
ELSEVIER Nuclear Physics B 482 IFS1 (1996) 639-659 

NUCLEAR 
PHYSICS B [FS] 

Excited states by analytic continuation 
of TBA equations 

P a t r i c k  D o r e y  ~ , R o b e r t o  Ta teo  2 

Department of Mathematical Sciences. Universi~" of Durham, Durham DHI 3LE, UK 

Received 29 July 1996; accepted 16 September 1996 

Abstract 

We suggest an approach to the problem of finding integral equations for the excited states of 
an integrable model, starting from the thermodynamic Bethe ansatz equations for its ground state. 
The idea relies on analytic continuation through complex values of the coupling constant, and 
an analysis of the monodromies that the equations and their solutions undergo. For the scaling 
Lee-Yang model, we find equations in this way for the one- and two-particle states in the spin- 
zero sector, and suggest various generalisations. Numerical results show excellent agreement with 
the truncated conformal space approach, and we also treat some of the ultraviolet and infrared 
asymptotics analytically. 

PACS: 05.50+q; 11.25.Hf; 64.60.Ak; 75.10.Hk 

1. Introduction 

The thermodynamic Bethe ansatz (TBA)  [ 1 ] has proved to be a very useful tool in the 

study of  integrable two-dimensional  field theories. The finite-volume ground-state energy 

can now be found for many models,  expressed in each case in terms of  the solution of  

a set of  non-l inear integral equations. These turn out to be vulnerable to both numerical 

and analytical attack, and yield a large amount of  non-trivial information. Given these 

successes, it is natural to hope that similar equations might describe the remaining 

energy levels. However, the derivation of  the TBA equations relies on arguments which 

perforce single out the ground state, and, save for a few states which become degenerate 
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with the ground state in large volumes [2-4] ,  the desired generalisation has proved 
elusive. 

In this paper we propose to sidestep the problem by returning to the old idea that 
one can move between energy levels by analytic continuation in a suitable parameter. In 

0+1 dimensions, the quantum-mechanical problem, this was seen most spectacularly in 
the analysis of the quantum anharmonic oscillator performed by Bender and Wu [5]. 

Somewhat simpler in analytic structure, but more relevant to the following, is the finite 

volume spectrum of the Ising field theory in 1 + 1 dimensions. If  the 'spatial' dimension 
is rolled up into a circle of  circumference R, then the ground-state energy (the lowest 

eigenvalue of the infinitesimal transfer matrix in the 'time' direction) can be written 

as [6] 

E M(M, R) = E~ulk ( M, R ) - cIM ( MR ) , (1 . I )  

where M the inverse of the bulk correlation length, E~Mk(M, R) contains the (as it 

happens logarithmically divergent) bulk contribution, and 

l 3r2 l o g - +  + l n ~ -  
clM(r) = 2 -- 27/" 2 r 2 -- Y/r 

+ - ~ - ~  x , / r 2 + ( 2 k - 1 ) 2 ~  " 2 -  (2k-1)~-  (1.2) 
,'/7" k-=l 

with r = MR and Ye = 0.57721566.. .  Apart from the logarithmic singularity at R = 0, 
this exhibits a series of square root branch cuts, evenly spaced along the imaginary 
axis. Suppose that R is continued into the complex plane along a path enclosing the 

singularities at k = kl, k2 . . . . .  k,. Then on its return to the real axis, EIoM(M, R) has 
been replaced by 

2 
~¢/r 2 + (2k i -  1 )27/'2 (1.3) E~MIc2...tc,, ( M, R ) = EIM ( M, R ) + -~ 

i=1 

an excited state with ultraviolet scaling dimension ~ i ( 2 k i - 1 ) .  This covers all of the 
symmetrical descendants of the primary fields I and ~ in the spin-zero sector. To find 
descendants of the spin field o-, the same process can be repeated, but this time starting 
from the lowest excited state in the low-temperature regime, which degenerates with E0 
in infinite volume and is accessible as the ground state with twisted boundary conditions 
(see for example Ref. [4]) .  

In more general situations explicit expressions such as (1.1), (1.2) are not available. 
Even for integrable perturbations of conformal field theories, the best one can do is 
to express the ground-state energy in terms of the solutions e~(0) to a set of TBA 
equations. The simplest case is the scaling Lee-¥ang model, or SLYM. This field 
theory, a perturbation of the non-unitary minimal model .A,4(2/5) by its unique relevant 
operator ~p, has the action 

¢4SLYM = ~A4(2/5) q- t ' ~ f ~ ° ( x ) d 2 x "  (1.4) 
d 
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With M(A)  = (2 .642944 . . . )A  5/12 [7] and r = M(A)R,  the single TBA equation 

reads [ 1 ] 

e (0 )  = rcosh  0 - 05.L(0) , 

where 

L(8)  = log (1 + e -e(°))  , 

and 

05(8) = - t  8-- l o g S ( 8 )  
08 

(1.5) 

O(3 , /  f . g ( 8 )  = ~ d 8 ' f ( O -  8 ' )g (8 ' ) ,  

- -  ( X 3  

( 1.6 ) 

s inh(8)  + t sin(~-/3) 
S(8) = sinh(8)  - ts in(Tr/3) ' (1.7) 

The function S(O) is the S-matrix of  the single neutral particle in the model [8],  and 
has the '053, bootstrap property, that S(O-t~r/3)S(8+trr/3) = S(O). In terms of these 
quantities, the ground-state energy is 

with 

"/7" 

E0(a  , R) = Ebulk(A, R) - -~co( r )  (~.8) 

3/ 
co(r) = ~ dOrcoshSL(8) .  

