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Abstract: Over the last three decades, adult neurogenesis in mammals has been a central
focus of neurobiological research, providing insights into brain plasticity and function.
However, interest in this field has recently waned due to challenges in translating findings
into regenerative applications and the ongoing debate about the persistence of this phe-
nomenon in the adult human brain. Despite these hurdles, significant progress has been
made in understanding how adult neurogenesis plays a critical role in the adaptation of
brain circuits to environmental stimuli regulating key brain functions. This review focuses
on the role of olfactory neurogenesis in the brain’s response to social reproductive cues
in rodents, highlighting its influence on animal behaviors critical for survival. We also
address open questions and propose future directions to advance our understanding of the
relationship between adult neurogenesis and reproductive function regulation.

Keywords: accessory olfactory bulb; main olfactory bulb; vomeronasal system; pheromones;
brain plasticity; multisensory integration

1. Introduction
The discovery that the adult mammalian brain can generate and integrate new

neurons—a process known as adult neurogenesis—has been a groundbreaking devel-
opment in neuroscience since the early 1990s. In 1993, studies by M. Luskin and Alvarez-
Buylla [1,2] identified neuronal progenitors in the subventricular zone (SVZ) of the forebrain
of adult rats and mice that give rise to neuroblasts that migrate to the olfactory bulb (OB),
where they generate large numbers of inhibitory interneurons in the granule (GCL) and
glomerular (GL) cell layers. These findings revived earlier data by J. Altman (1962), M.
Kaplan (1977), and S. Bayer (1983) [3–5] on the existence of postnatal neurogenesis. Subse-
quent findings identified neural stem cells (NSCs) in both the SVZ and the subgranular zone
(SGZ) of the dentate gyrus (DG) in the hippocampus, establishing two distinct “neurogenic
niches” within the adult mammalian brain [6]. Additionally, compelling evidence indicates
that the adult mammalian hypothalamus is also a neurogenic area, capable of producing
new neurons in physiological conditions, albeit at a much lower rate than the SVZ-OB and
the DG [7].

These discoveries challenged the long-standing dogma that neurogenesis occurs only
during embryonic and early postnatal stages and raised expectations about the potential
of endogenous NSCs for therapeutic applications in neurodegenerative diseases. Despite
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extensive research, efforts to harness adult NSCs for regenerative purposes have yielded
limited results [8], and the existence and extent of adult neurogenesis in humans remains
a topic of ongoing debate [9]. Nevertheless, findings in animal models, particularly in
rodents, have shed light on the physiological role of adult neurogenesis, and have ad-
vanced our understanding of how mature brain circuits adapt to environmental stimuli
through the integration of new neurons [10]. For example, hypothalamic neurogenesis is
thought to function as an adaptive mechanism in response to metabolic changes driven by
environmental or internal conditions [11,12]. In the DG of the hippocampus, adult-born
excitatory granules contribute to learning and memory as well as affective behaviors [13].
On the other hand, granule and periglomerular olfactory adult-born interneurons play a
role in the processing of chemosensory information and the formation of odor memory [14].
Moreover, several studies have demonstrated the implication of adult neurogenesis in the
processing of social stimuli relevant to reproductive behaviors (see, for example, [15,16]).
For instance, in female mice, reproductive behaviors such as mate choice and pup care
elicited by social stimuli, rely on the integration of pools of new neurons in both the main
OB (MOB) and accessory OB (AOB) [17–22]. Adult neurogenesis in these areas is finely
modulated by a combination of external (i.e., pheromones) and internal (i.e., reproductive
hormones) stimuli. Together, these highly integrated processes regulate the activity of
downstream nuclei involved in the control of reproductive functions [19,23,24]. Unraveling
the mechanisms underlying these processes provides unique insights into how neural
plasticity adapts the brain in response to salient environmental signals. In this review,
we discuss findings and outstanding questions concerning the relationship between adult
olfactory neurogenesis and the regulation of reproductive functions, highlighting areas for
future research.

