution of this work is a runtime (referred to as CAPIO
runtime) that can respect the synchronization semantics expressed with the
CAPIO Language. The CAPIO runtime proposed in this work leverages the
configuration file written with the CAPIO language to execute concurrently
the steps of a workflow that communicates using files and that was designed
to be executed in a batch fashion; that is, a step can be executed when all the
steps that produce its input files are terminated. The CAPIO runtime only
needs the configuration file to inject streaming capabilities into a batch work-
flow; the code must not be modified. The transparent injection of streaming
capabilities is achieved by the CAPIO runtime, which captures the system
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CHAPTER 1. INTRODUCTION

calls of the workflow’s applications. When a process wants to read a file,
the POSIX syscalls such as “open”, “read”, and “write” are intercepted, and
if the file is one that CAPIO must handle, then CAPIO executes its code;
otherwise, it passes the control to the kernel.

The CAPIO runtime is composed of a shared library called libcapio posix,
which must be linked by setting the LD PRELOAD environment variable to
the path where the shared library resides and by CAPIO servers that run on
the nodes where the workflow is executed. There is one CAPIO server per
node.

The CAPIO shared library captures system calls of the target application
and interacts with the local CAPIO server to respond to requests made by
the application with the syscall. For example, if a program executes a “read”
syscall on a file managed by CAPIO, the CAPIO shared library intercepts
this syscall and requests the required data from the local CAPIO server.
The CAPIO server checks the Commit-Rule and the Firing-Rule for that
file, and if they are satisfied, it retrieves the requested data. The data could
be stored in the local shared memory or another node’s shared memory. If
the latter is true, the CAPIO server will contact the other CAPIO server
on the node where the data is stored to retrieve it. This process is entirely
transparent to the application. The user only needs to write the configuration
file, deploy the CAPIO servers on the nodes where the workflow will be
executed, and link (without the need to recompile) the CAPIO shared library.
The CAPIO servers communicate using MPI, and the CAPIO shared library
communicates with the local CAPIO server using a circular buffer in shared
memory. The files are stored in the main memory of the nodes where the
CAPIO servers are running. Using the CAPIO language, it is possible to
decide to save files on the file system at the end of the workflow run. It is
helpful to avoid copying temporary files to the file system used only during
the workflow execution. It is possible to extend CAPIO to use multiple
backends, such as ADIOS2 and the file system.

It is worth noting that the runtime can respect the Commit-Rules and
the Firing-Rules because it captures the system calls. When a process closes
a file, it can trigger the Commit-Rule “on-close” if the user has specified so.
After this close operation, the CAPIO servers know the file is considered com-
pleted when another process wants to read it. The same thing applies to the
semantics “on-termination”, which can be triggered (if the user chooses this
semantics for a specific file) by the POSIX system calls exit and exit group.

To showcase the effectiveness of this solution, we conducted a perfor-
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mance comparison between CAPIO, POSIX, and ADIOS2 on two clusters
using two different distributed filesystems (Lustre and BeeGFS). Our evalua-
tion included a set of synthetic benchmarks replicating common I/O patterns
in HPC workflows, as well as three workflows: a bioinformatics workflow for
computing overlaps in human genome mutations called “1000 Genomes”,
a DAG-based weather-forecasting workflow actively employed for weather
prediction in Italy, and a MapReduce workflow that replicates the common
MapReduce pattern. Furthermore, we re-implemented the synthetic bench-
marks using ADIOS2 and conducted an extensive performance comparison
among ADIOS2, POSIX I/O, and CAPIO.

We compared workflows that used POSIX without streaming communica-
tion with CAPIO to demonstrate the performance gain achieved by running
a batch workflow enabling streaming communication through the CAPIO
language. The results of these tests show, in most cases, a reduction in exe-
cution time using CAPIO ranging from 20% to 30%. In some extreme cases,
the difference can be even greater. For example, in a synthetic benchmark
with 10,000 files of 10MB each, the speed-up is equal to 8 (∼ 630s vs. ∼ 75s).
Another aspect to consider, in addition to total execution time, is when the
user can start to see the output produced by a workflow. In simulations, the
user can start to visualize the output while the simulation is still running
and producing output. In the weather forecasting workflow used in the tests,
the user starts to see the forecast images after the simulation has ended, and
the post-processing application begins reading its binary output files. With
CAPIO, the simulation and the post-processing application can run concur-
rently. As soon as the simulation produces an output file, it is read by the
post-processing step, allowing the user to start seeing the forecast earlier. In
this workflow, the simulation writes an output file every 2/3 minutes. With-
out CAPIO, the user would have to wait for the simulation to terminate
before being able to start viewing the forecast by the hour. In contrast, with
CAPIO, it can be viewed every 2/3 minutes during the simulation.

The comparison also included ADIOS2 to understand the performance
gap between introducing streaming capabilities by modifying the code using
a library (ADIOS2) and doing it with the CAPIO language without changing
the original code. Adding layers of abstraction can introduce overhead, but
it simplifies the use of some tools. The tests were used to determine if man-
ually implementing synchronization for streaming communication improves
performance better than CAPIO with more effort. The impact of the manual
implementation of synchronization mechanism in the code could be further
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explored by directly using POSIX and implementing streaming communica-
tion on files using file-locking mechanisms. The decision to invest more effort
for better performance is a trade-off that the user must decide. The results
of the synthetic benchmarks show that CAPIO and ADIOS2 are almost al-
ways faster than POSIX with batch execution. CAPIO and ADIOS2 exhibit
similar times; sometimes, one is faster than the other and vice versa. The
results could depend on numerous factors such as hardware configuration,
the backend used for ADIOS2, the parameters configuration of ADIOS2, or
the current state of the current implementation of the CAPIO runtime.

1.4 Organization

This thesis is organized with the following structure:

� Chapter 2 : Discusses the background, state of the art, identifies gaps
in the state of the art, and explains how CAPIO is designed to address
these gaps.

� Chapter 3 : Introduces CAPIO, outlining its goals and principal fea-
tures without delving into excessive technical details.

� Chapter 4 : Presents the semantics and syntax of the CAPIO coordi-
nation language and demonstrates how it enables streaming communi-
cation in batch workflows.

� Chapter 5 : Describes the CAPIO runtime, its implementation, and its
integration with the coordination language.

� Chapter 6 : Validates this work by evaluating the performance of CA-
PIO through synthetic benchmarks and real-world workflows.

� Chapter 7 : Summarizes key points and outlines areas for future work.

1.5 How to read this thesis

The thesis may be approached entirely or selectively, depending on the
reader’s background and objectives. Readers with a comprehensive under-
standing of parallel computing and HPC may bypass Chapter 2, which fur-
nishes foundational and contemporary insights into these subjects. Those
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interested in CAPIO’s core concept may proceed directly to Chapter 3.
Chapter 4 delineates the CAPIO coordination language, offering a deeper
elucidation of the principles expounded in the preceding chapter. Chapter 5
holds particular significance for those interested in understanding how mid-
dlewares can be implemented to support the CAPIO coordination language,
enabling the transparent injection of streaming capabilities into file-based
workflows. Chapter 6 provides a practical exploration of CAPIO’s applica-
tion in real-world scenarios, illustrating the composition of configuration files
employing the CAPIO coordination language. Finally, readers interested in
the current limitations and potential future work regarding CAPIO will find
Chapter 7, which concludes the thesis, particularly relevant.

1.6 Research Impact

CAPIO is a foreground or background technology of three European Projects:

� ADMIRE a European-funded project with a budget of ¿7.9M that
started on 1st April 2021. The primary goal of the ADMIRE project is
to improve I/O performance in HPC systems by developing a software
stack that can dynamically adapt to changing computation and stor-
age needs through malleability in computation and I/O and efficient
resource scheduling across all levels of the storage hierarchy. CAPIO
foreground technology.

� ACROSS a three-year European project with a substantial budget of
¿8.8 million. The project primarily focuses on harnessing emerging
pre-exascale infrastructures, designed as a stepping stone toward exas-
cale systems. It will effectively employ sophisticated methods to de-
scribe and efficiently manage complex workflows. The project strongly
emphasises achieving energy efficiency, involving extensive deployment
of specialized hardware accelerators, continuous system monitoring,
and intelligent job scheduling mechanisms. CAPIO foreground tech-
nology.

� EUPEX a European project with a total budget of ¿40,760,065.93 to
deploy a hardware and software platform integrating the full spectrum
of European technologies. CAPIO foreground technology.
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Chapter 2

Background

In this chapter, an exploration of the background and current state of the art
is presented. Initially, the concept of workflows and the distinctions between
traditional workflows and in-situ workflows are expounded upon. Following
this, a comprehensive analysis of the contemporary landscape of I/O in HPC
systems is provided, covering topics such as parallel I/O APIs, ad-hoc filesys-
tems, and distributed filesystems. The chapter concludes by highlighting an
identified gap within the current state of the art and elucidating how CAPIO
functions to address and bridge this gap.

2.1 Parallel Computing

In 1965, Gordon Moore predicted that roughly every two years, the number
of transistors in an integrated circuit would double [1]. Initially, this pro-
jection held true, but since the early 2000s, it has ceased to be accurate.
Consequently, the importance of utilizing multiple CPUs and computers has
increased for computational tasks that demand significant processing power.
Modern CPUs are comprised of multiple cores, and high-speed connections
like InfiniBand [32] are being developed to facilitate rapid communication
between CPUs in different machines.

As explained in the next section, the necessity of designing programs
capable of exploiting parallelism has spurred the development of languages
and programming models aimed at simplifying the programming of such
applications. However, writing parallel or distributed code is inherently more
complex than writing sequential code, and it introduces potential issues. For
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instance, errors in design can lead to situations of deadlock and starvation.
Deadlock occurs when a group of processes cannot continue their exe-

cution because each process is waiting for another process in the group to
release a resource, typically a lock. Coffman [33] defined four conditions that
must all be true for a system to experience deadlock: 1) a resource can only
be used by one process at a time, 2) at least one process is holding a resource
and waiting for another, 3) a process cannot be forced to release a resource,
and 4) circular waiting: given a set of processes {P1, P2, P3, ..., Pn}, P1 is
waiting for P2, P2 for P3, and so on, with Pn waiting for P1.

Starvation occurs when a process remains blocked, waiting for a resource
without ever obtaining access to it.

Using a distributed system, composed of multiple computers, introduces
additional challenges, with fault tolerance being among the most critical.
With a large number of machines in a system, the likelihood of a node failure
increases. A program is considered fault-tolerant if it can handle hardware
failures without significant downtime. From a user perspective, having to
rerun a lengthy program due to the failure of a single machine can be prob-
lematic.

HPC systems are systems with an high number of nodes equipped with
multicores CPUs and often also with hardware accelerators such as GPUs,
FPGAs, and DPUs, optimized for specific classes of computations. To lever-
age the capabilities of these accelerators, programmers utilize libraries that
interface with them. It is crucial to exploit parallelism across all layers of
HPC system architecture.

At the instruction level, parallelism is achieved through Instruction-Level
Parallelism (ILP), where multiple instructions of a single-threaded programs
are executed in parallel. Typically, this is facilitated by vector units in the
CPU, which can be leveraged manually through specific vector instructions
in assembly code or automatically by the compiler [34].

Within a single node, CPUs are composed of multiple cores, allowing pro-
grams to be divided into multiple threads that execute concurrently (Thread-
Level Parallelism). Accelerators can speed up specific classes of computations
compared to general-purpose CPUs. Programs can be designed to offload
these kinds of computations to accelerators, allowing CPUs to focus on other
tasks.

Another layer where parallelism can be exploited is the network. Pro-
cesses and threads of an application can execute on different nodes of an
HPC system, increasing parallelism beyond the confines of a single node.
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More recently, it has become possible to further enhance parallelism by dis-
tributing computations across multiple HPC systems.

The concept of running computations across different HPC systems is
akin to grid computing, as pioneered by Ian Foster et al. [35], where multiple
computations are distributed across heterogeneous machines and local net-
works over the globe to solve complex problems. The main difference is that
in grid computing the systems used for the computations are heterogeneous,
loosley coupled, dynamic and therefore more distributed.

HPC systems employ distributed file systems (such as BeeGFS[36], Lus-
tre[37], and GPFS[38]) that utilize multiple nodes to store files and their
metadata. These file systems, prevalent in HPC environments, prioritize
low latency and high throughput through parallel access across multiple ma-
chines, as discussed in greater detail in Section 2.4.4.

The network plays a crucial role in HPC systems, facilitating communica-
tion between processors located in different machines. Given the significant
disparity between computational and data access speeds, designing networks
for HPC aims to achieve low latency and high-speed communication. Conse-
quently, new hardware and protocols, such as InfiniBand [32] and Omni-Path
[39], have been developed to surpass the limitations of the TCP protocol,
originally designed for the internet, not HPC.

One notable feature of these new protocols is Remote Direct Memory
Access (RDMA) [40], enabling processes in a node to read data directly
from the primary memory of another node without involving the operating
system. RDMA offers greater efficiency than standard TCP communication
by bypassing OS context switches and costly data copying between user and
kernel spaces. It is noteworthy that RDMA capabilities have also become
available in TCP in recent years.

Users interact with the HPC system by connecting to a login node via SSH
rather than directly accessing the computation nodes. Upon login, users can
execute their programs on the computation nodes in a batch manner using
a job scheduler that adheres to a First-In-First-Out (FIFO) policy, taking
into account user or project priorities. If an insufficient number of nodes are
available, the job will wait until resources become available, prioritizing jobs
with higher precedence at the given moment. Job schedulers are responsible
for implementing policies to prevent job starvation. Examples of widely used
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job schedulers include Slurm [2], PBS1, and LSF2.
Given the diverse range of users and their requirements in utilizing an

HPC system, it is essential to provide different versions of libraries and com-
pilers. This is typically achieved through the use of modules, allowing users
to activate or deactivate specific versions of installed software. In recent
years, more user-friendly package managers such as Spack [41] have become
increasingly prevalent. If users need to install new software, they must do
so in their home directory or seek assistance from system administrators, as
users typically lack root permissions for security reasons. Currently, the ab-
sence of a graphical user interface (GUI) for node interaction, the requisite
knowledge for installing or activating software dependencies, and the impor-
tance of understanding the available hardware and software stack, including
features like RDMA, can pose considerable barriers to entry for scientists
lacking a background in computer science. These challenges may impede
their ability to fully exploit the capabilities of an HPC system.

Programming software to fully utilize HPC systems can be challenging, as
programmers must exploit parallel I/O with the file system, parallel network
communication between nodes, various types of accelerators, and different
CPU architectures (e.g., ARM vs. X86). Consequently, various libraries
have been developed to assist programmers, including I/O libraries such as
MPI I/O [11], Damaris [13], and ADIOS2 [14], as well as libraries for utilizing
accelerators such as CUDA [42] and OpenACC [43].

Given the importance of writing distributed and parallel programs in
HPC, coordination languages play a crucial role in enabling developers to
focus on business logic without delving into low-level details. The subsequent
section will explore such languages in detail.

2.2 Coordination Languages

Coordination languages are employed to coordinate various computations
aimed at solving a problem. They serve to synchronize computations and
facilitate data communication. In cases where a problem exhibits embar-
rassingly parallel characteristics, computations can be replicated to address
subsets of the problem with little or no need of synchronization and comu-
nication. A simple example is adding a costant value to all integers in an

1PBS: https://www.openpbs.org
2LSF: https://www.ibm.com/docs/en/spectrum-lsf
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array. Every process can add the costant to its own subset of the array with
out need to worry about the other processes.

However, more complex problems necessitate additional coordination be-
tween processes. Different synchronization mechanisms have been developed
for this purpose. Dijkstra’s seminal work [44] introduced semaphores as one
of the simplest forms of synchronization. More sophisticated mechanisms,
such as monitors, as described by Hoare [45], provide higher-level coordina-
tion capabilities. Coordinating processes across different machines presents
additional challenges, as demonstrated in the influential work of Leslie Lam-
port. His contributions include addressing issues such as the ordering of
events in distributed systems [46], resilience in scenarios like the Byzantine
Generals problem [47], where one or more components of a distributed sys-
tem start malfunctioning and sending erroneous and conflicting information,
determination of a global state [48], consensus algorithms for decision-making
among proposed values [49], and more. These works provided the foundation
for developing coordination languages and designing algorithms within these
languages.

Coordination languages provide syntax to express synchronization and
data comunication(I/O). While some languages abstract away communica-
tion and synchronization details and rely on predefined patterns, others adopt
a more low-level approach, offering various mechanisms for synchronization
and communication.

For instance, high-level coordination languages, such as those utilizing
algorithmic skeletons [21, 22], encode parallel patterns (e.g., pipeline, farm,
etc.) in a functional form. These languages do not require explicit coding of
synchronization and communication mechanisms as they are implicit in the
pattern.

In [19], coordination languages are categorized as endogenous and exoge-
nous. Endogenous languages utilize constructs for coordination within the
computation, while exogenous languages separate computation from coordi-
nation. Examples of endogenous coordination languages include Linda [20]
and MPI [50], whereas Reo [51] is exogenous. Coordination languages provide
mechanisms for defining coordination rules. Some languages offer primitives
for specifying rules, such as Linda and Reo, while others activate rules when
specific actions are performed by one or more participants in the computa-
tion. Another aspect of coordination languages is the medium used for data
communication and coordination. For instance, Linda defines a single shared
data space called tuple-space, while other languages allow the definition of
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multiple shared data spaces through which processes can interact. In the
following paragraphs, the most influential coordination languages employing
a high-level approach will be briefly outlined, followed by the most influential
languages with a low-level approach.

Linda [20] is a coordination language that defines a shared data space,
called tuple-space, which serves as a medium for data exchange. Processes
communicate through tuples, and Linda provides synchronization mecha-
nisms for coordination. A process can publish a tuple in the tuple-space,
read a tuple from the shared space that matches a pattern, or copy a tuple
from the tuple-space that follows a given pattern. Both reading and copying
are available in two versions: blocking and non-blocking. Another built-in
mechanism is the creation of processes for evaluating tuples. Linda is not
a complete programming language; rather, it is designed to coordinate pro-
grams written in other programming languages such as C. It is one of the most
widely-used coordination languages, with multiple implementations available
in common programming languages such as C, C++, Python, Java, and Go,
among others.

The Bulk Synchronous Parallel (BSP) model [52] consists of a collection
of computational units with their own local memory, a network facilitating
point-to-point communication between these units, and a facility capable of
enforcing global synchronizations (barriers) among all computational units.
Each unit is executed independently and concurrently, and the computation
is organized into supersteps, with a barrier enforced at the end of each su-
perstep. A barrier serves as a synchronization point, preventing units from
progressing beyond it until all other units have also reached the barrier. At
the the end of a superstep and prior to the barrier, units may communicate
by exchanging point-to-point messages. The BSP model comes with a cost
model for performance prediction of BSP algorithms. The cost depends on
following factors:

� p, the number of processors

� N, the number of supersteps

� g, the time spent to deliver a message (assumed costant for every su-
perstep)
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� L, the costant overhead for the barrier and the startup of the commu-
nication (assumed costant for every superstep)

� h-relation, a superstep where the p processors send and receive at most
h messages each.

� hi, the maximum number of messages sent and received by a processor
during the superstep i.

� wi, the maximum time spent by a processor for local computation in a
superstep i.

Then the cost of a superstep i is given by Tstepi = wi+hig+L where hig is the
biggest time spent for the communication by a processor during the superstep
i (g, the constant time required to send/receive a message, multiplied by hi,
the maximum number of messages received and sent by a processor during
i). The cost of the entire computation is obtained by summing the cost of
all supersteps:

∑N
i=1 Tstepi .

The actor model was first published in 1973 by Carl Hewitt et al. [53]. In
this model, computation is divided into actors that communicate by sending
and receiving messages. When an actor receives a message, it can send mes-
sages to other actors, potentially spawning new actors and modeling behavior
for subsequent messages. There is no particular order to these actions, and
they can be executed in parallel. Communication is asynchronous, and it does
not rely on channels; instead, an actor sends a message specifying an address
that identifies another actor. With the use of addresses, it is possible to sim-
ulate named channels. An actor knows the addresses of actors it created, but
it can also obtain addresses of other actors through messages. Each actor
functions autonomously, maintaining its individual state and executing its
behavior independently, ensuring that modifications to one actor’s state do
not affect others unless communicated through message exchanges. Actors
may reside either locally or on remote machines within a distributed sys-
tem, with the location of other actors transparent to each actor, facilitating
seamless communication regardless of physical location. Notably, the actor
model inherently supports scalability and fault tolerance. By distributing
actors across multiple nodes, the model enables parallelism and load bal-
ancing. Furthermore, the isolation of actors facilitates fault tolerance, as
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failures in one actor do not compromise the overall system. The actor model
has inspired the development of process calculus languages.

Process calculus denotes a collection of formal mathematical languages em-
ployed for the modeling and analysis of concurrent systems developed from
the Communicating Sequential Processes (CSP) model [54]. These systems
encompass multiple interdependent processes whose behavior evolves over
time. Process calculus furnishes a structured framework for articulating the
dynamics of these processes, encompassing their behaviors, interactions, and
synchronization mechanisms. This formalism enables precise delineation of
concurrency and communication patterns, thereby facilitating rigorous rea-
soning about distributed and parallel systems. Notable instances of process
calculi are π-calculus and Join calculus.

π-calculus [55, 56, 57] is a process calculus employed for coordinating
processes through message passing across named channels. These channels
possess the capability to be dynamically created, thereby affording flexibility
in the construction of concurrent systems. As a Turing complete formalism,
π-calculus holds the capacity to emulate any Turing machine. Its formal
semantics serve as a valuable tool for the systematic analysis and verification
of concurrent systems, enabling precise reasoning regarding their behavior.
π-calculus has undergone numerous extensions, one notable example being
the asynchronous π-calculus, which introduces the capability of asynchronous
message passing.

