
Calcolo            (2025) 62:6 
https://doi.org/10.1007/s10092-024-00630-z

Hermite and Hermite–Fejér interpolation at Pollaczek zeros

Giuseppe Mastroianni1 · Incoronata Notarangelo2

Received: 1 June 2024 / Revised: 26 November 2024 / Accepted: 27 November 2024
© The Author(s) under exclusive licence to Istituto di Informatica e Telematica (IIT) 2024

Abstract
In order to approximate functions defined on (−1, 1), which can grow exponentially at
±1, we introduce an Hermite and an Hermite–Fejér-type interpolation process based
at Pollaczek-type zeros. We prove the convergence of these processes in weighted
uniform and L p−norms and provide error estimates which are comparable with the
best weighted approximation in suitable function spaces.

Keywords Hermite interpolation · Hermite–Fejér interpolation · Weighted
polynomial approximation · Orthogonal polynomials · Pollaczek-type zeros ·
Exponential weights
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1 Introduction

This paper concerns the weighted polynomial approximation of functions defined on
(−1, 1), which can exhibit an exponential growth at the endpoints of the interval,
for instance, behaving like e(1−x)−α(1+x)−β

. This kind of functions do not belong to
classical spaces, but rather to spaces with suitable Pollaczek-type weights decaying
exponentially at ±1.
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These weights and the corresponding orthonormal system have been defined and
extensively studied in [1] and [2], while the class of functions growing exponentially
at ±1 have been considered in [3] (see also [4, 5] and [6], cf. [7–9] and [10]). Various
related approximation processes have been explored in [4, 5, 11–19].

Here, we introduce an Hermite and an Hermite–Fejér-type interpolation process
H∗
2m+4(w) and F∗

m(w), based on Pollaczek-type zeros. These processes are obtained
by applying Hermite and Hermite–Fejér operators to suitable finite sections of the
function. A similar approach was introduced in [20] and [21] for Gauss–Laguerre
rules and subsequently applied to various polynomial approximation processes (see [4,
10] and the references therein).

We note that there is a vast literature on Hermite and Hermite–Fejér interpola-
tion, much of it due to the Hungarian school, and in this regard, we mention, among
others [22–27]. However, these Authors have considered processes based on Jacobi
zeros and their generalizations, which are suitable for approximating continuous func-
tions or those with algebraic-type singularities, but are inadequate for functions with
exponential behavior at ±1.

We establish the uniform boundedness and convergence of H∗
2m+4(w) and F∗

m(w)

in weighted L p−norms and provide error estimates for functions belonging to the
aforementioned spaces. Our results are original and the proofs simple, as they derive
the behavior of these interpolation processes from that of the Lagrange interpolation
based on the same nodes. Additionally, the error estimates are sharp, since they show
that this processes converge with the order of the best polynomial approximation in
suitable weighted function spaces.

In brief, this work is focused on the polynomial approximation of functions belong-
ing to proper weighted spaces. Taking into account that the Lagrange operator is
defined for continuous functions in L p and the Hermite operator for functions with
a continuous derivative in the first Sobolev space, assuming equal regularity of the
functions, we will prove that the order of convergence does not change (with different
constants). On the other hand we are going to show that the Hermite-Fejér operator
converges uniformly for f ∈ Cū , in contrast to the Lagrange operator. We would
like to highlight that the proofs are new because, instead of evaluating the kernel of
the Hermite operator, which is laborious for non-classical orthogonal polynomials,
we easily derive the properties of the Hermite operator from those of the Lagrange
operator at the same points.

The paper is organized as follows. In Sect. 2, we define the orthonormal polynomials
related to Pollaczek-type weights, our Hermite and Hermite–Feér-type interpolating
polynomials and the weighted function spaces, and recall some results about weighted
polynomial approximation and Lagrange interpolation at Pollaczek-type zeros. In
Sect. 3, we state our main results. In Sect. 4, we recall some results useful for the
proofs and prove ourmain results. Finally, in the Appendix, we provide some technical
proofs.

In the sequel c, C will stand for positive constants which can assume different
values in each formula and we shall write C �= C(a, b, . . .) when C is independent of
a, b, . . . or Ca when C depends on a. Furthermore A ∼ B will mean that if A and
B are positive quantities depending on some parameters, then there exists a positive
constant C independent of these parameters such that (A/B)±1 ≤ C. Finally, we will
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denote by Pm the set of all algebraic polynomials of degree at most m. As usual N, Z,
R, will stand for the sets of all natural, integer, real numbers, while Z+ andR+ denote
the sets of positive integer and positive real numbers, respectively.

2 Basic facts

2.1 Orthonormal system

Let us consider the weight function

w(x) = (1 − x2)βe−(1−x2)−α =: vβ(x)σ (x) , (1)

where vβ(x) = (1 − x2)β , σ(x) = e−(1−x2)−α
, β ≥ 0, α > 0, x ∈ (−1, 1).

We point out that w is a nonclassical weight function, does not satisfy the doubling
condition and, for α ≥ 1/2, does not belong to the Szegő class (see [28] and [27]).
Nevertheless, the weight w belongs to a wide class of exponential weights defined
by Levin and Lubinsky in [1] and [2], as it was checked in [3]. In particular, setting
w(x) = e−Q(x) with Q(x) = (1− x2)−α −β log(1− x2), we can define theMhaskar–
Rakhmanov–Saff number āτ = āτ (w), 1 ≤ τ ∈ R, as the positive root of

τ = 2

π

∫ 1

0
āτ t Q

′(āτ t)
dt√
1 − t2

.

The number āτ is an increasing function of τ , with limτ→+∞ āτ = 1 and

C1τ
− 1

α+1/2 ≤ 1 − āτ ≤ C2τ
− 1

α+1/2 ,

where C1 and C2 are positive constants independent of τ and α is fixed (see [2,
pp. 13, 31]).

