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Abstract: Mental flexibility (MF) has long been defined as cognitive flexibility. Specifically, it has been
mainly studied within the executive functions domain. However, there has recently been increased
attention towards its affective and physiological aspects. As a result, MF has been described as an
ecological and cross-subject skill consisting of responding variably and flexibly to environmental
cognitive-affective demands. Cross-sectional studies have mainly focused on samples composed
of healthy individual and of patients with chronic conditions such as Mild Cognitive Impairment
and Parkinson’s, emphasizing their behavioral rigidity. Our study is the first to consider a sample
of healthy older subjects and to outline physiological and psychological markers typical of mental
flexibility, to identify functional biomarkers associated with successful aging. Our results reveal that
biomarkers (respiratory and heart rate variability assessments) distinguished between individuals
high vs. low in mental flexibility more reliably than traditional neuropsychological tests. This
unveiled the multifaceted nature of mental flexibility composed of both cognitive and affective
aspects, which emerged only if non-linear multi-variate analytic approaches, such as Supervised
Machine Learning, were used.

Keywords: mental flexibility; psychometric model; affect dynamics; bio-markers; neuroscience

1. Introduction

Aging is an inevitable and complex process that brings about a myriad of changes
in both cognitive and emotional domains. While some individuals experience cognitive
decline and emotional instability as they age, a growing body of evidence suggests that
many older adults maintain remarkable cognitive and emotional health levels, often called
successful aging [1]. Understanding the factors that contribute to successful aging has
become a focal point in gerontological research, as it not only enhances our knowledge of
aging but also informs interventions to promote healthy aging outcomes.

In recent years, researchers have focused on investigating the role of cognitive and af-
fective flexibility in successful aging [1,2]. Theoretically, these studies introduced flexibility
as a unitary concept composed of both cognitive and affective components. However em-
pirically, these studies did not test these components together in a sample of healthy elderly
individuals. In fact, the only studies that analyzed and defined these components have
focused on young, healthy subjects or individuals with already established neurological
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conditions such as Mild Cognitive Impairment, Parkinson’s, or Alzheimer’s disease [3–11].
Conversely, this study aims to experimentally investigate the biomarkers of cognitive-
affective flexibility in a sample of healthy elderly individuals. This exploratory study seeks
to identify which bio-psyco components distinguish between healthy aging individuals
with high vs. low levels of flexibility, to identify functional biomarkers associated with
successful aging.

First, Mental Flexibility is a concept everyone is familiar with but is difficult to define
clearly and unambiguously. Similarly, also at the scientific level, a partial definition of
its cognitive and affective components is usually provided rather than a general and
comprehensive definition [4,5,12–17]. The following are usually identified among MF’s
components: Cognitive Flexibility, Affective Flexibility, and its application in young and
patient older adult sampling.

Cognitive Flexibility (CF) is the ability to adjust goals and shift a course of thought
or action according to the changing demands of the situation. It involves two central
components of executive control: inhibition and set-shifting [4,5,15,18,19]. Inhibition is
the ability to override prepotent responses and inhibit processing irrelevant material and
goals. Set shifting is the ability to flexibly shift focus between goals or mental sets [4,20,21].
Affective Flexibility (AF) is defined as a subset of cognitive flexibility and it is expressed
in terms of speed and correctness in discriminating between emotional stimuli [13,14]. In
fact, it involves the specific ability to switch between emotion-focused and non-emotional
cognitive sets. For example, reappraising an emotion-eliciting situation often requires the
ability to change perspective and put the situation into a broader or different context to
change the perceived importance of the situation. This involves focusing on emotionally
neutral information within and outside of the situation [13,14,22].

CF is conventionally measured by neuropsychological tests (e.g., Wisconsin Card
Sorting Test or Trail Making Test) and self-report questionnaires (e.g., Cognitive Flexibility
Inventory or Cognitive Flexibility Scale) [5,23]. Neuropsychological tests assess CF in
terms of attention, visual screening ability, and processing speed. In contrast, self-reports
provide an ecological assessment of relational and communicative skills [5,19,24]. Several
recent studies have shown that, while they theoretically measured the same construct,
the measures did not correlate significantly [5,17,20,24,25]. Most studies stem from a
neuropsychology view and interpret AF as a cognitive flexibility property [13,14,22]. AF is
studied in terms of the task-switching paradigm. The affective task-switching paradigm
required participants to shift between categorizing positive and negative affective pictures
according to emotional or non-emotional features [13,14,22]. Previous research showed
that greater affective flexibility (less switch costs) predicted the ability to use reappraisal
to down-regulate emotions but was linked to a lower resting state Heart Rate Variability
(HRV) [14]. This result is controversial since, usually, higher resting of heart rate variability
corresponds to high quality of life and high emotional regulation abilities [14,26,27].