Join calculus [58] constitutes an additional process calculus which ex-
pands upon the principles of π-calculus and asynchronous π-calculus by in-
troducing the concept of “joins”, which serve as synchronization points be-
tween concurrent processes. Join calculus furnishes a formalized framework
for the representation of distributed systems and concurrent computations,
accentuating the compositional nature of processes and the adaptable na-
ture of synchronization mechanisms. It presents a succinct and expressive
linguistic structure for the precise delineation of intricate coordination pat-
terns, rendering it apt for the modeling of diverse concurrent systems and
protocols

Reo [51] is a coordination language that defines a set of components in-
terconnected in a circuit to facilitate communication between them. These
components include nodes, which encompass boundary nodes, and channels
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with assigned types. Components can perform I/O operations on the bound-
ary nodes to which they are linked. There are two types of I/O operations:
one for dispatching data items to a node and another for fetching data items
from a node. All I/O operations are blocking. Nodes propagate the data
from one of the incoming channels to all outgoing channels without storing
or modifying it. If multiple incoming channels can provide data, the node
makes a nondeterministic choice among them. In contrast, channels have
user-defined behavior defined by their type. This means that channels may
store or modify data items passing through them. The behavior of a channel
is determined by its type, which can specify actions such as acting as a FIFO
queue of dimension N or filtering data based on a given condition.

OpenMP [59] offers an application programming interface designed to par-
allelize code written in C, C++, or FORTRAN within a shared memory sys-
tem. Through the use of preprocessor directives known as pragmas, OpenMP
facilitates the parallelization of specific sections of code and provides mech-
anisms for process synchronization. One of the advantages of OpenMP-
modified code is its portability; if a compiler lacks support for these directives,
it simply disregards them. In contrast to low-level tools where the program-
mer must explicitly define the behavior of each thread (creation, destruction,
scheduling, and synchronization), OpenMP delegates these responsibilities
to the runtime environment.

OpenACC [43] shares similarities with OpenMP in its utilization of prepro-
cessor directives to delineate the parallelization of sequential code. However,
OpenACC is specifically tailored to harness the capabilities of hardware accel-
erators like GPUs, with an emphasis on minimizing target-specific directives.
Currently, OpenMP also supports GPU offloading, blurring the line between
the two interfaces.

P3L [23] provides constructs for common parallel programming pattern
that can be combined to implement parallel programs. For this reason P3L
is considered a structured language. P3L is designed to be used with an host
language employed for writing the sequential parts. The P3L constructs
are combined together to applying the desider parallelism to the sequential
part written in the host language. Examples of these constructs are farm,
map and pipe. The farm construct represents a set of identical workers that
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execute in parallel tasks coming from an input stream and then produce the
output in an output stream. The map feature expresses as set of identical
workers that apply a function to a partition of an input stream without any
communication between the workers. Then their output is combined and
written into an output stream. The pipe construct is used for modelling
a list of computations that are executed sequentially over an input stream.
P3L comes with a set of compiling tools that provide efficient portability of
applications written in P3L.

SkePU [26] stands out as a skeleton programming framework designed for
both multicore CPUs and multi-GPU systems. Operating within a C++
environment, SkePU offers a range of data-parallel skeletons, including map,
reduce, and scan functionalities. Notably, each skeleton boasts multiple im-
plementations (such as OpenMP, OpenCL, and CUDA), ensuring portability
across CPUs and multi-GPU setups. The latest iteration, SkePU 3, intro-
duces an MPI implementation, extending its usability to distributed systems.

Intel TBB (Threading Building Blocks) [60] is a C++ template library
crafted by Intel, offering high-level abstractions such as “parallel for” and
“parallel for each” to parallelize independent loops. Employing an algorith-
mic skeletons approach, TBB furnishes containers that support concurrent
operations alongside low-level synchronization mechanisms like mutexes and
atomic operations (e.g., fetch and add, compare and swap, etc.). To maxi-
mize core utilization, it adopts the work-stealing scheduling strategy [61].

SkeTo (Skeletons in Tokyo) [62] is a C++ framework built on MPI, of-
fering various distributed structures and algorithmics skeletons that leverage
these distributed structures. The core structures in SkeTo include lists, ma-
trices, and trees. Programmers develop sequential programs, which are then
parallelized using these structures and the skeletons provided by SkeTo.

GrPPI (Generic Parallel Pattern Interface) [25] is a C++ programming
interface tailored for streaming applications. GrPPI enables users to paral-
lelize sequential streaming code using well-known parallel frameworks such
as OpenMP and TBB, which were not originally designed for streaming pro-
cessing. It offers high-level streaming patterns like pipeline and farm. While
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refactoring sequential code with GrPPI can be challenging, there are tech-
niques available for semi-automatically expressing GrPPI patterns in sequen-
tial C++ code [63].

Fastflow [24] is an open-source parallel programming framework designed
for both shared-memory and distributed systems [64]. Fastflow offers both
stream parallel skeletons (such as pipelines and farms) and data parallel
skeletons (including map and reduce operations). Fastflow programs are
composed by combining these skeletons. Fastflow is structured into different
layers, each building upon the previous one to provide a higher level of ab-
straction. The bottom layer, known as “building blocks”, provides ff node
constructs and collective channels beetween them. An ff node represents a
node in a streaming processing graph, where users define sequential code (ker-
nel) utilized in parallel streaming execution. The collective channel serves as
a communication link between multiple ff nodes, implemented using state-
of-the-art lock-free queues to avoid unnecessary data copies. The next layer,
termed “core patterns”, offers streaming skeletons like pipelines and farms.
Finally, the top layer, named “High-level patterns”, facilitates the exploita-
tion of data parallelism akin to OpenMP. FastFlow also facilitates the uti-
lization of GPU accelerators, enabling the integration of GPU-specific code
written in CUDA or OpenCL.

2.2.1 Low level coordination languages

This class of languages is considered to operate at a lower level of abstraction
compared to the previously mentioned languages. They provide fundamen-
tal communication and synchronization mechanisms, offering a high degree
of flexibility while increasing the complexity involved in avoiding issues such
as deadlocks and process starvation. In some cases, like with CUDA, users
require deep knowledge of hardware details to achieve desired performance
levels. It is noteworthy that despite their lower-level nature, these languages
remain crucial as they are often employed to implement higher-level abstrac-
tion models outlined in the previous section.

MPI (Message Passing Interface) [50] is a specification interface for the
message passing paradigm. Initially, MPI adhered to the Single Program
Multiple Data (SPMD) paradigm [65], but recent versions also incorporate
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support for Multiple Programs Multiple Data (MPMD) paradigms. Various
implementations of MPI exist. One of the primary advantages of MPI is
its portability, as it defines a standardized API for inter-process communi-
cation via messages. The point-to-point functions within MPI dictate how
messages are sent and received between processes. Additionally, MPI pro-
vides collective functions, which are built upon the point-to-point functions,
enabling complex and beneficial group communication operations. The pur-
pose of MPI is to offer a standardized API for communication, facilitating
optimization across diverse hardware architectures. Notably, MPI is not tied
to any specific programming language; it is language-independent. However,
MPI does specify bindings for C and FORTRAN, outlining how the functions
defined in MPI can be utilized within these languages.

POSIX threads [66], commonly referred to as Pthreads, offer an applica-
tion programming interface for multithreaded programming within a shared
memory environment. Pthreads provide low-level primitives for creating and
synchronizing threads. However, Pthreads do not include built-in mecha-
nisms for communication between threads. It is the responsibility of the pro-
grammer to implement communication using shared data structures, such
as multi-producer, multi-consumer queues. Therefore, programmers must
also handle the implementation of these data structures and the necessary
synchronization methods to ensure their proper utilization.

CUDA (Compute Unified Device Architecture) [42] is a thread-centric pro-
gramming model that adheres to the GPGPU (General-Purpose Comput-
ing on Graphics Processing Units) paradigm, allowing programmers to write
programs for Nvidia GPUs. GPGPU extends the use of GPUs beyond tradi-
tional computer graphics tasks for which they were initially designed. CUDA
is intricately linked to the execution model of Nvidia GPUs, which exemplify
the SIMT (Single Instruction, Multiple Threads) architecture. Considered
a low-level programming model, CUDA requires users to possess knowledge
of the underlying architecture to fully exploit its capabilities. For optimal
performance, programmers must understand concepts such as memory coa-
lescing, where multiple memory accesses are combined into a single operation.
Efficient memory coalescing relies on threads with neighboring IDs access-
ing adjacent memory locations. In CUDA, computations are organized into
groups of threads known as thread blocks, which can be executed either seri-
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ally or in parallel. The size of each block is determined by the user, and the
optimal number depends on the specific architecture. Another example of
low-level optimization in CUDA is the subdivision of data transfer between
the CPU and GPU into streams. This approach allows for the overlap of
data transfer and computation, enhancing overall performance.

OpenCL (Open Computing Language) [67] is a framework that enhances
the capabilities of the C and C++ programming languages for heteroge-
neous systems. It enables code execution across various hardware platforms,
including CPUs, GPUs, and FPGAs. Developed collaboratively by multiple
vendors, OpenCL ensures portability of code across a diverse range of plat-
forms. For instance, if a system lacks specific accelerators, the program can
seamlessly execute on CPUs instead. This inherent flexibility makes OpenCL
well-suited for heterogeneous systems comprising both CPUs and GPUs.

UPC (Unified Parallel C) [68] is a shared-memory model wherein processes
interact with memory using standard functions such as read and write. Pro-
grammers are responsible for synchronizing processes using locks and bar-
riers. UPC follows a PGAS (Partitioned Global Address Space) approach,
where each process is associated with both a shared and a local portion of
memory. Processes have exclusive access to their respective local portions,
while the shared portion can be accessed by all processes. Other notable
PGAS libraries include UPC++ [69], X10 [70], Chapel [71] and Global Ar-
rays [72].

At the end of this chapter, in subsection 2.5, the gap in the state of the
art is identified, and it is explained how the CAPIO language addresses it.
Additionally, a table will be presented comparing the coordination languages
discussed in this section, including the CAPIO language (table 2.2).

2.3 Workflows

Workflow graphs are widely used to model and execute complex scientific
applications on large-scale distributed architectures such as supercomputers
and cloud infrastructures. A workflow can be defined as a directed bipartite
graph W = (S, P,D), where S is the set of steps, P is the set of ports, and
D ⊆ (S×P )∪ (P ×S) is the set of dependency links. Let In(s), Out(s) ⊆ P
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be the sets of input and output ports of a step s. The behavior of s can be
described with a function fs, taking arguments in In(s) and returning values
in Out(s). In this setting, a path connecting step s to step t introduces a
partial execution order s ≺ t. Workflow can be modeled with well-known
formalization tools such as Petri Nets [73] and dataflow graphs [74]. Both
models come with token-pushing semantics [75], i.e., steps are enabled by
the presence of tokens in their input ports. An example of a workflow graph
is sketched on Fig. 2.1. It has 4 distinct steps, one of them (W ) replicated
n-times. A workflow specification incorporates two different classes of seman-
tics [74]: the host semantics, which define the subprogram in each workflow
step (i.e., the body of fs), and the coordination semantics, which defines the
interactions between steps. Tools in charge of exposing coordination seman-
tics to the users and orchestrating workflow executions are called Workflow
Management Systems (WMSs). The coordination semantics can interleave
with host code into a single program, as in task-based programming libraries
like Dask [76], COMPSs [77], and Ray [78]. Steps are functions that can be
executed as asynchronous remote tasks, while tokens are implemented with
the futures mechanism [79]. The workflow execution plan, typically a layered
dataflow model [80], is automatically built just-in-time by the runtime layer
of the framework. These libraries are often used to model HPC workflows, be-
ing a middle ground between high-level WMSs and explicit message-passing
libraries for complexity and performance. However, the host application must
be entirely (re-)written in one of the supported languages.

Conversely, high-level WMSs express coordination semantics using a host-
independent medium. Some WMSs rely on a Domain Specific Language
(DSL), like the Common Workflow Language (CWL) [30] or the Snakemake
DSL [81], whereas others adopt a general-purpose programming language
(e.g., Pegasus [82] and DagOnStar [83, 84]) or a Graphical User Interface
(e.g., Kepler [85] and Jupyter Workflow [86]). This approach is more flexible,
as it does not impose constraints on the host application code and does not
require any modification to the business logic. However, the fact that the
host application cannot communicate with the coordination layer imposes
specific semantics that we define as “on-termination”, i.e., produced tokens
are propagated to consumer steps only after the producer has terminated
its execution and thus consolidated all produced data. The on-termination
semantics forces batch execution of the steps, i.e. a step can be executed
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Figure 2.1: Example of a workflow graph.

when all the steps producing its input data have concluded their run.

In dataflow models typically used to express scientific workflows, tokens
carry data. In most implementations, such data can be files or instances
of primary types (e.g., integers, strings, floats). Some WMSs also support
composite types and containers, e.g., arrays or maps. In this work, we are
interested in I/O-bound scientific workflows that extensively use files and
directories as dataflow tokens (e.g., the 1000-genome workflow [87]). Conse-
quently, throughout this document, the terms “token” and “file” are synony-
mous.

2.3.1 Traditional workflows vs in-situ workflows

Traditional workflows3 steps need to be executed orderly according to the
data dependency graph, and it could be challenging to exploit pipeline par-
allelism among them. Nevertheless, in many scientific simulation workflows,
the core simulation steps producing data might be co-executed with the data
analysis steps for almost real-time evaluation of results. Unless the analysis
steps were developed to support such coupled execution with the simulation
steps through explicit synchronizations, the analysis steps need to wait for
all data results to be produced by simulation phases into the storage before
starting their analysis. The benefit of batch workflows is the modularity
and simple design. Infact every application can be designed programmed in
stand-alone without worrying about the other part of the worklfows. The
price to pay is the potential worst performance in cases where applications
could run concurrently exploiting streaming communication.

3Through the document traditional workflows are also referred as batch workflows.
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In-situ workflows [88] were introduced to alleviate the limitations as-
sociated with relying on distributed file systems as communication media,
with the goal of facilitating temporal parallelism between steps. In in-situ
workflows, multiple steps can execute concurrently, and data communication
occurs promptly upon data production, facilitated by explicit coordination
mechanisms like message-passing or coordinated file access through suitable
APIs. This eliminates the necessity to await the termination of the producer
and can significantly improve the performance of the entire workflow.

In-situ systems can be categorized as integrated or connected based on
their workflow structure. Integrated in-situ systems incorporate in-situ capa-
bilities within a shared execution context, whereas connected in-situ systems
treat each step of the workflow as a separate component [89]. For instance,
Catalyst [90] and libsim [91] offer in-situ analysis within the simulation,
falling into the integrated category, while Dataspaces [12] allow applications
to connect and subscribe to a channel, representing the connected category.
Connected in-situ systems offer a more dynamic execution environment and
increased fault tolerance.

2.3.2 Workflow management systems

A workflow management system (WMS) allows users to express the coordi-
nation between the steps of a workflow. These systems are not concerned
with the host semantics, i.e., the specific computation carried out by each
step. Various workflow management systems have been developed, and sev-
eral surveys exist to compare their functionalities. The primary purpose of
a WMS is to assist the user during the modeling phase, where the workflow
structure is defined, and during the runtime phase, where the WMS deploys
the workflow and manages the available resources.

Numerous scientific WMSs, including Kepler [85], Pegasus [82], Taverna
[92], and Galaxy [93], were developed in response to the growing demand
for more efficient Grid computing infrastructures. These systems provide
researchers with enhanced capabilities to manage complex workflows across
diverse computing environments. However, each WMS often comes with its
own specialized communication framework, typically relying on low-level li-
braries and tools that need to be meticulously installed and configured on
every node participating in the workflow. For example, Pegasus utilizes a
Grid-specific technology named HTCondor [94], to handle task distribution
and data transfer. While effective, this reliance on specialized stacks can
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restrict the flexibility and portability of these WMSs across different compu-
tational environments.

Traditional product-specific DSLs often bind workflows to a single soft-
ware platform, limiting their portability and reusability across different en-
vironments. To address these challenges, the development of standardized
workflow languages has become a priority. One prominent example is the
Common Workflow Language (CWL), an open standard that uses JSON or
YAML syntax, or a combination of both, to define workflow DAGs in a flexi-
ble and interoperable manner. Another alternative is DagonStar, which offers
a straightforward Python API designed specifically for coordinating work-
flows in computational environmental science. A key innovation of Dagon-
Star is its workflow:// schema, which unifies all task-specific directories into
a shared virtual file system. This approach ensures consistent data handling,
even when workflows are executed across multiple, geographically dispersed
resources.

2.4 I/O in HPC Systems

In HPC systems, I/O operations can often become a bottleneck for data-
intensive workflows, particularly those involving the processing of terabytes
of data. Distributed file systems typically distribute files and their metadata
across multiple machines, some of which may be dedicated for this purpose.
Accessing files may entail multiple steps across various nodes, potentially
leading to performance challenges. Moreover, not only the file content but
also its metadata can contribute to bottlenecks. The presence of a large num-
ber of files in a directory can exacerbate performance issues in a distributed
file system. To address such challenges, various solutions have been devel-
oped. These range from libraries like MPI I/O [11], which facilitate parallel
reading and writing, to temporary ad-hoc file systems such as GekkoFS [95]
and Hercules [31], which leverage local burst buffers or main memory re-
sources on nodes avoiding the distributed filesystem. Additionally, tools like
ADIOS2 [14] offer streaming parallelism for reading and writing data in in-
situ workflows while Damaris [13] enforce asynchronous I/O dedicating a core
or an entrire node that writes data to the filesystem asynchornous while the
main program can continue with its computation. These solutions will be
further discussed in the following sections. Here is presented a possible clas-
sification of tools designed to improve I/O performance of HPC workflows:
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� API-Driven Approach: In this approach, the tool provides an API, and
applications need to be modified to take advantage of these tools.

� Transparent Approach: I/O improvement is achieved by an external
tool without user intervention, except for the installation of such tools.
Examples of this approach include distributed filesystems, most ad-hoc
filesystems, and distributed shared memories [96, 97, 98].

� Hybrid Approach: Users provide specific I/O hints for an HPC work-
flow to the tool before executing the workflow. This approach is consid-
ered hybrid because, like the Transparent Approach, it doesn’t require
modification of the original code but does require some high-level I/O
information specific to the application before running it.

The API approach potentially offers higher efficiency but demands more
effort from the user. Conversely, tools built with a Transparent Approach
are easy to use but may yield inferior performance. The Hybrid Approach
strikes a balance between the two.

2.4.1 API driven I/O

With API-driven I/O tools, users must instruct them through an API, which
requires more user effort but offers the potential for greater flexibility and
improved performance.

There are various methods for achieving parallel I/O in POSIX, each with
its own advantages and disadvantages.

The sequential I/O approach involves sending all data from all processes
to a master process, which then writes the data into a file. Similarly, when
reading a file, a master process reads the entire file and then distributes parts
of it to each process. While this technique is straightforward to implement, it
is inefficient because it fails to exploit parallelism when reading and writing
data to the distributed file system.

Another approach is the independent parallel I/O approach, where each
process reads and writes its own file or different parts of a single file. This
approach increases parallelism, as each process can read and write data inde-
pendently without the need for communication or synchronization. However,
a drawback arises when multiple processes write different files, potentially
leading to a high number of accessed files and increased metadata, which can
become a bottleneck in a distributed file system [99, 100]. Additionally, each
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process independently makes requests to the distributed file system, which
can be optimized by aggregating requests from different processes to reduce
network traffic and minimize disturbance to other processes and users.

The collective parallel I/O approach involves parallel reading and writ-
ing of different sections of a file, with processes cooperating to reduce the
number of requests sent to the file system. For example, MPI I/O provides
collective I/O functions to simplify programming for these non-trivial I/O
operations. This approach allows for data sieving [101], where numerous
small and non-contiguous data accesses are aggregated into a few large con-
tiguous accesses. Aggregating I/O requests into large and contiguous data
accesses also improves file system data prefetching and caching.

in the following paragraphs, some notable I/O libraries used in HPC will
be discussed.

Damaris [13] is a framework that improves the I/O performance of an
application dedicating cores or machines for the I/O tasks in order to trans-
form synchronous I/O operations in asynchronous I/O operations. Damaris
provides an API designed to modify the existing application as little as pos-
sible. It provides in-situ visualization for scientific simulations integrating
VizIt. It is possible to execute C++ (or Python) user code in the dedicated
cores/nodes for I/O using the plugin system of Damaris; this is useful for
in-transit processing. With Damaris is possible to maintain an high level
data abstraction because modifying the existing code with the Damaris API,
the semantic of the data is preserved. The authors claim that this feature
is necessary to allow Damaris to write the data in an high-level format as
HDF5 or NetCDF and to be integrated in an in-situ visualization pipeline.
Therefore, to preserve the semantic of the data, the user must provide an
XML file with the description of the data to the Damaris run-time.

Apache Arrow [102] is an open-source, cross-language platform designed for
in-memory data processing. It offers a standardized, language-independent
specification for representing structured data. The primary objective of
Apache Arrow is to facilitate efficient data interchange among diverse systems
and programming languages. It defines a universal data format compatible
with languages such as Python, Java, C++, and more, eliminating the need
for costly data serialization and deserialization. Apache Arrow has gained
substantial recognition within the data processing and analytics community
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and enjoys widespread adoption in numerous projects and applications, in-
cluding prominent data processing frameworks like Apache Spark

Dataspaces [12] is a decentralized framework that provides a shared and
distributed space that can be accessed by coupled applications for commu-
nication. It allows to access live data produced by an application using
the semantic operator provided. The data used for the communication with
Dataspaces must be specified as key-value pairs. Dataspaces provides the
application the capabilitites to express the publisher-subscriber pattern and
monitoring a region of the shared spaces for data vaiabilty or the use of a
custom filter. The programmer must only express the type of communication
and dataspaces wuold take care of the technical details transparently.

MPI I/O [11]: is a library that provides collective I/O operations to MPI
applications. These functions exploit parallelism and minimize the comu-
nications for retrieving the data, assembling multiple I/O requests in one
request.

Like MPI I/O, ADIOS2 [14] and HDF5 [103] improve the I/O of HPC
scientific applications providing a library at the user level. ADIOS2 is a
complex and an highly modular framework that provides data management
on different layers, from the desktop to a powerful High Performance Com-
puting system. It provides three APIs: a public Low-Level APIs for HPC
applications and workflows, a private High-Level API for scientic data an-
alytics and visualization and a private API for ADIOS2 internal modules.
ADIOS2 can be used both for parrallel I/O on files and parallel streaming
communication between processes. ADIOS2 is designed in a modular way
allowing it to use differnt components (called engines) that support differnt
backends and use cases (UCX, POSIX I/O, etc..).

