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MEAN-DISPERSION PRINCIPLES AND THE WIGNER TRANSFORM

CHIARA BOITI, DAVID JORNET, AND ALESSANDRO OLIARO

Abstract. Given a function f ∈ L2(R), we consider means and variances associated to f

and its Fourier transform f̂ , and explore their relations with the Wigner transform W (f),
obtaining a simple new proof of Shapiro’s mean-dispersion principle. Uncertainty principles for
orthonormal sequences in L2(R) involving linear partial differential operators with polynomial
coefficients and the Wigner distribution, or different Cohen class representations, are obtained,
and an extension to the case of Riesz bases is studied.

1. Introduction

This paper treats uncertainty principles for families of orthonormal functions in L2(R) in con-
nection with time-frequency analysis. When talking about uncertainty principles, in harmonic
analysis, one refers to a class of theorems giving limitations on how much a function and its
Fourier transform can be both localized at the same time. Different meanings of the word “lo-
calized” give rise to different uncertainty principles. For instance, referring to the most classical
results (see [7] for a survey), in the Heisenberg uncertainty principle the localization of f and

its Fourier transform f̂ has to do with their associated variances, in Benedicks [1] it has to do
with the measure of their supports, in Donoho-Stark [6] with the concept of ε-concentration,
in Hardy [9] with (exponential) decay at infinity, and so on. There are, moreover, uncertainty
principles giving not only limitations on the localization of a single function and its Fourier
transform, but on how such limitations behave, becoming stronger and stronger, when adding
more and more elements of an orthonormal system in L2. In this paper we focus in particular
on results of this type involving means and variances. For f ∈ L2(R) we define the associated
mean

µ(f) :=
1

‖f‖2
∫

R

t|f(t)|2dt(1.1)

and the associated variance

∆2(f) :=
1

‖f‖2
∫

R

|t− µ(f)|2|f(t)|2dt;(1.2)

observe that, for ‖f‖2 = 1, such quantities are the mean and the variance of |f |2. The dispersion
associated with f is ∆(f) :=

√

∆2(f). An uncertainty principle for orthonormal sequences, that
constitutes the starting point of the present paper, is due to Shapiro. We shall use throughout
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2 Mean-dispersion principles and the Wigner transform

the paper the notation N0 := N ∪ {0}, and adopt the following normalization of the Fourier
transform:

f̂(ξ) =
1√
2π

∫

R

f(t)e−itξdt, ξ ∈ R.(1.3)

Theorem 1.1 (Shapiro’s Mean-Dispersion Principle). There does not exist an infinite ortho-

normal sequence {fk}k∈N0
in L2(R) such that all µ(fk), µ(f̂k), ∆(fk), ∆(f̂k) are uniformly

bounded.

This theorem appeared in an unpublished manuscript of Shapiro from 1991; in [12] a stronger
result has been proved, namely, there does not exist an orthonormal basis {fk}k∈N0

of L2(R)
such that

∆(fk), ∆(f̂k), µ(fk)

are uniformly bounded, while there exists an orthonormal basis {fk}k∈N0
of L2(R) such that

µ(fk), µ(f̂k), ∆(fk)

are uniformly bounded. Moreover the following quantitative version of Shapiro’s Mean-Dispersion
Principle is proved in [10].

Theorem 1.2 ([10, Theorem 2.3]). Let {fk}k∈N0
be an orthonormal sequence in L2(R). Then

for every n ≥ 0
n∑

k=0

(

∆2(fk) + ∆2(f̂k) + |µ(fk)|2 + |µ(f̂k)|2
)

≥ (n + 1)2.(1.4)

Equality holds for every 0 ≤ n ≤ n0, n0 ∈ N0, if and only if there exist ck ∈ C with |ck| = 1
such that fk = ckhk for k = 0, . . . , n0, where hk are the Hermite functions on R defined as
follows:

hk(t) =
1

(2kk!
√
π)1/2

e−t2/2Hk(t), t ∈ R,(1.5)

where Hk is the Hermite polynomial of degree k given by

Hk(t) = (−1)ket
2 dk

dtk
e−t2 , t ∈ R.

Observe that (1.4) differs for a constant from the result in [10], due to a different normalization
of the Fourier transform. Theorem 1.1 is an easy consequence of Theorem 1.2; moreover,
Theorem 1.2 also says that the limitation on the concentration of fk and f̂k become stronger
and stronger by adding more and more elements from the orthonormal system, as the lower
bound (n+ 1)2 increases faster than the number of involved functions.

In this paper we study uncertainty principles of mean-dispersion type involving quadratic time-
frequency representations applied to the elements of an orthonormal system in L2(R). In order
to state our main results we need some basic definitions. The classical cross-Wigner distribution
is defined as

W (f, g)(x, ξ) =
1√
2π

∫

R

f

(

x+
t

2

)

g

(

x− t

2

)

e−itξdt, f, g ∈ L2(R),(1.6)
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and we set for convenience W (f) := W (f, f). Let moreover L̂ be the linear partial differential
operator in R2 defined as

L̂ :=

(
1

2
Dξ + x

)2

+

(
1

2
Dx − ξ

)2

.(1.7)

The following result (that we prove in Theorem 4.3 and Corollary 4.5 below) constitutes a
Mean-Dispersion uncertainty principle associated to the Wigner transform.

Theorem 1.3. Let {fk}k∈N0
be an orthonormal sequence in L2(R). Then for every n ≥ 0

n∑

k=0

〈L̂W (fk),W (fk)〉 ≥ (n+ 1)2,(1.8)

where as usual 〈·, ·〉 indicates the inner product in L2 (see Section 3 for a discussion on the

domain of L̂ and the corresponding meaning of 〈L̂W (fk),W (fk)〉). Equality in (1.8) holds for
every 0 ≤ n ≤ n0, n0 ∈ N0, if and only if there exist ck ∈ C with |ck| = 1 such that fk = ckhk,
k = 0, . . . , n0, where hk are the Hermite functions (1.5).

We show that Theorem 1.3 implies Theorem 1.2 (and then also Theorem 1.1), and in this
sense it can be interpreted as a Mean-Dispersion principle associated to the Wigner transform.
The advantage of Theorem 1.3 is twofold. First, the proof is simpler than the one of Theorem
1.2 in [10]. In particular, it does not need the Rayleigh-Ritz technique used there. Moreover, L̂
is not the only operator that can be used in (1.8) in order to have Mean-Dispersion principles
of the kind of Theorem 1.3. In Sections 4 and 5 we give more details on this fact. Here, we just
point out that we can use instead of L̂ the multiplication operator by x2 + ξ2, obtaining that
(see Theorem 5.1 below) if {fk}k∈N0

is an orthonormal sequence in L2(R), then for every n ≥ 0

n∑

k=0

∫

R2

(x2 + ξ2)|W (fk)(x, ξ)|2dxdξ ≥
(n+ 1)2

2
,(1.9)

and equality is characterized as in Theorem 1.3. We show that if fk satisfies µ(fk) = µ(f̂k) = 0
then the quantity

∫

R2

(x2 + ξ2)|W (fk)(x, ξ)|2dxdξ

is the trace of the covariance matrix of |W (fk)(x, ξ)|2; then, comparing (1.9) with (1.4) (in the

case µ(fk) = µ(f̂k) = 0) we observe that we have replaced the two variances associated with

fk and f̂k in (1.4), with (a constant times) the trace of the covariance matrix associated with
W (fk), which reflects the fact that W (fk) includes at the same time both information on fk
and on f̂k.

Other extensions of Theorem 1.3 are also studied. Since there are many different time-frequency
representations besides the classical Wigner, we consider the so-called Cohen class, given by all
the representations Q(f, g) of the form

Q(f, g) =
1√
2π

σ ∗W (f, g), σ ∈ S ′(R2), f, g ∈ S(R);(1.10)
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such class contains all the most used time-frequency representations. A natural question is if
in Theorem 1.3 one can substitute W (fk) with Q(fk) := Q(fk, fk), and which operators can be

considered instead of L̂. We prove in Section 6 that for a suitable class of kernels σ in (1.10) a
result of the kind of Theorem 1.3 can be formulated for representations Q in the Cohen class.
Finally, the Mean-Dispersion principle for the Wigner transform can be extended to Riesz bases
instead of orthonormal bases.

The paper is organized as follows. In Sections 2 and 3 we give basic results on the Wigner
transform and on the action of the Wigner transform on Hermite functions. In Section 4 we
prove Theorem 1.3. Section 5 is devoted to the study of the case of the covariance matrix
associated with W (fk) and to the proof of (1.9). In Sections 6 and 7 we extend the results to
the Cohen class and Riesz bases.

2. The Wigner distribution

Besides the classical cross-Wigner distribution W (f, g) for f, g ∈ L2(R) defined in (1.6) we also
consider the following Wigner-like transform introduced in [4]

Wig[u](x, ξ) =
1√
2π

∫

R

u

(

x+
t

2
, x− t

2

)

e−itξdt, u ∈ L2(R2),

with standard extensions to f, g ∈ S ′(R) and u ∈ S ′(R2). Such operators are strictly related
since

W (f, g) = Wig[f ⊗ ḡ].

However, the second one has the advantage, with respect to the classical Wigner transform,
that

Wig : S(R2) −→ S(R2)

Wig : S ′(R2) −→ S ′(R2)

is a linear invertible operator, being composition of a linear invertible change of variables and a
partial Fourier transform. Indeed, denoting by F(f)(ξ) = f̂(ξ) the classical Fourier transform
(1.3), by

F2(u)(x, ξ) =
1√
2π

∫

R

u(x, t)e−itξdt, (t, ξ) ∈ R2,

the partial Fourier transform with respect to the second variable, and by

τsu(x, t) = u

(

x+
t

2
, x− t

2

)

,

we have that

Wig[u] = F2τsu.