Let {pm(w)}m be the sequence of othonormal polynomials w.r.t. w with positive
leading coefficients and xk be the zeros of pm(w), located as

−am < x1 < x2 < . . . < xm < am,

where am = am(
√

w) is the Mhaskar–Rahmanov–Saff number related to
√

w and

1 − am ∼ 1

m
1

α+1/2

.

Remark 1 We note that the coefficients of the three-term recurrence relation for
the orthonormal polynomials {pm(w)}m are not known in explicit form. In order
to compute the zeros of pm(w), we can use the functions “aChebyshevAlgo-
rithm” and “aGaussianNodesWeights” of theMathematicapackage “Orthogonal
Polynomials” [29] and [30] (see also [12] were this procedure has been applied
for the weight σ or [31–33] for similar cases).
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Moreover, the Mhaskar–Rahmanov–Saff number can be computed by using a pro-
cedure similar to the one shown in [12].

We also point out that

1 − xm ∼ 1 − am ∼ 1

m
1

α+1/2

,

and, if α → 0, we obtain 1
m2 at the righ-hand side, as for Jacobi weights.

In order to compute the Mhaskar–Rahmanov–Saff number am = am(
√

w) we can
proceed as done in [12] for the weight σ . Anyway, for m sufficiently large, roughly

speaking we can assume that am := 1 − m− 1
α+1/2 and the constants do not affect the

rate of convergence.

2.2 Hermite-type polynomial

In order to introduce an Hermite-type interpolation process based at the zeros of

qm+2(x) = (a2m − x2)pm(w, x),

fixed θ ∈ (0, 1), we set

x0 := −am < xi < −aθm ≤ xk ≤ aθm < x j < am =: xm+1,

and

�k(x) = qm+2(x)

(x − xk)q ′
m+2(xk)

, k = 0, 1, . . . ,m + 1,

where �k ∈ Pm+1 are the fundamental Lagrange polynomials.
So, for any continuous function f , with f ′ ∈ C0(−1, 1), we define the Hermite-

type polynomial

H∗
2m+4(w, f , x) =

∑
|xk |≤aθm

�2k(x)
[
νk(x) f (xk) + (x − xk) f

′(xk)
]

with

νk(x) = 1 − 2(x − xk)�
′
k(xk).

We note that, denoting by H2m+4(w, f ) ∈ P2m+3 the ordinary Hermite polynomial
of f based at the nodes x0, x1, . . . , xm, xm+1, namely such that H2m+4(w, f )(xi ) =
f (xi ) and H2m+4(w, f )′(xi ) = f ′(xi ) ∀i , we have

H∗
2m+4(w, f ) = H2m+4(w, χθ f ),
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where χθ is the characteristic function of the interval [−aθm, aθm].
Naturally, H∗

2m+4(w, f ) ∈ P2m+3 and

H∗
2m+4(w, f )( j)(xi ) =

⎧⎨
⎩

f ( j)(xi ) |xi | ≤ aθm

0 |xi | > aθm

j = 0, 1.

So, the nodes xi /∈ [−aθm, aθm] are double zeros for H∗
2m+4(w, f ).

We can split H∗
2m+4(w, f ) as

H∗
2m+4(w, f , x) = Fm(w, f , x) + Gm(w, f ′, x),

letting

Fm(w, f , x) :=
∑

|xk |≤aθm

�2k(x)νk(x) f (xk)

be the Hermite–Fejér-type polynomial and

Gm(w, f ′, x) =
∑

|xk |≤aθm

�2k(x)(x − xk) f
′(xk).

We also note that in general i H∗
2m+4(w, P) �= P

H∗
2m+4(w, 1, x) �= 1

and

Fm(w, f )′(xi ) = 0, |xi | ≤ aθm .

2.3 Weighted function spaces

We now introduce some function spaces in which we will study our Hermite-type
operator H∗

2m+4(w, f ). These spaces have been introduced and extensively studied
in [3] (see also [4, 5] and [6], cfr. [7–9] and [10]). Here we present some basic facts
in order to state our main results; other facts will be recalled as needed in the proofs.

Let us consider the weight

u(x) = (1 − x2)γ e
− 1

(1−x2)α =: vγ (x)σ (x) (2)

with γ ≥ 0, α > 0, x ∈ (−1, 1).
We can associate to the weight u the following function spaces. For 1 ≤ p < ∞,

by L p
u we denote the set of all measurable functions f such that

‖ f ‖L p
u

:= ‖ f u‖p =
(∫ 1

−1
| f u|p(x) dx

)1/p

< ∞.
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For p = ∞, by a slight abuse of notation, we set

L∞
u := Cu =

{
f ∈ C0(−1, 1) : lim

x→±1
f (x)u(x) = 0

}
,

and we equip this space with the norm

‖ f ‖L∞
u

:= ‖ f u‖∞ = sup
x∈(−1,1)

| f (x)u(x)| .

Note that the limit conditions in the definition of Cu are necessary and sufficient for
the validity of the Weierstrass theorem in Cu .

We emphasize that, as mentioned in the Introduction, the functions belonging to
the spaces L p

u can grow exponentially at the endpoints ±1.
For smoother function, we define the Sobolev-type subspaces of L p

u as

W p
r (u) =

{
f ∈ L p

u : f (r−1) ∈ AC(−1, 1), ‖ f (r)ϕr u‖p < ∞
}

, 1 ≤ r ∈ N,

where 1 ≤ p ≤ ∞, ϕ(x) := √
1 − x2 and AC(−1, 1) denotes the set of all functions

which are absolutely continuous on every closed subinterval of (−1, 1). We equip
these spaces with the norm

‖ f ‖W p
r (u) = ‖ f u‖p + ‖ f (r)ϕr u‖p.