2.4.2 Transparent I/O

With the transparent I/O approach, users only need to install and, if nec-
essary, launch the tool to benefit from it. The drawback of this approach
is that if the user programmed the I/O of their applications poorly, there is
only so much that transparent I/O can do without additional information.
API-driven I/O tools and transparent I/O tools are not mutually exclusive;
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they can be used together to provide overall better I/O performance. For ex-
ample, a workflow could improve its performance using an ad-hoc filesystem,
but if one of its data-intensive application writes and reads files sequentially
using a master process, the improvement would not be significant. In this
case, the user can consider using a parallel I/O API and ad-hoc filesystem
together.

2.4.3 Ad-Hoc File Systems

Ad-hoc file systems [10] are temporary file systems with a lifespan limited
to a single application or an entire workflow. They aim to manage the di-
verse types of storage available in HPC systems, leveraging main memory,
especially for temporary files. Typically, ad-hoc file systems operate as Trans-
parent I/O tools, although there are exceptions that also provide an API.

Ad-hoc file systems attempt to address the limitations of distributed file
systems for specific use cases. Some achieve this by utilizing local storage on
computational nodes or by relaxing POSIX semantics. For example, some
disable support for file locking, an operation that can be costly in distributed
file systems under certain conditions.

Ad-hoc file systems can be implemented in kernel space, like classic file
systems, or in user-space. User-space file systems are well-suited for HPC
environments because users do not need to install kernel modules with the
assistance of system administrators. Most ad-hoc file systems can be used
without modifying the target application. They intercept system calls to
the distributed file systems and execute their code instead of passing con-
trol to the kernel. From the application’s perspective, this process remains
transparent.

There are multiple methods for intercepting I/O system calls and in-
jecting code to be executed in user space. One such method is the use of
FUSE [104], but it is generally avoided in HPC due to performance issues
caused by context switches between kernel and user space, as well as over-
head in data communication between the application and FUSE[105]. Using
FUSE file systems requires mounting them before use, which necessitates root
permissions that users typically lack on HPC systems for security reasons.
Therefore, other methods are preferred for implementing ad-hoc user-space
file systems.

The LD PRELOAD method in Linux operating systems allows for cap-
turing libc functions by exploiting the linker’s capability to intercept stan-
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dard library calls with user-space wrappers, either statically during linking
time or dynamically by setting the LD PRELOAD environment variable.
While avoiding kernel involvement during I/O can yield performance bene-
fits, the LD PRELOAD method requires designers to handle all libc func-
tions that the ad-hoc file system must manage. To simplify this task, the
syscall intercept library [106] was developed. Although it still relies on the
LD PRELOAD method, it only needs to capture system calls, reducing the
effort required for creating ad-hoc user-space file systems. From the user’s
standpoint, defining the environment variable LD PRELOAD to point to the
path of the ad-hoc file system shared library suffices. Users do not need to
modify or recompile applications.

Another alternative is to use libraries such as libsysio4 and Gotcha5, which
function similarly to the syscall intercept library.

Ad-hoc user-space file systems aim to improve I/O performance by lever-
aging the parallelism of HPC systems. However, to achieve this goal, they
must introduce minimal overhead when interacting with user applications,
as they share computational units, communication channels, storage, and
memory.

One important emergent concept in HPC systems is the ability to run
programs that are malleable. Malleability refers to the capability of adjust-
ing the number of nodes during the execution of a program or workflow
and is becoming an increasingly important feature in HPC environments to
accommodate changes in computational and I/O requirements during appli-
cation execution [107, 108, 109]. An ad-hoc filesystem designed to support
malleability should offer mechanisms to seamlessly increase or decrease the
number of nodes at runtime without data loss, while minimizing the time
required for data transportation and redistribution.

GekkoFS [95] is a file system in user space that provides a relaxed POSIX
semantic to improve specific I/O patterns used by scientific application ex-
ploiting the local burst buffers on the nodes of a cluster. It is decentralized
and the data is distributed on local SSDs of the nodes in order to balance the
I/O operations. It also divide large files in data chunks that are distributed
on the cluster. GekkoFS relaxes the POSIX semantic to overcome the prob-
lems of the parrallel filesystems. For example, GekkoFS does not provide a

4https://github.com/hpc/lustre/tree/master/libsysio
5https://github.com/LLNL/GOTCHA
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global locking mechanism to avoid the relative overhead. Therefore, it is the
application or the libraries used by the application that must implement a
locking mechanism if it needs to access files concurrently. Without locking
mechanism GekkoFS can’t gurantee to return the current state of a directory.
For designs choiches, GekkoFS does not allows the use of certain operations
such as rename because they can be very inefficient. The authors argue that,
fortunely, these kind of operations are rare in HPC environments. Another
way in which GekkoFS relaxes the POSIX semantic to gain a performance
improvement is the option to disabilitate some metadata. GekkoFS divides
the metadata in three categories: rarely used, redundant and mandatory.
The metadata belonging to the first two categories can be disabilitated to
improve the performance of the application. In a recent version of GekkoFS,
the architecture was updated to include a proxy on each node, aiming to
support malleable executions in the future [110] .

Hercules [31] is an ad-hoc file system that fully supports POSIX semantics.
Hercules offers two primary modes of operation: using its API or capturing
I/O system calls without the need to modify the original code. It leverages a
client-server architecture and stores data in the nodes’ main memory. Addi-
tionally, it can utilize NVMe memory for persistency when the main memory
is full, implementing an LRU (Least Recently Used) policy for replacements.
Users can set the replica factor for data to provide a degree of fault toler-
ance. From an implementation standpoint, Hercules employs a memory pool
divided into blocks on each node. Files can be distributed across different
blocks on various nodes, following one of the available policies. For efficient
data retrieval and storage between the client and Hercules, the system re-
lies on the UCX framework, ensuring fast communication in HPC systems.
Hercules also stores metadata in memory using a distributed in-memory key-
value store, organized as a balanced binary tree to facilitate rapid key lookup.
It further provides an API, enabling its use as both a transparent I/O tool
and an API-driven tool. Hercules supports malleability [111] to efficiently
manage changing I/O requirements of applications by dynamically adjust-
ing the number of nodes without data loss. An external agent can interface
with Hercules to provide information about changes in node configuration.
Alternatively, Hercules can employ internal heuristics, such as user-defined
I/O throughput thresholds, to autonomously determine whether to scale the
number of nodes up or down.
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BeeOND [112] allows the creation of multiple instances of the distributed
file system BeeGFS on the fly. It enables the utilization of local storage
on computational nodes throughout the lifetime of an application to improve
I/O performance. BeeOND can be seamlessly integrated with a job scheduler
such as Slurm to initiate a new instance on a specific node when an appli-
cation starts on that node and terminate the instance when the application
ends. BeeOND facilitates the exploitation of local storage on compute nodes
and facilitates data transfer to the underlying distributed file system, which
can be BeeGFS or another file system, through a simple command. It estab-
lishes a shared namespace for the local storages across a given set of compute
nodes and creates a mounting point with a straightforward command, effec-
tively creating a distributed file system on the local storage of the compute
nodes. BeeOND is POSIX compliant, enabling applications to interact with
it like any other POSIX distributed file system without requiring additional
user intervention.

Expand ad-hoc parralel file system [113] is derived from the Expand file sys-
tem. While the Expand parallel file system targets heterogeneous distributed
systems relying on NFS [114, 115], its new ad-hoc version is based on MPI.
This ad-hoc file system does not require modifications to the code because
it is based on a syscall interception library, capturing the system calls of the
target applications. It provides parallel access to files by dividing them into
blocks and distributing these blocks across the nodes where Expand ad-hoc is
running. Additionally, metadata such as size and permissions is distributed
across all nodes for each file. A master node is assigned to each file, responsi-
ble for storing the distribution policy and block size for that file. The master
node is selected by applying a hash function to the file’s pathname. Users
can customize the distribution of a subset of files (a partition) and the block
size using an XML configuration file. Furthermore, Expand ad-hoc exploits
data locality when two processes on a node interact through a piece of file
stored on that node.

UnifyFS [116] is an ad-hoc filesystem designed to leverage local node stor-
age to enhance the I/O performance of HPC applications. It offers configura-
bility to provide relaxed POSIX semantics for applications that can benefit
from them. When it comes to file writing, UnifyFS offers three distinct
semantics:
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� Read After Write Semantics: This corresponds to the standard POSIX
behavior where changes to a file are immediately available after a write
operation.

� Read After Sync Semantics: Data becomes visible after a synchroniza-
tion operation, such as “fsync” or the related MPI I/O operation.

� Read After Laminate Semantics: Data becomes available after an ex-
plicit operation, which can either be added to the original program or
configured as a specific POSIX operation like “close” or “chmod”.

With these different semantics, reading data from local storage can poten-
tially improve performance. However, it’s essential to emphasize that this
improvement is only achievable when the application has been designed with
the appropriate synchronization logic for reading and writing data to comply
with these specified semantics.

CRUISE [117] is an ad-hoc file system implemented in user-space that
emulates a subset of POSIX semantics using the LD PRELOAD method. It
is specifically designed for checkpointing and restart functionalities in HPC
systems. To optimize performance, CRUISE does not provide full POSIX
semantics, as certain information such as timestamps and file permissions are
deemed unnecessary for checkpointing purposes. CRUISE operates by storing
data in the main memory of the nodes where the application is running.
When the data exceeds the memory allocated for CRUISE, it asynchronously
moves the checkpoint data into the distributed file system. Additionally,
CRUISE supports RDMA access from external processes to the data stored
in the main memory of the node. This feature is particularly useful for pulling
the data from CRUISE into persistent storage managed by a distributed file
system.

BurstFS [118] is an ad-hoc filesystem built on top of CRUISE that ex-
ploits the local burst buffers to improve the I/O bandwidth of applications
and reduce network congestion. To retrieve a specific section of a file, it
implements a scalable distributed key-value store for metadata. To enhance
the performance of bursty writes (common in HPC applications), it adopts
a lazy synchronization approach where metadata is not updated after every
write but instead after a predefined time lapse or after an explicit fsync op-
eration. To reduce network congestion, a delegator process is spawned on
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each node, and communication between nodes is facilitated through these
delegators rather than involving all processes of the application. Therefore,
if a process needs to read remote data, it makes a request to the delegator,
which retrieves the requested data.

EchoFS [119] is a temporary file system implemented using FUSE that
using hints provided by the scheduler, exploits local burst buffers managing
the movement of data between different I/O layers of the HPC systems. If
a job B need the data generated by the previous job A, then echofs main-
tains the data in the local (or shared) burst buffer. It also allows the user
to provide a configuration file that expresses which file are temporary (in
order to not propagate them from the burst buffer to the destination stor-
age) and which files are used as communication between jobs. Following the
categorization at the beginning of this section, this makes echofs a hybrid
I/O tool. Echofs implements the POSIX API, i.e. the user can benefit from
its features without change the code of the applications (but it must provide
the configuration file for tagging the files produced by the jobs). Since the
lifespan of the echofs file system coincides with the jobs of the user, there is
an improvement on the metadata managing because the file system is only
used by the owner of the jobs reducing contentions problems (while a parallel
file system is used by all the user of the HPC system) and the permission to
use the files must only be checked when the job use input files not generated
by the workflow.

Li et al. [120] proposed the functional partional (FP) runtime environment
that dedicates a part of the cores reserved to an application, to run criti-
cal I/O or data analysis task. The run-time is implemented using FUSE.
The original application can benefit from the run-time without changes in
the code. This tool provides an API that must be used to implement the
aux-apps. An aux-app is a task that must be performed asynchronously on
the data that the original application wants to write in the disk. Thanks to
FUSE, the communication between the original application and the aux-apps
is achieved through shared memory. The run-time does not provide a way
that allow the aux-apps to communicate with each other. In the example
created and used for the experiments the authors implemented the com-
munication between aux-apps using socket programming. Therefore we can
conclude that this tool is not suitable for an easy integration of independent

38



CHAPTER 2. BACKGROUND

HPC applications.

NORNS [121] is not an ad-hoc file system but it employ an hybrid approach
for improving I/O. It is a service that interfaces with the job scheduler Slurm
in order to optimize the data movement between different jobs of a data
driven workflow. The authors propose an extensions of slurm to express
the data dependency between jobs and a service that orchestrates Slurm to
exploit data locality and the differents I/O layers of HPC systems (e.g. burst
buffers). For example the service can keep the data in the burst buffer of a
node if the next job needed that data and will run in that node. NORNS is
transparent to the applications, as the user expresses data dependencies of
the workflow steps using an extension of Slurm.

At the end of this chapter, the major differences between the CAPIO
runtime and the ad-hoc file systems presented in this section will be discussed.

2.4.4 Distributed File Systems

Distributed file systems are file systems deployed across multiple machines,
where each machine has an identical view of the file system, providing users
with a seamless experience akin to using a local file system. In HPC envi-
ronments, distributed file systems are favored for their potential high band-
width, achieved by parallelizing access to files through techniques such as
data striping [122, 123]. While these file systems often adhere to POSIX se-
mantics, they may relax them in certain cases for better performance. How-
ever, distributed file systems can become a bottleneck in certain scenarios.
For instance, when a directory contains a large number of files, the metadata
distributed throughout the HPC system can impede file access speed. To ad-
dress such issues, ad-hoc file systems are increasingly adopted for their ability
to alleviate the performance limitations encountered by POSIX distributed
file systems in specific use cases. the following section will delve into some of
the most commonly used distributed file systems used in HPC environments.

Lustre [124, 37] is as an open-source, parallel distributed file system tai-
lored for high-performance computing and extensive storage setups. Its pri-
mary aim is to efficiently manage and facilitate access to massive datasets
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across numerous servers and storage devices. Applied in diverse scientific, re-
search, and enterprise environments, Lustre excels in scenarios where robust,
parallel I/O performance is crucial. The file system employs a scalable ar-
chitecture, distributing data across multiple storage servers in a parallel and
striped manner. This design promotes concurrent file access and bolsters
overall performance. Recognized for its high-bandwidth data access capabil-
ities, Lustre is particularly well-suited for applications involving large-scale
simulations, data analytics, and other data-intensive tasks prevalent in HPC
settings. Key features encompass data striping, parallel I/O support, and
scalable metadata handling to optimize performance. Lustre incorporates
fault tolerance measures, including data replication, recovery mechanisms,
and hardware redundancy support. Its flexible architecture allows seam-
less expansion to meet increasing storage demands by integrating additional
servers and storage devices. Lustre provides users with the capability to
deactivate file locking mechanisms, thereby relaxing the POSIX consistency
semantics. This feature is intended to optimize performance for certain use
cases.

BeeGFS [36] is a parallel file system designed to cater to the demands
of high-performance computing environments. Its architecture involves the
collaboration of multiple servers to manage and serve data in a distributed
and parallel manner.

The system offers horizontal scalability, adapting seamlessly to the evolv-
ing needs of expansive HPC projects. Users can optimize data access and
throughput by tailoring file striping policies, strategically distributing file
components across multiple storage servers. BeeGFS maintains compatibil-
ity with POSIX standards, ensuring easy integration with applications rely-
ing on conventional file system semantics. BeeOND is the ad-hoc version of
BeeGFS and provides a temporary on-demand deployment option leveraging
burst buffers (refer to subsection 2.4.3).

BeeGFS provides a straightforward management experience through user-
friendly tools and a web-based graphical user interface (GUI) for monitoring
and configuring the file system. It incorporates fault tolerance features such
as data replication and recovery mechanisms, ensuring data integrity even in
the face of hardware failures.
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GPFS (General Parallel File System) [38] is an high-performance clustered
file system developed by IBM. It caters to the demands of large-scale par-
allel processing environments, specifically tailored for applications in HPC
systems, and now bears the new identity of IBM Spectrum Scale.

This resilient file system facilitates concurrent read and write operations
across multiple nodes within a computing cluster, ensuring vital parallelism
essential for robust I/O performance in expansive computing environments.
Demonstrating remarkable scalability, GPFS accommodates large clusters
with thousands of nodes, excelling in efficiently managing substantial data
volumes and delivering substantial throughput for parallel workloads.

GPFS employs a distributed architecture, distributing data across mul-
tiple servers or storage nodes. This strategic approach significantly boosts
overall performance, strengthens fault tolerance, and optimizes load balanc-
ing.

Highlighting advanced features such as snapshot capabilities, GPFS em-
powers users to capture point-in-time copies of the file system. Additionally,
it provides robust support for backup and restore functionalities, ensuring
comprehensive data protection.

With a strong focus on high availability, GPFS incorporates features like
failover and recovery mechanisms. These features are designed to ensure
uninterrupted access to data, even in the face of hardware or network failures.

GPFS offers the capability to implement lazy metadata updates, thereby
relaxing the POSIX semantics to enhance system performance.

2.5 Gap in the state of the art

In-situ workflows were introduced to leverage streaming parallelism among
applications within a workflow [88]. Achieving this involves coupling appli-
cations and implementing explicit synchronization between them, a poten-
tially time-consuming task. API-driven tools like ADIOS2 and Damaris were
developed to address this challenge, but users are still required to modify ex-
isting code, transitioning from POSIX or other APIs to Damaris or ADIOS2
[125, 126]. Workflows often involve programs developed by different teams
using various technologies, posing challenges for users seeking to modernize
workflows into in-situ workflows due to potential knowledge gaps.

CAPIO offers a solution for users who prefer not to modify existing code
or avoid using specific APIs. With CAPIO, it is possible to transform a batch
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workflow into an in-situ workflow without modifying the code. CAPIO only
requires a configuration file describing data dependencies and synchronization
semantics between programs, using the high-level CAPIO coordination lan-
guage. The CAPIO runtime captures system calls performed by applications
and enforces synchronization between the workflow’s steps. With CAPIO,
all programs within a workflow can run together, potentially improving effi-
ciency without the need for new code. The primary effort lies in writing the
configuration file that describes the workflow’s data requirements. CAPIO
aims to improve the I/O performance of workflows incorporating both the
Transparent Approach and the Hybrid Approach (refer to Section 2.4). It
can function without any additional information, but if users provide relevant
information, it can achieve improved performance.

Since the configuration file describes the data dependencies and the syn-
chronization semantics, the computation is separated from the coordination
making the CAPIO language an exogenous coordination language. Table 2.2
shows the principal differences between the coordination languages described
in section 2.2, including the CAPIO language.

The CAPIO coordination language can be implemented as a connected
in-situ system, where each step of a workflow is a separate component, or
as an integrated in-situ system, where all the steps run in a shared exe-
cution context. The runtime discussed in this thesis currently operates as
an integrated in-situ system, leveraging MPI, and does not support mal-
leability in the number of nodes during workflow execution. Although the
MPI Comm connect functionality could potentially address this limitation,
it is not widely available on most supercomputers at present. Alternatively,
other tools could be explored as alternatives to MPI, such as MTCL [127].
CAPIO could be integrated with WMSs to semi-automatically generate CA-
PIO configuration files. In future work, we aim to investigate the integration
of CAPIO with DagonStar to leverage the workflow:// schema, which ab-
stracts multiple (geographically) distributed file systems into one shared file
system, enabling CAPIO to be used with workflows running on multiple HPC
systems. In [128], the authors have already integrated an ad-hoc file system
with DagonStar, demonstrating the potential for integration with CAPIO.
In [129] it is shown a first integration of CAPIO with DagonStar.

Besides being used to improve the I/O performance of existing workflows
without the need to modify the application’s code, CAPIO can also be uti-
lized to create new workflows. Users can design and implement workflows
composed of standalone applications that produce and read files, simplify-
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Ad-hoc
File Systems

User
Space

Malleable
Storage
Backend

Streaming
Comm.

GekkoFS YES NO Bursts Buffers NO

Hercules YES YES
Main Memory,

FS
NO

BeeOND NO NO
Burst Buffers,

FS
NO

Expand
ad-hoc

YES NO
Burst Buffers,

FS
NO

UnifyFS YES NO
Main Memory,
Burst Buffers

NO

CRUISE YES NO
Main Memory,

Burst Buffers, FS
NO

BurstFS YES NO
Burst Buffers,

FS
NO

EchoFS YES NO
Burst Buffers,

FS
NO

FP runtime YES NO
Burst Buffers,

FS
NO

CAPIO
Runtime

YES NO
Main Memory,

FS
YES

Table 2.1: Comparison between ad-hoc file systems.

ing the initial workflow creation. CAPIO can then be applied to enhance
performance by running the workflow applications in a coupled fashion. Ta-
ble 2.1 shows the comparison between the ad-hoc file systems presented in
subsection 2.4.3 and the CAPIO runtime.

At the best of our knowledge, no tools provide an I/O coordination model
that enables the injection of streaming capabilitites into file-based token-
pushing workflows.

The following chapters will present the CAPIO coordination language
and how the CAPIO runtime works. Synthetic benchmarks and real work-
flow tests were conducted to demonstrate the effectiveness of the CAPIO
approach.
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Coord.
Languages

Coord.
type

Comm.
type

Comm.
medium

Synch.

Linda Endogenous Tuples Read/Write
Shared

Tuple Space
Implicit

BSP model Endogenous Message passing Network Implicit
Actor model Endogenous Message passing Network Implicit
π-Calculus Endogenous Message passing Named Channels Explicit

Join Calculus Endogenous Message passing Named Channels Explicit
Reo Exogenous Message passing Typed channels Explicit

OpenMP Exogenous
Memory access and
Memory Transfers6

Shared Space
and Channels

Explicit

OpenACC Exogenous
Memory access and
Memory Transfers

Shared Space
and Channels

Explicit

Skeleton Based Endogenous Implicit Implicit Implicit
MPI Endogenous Message passing Network Explicit

POSIX threads Endogenous Memory access Shared Space Explicit
CUDA Endogenous Memory transfers Channels Explicit
UPC Endogenous Memory access Shared Space Explicit

CAPIO Lang. Exogenous Files Read/Write Shared Space Explicit

Table 2.2: Comparison between coordination languages.
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6For GPU offloading.
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Chapter 3

CAPIO: Goals and features

This chapter introduces the motivations, goals, and features of CAPIO while
deferring technical and implementation details to subsequent chapters. It
begins by discussing the context and the rationale behind the creation of
CAPIO. Following this, the main features of CAPIO are outlined for clarity.
Subsequently, an explanation is provided on how CAPIO enhances the I/O
performance of workflows. Finally, a high-level introduction, omitting syntax
details, is given for both the CAPIO language and the CAPIO runtime.