2. Anatomical Insights into the Role of Adult Neurogenesis in
Reproductive Behavior

The first evidence linking adult neurogenesis to social reproductive stimuli emerged
with the discovery that neuroblasts originating in the SVZ and migrating towards the
OB also reach the AOB in adult rats [25]. The AOB is a spheroidal nucleus integrated
in the dorsal region of the main OB that receives inputs from the vomeronasal organ
(VNO), a chemosensory epithelium specialized to detect pheromones, chemical signals
associated with social communication (Figure 1A,B) [26]. Functionally, the AOB acts as the
first relay station of the vomeronasal system (VNS), a subcortical pathway that includes
key nuclei, such as the medial amygdala (MeA), involved in modulating reproductive
behavior, through multisensory integration of social cues [27]. Subsequent studies, using
lineage tracing of homotopically transplanted EGFP + SVZ progenitors, combined with
immunofluorescence and 3D reconstruction analysis, demonstrated that as for the MOB,
neuroblasts migrating to the AOB in both male and female mice acquire distinct positioning
and neurochemical properties typical of functionally integrated granule and periglomerular
interneurons [28]. Given the unique functional properties that newborn neurons bring
to pre-existing circuits [29,30], along with the privileged position of the AOB as a gate
for pheromonal signals within the VNS, intriguing questions have been raised about the
potential role of adult neurogenesis in regulating social and reproductive behavior.
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Figure 1. (A). Schematic of female neural pathways for social stimuli including chemical, acoustic, 
and tactile signals. The chemosensory pathway is shown in light blue, the auditory pathway in or-
ange, the main areas involved in touch in green, the central hub areas in gray; arrows represent 
connections between regions, dotted lines represent pathways possibly involved in multisensory 
integration. (B). Schematic of constitutive adult neurogenesis in the mouse brain. Arrows indicate 
directions of neuroblast migration from site of origin to site of integration (C). Proposed model for 
the multimodal integration of social stimuli crucial for shaping reproductive behavior and maximi-
zation of fitness through modulation of adult OB neurogenesis. Arrows indicate functional connec-
tions among brain regions involved in the processing of social stimuli. Abbreviations: accessory 
olfactory bulb (AOB), amygdala (Amyg), anterior olfactory nucleus (AON), auditory cortex (AuC), 
bed nucleus of the stria terminalis (BNST), cochlear nucleus (CN), hippocampus (HP); hypotha-
lamic–pituitary–gonadal axis (HPG), hypothalamus (Hypo), inferior colliculus (IC), insula (Ins), lat-
eral ventricle (LV), medial geniculate nucleus (MGN), main olfactory bulb (MOB), main olfactory 
epithelium (MOE), medial prefrontal cortex (mPFC), olfactory tubercle (OT), piriform cortex (Pir), 

Figure 1. (A). Schematic of female neural pathways for social stimuli including chemical, acoustic, and
tactile signals. The chemosensory pathway is shown in light blue, the auditory pathway in orange,
the main areas involved in touch in green, the central hub areas in gray; arrows represent connections
between regions, dotted lines represent pathways possibly involved in multisensory integration.
(B). Schematic of constitutive adult neurogenesis in the mouse brain. Arrows indicate directions of
neuroblast migration from site of origin to site of integration (C). Proposed model for the multimodal
integration of social stimuli crucial for shaping reproductive behavior and maximization of fitness
through modulation of adult OB neurogenesis. Arrows indicate functional connections among brain
regions involved in the processing of social stimuli. Abbreviations: accessory olfactory bulb (AOB),
amygdala (Amyg), anterior olfactory nucleus (AON), auditory cortex (AuC), bed nucleus of the
stria terminalis (BNST), cochlear nucleus (CN), hippocampus (HP); hypothalamic–pituitary–gonadal
axis (HPG), hypothalamus (Hypo), inferior colliculus (IC), insula (Ins), lateral ventricle (LV), medial
geniculate nucleus (MGN), main olfactory bulb (MOB), main olfactory epithelium (MOE), medial
prefrontal cortex (mPFC), olfactory tubercle (OT), piriform cortex (Pir), rostral migratory stream
(RMS), somatosensory cortex (S1), subgranular zone (SGZ), subventricular zone (SVZ), superior
olivary nucleus (SO), vomeronasal organ (VNO), third ventricle (3V). Cartoons in the figures have
been created with Biorender.com.
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3. Activity-Dependent Regulation of Adult Neurogenesis and Its
Function in the Context of Social Reproductive Stimuli