In order to introduce some further subspaces of L p
u , for 1 ≤ p ≤ ∞, r ≥ 1 and for

all sufficiently small t > 0 (say t < t0), we define the main part of the r−th modulus
of smoothness as

Ωr
ϕ( f , t)u,p = sup

0<h≤t

∥∥∥Δr
hϕ ( f ) u

∥∥∥
L p(Ih)

,

where Ih = [−h∗, h∗], h∗ = 1 − A h1/(α+1/2), A > 0 is a fixed constant, and

Δr
hϕ f (x) =

r∑
i=0

(
r
i

)
(−1)i f

(
x + (r − 2i)

hϕ(x)

2

)
.

Then the complete r−th modulus of smoothness is given by

ωr
ϕ( f , t)u,p = Ωr

ϕ( f , t)u,p + inf
P∈Pr−1

‖( f − P) u‖L p[−1,−t∗]

+ inf
P∈Pr−1

‖( f − P) u‖L p[t∗,1]

with t∗ = 1−A t1/(α+1/2) and A > 0. We emphasize that the behavior of ωr
ϕ( f , t)u,p

is independent of the constant A.
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Moreover, for any f ∈ W p
r (u), with r ≥ 1 and 1 ≤ p ≤ ∞, we have

Ωr
ϕ( f , t)u,p ∼ sup

0<h≤t
inf

g∈W p
r

{
‖( f − g)u‖L p(Ih) + hr

∥∥∥g(r)ϕr u
∥∥∥
L p(Ih)

}

≤ C sup
0<h≤t

hr
∥∥∥ f (r)ϕr u

∥∥∥
L p(Ih)

where C �= C( f , t).
Furthermore, the following equivalence holds

ωr
ϕ

(
f ,

1

m

)
u,p

∼ inf
Pm∈Pm

{
‖( f − Pm)u‖p + 1

mr

∥∥∥P(r)
m ϕr u

∥∥∥
p

}
.

By means of the r−th modulus of smoothness, for 1 ≤ p ≤ ∞, we can define the
Zygmund-type spaces

Z p
s (u) := Z p

s,r (u) =
{
f ∈ L p

u : sup
t>0

ωr
ϕ( f , t)u,p

ts
< ∞, r > s

}
, 0 < s ∈ R,

equipped with the norm

‖ f ‖Z p
s,r (u) = ‖ f ‖L p

u
+ sup

t>0

ωr
ϕ( f , t)u,p

ts
.

2.4 Weighted polynomial approximation

Let us denote by Pm the set of all algebraic polynomials of degree at most m and by

Em( f )u,p = inf
P∈Pm

‖( f − P) u‖p

the error of best polynomial approximation in L p
u , 1 ≤ p ≤ ∞. A polynomial realizing

the infimum in the previous definition is called polynomial of best approximation for
f ∈ L p

u .
The next theorem collects the Jackson and Stechkin type inequalities and it can be

deduced from the results proved in [3, Theorems 3.4, 3.5 and 3.6, p. 175] for theweight
σ(x) = e−(1−x2)−α

, taking into account that the weight u has a similar behaviour (see
also [15, Proposition 2.3, p. 627] and [6, Theorems 4.1 and 4.2, p. 297]).

Theorem 1 Let u(x) = (1 − x2)γ e− 1
2 (1−x2)−α

, with α > 0 and γ ≥ 0. For any
f ∈ L p

u , 1 ≤ p ≤ ∞, the inequalities

Em( f )u,p ≤ C ωr
ϕ

(
f ,

1

m

)
u,p

, (3)

Em( f )u,p ≤ C
∫ 1

m

0

Ωr
ϕ( f , t)u,p

t
dt (4)
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and

ωr
ϕ

(
f ,

1

m

)
u,p

≤ C
mr

m∑
i=0

(1 + i)r−1Ei ( f )u,p , (5)

hold with C independent of m and f .

Note that (3) and (5) are similar to the Jackson and Stechkin inequalities proved by
Ditzian and Totik for Jacobi weights [7], with a proper different modulus of smooth-
ness, while (4) is a weak form of the Jackson inequality. Moreover, the proof of
Stechkin-type inequality (5) is based on the Bernstein inequality (see [6])

‖P ′
mϕu‖p ≤ Cm‖Pmu‖p.

Using Theorem 1, we can characterize the weighted function spaces L p
u , namely

by

lim
m

Em( f )u,p = 0 ⇔ f ∈ L p
u .

Moreover, we deduce the following more explicit estimates in Sobolev and Zygmund
spaces

Em( f )u,p ≤ C
mr

‖ f ‖W p
r (u) , ∀ f ∈ W p

r (u) , r ≥ 1 , (6)

and

Em( f )u,p ≤ C
ms

‖ f ‖Z p
s (u), ∀ f ∈ Z p

s (u), s > 0,

where C �= C(m, f ) and 1 ≤ p ≤ ∞.
Finally, the following embedding theorem have been proved in [6].

Theorem 2 If f ∈ L p
u , 1 ≤ p < ∞, is such that

∫ 1

0

Ωr
ϕ( f , t)u,p

t1+1/p dt < ∞, r ≥ 1,

then f is continuous on (−1, 1), while if

∫ 1

0

Ωr
ϕ( f , t)u,p

t1+ν/p
dt < ∞, r ≥ 1,

where ν = (2α + 2)/(2α + 1) then f ∈ Cu.

2.5 Lagrange interpolation

Let us now consider the Lagrange polynomial

L∗
m+2(w, f , x) =

∑
|xk |≤aθm

qm+2(x)

(x − xk)q ′
m+2(xk)

f (xk),
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interpolating a continuous function f at the zeros of pm(w) belonging to [−aθm, aθm]
and vanishing at the remaining zeros and at ±am . The following theorem, proved
in [17] will be crucial for our aims.

Theorem 3 Let w = vβσ . For any f ∈ C(−1, 1) and for 1 < p < ∞, there exists a
constant Cθ depending on θ ∈ (0, 1) such that

∥∥L∗
m+2(w, f )vμ

√
σ
∥∥p
p ≤ Cθ

∑
|xk |≤aθm

Δxk
∣∣∣ f (xk)vμ(xk)

√
σ(xk)

∣∣∣p

.u > − 1
p , if and only if

− 1

p
< μ − β

2
+ 3

4
< 1 − 1

p
.