3.1 Motivations

In HPC systems, I/O often poses a bottleneck for data-intensive workflows.
While distributed file systems offer parallel I/O capabilities, certain use cases
can exacerbate this issue. For instance, accessing a large number of files or
performing multiple small random read/write operations can lead to slow-
downs [99] and even to denial of service [130]. As discussed in chapter 2,
various solutions have been developed to mitigate these problems.

In-situ workflows, where producers and consumers can operate concur-
rently and exchange data as soon as it becomes available, were originally
conceived for scientific simulations. Traditionally, simulations would first pro-
duce output files, which would then be analyzed by post-processing applica-
tions. In contrast, in-situ workflows integrate simulation and post-processing
to analyze data as soon as it is generated. This approach can be extended to
any workflow where one application’s output must be consumed by another.

Several libraries have been developed to enable streaming workflows.
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However, many workflows still rely on POSIX I/O, requiring modification
with new libraries to enable in-situ execution. This can be challenging, as
workflows often comprise applications written in different technologies by dif-
ferent teams. Consequently, users may face difficulties adapting application
code to use a new I/O API.

To address this challenge, CAPIO was developed. With CAPIO, users
can transform classical workflows—those relying on files for inter-step data
communication—into workflows where all steps can be executed concurrently
without modifying the code. CAPIO achieves this by managing synchroniza-
tions between workflow steps, ensuring consumers can access desired data as
soon as it becomes available.

CAPIO provides an I/O coordination language for writing configuration
files that express data dependencies and desired synchronization semantics
in the workflow. The CAPIO runtime then utilizes this configuration file
to execute all workflow steps concurrently, enforcing user-specified synchro-
nizations to guarantee correct workflow execution. With CAPIO, streaming
workflows yield results identical to batch execution without CAPIO.

3.2 Key Features of CAPIO

Outlined below are the main features of CAPIO, its objectives, and how it
achieves them:

� CAPIO comprises an I/O coordination language and a runtime that
implements it.

� CAPIO enhances I/O performance by transforming traditional work-
flows, which rely on file-based communication, into streaming workflows
where all steps are executed concurrently.

� No modifications to the applications within the workflow are required.

� Users only need to provide the CAPIO runtime with a configuration
file written in the CAPIO language expressing files synchronization
semantics for streaming communication.

� The CAPIO language specifies the synchronization required for work-
flow steps to read and write files concurrently, even when originally
programmed to do so sequentially.
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3.3 From a batch execution into a streaming

execution

The growing volume of digital data for analysis and simulation is leading
to an inevitable expansion of I/O-bound HPC workflows. Despite recent
advancements in high-speed storage technologies, a significant gap persists
in latency and bandwidth between computing, memory, and storage [131].

Examining a two-step pipeline workflow depicted in Fig. 3.1, Step S gen-
erates k files, serving as input tokens for the subsequent step Q. These files
are stored on a shared file system with write and read bandwidths (wB and
rB), dependent on file size. Typically, bandwidth has an upper limit and
decreases non-linearly with file size. Assuming equal file sizes and constant
bandwidth, if Step S writes files of size N and Step Q reads files of M bytes,
the makespan (TT ) is influenced by compute time TC = T S

C + TQ
C and total

I/O time TI/O = T S
I/O + TQ

I/O, such that:

max
(
TC , TI/O

)
≤ TT ≤ TC + TI/O (3.1)

TI/O represents the overall time dedicated to generating and consuming to-
kens within the workflow model. This can be articulated as follows:

TI/O = k ·
(

N

wB
+

M

rB

)
(3.2)

Given Eq. (3.2), two primary categories of techniques addressing the im-
pact of I/O operations are identified in the literature. The first category
aims to maximize wB and rB, with technologies like Burst buffers [9] and ad
hoc file systems [10] relying on high-end storage technologies (e.g., SSD or
NVMe) and intermediate storage in memory to enhance I/O bandwidth [132].
These solutions directly transfer data among HPC nodes, alleviating band-
width contention on shared file systems. In contrast, the second category,
represented by parallel I/O interfaces (e.g., OrangeFS/PVFS [133], MPI-
IO [11]), seeks to optimize available I/O bandwidth by enabling multiple
processes to concurrently read/write different sections of a file. Libraries
such as HDF5 [103] and ADIOS [14] enhance I/O in HPC scientific applica-
tions, offering programmers higher-level storage management APIs built on
various I/O backends.

Performance challenges in parallel file systems like Lustre [37] or GPFS [38]
are attributed to adherence to POSIX semantics, necessitating atomicity
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for multiple operations. Some parallel file systems, like UnifyFS [134] and
GekkoFS [95], adopt more relaxed semantics to boost performance. How-
ever, ensuring portability among file systems with relaxed semantics remains
a significant challenge [135].

The second category of I/O optimization strategies focuses on minimizing
the numerator in Eq. (3.2), and it includes the in-situ/in-transit data pro-
cessing model within this category [16]. For instance, performing on-the-fly
compression and decompression during I/O can concurrently reduce both N
and M . Format conversion proves beneficial when the data format consumed
by Q differs from that produced by S. It’s worth noting that while in-situ
processing can decrease TI/O, it may also lead to an increase in TC . Some
I/O libraries, like Damaris [13], allocate certain cores of an HPC worker
node for asynchronous I/O operations and processing. These optimizations
aim to reduce TC + TI/O by enhancing the overlap between computation
and I/O, preparing data for subsequent steps. However, this might diminish
available computation parallelism, potentially increasing TC . Nonetheless, in
I/O-bound applications, the acceptable trade-off is increasing TC to achieve
a reduction in TI/O.

Another approach for optimizing I/O in data-intensive workflows involves
enhancing the workflow model with I/O streaming behavior to overlap I/O
and computation between successive steps. As discussed in subsection 2.5,
the CAPIO middleware aims to achieve this transparently. To the best of
our knowledge, no other tools adopt this approach using a declarative I/O
coordination model.

3.3.1 The CAPIO Approach

Let’s reconsider the two-step pipeline in Fig. 3.1. An effective technique to
reduce TI/O is to overlap the I/O phases of the two stages. In the ideal
scenario of complete overlap, Eq. (3.2) can be reformulated as follows:

TI/O ≈ max
(
T S
I/O, T

Q
I/O

)
= max

(
kN

wB
,
kM

rB

)
(3.3)

The challenge lies in integrating such streaming optimizations into the
workflow model without altering the business code of the involved steps. This
involves reinterpreting the semantics of existing file system primitives rather
than replacing or modifying them, with a crucial requirement: preserving
correctness.
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Figure 3.1: A two steps (S and Q) workflow whose tokens are files.

The CAPIO (Cross-Application Programmable I/O) user-space I/O mid-
dleware aims to facilitate these optimizations by a) adopting concurrent exe-
cution, as opposed to batch execution, for workflow steps requiring I/O opti-
mization; and b) allowing more relaxed synchronization semantics for token
propagation compared to the standard “on-termination” approach (refer to
section 2.3). Concurrent execution of workflow steps provides the opportu-
nity to exploit temporal parallelism (i.e., pipelining).

Regarding the second point, the objective is to define appropriate I/O
synchronization semantics that allow anticipation of consumer operations on
a given file without introducing side effects on program execution. To clarify,
let’s informally define the“on-close” file commit semantics: consumers of a file
f may begin reading its content only after all producers of data in f have closed
the file. This semantics conveys the information that a) the file is ready to be
read (i.e., the corresponding token is “fireable”) as soon as the file is closed
by all producers; b) the file is considered completed (i.e., “committed” to
the file storage) when it is closed by all producers. Additionally, it implicitly
asserts that the producers will not reopen the file.

The “on-close file commit” semantics are more relaxed compared to the
standard on-termination semantics, which necessitates that all producer steps
terminate before the consumer steps can open the file and commence reading
its content—both points a) and b) are tied to the termination of producer
steps. Furthermore, this relaxed semantics facilitates the temporal overlap
of (at least) distinct I/O phases between two consecutive steps. For instance,
if Q in our example can be executed under the new semantics, its open (and
read) system calls to the f file can be blocked until all close system calls
have been completed at S. Consequently, the writing of data into the file fi+1

by S can overlap (or partially overlap) with the reading of data from file fi by
Q. CAPIO can seamlessly enforce this behavior by intercepting POSIX sys-
tem calls issued by S and Q, compelling them to execute in accordance with
the user-provided file commit semantics. Figure 3.2 illustrates two possible
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Figure 3.2: Batch execution of S and Q steps vs. their concurrent execution
with CAPIO and the “on-close file commit” semantics.

executions of S and Q, with and without CAPIO.
To provide a preliminary estimate of the potential benefits offered by

CAPIO optimizations, assuming the “on-close file commit” semantics, we
can compare the total I/O time in the base workflow model (Eq. (3.2)) with
the streaming workflow model enforced by CAPIO with k files. For the case
where N = M and wB < rB, the gain can be expressed as follows:

gain =
TI/O − ( kN

wB
+ N

rB
)

TI/O

=
wB(k − 1)

k(rB + wB)
(3.4)

For example, if k = 100 and rB = 2wB, then gain = 33%.
However, the gain in Eq. 3.4 only considers I/O phase overlap (i.e., data

movement) without accounting for possible computation-I/O overlap, typi-
cal in pipeline computations (see Fig. 3.2). The extent of CAPIO optimiza-
tions, and thus the degree of different I/O phase overlap, strongly depends
on how relaxed the file commit semantics in the workflow steps could be.
A significant scenario is when producers write portions of files only once
(e.g., append-only writes). In this case, the data transfer granularity be-
tween producer and consumer steps is not the entire file, as in the “on-close
file commit” semantics, but could be as small as the data chunk of a single
read system call in the consumer steps. Assuming the data chunk is not too
small (which would increase the system call overhead), this further enhances
overlap opportunities.
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Additionally, the CAPIO I/O optimization approach is fully compatible
with the optimizations described in section 3.3; therefore, all of them can
be applied together. For instance, similar to main-memory storage system
implementations (e.g., IMSS [132]), CAPIO stores intermediate data in mem-
ory to enhance I/O bandwidth and transfers data directly to consumer nodes
by bypassing the distributed file system in the I/O path. Moreover, it may
introduce in-transit data processing on the fly while moving files between
producer-consumer steps, leveraging technologies like SmartNICs without
involving host CPU cores, as proposed in [136].

Implementing all the mentioned optimizations and transitioning from a
standard workflow model to a streaming model with relaxed file commit se-
mantics, without modifying the host code, presents a challenge. Traditional
I/O operation APIs (e.g., POSIX, MPI-IO, HDF5 Async API) are only par-
tially suitable for streaming as they lack coordination/synchronization infor-
mation at the application level. Consequently, the user must provide addi-
tional non-functional information to introduce enhanced I/O optimizations.
CAPIO addresses this challenge by utilizing a configuration file in JSON
format. The CAPIO middleware, as detailed in section 5.2.1, utilizes this
information to seamlessly enforce streaming data movement optimizations
between producer-consumer steps without modifying the business code and
without altering the functional semantics.

3.4 Commit and Firing Rules

To define the file synchronization semantics between consecutive workflow
steps, we need to consider two temporal aspects: a) when there are no more
updates to the file; b) when one consumer can safely start reading a portion
of data written in the file. We term the first aspect the commit rule and
the second aspect the firing rule. Drawing on terminology from the realm of
Data Stream Processing [137], the firing rule specifies when the data items
(also known as tuples or stream elements) commence production by source
operators in the data flow graph, allowing consumer operators to begin con-
sumption. On the other hand, the commit rule determines when a given
data stream concludes—i.e., all consumer operators in the streaming data
flow graph receive the end-of-stream token, indicating that there will be no
more data in input.

The commit rule allows us to define two distinct file commit behaviors:
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� “on-termination”: This behavior is employed in the batch execution
of workflow steps. When a step terminates, all data files produced
are committed to the file system and become ready to be read by all
consumer steps.

� “on-close”: This behavior enables the consumer to start reading a file
as soon as I/O operations from all producers on that specific file are
completed. The completion of these I/O operations is signaled by the
close system call from each producer.

In addition to these two primary file commit behaviors, we can consider a
file committed when another file is committed. This is particularly useful
when the number of open and close operations for a given file is not known
statically, but we are aware that the I/O operations are completed if another
file is committed. These additional commit behaviors create a dependency
among files, expanding the opportunities to exploit temporal parallelism for
I/O operations in distinct workflow steps.

We defined the following set of file commit semantics currently supported
by the CAPIO middleware. Specifically, the producer(s) of a fileX may
declare that the file is:

� “Commit on-Termination” (CoT): the fileX is completed iff all pro-
ducers have terminated

� “Commit on-Close” (CoC): the fileX is completed iff all producers
have closed the file, and they do not re-open it

� “Commit on-File” (CoF): the commit semantics of fileX depends on
the commit semantics of another file (i.e., fileY)

Regarding the firing rule, it specifies when data is ready to be consumed.
If the commit rule holds for a given file, the file is unquestionably ready to
be consumed; in other words, the commit rule implies the firing rule for the
entire file. We refer to this fundamental firing rule as “Firing on-Commit
(FoC ). However, portions of the file (i.e., those parts already written by
the producers) could be immediately ready to be consumed (i.e., fireable),
provided the producers do not update them. This behavior is termed “Firing
no-Update” (FnU ), signifying that the file content is ready to be read as
soon as data is written into the file.
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When a consumer initiates a read system call (SC) on a portion of the file
that has not been written by producers yet, the behavior differs between the
Commit on-Termination, Firing no-Update (CoT-FnU ) semantics and the
Commit on-Close, Firing no-Update (CoC-FnU ) semantics. In both cases,
CAPIO blocks the consumer until:

� The requested data is produced, and the read returns the total number
of bytes requested.

� All producers close the file (for CoC-FnU ), or terminate (for CoT-
FnU ), and the read returns the current number of bytes read, if any,
or 0 to indicate the end of the file (EOF).

3.5 The CAPIO Language and its runtime

To leverage CAPIO’s capabilities, users simply need to create a configuration
file using the CAPIO language, specifying the synchronization requirements
for the files utilized in communication between two workflow steps. Various
synchronization semantics are outlined in the preceding section. Once the
configuration file is authored, it is provided to a runtime capable of con-
currently launching all workflow steps and ensuring adherence to the syn-
chronization semantics delineated in the configuration file. No modifications
to the original applications comprising the workflows are necessary, nor is
there a need for recompilation. Chapter 4 provides a detailed explanation of
the CAPIO language syntax, utilizing JSON. Additionally, future iterations
may support alternative formats such as YAML and XML. With the CAPIO
language, users provide at least the following information regarding a given
workflow:

� The applications comprising the workflow.

� The data dependencies among the applications, specifying which files
are written to and read by each application.

� The synchronization semantics for files used in communication, includ-
ing:

– The Commit rule: defining when a file is considered complete.
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– The Firing rule: defining when a process can begin accessing the
file content.

Furthermore, additional information for enhanced optimization can be pro-
vided, which will be detailed in the following chapter. It is crucial to recog-
nize that the CAPIO language and the runtime are two distinct components:
there could exist multiple types of runtimes that implement the CAPIO
Language. This study provides a runtime described in Chapter 5, used for
experiments with synthetic benchmarks and real-world use cases explained
in Chapter 6. While different runtimes supporting the CAPIO language may
exist, they must possess certain key features to be effective in an HPC system:

� They must be capable of imposing the CAPIO synchronization seman-
tics without the need to modify the original applications.

� They should be lightweight in terms of CPU usage, memory, and net-
work usage. Since the CAPIO runtime shares resources with the work-
flow applications, it should not introduce excessive overhead.

� They must be able to leverage parallelism using the nodes employed
for the workflow, thus avoiding bottlenecks.

The CAPIO runtime provided in this study is implemented as an ad-hoc file
system based on MPI. In the future, it will offer the option to choose different
backends from MPI. However, it is also possible to implement the runtime as
part of a distributed file system or as part of a workflow management system.
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Chapter 4

CAPIO Coordination Language

This chapter introduces the CAPIO language, a pioneering I/O coordination
language crafted to annotate date dependencies within file-based workflows
with synchronization semantics. Its primary aim is to seamlessly integrate
computational and I/O operations across disparate producer-consumer ap-
plication modules. Notably, the language operates independently from the
runtime engine, allowing for the development of multiple runtimes tailored
to its specifications. The user can utilize this language to compose a config-
uration file, instructing the runtime to execute all workflow modules concur-
rently, thus leveraging in-situ capabilities. Chapter 5 provides insight into
the initial prototype of such a runtime.

4.1 Syntax

In this section the syntax of the CAPIO language is presented enabling the
user to write the data dependencies of a workflow and the streaming seman-
tics for in-situ computations. For each features an example is shown.

JSON (JavaScript Object Notation) serves as the language for express-
ing the syntax and semantics of the I/O coordination language. JSON is
language-agnostic, enjoying widespread support in various programming lan-
guages such as Java, C++, Python, and more. While not the most commonly
utilized language for high-level coordination languages in parallel computa-
tions, JSON offers automatic syntax validation through its schema. This
feature allows a focus on the semantic aspects of the I/O coordination lan-
guage. Recognized for its simplicity, flexibility, and expressivity, JSON is
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well-established in various computer science domains. Choosing JSON as
the foundational syntax for the CAPIO coordination language outlined in
this document aims to provide users with a smoother learning curve.

In this section, we present the syntax of the I/O coordination language,
which is articulated in JSON format. The JSON syntax relies on two funda-
mental structures: objects and arrays. An object is a grouping of key/value
pairs, with the key typically being a string identifier, often represented by a
mnemonic name. An array is a sequentially ordered list of values.

The JSON file adhering to the I/O coordination language syntax will be
denoted as the CAPIO configuration file. This file serves as a crucial compo-
nent for the CAPIO middleware, ensuring the enforcement of synchronization
semantics for files across successive workflow modules.

The CAPIO configuration file encompasses six sections:

� Workflow Name: Identifies a workflow, which consists of multiple ap-
plication modules.

� IO Graph: Describes file data dependencies among application mod-
ules.

� Aliases: Groups a set of files or directories under a convenient name.

� Permanent: Specifies files to be retained in permanent storage at the
end of the workflow execution.

� Exclude: Identifies files and directories not managed by CAPIO.

� Home-node Policy: Defines various file mapping policies to determine
which CAPIO servers store specific files.

We will describe the syntax of the language related to each section in the
subsequent parts. As the CAPIO language revolves around I/O objects—files
and directories—it supports wildcards. Wildcards are special characters used
to represent unknown characters in a text, providing a convenient way to
specify file and directory names without enumerating all the files or directo-
ries that an application might produce or read (e.g., file*.dat). Presently, the
language accommodates two wildcards: 1) * which matches any sequence of
characters of length >= 0, and 2) ? which matches a single character. Wild-
cards can be applied in all values where a file name or a directory name is
expected.
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4.1.1 Workflow name section

This section is denoted by the keyword “name” (refer to Listing 4.1). The
assigned name serves as a unique identifier for the current application work-
flow. This distinction is valuable for recognizing and differentiating between
multiple application workflows concurrently executing on the same machine.

Listing 4.1: The workflow name
{

"name" :"my_workflow",

...

}

4.1.2 IO-Graph section

This section delineates the relationships between input and output streams
among the application modules constituting the workflow. Recognized by
the keyword “IO Graph”, it necessitates an array of objects, each specifying
input and output streams for an individual application component. Each
object encompasses the following components:

� name: The application’s name; this keyword is mandatory.

� input stream: Identifies the input files and directories the application
module is anticipated to read. It is optional and takes a vector of
strings as its value.

� output stream: Specifies a vector of file and directory names produced
by the application module. It is optional and accepts a vector of strings
as its value.

� streaming: An optional keyword designating files and directories with
associated streaming semantics, defining commit and firing rules (de-
tails described in section 3.4). Its value is an array of objects. Each
object may include the following attributes:

– name: Filenames to which the rule applies, with values as an array
of filenames.

– dirname: Directory names to which the rule applies, with values
as an array of directory names.
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– committed: Defines the commit rule for files or directories identi-
fied with the keywords name and dirname, respectively. Accept-
able values include “on close:N” (where N is an integer >= 1),
on termination, or on file if the commit rule applies to filenames.
If the commit rule pertains to directory names, valid values are
“on termination”, “on file”, or “n files:N” (where N is an integer
>= 1). If committed is unspecified, the default commit rule is
“on termination”. For “on file” semantics, the “files deps” key-
word, with values as an array of filenames or directory names,
defines the set of dependencies.

– mode: Defines the firing rule associated with files and directories
identified by the name and dirname keys, respectively. Valid val-
ues include “update” or “no update”. If mode is not specified, the
default firing rule is “update”.

Listing 4.2 provides a valid IO Graph section featuring two application mod-
ules, namely “writer” and “reader”, within the “my workflow” workflow.
The “writer” module generates three output files (file0.dat, file1.dat, and
file2.dat) and a directory (dir). Each file is linked to unique streaming se-
mantics, representing distinct commit and firing rules. The “reader” module
reads all files produced by the “writer” module.

Listing 4.2: The I/O dependency graph
{

"name" :"my_workflow",

"IO_Graph": [

{
"name": "writer",

"output_stream": ["file0.dat","file1.dat","file2.dat","dir"],

"streaming": [

{
"name": ["file0.dat" ],

"committed": "on_termination",

"mode": "update"

},
{

"name": ["file1.dat" ],

"committed": "on_close",

"mode": "update"

},
{

"name": ["file2.dat" ],

"committed": "on_close:10",

"mode": "no_update"

},
{
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"dirname": ["dir" ],

"committed": "n_files:1000",

"mode": "no_update"

}
]

},
{
"name": "reader",

"input_stream": ["file0.dat", "file1.dat", "file2.dat", "dir"]

}
]

...

}

4.1.3 Aliases section

The aliases section, identified by the keyword “aliases”, serves to mitigate the
verbosity associated with enumerating files that an application may consume
or produce. It consists of a vector of objects, each comprising the following
items:

� “group name”: the alias identifier

� “files”: an array of strings representing file names.