The survival of newborn neurons in the MOB circuits has been shown to be regulated
through activity-dependent processes. For instance, data obtained through sensory depri-
vation (e.g., olfactory mucosa lesion or naris occlusion) have shown a negative modulation
on the number of functional newborn neurons integrated into the OB circuits [31–33]. On
the other hand, studies exposing animals to olfactory enrichment (i.e., long-term exposure
to a rich range of odors) have demonstrated that environmental cues can significantly
increase the survival rate of newborn neurons integrated into the main OB layers [34,35]
and transiently improve odor memory in mice [36], suggesting a role for adult neurogenesis
in olfactory memory.

A key indicator that adult neurogenesis could be functionally linked to reproduction
has come from results showing its modulation by the same environmental stimuli that elicit
reproductive behaviors. Exposure of female mice to adult male bedding (i.e., containing
semiochemicals present in urine and exocrine gland secretion) [37] was found to signifi-
cantly increase the survival of newly generated neurons integrating into AOB circuits [28].
Remarkably, this pro-neurogenic effect was only found in sexually mature females and
not in prepubertal females or males [18,19,23,24,28,38], suggesting that it may depend on
several underlying biological factors related to hormonal differences, reproductive biol-
ogy, and sex-specific brain plasticity. Furthermore, using c-fos expression as a marker of
neuronal activity, it was shown that shortly after their integration into female AOB circuits,
newborn neurons are transiently more responsive to familiar (i.e., previously experienced)
male pheromones than to unfamiliar ones. This transient role is likely due to the higher
excitability, lower threshold for synaptic and structural plasticity, and increased respon-
siveness to experienced stimuli that are typical of young newborn neurons [29,30,39]. This
observation supported the hypothesis that the continuous addition of newborn neurons to
the AOB may provide a preferential substrate for the formation of transient memories of
previously experienced male individual signatures [18].

Definitive evidence demonstrating the functional role of adult neurogenesis in re-
production has come from experiments involving the depletion of newborn cells through
different methods (e.g., by Ara-c injection, X-ray irradiation—gene-coded selective dele-
tion). These approaches have shown that certain reproductive behaviors, such as mate
recognition [18] or parental care [20,21], require the integration of a pool of newborn neu-
rons in the OB. In mate recognition, for example, the integration of a pool of newborn
neurons in the AOB triggers the formation of a transient memory for the mating partner
(mate pheromonal imprinting), that is necessary to avoid the so-called Bruce effect [18],
which consists in a neuroendocrine reflex leading to a pregnancy block following female
exposure to unfamiliar male pheromones, during a critical postmating window [40]. No-
tably, a pro-neurogenic effect of male pheromones in female mice was also identified in the
MOB, consistent with the complementary roles of both the main and vomeronasal olfactory
systems in the perception of social stimuli [41]. Accordingly, multiple studies in different
mammalian species have shown a positive modulation of adult neurogenesis in both the
AOB and MOB during intersexual and parent-offspring interaction [17,21,22,42–45].

Social reproductive cues not only promote the survival of newborn neurons in the
OB but also enhance the proliferation of neural progenitors in the SVZ and in the DG of
hippocampus [17,43,46]. A recent study by Chaker and colleagues [22] confirmed that
pregnancy promotes neurogenesis in the OB region through increased proliferation of SVZ
progenitors and added intriguing evidence indicating that this physiological state activates
spatially distinct pools of NSCs in the maternal SVZ, resulting in the integration of specific
newborn interneuron subtypes into the AOB and the MOB sub-layers, where fewer new-
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born neurons are typically added under non-pregnant conditions. The integration of these
neurons is proposed to be necessary for parental care activities, including the recognition
of one’s own pups. As in mate recognition [18], newborn interneurons generated during
pregnancy are functionally recruited (i.e., exhibiting preferential c-fos expression) in a
specific time-window that, in the case of parental care, corresponds to the pre-weaning
period. This supports the idea that adult neurogenesis in the OB provides pools of “young
and excitable” neurons on demand to cope with specific temporally defined functions,
modulating different aspects of reproductive behaviors.