Previous studies first sought to explain considered CF only for executive functions, AF
as a subcomponent, and considering only sampling of young adults or patients with chronic
disease [4,5,21,25]. Those studies addressing CF measured shifting abilities in a clinical
setting, poorly generalizable to flexible daily living skills, analyzed instead by self-reports.
Furthermore, when AF is viewed as a subcomponent of CF, it loses some of its emotional
and variable significance. This way, AF is discretized and made stimulus-responsive, not
illustrative of emotional variability. Finally, its various definitions and measurements have
mainly been studied with young samples or chronic disease.

Hence, our study is the first to consider MF in older healthy aging subjects, trying to
outline its psycho-physiological components in a successful aging sample. At the cognitive
and affective level, flexibility is the ability to act and change behavior variably, adapting to
the environment. This variability has been measured cognitively by neuropsychological
tests and self-reports, and affectively measured by physiological signals during emotional
imagery administration. The idea is to measure Affective Flexibility, expressed through
continuous affective dynamics [28–33]. Put differently, here, we measured the cognitive
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side of MF using conventional neuropsychological tests, and the affective dimension using
psychophysiological signals.

Considering flexibility in terms of cognitive-affective and physiological variability in a
healthy aging population could allow us outlining the most accurate psycho-bio markers
of flexibility and how they interact with other measurements of aging.

2. Materials and Methods
2.1. Participants

A group of 35 (27 women; 62–82 years) socially active older people from the University
of the Third Age (UNITRE) in Turin (Italy) were recruited, and all agreed to participate.
A priori power analysis was conducted using G*Power version 3.1.9.7 [34] to determine
the minimum sample size required to test the study hypothesis, based on Fernandez-
Aguilar et al. [35]. Results indicated the required sample size to achieve 95% power for
detecting a large effect, at a significance criterion of α = 0.05, was N = 26 for independent
samples t-test (High Flex vs. Low Flex). Considering dropouts and recording issues with
physiological signals, we recruited 35 participants. All 35 subjects were >60 years old and,
thus, can be classified as “older adults” (World Health Organization. Health Topics, Ageing.
https://www.who.int/health-topics/ageing#tab=tab1, accessed on 1 July 2023). The study
was conducted in accordance with the Declaration of Helsinki, having been approved by
the Ethics Committee of the University of Turin (Prot. No. 10038 and 151786).

2.2. Inclusion Criteria

All participants gave written informed consent before participating in the study. In
particular, to be included in the study, participant criteria were: >60 years old in order to be
classified as “older adults” (World Health Organization); no neurological or psychiatric
disorders and, consequently, were not taking any psychotropic medications that could
have affected their cognitive abilities or mood (based on the Cumulative Illness Rating
Scale (CIRS) [36]). None of the participants met Fried et al.’s inclusion criteria for frailty
status [37], based on five parameters, weight loss, self-reported fatigue, decreased phys-
ical activity, grip strength, and walking speed. The absence of all criteria characterized
robust subjects, the presence of one or two described a prefrail status, and three or more
represented a frail individual. Most participants were classified as “robust” and “prefrail”
(65.71% and 34.29%, respectively) [37].

2.3. Procedure

Participants in the study were enrolled in UniTRE educational modules, through con-
venience sampling. They were healthy elderly students who paid an annual membership
fee. The main purpose of UniTRe regards Informal programs such as the Universities of
the Third Age to promote lifelong learning and pursuing personal interests and goals, a
key element of healthy aging. Of 200 students, approximately 17% of the total sample,
i.e., 35 socially active subjects who did not complain of subjective cognitive decline, were
voluntarily recruited based on the inclusion criteria. The participants who met the experi-
mental criteria for healthy aging were contacted through email and/or telephone to plan a
meeting. Participants were requested to sit in front of a computer, and they were taught
about the basic aims of the research and the techniques to be employed. It is a two-step
study: a first phase of administration of a Neuropsychological battery, to test Cognitive
Flexibility, and a second phase of psychophysiological test, to test Affective Flexibility
through administering emotional stimuli, depicting the initial and most stressful phase of
the COVID-19 pandemic.

2.3.1. First Phase: Assessing Cognitive Flexibility through Neuropsychological Tests

Participants completed neuropsychological battery in 90 min. To avoid fatigue, the
assessment was divided into two parts, lasting approximately 45 min, and held on two
different days. The neuropsychological battery was composed of specific measures for CF

https://www.who.int/health-topics/ageing#tab=tab1
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and concurrent measurements, considered key for the definition of CF (Table 1), validated
in Italian young and older healthy sampling [7,16,18]. We assessed CF with neuropsy-
chological tests, as executive function, and with self-report to test CF in everyday life
settings.