In Listing 4.3, an example illustrates how to define aliases for disjoint sets of
file names.

Listing 4.3: How to define aliaes
{

"name" :"my_workflow",

"aliases" :[

{
"group_name" :"group-even",

"files" :["file0.dat", "file2.dat", "file4.dat"]

},
{
"group_name" :"group-odd",

"files" :["file1.dat", "file3.dat", "file5.dat"]

}
]

...

}

4.1.4 Permanent section

This language section, identified by the keyword “permanent”, serves to des-
ignate files that will be preserved on the filesystem at the conclusion of the
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workflow execution. It entails an array of file names (which may also include
aliases). Listing 4.4 provides a rough example illustrating how to define the
“permanent” section. Following the execution of “my workflow”, both the
file “output.dat” and all files affiliated with “group0” will be retained in the
filesystem.

Listing 4.4: How to define which files will be stored into the filesystem at the
end of workflow execution.
{

"name" :"my_workflow",

"permanent" :[ "output.dat", "group0" ]

...

}

4.1.5 Exclude section

This section, identified by the keyword “exclude” is employed to specify files
that will not be managed by CAPIO, even if they are generated within the
CAPIO DIR directory. It involves an array of file names (which can also
include aliases).

Listing 4.5: How to define aliaes.
{

"name" :"my_workflow",

"exclude" :[ "file1.dat", "dir", "*.txt" ]

...

}

Listing 4.5 provides an example of defining the “exclude” section. CAPIO
will disregard file1.dat, all files and directories within the directory “dir”,
and all temporary files concluding with “.txt”.

4.1.6 Home-node policy section

In Listing 4.6, the syntax is presented to enable the CAPIO user to selec-
tively designate the CAPIO server node for storing files and their associated
metadata. Different policies can be defined for distinct files. In the current
version of the CAPIO language, the home node policy options are “create”.
“manual”, and “hashing”. These three keywords are optional, allowing users
to omit them in the CAPIO configuration file, in which case the default pol-
icy is “create”. Additionally, there should be no filename overlap among the
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specified policies, meaning the intersection of the sets defined by different
home-node policies must be empty.

For the “hashing” and “create” policies, the value is an array of files.
In the case of the “manual” configuration, the syntax is more elaborate,
necessitating the definition of the logical identifier for each file or set of
files. This identifier corresponds to the application process whose associated
CAPIO server will store the file. This information enables each CAPIO
server to statically determine the file-to-node mapping and retrieve the node
where the process is executing at runtime. For a detailed explanation of the
semantics of all home node policies, please refer to Section (4.3).

Listing 4.6: Home node policies.
{

"name" :"my_workflow",

"IO_Graph": [

{
"name": "writer",

"output_stream": ["file*.dat" ],

"streaming": [

{
"name": ["file*.dat" ],

"committed": "on_close"

}
]

},
{
"name": "reader",

"input_stream": ["file*.dat" ]

}
],

"home-node-policy": {
"create": ["file0.dat", "file1.dat"],

"manual": [

{
"name" :[ "file2.dat", "file3.dat" ],

"app_node": "writer:0"

},
{

"name": ["file4.dat", "file5.dat" ],

"app_node": "writer:1"

}
],

"hashing": ["file6.dat", "file7.dat"]

}
}
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4.1.7 Wildcards potential ambiguity

The CAPIO language syntax incorporates wildcards to offer users flexibility
and alleviate the need to list every file and directory explicitly. However,
employing wildcards in the language syntax may introduce unexpected be-
havior, such as unintended matches or undefined behavior due to multiple
matches associated with different semantic rules. To illustrate this, let’s
examine the example provided in Listing 4.7.

Listing 4.7: Example of ambiguity arising when using wildcards.
{

"name" :"my_workflow",

"IO_Graph": [

{
"name": "writer",

"output_stream": ["file1.txt", "file2.txt", "file1.dat", "file2.dat"],

"streaming": [

{
"name": ["file*" ],

"committed": "on_close"

},
{

"name": ["*.dat" ],

"committed": "on_termination"

}
]

},
...

]

...

}

In the given example, there is an overlapping match for the files file1.dat
and file2.dat. This creates ambiguity regarding whether the commit seman-
tics should be “on close” or “on termination”. While, in most cases, ambi-
guity can be resolved by considering the most specific match for the rules in
context (e.g., “.dat” is more specific than “file” when considering the user-
specified list of files in the output stream), in the current version of CAPIO,
all ambiguities remain unresolved. Consequently, the CAPIO runtime raises
an exception for undefined behavior. In future releases, we aim to enhance
flexibility by relaxing such constraints and automatically disambiguating the
syntax expression when feasible.

It is noteworthy that, in addition to using wildcards judiciously, effec-
tive utilization of the aliases section can assist the user in creating a clear
and unambiguous configuration file. For instance, in Listing 4.8, two sepa-
rate aliases are defined to delineate two distinct groups of files, allowing the
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application of different semantics rules to each group.

Listing 4.8: Example of using aliases to avoid ambiguity.
{

"name" :"my_workflow",

"aliases" :[

{
"group_name" :"group-dat",

"files" :["file1.dat", "file2.dat"]

},
{
"group_name" :"group-txt",

"files" :["file1.txt", "file2.txt"]

}
],

"IO_Graph": [

{
"name": "writer",

"output_stream": ["group-dat", "group-txt"],

"streaming": [

{
"name": ["group-txt"],

"committed": "on_close"

},
{

"name": ["group-dat"],

"committed": "on_termination"

}
]

},
...

]

...

}

Finally, it is worth mentioning that the CAPIO configuration file could be
directly generated by the WMS, describing the entire application workflow.
This is particularly useful for complex workflows. Specifically, the part re-
lated to I/O data dependencies (i.e., the IO-Graph) can be entirely generated
starting from the application description. Conversely, the synchronization
semantics of tokens require explicit annotations at the workflow description
language level. For example, the streamable keyword in the CWL standard
indicates that a given file is read or written sequentially without seeking
[138].
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4.2 Streaming semantics

We will now illustrate how to articulate the commit and firing semantics
using the CAPIO coordination language, offering straightforward examples.
For the ensuing instances, we contemplate a workflow consisting of two ap-
plications: a writer application, which generates two files, and a reader ap-
plication, responsible for reading these two files. Algorithm 1 delineates the
general case of the writer application, where it produces N files. In each iter-
ation of the main loop, it engages in computational tasks, followed by writing
the output of this computation to a distinct file. The reader application, as
depicted in Algorithm 2, exhibits a similar pattern. In each iteration, it reads
a file produced by the writer application, utilizing the read data to execute
a specific computation for a designated duration.

Algorithm 1: A simple file writer application.

Data: n files ≥ 0 ; file size > 0 ; secs ≥ 0
N ← 0;
while N < n files do

buffer ← compute(secs, file size);
write file(buffer, ”fileN.dat”, file size);
N ← N + 1;

end

Algorithm 2: A simple file reader application.

Data: n files ≥ 0 ; file size > 0 ; secs ≥ 0
N ← 0;
while N < n files do

buffer ← read file(”fileN.dat”, file size);
compute(secs, buffer, file size);
N ← N + 1;

end

Usually, this uncomplicated workflow is executed in a conventional batch
mode. Initially, the writer application is initiated to generate input files for
the reader application. Subsequently, the reader application can commence
its execution, consuming the files by reading them from the filesystem. The
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CAPIO middleware facilitates the concurrent execution of both applications
without necessitating modifications to the code of the two modules. For this
seamless integration, CAPIO requires information about the specific data
streaming semantics (as elucidated in earlier sections) it should enforce on
the produced and consumed files, ensuring accurate execution.

4.2.1 Commit on Termination, Fire on Commit (CoT-
FoC)

The more restrictive streaming capability semantic is conveyed through Com-
mit on-Termination (CoT) paired with the Fire On-Commit (FoC) firing rule.
This semantic dictates that, when applied to a file, the reader is allowed to
commence reading the file only after the writer application has terminated.
This proves advantageous when a section of the file can be updated multiple
times, and there is uncertainty about when the writer will cease adding data
records. In such cases, the correct behavior is to await the termination of the
writer before reading. When CAPIO detects a read system call on a file with
such stringent semantics, it will provide the data only upon the completion of
the writer application. Despite the absence of ongoing streaming communica-
tion with the CoT-FoC semantics, concurrent execution of both applications
can still be advantageous, particularly in scenarios where the reader must
perform substantial computations before retrieving data from the writer ap-
plication. In Listing 4.9, we present the configuration file that expresses the
CoT-FoC semantics for the simple example under consideration.

Listing 4.9: Simple writer-reader pipeline with Commit on-Termination Fir-
ing on-Commit semantics.
{

"name":"my_workflow",

"IO_Graph":[

{
"name":"writer",

"output_stream":["file1.dat", "file2.dat" ],

"streaming":[

{
"name": ["file1.dat", "file2.dat" ],

"committed":"on_termination",

"mode":"update"

}
]

},
{

"name":"reader",
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"input_stream":["file1.dat","file2.dat"]

}
]

}

4.2.2 Commit on Termination, Fire no Update (CoT-
FnU)

In the following example, the workflow structure and its data dependencies
remain unchanged; only the producer-consumer semantics are altered. From
a syntax perspective, the only section requiring modification is the one related
to the keyword “streaming”. In Listing 4.10, the configuration file for the
workflow with the Commit on-Termination (CoT), Firing no-Update (FnU)
semantics is presented. With this semantic, the reader can initiate reading
the files file1.dat and file2.dat as soon as the writer produces data into these
files. The reader receives the End-of-Stream (EOS) signal upon reaching
the end of the file and after the termination of the writer module. In this
case, there are more opportunities for streaming communication than in the
previous semantics.

This semantics is advantageous when the user knows that once a section of
the file is written, it will not be modified, but they are uncertain about when
the writer will stop writing data into the file. For the considered workflow,
this semantics involves streaming only on the first file (i.e., file1.dat) because
the writer and reader write/read files in a sequential manner (first file1.dat,
then file2.dat, and so on). In this scenario, the reader will read the first file
until both of these conditions are true:

1. It reaches the end of the file

2. writer terminates

When these two conditions are met, the CAPIO middleware will return
the EOS signal to the reader, who will then proceed to read the second file.

Listing 4.10: Simple pipeline. Commit on-Termination Firing no-Update.
{

"name":"my_workflow",

"IO_Graph":[

{
"name":"writer",

"output_stream":["file1.dat", "file2.dat"],
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"streaming":[

{
"name": ["file1.dat", "file2.dat" ],

"committed":"on_termination",

"mode":"no_update"

},
]

},
{

"name":"reader",

"input_stream":["file1.dat","file2.dat"]

}
]

}

4.2.3 Commit on Close, Fire on Commit (CoC-FoC)

Listing 4.11 presents the syntax for expressing the Committed on-Close
(CoC), Firing On-Commit (FoC) semantics. This semantics enables the
reader to commence reading a file after it is closed. The “update” mode,
as described earlier, prevents the reader from accessing the data before the
file is committed. In this scenario, the file is considered committed as soon
as it is closed. This combination of semantics is beneficial when the writer
updates a file multiple times, then ceases writing or updating the records
and closes the file. In such cases, the CAPIO middleware makes the reader
wait for the file’s completion, and then it begins reading, even if the writer
is still running. With this semantics, there is no streaming communication
of file records but streaming at the granularity of the entire file.

Listing 4.11: Simple pipeline. Commit on-Close Firing on-Commit.
{

"name":"my_workflow",

"IO_Graph":[

{
"name":"writer",

"output_stream":["file1.dat", "file2.dat"],

"streaming" :[

{
"name" :[ "file1.dat" ],

"committed" :"on_close",

"mode" :"update"

}
]

},
{

"name":"reader",

"input_stream":["file1.dat","file2.dat"]

}
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]

}

4.2.4 Commit on Close, Fire no Update (CoC-FnU)

The Committed on-Close (CoC), Firing no-Update (FnU) semantics, as de-
fined in Listing 4.12, allows users to optimize streaming between producer
and consumer workflow modules. In this scenario, the reader can start con-
suming data as soon as it is produced. Reading file records will cease when
the reader reaches the end-of-file and the writer closes the file. If the reader
reaches the end of the file and the writer has not closed it, the reader will wait
until sufficient data is written to fulfill the read SC operation, or the writer
closes the file. Upon the file closure by the writer, the reader receives the
end-of-stream signal from the CAPIO middleware, and the read SC returns
either fewer data or EOF.

Listing 4.12: Simple pipeline. Commit on-Close Firing no-Update.
{

"name":"my_workflow",

"IO_Graph":[

{
"name":"writer",

"output_stream":["file1.dat", "file2.dat"],

"streaming" :[

{
"name" :[ "file1.dat", "file2.dat" ],

"committed" :"on_close",

"mode" :"no_update"

},
]

},
{

"name":"reader",

"input_stream":["file1.dat","file2.dat"]

}
]

}

4.2.5 Commit on File, Fire update (CoF-FU)

The syntax for the Commit on-File (CoF), Firing no-update (FnU) semantics
is depicted in Listing 4.13. In this scenario, file2.dat is considered committed
when file1.dat is committed. In our example workflow, file1.dat is committed
upon closure; therefore, file2.dat is committed with the on close semantics,
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and the firing semantics is set to update. As Firing update is the default
policy, the keyword “mode” can be omitted or explicitly set to enforce the
no update semantics.

Listing 4.13: Simple pipeline. Commit on-File Firing no-Update.

{
"name":"my_workflow",

"IO_Graph":[

{
"name":"writer",

"output_stream":["file1.dat", "file2.dat"],

"streaming" :[

{
"name" :[ "file1.dat" ],

"committed" :"on_close",

"mode" :"no_update"

},
{

"name" :[ "file2.dat" ],

"committed" :"on_file",

"files_deps": ["file1.dat" ],

"mode" :"update"

}
]

},
{

"name":"reader",

"input_stream":["file1.dat","file2.dat"]

}
]

}

4.2.6 Streaming directory contents

Here we consider a slightly different workflow where streaming semantics is
applied to a directory and its content. The writer application remains un-
changed (see Algorithm 1). However, in this scenario, the reader does not
have prior knowledge of the specific file names to read; instead, it only knows
the name of the directory containing the files. Consequently, the reader it-
erates through the directory entries and reads all the files present in the
directory. The pseudo-code for the reader is outlined in Algorithm 3. Listing
4.14 presents a potential configuration file for this particular application sce-
nario. Streaming semantics can be extended to directories by utilizing the
value n files:N for the “committed” keyword. This value specifies the an-
ticipated number of files to be produced within the directory. This optional
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Algorithm 3: Reading all files in a directory.

Data: dir path ; secs ≥ 0
F ← next file(dir path) ; /* Returns a file in the directory

*/

while F ̸= EOS do
buffer ← read file(F );
compute(secs, buffer);
F ← next file(dir path);

end

information allows the reader application to access and read the directory en-
tries while the writer is still creating them. The CAPIO middleware, armed
with knowledge about the total number of files expected in the directory, can
determine the appropriate timing to signal the end-of-stream (EOS) to the
reader.

It is crucial to note that this information becomes particularly valuable
when the firing rule for the directory is set to “no update”, as exemplified
in the provided example. If not explicitly specified otherwise, the default
commit semantics for directories and files is “on termination”. This implies
that the total number of files in the directory becomes known only when all
producers writing to the directory have terminated. Setting the firing rule
for a directory to “no update” is appropriate only when the newly created
directory entries (i.e., new files in the directory) are not subject to removal.

Listing 4.14: Simple pipeline with a directory.
{
"name" :"my_workflow",

"IO_Graph" :

[

{
"name" :"writer",

"output_stream" :["my_dir"],

"streaming" :[

{
"dirname" :[ "my_dir" ],

"committed" :"n_files:500",

"mode" :"no_update"

},
{

"name" :[ "my_dir/*" ],

"committed" :"on_close",

"mode" :"no_update"

},
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]

},{
"name" :"reader",

"input_stream" :["my_dir"]

}
]

}

4.3 Home-Node Policies

In this section, we delve into the features provided by the coordination lan-
guages to convey optimization hints to CAPIO’s runtime system for the ef-
ficient placement of file data. Drawing inspiration from page-based software
Distributed Shared-Memory implementations [139], we introduce the concept
of a home-node within the CAPIO ecosystem. The home-node serves as the
designated node for storing information related to the data and metadata of
a specific set of files or directories.

As outlined in subsection (4.1.6), the CAPIO language offers three dis-
tinct policies for setting the home-node(s):

� create

� manual

� hashing

The user can specify one or more of these policies for a disjoint set of files
and directories. Importantly, a given file or directory cannot have more than
one home-node policy.

For a detailed understanding of the current implementation of home-node
policies in the CAPIO middleware, please refer to subsection 5.2.2.

Create home-node policy

The create policy is the default setting for the CAPIO coordination language.
This policy comes into effect when the home-node-policy language section is
absent or when the policy-name object is explicitly set to create. If the
home-node-policy language section is specified, but not all files have their
home-node policy defined, the policy defaults to create for those files. The
semantics of the create policy dictate that the home-node assigned is the
CAPIO server where the file was initially created.
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To illustrate, consider two CAPIO servers, C1 and C2, and a workflow
module with two processes (P1 and P2) running on C1 and C2, respectively.
If C1 creates the file “file.dat”, the data and metadata of that file will be
stored in the C1 server, automatically designating C1 as the home-node for
the “file.dat” file.

Manual home-node policy

When the home-node policy keyword is set to manual, users have the flexi-
bility to explicitly designate the home-node for individual or groups of files
by specifying the home-node where a particular application module is exe-
cuting. This is achieved by specifying the name of the workflow module used
in the IO Graph section.

For example, in Listing 4.15, the home-node for the files “file1.dat” and
“file3.dat” is the node where the process of the writer application with logic
id 0 will be executed. Similarly, for the files “file2.dat” and “file4.dat”, the
home-node is the writer’s process with logic id 1. In cases where the appli-
cation is single-process, setting the logic id is unnecessary, and the module
name alone is sufficient.

The logic id serves as a unique identifier (integer type) for identify-
ing a process of an application module. In the JSON file, it must be set
according to the syntax: module name:id. The id is the number passed
through the environmental variable CAPIO APP NAME to the CAPIO run-
time when launching the application. For example, assuming two CAPIO
servers, C1 and C2, and the writer application module executed with two
processes, the process of the writer module running on node C1 will have CA-
PIO APP NAME=“writer:0” as the environmental variable, and the writer
module process on node C2 will have CAPIO APP NAME=“writer:1”.

Listing 4.15: Manual home-node policy example.
{

"name" :"my_workflow",

"IO_Graph": [

{
"name": "writer",

"output_stream": ["file*.dat" ],

"streaming": [

{
"name": ["file*.dat" ],

"committed": "on_close"

}
]

},
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{
"name": "reader",

"input_stream": ["file*.dat" ]

}
],

"home-node-policy": {
"manual": [

{
"name" :[ "file1.dat", "file3.dat" ],

"app_node": "writer:0"

},
{

"name": ["file2.dat", "file4.dat" ],

"app_node": "writer:1"

}
],

}
}

Hashing home-node policy

Another home-node policy supported by the CAPIO language is hashing.
The reference node for a given file is determined by hashing its pathname
modulo the number of CAPIO nodes running in the given workflow. For in-
stance, the logical id of the home-node for the file “file.dat” in a workflow with
4 CAPIO servers is calculated as hash-function("$CAPIO_DIR/file.dat")%4.
The hash-function is consistent across all CAPIO servers and can be any
effective string hashing function, such as the std::hash method in modern
C++.

4.3.1 More complex examples

In this subsection, more complex examples will be explored to show the
potential of CAPIO’s features and how the user can exploit them.

Data dependencies

In the previous examples, we focused on simple pipelines consisting of a pro-
ducer and a consumer. However, the IO-Graph section of the configuration
file allows the representation of any Directed Acyclic Graph (DAG) that cap-
tures a workflow along with its data dependencies. In this context, we present
an example that involves multiple producers and consumers. Consider a
workflow depicted in Figure 4.1, consisting of an Application S producing
files required by three applications: W, X, and Z. Each of these applications
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Figure 4.1: Example workflow showing files dependencies.

reads distinct files, processes the data, and writes the results to the same
file, “file-out.dat”. Each application contributes a unique portion to this file,
which is then read by the final application, Y. Listing 4.17 illustrates how to
articulate the IO-Graph using the CAPIO coordination language.

Listing 4.16: A more complex workflow.
{
"name" :"my_workflow",

"IO_Graph" :

[

{
"name" :"S",

"output_stream" :["file*.dat"]

},
{

"name" :"W",

"input_stream" :["file1.dat", "file4.dat"],

"output_stream": :["file-out.dat"]

},
{

"name" :"X",

"input_stream" :["file2.dat", "file5.dat"],

"output_stream" :["file-out.dat"]

},
{

"name" :"Z",

"input_stream" :["file3.dat", "file6.dat"],

"output_stream": :["file-out.dat"]

},
{

"name" :"Y",

"input_stream" :["file-out.dat"]
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}
]

}

Usage example of the home-node policies

Figure 4.2: One possible deployment for the example workflow in Figure 4.1.

Here we present an example where the judicious use of home-node poli-
cies can significantly enhance the performance of a workflow. Figure 4.2
illustrates a potential deployment of the workflow depicted in Figure 4.1.
In this instance, the workflow modules are distributed across three nodes,
with application module S running on node0, modules X and V on node1,
and modules Z and Y on node2. The workflow module W is the only multi-
process application, with the process having logic id 0 running on node0,
and the process with logic id 1 on node1. Listing 4.17 outlines the CAPIO
configuration file with home-node policies configured to minimize the num-
ber of communications between producer-consumer nodes. The strategy is
to set the home-node as the node where the process that needs to read the
file is running. In this presented configuration file, we utilize manual config-
uration for home-nodes, enabling the enforcement of a specific mapping of
files to nodes. In more intricate workflows with complex file dependencies,
where files are written/read by multiple processes, the hashing policy can be
a simpler solution for the user.