4. The Interplay Between External and Internal Reproductive Cues
Regulating Adult OB Neurogenesis

In female mice, exposure to male pheromones not only enhances adult neurogenesis
but also stimulates the hypothalamic–pituitary–gonadal (HPG) axis, which releases secre-
tory factors and gonadal hormones that control reproduction [47]. These sex hormones,
in turn, modulate adult neurogenesis based on age, sex, individual experience, and the
overall internal state of the body [23,48,49].

Thus, a fine-tuned modulation of adult neurogenesis through the integration of exter-
nal (pheromones) and internal (sexual hormones) cues seems relevant to optimize repro-
ductive behaviors (Figure 1C). To gain insight into these complex regulatory mechanisms,
various animal models have been exploited [24]. Studies in Semaphorin 7A knockout
(Sema7A KO) mice—which exhibit reduced numbers of gonadotropin-releasing hormone
(GnRH) neurons, small testes, and subfertility [50]—and in wild-type males castrated in
adulthood have shown that the level of circulating testosterone in male mice is crucial
for the sex-specific regulation of AOB neurogenesis [19]. In males characterized by low
testosterone circulating levels (e.g., Sema7A KO and/or adult gonadectomized males),
exposure to male pheromones increases the integration/survival of newborn interneu-
rons in the AOB, a phenomenon that is normally restricted to females [18]. This, in turn,
affects the pattern of neuronal activity in the downstream nuclei of the VNS, which in-
fluences opposite-sex cue preference and attraction [19]. Strikingly, in adult Sema7A KO
males, chronic testosterone treatment was shown to be sufficient to reverse the feminized
responses to male pheromone exposure in terms of AOB neurogenesis, c-fos expression
pattern along the VNS pathway, and appetitive behavior [19]. These data clearly indicate
that the sexually dimorphic integration of newborn neurons elicited by male pheromones
in the AOB of adult mice involves a gonadal-dependent mechanism. They also support
that the gonadal-dependent integration of newborn neurons can influence the activity of
the VNS nuclei involved in the control of sexual behavior.

Another striking example of the interplay between HPG-axis hormones and the
sex-specific modulation of adult neurogenesis comes from research on a transgenic GnRH-
deficient mouse model (GnRH::Cre;DicerˆloxP/loxP, here referred to as GnRH::CreDicer
KO; [23]. Beginning at puberty, GnRH production and secretion orchestrate HPG-axis
activity and are essential for reproductive function [51]. In the GnRH::CreDicer KO mice,
the enzyme Dicer—an RNAse-III endonuclease essential for miRNA biogenesis [52]—is
selectively inactivated in GnRH neurons. As a result, these mice fail to undergo puberty
and exhibit severe hypogonadism and sterility in adulthood [50]. Importantly, in these
mice, GnRH production gradually declines in the infantile period, affecting only the onset
of puberty [50], without disrupting the perinatal, endocrine-dependent organizational
phase of brain development [53,54].