Table 1. Neuropsychological battery.

Flexibility Measures

Construct Neuropsychological Measurements Acronym

Cognitive Flexibility Trail Making Task
TMT A
TMT B

TMT BA

Cognitive Flexibility

Addenbrooke’s Cognitive
Examination Revised version:

Memory, Visual spatial,
Attention/Orientation scale

ACE AO, ACE M, ACE VS

Cognitive Flexibility Montreal Cognitive Assessment MOCA

Cognitive Flexibility Cognitive Flexibility Inventory CFI

Convergence Measures

Decline cognitive Cumulative Illness Rating Scale:
Comorbidity and Severity scale CIRS COM, CIRS SEV

Functional Abilities Cognitive Function Instrument:
self-report, partner, self-partner

CFI self, CFI partner, CFI
self-partner

Depression Beck Depression Inventory BDI

Apathy Apathy Evaluation Scale AES

Anxiety Hamilton Anxiety Rating Scale HARS

Emotion Regulation Emotion regulation Questionnaire:
Re-appraisal Suppression

ERQ R
ERQ S

For neuropsychological tests we used the subscales of Memory (ACE-M), Visual spatial
(ACE-VS), Attention/Orientation (ACE-AO) of Addenbrooke’s Cognitive Examination
(ACE) [38], Montreal Cognitive Assessment (MOCA) [39] and Trail Making Task (TMT) [40],
as indicated in the literature [19].

The Addenbrooke’s Cognitive Examination (ACE) is a comprehensive neuropsycho-
logical test that evaluates various cognitive domains, including visuospatial abilities and
memory functions. These cognitive domains are closely linked to cognitive flexibility
through their impact on problem-solving and adaptive behaviors. The visuospatial and
attention component of the ACE assess an individual’s capacity to perceive and process
visual information, understand spatial relationships, and mentally manipulate objects
in space. The memory component of the ACE evaluates an individual’s short-term and
long-term memory abilities. Memory plays a crucial role in cognitive flexibility, allowing
individuals to draw on past experiences, information, and learn strategies to adapt to new
challenges. For example, recalling previous solutions or experiences and applying them in
novel situations is essential for flexible problem-solving. These abilities are interconnected
with cognitive flexibility, as they underpin an individual’s capability to rotate objects men-
tally between different visual perspectives and adapt their spatial strategies to changing
situations [41].

The Montreal Cognitive Assessment (MOCA) is a widely used neuropsychological
test designed to assess various cognitive domains, including cognitive flexibility. It is com-
monly employed as a screening tool to detect mild cognitive impairment and early signs of
dementia. Within the MOCA, cognitive flexibility is evaluated through specific tasks that
assess an individual’s ability to shift attention, mental set, and problem-solving strategies.
For instance, the test may include tasks that require participants to switch between differ-
ent cognitive rules or to alternate between different categories when performing verbal
fluency exercises. Furthermore, the MOCA assesses working memory, another cognitive
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function closely related to cognitive flexibility. Working memory is essential for holding
and manipulating information in mind, allowing individuals to adapt to new information
and switch between tasks effectively [42].

The Trail Making Test (TMT) is a widely used neuropsychological assessment consist-
ing of Part A and Part B. The test evaluates visual attention, processing speed, and cognitive
shifting abilities as cognitive flexibility components. Part A primarily assesses visual at-
tention and processing speed, as it requires tracking and quickly connecting the numbers
visually. Part B is a more complex task, where the individual is required to alternate
between connecting numbers and letters in ascending order while switching between the
two sets (1, A, 2, B, etc.). Both sections specifically target cognitive flexibility, as it demands
the ability to shift attention, switch between mental sets, and adapt between two different
sequences, as the participants must rapidly and accurately switch between numbers and
letters while maintaining the correct sequence. The task challenges the individual to inhibit
a prepotent response (continuing with numbers) and flexibly shift to a new set of stimuli
(switching to letters) [21].

As self-report measuring of CF, we used the validated Cognitive Flexibility Inventory
(CFI) [43], measuring ecologically the ability to identify alternative solutions, generate
several explanations, and perceive difficult conditions as controllable. The self-report
inventory includes 19 items that assess an individual’s capacity to switch between different
tasks, perspectives, or problem-solving approaches. Respondents are asked to rate their
agreement or disagreement with each statement, providing insights into their cognitive
adaptability and mental agility. The Cognitive Flexibility Inventory has been widely utilized
in both research and clinical settings to understand the cognitive processes underlying
adaptive behaviors and problem-solving skills [43–45]. Researchers often employ the
CFI to investigate the role of cognitive flexibility in various domains, such as academic
performance, emotional regulation, and decision-making [18,46–51].