While, for p = ∞, we have

∥∥L∗
m+2(w, f )vμ

√
σ
∥∥∞ ≤ Cθ (logm) max|xk |≤aθm

∣∣∣ f (xk)vμ(xk)
√

σ(xk).
∣∣∣

with μ ≥ 0, if and only if

0 ≤ μ − β

2
+ 3

4
≤ 1.

In both cases Cθ is independent of f and m.

Finally, wewant to give themain idea that justifies the ’‘truncation” in the definition
ofLagrange andHermite interpolation based at Pollaczek-type zeros. For any Pm ∈ Pm

1 ≤ p ≤ ∞, the restricted range inequalities

‖Pmu‖p ≤ C‖Pmu‖L p(Am ) , Am = [−am, am], (7)

and

‖Pmu‖L p(A′
sm ) ≤ Ce−c mη‖Pmu‖p, A′

sm = [−1, 1] \ [−asm, asm], s > 1,

holdwith c, C independent ofm and Pm , η = 2α/(2α+1). From the second inequality,
for any f ∈ L p

u , we deduce

‖ f u‖p ≤ C‖ f u‖L p(Aθm ) + EM ( f )u,p.

So, the main part of ‖ f u‖p is ‖ f u‖L p(Aθm ) = ‖χ f u‖p. This suggests to apply this
approximation processes only to χ f , χ is the characteristic function of Aθm .
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3 Main results

Let us first study the bahaviour of our Hermite and Hermite-Fejér type operator in
weighted L p−spaces, showing the boundedness of these operators.

Theorem 4 Let w and u the weights defined by (1) and (2). For any f ∈ L p
u , 1 < p <

∞ such that
∫ 1

0

Ωϕ( f ′, t)ϕu,p

t1+1/p dt < ∞ , we have

∥∥H∗
2m+4(w, f )u

∥∥
p ∼

⎛
⎝ ∑

|xk |≤aθm

Δxk

[
| f u|p(xk) + | f ′ϕu|p(xk)

mp

]⎞
⎠

1/p

(8)

and

∥∥F∗
m(w, f )u

∥∥
p ∼

⎛
⎝ ∑

|xk |≤aθm

Δxk | f u|p(xk)
⎞
⎠

1/p

(9)

where the constants in ∼ are independent of m, f , f ′, if and only if

uv2

wϕ
∈ L p and

wϕ

uv2
∈ Lq , v(x) = 1 − x2,

1

p
+ 1

q
= 1. (10)

Note that the conditions (10) are independent of the exponential part but depend
only on the algebraic part of the weights w and u, since they can be written as

− 1

p
< γ − β + 3

2
< 1 − 1

p
.

Moreover, this conditions can be obtained from those of Theorem 3 taking the square
of

√
wϕ and replacing vγ

√
σ with u = vγ σ . This is in accordance with the results

concerning Hermite interpolation at Jacobi zeros [34].

We also remark that, by Theorem 2, the condition
∫ 1
0

Ωϕ( f ′,t)ϕu,p

t1+1/p dt < ∞ implies
the continuity of f ′.

Finally, we emphasize that the constants in∼ in Theorem4 depend on the truncation
parameter θ (see Sect. 4). As for other exponential weights, it is not possible to obtain
similar results for the classical Hermite and Hermite–Feér interpolation (see also [12]
and [17] for the associated Gaussian rules and Lagrange interpolation, respectively).

Now, let us consider our operators in weighted spaces of continuous functions

Theorem 5 Let w and u be the weights in (1) and (2). For any f ∈ W∞
1 , we have

∥∥H∗
2m+4(w, f )u

∥∥∞ ≤ C(logm)

[
‖ f u‖∞ + 1

m
‖ f ′ϕu‖∞

]
(11)

and for any f ∈ Cū, with ū(x) = u(x) log e
1−x2

, we get

∥∥F∗
m(w, f )u

∥∥∞ ≤ C‖ f ū‖∞ (12)

123



Hermite and Hermite–Fejér interpolation at Pollaczek zeros Page 11 of 23     6 

if and only if the parameters of the weights satisfy

0 ≤ γ − β + 3

2
≤ 1 . (13)

In both inequalities the constants C depend on θ but are independent of f and m.

The following theorems show the convergence of our Hermite and Hermite–Fejér
operators in weighted L p−spaces and in weighted uniform metric under the assump-
tions of Theorems 4 and 5, respectively, providing precise error estimates.

Theorem 6 Let 1 < p < ∞. If the weightsw and u satisfy the assumptions (10), then,

for any f ∈ L p
u such that

∫ 1

0

Ωϕ( f ′, t)ϕu,p

t1+1/p dt < ∞ , we have

∥∥[ f − H∗
2m+4(w, f )

]
u
∥∥
p

≤ Cθ

m1+1/p

∫ 1/m

0

Ωr
ϕ( f ′, t)ϕu,p

t1+1/p dt + Cθ e
−cmη [‖ f u‖p + ‖ f ′u‖p

]
(14)

and

∥∥[ f − F∗
m(w, f )

]
u
∥∥
p ≤ Cθ

m1/p

∫ 1/m

0

Ωϕ( f , t)u,p

t1+1/p dt + Cθ e
−cmη‖ f u‖p , (15)

where η = 2α
2α+1 , r ≥ 1 is fixed, the constants Cθ and c depend on θ , but not on m and

f .