According to data indicating puberty as a critical stage of life characterized by in-
creased secretion of gonadal hormones [55] and refinement of neural circuits that drive
reproduction [56], the alteration of the hormonal milieu found in the GnRH::CreDicer KO
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line leads to sex-specific dysregulation of adult OB neurogenesis [23,24]. In males, there is
a reduction in proliferative progenitors (identified by Ki67 expression), including neuronal-
lineage-committed cells (Ki67+/DCX+ cells), restricted to the dorso-lateral subdomain
of the SVZ. This suggests that, in males, only a subset of olfactory newborn interneuron
progenitors is affected by the loss of peripubertal HPG-axis hormones. In GnRH::CreDicer
KO females, a decrease in the survival of newly generated cells was observed in the MOB
but not in the AOB. This effect was also found in females who had undergone an ovariec-
tomy shortly before puberty (at postnatal day 21), supporting the idea that, among the
different HPG-axis factors, the alteration in cell survival found in females can be mostly
attributable to the loss of gonadal steroids. Interestingly, in the DG of both male and female
GnRH::CreDicer KO mice, no alteration in neuronal progenitor proliferation, neuronal
specification, or newborn cell survival was observed. These findings indicate that HPG-axis
secretory activity at puberty selectively impacts the SVZ-OB neurogenic system, empha-
sizing the importance of puberty in setting a sexually dimorphic regulation of the OB
neurogenic process in adulthood.

5. Advancing Our Understanding of Adult Neurogenesis in
Reproductive Behavior
5.1. Multisensory Integration of Reproductive Cues and Adult Neurogenesis

In addition to pheromones, other environmental cues conveyed through the auditory
and tactile systems contribute to the complex regulatory mechanisms underlying reproduc-
tive responses and may influence adult olfactory neurogenesis, either directly or through
synergistic effects with olfactory cues (Figure 1C). In mate choice and pup recognition
behavior—both mediated by OB neurogenesis through pheromone perception [17,18,22]—a
possible synergistic contribution of acoustic stimuli to neurogenesis regulation is conceiv-
able. Indeed, in addition to pheromones, ultrasonic vocalizations (USVs) emitted by males
are among the most important cues used by female mice in mate choice behavior [57].
Interestingly, USV-induced attraction to a specific male is enhanced in the presence of male
pheromones, such as the exocrine gland-secreting peptide 1 (ESP1), a key signal respon-
sible for the Bruce effect [58], which is modulated by adult neurogenesis [18]. Similarly,
maternal pup retrieval is regulated by multisensory information from pup olfactory and
auditory cues, and exposure to pup odors enhances neuronal responses to pup USVs in
the maternal auditory cortex [59]. These findings support the salience of acoustic stimuli
to post-pregnant dams and suggest their possible involvement in the regulation of the
transient pools of neonatal OB neurons, which have recently been described to be involved
in promoting parental care [22]. Previous studies have already indicated a potential role for
auditory cues in regulating adult neurogenesis. Exposure to diverse and novel acoustic
landscapes, including non-ethologically relevant auditory cues for mice such as Mozart and
silence, has been shown to promote cell proliferation in the adult female mouse DG [60].
Additionally, lower levels of cell proliferation in the adult rat hippocampus have been
correlated with inner ear cell loss [61]. These findings suggest that auditory cues are among
the environmental stimuli capable of modulating adult neurogenesis. Future research
should explore whether this modulation also occurs for SVZ neurogenesis and how mul-
timodal stimuli, such as olfactory and acoustic cues, may integrate to regulate OB adult
neurogenesis in the reproductive context.

Physical contact (i.e., touch) may be also involved in modulating adult neurogenesis in
the OB within the reproductive context. There is ample experimental evidence supporting
this hypothesis. Direct physical contact promotes the exploration of olfactory reproductive
cues, activating both the main and vomeronasal olfactory systems [41]. The activation of
the vomeronasal pathway, which involves direct contact with the non-volatile components
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of pheromones, is essential for the pheromone-dependent modulation of neurogenesis in
the AOB [18,28]. During mating, vaginal stimulation in female mice induces the release
of noradrenaline from the locus coeruleus in the AOB, promoting the formation of a mate
memory [62], which involves the integration of new neurons in the AOB [18]. Other studies
have demonstrated the importance of top-down noradrenergic signals to promote olfactory
perceptual learning, which requires the incorporation and activation of newborn neurons
in the OB [63,64]. Modulation of adult neurogenesis through physical social interaction
also occurs during pace mating behavior [44,65]. In natural conditions, rodent females can
control the pacing of sexual interaction, thereby managing the frequency and intensity of
the sexual stimulation they receive. This induces a reward state that increases neurogenesis
in the OB, possibly via top-down signals [66].