Convergence measures of CF assessed different facets of cognitive and affect pro-
cessing, already demonstrated to be significantly positively and inversely correlated with
the construct of CF [4,5,52,53]. For affect processing Apathy Evaluation Scale (AES) [54],
Beck Depression Inventory (BDI) [55], Hamilton Anxiety Rating Scale (HARS) [56], and
Emotion Regulation Questionnaire (ERQ) [57] were administered. For cognitive processing,
a Cumulative Illness Rating Scale (CIRS) [36] was used to assess medical history in terms
of comorbidity and severity indexes (see Table 1), and a Cognitive Function Instrument
(CF-Instrument) was used to assess subjective cognitive function measured by the subject
and the partner [58].

2.3.2. Second Phase: Assessing Affective Flexibility through Psychophysiological Signals

After being administered the neuropsychological assessments, participants were ex-
posed to a set of selected emotional images depicting events related to the lockdown
COVID-19 pandemic, to assess individual differences in Affective Flexibility [59]. We ran-
domly administered 75 pictures featuring emotional content associated with the pandemic
situation [59]. COVID-19-related images were selected to enhance their perceived personal
relevance, thus potentially triggering a wider range of emotional responses, since the study
was conducted between the first and second Italian lockdowns (late 2020 to early 2021). To
explore the variations in physiological arousal associated with the COVID-19 pandemic,
we conducted a search on the “Google images” website (https://images.google.com/
(accessed on 1 July 2023)) for pictures depicting the crucial period between the virus out-
break and the lockdown in Italy. We used the keyword “COVID” and initially obtained
124 images, which were then individually assessed by all authors to select those meeting
specific inclusion criteria. The images should (i) include people of diverse ages, genders,
and sociodemographic backgrounds; (ii) feature elements pertinent to the pandemic con-
text, such as masks, gloves, and medical personnel; and (iii) represent typical COVID-19
everyday situations and hospital scenes. Then, (iv) images should depict at least two peo-
ple interacting (“social” images). (v) To enhance familiarity and emotional relevance, the

https://images.google.com/
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images should feature individuals with exclusively Caucasian facial features, matching the
ethnicity of the study participants (“ethnicity”). Finally, to avoid duplicates, only unique
images with distinct content, formats, and resolutions were included. This assessment
lasted 45–60 min.

During this exposure, their psychophysiological activity was recorded, as a measure of
Affective Flexibility. The idea is that AF refers to an individual’s ability to adapt and regulate
emotional responses in response to changing situations or emotional stimuli, closely related
to physiological variability, which refers to the variation in physiological responses, such
as heart rate, skin conductance, and facial expressions, in different emotional contexts.
Individuals with higher affective flexibility tend to exhibit greater physiological variability,
as they can effectively adjust their physiological responses based on the emotional demands
of the situation [60].

First, the researcher applied the sensor electrodes for Blood Volume Pulse (BVP)
and facial Electromyography (f-EMG) (zygomatic and supercilii corrugator activity were
measured). Finally, Skin Conductance (SC) was recorded with two electrodes applied
to annular and index fingers. All participants were right-handed (without a history of
switching the dominant hand during their lifetimes).

Then, a two-minute baseline session was conducted with all participants to establish
a stable reference. The psychophysiological assessment began according with a specific
trigger synchronized with experimental stimuli.

Finally, the experimenter helped the participants remove all the electrodes and patches,
following a debriefing phase.

Using images to assess affective flexibility was already utilized in the
literature [13,14,22]. However, in our experiment, the variability associated with affec-
tive flexibility is measured in terms of psychophysiological reactions to different emotional
stimuli, rather than in terms of speed and accuracy in discriminating between different
emotional stimuli as in previous studies.

2.4. Recording of Psychophysiological Signals

The data on the autonomic nervous systems were collected by measuring physiological
responses, i.e., Blood Volume Pulse (BVP), Respiration (RSP), Facial Electromyography
(Zygomatic and Corrugator) (fEMG), and Galvanic Skin Response (GSR). Nexus-4 acquired
these responses. The responses were then processed with custom software developed using
MATLAB 9.13.0 (R2022b) (The Mathworks, Inc., Natick, MA, USA). Every channel was
acquired synchronously at 2048 Hz and extracted at 256 Hz for the computation of indices.