Theorem 7 If the parameters β and γ of the weights w and u satisfy (13), then, for
any f ∈ W∞

1 , we have

∥∥[ f − H∗
2m+4(w, f )

]
u
∥∥∞ ≤ C

[
logm

m
EM ( f ′)ϕu,∞ + e−cmη‖ f ′ϕu‖∞

]
(16)

Moreover, with ū(x) = u(x) log e
1−x2

, we get

∥∥[ f − F∗
m(w, f )

]
u
∥∥∞ ≤ Cθ

[
Ωϕ

(
f ,

logm

m

)
ū,∞

+ e−cmη‖ f ū‖∞

]
(17)

where M ∼ m, η = 2α
2α+1 , the constants Cθ and c depend on θ , but not on m and f .

For instance, if f ∈ W∞
1 (u), using also Theorem 1, we deduce

∥∥[ f − H∗
2m+4(w, f )

]
u
∥∥∞ ≤ C logm

m
‖ f ‖W∞

1 (u),

form sufficiently large, namely our Hermite-type polynomial converges to f with the
order of the best weighted approximation times logm (cf. (6)).
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To conclude this sectionwe note that, as alreadymentioned for Theorem 4, in all our
main results the constants depend on the truncation parameter θ . However θ is fixed
and independent ofm, so it only affects the constants and not the order of convergence.
Since C = O( 1

θ
) and C = O( 1

1−θ
), the most appropriate choice seems θ = 1/2 (see

Sect. 4 and [17] for more details).

4 Proofs

4.1 Preliminary results

The following estimates involving the orthonormal polynomials pm(w) and their zeros
xk have been proved by Levin and Lubinsky in [1, 2]

|pm(w, x)|
√

w(x)
√
a2m − x2 ≤ C, x ∈ [−am, am] (18)

1

∣∣p′
m(w, xk)

∣∣
√

w(xk)
√
a2m − x2k

∼ Δxk, k = 1, . . . ,m, (19)

|pm(w, x)|
√

w(x)
√
a2m − x2 ∼ |x − xd |

Δxd
(20)

where x ∈ (x1, xm) and xd in a zero closest to x .
Now, let us set

Bk( f , x) := u(x)�2k(x)
{(
1 − 2�′

k(xk)(x − xk)
)
f (xk) + (x − xk) f

′(xk)
}
.

Obviously Bk( f , xk) = u(xk) f (xk) and, using (19) and (20), for |x − xk | ≤ Δxk
8 , i.e.,

x ∈ [xk − Δxk
8 , xk + Δxk

8 ], we have

|Bk( f , x)| ≤ C
(

| f u|(xk) + | f ′ϕu|(xk)
m

)
, |xk | ≤ aθm, (21)

taking also into account that

ϕ(x) =
√
1 − x2 ∼

√
a2m − x2 |x | ≤ aθm .

Moreover, for x �= xk , we can write

Bk( f , x) = u(x)�2k(x)
(x − xk)

Δxk

[(
Δxk
x − xk

− 2Δxk�
′
k(xk)

)
f (xk) + Δxk f

′(xk)
]

.
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Setting

b(xk) = Δxk
x − xk

− 2Δxk�
′
k(xk)

with qm+2(x) = (a2m − x2)pm(x), we get

Bk( f , x) = u(x)qm+2(x)�k(x)
b(xk) f (xk) + Δxk f ′(xk)

q ′
m+2(xk)Δxk

and then, with x �= xk ,

Bk( f , x) = u(x)qm+2(x)�k(x)F(xk), (22)

where

F(xk) = b(xk) f (xk) + Δxk f ′(xk)
q ′
m+2(xk)Δxk

.

Proposition 1 If |x − xk | > cΔxk , c > 0, then

|b(xk)| ≤ C (23)

and ∣∣∣∣∣∣
1 − 2(x − xk)�′

k(xk)

log e
1−x2k

∣∣∣∣∣∣ ≤ C
(
1 + 1

logm

|x − xk |
Δxk

)
(24)

with |xk | ≤ aθm and C = C(θ) �= C(m, k).

The proof of Proposition 1 will be given in the Appendix.

4.2 Proofs of themain results

We are now able to prove Theorems 4, 5, 6 and 7.

Proof of Theorem 4 Let us first prove (8). For 1 < p < ∞, using the restricted range
inequality (7) with Am = [−a2m+3, a2m+3], we have

∥∥H∗
2m+4(w, f )u

∥∥
p ≤ C ∥∥H∗

2m+4(w, f )u
∥∥
L p(Am )

= C sup
‖g‖q=1

∫
Am

H∗
2m+4(w, f , x)u(x)g(x) dx

=: C sup
‖g‖q=1

Γ (g) .
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Setting I j =
[
x j − δx j

8 , x j + δx j
8

]
, |x j | ≤ aθm , and I = ∪|x j |≤aθm I j , with the nota-

tion of the previous Section, we can split the integral A(g) as follows

A(g) =
{∫

I
+
∫
Am\I

} ∑
|xk |≤aθm

Bk( f , x)g(x) dx

=
∑

|x j |≤aθm

∫
I j

∑
|xk |≤aθm

Bk( f , x)g(x) dx

+
∫
Am\I

∑
|xk |≤aθm

Bk( f , x)g(x) dx

=
∑

|x j |≤aθm

∫
I j
B j ( f , x)g(x) dx +

∑
|x j |≤aθm

∫
I j

∑
|xk |≤aθm , k �= j

Bk( f , x)g(x) dx

+
∫
Am\I

∑
|xk |≤aθm

Bk( f , x)g(x) dx .

For the first term, since |x − x j | ≤ Δx j
8 , using (21) we have

∣∣∣∣∣∣
∑

|x j |≤aθm

∫
I j
Bk( f , x)g(x) dx

∣∣∣∣∣∣
≤ C

∑
|x j |≤aθm

[
| f u|(x j ) + | f ′ϕu|(x j )

m

] ∫
I j

|g(x)| dx

≤ C
∑

|x j |≤aθm

[
| f u|(x j ) + | f ′ϕu|(x j )

m

]
(Δx j )

1/p

(∫
I j

|g(x)|q dx
)1/q

≤ C
⎛
⎝ ∑

|x j |≤aθm

Δx j

[
| f u|p(x j ) + | f ′ϕu|p(x j )

m

]⎞
⎠

1/p

‖g‖q .