Which neural circuits regulate the possible multimodal impact on adult olfactory
neurogenesis? A potential pathway involves top-down control from hub regions known
to integrate multisensory information. Among these regions, the amygdala (particularly
the medial and basolateral amygdala) may be a key candidate for controlling olfactory
neurogenesis, as it processes sensory information from both the olfactory and vomeronasal
systems [67,68]; it is reciprocally connected with the AOB [69], and links to cortical regions
such as the medial prefrontal cortex, which is activated by pheromones and auditory
cues (Figure 1A) [70]. Moreover, it is also involved in the neural control of affiliative
touch in prosocial interaction in social species, including humans [71], through reciprocal
connections with several cortical regions involved in processing of touch stimuli [72].
Interestingly, an excitotoxic lesion in the medial amygdala blocks the pheromone-dependent
increase integration of newborn neurons in the AOB [18]. Finally, the MeA is part of the
vomeronasal pathway, which impacts the HPG-axis release of neuroendocrine factors
(internal cues) known to modulate adult neurogenesis. Overall, these data highlight the
central role of the amygdala in the complex interplay between external and internal cues
eliciting reproduction through modulation of OB neurogenesis (Figure 1).

It is noteworthy that, as mentioned above, exposure to social stimuli released during
sexual and parent–offspring interactions, in addition to the SVZ-OB, triggers neurogenesis
in the DG niche [17], possibly also through a reciprocal connection between the olfactory
system and the hippocampus [73]. As social interactions are multisensory, modulation
of hippocampal neurogenesis may be mediated by other sensory channels in addition to
olfaction. For example, in rats, a specific tactile stimulation, tickling, promotes proliferation
in the hippocampus when the animal emits a high number of 50 kHz calls, i.e., a condition
related to an appetitive state mediated by affective behavior [74]. During pregnancy and
the postpartum period, there are large fluctuations in the concentrations of reproductive
hormones (e.g., estrogen, oxytocin, progesterone, and prolactin) that correlate with cogni-
tive and behavioral changes associated with parental care. Some of these hormones not only
influence adult neurogenesis in the SVZ-OB but also act as potent modulators of neurogen-
esis in the hippocampal niche [75] and in the hypothalamus [49]. Enhanced neurogenesis
at these sites may contribute to learning, memory, mood, and other neurophysiological
aspects involved in reproductive activities.

5.2. Identification of Neuronal Progenitors Activated by Social-Reproductive Cues

Another aspect of OB neurogenesis that requires further clarification is the identifi-
cation of SVZ progenitors that contribute to the pools of newborn neurons involved in
the modulation of social–sexual stimuli. It is not known whether there are separated SVZ
microdomains and/or progenitors that contribute selectively to the genesis of the interneu-
rons destined to the MOB versus the AOB. Moreover, it is unclear whether a specific subset
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of SVZ progenitors selectively generates neurons recruited into OB circuits in the context of
social reproductive functions.

Adult SVZ progenitors become regionally specified early in development [76], keeping
a mosaic organization into SVZ specialized domains that generate distinct OB interneuron
subtypes [76,77]. The activity of these progenitors and their exit from quiescence result
from a fine-tuned integration of internal and external cues that influence the complex
microenvironment of the neurogenic niche [78]. The analysis of SVZ neural stem cell
proliferation during pregnancy has revealed multiple spatially and temporally restricted
domains, which increases cell division, particularly in regions that are normally either
poorly active, such as the ventral domain, or completely inactive, such as the medio-dorsal
domain [22]. Further studies are needed to clarify whether the progeny of these activated
progenitor domains corresponds to the pool of newborn neurons engaged during parental
care behavior, as well as to identify the molecular mediators and cellular mechanisms
involved in activating these specific domains. Among pregnancy hormones, prolactin
has been previously shown to activate SVZ progenitor proliferation, representing a likely
molecular candidate [46,79], but it is not yet known whether and how prolactin specifically
impacts on the ventral and medio-dorsal SVZ domains. Moreover, the SVZ receives
projections from different brain circuits, including the dopaminergic, serotonergic and
cholinergic systems known to be implicated in social behaviors [78], raising the intriguing
possibility of spatially confined effects regulated by specific projections. Understanding
how different progenitor domains integrate local and long-range stimuli to regulate adult
neurogenesis in various social and reproductive functions could be key to uncovering its
connection to behavior.