- M ( A )  e 
Ebulk(A,R) - - -  R ,  (1.9) 

4v5 
- - O O  

At first sight ( 1 .5 ) - (1 .9 )  are very different from (1.1),  (1.2),  and it is not clear that 
analytic continuation will be practicable. To get a clue as to how to proceed, return to 
(1.2) and consider its alternative integral representation 

o o  

c~M(r) = ~ d8 r c o s h S l o g  ( l + e  -rc°sh°) . (1.10) 

As r moves into the complex plane, a singularity in c~ M might be expected whenever 
l+e -rc°shO° = 0 for some real 00. However, deforming the contour of  integration away 

from the real axis near 80 shows that such impressions are generally deceptive. This 
manoeuvre would only fail if two singularities were to approach the real axis from 

opposite sides, trapping the contour. This gives rise to a so-called 'pinch singularity',  
usually a branch point. I f  r is continued along some path encircling the critical value, 
the two 8-singularities (in this case, singularities in log( l  +e  -rc°sh0) ) execute a little 

dance in the complex plane (here, they just swap over),  after which the contour has 
become tangled up. Undoing the tangle gives rise to the discontinuity across the cut. All 
of  this is very clearly explained in chapter 2 of  the book by Eden et al. [9] ,  and here 
we simply remark that it is an instructive exercise to recover the results already quoted 
by the use of  such methods. 

For more general TBA systems, life is complicated by the replacement of  r cosh 0 by 
~(0) ,  a function which may itself be subject to non-trivial monodromies.  Furthermore, 
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e(0)  is not known explicitly even for the ground state. Fortunately, only qualitative, 
'topological', information about the movement of singularities is needed in order to 

deduce the modified TBA equations, and for this numerical work will suffice. 

2. One-particle states 

Both the truncated conformal space approach (TCSA) [ 10], and the numerical ex- 

trapolation of TBA results found for A E R +, have led to the conclusion that the 
ground-state energy of the SLYM has a square root singularity at R(- ,~)  5/12 ~ 1.1325. 

In fact, this can also be seen directly from the initial TBA system (1.5). For this it is 
convenient to adsorb the bulk term into co(r) ,  and work instead with the ground-state 

scaling function F0(r):  

_~ r 2 1 
Eo(/~,R)  = F o ( r ) ,  Fo(r)  = 8v'~Tr 12 c ° ( r ) '  (2.1) 

The function F0 thus defined is expected to be a regular function of r 12/5 [ I 1 ], well- 
suited to analytic continuation. Negative values of ~ put r on the ray r = pe 5~rt/I2, p E 

~+. A suitably damped numerical iteration of the TBA equation (1.5) is convergent 
along this line, and the resulting ground-state scaling function turns out to be real out to 

P = P0 ~ 2.99315, there being clear evidence for a square-root singularity at this point. 
This is shown in the lower set of  points in Fig. 1, and matches in all aspects the TCSA 
results found earlier by Yurov and Zamolodchikov [ 10]. We conclude that the TBA is 
able to provide reliable (and, indeed, highly accurate) information even away from real 

values of  r. 
Next, the idea is to circle around the singularity, in the hope of picking up the next 

branch of the function - the first excited state. Analytic continuation is straightforwardly 
implemented when solving the TBA iteratively, by varying r step by step and at each 
new value of r taking the initial iterate e~0) to be the final iterate e (n) of the previous 

step. The steps in r must not be too large, or the solution being tracked may be lost. 
Also, one must guard against numerical instabilities which are purely artifacts of the 
iteration scheme. We adopted the simplest possible option, iterating as 

~"+1)(0)  = a [rcosh 0 -  dp*L~n)(O)] + ( 1 - a ) ~ O ' ) ( O ) ,  (2.2) 

and finding empirically that values of a between 0.5 and 0.05 (depending on the value 
of r) gave optimal results. Stability rather than efficiency turns out to be the key issue, 
and it is worth seeking a more sophisticated approach. Nevertheless, (2.2) was adequate 
for the current work. 

Of more profound import are the changes needed should a singularity of L(O) cross 
the real axis. In such a situation, further analytic continuation results in a function 
which solves a modified TBA equation, with the contour of integration diverted away 
from its original track long enough to avoid the singularity. To check for this, we 
must locate the complex zeroes and poles in z(O) - 1 + e -~° ) ,  and be on our guard 
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Fig. 1. Two solutions to the basic TBA equation on the negative-A line (points) versus TCSA data (continuous 
lines). 

whenever any of  them venture too close to the real axis. This is easily done, at least 

numerically - once e (0 )  is known along the real axis (or along some more general 

contour),  Eq. (1.5) provides an integral representation which can be used to reconstruct 

the function everywhere. The only point to watch is that the singularities of  05 at i tTr /3  

and beyond necessitate the introduction of  extra terms when e(0)  is continued beyond 

the strip -tTr/3 < Im(0)  < 17r/3. 

Near the real axis at large values of  IRe(0)l ,  the r c o s h 0  term comes to dominate 

(1.5),  and so two series of  zeroes in z(O) are always seen, approaching the two half 

lines ± { 0  E C : Re(0 )  > 0 , I r a (0 )  = [ 7 r / 2 -  A r g ( r ) ] } .  However, if r lies on lhe 

initial segment of  the negative-,~ line, Arg( r )  = 57r/12 and 0 < Irl < P0, we found 

evidence that, for the solution just discussed, a stronger result holds: up to our numerical 

accuracy, all of  the zeroes in a strip along the real axis have imaginary part exactly equal 

to ±7r/12.  As Ir[ = p --~ 0, the zeroes on the upper half line slide off towards + , ~ ,  
while those on the lower head for - ~ .  The pattern becomes that of a pair of kink 

systems, one starting near 0 = - l o g ( l / r ) ,  the other near 0 = + l o g ( l / r ) .  Conversely, 

as p --~ p0, the two sets approach each other, although they always remain in their 

respective left and right halves of  the complex plane. 

If  r is continued in an anticlockwise sense about the critical point and back to the 

negative-A line, it turns out that none of these zeroes cross the real axis. The original 

TBA system (1,5) continues to hold, but its solution e(0)  has nevertheless undergone a 
non-trivial monodromy. The values of  the scaling function which result form the upper 

set of  points in Fig. 1, and match perfectly with the TCSA data for the first excited state, 

at least in the range of  p for which our rather crude iteration scheme is stable. Hence 

the TBA equation (1.5) is at least doubly degenerate along the negative-A line, with the 
second solution as physically relevant as the first. The monodromy has an interesting 
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effect on the pattern of zeroes of z(t~): while their imaginary parts apparently remain 
at ±7r/12, their real parts are no longer so simply arranged, at least for p smaller than 
about 2.8. The rightmost zero on the lower half line moves into the right half plane 
Re(0)  > 0, thus lying to the right of the leftmost zero on the upper half line - the left 
and right kink systems have become entwined, a feature that persists even as the two 

systems try to split apart in the p ~ 0 limit. On the other hand, as p increases past 2.8, 
the ordering is briefly restored, though there does not seem to be any great significance 
to this fact. Our numerics for the upper branch quickly become unstable in this region, 

but an extrapolation of the positions of the errant pair of zeroes is consistent with their 

moving continuously to the same positions ( ~ ~(0.24+t~r/12))  as found for the first 

two zeroes on the lower branch, as p --~ p0. This supports our supposition that the basic 
TBA system describes the first excited state on the whole segment 0 < p < p0, and not 
just on that part where our iterations converged. 