2.5. Psychophysiological Signal Processing

Cardiovascular and respiratory activities were monitored to assess the voluntary and
autonomic effects of breathing on heart rate. We examined the Inter-Beat Interval (IBI) from
the Blood Volume Pulse sensor, which is similar to the RR peaks interval from the ECG.
Inter-beat interval (IBI, following also RR) was converted into an estimate of heart rate
(HR) and pulse amplitude (BVP Amplitude), which indicate the proportionate increase in
blood volume. BVP heart rate readings were represented as HR mean (beats per minute)
and RR mean (60,000/HR). To assess autonomic nervous system response, the Task Force
of the European Society of Cardiology and the North American Society of Pacing and
Electrophysiology recommends extracting typical temporal, spectral, and non-linear Heart
Rate Variability (HRV) indices [61]. Time-domain indices of HRV quantify the amount of
variability in measurements of the inter-beat interval (IBI), which is the period between
successive heartbeats. As a temporal domain measure, we calculated standard deviation
of NN intervals (SDNN), minimum and maximum HR computed using N beat moving
average (Max and Min HR), percentage of successive RR intervals that differ by more than
50 ms (pNN50), and the root mean square of successive RR interval differences (RMSSD)
using the BVP IBI. For the frequency domain, spectral analysis was performed using Fourier
spectral methods. In particular, Standard Heart Rate Variability (HRV) spectral-method
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indexes and similar indexes were used to evaluate the response of the autonomic nervous
system. We calculated the magnitude of the peak frequency (also indicated as RR peak
frequency) in the power spectrum. The rhythms were classified as very low frequency
(VLF < 0.04 Hz), low-frequency (LF, between 0.04 and 0.15 Hz), and high frequency (HF,
from 0.15 to 0.5 Hz) oscillations. This procedure also allowed us to calculate the LF/HF
ratio, a well-known sympathovagal balance index. Nonlinear domain allows quantification
of the unpredictability of a time series, plotting every R–R in a Poin-Carrè Plot. Poincaré
plot analysis lets researchers visually explore hidden patterns in time series (a sequence of
values from successive measurements). Poincaré plot analysis is insensitive to R–R interval
trends, unlike frequency domain observations. We considered that the standard deviation
(hence SD) of the distance of each point from the y = x axis (SD1) specifies the ellipse’s
width, and the standard deviation of each point from the y = x + average R–R interval (SD2)
specifies the ellipse’s length the ratio of SD1/SD2, which measures the unpredictability of
the RR time series, used to measure autonomic balance [62,63].

The respiration signal was filtered to produce a smooth sinusoidal signal [64]. The
Respiration Period index represents the peak-to-peak time (maximum-to-maximum dis-
tance of the sinusoid), which allowed us to compute the Respiration Rate (RSP Rate) that
corresponded to the breaths per minute.

Skin Conductance (SC) or Skin Conductance Response (SCR) can be extracted from a
Galvanic Skin Response (GSR) biosensor. Electrodermal activity is measured in conductance
(microsiemens). SCR may be captured at 32 Hz without distortion because it is a slow
physiological function. The mean of the sampled signal after artifact reduction was used to
construct SC’s mean index [65].

The raw electromyography (EMG raw) is a collection of positive and negative electrical
signals; their frequency and amplitude give us information on the contraction or rest state
of the muscle. The Root Mean Square (RMS) is generally considered for rectifying the raw
signal and converting it to an amplitude envelope [66]. We considered both corrugator
electromyography (EMG1) and zygomatic electromyography (EMG2).

2.6. Statistical Analyses

Analyses were performed using Jamovi Statistics software (version 2.2.5.0). Two
normality tests (i.e., Kolmogorov–Smirnov and Shapiro–Wilk) were performed to deter-
mine whether the variables were normally distributed. Conditions (Low Flexibility-High
Flexibility) were compared using independent t-tests.

2.7. Computational Analyses

Computational analyses were carried out using Python 3.4 with the Orange 3.34 data
mining suite, which was available free in the open-source code (https://github.com/biolab/
orange3 (accessed on 1 July 2023) and from which it is possible to see all the algorithms
used in the article. In particular, cross-validation leave one out was performed using
the following methods [44,45], i.e., (1) Random Forest classification using an ensemble of
decision trees; (2) Support Vector Machine (SVM) to map inputs to higher-dimensional
feature spaces that best separate different classes; and (3) Naïve Bayes, a probabilistic
classifier based on Bayes’ theorem and K-Nearest Neighbors (kNN) to predict according to
the nearest training instances, with Euclidean metric and uniform weight. As stated before,
all the algorithms used were available in the open-source code and documentation related
to them can be found in the Scikit user guide, which provides a detailed explanation of all
the algorithms used in the study, including rank calculation, classification tree, and learners
(http://scikit-learn.org/stable/user_guide.html (accessed on 1 July 2023).

3. Results

In the first analysis, we used classical null hypothesis significance testing (NHST)
to test difference on Flexibility level (Low vs. High). In Tables 2 and 3, we reported

https://github.com/biolab/orange3
https://github.com/biolab/orange3
http://scikit-learn.org/stable/user_guide.html
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descriptive of neuropsychological and physiological variables, divided in constructs and
type measurements used.