5.3. Future Perspectives on Adult Neurogenesis in the Human Brain

As mentioned earlier, interest in the field of adult neurogenesis has declined in re-
cent years in relation to the difficulty of extrapolating translational data. Nevertheless,
comparative studies have shown that although there are species–specific differences, the
process of adult neurogenesis is an evolutionarily conserved feature in most mammals [80].
Results referring specifically to primates and, among them, to humans indicate that, in
the olfactory region, the migration of newborn neurons from the SVZ ceases early in the
juvenile phase [81]. On the other hand, some studies have provided evidence in support
of the occurrence of adult neurogenesis in the human hippocampus and striatum [82],
but this phenomenon remains highly debated, not only in terms of its presence and/or
extent but also in functional terms, i.e., to what extent should neurogenesis contribute (how
many neurons should integrate) to have an impact at the functional level [83]. Despite the
technical and ethical limitations associated with studying such processes in the human
brain [9], given the comparative data on the complex and integrated regulatory mechanisms
underlying adult neurogenesis, some points still need to be considered in support of further
investigations in this field of research. As demonstrated in animal models, the activity and
modulation of adult neurogenesis is strongly influenced by endocrine factors [24]. It is
therefore possible that a specific hormonal milieu, such as that characterizing pregnancy
and the parental care phase, might stimulate/reactivate quiescent progenitors also in the
adult human SVZ [22]. As a matter of fact, olfactory function is relevant to reproductive
behavior in humans, though a clear picture of the mechanisms underlying such function is
still lacking [84].

The human SVZ is considered inactive in adult life but, within it, are contained
competent progenitors capable of activation in vivo following stroke [85]. Similarly, in
the mouse striatum, as in other mammalian species, there are quiescent glial progenitors
that produce transient populations of newborn neurons following injury [86]. Thus, it is
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possible to envisage that, under specific hormonal conditions, some SVZ progenitors might
activate and originate new neurons contributing to transient functions even in the human
brain. In addition, recent data obtained in various regions of the telencephalon of several
mammals, including primates and among them Homo sapiens, support the existence
of ‘immature neurons’ [80] that could potentially represent a reservoir of cells ready to
differentiate and integrate on demand in response to specific stimuli. Given the transient
roles played by immature neurons during adult neurogenesis, particularly in social and
reproductive behaviors, it would be interesting to investigate the possible involvements of
such “immature neurons” in these contexts.

6. Conclusions
After more than 30 years of research on adult neurogenesis, the abundant evidence

for the integration of new neurons into existing circuits to support specific brain functions,
in particular the mediation of reproductive behavior, strongly supports its relevance in
mammals. However, as discussed in the previous sections, there are many unanswered
questions about adult neurogenesis that deserve further investigation in both animal
models and humans. It is therefore envisaged that the use of a combination of different
advanced and cutting-edge techniques will provide the field with new answers to refine
our understanding of how adult neurogenesis contributes to brain function. Specifically,
with respect to reproductive behavior, the use of spatial transcriptomic gene expression
at single cell resolution may help to unravel the identity of neural progenitors and pools
of newborn neurons recruited by multisensory exposure to salient cues associated with
different reproductive behaviors. In parallel, the use of techniques to image neuronal
circuits activation in toto (e.g., whole-brain light sheet microscopy coupled with c-fos
immunofluorescence), following multisensory stimuli, could improve our knowledge of
the circuits activated by salient cues and the specific contribution of newborn neurons
through comparisons with models of neurogenesis depletion. As our knowledge of adult
neurogenesis in animal models grows, new insights into possible fine-tuning mechanisms
of adult neurogenesis will help to refine the scientific questions and focus research on adult
human neurogenesis.
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