Having found this excited state for r on the negative-h line, we now continue r back 

to the real axis. As Arg(r)  decreases from 57r/12, all of the zeroes of z(O) bar the first 
on the upper half line start to move up, towards the line Im(0)  = 7r/2. The first zero, 

on the other hand, is observed to move down, towards the real axis. The zeroes on the 
lower half line behave in a symmetrical fashion, as indeed they must given the 0 --~ -t9 

symmetry of the basic equations. This is precisely the situation mentioned above, and 
we should be ready to modify the TBA equations when the two singularities actually 

hit the axis. Unfortunately the iterative solution of the equation becomes unstable when 

singularities in L(O) get too close to the integration contour. It is possible to get a 
little further by distorting the contour along which the equations are being solved; in 
any event, a Pad6 extrapolation of the positions of the two singularities under suspicion 
clearly showed them crossing the real axis as Arg(r)  decreased. Assume that r is such 

that these two singularities in L(t?) have crossed the real axis, and now lie at -00,  
00. (Here and in analogous situations later on, we adopt the convention that of the 
pair {-00,  00}, it is 00 which has the positive imaginary part after the axis is crossed.) 
Coming in from the left, the integration contour for the convolution in (1.5) must 

now first loop down and around the singularity at -00,  and then back up and over the 
singularity at +00, before proceeding to +cx~ along the real axis. An integration by 
parts turns these logarithmic singularities into simple poles; evaluating the residues then 

allows the equation to be recast with the contour running along the real axis again: 

S(O - 0o) & ,L (O) .  (2.3) 
e(0)  = rcosh 0 + log S(O + 0o) 

Similarly, the expression for Fo(r) is modified, with co of Eq. (1.9) being replaced by 

12r 3 / 
c(r)  = - - I  sinh00 + dOrcoshOL(O) (2.4) 

7r ~ -  " 

Although these equations appear to contain an unknown parameter, namely t?0, this is not 

the case: self-consistency demands that 00 coincide with the position of the singularity 
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Fig. 2. Pad6 extrapolation of 0o for the first excited state, from r = 1.5t (lower right) to r = 4.5 (upper left), 
and back. 

in L(O) that necessitated its introduction in the first place. In this case, this translates 

as e(00) = t~r (the branch of  the logarithm to choose here can be fixed by continuity, 

starting from the situation before the singularity crosses the axis). Substituting 0 = 00 

into (2.3) then gives 

0 = r cosh 00 - log S(200) - d~*L(Oo). (2.5) 

Flipping between Eqs. (2.3) and (2.5), iterative schemes can be set up which are 

convergent in most regions of  interest, given a reasonably accurate estimate of  00 for 

the initial iterate. Starting with the extrapolated singularities of  the 'excited' solution to 

(1.5),  a solution to (2.4) can be picked up and followed all the way back to the real r 

axis. In this way, we tracked a solution along the line r = t +  ( 1 . 5 - t / 3 ) t ,  with t varying 
from 0 to 4.5. Eq. (1.5) converged for t less than about 0.45, while (2.3) took over 

as soon as t became larger than 1. The problems for 0.45 < t < 1 seem to be artifacts 

of  our iteration schemes, and in particular the good agreement of  the Padf-extrapolated 

singularity positions, both forwards and backwards, leave little doubt that the gap was 

crossed correctly. Fig. 2 matches these extrapolations (shown by the continuous lines) 

with a selection of  points from the 'raw' data. Points in the lower half plane (before 
the singularity has crossed the axis) derive from the unmodified TBA system (1.5), 

and those in the upper half plane from the modified system (2.3). (For the backwards 
fit, where a greater range of  t was available along which to collect data from which 

to extrapolate, the matching is so good that the discrepancies with the target points are 

rather hard to spot on the figure.) It is also possible to monitor the behaviour of  c ( r ) ,  
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finding good agreement with TCSA data in both regimes. 
As r approaches the real axis, we see that 00 approaches t (¢r/6 + 8 ( r ) ) ,  with 6 ( r )  a 

small positive correction which tends to zero for large real r. This information is enough 
to pin down the large-r asymptotics of (2.5). As r grows, the convolution term becomes 
relatively small, and the first two terms must cancel between themselves. The only way 
this can happen as r grows is for 20o to approach a singularity of S; with 00 ",~ t~'/6, the 
singularity at tTr/3 is the relevant one. Substituting Oo(r) = t(7"r/6 + ~ ( r ) )  and solving 
gives 

Oo(r) ~ t (¢r/6 + v~e-VSr/2) . (2.6) 

This immediately tells us the leading asymptotic of c ( r ) :  substituting (2.6) into first 
term in (2.4) gives c ( r )  ~ - 6 r ( 1  + 3e-V/3r/2)/TT. The next term is also easy to find, 
dropping the third factor in (2.3) and using the zeroth-order value of 00, namely tTr/6, 
in order to find the leading behaviour of e(t~) for substitution into (2.4). Gathering 
everything together we find 

c ( r )  ,-~ - -  ( 7 ) - 6 r  1 + 3e_V,~r/2 _ __l dO cosh 0 S(O + tTr/2)e -rc°sh° (2.7) 
¢r 27r ' 

- -  C X 3  

where for the last term the bootstrap relation S(O + tTr /6 ) /S (O  - trr /6)  = S ( 8  + t~ /2) ,  

relevant because 0o has been given its asymptotic value, was used to reduce the two 
S-matrices in (2.3) to one. This matches exactly with the asymptotics predicted in 
Refs. [ 10,12] for the spin-zero one-particle state, and therefore lends strong support to 
our proposal. Further evidence will come from the numerical comparisons with TCSA 
data to be reported shortly, but first we would like to mention a natural generalisation 
of Eqs. (2 .3)-(2.5)  which seems to capture all the remaining one-particle states. 