Listing 4.17: Files to nodes mapping using the create and manual policies
for the workflow in Fig. 4.1.
{
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"name" :"my_workflow",

"IO_Graph" :

[

{
"name" :"S",

"output_stream" :["file*.dat"]

},
{

"name" :"W",

"input_stream" :["file1.dat", "file4.dat"],

"output_stream": :["file-out.dat"]

},
{

"name" :"X",

"input_stream" :["file2.dat", "file5.dat"],

"output_stream" :["file-out.dat"]

},
{

"name" :"Z",

"input_stream" :["file3.dat", "file6.dat"],

"output_stream": :["file-out.dat"]

},
{

"name" :"Y",

"input_stream" :["file-out.dat"]

}
],

"home_node_policy": {
"create" :["file1.dat"],

"manual" :

[

{
"name": ["file2.dat", "file4.dat"],

"app_node": "X"

},
{

"name": ["file5.dat"],

"app_node": "W:1"

},
{

"name": ["file3.dat", "file6.dat"],

"app_node": "Z"

},
{

"name": ["file-out.dat"],

"app_node": "Y"

}
]

}
}

In HPC clusters, users are typically unaware of the nodes where applica-
tions will be executed. By utilizing logical names for workflow application
modules and logical ids for the processes within a single application module,
users can define data placement without detailed knowledge of the actual
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node configuration. Moreover, the same configuration file can be applied in
different deployments, as the home-node policy relies on applications rather
than the specific physical resources. It’s important to note that the create
policy is essentially syntactic sugar designed for user convenience. The same
data placement achieved with the create policy can be expressed using the
manual policy with more user effort. Both the create and hashing policies are
well-suited when users lack deep insights into the workflow and its deploy-
ment. The create policy offers the advantage of fast file writing by a single
process, storing it in the memory where the file is created. However, this
approach may lead to uneven file creation among processes or application
modules, potentially causing memory imbalances across nodes. In cases with
too many files stored on a single node, it may become a bottleneck, espe-
cially with a high number of reads from different nodes. On the other hand,
the hashing policy helps overcome these issues by balancing data across all
nodes in the workflow. However, writing a file may be slower as the data
might be placed on a “distant” node. In the worst-case scenario, the hashing
policy might result in a situation where a file is stored in neither the pro-
ducer nor the consumer of the file, thus slowing down both read and write
operations. The create policy has been chosen as the default option due to
its user-friendly nature. It does not require users to explicitly state the rela-
tionship between application modules and files produced or read. It is also
straightforward to implement by collecting the files-to-home-node mapping
in a database shared by all CAPIO servers, as discussed in subsection 5.2.2.
The current CAPIO middleware implements the home-node database as a
set of files stored in the cluster filesystem.

4.4 JSON Schema of the I/O coordination

language

Here we report the JSON schema of the I/O coordination language imple-
mented in the CAPIO middleware.

1 {
2 "$schema": "https://json-schema.org/draft/2020-12/schema",

3 "type": "object",

4 "properties": {
5 "name": {
6 "description": "Name of the workflow",

7 "type": "string"

8 },
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9 "aliases": {"$ref": "#/$defs/aliases" },
10 "IO_Graph": {
11 "description": "Representation of data dependencies between applications and streaming

semantics",

12 "type": "array",

13 "items": {
14 "type": "object",

15 "properties": {
16 "name": {"$ref": "#/$defs/application_name" },
17 "input_stream": {
18 "description": "Files read by the application",

19 "$ref": "#/$defs/list_of_files"

20 },
21 "output_stream": {
22 "description": "Files produced by the application",

23 "$ref": "#/$defs/list_of_files"

24 },
25 "streaming": {
26 "description": "Streaming semantics of files produced by the application",

27 "$ref": "#/$defs/streaming"

28 }
29 },
30 "required": ["name"],

31 "dependentRequired": {
32 "streaming": ["output_stream"]

33 }
34 }
35 },
36 "permanent": {
37 "description": "Files that will be stored in the filesystem at the end of the workflow

execution",

38 "$ref": "#/$defs/list_of_files"

39 },
40 "exclude": {
41 "description": "Files that will not be handled by CAPIO even if they are in the CAPIODIR

",

42 "$ref": "#/$defs/list_of_files"

43 },
44 "home_node_policy": {"$ref": "#/$defs/home_node_policy" }
45 },
46 "required": ["name", "IO_Graph"],

47
48 "$defs": {
49
50 "aliases": {
51 "description": "Defines aliases for groups of files",

52 "type": "array",

53 "items": {
54 "type": "object",

55 "properties": {
56 "group_name": {"type": "string" },
57 "files": {"$ref": "#/$defs/list_of_files" }
58 }
59 }
60 },
61
62 "application_name": {
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63 "description": "Name of the application",

64 "type": "string"

65 },
66
67 "list_of_files": {
68 "type": "array",

69 "items": {
70 "type": "string"

71 },
72 "minItems": 1

73 },
74
75 "streaming": {
76 "description": "Streaming semantics of files produced by the application",

77 "type" :"array",

78 "items": {
79 "type": "object",

80 "oneOf" :[

81 {
82 "properties": {
83 "name": {"$ref": "#/$defs/list_of_files" },
84 "committed" :{
85 "description": "Commit rule",

86 "type" :"string",

87 "pattern": "^(on_termination)$|^(on_close(:([1-9]+))?)$|on_file"

88 }
89 },
90 "required" :["name", "committed"]

91 },
92 {
93 "properties": {
94 "dirname": {"$ref": "#/$defs/list_of_files" },
95 "committed" :{
96 "description": "Commit rule",

97 "type" :"string",

98 "pattern": "^(on_termination)$|^(n_files(:([1-9]+)([0-9]*))?)$|on_file"

99 }
100 },
101 "required" :["dirname", "committed"]

102 }
103 ],

104 "properties": {
105 "mode" :{
106 "description": "Firing rule",

107 "enum": ["update", "no_update"]

108 }
109 },
110 "if": {
111 "type": "object",

112 "properties": {
113 "committed": {"const": "on_file" }
114 }
115 },
116 "then": {
117 "properties": {
118 "files_deps": {
119 "$ref": "#/$defs/list_of_files"
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120 }
121 },
122 "required": ["files_deps"]

123 },
124 "unevaluatedProperties": "false"

125 },
126 "minItems": 1

127 },
128
129 "home_node_policy": {
130 "description": "In which nodes the files are stored during the workflow execution",

131 "type": "object",

132 "properties": {
133 "manual": {
134 "description": "Name of the policy",

135 "type": "array",

136 "items": {
137 "type": "object",

138 "properties": {
139 "name": {"$ref": "#/$defs/list_of_files" },
140 "app_node" :{
141 "description": "Appname:LogicID",

142 "type": "string",

143 "pattern": "^([a-z]+(:([0-9]+))?)$"

144 }
145 },
146 "required": ["name", "app_node"]

147 },
148 "minItems": 1

149 },
150 "hashing" :{ "$ref": "#/$defs/list_of_files" },
151 "create" :{ "$ref": "#/$defs/list_of_files" }
152 },
153 "additionalProperties": "false"

154 }
155 },
156 "additionalProperties": "false"

157 }
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CAPIO Runtime

This chapter presents the architecture of the initial version of a runtime
capable of adhering to the specifications outlined in the CAPIO coordina-
tion language. Subsequently, implementation details are explored, providing
insights into how the runtime transforms a batch workflow into an in-situ
workflow using a configuration file written in the CAPIO language by the
user. Additionally, an example is provided on deploying the CAPIO runtime
and a workflow onto an HPC system using the SLURM job scheduler.

5.1 Architecture

In this section, we introduce the software architecture of CAPIO and its
runtime. The CAPIO runtime consists of a collection of user-space servers
per node, which implement an ad hoc distributed data storage system for
a specified workflow application. Utilizing information from the input con-
figuration file, CAPIO enforces streaming data movements of files between
different workflow steps (figure 5.1).

The software architecture of CAPIO is depicted in Figure 5.2 and is imple-
mented in modern C++, leveraging MPI [50] for inter-node communications.
CAPIO server processes are currently deployed on a node cluster using the
mpirun launcher. Users define a CAPIO local-node mount point (capio mnt)
for each cluster node through the CAPIO DIR environment variable. CAPIO
captures all I/O system calls executed on files and directories created within
the capio mnt directory.

System calls directed at files outside the CAPIO local mount point are

83



5.1. ARCHITECTURE

Figure 5.1: The CAPIO I/O coordination layers: the config. file embeds
both I/O data dependencies and files’ annotations describing commit and
firing rules; the CAPIO SCs intercept library coupled with the local-node
CAPIO Server transparently enable in-memory store of files and directories,
and enforce synchronized accesses to them.

disregarded by CAPIO and forwarded to the kernel. The CAPIO implemen-
tation accommodates both multi-process and multi-threaded applications,
allowing I/O calls to the same or different files to be executed by different
processes or threads within the same application process.

The CAPIO intercept library, implemented using the Linux-x86 64 sys-
tem call intercepting library syscall intercept [106], functions as a shared
library dynamically linked to the steps of the workflow. This linking occurs
through the LD PRELOAD dynamic linker environment variable, enabling the
library to capture I/O system calls executed on files and directories within
the CAPIO local-node mount point. Another alternative is to use FUSE or
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Figure 5.2: Deployment example of the CAPIO middleware on 2 cluster
nodes: AppP is executed on both nodes; the local capio mnt directory is
the CAPIO FS entry point; the distributed FS is used to store home-node
metadata information of the files.

to write a shared library that redefine the C lIbrary functions and that is
loaded before GLIBC (using LD PRELOAD) in order to capture the execu-
tion of those functions. FUSE can have performance issues ([140]) and it can
be unpratical to be used in HPC systems because it require root access to be
mounted. Therefore, as discussed in [10] the LD PRELOAD method is to be
generally prefered in HPC systems. We used the library syscall intercept that
allows to capture directly the system calls instead of capturing the standard
C library functions. This is a more general approach because it can used
with programs or library that directly use the system calls and we have only
to reimplement the system call and not all the C I/O functions. The CA-
PIO intercept library seamlessly communicates with the local CAPIO server
through POSIX shared-memory APIs. By default, file data (along with meta-
data) is held in the primary memory of the producer. When the consumer
step resides on the same node as the producer, communication takes place via
local-node shared memory, overseen by the local CAPIO server. Conversely,
if consumer steps are distributed across multiple cluster nodes, the requisite
data is directly transferred from memory to memory between CAPIO servers.
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Figure 5.3: High-level view of the CAPIO middleware when used to coordi-
nate I/O in a workflow application (the example workflow appW is composed
of 4 steps S, W, Q, and Y ) deployed on 4 cluster nodes (one workflow step
for each cluster node).

5.2 Implementation

CAPIO’s runtime comprises a collection of per-node user-space servers, re-
ferred to as CAPIO servers, that implement a distributed data storage system
for a single application workflow. Each CAPIO server utilizes information
from the provided CAPIO configuration file, serving as an input argument
to ensure coordination of file exchanges and data streaming based on the
producer-consumer semantics outlined in chapter 4.

Figure 5.3 illustrates a schematic deployment of CAPIO servers in a 4-
node cluster (node0-4) for the application workflow example appW. In each
node where the workflow steps are deployed, a CAPIO server manages all files
and directories referenced by the step within the local-node CAPIO virtual
mount-point. Any system calls (SCs) directed at files and directories outside
the CAPIO local virtual mount-point are not directly handled by the CAPIO
server; instead, they are forwarded to the kernel.

The internal workings of the CAPIO server are coded in C++, while
server-to-server communications are currently implemented using MPI. Users
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Figure 5.4: The internal software components of the CAPIO runtime running
on a single node. It comprises two distinct parts: the CAPIO server and the
CAPIO System Calls Intercept Library (CAPIO SC-IL).

specify a CAPIO local-node virtual mount-point for each node via the CA-
PIO DIR environment variable. The CAPIO System Calls Intercept Library
(CAPIO SC-IL), implemented using the Linux-x86 64 system call intercept-
ing library syscall intercept, is a shared library dynamically linked to the
steps of the application workflow using the LD PRELOAD dynamic linker
environment variable. This library captures the I/O SCs executed on files
and directories inside the local-node virtual mount-point. The SC-IL com-
municates with the local CAPIO server through a concurrent circular buffer
stored in a POSIX shared-memory segment protected by POSIX Semaphores.

Figure 5.4 depicts the internal primary components of the CAPIO server
running on a single node. Below, we provide a brief overview of the main
functionalities of each component.

� Intra-node Shared-Memory Layer. The coordination of data exchange
between the CAPIO SC-IL component, operating within the applica-
tion process, and the CAPIO server occurs in this layer through the
utilization of the POSIX Shared-Memory standard interface. Dedicated
shared-memory segments are allocated for each workflow step that runs
on the same node as the CAPIO server. These segments store buffers
and semaphores essential for synchronization, and they are promptly
dismantled upon the exit of the corresponding application step.

� Config/Env parser. The CAPIO server utilizes a JSON-based configu-
ration file to store information related to file coordination and stream-
ing semantics. It also relies on a set of environmental variables to
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obtain details for tuning the performance of internal components and
to determine the name of the CAPIO DIR. The Config and Env parser
extracts this information from the configuration file and the process’s
environment variables, organizing it for use by other CAPIO compo-
nents.

� Data Storage. This component stores the contents of files for which
the CAPIO server acts as the home-node, meaning it stores the master
copy of the file. While portions of a file may also be stored in other
CAPIO servers to enhance performance and reduce network traffic, the
current CAPIO middleware implementation designates a single master
node responsible for storing the most recent metadata and data infor-
mation for a given file or directory. Other CAPIO servers always refer
to the home-node to determine if a file has updated data and meta-
data. By default, each file is stored in the main memory of the CAPIO
server. However, upon request, the user can choose to store the file in
the filesystem using the ’permanent’ keyword in the JSON config file.
This ensures that the file is preserved even after the termination of the
CAPIO server. This feature is currently implemented by utilizing the
mmap system call.

� Metadata cache. This component functions as a metadata cache for files
and directories, specifically those for which the current CAPIO server
is not the home-node. To maintain data coherence, a straightforward
invalidation protocol is implemented among CAPIO servers, ensuring
that the metadata cache only retains up-to-date information.

� Optimizer. The Optimizer is responsible for implementing file data
caching in CAPIO servers that are not the home-node. Its role includes
optimizing the transmission of data by allowing the sending of more
data than requested, aiming to minimize the number of request-reply
message exchanges among CAPIO servers.

� Logger. The CAPIO Logger consists of two sections—one for storing
information related to the CAPIO server and the other for storing
information related to the CAPIO SC-IL component. These two loggers
can be activated independently and are not typically compiled into
CAPIO, unless explicitly instructed to do so. The logger component is
also capable of logging at different levels, ranging from 0 (no logging)
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to “n”, where “n” represents the maximum depth of the function on
the stack. If the log level is less than 0, then everything is logged.

� Inter-node Communication Layer. This component oversees the coor-
dination of communications between CAPIO servers, facilitating the
exchange of both data and metadata information. The software layer
is intentionally designed to be agnostic to the specific data transport
method employed for these communications. Currently, the abstract
interface utilizes the Message Passing Interface (MPI) library. In fu-
ture releases of the CAPIO middleware, users will have the flexibility
to choose from various transport back-end options.

The CAPIO server utilizes the names of workflow application steps to asso-
ciate them with their corresponding semantic information in the configura-
tion file. The application step name is specified at the launch time of each
workflow step by utilizing the environment variable CAPIO APP NAME.
During the start-up handshake protocol, the CAPIO SC-IL transmits this
information to the local CAPIO server. The name of the application step is
identified by the JSON file’s language keyword “name”.

CAPIO’s implementation supports both multi-process and multi-threaded
applications. By default, file data (and metadata) is stored in the main mem-
ory of the node where the file is created (this is the default home node policy
adopted by the CAPIO middleware). If the consumer step is deployed on
the same producer node, communications occur through the shared memory
buffer mediated by the local CAPIO server. Conversely, if consumer steps
are deployed on different cluster nodes, the requested data is transferred
through direct memory-to-memory communications between CAPIO servers.
However, file data placement can be controlled by setting the “home nodes”
keyword in the CAPIO configuration file.

Regarding file metadata information, not all metadata is kept consistent
for each data and metadata access, such as the timestamp fields, for perfor-
mance reasons. Instead, the file size is always kept consistent in the home-
node, allowing CAPIO to handle sparse files—a technique often employed to
write different partitions of a single file in parallel.
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Figure 5.5: Schema depicting a straightforward producer-consumer workflow
deployed across two nodes. The diagram illustrates the steps involved in
the request-reply protocol for handling read and write operations on the
“file.dat”.

5.2.1 CAPIO servers interaction for writing and read-
ing data

Here, we showcase a straightforward example of a producer-consumer work-
flow involving two application steps—Q (the producer of the file.dat file) and
W (the consumer of that file)—executing on separate computing nodes. The
objective is to elucidate the producer-consumer protocol between the two
CAPIO servers by outlining the steps taken to address two distinct scenar-
ios: 1) W attempts to read the file.dat before Q has produced its content;
2) W reads the file when Q has already started to produce its content. The
CAPIO server where Q is deployed serves as the home node for the file.
A snippet of the JSON configuration file outlining the example workflow is
provided in Figure 5.5.

In the first scenario, we assume that step W opens the file file.dat for
reading, even though the data for this file has not yet been produced by step
Q.

The CAPIO SC-IL intercepts the read system call (step 1) and forwards
the request to the CAPIO server through a shared-memory segment con-
taining the requests’ buffer (step 2). The CAPIO server checks whether the
requested data is already present in the local data cache. If not, the CA-
PIO server retrieves the CAPIO home-node server (step 3) and dispatches a
data request, specifying the amount of data to read, to the selected server
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(step 4). Subsequently, the CAPIO server resumes handling other requests
from local workflow steps or other remote CAPIO servers. Meanwhile, the
requesting process in the W step, which initiated the read SC request, awaits
the completion of the operation.

The home-node CAPIO server receives the read request and verifies the
availability of the data in the local storage (step 5). In our example, the
producer Q has not yet produced the data; therefore, the home-node CAPIO
server cannot immediately respond to the request. When the step Q begins
writing the data into the file.dat file, the CAPIO SC-IL intercepts all write
system calls (step 6), stores the data in its local cache, and then forwards the
data to the CAPIO server through a shared-memory buffer, either when the
cache buffer is full or when the file is closed (step 7). The CAPIO server stores
the data in the local storage (step 8), updates the metadata information, and
concurrently handles all pending remote requests awaiting a reply (step 9).

The amount of data sent as a reply message may exceed the initially
requested size if the CAPIO server’s Optimizer component is configured to
perform pre-store operations aggressively. Upon receiving a reply message,
the CAPIO server stores the data in the local cache (step 10) and places
the requested data from the initial read SC into the shared-memory buffer
associated with the replies (step 11). Finally, the CAPIO-IL completes the
read request by transferring the data into the SC buffer (step 12).

The second scenario (i.e., W initiates reading the file content after Q
has already begun producing its content) closely resembles the previously
described scenario, but with a few distinctions. When the home-node CA-
PIO server receives the read request from the CAPIO server running on the
same node as the W step, it promptly responds to the request. It transmits
more data than the amount requested, provided it is available in the data
storage, up to a specified threshold defined by the user through the envi-
ronment variable CAPIO PREFETCH DATA SIZE (refer to section 5.2.4).
This optimization is termed pre-store. The objective is to enhance data
transmission efficiency and potentially decrease the number of request-reply
message exchanges.

5.2.2 Home-node Implementation

The home-node DB is currently implemented using POSIX files in the dis-
tributed filesystem, and it is updated/accessed by the CAPIO servers through
POSIX file locking to prevent race conditions. Additionally, it is cached in
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the main memory of each CAPIO server for performance reasons, as file-
to-home-node mappings remain static. Looking ahead, we plan to explore
alternative solutions, such as in-memory distributed databases. When a pro-
cess seeks to read a file, it needs to determine which node serves as the
home-node for that file. If the home-node is known statically, the process is
straightforward. However, in the case of a dynamic home-node policy, the
only way to retrieve the home-node is through a query to the home-node
database. Currently, there are three home-node policies: “create”, “man-
ual”, and “hashing”. “Create” and “manual” are dynamic policies as the
home-node is determined only at runtime. In contrast, the hashing policy is
static because retrieving the node requires applying the hashing function to
the file’s path. Presently, a file is stored in the memory of the home node.
However, our future plans include offering users the option to distribute the
content of a file across multiple nodes. This technique, known as “Data
Stripping”, is commonly employed in distributed file systems to alleviate
the bottleneck associated with a single node. Distributing the content of a
file across multiple locations enhances performance, particularly for multiple
parallel read requests to different parts of a file.

5.2.3 Deployment

To deploy a workflow using CAPIO, it is necessary to launch a CAPIO server
on each node designated for workflow execution. Additionally, for every
application step within the workflow, the CAPIO SC-IL library must be
linked by setting the LD PRELOAD environment variable to the path of the
CAPIO shared library (libcapio posix.so).

In listing 5.1, an example script for the Slurm job scheduler [2] is pre-
sented for a straightforward workflow leveraging the CAPIO middleware.
The workflow consists of two application components: a writer and a reader.
Notably, CAPIO enables the concurrent execution of writer and reader com-
ponents. In this simple scenario, the workflow operates on two cluster nodes,
with the writer initiated on the first node and the reader on the second. The
CAPIO server is active on both nodes.

Looking ahead, for enhanced CAPIO deployment convenience, we plan
to integrate the CAPIO middleware with workflow management systems like
StreamFlow [141] and DagOnStar [84]. This integration aims to automate
the CAPIO deployment process.
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Listing 5.1: SLURM script example to execute the reader -writer example
workflow with CAPIO.