Whereas, using the Hölder inequality and (18) for qm+2, the second and third terms
can be estimated as

∣∣∣∣∣∣
∑

|x j |≤aθm

∫
I j

∑
|xk |≤ak , k �= j

Bk( f , x)g(x) dx +
∫
Am\I

∑
|xk |≤aθm

Bk( f , x)g(x) dx

∣∣∣∣∣∣
≤ C

∫
Am

∑
|xk |≤aθm

|Bk( f , x)g(x)| dx
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= C
∫
Am

∑
|xk |≤aθm

∣∣qm+2(x)L
∗
m+2(w, F, x)g(x)

∣∣ dx

≤ C
∥∥∥∥L∗

m+2(w, F)
uv√
wϕ

∥∥∥∥
L p(Am )

‖g‖q .

Now, using Theorem 3, we obtain

∥∥∥∥L∗
m+2(w, F)

uv√
wϕ

∥∥∥∥
p

L p(Am )

≤ C
∑

|xk |≤aθm

Δxk

∣∣∣∣F(xk)
u(xk)v(xk)√
w(xk)ϕ(xk)

∣∣∣∣
p

.

By (22),

1

q ′
m+2(xk)Δxk

∼
√

w(xk)ϕ(xk)

v(xk)

and (23), inequality (8) easily follows and the conditions (10) are necessary and suf-
ficient by virtue of Theorem 3.

Formula (9) can be obtained by using similar arguments with f ′ = 0. So, we omit
the details. ��

Proof of Theorem 5 Let us first prove inequality (11).
If x ∈ [−aθm, aθm] and xd is a zero closest to x , we can write

H∗
2m+4(w, f , x)u(x) = f (xd)u(xd) +

∑
|xk |≤aθm ,k �=d

Bk( f , x).

Using Theorem 3 we have

∑
|xk |≤aθm ,k �=d

Bk( f , x) ≤ C(logm)

[
‖ f u‖∞ + 1

m
‖ f ′ϕu‖∞

]

and inequality (11) follows.
In order to prove inequality (12), let x ∈ [−aθm, aθm] and xd be a zero closest to

x . We can write

F∗
m(w, f , x)u(x) = f (xd)u(xd) +

∑
|xk |≤aθm ,k �=d

�2k(x)νk(x) f (xk)u(x).
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By using (24) we get

∣∣F∗
m(w, f , x)u(x)

∣∣ ≤ | f (xd)u(xd)| +
∑

|xk |≤aθm ,k �=d

∣∣∣�2k(x)νk(x) f (xk)u(x)
∣∣∣

≤ | f (xd)u(xd)| + C
∑

|xk |≤aθm ,k �=d

u(x)
�2k(x)

u(xk)

(
1 + |x − xk |

(logm)Δxk

)
| f (xk)|ū(xk)

= | f (xd)u(xd)| + C
∑

|xk |≤aθm ,k �=d

u(x)
�2k(x)

u(xk)
| f (xk)|ū(xk)

+ C
logm

∑
|xk |≤aθm ,k �=d

u(x)
�2k(x)

u(xk)

|x − xk |
Δxk

| f (xk)|ū(xk) .

By (18) and (19), the first and the second terms at the right hand side can be estimated
as

| f (xd)u(xd)| + C
∑

|xk |≤aθm ,k �=d

u(x)
�2k(x)

u(xk)
| f (xk)|ū(xk)

≤ C‖ f ū‖∞

⎡
⎣1 +

∑
|xk |≤aθm ,k �=d

(
1 − x2

1 − x2k

)γ−β+3/2 (
Δxk
x − xk

)2
⎤
⎦

≤ C‖ f ū‖∞ ,

under the assumption (13), i.e. 0 ≤ γ − β + 3/2 ≤ 1, using the inequality

∑
|xk |≤aθm ,k �=d

(
1 − x2

1 − x2k

)γ−β+3/2 (
Δxk
x − xk

)2

≤ C , (25)

proved in the Appendix.
Using again (18) and (19), for the third term we have

C
logm

∑
|xk |≤aθm ,k �=d

u(x)
�2k(x)

u(xk)

|x − xk |
Δxk

| f (xk)|ū(xk)

≤ C ‖ f ū‖∞
logm

⎡
⎣1 +

∑
|xk |≤aθm ,k �=d

(
1 − x2

1 − x2k

)γ−β+3/2
Δxk

|x − xk |

⎤
⎦

≤ C‖ f ū‖∞ ,

under the assumption (13). So, inequality (12) follows. ��
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Proof of Theorem 6 Taking into account (8) and [17, Prop. 3.3, p. 73], we get

∥∥H∗
2m+4(w, f )u

∥∥
p ≤ C

⎛
⎝ ∑

|xk |≤aθm

Δxk

[
| f u|p(xk) + | f ′ϕu|p(xk)

mp

]⎞
⎠

1/p

≤ C‖ f u‖p + C
m

‖ f ′ϕu‖p + Cθ

m1/p

∫ 1/m

0

Ωr
ϕ( f , t)ϕu,p

t1+1/p dt

+ Cθ

m1+1/p

∫ 1/m

0

Ωr
ϕ( f ′, t)ϕu,p

t1+1/p dt

≤ C‖ f u‖p + C
m

‖ f ′ϕu‖p + Cθ

m1+1/p

∫ 1/m

0

Ωr
ϕ( f ′, t)ϕu,p

t1+1/p dt .