The equations to consider read, for r C ~, as follows: 

• S(O - t~o) _ d p , L ( O ) ,  
e(0)  = r cosh 0 + Jog S(O -0o) 

o o  

c ( r )  = t6r ( s inh0°-  s i n h O ° ) 7 " r  + ~-7 d O r c o s h O L ( O )  , (2.8) 

~ O O  

where 00, O0 are the complex-conjugate locations of a pair of singularities in L(O) .  

We will discuss the one-particle states with positive spin, and so we take Re(00) > 0; 
the negative-spin states work similarly. The earlier equations at real values of r are 
recovered if 00 is forced to be purely imaginary; conversely if r were to become 
complex in (2.8), then 00 and O0 would generally cease to be complex conjugates, and 
would have to be tracked individually. Eq. (2.5) must also be modified, both because 
of the changed form of (2.8) and also to allow for a more general singularity at 0o, 
namely e(t~0) = (2n+l)7"rt (and n > 0 for Re(00) > 0). The equation becomes 

2nTrt = r cosh 00 - log S(2 t Im(Oo) )  - ¢k*L(Oo) • (2.9) 
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Fig. 3. Proposed one-particle scaling functions (points) compared with TCSA data (continuous lines). 

Part of the motivation for these equations came from the form of the two-particle 
equations to be introduced in the next section; but to see immediately that they have a 
chance of being correct, consider the large-r asymptotics. The convolution term is sub- 
leading, and again it turns out that the balance between the first two terms is achieved 
via Im(00) = 7r/6 + 6(r)  with 6(r)  vanishing as r ~ c~. Now take the imaginary part 
of (2.9) (previously this vanished automatically for real r), and consider its behaviour 
as r becomes large: 

2nTr = r sinh (Re(00)) sin(Tr/6+6(r) ) - I m  log S(2t(Tr/6 + ~(r)  ) ) 
F 
~ sinh (Re(00)) - ½ ( 1 -sign(t~(r) ) )zr. (2.10) 

The term ½(l-s ign(8(r) ) )Tr  is included to allow for 6(r)  being negative, in which 
case S(2t(Tr/6 + tS(r))) is negative and the logarithm picks up an imaginary part. 
Feeding this into (2.8) gives 

c(r)  ~ - 6 r ~ / 1  + (2~'s/r)  2 (2.1 1) 

with s = 2n + ½(1-s ign(8(r ) ) ) .  This is exactly as expected for a one-particle state 
with spin s. 

One final observation: for all but the spin-zero one-particle state, Eq. (2.8) is not 
symmetrical under 0 ---, -0 .  Hence it can never be obtained by analytic continuation of 
the ground-state equation. But this is just as one would expect: the entire Hilbert space 
of the SLYM splits up into sectors of different spin, and analytic continuation can only 
ever move levels around within a given sector. 

Fig. 3 compares the numerical solutions of Eqs. (2.3), (2.9) with TCSA data, for 
the first four one-particle levels. We used the TCSA program of Ref. [ 13 ], truncating 
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Fig. 4. A contour plot of lm(F(r))  as obtained from the basic TBA equations ( 1.5)-(1.9), with r lying in 
the box 0 ~< Re(r) ~< 1.85, 0 ~< Im(r) ~< 10,1, showing the branch points at r0 and rj, and also the segment 
of the negative-,~ line, running from 0 to r(~, along which Im(F(r) ) = 0. The box was scanned from right to 
left, so the lower branch of this segment is visible. 

the quasiprimary fields at level 5 and including as many derivative states as the program 

allowed. The discrepancies are too small to see on the figure, being of  order 10 -9 at 

small values of  r, growing to 10 -3 -10  -4  (depending on the level of  the state) at r = 10. 

The former errors can be traced to our numerics and should not be too hard to reduce, 

whilst the latter can be ascribed to truncation effects in the TCSA - in particular, they 

grow as the level of  the state under consideration gets higher. 

The only problem that the reader might notice Js that the lowest set of  points stops 

short, at r ~ 2.53. By this stage 8 ( r )  has become so large that 00 has almost reached 

tTr/3. We should expect trouble at such a point as a new kind of  singularity enters 

into the equations, caused by singularities in S(O-O0) and S(O - 00). We have tried to 

take this into account, but the resulting equation appears to be much less stable and has 

resisted our attempts at an iterative solution. We will return to this problem in Section 4; 

in any event it only appears to trouble the spin-zero state. 

3. Two-particle states and beyond 

The singularity at r0 = poe 5'~'/~2 is only the first of  a whole sequence of singularities 

seen by the 'zero-part ic le '  TBA ( 1 . 5 ) - ( 1 . 9 ) .  They are approximately evenly spaced 

along the direction of  the imaginary axis: the next is at rj ,~ 0.5311+9.1346t,  and the 

next at r2 ,~ 0 .42+15.44t .  Fig. 4 shows the posit ions of  r0 and r l ,  as emerged from the 

numerical solution o f  the basic TBA equations on a suitably fine grid. 

On the analytical side, we note that the first iterative correction to the Ising-l ike 
behaviour of  (1 .5) ,  namely ~b. log( lq-e-rc°shO),  tends uniformly to zero as I m ( r )  

q - ~  with R e ( r )  > 0 held fixed. 3 Hence we expect that the locations of  the rn will 

eventually approach ( 2 n ÷ l ) r r t  as n ---, cx~. These appear to be the only branch points on 

that part of  the Riemann surface of  F ( r )  explored by the zero-particle TBA. However, 

the full surface must have much more structure: the behaviour of  the action (1.4) under 

,~ --~ ~ means that each singularity r, beyond the symmetrical ly placed r0 must have an 

image on some other sheet, located at 

3 when checking this, it is helpful to note that f~" log( I+cte'r)d7 = 0 for I~1 < ~. 
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Fig. 5. lm(F(r)) in the box 3.8 ~< Re(r) ~< 4.4, 7.7 ~< Ira(r) ~< 8.5 as obtained from the one-particle TBA 
equations (2.3), (2.4), showing the branch point at fl. 

?, ~ e5~'/6~,. (3.1) 

These images, invisible to the zero-particle TBA, should instead be seen by the more 

general TBA systems that we are trying to construct. 