Table 2. Neuropsychological measurements.

Constructs Type Test Group N Mean SE SD

Cognitive flexibility Neuropsychological test

TMTA
High Flex 15 38 3.2 12.4
Low Flex 15 37.2 2.54 9.84

TMTB
High Flex 15 100.47 12.9 50
Low Flex 15 89.8 5.11 19.8

TMTBA
High Flex 15 62.6 10.5 40.5
Low Flex 15 52.6 4.27 16.5

ACE-R
High Flex 15 94.73 0.54 2.09
Low Flex 15 94.6 0.7 2.72

ACE AO
High Flex 15 17.67 0.21 0.82
Low Flex 15 17.93 0.07 0.26

ACE M
High Flex 15 24.8 0.26 1.01
Low Flex 15 24.67 0.39 1.5

ACE VS
High Flex 15 15.27 0.27 1.03
Low Flex 15 14.8 0.22 0.86

MOCA
High Flex 15 26.4 0.68 2.64
Low Flex 15 27 0.56 2.17

Cognitive Function Self-report

CFI self
High Flex 15 2.57 0.45 1.74
Low Flex 15 3.2 0.45 1.73

CFI partner High Flex 15 1.37 0.26 1.03
Low Flex 15 1.33 0.37 1.44

CFI self-partner High Flex 15 1.2 0.53 2.04
Low Flex 15 1.87 0.47 1.84

Cognitive decline Self-report
CIRS sev

High Flex 15 1.33 0.04 0.17
Low Flex 15 1.36 0.03 0.14

CIRS com
High Flex 15 1.13 0.19 0.74
Low Flex 15 1.47 0.22 0.83

Affective Self-report

BDI
High Flex 15 6.33 1.63 6.31
Low Flex 15 6.87 1.67 6.48

HARS
High Flex 15 7.6 1.37 5.3
Low Flex 15 7.33 1.41 5.46

ERQ R High Flex 15 32.07 1.36 5.28
Low Flex 15 27.4 1.13 4.37

ERQ S High Flex 15 17.47 1.04 4.02
Low Flex 15 18 1.29 5.01

Independent t-tests were calculated to determine whether two conditions of Flexibility
(Low Flexibility, High Flexibility) differed in term of psychophysiological variables. The
independent group was divided into two sub-groups a posteriori based on the median
of Cognitive Flexibility Inventory (CFI). The use of median depends on the fact that
we did not have a normative sample of elderly people. Independent t-tests showed no
statistical significance, either for any of the neurophysiological measurements, or for
neuropsychological battery, except for scale of Re-Appraisal in ERQ (R ERQ) [t (28) = 2.64,
p = 0.014, d = 0.97], and almost significant for LF/HF ratio FFT [t (25) = −1.78, p = 0.08,
d = −0.69].

To collect more information regarding those findings, we conducted computational
analyses on physiological and neuropsychological measures, using leave one out cross
validation (for additional information about algorithms that were used for the Python
computation, please see http://docs.orange.biolab.si/3/data-mining-library/reference/
preprocess.html (accessed on 1 July 2023). Dichotomized Cognitive Flexibility Inventory
(CFI) self-report was used as predicted variable, divided in Low flexibility and High flexi-
bility [43,44]. Neuropsychological measurements and physiological measurements were
used as predictors. The first model took into consideration only neuropsychological mea-
surements, based on neuropsychological measurements of CF and cognitive and affective
concurrent variables.

http://docs.orange.biolab.si/3/data-mining-library/reference/preprocess.html
http://docs.orange.biolab.si/3/data-mining-library/reference/preprocess.html
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Table 3. Physiological Measurements.

Physio Type Measurements Group N Mean SE SD

Heart Rate Variability

Temporal domain

RMSSD (ms) High Flex 14 25.12 2.18 8.14
Low Flex 13 37.70 15.91 57.37

SDNN (ms) High Flex 14 24.01 2.18 8.16
Low Flex 13 33.04 10.10 36.43

Max HR (bpm) High Flex 14 83.62 2.04 7.62
Low Flex 13 84.78 5.44 19.60

NN50 (beats) High Flex 14 178.50 44.95 168.20
Low Flex 13 293.00 153.65 553.98

Frequency domain

VLF pow FFT (ms2)
High Flex 14 43.99 12.00 44.91
Low Flex 13 70.89 24.12 86.98

LF pow FFT (ms2)
High Flex 14 305.53 66.88 250.22
Low Flex 13 934.41 529.39 1908.74

HF pow FFT (ms2)
High Flex 14 222.51 59.00 220.76
Low Flex 13 806.51 631.68 2277.57