The inverses of the operators above are

F−1(F )(x) =
1√
2π

∫

R

F (ξ)eixξdξ
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and

τ−1
s F (x, t) = F

(
x+ t

2
, x− t

)

.

Moreover, denoting by

M1u(x, y) = xu(x, y), M2u(x, y) = yu(x, y),

D1u(x, y) = Dxu(x, y), D2u(x, y) = Dyu(x, y),

for Dx = −i∂x and Dy = −i∂y , a straightforward computation (see also [4]) shows that

D1Wig[u] = Wig[(D1 +D2)u](2.1)

D2Wig[u] = Wig[(M2 −M1)u](2.2)

M1Wig[u] = Wig

[
1

2
(M1 +M2)u

]

(2.3)

M2Wig[u] = Wig

[
1

2
(D1 −D2)u

]

(2.4)

for all u ∈ S(R2).
We write M and D for the multiplication and differentiation operators when just one variable
is involved, so for u ∈ S(R)

Mu(t) = tu(t), Du(t) = −iu′(t).

Moreover we also adopt, for convenience, the following notations. First, we write 〈·, ·〉 to
indicate both the inner product in L2, the duality S ′-S (we consider here distributions as
conjugate-linear functionals), and in general the integral

〈g, h〉 =
∫

R

g(t)h(t) dt

each time such integral is finite, even though g, h are not L2 functions. Second, we write

〈Dnf,Dmg〉(2.5)

for the integral
∫

R

ξn+mf̂(ξ)ĝ(ξ) dξ(2.6)

when the last one makes sense and is finite. It coincides with
∫

R

Dnf(t)Dmg(t) dt

if Dnf,Dmg ∈ L2 by Parseval’s formula

〈f, g〉 = 〈f̂ , ĝ〉, ∀f, g ∈ L2(R).(2.7)

We use the symbol 〈·, ·〉 with analogous meaning in dimension greater than 1.



6 Mean-dispersion principles and the Wigner transform

With this notation, formulas (2.1)-(2.4) hold also for u ∈ S ′(R2). Let us prove, for instance,
(2.1). Since it’s valid in S(R2), then for all u, ϕ ∈ S(R2):

〈D1Wig[u], ϕ〉 = 〈Wig[(D1 +D2)u], ϕ〉 = 〈F2τs(D1 +D2)u, ϕ〉
= 〈τs(D1 +D2)u,F−1

2 ϕ〉 = 〈(D1 +D2)u, τ
−1
s F−1

2 ϕ〉
= 〈u, (D1 +D2)(τ

−1
s F−1

2 ϕ)〉(2.8)

by Parseval’s formula and

〈τsu, τsv〉 = 〈u, v〉, ∀u, v ∈ L2(R2).(2.9)

On the other hand, for all u, ϕ ∈ S(R2),

〈D1Wig[u], ϕ〉 = 〈Wig[u], D1ϕ〉 = 〈F2τsu,D1ϕ〉 = 〈u, τ−1
s F−1

2 (D1ϕ)〉,
which yields, together with (2.8),

τ−1
s F−1

2 (D1ϕ) = (D1 +D2)(τ
−1
s F−1

2 ϕ).

Therefore, if u ∈ S ′(R2) and ϕ ∈ S(R2):

〈D1Wig[u], ϕ〉 = 〈Wig[u], D1ϕ〉 = 〈F2τsu,D1ϕ〉 = 〈u, τ−1
s F−1

2 (D1ϕ)〉
= 〈u, (D1 +D2)(τ

−1
s F−1

2 ϕ)〉 = 〈(D1 +D2)u, τ
−1
s F−1

2 ϕ〉
= 〈Wig[(D1 +D2)u], ϕ〉,

so that (2.1) is valid also for u ∈ S ′(R2).
Similarly also (2.2)-(2.4) hold for u ∈ S ′(R2).
More generally, we have the following result (proved in [2] for u ∈ S(R2)):

Proposition 2.1. Let P (x, y,Dx, Dy) be a linear partial differential operator with polynomial
coefficients. Then for all u ∈ S ′(R2):

P (M1,M2, D1, D2)Wig[u] =

= Wig

[

P

(
1

2
(M1 +M2),

1

2
(D1 −D2), D1 +D2,M2 −M1

)

u

]

,(2.10)

Wig[P (M1,M2, D1, D2)u] =

= P

(

M1 −
1

2
D2,M1 +

1

2
D2,

1

2
D1 +M2,

1

2
D1 −M2

)

Wig[u].(2.11)

The above proposition will be useful to relate the classical Wigner distribution W (f) to
the mean (1.1) and the variance (1.2) associated with a function f ∈ L2(R) and its Fourier

transform f̂ ∈ L2(R).

Proposition 2.2. Given f ∈ L2(R) with finite associated means and variances of f and f̂ , the
following properties hold:

(a) 〈M2f, f〉 = ‖f‖2(µ2(f) + ∆2(f))

(b) 〈D2f, f〉 = ‖f‖2(µ2(f̂) + ∆2(f̂))
(c) 〈M1W (f),W (f)〉 = ‖f‖4µ(f)
(d) 〈M2W (f),W (f)〉 = ‖f‖4µ(f̂)
(e) 〈D1W (f),W (f)〉 = 0
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(f) 〈D2W (f),W (f)〉 = 0

(g) 〈D2
1W (f),W (f)〉 = 2‖f‖4∆2(f̂)

(h) 〈D2
2W (f),W (f)〉 = 2‖f‖4∆2(f)

(i) 〈M1D1W (f),W (f)〉 = i
2
‖f‖4

〈D1M1W (f),W (f)〉 = − i
2
‖f‖4

(j) 〈M2D2W (f),W (f)〉 = i
2
‖f‖4

〈D2M2W (f),W (f)〉 = − i
2
‖f‖4

(k) 〈M2
1W (f),W (f)〉 = ‖f‖4(µ2(f) + 1

2
∆2(f))

(l) 〈M2
2W (f),W (f)〉 = ‖f‖4(µ2(f̂) + 1

2
∆2(f̂))

Proof. Let us first recall that (2.7) and (2.9) imply the following Moyal’s formula for the cross-
Wigner distribution (cf. [8, p. 66])

〈W (f1, g1),W (f2, g2)〉 = 〈f1, f2〉〈g1, g2〉, ∀f1, f2, g1, g2 ∈ L2(R).(2.12)

Note that the assumption that f has finite associated mean and variance implies that Mf ∈
L2(R):

〈Mf,Mf〉 =
∫

R

y2|f(y)|2dy =

∫

R

(y − µ(f) + µ(f))2|f(y)|2dy

=

∫

R

|y − µ(f)|2|f(y)|2dy + 2µ(f)

∫

R

(y − µ(f))|f(y)|2dy + µ2(f)‖f‖2

= ‖f‖2∆2(f) + 2µ2(f)‖f‖2 − 2µ2(f)‖f‖2 + µ2(f)‖f‖2

= ‖f‖2(∆2(f) + µ2(f)).(2.13)

In the same way, the fact that f̂ has finite associated mean and variance implies that Df ∈
L2(R). This means that Moyal’s formula (2.12) can be applied when, in its left-hand side, Mf
or Df appear in the arguments of the Wigner transform.

Now we analyze the case when in the left-hand side of (2.12) the expression W (f,M2g)

appears, for f, g ∈ L2(R) with finite associated means and variances of f, g, f̂ , ĝ. Observe that,
for f, g ∈ S(R),

W (f,M2g)(x, ξ) =

∫

R

f

(

x+
t

2

)(

x− t

2

)2

g

(

x− t

2

)

e−itξ dt

=

∫

R

[

2x−
(

x+
t

2

)]

f

(

x+
t

2

)(

x− t

2

)

g

(

x− t

2

)

e−itξ dt

= 2xW (f,Mg)(x, ξ)−W (Mf,Mg)(x, ξ).

Such an equality holds in fact for f, g ∈ S ′(R) and for tempered distributions it reads

W (f,M2g) = 2M1W (f,Mg)−W (Mf,Mg).(2.14)

By the observations above, Mf,Mg ∈ L2(R), and so from (2.14) we have that W (f,M2g) is a
function, and we can consider

〈W (f,M2g),W (f, g)〉 =
∫

R2

W (f,M2g)(x, ξ)W (f, g)(x, ξ)dx dξ.
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Since g and Mg are L2-functions, we can consider as standard a sequence gj ∈ S(R) such that
gj → g and Mgj →Mg for j → ∞. Since M2gj ∈ L2(R) for every j ∈ N0, by (2.12) we have

〈W (f,M2gj),W (f, g)〉 = 〈f, f〉〈M2gj, g〉 = 〈f, f〉〈Mgj,Mg〉
Then, we have

〈W (f,M2gj),W (f, g)〉 → 〈f, f〉〈Mg,Mg〉 = 〈f, f〉〈M2g, g〉(2.15)

as j → ∞. On the other hand, by (2.14) and (2.3) we get

〈W (f,M2gj),W (f, g)〉 = 〈2M1W (f,Mgj)−W (Mf,Mgj),W (f, g)〉
= 〈W (f,Mgj), 2M1W (f, g)〉 − 〈W (Mf,Mgj),W (f, g)〉
= 〈W (f,Mgj),W (Mf, g) +W (f,Mg)〉 − 〈W (Mf,Mgj),W (f, g)〉.