This idea is confirmed by the values of  F ( r )  which result from the one-particle TBA 

introduced in the last section: a grid plot of  its real and imaginary parts exhibits a 

square root singularity at ~1 ~ 4.1074+8.1763t.  An example of  such a plot is shown in 

Fig. 5. (Incidentally, that this works is a further piece of  support for the results of  the 

last section.) Judicious use of  the TCSA, allied with TBA data as a check on accuracy, 

is a great help in mapping out how the various sheets fit together, and seems to be 

qualitatively reliable at least out to Ir I = 20. Here, it tells us that the branch point at ?l 
should connect with the first two-particle state. We can therefore play the same game 

as before, and study the behaviour of  the solution e (0)  of  the one-particle TBA as r is 

continued round ~1. This should yield a two-particle TBA equation. 

When r approaches the branch point, we found that the singularities at 0 = zE00, 

already implicated in the one-particle equation, remained near 3zt~/6, whilst a second 

pair headed for the real axis, just as happened when the one-particle TBA was being 

formed. Strictly speaking we should now repeat the rest of  the one-particle work, this 

time keeping track of  two independent singularity positions, 00 and 0~, as r returns to 

the real axis. Numerically this is delicate: with both 00 and 01 to locate, an efficient 
iteration scheme is hard to find, and so we will leave this question to one side for the 

time being. Besides, in some respects the key piece of  information has already been 
obtained: the two-particle TBA equation should involve four singularity terms, tied to 
singularities in L(O) at ±00 and ~01. Once r reaches the real axis, the situation changes 

favourably: we expect the four singularities to be invariant not only under Oi ---+ -Oi, but 

also under Oi ---, -Oi. This reduces to one the number of  independent singularity positions, 
making a numerical solution no harder than the cases examined in the last section. The 

TBA equation to solve reads 
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s ( o  - Oo) s ( o  +-Oo) 
e(0) = r cosh 0 + log + log ~b*L(O), 

s(o - Oo) s(6 + e o )  

o o  

12r - 3 f 
c(r)  = t - - ( s i n h O o -  s i n h O o ) ~ r  + ~-~ J dOrcoshOL(O), (3.2) 

with 0o satisfying 

e(00) = (2n + l)tTr. (3.3) 

For the lowest two-particle state, found on continuing round ~1, we found e(00) = tTr, 
so that n is equal to zero. However, the results of the last section make it very natural 
to allow for the more general possibility, in the hope of catching the other two-particle 
states. As with the one-particle TBA equation (2.8), 00 and O0 cease to be complex 
conjugate if r strays from the real axis, eventually metamorphosing into 00 and -01 as 
?l is approached. 

The analysis of the infrared limit proceeds in much the same way as for the s 4 : 0  
one-particle states. Substituting 0 = tg0 in the first of (3.2) and taking the imaginary 
part of the large-r asymptotic gives us 

S( Oo + 0o ) 
2 z r ( 2 n + l ( 1 - s i g n ( t 3 ( r ) ) ) ) ~ r s i n h ( R e ( O ° ) ) + 2 I m l ° g  S(20o) ' (3.4) 

where, as before, Im(00) = zr/6+t3(r) and t3(r) --~ 0 as r ---* cx~. In the functions S, 
t3(r) can be replaced by its limiting value, so these terms become 

Im log S(2Re(0o) + t~r/3) = ½Im log S(2Re(00) ) (3.5) 

(using the ~b 3 property of S(O) ) and 

Im log S(2Re(0o) ) = - t  log S(2Re(0o) ) .  (3.6) 

(Recall that S(O) is a pure phase for 0 real, so the right-hand side of (3.6) is indeed 
real.) Combining all of these terms together, (3.4) becomes 

2zr(2n + ½ ( 1 -sign(t3(r) ) ) ) ,~ r sinh (Re(0o)) - t log S(2Re(00) ) .  (3.7) 

This is just the Bethe ansatz quantisation condition for a two-particle state with rapidities 
( -Re(0o) ,  Re(0o)) and Bethe quantum numbers 

(-2n+½sign(t3), 2n-½sign(t3))= ( - 2 '  1 ) ,  ( _ 3 ,  ~ ) ,  ( _ ~ ,  ~ ) . . .  (3.8) 

with n = 0, 1, 1,2,2 . . . .  and sign(5) = - I ,  l , - 1  . . . . .  (see, for example, Eq. (4.5) of 
Ref. [ 10]). These values of sign(8) should be imposed when handling the equation 
numerically, so that when seeking to follow a particular solution, the idea is to specify 
not only the value of e(00), Eq. (3.3), but also the sign of t3(r). The only point where 
we were not able to impose a particular sign on t3 and obtain reasonable results was 
when we attempted to set sign(t3) = +1 when n in (3.3) is equal to zero. From a 



P. Dorey, R. Tateo/Nuclear Physics B 482 [FS] (1996) 639-659 651 
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Fig. 6. Proposed zero-momentum two-particle scaling functions (points) compared with TCSA data (contin- 
uous lines). 

physical point of view, this is as it should be, given the exclusion principle - otherwise, 
the state ( i i - 3, ~) would have appeared twice. 

Substituting the value of Re(00) which follows from (3.8), together with Ira(00) = 
7r/6, into (3.2) automatically gives the expected algebraic asymptotic for F ( r ) .  The next 
section will examine the ultraviolet limits analytically; in the meantime Fig. 6 illustrates 
the numerical agreement with TCSA data for the first three states. The discrepancies 

were much the same as for the one-particle sector, described earlier. 
By this point the structure is clear enough that we can conjecture a general equation 

for an n-particle state: 

8(0) = r cosh 0 + Z l o g  S(O - Oi) fb,L(O) , 
e S(O -#i) 

o o  6_; / 
c(r)  =t Z (sinhOi-sinhOi) + ~ dOrcoshOL(O) , 

i _ ~  

(3.9) 

We expect that particular states are selected by imposing the values of e(Oi), and also 
the signs of the various 8i. We only analysed in detail the spin-zero three-particle states, 
where steps similar to those already described give the following Bethe ansatz quantum 
numbers: 