Let M =
⌊

θ
1+θ

(2m + 3)
⌋

=: Cθm. For any polynomial Q ∈ PM , we can write

Q = H∗
2m+4(w, Q) + Γ (Q),

with

‖Γ (Q)u‖p ≤ Ce−cmη‖Qu‖p,

where C and c depend on θ . In particular, if Q is a polynomial of quasi best approxi-
mation of f ∈ L p

u , we have

∥∥[ f − H∗
2m+4(w, f )

]
u
∥∥
p

= ∥∥[ f − Q − H∗
2m+4(w, f − Q) + Γ (Q)

]
u
∥∥
p

≤ C‖( f − Q)u‖p + C
m

‖( f ′ − Q′)ϕu‖p

+ C
m1+1/p

∫ 1/m

0

Ωϕ( f ′ − Q′, t)ϕu,p

t1+1/p dt + Ce−cmη‖Qu‖p .

Now, since [3]

C‖( f − Q)u‖p + C
m

‖( f ′ − Q′)ϕu‖p ≤ Cωϕ

(
f ,

1

m

)
u,p

+ C
m

‖ f ′ϕu‖p ≤ C
m

‖ f ′ϕu‖p,

and estimating Ωϕ( f ′ − Q′, t)ϕu,p, we obtain

∥∥[ f − H∗
2m+4(w, f )

]
u
∥∥
p

≤ C
m

‖ f ′ϕu‖p + C
m1+1/p

∫ 1/m

0

Ωϕ( f ′, t)ϕu,p

t1+1/p dt + Ce−cmη‖Qu‖p . (26)
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Consequently, if PM−1 ∈ PM−1 is a polynomial of quasi best approximation and
PM ∈ PM one of its primitives, using (26) with f replaced by f − PM , we have

∥∥[ f − H∗
2m+4(w, f )

]
u
∥∥
p

≤ ‖[ f − PM ] u‖p + ∥∥H∗
2m+4 (w, f − PM ) u

∥∥
p + ‖Γ (PM )u‖p + ‖Γ (Q)u‖p

≤ C
m
EM−1( f

′)ϕu,p + C
m1+1/p

∫ 1/m

0

Ωϕ( f ′ − PM−1, t)ϕu,p

t1+1/p dt

+ C ‖Γ (Q)u‖p + C ‖Γ (PM )u‖p .

Using also similar arguments to those in [35, p.280], it follows that

C
m
EM−1( f

′)ϕu,p + C
m1+1/p

∫ 1/m

0

Ωr
ϕ( f ′ − PM−1, t)ϕu,p

t1+1/p dt

≤ C
m1+1/p

∫ 1/m

0

Ωr
ϕ( f ′, t)ϕu,p

t1+1/p dt

and

C ‖Γ (Q)u‖p + C ‖Γ (PM )u‖p ≤ Ce−cmη (‖ f u‖p + ‖ f ′ϕu‖p
)
,

so the proof of (14) is complete
We omit the proof of (15) which is similar but simpler than the previous one. ��

Proof of Theorem 7 Let us first prove (16). Letting PM ∈ PM , with M = � θ
1+θ

(2m +
3)�, be a polynomial of quasi best approximation for f ∈ Cu , we have

∥∥[ f − H∗
2m+4(w, f )

]
u
∥∥∞

= ∥∥[( f − PM ) − H∗
2m+4(w, f − PM ) + Γ (PM )

]
u
∥∥∞

≤ ‖( f − PM )u‖∞

+ C logm

[
‖( f − PM )u‖∞ +

∥∥( f − PM )′ϕu
∥∥∞

m
+ ‖Γ (PM )u‖∞

]

≤ C
[
‖( f − PM )u‖∞ + logm

m

∥∥P ′
Mϕu

∥∥∞

]

+ C logm
m

∥∥ f ′ϕu
∥∥∞ + ‖Γ (PM )u‖∞ ,

and then

∥∥[ f − H∗
2m+4(w, f )

]
u
∥∥∞ ≤ C logm

m

∥∥ f ′ϕu
∥∥∞ + ‖Γ (PM )u‖∞ . (27)
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Consequently, if qm−1 ∈ PM−1 is of quasi best approximation for f ′ in Cϕu and
QM ∈ PM is one of its primitives, using (27) with f replaced by f − QM , we obtain

∥∥[ f − H∗
2m+4(w, f )

]
u
∥∥∞

≤ ‖( f − QM )u‖∞ + ∥∥H∗
2m+4(w, f − QM )]u∥∥∞ + ‖Γ (QM )u‖∞

≤ C logm
m

EM−1( f
′)ϕu,∞ + (‖Γ (PM )u‖∞ + ‖Γ (QM )u‖∞)

≤ C logm
m

EM−1( f
′)ϕu,∞ + Ce−cMη‖ f ‖W∞

1 (u) ,

and then (16).
In order to prove (17), we note that for any PM ∈ PM

PM = F∗
m(w, PM ) + G∗

m(w, PM ) + Γ (PM )

and

∥∥G∗
m(w, PM )u

∥∥∞ ≤ C logM
M

‖P ′
Mϕu‖∞.

It follows that

∥∥[ f − F∗
m(w, f )

]
u
∥∥∞

≤ ∥∥[( f − PM ) − F∗
m(w, f − PM )

]
u
∥∥∞ + ∥∥G∗

m(w, PM )u
∥∥∞ + ‖Γ (PM )u‖∞

≤ C
[
‖( f − PM ) ū‖∞ + logm

m
‖P ′

Mϕū‖∞
]

≤ C
[
ωϕ

(
f ,

logM

M

)
ū,∞

+ e−cMη‖ f ū‖∞

]
,

which completes the proof. ��

Appendix

In order to prove Propoposition 1 we recall that, for any polynomial Pm ∈ Pm , the
following Bernstein inequality [6]

‖P ′
mϕu‖∞ ≤ Cm‖Pmu‖∞ (28)

holds with C independent of m and Pm .