Since gj → g, Mgj → Mg, and f, g,Mf,Mg ∈ L2(R), by the L2-continuity of the Wigner
transform we have

〈W (f,M2gj),W (f, g)〉 → 〈W (f,Mg),W (Mf, g) +W (f,Mg)〉 − 〈W (Mf,Mg),W (f, g)〉
as j → ∞; by the same calculations as above we get

〈W (f,M2gj),W (f, g)〉 → 〈W (f,M2g),W (f, g)〉(2.16)

as j → ∞. From (2.15) and (2.16) we then have that 〈W (f,M2g),W (f, g)〉 is a convergent
integral and

〈W (f,M2g),W (f, g)〉 = 〈f, f〉〈M2g, g〉.(2.17)

Recall now that for every u, v ∈ S ′(R) the following formula holds

W (û, v̂)(x, ξ) = W (u, v)(−ξ, x);(2.18)

then, since f̂ and ĝ have finite associated means and variances, the same procedure can be
applied when we have W (f,D2g) instead of W (f,M2g) obtaining that, with the notation
(2.5)-(2.6),

〈W (f,D2g),W (f, g)〉 = 〈W (f̂ ,M2ĝ),W (f̂ , ĝ)〉 = 〈f, f〉〈D2g, g〉.(2.19)

Similar considerations can be done for MDf , since

W (MDf, g) =

∫ (

x+
t

2

)

Df

(

x+
t

2

)

g

(

x− t

2

)

e−itξdt

=

∫ [

2x−
(

x− t

2

)]

Df

(

x+
t

2

)

g

(

x− t

2

)

e−itξdt

= 2xW (Df, g)−W (Df,Mg)

is a function, being Df,Mg ∈ L2(R) under the assumptions of finite associated means and
variances. Arguing as for M2f we then have

〈W (MDf, g),W (f, g)〉 = 〈MDf, f〉〈g, g〉 = 〈Df,Mf〉〈g, g〉.(2.20)

All the above considerations will be implicit from now on.
Let us now prove point (a): it follows from (2.13) since 〈M2f, f〉 = 〈Mf,Mf〉.
(b): With the notations (2.5)-(2.6), by point (a) applied to f̂ :
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〈D2f, f〉 = 〈ξ2f̂ , f̂〉 = ‖f̂‖2(µ2(f̂) + ∆2(f̂)) = ‖f‖2(µ2(f̂) + ∆2(f̂))

(c): From (2.3) and Moyal’s formula (2.12):

〈M1W (f),W (f)〉 = 〈M1Wig[f ⊗ f̄ ],W (f)〉

= 〈Wig[
1

2
(M1 +M2)(f ⊗ f̄)],W (f)〉

=
1

2
(〈W (Mf, f),W (f, f)〉+ 〈W (f,Mf),W (f, f)〉)

=
1

2
(〈Mf, f〉〈f, f〉+ 〈f, f〉〈Mf, f〉) = ‖f‖4µ(f),

since µ(f) ∈ R.
(d): From (2.4), Moyal’s and Parseval’s formulas (2.12) and (2.7):

〈M2W (f),W (f)〉 = 〈Wig[
1

2
(D1 −D2)f ⊗ f̄ ],W (f)〉

=
1

2
(〈W (Df, f),W (f, f)〉+ 〈W (f,Df),W (f, f)〉)

=
1

2
(〈Df, f〉〈f, f〉+ 〈f, f〉〈Df, f〉)

=
1

2
(〈ξf̂, f̂〉‖f‖2 + ‖f‖2〈ξf̂ , f̂〉) = ‖f‖4µ(f̂),

since µ(f̂) ∈ R.
(e): From (2.1), (2.12) and (2.7):

〈D1W (f),W (f)〉 = 〈Wig[(D1 +D2)f ⊗ f̄ ],W (f)〉
= 〈W (Df, f)−W (f,Df),W (f, f)〉
= 〈Df, f〉〈f, f〉 − 〈f, f〉〈Df, f〉
= 〈ξf̂ , f̂〉‖f‖2 − ‖f‖2〈ξf̂ , f̂〉 = 0.

(f): From (2.2) and (2.12):

〈D2W (f),W (f)〉 = 〈Wig[(M2 −M1)f ⊗ f̄ ],W (f)〉
= 〈W (f,Mf)−W (Mf, f),W (f, f)〉
= 〈f, f〉〈Mf, f〉 − 〈Mf, f〉〈f, f〉 = 0.

(g): From (2.1), (2.12), (2.19), (2.7) and point (a):
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〈D2
1W (f),W (f)〉 = 〈Wig[(D1 +D2)

2f ⊗ f̄ ],W (f)〉
= 〈W (D2f, f)− 2W (Df,Df) +W (f,D2f),W (f, f)〉
= 〈D2f, f〉〈f, f〉 − 2〈Df, f〉〈Df, f〉+ 〈f, f〉〈D2f, f〉
= 〈ξ2f̂ , f̂〉‖f‖2 − 2|〈ξf̂, f̂〉|2 + ‖f‖2〈ξ2f̂ , f̂〉
= 2‖f‖2‖f̂‖2(µ2(f̂) + ∆2(f̂))− 2µ2(f̂)‖f̂‖4 = 2‖f‖4∆2(f̂).

(h): From (2.2), (2.12), (2.17) and point (a):

〈D2
2W (f),W (f)〉 = 〈Wig[(M2 −M1)

2f ⊗ f̄ ],W (f)〉
= 〈W (f,M2f)− 2W (Mf,Mf) +W (M2f, f),W (f, f)〉
= 〈f, f〉〈M2f, f〉 − 2〈Mf, f〉〈Mf, f〉+ 〈M2f, f〉〈f, f〉
= 2‖f‖4(µ2(f) + ∆2(f))− 2‖f‖4µ2(f) = 2‖f‖4∆2(f).

(i): From (2.1), (2.3), (2.12), (2.20) and (2.7):

〈M1D1W (f),W (f)〉 = 〈Wig[
1

2
(M2 +M1)(D1 +D2)f ⊗ f̄ ],W (f)〉

=
1

2
〈Wig[(M2D1 +M1D1 +M2D2 +M1D2)f ⊗ f̄ ],W (f)〉

=
1

2
〈W (Df,Mf) +W (MDf, f)−W (f,MDf)−W (Mf,Df),W (f, f)〉

=
1

2
(〈Df, f〉〈Mf, f〉+ 〈Df,Mf〉〈f, f〉 − 〈f, f〉〈Df,Mf〉 − 〈Mf, f〉〈Df, f〉)

=
1

2
(〈ξf̂ , f̂〉µ(f)‖f‖2 + ‖f‖2(〈Df,Mf〉 − 〈Df,Mf〉)− ‖f‖2µ(f)〈ξf̂ , f̂〉).

Since µ(f) ∈ R, 〈ξf̂ , f̂〉 = µ(f̂)‖f‖2 ∈ R and

〈Df,Mf〉 = 〈f,DMf〉 = i〈f, f〉+ 〈f,MDf〉
= i‖f‖2 + 〈Mf,Df〉 = i‖f‖2 + 〈Df,Mf〉(2.21)

we finally have that

〈M1D1W (f),W (f)〉 = i

2
‖f‖4.

Therefore

〈D1M1W (f),W (f)〉 = 〈M1W (f), D1W (f)〉 = 〈W (f),M1D1W (f)〉

= 〈M1D1W (f),W (f)〉 = − i

2
‖f‖4.
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(j): From (2.2), (2.4), (2.12), (2.20), (2.7) and (2.21):

〈M2D2W (f),W (f)〉 = 〈Wig[
1

2
(D1 −D2)(M2 −M1)f ⊗ f̄ ],W (f)〉

=
1

2
〈Wig[(D1M2 −D2M2 −D1M1 +D2M1)f ⊗ f̄ ],W (f)〉

=
1

2
〈W (Df,Mf)− 1

i
W (f, f) +W (f,MDf),W (f, f)〉

−1

2
〈1
i
W (f, f) +W (MDf, f) +W (Mf,Df),W (f, f)〉

=
1

2
(〈Df, f〉〈Mf, f〉 − 1

i
〈f, f〉〈f, f〉+ 〈f, f〉〈Df,Mf〉)

−1

2
(
1

i
‖f‖4 + 〈Df,Mf〉〈f, f〉+ 〈Mf, f〉〈Df, f〉)

=
1

2
〈ξf̂ , f̂〉µ(f)‖f‖2 + i‖f‖4 + 1

2
‖f‖2(〈Df,Mf〉 − 〈Df,Mf〉)

−1

2
‖f‖2µ(f)〈ξf̂, f̂〉 = i‖f‖4 − i

2
‖f‖4 = i

2
‖f‖4.

It follows that

〈D2M2W (f),W (f)〉 = 1

i
〈W (f, f),W (f, f)〉+ 〈M2D2W (f),W (f)〉

= −i‖f‖4 + i

2
‖f‖4 = − i

2
‖f‖4.

(k): From (2.3), (2.12) and point (a):

〈M2
1W (f),W (f)〉 = 〈M1Wig[f ⊗ f̄ ],M1 Wig[f ⊗ f̄ ]〉

= 〈Wig[
1

2
(M2 +M1)f ⊗ f̄ ],Wig[

1

2
(M2 +M1)f ⊗ f̄ ]〉

=
1

4
〈W (f,Mf) +W (Mf, f),W (f,Mf) +W (Mf, f)〉

=
1

4
(〈f, f〉〈Mf,Mf〉+ 〈Mf, f〉〈f,Mf〉 + 〈f,Mf〉〈Mf, f〉+ 〈Mf,Mf〉〈f, f〉)

=
1

4
(‖f‖2〈M2f, f〉+ 2µ2(f)‖f‖4 + 〈M2f, f〉‖f‖2)

= ‖f‖4
(
1

2
∆2(f) + µ2(f)

)

.