( - 2 n +  ½ + ½ s i g n ( 8 ) , 0 , 2 n -  ½ - ½sign(8)) = ( - 1 , 0 ,  l ) ,  ( - 2 , 0 , 2 )  . . . .  (3.10) 

with n = 1, 1,2, 2, 3 . . .  and sign(S) = + 1 , - 1 ,  +1 . . . .  Again, the exclusion principle 

leads us to suppose that the n = 0 case should be omitted. 
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This large-r asymptotic, together with the special cases already studied in some detail, 

lend support to (3.9). However, numerical work will also be needed. In particular, the 

equation will have to be modified at values of r below some critical rc whenever 
the phenomenon observed above for the spin-zero one-particle state occurs, and the 

imaginary part of a singularity position 0 i ventures too far from 7r/6. We suspect that 
this will happen whenever one of the Bethe ansatz quantum numbers is equal to zero, 
and thus will afflict the three-particle states just discussed. In fact there are signs that 
this is just what is needed to get the ultraviolet asymptotics correct in these cases, a 
point that we shall return to later. 

4. Ultraviolet behaviour 

Analytic work has thus far been restricted to the infrared regime. In this section the 
opposite limit is considered, and the ultraviolet scaling dimensions of various states 
extracted. We start with the two-particle states. 

In the limit r ~ 0, the two-particle TBA splits into a pair of kink systems, just as 
for the ground state. For the right kink system, the terms from the singularities at -00  
and -~0  drop out, and r cosh 0 can be replaced by l re°. The real part of 00 tends 

to infinity like l o g ( l / r ) ;  we will also need a little information about the behaviour of 
the imaginary part. Recall that for large r, Im(00) ~ z r /6+~(r )  with 6(r)  --~ 0 as 

r ---, oo. In the opposite direction, we find that, although •(r) grows, it tends to a 
finite and still-small limit as r ---* 0. The precise value drops out of the final equations; 

the only important fact is that for all of the two-particle states (and also for all of the 

s v~0 one-particle states) its absolute value is less than ~'/6. Quite why this is important 
should become clear shortly. The scale-invariant kink TBA reads 

S(O - 8o)  c k , L ( O ) .  (4.1) e(0)  = r 2e  0 + log 
S(O -Oo) 

(Note, to pass from this 'chiral' TBA equation to the general one-particle equation 
introduced in Section 2, we just need to replace ½e ° with cosh 0.) Next, eliminate r by 
replacing 0 with 0 - logr  and e(0)  by e(0  - logr) ,  to find 

S(O - ~1) f b*L(g )  , (4.2) e(0)  = ½e ° + log S(O - ~--) 

where r /=  0o+ logr. In terms of these quantities, the limiting value of c ( r )  is 

o ~  3f 6 t c = - ~  dO e ° L ( O )  + - -  ( e  ~ - e ~ )  . (4.3) 
77" 

Now we proceed in the usual manner. First take a derivative with respect to 0: 

O ~e o O S(O -- rl) O q~ .L (O) .  (4.4) ~(0)=- +~lOgs(0_7) ao 



P Dorey, R. Tateo/Nuclear Physics B 482 [FS] (1996) 639-659 653 

Now substitute this into the formula for c: 

OO 
f 3--~( ) 6  6 S ( O - r l )  + ~ * L ( O )  + - - t ( e  n - e g ) .  (4.5) c = ~-~ dOL(O) e (0 )  - log S(8 - ~ rr 

--OO 
Then (remembering that ~b(0) = - t a~  log S(O) ) 

~lnax 1 
c = - ~  dx  log( 1 + e -x )  + ~min log( 1 + 

t 2~b*L(rl) - 2~b*L(g) - e '7 + e ~- . 
7T 

The first piece can be expressed in terms of the Rogers '  dilogarithm function 

£ (  z ) = - 5  at  + - i - - ~  / 

0 

(4.6) 

a s  

1 6 [ £ ( ,  - , 

-~- eErmax ) 1 
whilst the second can be evaluated using (4.2) for r/ and 7: 

(4.7) 

2nTrt = ½e n - log( IS( t2 Im(r / )  )1) - rrt½ ( 1 - s i g n ( 6 )  ) - qS,L(r/) 

-2n~-t  = ½e ~- + log( IS( tZ lm(~)  )1) + ¢r,½( 1 - s i g n ( 6 )  ) - ~b*L(~) ,  (4.8) 

and is equal to 1 2 ( 4 n + l - s i g n ( 6 ) ) .  

Finally, ~min is reached as 0 ---+ -cx~, ~max as 0 ---* e<D. Since S(±e<z) = 1, the limiting 
form of  (4.1) gives emin = l o g ( ( l + ' v / 5 ) / 2 )  and eroax = C<Z, a result which was also 
checked against our numerical solutions. Since £ i ( 2 / ( 3 + x / 5 ) )  = ¢r2/15, this gives us 

2 
c = ~ - 1 2 ( 4 n +  1 - s i g n ( 6 ) ) .  (4.9) 

The calculation for the s 4 : 0  one-particle states is essentially identical. The only 

difference is that one of  the two kink systems is in its 'ground state', in that there are 
none of  the extra terms involving 00. Hence the size of  the additional contribution is 
halved, and 

2 
c = ~ - 6(4n + 1 - s i g n ( 6 ) ) .  (4.10) 

Recalling from the infrared result (2.11) that s = 2 n + ½ ( 1 - s i g n ( 6 ) ) ,  this is minus 
twelve times the scaling dimension on the cylinder of  a spin s descendant of  the 

primary field ~o, as expected. 
For s = 0 in the one-particle sector, the situation changes and our discussion must 

be much more tentative, as our numerical work lost stability below r = rc ~ 2.53. 
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Nevertheless we can conjecture a plausible modification to the equation which seems to 

predict the correct ultraviolet asymptotic, and the remainder of this section is devoted 

to this question. 
First, we must decide just how we expect the equation to change. In particular is 

important to know if the singularities at 4-00 stay on the imaginary axis, or if they 

somehow each split in two and acquire a real part. Unlikely as it appears at first sight, 

it seems that it is the latter possibility which actually occurs. One can gain information 
about this by again returning r into the complex plane, and following the position of 00 as 

r returns to points on the real axis below the critical value rc. Pad6 extrapolation clearly 

showed a finite limiting value of Re(00) in each case we tried, the value increasing as 
the limiting r decreased. For example, extrapolating down from the upper half plane, 
we obtained Re(00) ~ 0.77 at r = 1.5, and Re(00) ~ 1.17 at r = I. The extrapolation 

of Im(00) was not so reliable, but the results were consistent with the limiting value 
being rr/3 every time. In any event, this seems to be the only way to make sense of the 
non-zero limit for the real parts, and so we will proceed on the assumption that indeed 

Im(00( r ) )  = 7r/3 for all r < rc. 