LF HF ratio FFT
High Flex 14 1.48 0.13 0.49
Low Flex 13 2.02 0.28 1.02

Non linear

SD1 (ms) High Flex 14 17.76 1.54 5.76
Low Flex 13 26.66 11.25 40.58

SD2 (ms) High Flex 14 28.76 2.83 10.58
Low Flex 13 37.40 9.16 33.02

SD2 SD1 ratio
High Flex 14 1.65 0.10 0.36
Low Flex 13 1.79 0.13 0.46

Facial Elettromiography

mean EMG1/EMG2
High Flex 14 2.99 0.38 1.44
Low Flex 14 3.15 0.39 1.46

mean EMG2/EMG1
High Flex 14 1.58 0.90 3.39
Low Flex 14 1.97 1.17 4.38

StD EMG1/EMG2
High Flex 14 3.83 2.25 8.43
Low Flex 14 9.07 6.17 23.08

StD EMG2/EMG1
High Flex 14 19.81 14.76 55.23
Low Flex 14 19.75 17.65 66.03

RMS EMG1/EMG2
High Flex 14 5.50 2.17 8.12
Low Flex 14 10.52 6.06 22.69

RMS EMG2/EMG1
High Flex 14 20.08 14.77 55.25
Low Flex 14 20.05 17.67 66.11

Skin Condactance

Mean SC
High Flex 13 2.38 1.37 0.38
Low Flex 14 2.35 0.92 0.25

StD SC
High Flex 13 0.30 0.23 0.06
Low Flex 14 0.29 0.13 0.04

RMS SC
High Flex 13 2.41 1.37 0.38
Low Flex 14 2.37 0.92 0.25

Respiration Rate

Mean RSP Rate
High Flex 14 29.83 0.80 3.00
Low Flex 14 31.85 1.64 6.14

StD RSP Rate
High Flex 14 10.52 0.44 1.66
Low Flex 14 12.26 0.87 3.27

RMS RSP Rate
High Flex 14 31.68 0.76 2.84
Low Flex 14 34.26 1.67 6.26

TMT, ACE-AO, ACE-M, ACE-VS, and MOCA are used for neuropsychological mea-
sures of Cognitive Flexibility. AES, BDI, HARS, and ERQ assessed affective concurrent
variables. CIRS assessed Cognitive Decline, whereas Cognitive Function Instrument, self-
report and partner-report scale, measured cognitive functional abilities. The results were
not satisfying. It showed a precision between 30% and 60% with most of the loss due to pre-
dicted High flex when actual was Low Flex, with an error ranging from 72%, as highlighted
in the confusion matrices. ERQ-R is the first predictor in indices ranking (Figure 1).
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Hence, we selected the first 10 ranking measurements, testing abilities to discriminate
between High flexibility and Low flexibility. The results showed a precision between 64%
and 81% (Table 4) with most of the loss due to predicted High Flexibility when actual was
Low flexibility, with an error ranging from 20% to 30%, as highlighted in the confusion
matrices.

Table 4. A leave one out cross-validation: Four learning algorithms were compared, i.e., (1) kNN,
(2) Support vector machine, (3) Random Forest, and (4) Naïve Bayes.

Method AUC CA F1 Precision Recall

kNN 0.54 0.63 0.63 0.63 0.63
Support Vector
Machine (SVM) 0.46 0.60 0.59 0.61 0.60

Random Forest 0.68 0.60 0.60 0.60 0.60
Naive Bayes 0.81 0.80 0.80 0.81 0.80

AUC (Area under the ROC curve) is the area under the classic receiver-operating curve. CA (Classification
accuracy) represents the proportion of the classified examples correctly. F1 represents the weighted harmonic
average of the precision and recall (defined below). Precision represents a proportion of true positives among
all the instances classified as positive. In our case, the proportion of a condition was identified correctly. Recall
represents the proportion of true positives among the positive instances in our data.

In ranking the 10 measurements, cardiac indices predominated (i.e., LF, HF, VLF,
LF/HF ratio, NN50, and Max HR), followed by two measurements of breathing (mean and
RMS respiration rate) and one of facial electromyography (RMS EMG2/EMG1). Interest-
ingly high levels of sympathetic activation were found in subjects with low flexibility, as
evidenced in linear analysis (Figure 3).
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Based on the classification tree and ranking, we tested a third model with only Root
Mean Square of Respiration Rate (RMS RSP rate) and Max HR (Figure 4). The results
significantly improved and become excellent. The results showed a precision between 60%
and 90% (Table 5) with most of the loss due to predicted High Flexibility when actual was
Low flexibility, with an error ranging from 10% to 20%, as highlighted in the confusion
matrices (Figure 5).
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Table 5. A leave one out cross-validation: Four learning algorithms were compared, i.e., (1) kNN,
(2) Support vector machine, (3) Random Forest, and (4) Naïve Bayes.