(l): From (2.4), (2.12), (2.7) and point (b):
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〈M2
2W (f),W (f)〉 = 〈M2Wig[f ⊗ f̄ ],M2Wig[f ⊗ f̄ ]〉

= 〈Wig[
1

2
(D1 −D2)f ⊗ f̄ ],Wig[

1

2
(D1 −D2)f ⊗ f̄ ]〉

=
1

4
〈W (Df, f) +W (f,Df),W (Df, f) +W (f,Df)〉

=
1

4
(〈Df,Df〉〈f, f〉+ 〈f,Df〉〈Df, f〉+ 〈Df, f〉〈f,Df〉+ 〈f, f〉〈Df,Df〉)

=
1

4
(〈D2f, f〉‖f‖2 + 〈f̂ , ξf̂〉〈ξf̂ , f̂〉+ 〈ξf̂ , f̂〉〈f̂ , ξf̂〉+ ‖f‖2〈D2f, f〉)

= ‖f‖4
(
1

2
∆2(f̂) + µ2(f̂)

)

.

The proof is complete. �

Corollary 2.3. Given f ∈ L2(R) with ‖f‖ = 1 and finite associated mean and variance of f

and f̂ , the following properties hold:

(a) 〈M2f, f〉 = µ2(f) + ∆2(f)

(b) 〈D2f, f〉 = µ2(f̂) + ∆2(f̂)
(c) 〈M1W (f),W (f)〉 = µ(f)

(d) 〈M2W (f),W (f)〉 = µ(f̂)
(e) 〈D1W (f),W (f)〉 = 0
(f) 〈D2W (f),W (f)〉 = 0

(g) 〈D2
1W (f),W (f)〉 = 2∆2(f̂)

(h) 〈D2
2W (f),W (f)〉 = 2∆2(f)

(i) 〈M1D1W (f),W (f)〉 = i
2

〈D1M1W (f),W (f)〉 = − i
2

(j) 〈M2D2W (f),W (f)〉 = i
2

〈D2M2W (f),W (f)〉 = − i
2

(k) 〈M2
1W (f),W (f)〉 = µ2(f) + 1

2
∆2(f)

(l) 〈M2
2W (f),W (f)〉 = µ2(f̂) + 1

2
∆2(f̂).

3. The Hermite basis

For k ∈ N0 = N ∪ {0}, let hk be the Hermite functions on R defined by (1.5). It is well known
that hk are eigenfunctions of the Fourier transform and form an orthonormal basis in L2(R).
Moreover they are an absolute basis in S(R) (see [11]).

Denoting by

hj,k := F−1W (hj, hk),

by [15, Thms. 3.2 and 3.4] we have that the functions {hj,k}j,k∈N0
form an orthonormal basis

in L2(R2) and are eigenfunctions of the twisted Laplacian:

Lhj,k(y, t) = (2k + 1)hj,k(y, t), j, k ∈ N0,
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for

L :=

(

Dy −
1

2
t

)2

+

(

Dt +
1

2
y

)2

.

By Fourier transform (see [3, Ex. 3.20])

ĥj,k(x, ξ) = W (hj, hk)(x, ξ)(3.1)

are eigenfunctions of the operator L̂ defined in (1.7), with the same eigenvalues as before, in
the sense that

L̂ĥj,k = (2k + 1)ĥj,k.(3.2)

Note that also {ĥj,k}j,k∈N0
are in S(R) and form an orthonormal basis in L2(R2).

More in general, following the same ideas as in [14, Thm. 21.2], we can prove:

Theorem 3.1. If {fk}k∈N0
is an orthonormal basis in L2(R), then {W (fj, fk)}j,k∈N0

is an
orthonormal basis in L2(R2).

Proof. Let us first remark that if {fk}k is an othonormal sequence in L2(R) then {W (fj, fk)}j,k
is an orthonormal sequence in L2(R2) since, by (2.12),

〈W (fj, fk),W (fi, fh)〉 = 〈fj, fi〉〈fk, fh〉

= δj,i · δk,h =

{

1 if (j, k) = (i, h)

0 if (j, k) 6= (i, h).

In order to prove that {W (fj, fk)}j,k∈N0
is a basis for L2(R2), by [5, Thm. 3.4.2], it is enough

to prove that if F ∈ L2(R2) is such that
∫

R2

F (x, ξ)W (fj, fk)(x, ξ)dxdξ = 0, ∀j, k ∈ N0,(3.3)

then F = 0 a.e. in R2.
By [14, Thms. 4.4 and 7.5] the operator

L2(R2) −→ L(L2(R), L2(R))

F 7−→WF

defined by

〈WFϕ, ψ〉 =
1√
2π

∫

R2

F (x, ξ)W (ϕ, ψ)(x, ξ)dxdξ

is a bounded linear operator satisfying

‖WF‖L(L2,L2) ≤
1√
2π

‖F‖L2(R2) = ‖WF‖HS,(3.4)

where ‖ · ‖HS is the Hilbert-Schmidt norm defined by (see [14, formula (7.1)]):

‖WF‖2HS :=
+∞∑

j=0

‖WFfj‖2L2(R)(3.5)
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for an orthonormal basis {fj}j∈N0
of L2(R). The operator WF is in fact the classical Weyl

operator with symbol F . Then

〈WFfj , fk〉 =
1√
2π

∫

R2

F (x, ξ)W (fj, fk)(x, ξ)dxdξ = 0, ∀j, k ∈ N0,

by assumption, which implies that

WFfj = 0, ∀j ∈ N0,(3.6)

since {fj}j∈N0
is an orthonormal basis in L2(R).

From (3.4) and (3.5) we finally have that F = 0 a.e. in R2. �

The operator L̂ defined in (1.7) is unbounded on L2(R2) (see Remark 6.6 below) and defined
(at least) in S(R2) ⊂ L2(R). Now, since the functions (3.1) are an orthonormal basis for L2(R2),
every element F ∈ L2(R2) can be written as

F =

+∞∑

j,k=0

cj,kĥj,k

where cj,k = 〈F, ĥj,k〉. Then, writing

FN =
N∑

j,k=0

cj,kĥj,k ∈ S(R2)

we have from (3.2)

L̂FN (x, ξ) =

N∑

j,k=0

cj,k(2k + 1)ĥj,k(x, ξ).

The operator L̂ is then the unbounded and densely defined operator with domain

D(L̂) = {F ∈ L2(R2) :

+∞∑

j,k=0

cj,k(2k + 1)ĥj,k converges in L2(R2)}

for cj,k = 〈F, ĥj,k〉, acting on F ∈ D(L̂) as

L̂F =

+∞∑

j,k=0

cj,k(2k + 1)ĥj,k ∈ L2(R2).

In this case

〈L̂F, F 〉 = lim
N→+∞

N∑

j,k,j′,k′=0

〈cj,k(2k + 1)ĥj,k, cj′,k′ĥj′,k′〉

= lim
N→+∞

N∑

j,k=0

|cj,k|2(2k + 1) =
+∞∑

j,k=0

|cj,k|2(2k + 1).
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In general we shall write

〈L̂F, F 〉 =
+∞∑

j,k=0

|cj,k|2(2k + 1), ∀F ∈ L2(R),(3.7)

meaning that 〈L̂F, F 〉 = +∞ if the series diverges. Note that, being {ĥj,k}j,k∈N0
an orthonormal

basis for L2(R2), we have that F ∈ D(L̂) if and only if {cj,k(2k + 1)}j,k∈N0
∈ ℓ2. This implies

that the series (3.7) converges (but not vice versa).

4. Mean-Dispersion Principle

From the results of the previous sections we obtain now an alternative formulation and a simple
proof of the Shapiro’s Mean-Dispersion Principle (see [10] and the references therein). To this
aim let us first prove some preliminary results.

Lemma 4.1. Let {hk}k∈N0
be the Hermite functions defined in (1.5) and L̂ as in (1.7). Then

for every j ∈ N0 we have
n∑

k=0

〈L̂W (hj, hk),W (hj, hk)〉 = (n+ 1)2, ∀n ∈ N0.

Proof. From (3.2) for all j, k ∈ N0 we have

〈L̂W (hj, hk),W (hj, hk)〉 = 〈L̂ĥj,k, ĥj,k〉 = 〈(2k + 1)ĥj,k, ĥj,k〉 = 2k + 1,

since {ĥj,k}j,k is an orthonormal basis in L2(R2).
It follows that

n∑

k=0

〈L̂W (hj, hk),W (hj, hk)〉 =
n∑

k=0

(2k + 1) = (n+ 1)2,

where the last equality is the formula for the sum of all odd numbers from 1 to 2n+ 1. �

Lemma 4.2. Let L̂ be the operator in (1.7). Then for all f, g ∈ L2(R) with finite associated

mean and variances of f, g, f̂ , ĝ:

(i) L̂W (f, g) = W (f, (M2 +D2)g),

(ii) 〈L̂W (f, g),W (f, g)〉 = ‖f‖2‖g‖2(∆2(g) + ∆2(ĝ) + µ2(g) + µ2(ĝ)).

In particular, 〈L̂W (f, g),W (f, g)〉 ∈ R and if ‖f‖ = ‖g‖ = 1 then

〈L̂W (f, g),W (f, g)〉 = ∆2(g) + ∆2(ĝ) + µ2(g) + µ2(ĝ).