When Im(0o) finally reaches 7r/3, the singularities in L(O) caused by the logS(0 =/= 
00) term hit the real axis, forcing a deformation of the contour of integration. Integrating 
by parts in the convolution, and then taking the principal part to restore the contour to 
its original track, Eqs. (2.3), (2.4) should be modified thus: 

S( O - 00) + ½ log S( O + (0o - tTr/3 ) ) _ qb*L( O) , 
e(0)  = r cosh 0 + log S( O ~ 0o) S( O - (0o - trr/3 ))  

12r 6r 
c ( r )  = t - -  sinh00 - t - -  sinh(00 - tTr/3) 

7/" 7/" 
O O  

+ - ~  dOrcoshOL(O)  , (4.11) 

- - O O  

The factors of 1/2 appear because the singularities remain on the real axis. This equation 

looks rather complicated, but simplifies once we put 00 =/3+¢~r/3, with/3 real. Using 
the bootstrap equation we find 

e(0)  = r cosh 0 + ½ log S ( O - / 3 - t T r / 3 )  S (O+/3- tTr /3 )  _ qb*L(O) 
s(o-/3+,,r/3) + ½ log s(o+~+,,~/3) 

O 0  

c ( r ) = _ 6 r v / ~ c o s h / 3 +  3 f ¢r - ~  dOrcoshOL(O)  . (4.12) 

To understand what has happened, it is worth thinking about how the 'singular values' of 
e(0)  have moved around. This can be discussed using the functions Y(O) -- e ~°) which 
solve, for the Lee-Yang model, the following functional equation or Y-system [ 11 ] 

Y ( O - , 3 )  Y ( O + t 3 )  = 1 + Y ( O ) .  (4.13) 
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The special points that we are interested in, 00 being an example, are those for which 

1 +Y = 0. Given such a point 0 (°~, the Y-system can be used to find a sequence of other 

points 0 (~) = O(°)+kzrt/3 where Y also takes special values. Setting y(k) = y(0(k) ) ,  
with y(k+5) = y(k) by the periodicity of  the Y-system, the sequence cycles round as 

- 1 ,  A, B , - 1 , 0 ,  with A + B  = 0 and y(0) either the first or the fourth term. For 00, 
the former option is realised and so as 00 moves around, it carries with it the points 

Oo-trr/3 and Oo-2t lr /3 ,  at which Y takes the values 0 and - 1 ,  respectively. While 
r > r,~, these points lie on the imaginary axis, together with a symmetrically placed 

triplet of  points associated with -00 .  When r reaches re, the points Oo-2tTr/3 and 

- 0 0  collide at - tTr/3.  Since for both of these points I+Y = 0, this opens up another 
possibility to distort the singularity positions while maintaining the symmetry under 

0 --~ 0 that they must respect while r remains real. This seems to be realised here: as r 

decreases below re, the points 00 - 2tTr/3 and - 0 0  move away parallel to the real axis. 
with a similar story at -+-l~/3 ensuring that the symmetry is preserved. By continuing r 
away through complex values, we were able to observe this end result without having 

to tangle with the particularly singular behaviour actually at r = re. 

The last task is to find an equation for 00, or equivalently for/3.  The value of e(00) 

remains equal to tTr, but one must be careful when substituting 0 = 00 into the first 
of  (4.12).  This is because the singularities just discussed cause the right-hand side of  
this equation to develop a couple of  singularities precisely when 0 = 00. Of course, the 

overall result remains finite, and the simplest approach seems to be to consider the limit 
of  e ( f l + t T r / 3 - t e )  - e ( f l - t T r / 3 + l e )  as E --~ 0 +. From one point of  view this is equal 
to 2tTr; equating this with the result from the right-hand sides we found 

1 S(2/3) S(2fl)  
trr = t v ~  r sinh/3 + ~ log S( 2fl + t 2~ /3 )  S( 2fl - t27r/3) 

- (¢b*L(fl  + tTr/3) - 4)*L(fl  - tTr /3) ) .  (4.14) 

(We should mention here that we have been somewhat cavalier throughout in our 
treatment of  the branch choices for the logarithms. This issue deserves a careful study, 

especially in regard to the way the branches behave under analytic continuation between 
energy levels.) 

This concludes the modifications to the one-particle equation. If  the comment  made 
at the end of  Section 3 is correct, then a similar manoeuvre will be needed whenever 
a zero-momentum particle is present in a Bethe ansatz state. The natural generalisation 

of the equations just obtained for such situations, correcting Eq. (3.9) for r less than 

some rc, is 

S(O - f l -  tzr/3) S(O + fl  - rn'/3) 
e ( O ) = r c o s h O + ½ 1 O g S ( O  ~ ' ~ t T r / 3 )  S ( O + f l ~ t T r / 3 )  

S(O - Oi) S(O + -Oi) _ dp*L(O) 
z - - ' l ° g  S(O - -Oi) S(O + Oi) 

+ 

i 

6r 
C(r) = - - - -  X/~ cosh/3 

7/" 
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o o  

~ 1 2 r  3f + t ( s inhOi-s inh-Oi)  + - ~  d O r c o s h O L ( O )  , (4.15) 
• 77" 
l --o(3 

where as above the singularity position 00 ceased to be purely imaginary at r = re, and 

was replaced in the equations by the real variable/3 = Oo-tq'r/3. 