Proof of Propoposition 1 Recalling the definition of �k , we have

∣∣∣∣ Δxk
x − xk

− 2Δxk�
′
k(xk)

∣∣∣∣ ≤ C + 4Δxk
a2m − x2k

+ Δxk

∣∣∣∣ p
′′
m(w, xk)

p′
m(w, xk)

∣∣∣∣ .
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Taking into accont that |xk | ≤ aθm and a2m − x2k ∼ 1 − x2k , for the second addend we
get

4Δxk
a2m − x2k

≤ C
m
√
1 − x2k

≤ C
m(1 − a2θm)

≤ C.

Moreover, using (19), the Bernstein inequality (28) and (18), we obtain

Δxk

∣∣∣∣ p
′′
m(w, xk)

p′
m(w, xk)

∣∣∣∣ ∼ 1

m

∣∣∣ϕ(xk)
√

w(xk)ϕ(xk)Δxk p
′′
m(w, xk)

∣∣∣
≤ C

m

∥∥ϕ√
wϕ p′

m(w)
∥∥∞

≤ C ∥∥√wϕ pm(w)
∥∥∞ ≤ C,

and (23) follows.
For (24) we have

∣∣∣∣∣∣
1 − 2(x − xk)�′

k(xk)

log e
1−x2k

∣∣∣∣∣∣ ≤ 1 +
(

4xk
a2m − x2k

+
∣∣∣∣ p

′′
m(w, xk)

p′
m(w, xk)

∣∣∣∣
)

|x − xk |
log e

1−x2k

. (29)

Now, for the second addend at the right hand side, we get

4xk
(a2m − x2k ) log

e
1−x2k

≤ C√
1 − x2k log

e
1−x2k

1√
1 − x2k

≤ C
logm

m√
1 − x2k

. (30)

In order to estimate the third term, we can rewrite the weight w in (1) as

w(x) = e
−
(

1
(1−x2)α

−log(1−x2)β
)

=: e−Q(x)

and, using a result due to Levin and Lubinsky [1, 2]

∣∣∣∣ p
′′
m(w, xk)

p′
m(w, xk)

∣∣∣∣ ≤ C(1 + Q′(xk)) ≤ C
(1 − x2k )

α+1
,
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we obtain

∣∣∣∣ p
′′
m(w, xk)

p′
m(w, xk)

∣∣∣∣ 1

log e
1−x2k

≤ C
(1 − x2k )

α+1/2 log e
1−x2k

C√
1 − x2k

≤ C m

logm

1√
1 − x2k

. (31)

Combining (29), (30) and (31), we get

∣∣∣∣∣∣
1 − 2(x − xk)�′

k(xk)

log e
1−x2k

∣∣∣∣∣∣ ≤ C
(
1 + |x − xk |

(logm)Δxk

)
,

which completes the proof. ��
Proof of inequality (25) Taking into account that the term related to xd−1 and xd+1 can
be handled in the same way of that related to xd , we now prove that the inequality

∑
|xk |≤aθm ,k �=d,d±1

(
1 − x2

1 − x2k

)λ (
Δxk
x − xk

)2

≤ C

holds if 0 ≤ λ ≤ 1, with xd a zero closest to x ∈ [−am, am].
Without loss of generality, we can assume −am ≤ x < 0.
Denoting by s this sum, we can split it into three parts

s =
∑

−aθm≤xk≤xd−2

+
∑

xd+2≤xk≤x+ 1−x
2

+
∑

x+ 1−x
2 <xk≤aθm

=: s1 + s2 + s3 . (32)

For s1, since xd < x , Δxk ≤ Δxd and 1−x2

1−x2k
∼ 1+x

1+t , t ∈ [x1, xd−1], we have

s1 ≤ Δxd

∫ xd−1

x1

(
1 − x2

1 − t

)λ
dt

(x − t)2

∼ Δxd
1 + x

∫ 1− Δxd
1+x

0

dt

tλ(1 − t)2

≤ Δxd
1 + x

[∫ 1/2

0

dt

tλ(1 − t)2
+

∫ 1− Δxd
1+x

1/2

dt

tλ(1 − t)2

]

≤ Δxd
1 + x

[
1 +

∫ 1− Δxd
1+x

1/2

dt

(1 − t)2

]

≤ C. (33)
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For the term s2 we note that xd+1 ≤ xk ≤ x + 1−x
2 implies

1 − x2 ≤ 4

3
(1 − x2k ).

In fact, if x < xk ≤ 0 then 1 − x2 < 1 − x2k , whereas, if 0 < xk < x + 1−x
2 then

1 − x2k ≥ 1 − (
x + 1−x

2

)2 ≥ 3
4 (1 − x2). It follows that

s2 ≤
∑

xd+1≤xk≤x+ 1−x
2

(
Δxk
xk − x

)2

≤ C . (34)

Finally, if xk > 0, we have 1−x2

1−x2k
∼ 1−x

1−xk
and (xk − x) > 1/2, whence

s3 ≤ C
m

∫ 1

−1

(
1 − x

1 − t

)λ √
1 − tdt ≤ C

m
. (35)

Combining (33), (34) and (35) in (32) our claim follows. ��
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33. Masjed-Jamei, M., Milovanović, G.V.: Construction of Gaussian quadrature formulas for even weight

functions. Appl. Anal. Discrete Math. 11, 177–198 (2017)
34. Della Vecchia, B., Mastroianni, G., Szili, L., Vértesi, P.: L p−convergence of Hermite and Hermite-

Fejér interpolation. J. Approx. Theory 176, 1–14 (2013)
35. Mastroianni, G., Russo, M.G.: Lagrange interpolation in weighted Besov spaces. Constr. Approx. 15,

257–289 (1999)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123


	Hermite and Hermite–Fejér interpolation at Pollaczek zeros
	Abstract
	1 Introduction
	2 Basic facts
	2.1 Orthonormal system
	2.2 Hermite-type polynomial
	2.3 Weighted function spaces
	2.4 Weighted polynomial approximation
	2.5 Lagrange interpolation

	3 Main results
	4 Proofs
	4.1 Preliminary results
	4.2 Proofs of the main results

	Appendix
	Acknowledgements
	References