Proof. (i): From (2.10) we have

L̂W (f, g) =

[(
1

2
D2 +M1

)2

+

(
1

2
D1 −M2

)2
]

Wig[f ⊗ ḡ]

= Wig

[((
1

2
(M2 −M1) +

1

2
(M2 +M1)

)2

+

(
1

2
(D1 +D2)−

1

2
(D1 −D2)

)2
)

f ⊗ ḡ

]

= Wig[(M2
2 +D2

2)f ⊗ ḡ] =W (f, (M2 +D2)g).
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(ii): From (i), (2.17), (2.19), and Proposition 2.2(a), (b):

〈L̂W (f, g),W (f, g)〉 = 〈W (f, (M2 +D2)g),W (f, g)〉
= 〈W (f,M2g),W (f, g)〉+ 〈W (f,D2g),W (f, g)〉
= 〈f, f〉〈M2g, g〉+ 〈f, f〉〈D2g, g〉
= ‖f‖2‖g‖2(∆2(g) + µ2(g)) + ‖f‖2‖g‖2(∆2(ĝ) + µ2(ĝ))

= ‖f‖2‖g‖2(∆2(g) + ∆2(ĝ) + µ2(g) + µ2(ĝ)).

�

Theorem 4.3. Let {fk}k∈N0
be such that ‖fk‖ = 1 for every k ∈ N0, and let {gk}k∈N0

be an
orthonormal sequence in L2(R). Then

n∑

k=0

〈L̂W (fi, gk),W (fi, gk)〉 ≥ (n + 1)2, ∀i, n ∈ N0.(4.1)

Proof. Since W (fi, gk) ∈ L2(R2) and the sequence {ĥj,ℓ} = {W (hj, hℓ)} defined in (3.1) is an
orthonormal basis in L2(R2), we can write

W (fi, gk) =
+∞∑

j,ℓ=0

c
(i,k)
j,ℓ W (hj , hℓ)

with

c
(i,k)
j,ℓ = 〈W (fi, gk),W (hj, hℓ)〉 = 〈fi, hj〉〈gk, hℓ〉,(4.2)

by (2.12). As in (3.7) we have

n∑

k=0

〈L̂W (fi, gk),W (fi, gk)〉 =
n∑

k=0

+∞∑

j,ℓ=0

|c(i,k)j,ℓ |2(2ℓ+ 1),(4.3)

and we can assume that for every 0 ≤ k ≤ n the series in (4.3) converges, otherwise (4.1) would
be trivial, being the left-hand side equal to +∞.

By (4.2) and (4.3), we get

n∑

k=0

〈L̂W (fi, gk),W (fi, gk)〉 =
n∑

k=0

+∞∑

j,ℓ=0

|〈fi, hj〉|2|〈gk, hℓ〉|2(2ℓ+ 1)

=

+∞∑

j=0

|〈fi, hj〉|2
+∞∑

ℓ=0

n∑

k=0

|〈gk, hℓ〉|2(2ℓ+ 1) =

+∞∑

ℓ=0

(
n∑

k=0

|〈gk, hℓ〉|2
)

(2ℓ+ 1),(4.4)

since ‖fi‖2 = 1. Setting

αℓ :=
n∑

k=0

|〈gk, hℓ〉|2,

we remark that
+∞∑

ℓ=0

αℓ =
+∞∑

ℓ=0

n∑

k=0

|〈gk, hℓ〉|2 =
n∑

k=0

+∞∑

ℓ=0

|〈gk, hℓ〉|2 =
n∑

k=0

‖gk‖2 = n + 1.(4.5)
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But for each ℓ ∈ N0

αℓ ≤
+∞∑

k=0

|〈gk, hℓ〉|2 ≤ ‖hℓ‖2 = 1,

so that from (4.5) we can write

n + 1 =

+∞∑

ℓ=0

αℓ = α0 + . . .+ αn +Rn

for a reminder

Rn =

+∞∑

ℓ=n+1

αℓ.(4.6)

Note that α0 = . . . αn = 1 if Rn = 0.
For all 0 ≤ k ≤ n we set

ck =

{

0, if Rn = 0
1−αk

Rn
, if Rn > 0.

(4.7)

Then

αk + ckRn = 1 ∀0 ≤ k ≤ n(4.8)

and (c0 + . . .+ cn)Rn = Rn, so that

c0 + . . .+ cn =

{

1 if Rn > 0

0 if Rn = 0

and we can write

(c0 + . . .+ cn)

+∞∑

ℓ=n+1

αℓ(2ℓ+ 1) =

+∞∑

ℓ=n+1

αℓ(2ℓ+ 1),(4.9)

being Rn = 0 iff αℓ = 0 for all ℓ ≥ n + 1.
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We use (4.9) and (4.8) in (4.4) to get

n∑

k=0

〈L̂W (fi, gk),W (fi, gk)〉 =
+∞∑

ℓ=0

αℓ(2ℓ+ 1)

=

n∑

ℓ=0

αℓ(2ℓ+ 1) + (c0 + . . .+ cn)

+∞∑

ℓ=n+1

αℓ(2ℓ+ 1)

=
n∑

ℓ=0

αℓ(2ℓ+ 1) + c0

+∞∑

ℓ=n+1

αℓ (2ℓ+ 1)
︸ ︷︷ ︸

≥1

+c1

+∞∑

ℓ=n+1

αℓ (2ℓ+ 1)
︸ ︷︷ ︸

≥3

. . .+ cn−1

+∞∑

ℓ=n+1

αℓ (2ℓ+ 1)
︸ ︷︷ ︸

≥2n−1

+cn

+∞∑

ℓ=n+1

αℓ (2ℓ+ 1)
︸ ︷︷ ︸

≥2n+1

≥
(

α0 + c0

+∞∑

ℓ=n+1

αℓ

)

+

(

α1 · 3 + c1

+∞∑

ℓ=n+1

αℓ · 3
)

· · ·+
(

αn−1 · (2n− 1) + cn−1

+∞∑

ℓ=n+1

αℓ · (2n− 1)

)

+

(

αn · (2n+ 1) + cn

+∞∑

ℓ=n+1

αℓ · (2n+ 1)

)

=
n∑

k=0

(αk + ckRn)
︸ ︷︷ ︸

=1

(2k + 1) =
n∑

k=0

(2k + 1) = (n+ 1)2.(4.10)

�

Remark 4.4. As a consequence of Theorem 4.3 we have that if {fi}i∈I is such that ‖fi‖ = 1
for every i ∈ I, {gj}j∈J is an orthonormal system in L2(R) and

〈L̂W (fi, gj),W (fi, gj)〉 ≤ A, ∀i ∈ I, j ∈ J,

for some constant A > 0, then J must be finite (while I may be infinite).

Corollary 4.5. If {fk}k∈N0
is an orthonormal sequence in L2(R), then

n∑

k=0

〈L̂W (fk),W (fk)〉 ≥ (n+ 1)2, ∀n ∈ N0,(4.11)

and the estimate is optimal, in the sense that if fk are the Hermite functions then equality holds
in (4.11) and, conversely, given n0 ∈ N, if equality holds in (4.11) for all n ≤ n0, then there
exist ck ∈ C with |ck| = 1 such that fk = ckhk for all 0 ≤ k ≤ n0.

Proof. The inequality (4.11) is a particular case of Theorem 4.3 for gk = fk.
In order to prove that the inequality is optimal we follow the same ideas as in [10, Thm. 2.3].

If fk = hk then (4.11) is an equality by Lemma 4.1.
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Now, if the equality holds in (4.11) for all 0 ≤ n ≤ n0, then for all 0 ≤ n ≤ n0

〈L̂W (fn),W (fn)〉 =
n∑

k=0

〈L̂W (fk),W (fk)〉 −
n−1∑

k=0

〈L̂W (fk),W (fk)〉

= (n + 1)2 − n2 = 2n+ 1.(4.12)

Since {ĥj,k}j,k∈N0
= {W (hj, hk)}j,k∈N0

is an orthonormal basis in L2(R2) we have that

W (fn) =

+∞∑

j,k=0

〈W (fn), ĥj,k〉ĥj,k,

and hence, by (4.3) and (2.12):

〈L̂W (fn),W (fn)〉 =
+∞∑

j,k=0

|〈W (fn), ĥj,k〉|2(2k + 1)

=
+∞∑

j,k=0

|〈W (fn, fn),W (hj, hk)〉|2(2k + 1) =
+∞∑

j,k=0

|〈fn, hj〉|2|〈fn, hk〉|2(2k + 1)

=
+∞∑

k=0

‖fn‖2|〈fn, hk〉|2(2k + 1) =
+∞∑

k=0

|〈fn, hk〉|2(2k + 1).(4.13)

We now proceed by induction on n ∈ N0. From (4.12) and (4.13) for n = 0 we have

+∞∑

k=0

|〈f0, hk〉|2(2k + 1) = 〈L̂W (f0),W (f0)〉 = 1 = ‖f0‖2 =
+∞∑

k=0

|〈f0, hk〉|2,

and hence

〈f0, hk〉 = 0, ∀k ≥ 1,

i.e. f0 = c0h0 for some c0 ∈ C with |c0| = 1, since ‖f0‖ = ‖h0‖ = 1.
Let us assume now that

fk = ckhk, ck ∈ C, |ck| = 1, k = 0, 1, . . . , n− 1,

and let us prove that

fn = cnhn, cn ∈ C, |cn| = 1.