1 #!/ bin / bash
2 #SBATCH ==e x c l u s i v e
3 #SBATCH ==job=name=my workflow
4 #SBATCH ==error=myJob%j . err # standard error f i l e
5 #SBATCH ==output=myJob%j . out # standard output f i l e
6 #SBATCH ==nodes=2
7

8 # GET THE LIST OF NODES
9 read =d ' ' =a n od e l i s t <<< ”$ ( s c on t r o l show hostnames

$SLURM NODELIST) ”
10

11 i f [ $# =ne 3 ]
12 then
13 echo ”Usage : $0 CAPIO HOME CAPIO DIR CONF FILE”
14 exit 1
15 f i
16

17 capio home=$1 # the i n s t a l l d i r e c t o r y o f CAPIO
18 c a p i o d i r=$2 # the CAPIO v i r t u a l mount=po in t
19 c o n f f i l e=$3 # the name o f the JSON con f i g u r a t i on

f i l e
20

21 # RUN ONE CAPIO SERVER IN EACH NODE
22 srun ==exact =N $SLURMNNODES =n $SLURMNNODES ==ntasks

=per=node=1 $capio home/ s r c / c ap i o s e r v e r s e r v e r . l og
$ c o n f f i l e &

23 SERVER PID=$ !
24

25 # RUN A WRITER PROCCES IN THE NODE 0
26 srun =N 1 =n 1 =w ${ nod e l i s t [ 0 ] } ==exact ==export=ALL,

LD PRELOAD=”$capio home/ l i b c a p i o p o s i x . so ” ,
CAPIO DIR=” $ c ap i o d i r ” , CAPIO APP NAME=”wr i t e r ” . /
wr i t e r &

27 WRITER PID=$ !
28
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29 # RUN A READER PROCESS IN THE NODE 1
30 srun =N 1 =n 1 =w ${ nod e l i s t [ 1 ] } ==exact ==export=ALL,

LD PRELOAD=”$capio home/ l i b c a p i o p o s i x . so ” ,
CAPIO DIR=” $ c ap i o d i r ” , CAPIO APP NAME=” reader ” . /
reader

31

32 wait $WRITER PID
33 k i l l $SERVER PID

5.2.4 Configuration options

This section outlines a set of environmental variables tailored to fine-tune
both the performance of the CAPIO middleware and logging configuration
with varying levels of verbosity. The categorization distinguishes between
“server-side”, “client-side”, and “both”, indicating whether the variable is
utilized by the CAPIO server, the CAPIO SC-IL, or both components.

� CAPIO FILE INIT SIZE (Server-side): The default RAM space re-
served for files stored by the CAPIO server is 1MB. Adjusting this
variable to a larger value can enhance efficiency. When a file surpasses
the reserved space, memory reallocation to a larger size becomes nec-
essary.

� CAPIO PREFETCH DATA SIZE (Server-side): The number of bytes
to prefetch from a remote CAPIO server when a remote read is re-
quested. The default is 0, indicating that only the requested data is
retrieved. Setting this variable to a larger value is beneficial for aggres-
sively caching data between nodes.

� CAPIO WRITER CACHE SIZE (Client-side): The number of bytes
for the cache between the application and the local CAPIO server for
write operations. The default value is 0, indicating no cache. Config-
uring this cache enhances performance when a file undergoes numerous
sequential small write operations.

� CAPIO READER CACHE SIZE (Client-side): The number of bytes
for the cache between the application and the local CAPIO server for
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read operations. The default value is 0, indicating no cache. Con-
figuring this cache may enhance performance when a file undergoes
numerous sequential small read operations.

� CAPIO N ELEMS DATA BUFS (Both): The number of elements in
the shared circular buffer used for data communication between the
CAPIO SC-IL and the local CAPIO server.

� CAPIO WINDOW DATA BUFS SIZE (Both): The size in bytes of
the elements of the shared circular buffer used for data communication
between the CAPIO SC-IL and the local CAPIO server.

� CAPIO LOG DIR (Both): This environmental variable redefines the
default directory in which log files are stored.

� CAPIO LOG PREFIX (Both): This environmental variable redefines
the names of the log files CAPIO uses. By default, the CAPIO SC-IL
and the CAPIO server create log files into:
“CAPIO LOG DIR/posix/<machine hostname>/<thread id>.log”
“CAPIO LOG DIR/server/<machine hostname>/<thread id>.log”

� CAPIO MAX LOG LEVEL (Both): This environmental variable is
used to adjust the verbosity level of the CAPIO logging.
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Chapter 6

Evaluation

In this section, we present the outcomes derived from employing the CAPIO
middleware across a series of synthetic benchmarks designed to replicate
typical I/O workflow patterns, as well as on three distinct scientific workflows.
The initial workflow, following a MapReduce paradigm, simulates common
in-memory MapReduce computations using a sizable input dataset. The
second workflow, centered around the 1000 Genomes Project [142], adopts a
DAG-based bioinformatics approach for data parsing. The third workflow is
based on a mesoscale numerical weather prediction, leveraging the Weather
Research and Forecasting (WRF) Model [143].

6.1 System configuration

Our experiments were conducted by deploying the CAPIO middleware on
the GALILEO1001 and on the HPC4AI cluster (a.k.a. UNITO cluster)2.
GALIELO100 is a Tier-1 supercomputer hosted at the CINECA supercom-
puting center. Each computing node utilized in the experiments is equipped
with 2 Intel CascadeLake 8260 CPUs, featuring 24 cores running at 2.4 GHz,
and is outfitted with 384 GB RAM. The operating system is Centos 8.3.2011,
and the Linux kernel version is 4.18.0-240. The storage system is built on
the Lustre open-source parallel file system [37]. Each cluster node is inter-
connected through a switched 100 Gb/s Infiniband. The scratch directory,
mounted on the Lustre file system under /g100 scratch, is connected to stor-

1GALILEO100: https://www.hpc.cineca.it/hardware/galileo100
2HPC4AI Cluster: https://hpc4ai.unito.it
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Figure 6.1: Common workflow patterns tested with CAPIO. An outgoing
arrow indicates some files are produced while an incoming arrow indicates
that some files are consumed.

age with a 100 Gb/s Infiniband interconnect. Throughout our experiments,
we consistently utilized the scratch directory to store files and directories
when interacting with the file system.

The UNITO cluster comprises 68 Broadwell nodes connected through an
OPA 100Gbit/s network. Each node is equipped with 2 Intel(R) Xeon(R)
E5-2697 v4 running at 2.3GHz, 18 cores each. The distribution is Ubuntu
20.04.5 LTS, and the Linux kernel version is 5.4.0-137. The filesystem used
for the tests is BeeGFS.

Job submissions were facilitated through Bash scripts employing the Slurm
cluster resource manager. CAPIO was configured to use the default home-
node policy. For each test, we executed 10 runs, excluded the highest and
lowest values obtained, and then computed the average value from the re-
maining results.

6.2 The system calls’ intercept overhead

The initial tests were conducted to assess the overhead introduced by the CA-
PIO SC intercept library. We utilized the lmbench benchmarks [144], which
consist of micro benchmarks measuring OS and hardware system metrics.
Specifically, we focused on the lat syscall benchmark, which measures the
latency of certain simple system calls.

Two scenarios were tested:

� No LD PRELOAD defined, indicating no system call interception.

� using the CAPIO intercept library by setting LD PRELOAD=libcapio posix.so.
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Figure 6.2: 1-to-1 benchmark test with 10GB dataset and two different sizes
for the read/write buffer ws: large (1MB) in the top plot; small (1KB) in the
bottom plot. Left): test executed on one cluster node. Right): test executed
on two cluster nodes.

The results, averaged over 5 repetitions, are presented in Table 6.1. In sum-
mary, the overhead introduced by the CAPIO intercept library is relatively
minimal.

SCs
no

intercept
CAPIO
intercept

open 1.35 1.49
read 0.18 0.23
write 0.13 0.18
stat 0.45 0.52
fstat 0.19 0.24

Table 6.1: Execution time (in microseconds) of the lat syscall test from
lmbech benchmark suite considering some relevant SCs.

6.3 Synthetic banchmarks

The synthetic benchmarks are designed to portray relatively straightforward
scenarios, showcasing the potential impact of CAPIO optimizations on real-
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use cases. These benchmarks emulate three recurring application I/O pat-
terns: a) one producer and one consumer steps (1-to-1 ); b) one producer
and multiple consumer steps (1-to-Many); c) multiple producers and one
consumer steps (Many-to-1 ). These patterns are illustrated in Fig. 6.1.

All benchmarks are implemented in C and utilize standard POSIX library
calls such as fopen, fclose, fwrite, fread, feof, and lseek for managing
I/O operations.

6.3.1 Synthetic benchmarks on GALILEO100

These tests were performed on the GALILEO100 supercomputer. Apart
from basic checksum checks to verify result correctness, the workflow steps
exclusively carry out I/O operations. The tested cases include:

1. Default batch execution, where producers and consumers are executed
sequentially, utilizing the file system for file sharing (referred to as FS ).

2. Execution with CAPIO, employing Commit on-Close and Firing on-
Commit semantics for all files (referred to as CAPIO-CoC-FoC, i.e.
“MODE”=“update” at line 4 in listing 6.1).

3. Execution with CAPIO, employing Commit on-Close and Firing no-
Update semantics for all files (referred to as CAPIO-CoC-FnU, i.e.
“MODE”=“no update” at line 4 in listing 6.1).

In CAPIO executions, we initiated the CAPIO daemon(s), followed by the
producers and then the consumers that are execeuted concurrently. The
reported execution time represents the maximum values across all workflow
steps.

Listing 6.1: CAPIO configuration file for the synthetic benchmarks.
“MODE” can be equal to “update” or “no update”.

1 { "name" :"benchmarks",

2 "IO_Graph" :[

3 {"name" :"S", "output_stream": ["file*.dat"],

4 "streaming": [{"name" :["file*.dat"], "committed":"on_close", "mode":"MODE"}] },
5 {"name" :"Q", "input_stream" :["file*.dat"] }
6 ]

7 }
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1-to-1

In this benchmark, the producer generates N files, each of size M , using a
buffer size of ws KB, while the consumer reads all N files with the same
buffer size ws. The results depicted in Figure 6.2 (left-hand side) showcase
the outcomes with 2 cluster nodes and varying values of N , M , and ws.
The specific test cases include: 100Files-100MB (N = 100, M = 100MB),
10Files-1GB (N = 10, M = 1GB), and 1File-10GB (N = 1, M = 10GB).
For the buffer size, two cases were tested: ws = 1MB (top plot) and ws =
1KB (bottom plot).

Overall, CAPIO-based tests consistently exhibit higher performance across
all scenarios. An additional advantage is the lower variance compared to FS,
as it is independent of file system utilization, which tends to be high in large-
scale production supercomputers with numerous users. With a small buffer
size (i.e., ws = 1KB) in I/O operations, execution times increase due to
the higher number of system calls and libc internal buffer flush operations.
However, CAPIO proves to be less sensitive to this aspect compared to the
file system.

As expected, CAPIO-CoC-FnU synchronization semantics outperform
CAPIO-CoC-FoC when dealing with a few large files (e.g., the test 1File-
10GB). Moving to the right-hand side of Figure 6.2, the results for the same
set of tests with both producer and consumer deployed on the same cluster
node are presented. In this scenario, the benefits of CAPIO are less pro-
nounced, except for the case 1File-10GB. This can be attributed to aggres-
sive in-memory local node file system caching of data blocks. Additionally,
deployment on the same node may have significant effects depending on the
nature of workflow steps executed. Strict I/O-bound workflow steps can
be effectively co-executed on the same node, removing the potentially over-
whelmed file system from the I/O path. Conversely, mixed I/O-/CPU-bound
workloads may exhibit different behaviors due to the sharing of CPU cores
and memory bandwidth.

1-to-Many

In this benchmark, we examined two scenarios presented in Figure 6.3 (left-
hand side): 1) the producer writes 100 files, each of size 1GB (top plot);
2) the producer writes one file of 100GB, and the consumers read disjoint
partitions of the file (bottom plot). We tested the number of consumer steps
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Figure 6.3: Left): 1-to-Many test executed with 100 files of 1GB each
(top plot), and one single file of 100GB (bottom plot). Right): Many-to-1
executed with 100 files of 1GB each (top plot), and 10, 000 files of different
size on 5 cluster nodes (bottom plot – log. scale). For all tests the buffer size
is ws = 1MB.

with values of 5, 10, and 20.

As for the 1-to-1 test, the producer step is more efficient as data is written
to the local CAPIO server through a shared-memory segment. Consequently,
the execution time is primarily influenced by the consumers’ reading oper-
ations. In the first test, there is minimal difference between the two firing
rules tested, similar to the 1-to-1 test for file sizes of 1GB. In this case, the
writing time for producing the file with id k overlaps with the reading time
of the file with id k − 1 by one of the consumers. Since files are consumed
in increasing order of their ids, there is no significant variation in execution
time when increasing the number of consumer steps (i.e., nodes).

The second test mirrors the first one in its scatter communication pattern
but differs in implementation by using a sparse file. Once again, CAPIO ex-
hibits consistent results with those of the first test. Specifically, the CAPIO-
CoC-FnU synchronization semantics outperforms CAPIO-CoC-FoC due to
increased overlap in the I/O phase between producer and consumer steps.
In contrast, the file system execution performs less optimally when dealing
with a large sparse file created and written after seeking.
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Many-to-1

In this benchmark, we explored two scenarios depicted in Figure 6.3 (right-
hand side): 1) the producers collectively generate 100 files, each of size 1GB
(top plot); 2) the producers generate a large number of small files (10, 000),
with three different file sizes: 10MB, 1MB, and 100KB. In the first test, the
number of producer steps tested is 5, 10, and 20. In the second case, the total
number of workflow steps is fixed at 6 (i.e., 5 producers and 1 consumer).

Qualitatively, the first test exhibits results similar to those in the initial
test of the 1-to-Many benchmark, even though they emulate different com-
munication patterns—scatter versus gather. However, the absolute execution
time is higher for both FS and CAPIO cases. For CAPIO, this is partially
attributed to its more intricate communication protocol.

In the second test (bottom plot in Figure 6.3), FS encounters challenges
when dealing with numerous files and a relatively large dataset (up to 100GB).
In all tested cases, CAPIO introduces less overhead. With 10, 000 files of
10MB, the speed-up is more than 8 (∼ 630s vs. ∼ 75s).

6.3.2 Synthetic Benchmarks with ADIOS

We have implemented the synthetic benchamarks with ADIOS and compared
them with CAPIO (CoC-FnU semantics) and the filesystem on the UNITO
cluster. For translating the synthetic bechmarks described in Listing 1 and
2 in ADIOS2 variable is defined for each file and an explicit synchronization
instructions (begin step and end step) are added for reading/writing in a
streaming fashion. The pseudocode for the ADIOS version can be found in
listing 4 and 5. This pseudocode was presented to avoid to be lost in C++
and ADIOS2 details, but the real code used for the tests can be found on the
CAPIO repository. For these experiments we did not do any finetuning on
the ADIOS2 parameters because it is outside the scope of these experiments.
We used the filesystem as backend for ADIOS2, because in this cluster we
obtained the best results with this backend.

For these experiments, we tested different computation times for produc-
ers and consumers to simulate more realistic scenarios. In fact, the syn-
thetic benchmarks in the previous section represent the worst-case scenario
for streaming communication because there is no opportunity to overlap com-
munication and computation. In these tests, the writer processes perform a
sleep of N seconds before starting a file, where N represents the computation
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Algorithm 4: A simple file writer application with ADIOS2.

Data: n files ≥ 0 ; file size > 0 ; secs ≥ 0
N ← 0;
while N < n files do

adios variable ← define variable(”fileN.dat”, file size);
buffer ← compute(secs, file size);
begin step();
write variable(buffer, adios variable);
end step();
N ← N + 1;

end

Algorithm 5: A simple file reader application with ADIOS2.

Data: n files ≥ 0 ; file size > 0 ; secs ≥ 0
N ← 0;
while N < n files do

adios variable ← define variable(”fileN.dat”, file size);
begin step();
buffer ← read variable(adios variable);
end step();
compute(secs, buffer, file size);
N ← N + 1;

end

time before writing a file. N = 0 implies no computation, similar to the
previous tests. When N > 0, it allows for better exploitation of streaming
execution because, during the writer’s sleep, the reading process can read
the data produced in the previous iteration. However, if N is too large,
the improvement in I/O communication may be less impactful because the
workflow becomes CPU-bound rather than I/O-bound. If N is significant
enough, after the writer’s sleep, the consumer may have already completed
the read of the file generated in the previous iteration. By the end of the
writer’s execution, the consumer will have read all the files except the last
one. Increasing the value of N in this case may not lead to an improvement
in streaming communication because the consumer was already fast enough
with the previous value of N. Therefore, before converting a batch workflow
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Figure 6.4: 1-to-1 tests for different times of computation with the filesystem,
CAPIO and ADIOS2 on 2 nodes.

into an in situ workflow, the user should assess the possible gains through
the use of a profiling tool. In the next subsections are reported the results
of these tests for window size of 1 MB and a dataset of 100 files of 1 GB.

1 to 1

In Figure 6.4, the results for the 1-to-1 tests are presented. When no sleep
is performed, CAPIO performs slightly better than the filesystem, while
ADIOS2 is faster than both. As expected, in this case, the effort of rewriting
the application with ADIOS2 proves beneficial. When we increase the time
spent on sleep to 0.5 seconds, the execution time for the filesystem increases,
while CAPIO performs slightly better than in the previous case, outperform-
ing the filesystem. In this scenario, the execution time with CAPIO has
not increased because it can utilize the time spent on sleep for asynchronous
communication. On the other hand, ADIOS2 is still better than the filesys-
tem but slightly worse than CAPIO. This is likely due to using the filesystem
as the backend for ADIOS2, and no fine-tuning of its parameters was done.
Increasing the time spent on computation (N) to more than 0.5 also increases
the execution time for CAPIO because the workflow becomes CPU-bound.
In fact, with N = 0, the computation time for the filesystem is approximately
150 seconds, while with N = 2, the execution time is approximately 340 sec-
onds. With a sleep before writing every file, the total time spent sleeping is
100 ∗ 2 = 200 seconds because the writer produces 100 files.

1 to many

The results for the 1-to-many test case are presented in figure 6.5. With 5
nodes, CAPIO and ADIOS2 outperform the filesystem due to their ability
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Figure 6.5: 1-to-Many tests for different times of computation with the
filesystem, CAPIO and ADIOS2 using 5, 10 and 20 nodes.

to exploit streaming communication. With 10 and 20 nodes, the filesystem
performs slightly better than CAPIO and ADIOS2. For ADIOS2, this can
be explained by the lack of fine-tuning or the choice of using the filesystem
as a backend. For CAPIO, this depends on the use of the home-node policy.
Currently, only the “create” policy is implemented, and in this case, it creates
a bottleneck because all 100GB of data is stored on the node of the writer.
Instead, the filesystem leverages data stripping to avoid this problem. With
CAPIO, this could be addressed using the “hashing” policy or the “manual”
setting, explicitly mapping the file-node relationship in the configuration file.
As future work, we plan to explore the impact of different home-node policies.

many-to-1

The results for the many-to-1 test case are presented in figure 6.6. With
no time spent on sleep, the filesystem is faster than CAPIO. This is likely
caused by the fact that the implementation of CAPIO is still in a prototype
phase, while BeeGFS is a mature distributed filesystem. Our goal here is not
to showcase the maturity of the CAPIO implementation in every aspect but
to demonstrate that using the CAPIO language can improve performance in
some cases. This is evident in this test case as well because when N > 0,
the CAPIO time is lower than the filesystem, and up to N = 1, its execution
time increases more slowly. This is because with streaming communication,
CAPIO is able to exploit the time while the writer is sleeping to pass the file
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Figure 6.6: Many-to-1 tests for different times of computation with the
filesystem, CAPIO and ADIOS2 using 5, 10 and 20 nodes.

of the previous iteration to the consumer, which can start reading it.

6.3.3 Home-node policies impact

As discussed in section 4.3, the CAPIO language provides a mechanism for
defining how data is distributed on the nodes used by a workflow. At the
moment, the runtime presented in this work only supports the “create” pol-
icy, where a file is stored on the node where the file is created. Home-node
policies can significantly impact workflow performance, as the distribution of
data plays a key role, especially in HPC systems. For example, the “hash-
ing” policy, where files are stored in one of the nodes available to the running
workflow by applying a hash function to their pathname, is well-suited for
parallel reads, while the “manual” policy is useful for pre-moving the data to
the node where a process that needs to read a specific file will be executed.

Considering the example depicted in Figure 4.1 and assuming, for the sake
of simplicity, the on-termination semantics, the workflows must be executed
respecting the I/O dependency graph. Therefore, first, the application S must
be run, then the applications W, X, and Z can be run in parallel. After they
have terminated, the application Y can start and read the file produced by
the previous applications. With the default home-node policy “create”, the
file “file-out.dat” is on the node that first created it, which could be different
from the node where Y is running. Therefore, the protocol discussed in 5.2.1
is used to retrieve “file-out.dat” from a remote node. If, instead of the default
home-node policy, the “manual” one is used, it is possible to pre-move the
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data to the node where Y will be executed. In this way, when Y starts
reading “file-out.dat”, the file is already in the main memory of the node,
resulting in a performance improvement in reading the file.

To demonstrate the potential of the home-node policies, we conducted a
simple test by implementing the example discussed earlier and a prototype
version of the “manual” policy. We compared the two different policies.
With the default policy, the application Y takes 34 seconds, while with the
“manual” policy, where pre-moving data optimization is enabled, it takes 27
seconds, resulting in a decrease of circa 20%.

6.4 Real-world applications

6.4.1 1000 Genome

The 1000 Genomes use case [87] is a DAG-based bioinformatics workflow
for computing overlaps in human genome mutations. Figure 6.7 illustrates
the five steps of the workflow and their interdependencies. The “individ-
uals” step can be replicated in multiple independent instances, with each
instance analyzing a partition of the input file and generating a directory
containing 2, 504 temporary small files (ranging from 1KBto 15KB, with 16
instances). The “sifting” step runs concurrently with all “individuals” steps.
The “individuals merge” step reads directories produced by all “individuals”
and combines them into one directory with 2, 504 files, where each file is a
merge of all files with the same name produced by “individuals”. The last
two steps, “mutation overlap” and “frequency”, are independent, reading the
input dataset and data produced by previous steps.