Now we must analyse the r ~ 0 limit. The first thing that we notice is that the 

modification has achieved the remarkable trick of  splitting the 'zero-momentum' sin- 

gularity position 00 into constituent singularities at tTr/3:5 fl ,  which can now join the 

respective left and right kink systems. For the one-particle case, assuming that/3 ~ oc 

as r --, 0, and replacing 0 with 0 - l og r  and e (0)  with e (0  - logr ) ,  the right-hand 

system becomes 

S(O - r I - tTr/3) 
e (0)  = ½e ° + ½ log S(O - - - -~7 tTr/3) - f b * L ( O ) ,  

o o  

c = - 3 v ~ e ~ +  3 / ¢r - ~  d O e ° L ( O )  , (4.16) 

- - 0 < 3  

where r / = / 3  ÷ log r satisfies the 'quantisation condition' 

v/-3 e ~ - (rk*L(~? + trr /3)  - ~b*L07 - t r r / 3 ) )  (4.17) l q ' i ' ~  l T 

Now the calculation runs as before, modulo one subtlety to be mentioned shortly. One 

finds F[~lllax ] 
3 v ~  6 LJ, l - c =  ---~r e'7 + - ~  dx  log(1 + e - x )  + ~emin log(1 + e c,°,,) 

6 
- - - t  [dp*L(rl+tT"r/3) - ~b*L(r l - t z r /3 ) ]  . 

rr 

Recognising the dilogarithm and using (4.17), 

6[ ( , )  
c =  ~-~ /2 l + e  ~"~" - £  - 6 .  

(4.18) 

(4.19) 

As before, l~ma x ---- OO, and e em~" solves e 2e'~" = 1 + e~"% an equation which has two 
solutions: 

l+v'3 
e ~± = -  (4.20) 

2 

Previously we selected the positive solution, e (0)  being a monotonically increasing real 
function in that case. However, this time note that e ~(~) = e ~m,~ = c~, and that as 0 

decreases along the real axis e ~(°) falls all the way down to zero at 0 =/3. This suggests 
that the relevant solution by the time 0 = - c o  is reached is the negative one (note, such 

solutions were previously observed to be of  relevance to the excited states in some other 
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models by Martins, in Ref. [3] ). The correct prescription for £ ( x )  for general x E R + 
is (see for example Ref. [14])  

77 -2 
£ ( x )  = - - 5 - - / 2 ( 1 / x )  f o r x >  1, (4.21) 

which in this case gives 

77 -2 4~-2 
z : ( 2 / ( 3 - v S ) )  = T - z z ( 2 / ( 3 + v % )  = ~5 (4.22) 

This gives us c = - 2 2 / 5 ,  as expected for the spin-zero one-particle state, which in the 
ultraviolet is created by the identity operator I. (Note, the theory being non-unitary, this 

is not  the ground state.) We also analysed the spin-zero three-particle sector, and found 

22 
c = - - ~ -  - 12 (4n+1- s ign (6 ) )  (4.23) 

with n = 1, 1,2,2 . . . .  and sign(6) = + 1 , - 1 , + 1  . . . .  just as in the infrared. Note that 
here also n must start from 1: the two options at n = 0 give either - 2 2 / 5 ,  double- 

counting the state I,  or - 2 2 / 5  - 2 4 ,  minus twelve times the would-be scaling dimension 

on the cylinder of the null field 00I.  This seems to suggest a relation between the 
exclusion principle on the Bethe ansatz quantum numbers, and the null field structure 
of the conformal states. 

5. Conclusions 

This work is still in its early stages. We would like to have a more secure understand- 
ing of the zero-momentum one-particle state, and in particular to be able to follow its 

behaviour numerically all the way down to r = 0. Work on this question is in progress. 
The situation for the remaining one-particle states, and for all of the two-particle states, 

is very satisfactory but beyond that our equations become more conjectural, albeit natu- 
ral. Numerical and analytic work is needed, both to confirm their status and to unravel 

their structure. On the numerical side this poses the particular challenge of developing 
efficient methods for the tracking of a number of singularities simultaneously, but this 
should not be insurmountable - the three-particle state would be a good starting point. 
Quite apart from the analytic insights we can hope for, the method promises to be very 
competitive numerically with the TCSA, particularly for higher levels and larger values 
of r. Note also that all of the results we have obtained for the SLYM are directly rel- 
evant, after a multiplication by two, to the thermally perturbed three-state Potts model. 
This follows from the simple relationship between their respective ground-state TBA 
systems [ 1 ]. 

Turning to more general issues, many new features of the TBA equations seem to 
emerge when the whole complex r plane is considered, and there remains much to 
explore. The map • ---+ ~, simple in its effects from the point of view of the perturbative 
action (1.4), is far from trivial when acting through Eq. (3.1), as r --~ ?, on the space of 
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multiparticle TBA equations. More locally in this space, the study of the zero, one and 

two particle TBA systems has shown how one equation can melt into another with the 
passage of singularities across the real axis, and it is important to extend this treatment 
further. An immediate hope would be to thereby justify the more general equations 
(3.9) conjectured above. In addition, given the good understanding of the ultraviolet 

and infrared limits of the model provided by conformal field theory and the Bethe ansatz 
quantisation conditions respectively, one might try to say something about the structure 
of the full Riemann surfaces for F ( r )  in the various sectors, and to understand the way in 

which the domains of the various TBA equations are patched together on these surfaces. 
We would like to stress how general the method advocated in this paper should be. 

As a first step, there seems to be no serious obstacle to its application to the known 
purely elastic scattering theories. In the absence of any numerical work to report at this 

stage, we will restrict ourselves to a couple of comments. First, we note the crucial r61e 
that the ~b 3 property of S(0 )  played in much of the analysis presented above. One can 

anticipate that other cases will exhibit a similar interplay between the algebraic properties 

of the S-matrix and the asymptotics of the multiparticle TBA equations. Second, many 
scattering theories, purely elastic and otherwise, exhibit additional symmetries which on 
the one hand divide the Hilbert space into further subsectors, and on the other permit 

the construction of alternative 'seed' TBA [4]. These will provide additional starting 

points for the continuation process, thus helping to fill out the extra sectors. In the Ising 
model example discussed in Section 1 this was exactly how the states related to the spin 

field arose. 
Our main conclusion, however, is rather more ambitious than this. It is that any 

ground-state TBA equation encodes within itself equations for many excited states, and 

that analytic continuation provides the means by which these equations can be extracted. 
It will be interesting to see just how far this programme can be carried through. 
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Note added 

Ref. [ 15], by Bazhanov et al., appeared as we were finishing this paper. These authors 
independently obtained TBA-like equations for the spin-zero excited states of the SLYM, 
though by a very different route from the one that we have described here. 
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