Indeed,

+∞∑

k=n

|〈fn, hk〉|2(2k + 1) =

+∞∑

k=0

|〈fn, hk〉|2(2k + 1)

since 〈fn, hk〉 = 0 for 0 ≤ k ≤ n − 1 because fn is orthogonal to fk = ckhk by inductive
assumption.
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Thus, by (4.13) and (4.12), we have

+∞∑

k=n

|〈fn, hk〉|2(2k + 1) = 〈L̂W (fn),W (fn)〉 = 2n+ 1 = (2n+ 1)‖fn‖2

= (2n+ 1)
+∞∑

k=0

|〈fn, hk〉|2 =
+∞∑

k=n

(2n+ 1)|〈fn, hk〉|2

again by inductive assumption.
Therefore 〈fn, hk〉 = 0 for all k > n (and for 0 ≤ k ≤ n− 1 by inductive assumption), which

implies that fn = cnhn for some cn ∈ C with |cn| = 1 since ‖fn‖ = ‖hn‖ = 1. �

From Corollary 4.5 we have, as in Remark 4.4, that if

〈L̂W (fj),W (fj)〉 ≤ A, ∀j ∈ J,

then J must be finite.
Moreover, since

〈L̂W (fk),W (fk)〉 = µ2(fk) + µ2(f̂k) + ∆2(fk) + ∆2(f̂k)(4.14)

by Lemma 4.2, we have obtained a simple proof of Theorem 1.2 (the sharp Mean-Dispersion
Principle [10, Thm. 2.3]), and then also of Theorem 1.1 (the original Shapiro’s Mean-Dispersion
Principle).

Formula (4.14) says that Corollary 4.5 is exactly a reformulation of Theorem 1.2, and in
this sense Theorem 4.3 and Corollary 4.5 can be seen as Mean-Dispersion principles related
with the Wigner transform. On the other hand we observe that working with the Wigner
transform gives several advantages. First of all we have more generality since in Theorem 4.3
we can consider different arguments fi, gk in the cross-Wigner distribution; moreover the proofs
with the Wigner transform are simpler and more self-contained with respect to [10]. Another
advantage is that we have information on the Wigner transform of an orthonormal sequence
{fk}k∈N0

rather than on fk and f̂k themselves, and this gives more possibilities on how such
information can be treated and written. In Section 5 we give a Mean-Dispersion principle
on the trace of the covariance matrix associated to the Wigner transform; here we start by
noting that, from Corollary 2.3, the quantity µ2(fk) + µ2(f̂k) + ∆2(fk) + ∆2(f̂k) in (4.14) can

be written not only as 〈L̂W (fk),W (fk)〉, but also through many other operators, as we can see
in the following examples.

Example 4.6. For all f ∈ L2(R) with ‖f‖ = 1 and finite associated mean and variance of f

and f̂

µ2(f) + µ2(f̂) + ∆2(f) + ∆2(f̂) = 〈M2f, f〉+ 〈D2f, f〉
by Corollary 2.3(a), (b). Therefore formula (1.4) for an orthonormal sequence {fk}k∈N0

in L2(R)
can be rewritten as

n∑

k=0

〈(M2 +D2)fk, fk〉 ≥ (n + 1)2, ∀n ∈ N0.
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Example 4.7. For all f ∈ L2(R) with ‖f‖ = 1 and finite associated mean and variance of f

and f̂ we have from Corollary 2.3(g), (h), (k), (l):

〈[1
4
(D2

1 +D2
2) + (M2

1 +M2
2 )]W (f),W (f)〉 = ∆2(f) + ∆2(f̂) + µ2(f) + µ2(f̂)

and hence for an orthonormal sequence {fk}k∈N0
⊂ L2(R)

n∑

k=0

〈PW (fk),W (fk)〉 ≥ (n + 1)2, ∀n ∈ N0,

for P = 1
4
(D2

1 +D2
2) + (M2

1 +M2
2 ), by Theorem 1.2.

We can also combine, for example, the operators of Examples 4.6 and 4.7, or add combinations
of D1, D2, M1D1 −M2D2, by Corollary 2.3(e), (f), (i), (j).

5. Covariance

In this section we give an uncertainty principle involving the trace of the covariance matrix of
the square of the Wigner distribution |W (f)(x, ξ)|2, and explore its relations with Theorem 1.2.

To this aim, let us first recall some notions about mean and covariance for a function of two
variables ρ(x, y) ∈ L1(R2). We set

ρX(x) :=

∫

R

ρ(x, y)dy, ρY (y) :=

∫

R

ρ(x, y)dx,(5.1)

and then consider the means

M(X) :=

∫

R

xρX(x)dx, M(Y ) :=

∫

R

yρY (y)dy,(5.2)

and the covariances

C(X, Y ) :=

∫

R2

(x−M(X))(y −M(Y ))ρ(x, y)dxdy = C(Y,X)

C(X,X) =

∫

R2

(x−M(X))2ρ(x, y)dxdy

C(Y, Y ) =

∫

R2

(y −M(Y ))2ρ(x, y)dxdy.

The covariance matrix

(
C(X,X) C(X, Y )
C(Y,X) C(Y, Y )

)
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is symetric and its trace is given by

C(X,X) + C(Y, Y ) =

∫

R2

(
(x−M(X))2 + (y −M(Y ))2

)
ρ(x, y)dxdy

=

∫

R2

(x2 + y2)ρ(x, y)dxdy(5.3)

−2M(X)

∫

R2

xρ(x, y)dxdy − 2M(Y )

∫

R2

yρ(x, y)dxdy

+(M2(X) +M2(Y ))

∫

R2

ρ(x, y)dxdy.

If ρ(x, y) has null means M(X) =M(Y ) = 0, then (5.3) represents the trace of the covariance
matrix of ρ(x, y).

For f ∈ L2(R) we can consider ρ(x, ξ) = |W (f)(x, ξ)|2 ∈ L1(R2) since W (f) ∈ L2(R2). It is
then interesting to consider the quantity in (5.3)

∫

R2

(x2 + ξ2)|W (f)(x, ξ)|2dxdξ,

which is related to means and variances of f and f̂ ; indeed, if f ∈ L2(R) with ‖f‖ = 1, by
Corollary 2.3(k), (l) we have

∫

R2

(x2 + ξ2)|W (f)(x, ξ)|2dxdξ

= 〈(M2
1 +M2

2 )W (f),W (f)〉(5.4)

= µ2(f) +
1

2
∆2(f) + µ2(f̂) +

1

2
∆2(f̂)(5.5)

≥ 1

2
(µ2(f) + µ2(f̂) + ∆2(f) + ∆2(f̂))(5.6)

and the equality in (5.6) holds if and only if µ(f) = µ(f̂) = 0. In particular, since the Hermite

functions satisfy µ(hk) = µ(ĥk) = 0 by [10, Ex. 2.4], from Theorem 1.2 we have the following:

Theorem 5.1. If {fk}k∈N0
is an orthonormal sequence in L2(R), then

n∑

k=0

∫

R2

(x2 + ξ2)|W (fk)(x, ξ)|2dxdξ ≥
(n+ 1)2

2
, ∀n ∈ N0.(5.7)

Moreover, given n0 ∈ N, the equality holds for all n ≤ n0 if and only if there exist ck ∈ C with
|ck| = 1 such that fk = ckhk for all 0 ≤ k ≤ n0.

Proof. The inequality (5.7) immediately follows from (5.6) and Theorem 1.2. If fk are multiples
of the Hermite functions ckhk with |ck| = 1, then the equality holds because of (5.5), the fact

that µ(hk) = µ(ĥk) = 0, and Theorem 1.2.
In the other direction, if the equality holds in (5.7) for all n ≤ n0, then from (5.5) we have,

for n ≤ n0,
n∑

k=0

(µ2(fk) + µ2(f̂k) +
1

2
∆2(fk) +

1

2
∆2(f̂k)) =

(n+ 1)2

2
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and hence, from Theorem 1.2:






µ(fk) = µ(f̂k) = 0 ∀ 0 ≤ k ≤ n
n∑

k=0

(∆2(fk) + ∆2(f̂k)) = (n+ 1)2.

Then we conclude from Theorem 1.2. �

Let us remark that from Theorem 5.1 we immediately get the following uncertainty principle
for the covariance matrix:

Corollary 5.2. If {fj}j∈J is an orthonormal sequence in L2(R) with zero means µ(fj) =

µ(f̂j) = 0, and if the trace of the covariance matrix of |W (fj)(x, ξ)|2 is uniformly bounded in
j, we have

∫

R2

(x2 + ξ2)|W (fj)(x, ξ)|2dxdξ ≤ A, ∀j ∈ J,

for some A > 0. In particular, J is finite.

Proof. From Corollary 2.3(c), (d) we have that

M(X) =

∫

R2

x|W (fk)(x, ξ)|2dxdξ = 〈M1W (fk),W (fk)〉 = µ(fk) = 0

M(Y ) = 〈M2W (fk),W (fk)〉 = µ(f̂k) = 0

by assumption, and hence from (5.3):

C(X,X) + C(Y, Y ) =

∫

R2

(x2 + ξ2)|W (fk)(x, ξ)|2dxdξ.

The thesis thus immediately follows from Theorem 5.1. �

Note that Corollary 5.2 can be stated also in terms of the variances of |W (fj)(x, ξ)|2 since,
in general, the variances

V (X) =

∫

R

(x−M(X))2ρX(x)dx,

V (Y ) =

∫

R

(y −M(Y ))2ρY (y)dy,

for ρX , ρY ,M(X),M(Y ) defined as in (5.1)-(5.2), satisfy:

C(X,X) = V (X), C(Y, Y ) = V (Y ),

if ρ(x, y) ∈ L1(R2).