We tested CAPIO with CoC-FnU synchronization semantics to leverage
pipeline parallelism among steps whenever possible. In Listing 6.2 is shown
the configuration file for this use case. For instance, “mutation overlap”
and “frequency” may commence reading the input dataset while “individ-
uals merge” and “sifting” are still running. Such overlap is unattainable
with the traditional workflow execution model. Originally implemented us-
ing Bash and Python scripts, the 1000 Genomes workflow underwent re-
implementation using C++ and the Boost library, resulting in a more than
3X reduction in total execution time. We opted to test CAPIO using the
fastest version and a single chromosome simulation (distinct simulations on
various chromosomes generate separate and independent workflows that can
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be executed in parallel). Testing it with three configurations: 8, 12, and
20 cluster nodes, corresponding to 4, 8, and 16 “individuals” instances. 16
individuals produce 16× 2, 504 = 40, 064 temporary files.

As expected, CAPIO accelerates the execution compared to FS (refer to
Figure 6.8). Demonstrated by the benchmarks, CAPIO efficiently handles
a high number of files with less overhead. Furthermore, the files generated
by the “individuals” steps are temporary and consumed by the “individu-
als merge” step; they do not need to be stored in the file system when the
steps conclude, saving time.

Listing 6.2: CAPIO configuration file for the 1000 genome workflow using
the CoC-FnU semantics.

1 {
2 "name" :"1000_genome",

3 "IO_Graph" :

4 [

5 {
6 "name" :"download",

7 "output_stream" :["data"],

8 "streaming" :[

9 {
10 "name" :["data*"],

11 "committed" :"on_close",

12 "mode" :"no_update"

13 }
14 ]

15 },
16 {
17 "name" :"individuals",

18 "input_stream" :["data/20130502/ALL.chr1.250000.vcf"],

19 "output_stream" :["chr1n-*"],

20 "streaming" :[

21 {
22 "dirname" :["chr1n-*"],

23 "committed" :"n_files:2504",

24 "mode" :"no_update"

25 },
26 {
27 "name" :["chr1n-*/*"],

28 "committed" :"on_close",

29 "mode" :"no_update"

30 }
31 ]

32 },
33

34 {
35 "name" :"individuals_merge",

36 "input_stream" :["chr1n-*"],

37 "output_stream" :["chr1n"],

38 "streaming" :[

39 {
40 "dirname" :["chr1n"],
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41 "committed" :"n_files:2504",

42 "mode" :"no_update"

43 },
44 {
45 "name" :["chr1n/*"],

46 "committed" :"on_close",

47 "mode" :"no_update"

48 }
49 ]

50 },
51

52 {
53 "name" :"sifting",

54 "input_stream" :["data/20130502/sifting/ALL.chr1.

phase3_shapeit2_mvncall_integrated_v5.20130502.sites.annotation.vcf"],

55 "output_stream" :["sifted.SIFT.chr1.txt"],

56 "streaming" :[

57 {
58 "name" :["sifted.SIFT.chr1.txt"],

59 "committed" :"on_close",

60 "mode" :"no_update"

61 }
62 ]

63 },
64

65 {
66 "name" :"mutations_overlap",

67 "input_stream" :["sifted.SIFT.chr1.txt", "chr1n", "data/populations/ALL", "

data/20130502/columns.txt"],

68 "output_stream" :["chr1-ALL.tar.gz"]

69 },
70

71 {
72 "name" :"frequency",

73 "input_stream" :["sifted.SIFT.chr1.txt", "chr1n", "data/populations/ALL", "

data/20130502/columns.txt"],

74 "output_stream" :["chr1-ALL-freq.tar.gz"]

75 }
76 ]

77 }

6.4.2 Map-Reduce workflow

We have implemented a straightforward workflow in C that replicates the
typical I/O pattern observed in Map-Reduce computations, where interme-
diate results are stored in the main memory of cluster nodes [145]. This
workflow consists of three steps, as illustrated in Figure 6.9. The sequential
“Split” step takes a large file as input and generates K smaller files. The
parallel “MapReduce” step, comprising multiple instances of Mappers and
Reducers, reads the K files and produces M output files. Each Mapper in-
stance reads a partition (of size k) of the K files and generates a subset (of
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Figure 6.7: High-level view of the1000 Genomes use case. Workflow steps
for one chromosome.
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Figure 6.8: Results for the 1000 Genomes use case. Execution time of
the C++-based version obtained with the standard deployment (file system-
based – FS) and with CAPIO on 8, 12, and 20 GALILEO100 nodes.

size m) of the output files. For example, with 4 Mappers and 3 Reducers,
K = 20, and M = 9, each Mapper reads k = 5 files, and each Reducer
produces m = 3 files. The final “Merge” step reads all M files and generates
a single output file. The communication pattern between the first and sec-
ond steps is a 1-to-Many pattern, while the pattern between the second and
third steps, involving consolidating data from multiple sources into a single
destination, is a Many-to-1 pattern.

In Figure 6.10, the execution time results are presented when running the
workflow using the file system (FS) and CAPIO configured with Commit on-
Close and Firing no-Update synchronization semantics. The input dataset
is 72GB, and the output file is approximately 7GB. The parameters k and
m, representing the number of files created by the “Split” and “MapReduce”
steps, were varied in several configurations, as depicted in the charts on
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Figure 6.9: MapReduce use case. The Workflow is composed by the steps:
Split, MapReduce and Merge.
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Figure 6.10: Results for the MapReduce use case. Execution time obtained
with the standard deployment (file system-based – FS) and with CAPIO on
20 GALILEO100 nodes.

Figure 6.10. Increasing the number of files produced leads to a reduction in
their size. Across all tests, the deployment of CAPIO consistently results in
an execution time reduction ranging from 22-33%.

6.4.3 Weather Forecast Workflow

The Weahter Forecast workflow consists of two applications (Figure 6.11).
The first application is the WRF model, which simulates and predicts the
weather, and the second application (written in Python) reads the files pro-
duced by WRF and generates images representing the weather (Figure 6.12).
Without CAPIO, the images can only be created after WRF has completed
its execution. This is inefficient because WRF produces output for each sim-
ulated hour every 2/3 minutes of real execution. Users have to wait for the
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entire WRF execution before starting to view the weather images. How-
ever, with CAPIO, we can run the two applications concurrently, and every
2/3 minutes, the user can see a new image of the simulation. In [125], the
authors successfully integrated WRF with ADIOS2, resulting in improved
performance compared to previous implementations, attributed to ADIOS2’s
in-situ capabilities. Interested readers are encouraged to refer to the paper
for detailed integration procedures. The I/O module underwent rewriting to
utilize the ADIOS2 API, and fine-tuning of ADIOS2 parameters was neces-
sary. Notably, for the workflow used in this test, transitioning to the ADIOS2
version of WRF would have entailed rewriting the application responsible for
the visualization, as it would require the use of ADIOS2 APIs to read the
data produced by the modified version of WRF. In contrast, CAPIO obviates
the need for such code modifications.

Figure 6.11: Weather Forecast workflow using the filesystem. Without CA-
PIO, the user has to wait for the WRF application to finish before being able
to view the first image of the simulation.

The Listing 6.3 shows the CAPIO configuration file for this use case. The
producer application, named “wrf” (line 6), generates an unspecified number
of files in the working directory, depending on the runtime parameter related
to the simulated hours. Given this uncertainty, the streaming commit rule
for the working directory is set to “on termination” (line 8). Files created
by the producer are not deleted; hence, the “mode” keyword is configured
as “no update” (line 12). The produced files adhere to the committed rule
of “on close” (line 14). An observation using the strace tool revealed that
the initial bytes of the files undergoes 2-3 updates, making the firing rule
inappropriate for “no update” (line 16). The consumer application, denoted
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Figure 6.12: One of the image produced by the Weather Forecast workflow.

as “post processor” (line 21), lacks prior knowledge of the total number of
files to read. Its source code resembles the pseudocode in listing 3, where it
iterates over the entries in the working directory and reads the content of each
file. CAPIO facilitates a seamless reading process, allowing the consumer to
start reading a file as soon as the producer writes it. The consumer will
receive the end-of-stream token after reading all directory entries and the
producer’s termination, as determined by the “on termination” commit rule
for the working directory (line 26).

Listing 6.3: CAPIO configuration file for the WRF workflow using the CoC-
FnU semantics.

1 {
2 "name" :"WRF_WORKFLOW",

3 "IO_Graph" :

4 [

5 {
6 "name" :"WRF",

7 "output_stream" :[".", "./*"],

8 "streaming" :[

9 {
10 "dirname" :["."],

11 "committed" :"on_termination",

12 "mode" :"no_update"

13 },
14 {
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15 "name" :["./*"],

16 "committed" :"on_close"

17 }
18 ]

19 },
20 {
21 "name" :"visualization",

22 "input_stream" :["./*"]

23 }
24

25 ]

26 }

Table 6.2 reports the execution time of the workflow with and without CA-
PIO. With CAPIO, there is an improvement in performance. The most
noteworthy aspect is that when using 4 nodes, with CAPIO, the user can
start viewing the first image after 80 seconds from the start of the workflow,
while without CAPIO, it will take 761 seconds to see the first image.

Nodes Weather Workflow POSIX (secs) Weather Workflow CAPIO (secs)
1 4215.623 3737.944
2 3161.513 2315.045
4 2542.668 2099.501

Table 6.2: Execution times of Weather workflow without and with CAPIO.
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Chapter 7

Conclusion

7.1 Final remarks

HPC workloads are experiencing a significant transition, shifting from mono-
lithic applications towards workflows that incorporate a blend of co-engineered
and legacy components. These components communicate through a portable
file-based interface, utilizing the file system as a means of communication.
This work introduced the CAPIO middleware, designed to integrate I/O
streaming capabilities into file-based workflows seamlessly. CAPIO relies on
an I/O coordination language, employing JSON syntax, empowering users to
annotate workflow data dependencies with synchronization semantics, which
extends the semantics of POSIX-based I/O system calls, enabling the tem-
poral overlap of distinct workflow steps. We detailed the synchronization
semantics currently supported by CAPIO and the corresponding language
annotations specified in a JSON configuration file. Through synthetic bench-
marks and examination of three workflow use cases, we substantiated the per-
formance advantages of CAPIO compared to Lustre, BeeGFS, and ADSIO2
on two different production clusters. The results underscore the approach’s
feasibility, showcasing performance enhancements ranging (circa) from 20%
to 30%, and in an edge case with 10000 files, CAPIO achieves a speedup of 8.
We anticipate that tools similar to CAPIO may influence innovative workflow
orchestration strategies, fostering improved temporal overlap between steps
and reducing the peak I/O file system demand.
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7.2 Limitations and Future work

As part of future work, the development of the CAPIO runtime will continue,
with the addition of multiple backends, providing users the option to choose
the backend for CAPIO. Currently, only MPI is supported, but in the future,
the use of distributed filesystems and other communication layers such as
ADIOS2 [14], UCX [146], or MTCL [127] will be incorporated. The language
will be extended to allow users to specify the backend type in the JSON
configuration file. Plans also include implementing home-node policies such
as “hashing” and “manual”. Multiple tests will be conducted to determine
the optimal policy choices in everyday situations.

As part of maturing the CAPIO runtime, extensive testing on application
workflows utilizing common high-level I/O interfaces like MPI-I/O, HDF5,
and NETCDF, which are widely employed in scientific workflows, is essen-
tial. Another development direction for CAPIO is integration with Workflow
Management Systems (WMS) such as StreamFlow [141] and DagOnStar[84].
A WMS can seamlessly link the CAPIO intercept library with the applica-
tions in a workflow and deploy CAPIO servers on the nodes required. The
WMS may generate an initial version of the CAPIO configuration file, which
users can then fine-tune for optimal data communication between applica-
tions. Typically, WMS uses a configuration file to describe applications and
their data dependencies, which could be leveraged to create the IO-Graph
section of the CAPIO configuration file automatically.

Another approach is to extend the language used by the WMS (for exam-
ple, the Workflow Common Language) with the CAPIO streaming semantics.
This way, the WMS can automatically add the streaming semantics to the
CAPIO configuration file.

In recent years, malleability (i.e., the capacity to dynamically change
the computational units assigned to an application [107, 147]) has become a
nice-to-have feature of the HPC ecosystem [108, 109, 110, 111]. Currently,
CAPIO does not support malleability because all the CAPIO servers must
be launched in all the nodes where the applications will run. If one appli-
cation dynamically obtains more nodes, it is not possible at the moment to
extend CAPIO to the new nodes. For this reason, we plan to implement
the capability of creating new CAPIO servers for a running workflow and
to be resilient when a node is removed from the pool of nodes assigned to
a workflow. In order to do that, integration with malleability tools such as
FlexMPI [148] will be explored.
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Acronyms

The following is the list of acronyms used throughout the document.

� HPC: High Performance Computing.

� CAPIO: Cross-Application Programmable IO.

� CLIO: Coordination Language for IO.

� WMS: Workflow Management System.

� DSL: Domain Specific Lnaguage.

� CWL: Common Workflow Language.

� GUI: Graphical User Interface.

� API: Application Programming Interface.

� XML: eXtensible Markup Language.

� POSIX: Portable Operating System Interface for Unix.

� SC: System Call.

� CAPIO SC-IL: CAPIO System Call Intercept Library.

� JSON: JavaScript Object Notation.

� MPI: Message Passing Interface.

� EOF: End Of File.

� EOS: End Of Stream.
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� CAPIO DIR: CAPIO Directory. The virtual mount-mount of the
CAPIO infrastructure.

� CAPIO conf. file: It is the JSON file written according to the I/O
coordination language syntax. It is get as an input file by each CAPIO
server.

� WRF: Weather Research and Forecasting model.

� CoC: Commit on Close semantics.

� CoT: Commit on Termination semantics

� CoF: Commit on File semantics.

� FoC: Firing on Commit semantics.

� FnU: Firing on Update semantics.
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[108] Eishi Arima, A. Isáıas Comprés, and Martin Schulz. “On the Conver-
gence of Malleability and the HPC PowerStack: Exploiting Dynamism
in Over-Provisioned and Power-Constrained HPC Systems”. In: High
Performance Computing. ISC High Performance 2022 International
Workshops. Ed. by Hartwig Anzt, Amanda Bienz, Piotr Luszczek,
and Marc Baboulin. Cham: Springer International Publishing, 2022,
pp. 206–217. isbn: 978-3-031-23220-6.

[109] Jose I. Aliaga, Maribel Castillo, Sergio Iserte, Iker Mart́ın-Álvarez,
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Javier Fernández. “An implementation of MPI-IO on Expand: A par-
allel file system based on NFS servers”. In: European Parallel Virtual
Machine/Message Passing Interface Users’ Group Meeting. Springer.
2002, pp. 306–313.

[115] Félix Garcia-Carballeira, Alejandro Calderon, Jesus Carretero, Javier
Fernandez, and Jose M Perez. “The design of the Expand parallel file
system”. In: The International Journal of High Performance Comput-
ing Applications 17.1 (2003), pp. 21–37.

[116] Michael J. Brim, Adam T. Moody, Seung-Hwan Lim, Ross Miller,
Swen Boehm, Cameron Stanavige, Kathryn M. Mohror, and Sarp
Oral. “UnifyFS: A User-level Shared File System for Unified Access
to Distributed Local Storage”. In: 2023 IEEE International Parallel
and Distributed Processing Symposium (IPDPS). 2023, pp. 290–300.
doi: 10.1109/IPDPS54959.2023.00037.

[117] Raghunath Rajachandrasekar, Adam Moody, Kathryn Mohror, and
Dhabaleswar K. (DK) Panda. “A 1 PB/s file system to checkpoint
three million MPI tasks”. In: Proceedings of the 22nd International
Symposium on High-Performance Parallel and Distributed Comput-
ing. HPDC ’13. New York, New York, USA: Association for Comput-
ing Machinery, 2018, 143–154. isbn: 9781450319102. doi: 10.1145/
2462902.2462908.

[118] TengWang, Kathryn Mohror, AdamMoody, Kento Sato, andWeikuan
Yu. “An Ephemeral Burst-Buffer File System for Scientific Applica-
tions”. In: SC ’16: Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis. 2016,
pp. 807–818. doi: 10.1109/SC.2016.68.

[119] A. Miranda, R. Nou, and T. Cortes. “ECHOFS: A Scheduler-Guided
Temporary Filesystem to Leverage Node-Local NVMS”. In: 2018 30th
Inter. Symp. on Computer Architecture and High Performance Com-
puting (SBAC-PAD). 2018. doi: 10.1109/CAHPC.2018.8645894.

136

https://doi.org/10.1109/ISPDC59212.2023.00015
https://doi.org/10.1109/IPDPS54959.2023.00037
https://doi.org/10.1145/2462902.2462908
https://doi.org/10.1145/2462902.2462908
https://doi.org/10.1109/SC.2016.68
https://doi.org/10.1109/CAHPC.2018.8645894


BIBLIOGRAPHY

[120] M. Li, S. S. Vazhkudai, A. R. Butt, F. Meng, X. Ma, Y. Kim, C. Engel-
mann, and G. Shipman. “Functional Partitioning to Optimize End-to-
End Performance on Many-core Architectures”. In: SC ’10: Proc. of
the 2010 ACM/IEEE Inter. Conf. for High Performance Computing,
Networking, Storage and Analysis. 2010. doi: 10.1109/SC.2010.28.

[121] A. Miranda, A. Jackson, T. Tocci, I. Panourgias, and R. Nou. “NORNS:
Extending Slurm to Support Data-Driven Workflows through Asyn-
chronous Data Staging”. In: 2019 IEEE Inter. Conf. on Cluster Com-
puting (CLUSTER). 2019. doi: 10.1109/CLUSTER.2019.8891014.

[122] Viacheslav Dubeyko. Comparative Analysis of Distributed and Parallel
File Systems’ Internal Techniques. 2019. arXiv: 1904.03997 [cs.DC].

[123] Priyam Shah, Jie Ye, and Xian-He Sun. Survey the storage systems
used in HPC and BDA ecosystems. 2021. arXiv: 2112.12142 [cs.DC].

[124] “Lustre : A Scalable , High-Performance File System Cluster”. In:
2003. url: https://api.semanticscholar.org/CorpusID:16120094.

[125] Erick Fredj, Yann Delorme, Sameeh Jubran, Mark Wasserman, Zhao-
hui Ding, and Michael Laufer. accelerating wrf i/o performance with
adios2 and network-based streaming. 2023. arXiv: 2304.06603 [cs.DC].

[126] François Mazen, Lucas Givord, and Charles Gueunet. “Catalyst-ADIOS2:
In Transit Analysis for Numerical Simulations Using Catalyst 2 API”.
In: High Performance Computing. Ed. by Amanda Bienz, Michèle
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[137] Henrique Andrade, Buğra Gedik, and Deepak Turaga. Fundamentals
of Stream Processing. Cambridge Books. Cambridge University Press,
2014. isbn: 9781139058940.

[138] Common Workflow Language User Guide v1.2. http://www.commonwl.
org/user_guide. Accessed on 2024-04-21.

[139] John B. Carter, John K. Bennett, and Willy Zwaenepoel. “Imple-
mentation and performance of Munin”. In: SIGOPS Oper. Syst. Rev.
25.5 (1991), 152–164. issn: 0163-5980. doi: 10.1145/121133.121159.
url: https://doi.org/10.1145/121133.121159.

[140] Bharath Kumar Reddy Vangoor, Vasily Tarasov, and Erez Zadok. “To
FUSE or Not to FUSE: Performance of User-Space File Systems”. In:
15th USENIX Conference on File and Storage Technologies (FAST
17). Santa Clara, CA: USENIX Assoc., Feb. 2017. isbn: 978-1-931971-
36-2.

[141] Iacopo Colonnelli, Barbara Cantalupo, Ivan Merelli, and Marco Aldin-
ucci. “StreamFlow: cross-breeding cloud with HPC”. In: IEEE Trans.
on Emerging Topics in Computing 9.4 (2021). doi: 10.1109/TETC.
2020.3019202.

[142] The 1000 Genomes Project. https://www.internationalgenome.
org/1000-genomes-summary. Accessed on 2024-04-21.

[143] Jordan Powers, Joseph Klemp, William Skamarock, Christopher Davis,
Jimy Dudhia, David Gill, Janice Coen, David Gochis, Ravan Ah-
madov, Steven Peckham, Georg Grell, John Michalakes, Samuel Tra-
han, Stanley Benjamin, Curtis Alexander, Geoffrey Dimego, Wei Wang,
Craig Schwartz, Glen Romine, and Michael Duda. “The Weather Re-
search and Forecasting (WRF) Model: Overview, System Efforts, and
Future Directions”. In: Bulletin of the American Meteorological Soci-
ety 98 (Jan. 2017). doi: 10.1175/BAMS-D-15-00308.1.

139

http://www.commonwl.org/user_guide
http://www.commonwl.org/user_guide
https://doi.org/10.1145/121133.121159
https://doi.org/10.1145/121133.121159
https://doi.org/10.1109/TETC.2020.3019202
https://doi.org/10.1109/TETC.2020.3019202
https://www.internationalgenome.org/1000-genomes-summary
https://www.internationalgenome.org/1000-genomes-summary
https://doi.org/10.1175/BAMS-D-15-00308.1


BIBLIOGRAPHY

[144] Larry McVoy and Carl Staelin. “Lmbench: Portable Tools for Per-
formance Analysis”. In: ATEC ’96: Proceedings of the 1996 Annual
Conference on USENIX Annual Technical Conference. USENIX As-
sociation, 1996.

[145] Saeed Shahrivari. “Beyond Batch Processing: Towards Real-Time and
Streaming Big Data”. In: Computers 3.4 (2014). issn: 2073-431X. doi:
10.3390/computers3040117.

[146] Pavel Shamis, Manjunath Gorentla Venkata, M. Graham Lopez, Matthew
B. Baker, Oscar Hernandez, Yossi Itigin, Mike Dubman, Gilad Shainer,
Richard L. Graham, Liran Liss, Yiftah Shahar, Sreeram Potluri, Da-
vide Rossetti, Donald Becker, Duncan Poole, Christopher Lamb, Sameer
Kumar, Craig Stunkel, George Bosilca, and Aurelien Bouteiller. “UCX:
An Open Source Framework for HPC Network APIs and Beyond”. In:
2015 IEEE 23rd Annual Symposium on High-Performance Intercon-
nects. 2015, pp. 40–43. doi: 10.1109/HOTI.2015.13.

[147] Jesus Carretero, Javier Garcia-Blas, André Brinkmann, Marc Vef,
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