6. Cohen classes

Infinitely many operators playing the same role as in the previous sections may be constructed
by means of the Cohen class

Q(f, g) =
1√
2π

σ ∗W (f, g), f, g ∈ S(R),
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for some tempered distribution σ ∈ S ′(R2). For f, g ∈ S(R) we have W (f, g) ∈ S(R2), and
then Q(f, g) is well-defined for every σ ∈ S ′(R2). As for the Wigner we define

Q[w] =
1√
2π

σ ∗Wig[w], w ∈ S(R2).

If σ = F−1(e−iP (ξ,η)) ∈ S ′(R2) for some polynomial P ∈ R[ξ, η] we have the following result
(see [2, Thms. 3.1 and 3.2]):

Theorem 6.1. Let B(x, y,Dx, Dy) be a linear partial differential operator with polynomial
coefficients and let σ = F−1(e−iP (ξ,η)) ∈ S ′(R2) for some P ∈ R[ξ, η]. Then for every w ∈
S(R2):

(i) Q[B(M1,M2, D1, D2)w]

= B

(

M1 −
1

2
D2 − P1,M1 +

1

2
D2 − P1,

1

2
D1 +M2 − P2,

1

2
D1 −M2 + P2

)

Q[w]

for

P1 = (iD1P )(D1, D2), P2 = (iD2P )(D1, D2).(6.1)

(ii) B(M1,M2, D1, D2)Q[w]

= Q

[

B

(
M2 +M1

2
+ P ∗

1 ,
D1 −D2

2
+ P ∗

2 , D1 +D2,M2 −M1

)

w

]

for

P ∗
1 = (iD1P )(D1 +D2,M2 −M1), P ∗

2 = (iD2P )(D1 +D2,M2 −M1).

Let us remark that if σ = F−1(e−iP (ξ,η)) then |σ̂| = 1 and hence, for all f1, f2, g1, g2 ∈ S(R),
from (2.7) and (2.12):

〈Q(f1, g1), Q(f2, g2)〉 =
1

2π
〈σ ∗W (f1, g1), σ ∗W (f2, g2)〉

=
1

2π
〈F−1(

√
2π σ̂ · ̂W (f1, g1)),F−1(

√
2π σ̂ · ̂W (f2, g2))〉

= 〈σ̂ · ̂W (f1, g1), σ̂ · ̂W (f2, g2)〉
= 〈|σ̂|2 ̂W (f1, g1), ̂W (f2, g2)〉 = 〈 ̂W (f1, g1), ̂W (f2, g2)〉
= 〈W (f1, g1),W (f2, g2)〉 = 〈f1, f2〉〈g1, g2〉,(6.2)

since f̂ ∗ g =
√
2πf̂ · ĝ.

Moreover:

Theorem 6.2. Let {fk}k∈N0
⊂ S(R) be an orthonormal basis in L2(R). Then {Q(fj , fk)}j,k∈N0

is an orthonormal basis in L2(R2).

Proof. Let us first remark that Q(fj, fk) ∈ S(R2) ⊂ L2(R2). Moreover {Q(fj , fk)}j,k∈N0
is an

orthonormal sequence by (6.2).
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We only have to prove that if F ∈ L2(R2) satisfies

〈F,Q(fj, fk)〉 = 0, ∀j, k ∈ N0,

then F = 0 a.e. in R2 (see [5, Thm. 3.4.2]). Let G = F−1(F̂ /σ̂) ∈ L2(R2), so that from (2.7)

0 = 〈F,Q(fj, fk)〉 = 〈F̂ , ̂Q(fj, fk)〉 = 〈Ĝ · σ̂, σ̂ · ̂W (fj, fk)〉
= 〈|σ̂|2Ĝ, ̂W (fj, fk)〉 = 〈Ĝ, ̂W (fj, fk)〉 = 〈G,W (fj, fk)〉, ∀j, k ∈ N0,

which implies G = 0 a.e. in R2 since {W (fj, fk)}j,k∈N0
is a basis in L2(R2) by Theorem 3.1.

Then F̂ = Ĝ · σ̂ = 0, i.e. F = 0 a.e. in R2. �

Let us remark that if f, g ∈ S(R) ⊂ L2(R) with ‖f‖ = ‖g‖ = 1 then, by Lemma 4.2, (6.2)
and Theorem 6.1, we have

µ2(g) + µ2(ĝ) + ∆2(g) + ∆2(ĝ) = 〈L̂W (f, g),W (f, g)〉
= 〈W (f, (M2 +D2)g),W (f, g)〉 = 〈Q(f, (M2 +D2)g), Q(f, g)〉

= 〈[(M1 +
1

2
D2 − P1)

2 + (
1

2
D1 −M2 + P2)

2]Q(f, g), Q(f, g)〉(6.3)

for P1, P2 as in (6.1).
Then Theorem 4.3 can be rephrased as follows, for any choice of P ∈ R[ξ, η]:

Theorem 6.3. Let {fk}k∈N0
, {gk}k∈N0

⊂ S(R) be two orthonormal sequences in L2(R). Then
n∑

k=0

〈L̃Q(fj , gk), Q(fj, gk)〉 ≥ (n+ 1)2, ∀n ∈ N0,(6.4)

for any linear partial differential operator L̃ of the form

L̃(M1,M2, D1, D2) =

(

M1 +
1

2
D2 − P1

)2

+

(
1

2
D1 −M2 + P2

)2

with

P1 = (iD1P )(D1, D2), P2 = (iD2P )(D1, D2),

P ∈ R[ξ, η], σ = F−1(e−iP (ξ,η)),

Q(fj , fk) =
1√
2π

σ ∗W (fj, fk).

Example 6.4. Let P (D1, D2) =
1
2
D1D2. Then

P1 = iD1P (ξ1, ξ2)
∣
∣
(ξ1,ξ2)=(D1,D2)

=
1

2
D2

P2 = iD2P (ξ1, ξ2)
∣
∣
(ξ1,ξ2)=(D1,D2)

=
1

2
D1

and hence

L̃ =

(

M1 +
1

2
D2 −

1

2
D2

)2

+

(
1

2
D1 −M2 +

1

2
D1

)2

= M2
1 + (D1 −M2)

2.
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Therefore, by Theorem 6.3, we obtain

n∑

k=1

〈(M2
1 + (D1 −M2)

2)Q(fj , fk), Q(fjfk)〉 ≥ (n+ 1)2, ∀n ∈ N0.

Example 6.5. Similar results can be obtained considering the operator P (M1,M2) =M2
1 +M

2
2

in (5.4) instead of L̂ and then Theorem 5.1 instead of Corollary 4.5. Indeed, for f ∈ S(R) with
‖f‖ = 1 we can write, by Proposition 2.1, (6.2) and Theorem 6.1:

〈(M2
1 +M2

2 )W (f),W (f)〉

= 〈Wig[(
1

4
(M1 +M2)

2 +
1

4
(D1 −D2)

2)f ⊗ f̄ ],W (f)〉

=
1

4
〈Q[((M1 +M2)

2 + (D1 −D2)
2)f ⊗ f̄ ], Q(f)〉

=
1

4
〈(M1 −

1

2
D2 − P1 +M1 +

1

2
D2 − P1)

2Q(f), Q(f)〉

+
1

4
〈(1
2
D1 +M2 − P2 −

1

2
D1 +M2 − P2)

2Q(f), Q(f)〉

= 〈((M1 − P1)
2 + (M2 − P2)

2)Q(f), Q(f)〉

for any P1, P2 as in (6.1).
It follows that if {fk}k∈N0

⊂ S(R) is an orthonormal sequence in L2(R) then, from Theo-
rem 5.1,

n∑

k=0

〈L∗Q(fk), Q(fk)〉 ≥
(n+ 1)2

2
, ∀n ∈ N0,(6.5)

for any linear partial differential operator L∗ of the form

L∗(M1,M2, D1, D2) = (M1 − P1)
2 + (M2 − P2)

2

with

P1 = (iD1P )(D1, D2), P2 = (iD2P )(D1, D2),

P ∈ R[ξ, η], σ = F−1(e−iP (ξ,η)),

Q(fk) =
1√
2π

σ ∗W (fk).

Remark 6.6. Any linear operator T : L2(R2) → L2(R2) (not necessarily everywhere defined)
satisfying, for some orthonormal sequence {fk}k∈N0

⊂ L2(R),

n∑

k=0

〈TW (fj, fk),W (fj, fk)〉 ≥ (n+ 1)2, ∀n ∈ N0,(6.6)
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cannot be a bounded operator on L2(R2). Indeed, assuming by contradiction that T is bounded,
by Theorem 3.1 we would have, for all n ∈ N0:

(n+ 1)2 ≤
n∑

k=0

〈TW (fj, fk),W (fj, fk)〉

≤
n∑

k=0

‖T‖L(L2,L2)‖W (fj, fk)‖2L2 = (n+ 1)‖T‖L(L2,L2)

which gives a contradiction for large n. The above considerations can be applied to the partial
differential operators with polynomial coefficients appearing in the various results were we have
proved estimates of the kind of (6.6). This is not surprising since all non-constant differential
operators with polynomial coefficients are in fact unbounded in L2(Rn). Indeed, assume first
that P (x,D) has non-constant coefficients, i.e.

P (x,D) =
∑

|β|≤ℓ

Pβ(x)D
β, x ∈ Rn,

with Pβ(x) polynomials of degree less than or equal to m ≥ 1. We choose β0 ∈ Nn
0 , |β0| ≤ ℓ

and a ∈ Rn \ {0} such that Pβ0
(ta) is a polynomial in t of maximum degree m.

Taking then ϕ ∈ D(Rn) with

Dβϕ(0) =

{

0, |β| ≤ ℓ, β 6= β0

1, β = β0,

we have ‖ϕ(x− ta)‖L2 = ‖ϕ(x)‖L2, but

‖P (x,D)ϕ(x− ta)‖L2 = ‖P (x+ ta,D)ϕ(x)‖L2 → +∞ as t→ +∞.

If P (x,D) = P (D) has constant coefficients we argue similarly, choosing a ∈ Rn \{0} in such
a way that P (ta) is a polynomial in t of maximum degree m ≥ 1 and taking then ϕ ∈ D(Rn)
with ϕ̂(0) 6= 0 we have ‖eitx·aϕ(x)‖L2 = ‖ϕ(x)‖L2, but

‖P (D)eitx·aϕ(x)‖L2 = ‖P (ξ)ϕ̂(ξ − ta)‖L2 = ‖P (ξ + ta)ϕ̂(ξ)‖L2 → +∞ as t→ +∞.

7. Riesz bases

In this section we consider a general Riesz basis of L2(R) instead of an orthonormal basis. We
recall that a Riesz basis in a Hilbert space H is the image of an orthonormal basis for H under
an invertible linear bounded operator. In particular, if {uk}k∈N0

is a Riesz basis for L2(R), we
can find an invertible linear bounded operator U1 : L

2(R) → L2(R) such that

U1(uk) = hk, ∀k ∈ N0,

for the Hermite functions {hk}k∈N0
. Moreover (see [5, Lemma 3.6.2])

0 < C1 := inf
k∈N0

‖uk‖2 ≤ sup
k∈N0

‖uk‖2 =: C2 < +∞.(7.1)

We can thus generalize Theorem 4.3 to Riesz bases:
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Theorem 7.1. If {uk}k∈N0
and {vk}k∈N0

are Riesz bases for L2(R) and L̂ is the operator in
(1.7), then for all i, n ∈ N0

n∑

k=0

〈L̂W (ui, vk),W (ui, vk)〉 ≥
‖U−1

2 ‖2L(L2,L2)

‖U1‖2L(L2,L2)

[

n+ 1

‖U−1
2 ‖2L(L2,L2)‖U2‖2L(L2,L2)

]2

,(7.2)

where Uj : L2(R) → L2(R), j = 1, 2, are such that U1(uk) = hk and U2(vk) = hk, for the
Hermite functions hk defined in (1.5), and [x] denotes the integer part of x.

Proof. As in (4.3)-(4.4) we obtain that

n∑

k=0

〈L̂W (ui, vk),W (ui, vk)〉 =
+∞∑

j=0

|〈ui, hj〉|2
+∞∑

ℓ=0

n∑

k=0

|〈vk, hℓ〉|2(2ℓ+ 1)

= ‖ui‖2
+∞∑

ℓ=0

n∑

k=0

|〈vk, hℓ〉|2(2ℓ+ 1),

and we can suppose that the series in the right-hand side is convergent, otherwise (7.2) would
be trivial. We thus obtain, for the constant C1 defined in (7.1):

n∑

k=0

〈L̂W (ui, vk),W (ui, vk)〉 ≥ C1

+∞∑

ℓ=0

n∑

k=0

|〈vk, hℓ〉|2(2ℓ+ 1) = C1

+∞∑

ℓ=0

αℓ(2ℓ+ 1)(7.3)

for

αℓ :=
n∑

k=0

|〈vk, hℓ〉|2 ≤
+∞∑

k=0

|〈vk, hℓ〉|2 ≤ B‖hℓ‖2 = B

for B = ‖U−1
2 ‖2L(L2,L2) because of [5, Prop. 3.6.4].

We have
+∞∑

ℓ=0

αℓ =

+∞∑

ℓ=0

n∑

k=0

|〈vk, hℓ〉|2 =
n∑

k=0

+∞∑

ℓ=0

|〈vk, hℓ〉|2 =
n∑

k=0

‖vk‖2 ≥ C̃1(n+ 1),

for C̃1 := infk∈N0
‖vk‖2. Note that 0 < C̃1 ≤ supk∈N0

‖U−1
2 ‖2L(L2,L2)‖hk‖2 = B.

Let us now assume n ≥ B
C̃1

− 1 so that

m :=

[
n+ 1

B
C̃1

]

− 1 ∈ N0

and write

C̃1(n+ 1) ≤
+∞∑

ℓ=0

αℓ = α0 + . . .+ αm +Rm

with

Rm :=
∑

ℓ≥m+1

αℓ.
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If Rm = 0 then n+1
B
C̃1 ∈ N and α0 = . . . = αm = B because otherwise or m+ 1 < n+1

B
C̃1 or

αk < B for some k = 0, . . . , m and

C̃1(n+ 1) ≤ α0 + . . .+ αm < B · n+ 1

B
C̃1 = (n+ 1)C̃1

would give a contradiction. It follows that setting

ck :=

{

0 if Rm = 0
B−αk

Rm
if Rm > 0,

we have ck ≥ 0 and αk + ckRm = B for all 0 ≤ k ≤ m.
Moreover, if Rm > 0

(c0 + . . .+ cm)Rm = B

[
n + 1

B
C̃1

]

− (α0 + . . .+ αm)

≤ C̃1(n+ 1)− (α0 + . . .+ αm) ≤ Rm.

It follows that c0 + . . .+ cm ≤ 1 and hence, for all n ≥ B
C̃1

− 1,

+∞∑

ℓ=0

αℓ(2ℓ+ 1) =

m∑

ℓ=0

αℓ(2ℓ+ 1) +
∑

ℓ≥m+1

αℓ(2ℓ+ 1)

≥
m∑

ℓ=0

αℓ(2ℓ+ 1) + (c0 + . . .+ cm)
∑

ℓ≥m+1

αℓ(2ℓ+ 1)

=
m∑

ℓ=0

αℓ(2ℓ+ 1) + c0
∑

ℓ≥m+1

αℓ (2ℓ+ 1)
︸ ︷︷ ︸

≥1

+ . . .+ cm
∑

ℓ≥m+1

αℓ (2ℓ+ 1)
︸ ︷︷ ︸

≥2m+1

≥ (α0 + c0Rm)
︸ ︷︷ ︸

=B

·1 + . . .+ (αm + cmRm)
︸ ︷︷ ︸

=B

·(2m+ 1)

= B
m∑

k=0

(2k + 1) = B(m+ 1)2 = B

[
n+ 1

B
C̃1

]2

.

Note that the above inequality is trivial if n+1
B
C̃1 < 1 so that from (7.3) we have, for all n ∈ N0,

n∑

k=0

〈L̂W (ui, vk),W (ui, vk)〉 ≥ C1B

[
n+ 1

B
C̃1

]2

.(7.4)

Let us now remark that, from the the continuity of Uj : L
2(R) → L2(R), j = 1, 2,

1 = ‖hk‖L2 ≤ ‖U1‖L(L2,L2) · ‖uk‖L2 , 1 = ‖hk‖L2 ≤ ‖U2‖L(L2,L2) · ‖vk‖L2

for every k ∈ N0, and therefore

C1 = inf
k∈N0

‖uk‖2L2 ≥ 1

‖U1‖2L(L2,L2)

, C̃1 = inf
k∈N0

‖vk‖2L2 ≥ 1

‖U2‖2L(L2,L2)

.
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Since B = ‖U−1
2 ‖2L(L2,L2) we finally have from (7.4) that

n∑

k=0

〈L̂W (ui, vk),W (ui, vk)〉 ≥
‖U−1

2 ‖2L(L2,L2)

‖U1‖2L(L2,L2)

[

n+ 1

‖U−1
2 ‖2L(L2,L2)‖U2‖2L(L2,L2)

]2

for all n ∈ N0. �

From Theorem 7.1 and Lemma 4.2 we have the mean-dispersion principle for Riesz bases:

Corollary 7.2. Let {uk}k∈N0
be a Riesz basis in L2(R), with U(uk) = hk, for the Hermite

functions {hk}k∈N0
defined in (1.5). Then for all n ∈ N0

n∑

k=0

(∆2(uk) + ∆2(ûk) + µ2(uk) + µ2(ûk)) ≥
1

‖U−1‖2‖U‖2
[

n+ 1

‖U−1‖2‖U‖2
]2

,

where ‖ · ‖ = ‖ · ‖L(L2,L2).

Proof. From Lemma 4.2 we have that

〈L̂W (uk),W (uk)〉 = ‖uk‖4(∆2(uk) + ∆2(ûk) + µ2(uk) + µ2(ûk)).

Since ‖uk‖ ≤ ‖U−1‖ · ‖hk‖ = ‖U−1‖, by Theorem 7.1 we obtain:
n∑

k=0

(∆2(uk) + ∆2(ûk) + µ2(uk) + µ2(ûk))

≥ 1

‖U−1‖4
n∑

k=0

‖uk‖4(∆2(uk) + ∆2(ûk) + µ2(uk) + µ2(ûk))

≥ 1

‖U−1‖2‖U‖2
[

n+ 1

‖U−1‖2‖U‖2
]2

.

�

Note that if the Riesz basis {uk}k∈N0
is orthonormal then ‖U‖ = 1 since

U(f) =
+∞∑

k=0

〈f, uk〉U(uk) =
+∞∑

k=0

〈f, uk〉hk, f ∈ L2(R),

and hence ‖U(f)‖L2 = ‖f‖L2 for all f ∈ L2(R).
From Corollary 7.2 in the case of orthonormal Riesz bases we thus find again (1.4), i.e.

Shapiro’s Mean Dispersion principle. This improves [10, Cor. 2.8] for ‖U‖ = 1, where a weaker
estimate is obtained with respect to Shapiro’s Mean Dispersion principle ([10, Thm. 2.3]).
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