Method AUC CA F1 Precision Recall

kNN 0.68 0.67 0.64 0.73 0.67
Support Vector
Machine (SVM) 0.77 0.77 0.76 0.80 0.77

Random Forest 0.89 0.87 0.87 0.87 0.87
Naive Bayes 0.88 0.83 0.83 0.83 0.83
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The high discriminative abilities of RMS respiration rate and Max HR are also shown
through the Decision tree, a simple algorithm that splits the data into nodes by class purity
(information gain for categorical and regression metric for numeric target variable). It is a
precursor to the Random Forest algorithm (Figure 6).
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Figure 6. Decision tree for discrimination between Low and High Flexibility. Small circles indicate
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recognizing the specific characteristics. The colors indicate classification as one of the two groups:
blue for High flexibility subjects, red for Low flexibility subjects.

Figure 6 shows that those with an RMS RSP Rate greater than 35 in 100% of cases are
inflexible. Those with smaller RMS Respiration rate values are 100% flexible if they also
have values lower than 93 in Max HR.

4. Discussion

Mental flexibility is a complex construct that is still difficult to define today. Generally,
it is defined as the subject’s ability to act, react, and think variably. In previous studies, two
cognitive and affective components have been outlined and analyzed as part of executive
functions, with young adults or patients.

In this study, a healthy aging sample was involved, and both the cognitive and
affective components have been jointly measured by integrating conventional neuropsy-
chological tests (usually addressing the cognitive dimension) with continuous psychophys-
iological signals (used to measure the affective dimension). The aim was to outline the
bio-psychological markers of MF especially in healthy aging. To this end, we considered
an extensive battery in assessing Cognitive Flexibility: from neuropsychological tests to
self-reports, with affective-cognitive measures as measures of convergent validity. Instead,
for measures of Affective Flexibility, we considered psychophysiological signals measured
during the administration of emotional imagery. This is the first time in which a direct and
continuous methodology of assessment of AF—intended as physiological variability—was
implemented [4,67].

Our first linear model showed that neither classical neuropsychological tests (TMT,
MOCA, or ACE) or physiological measuring (BVP, f-EMG, GSR, or RSP) nor concurrent
measures (BDI, AES, CFI, or CIRS) significantly discriminated individual subcomponents
between flex vs. low in mental flexibility, except for ERQ Re-appraisal. As a between-
grouping variable, we considered CFI scores as a more ecological measure than classical
neuropsychological tests, dividing the sample into high and low flexibility. This division
allowed us to examine associations with the psychophysiological measures collected.

Results from the neuropsychological tests were consistent with previous studies that
showed no significant correlations between neuropsychological measures and self-reports,
measuring CF [24,51]. Although formally afferent to the same construct of Cognitive
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Flexibility, the measures appear to measure different underlying abilities. The CF in-
vestigated by neuropsychological tests is related to tasks on executive functions, while
Cognitive Flexibility related to self-reports to everyday life situations [18,24,25,68,69]. It
is probable that neuropsychological tests provide a direct and controlled measure of cog-
nitive flexibility based on participants’ performance in structured cognitive tasks, but are
poorly-generalizable to real-life situations.

Only the Re-appraisal subscale of the Emotion Regulation Questionnaire had sig-
nificant differences in Low and High Flexibility: subjects with high flexibility had high
levels of Re-appraisal abilities. This result is consistent with the literature [13,53,60,70–74].
Emotional regulation, particularly in the form of reappraisal, plays a significant role in
mental flexibility. Re-appraisal is a cognitive emotion regulation strategy that involves
reinterpreting the meaning of emotional situations to modify one’s emotional response. It
allows individuals to adaptively regulate their emotions and flexibly shift their cognitive
perspective when confronted with emotionally challenging situations [53,60,73].

Among cardiac, electromyographic, galvanic, and respiratory physiological signals,
there is no obvious significance, but some evidence for spectral indices (LF/HF ratio). The
LF/HF ratio measures the autonomic nervous system (ANS) activity derived from heart
rate variability (HRV) analysis. The ANS has two main branches: the sympathetic nervous
system (SNS) and the parasympathetic nervous system (PNS). The LF/HF ratio reflects the
balance between sympathetic and parasympathetic activities.

Individuals with lower mental flexibility exhibited higher LF/HF ratio, indicating a
higher sympathetic dominance in their autonomic nervous system. The connection between
Mental Flexibility and LF/HF ratio suggests that the ability to adapt and shift cognitive
strategies is linked to autonomic nervous system regulation. Higher mental flexibility
may be associated with a more efficient and adaptive response to stress, promoting better
emotional regulation and overall well-being. This finding, also confirmed by nonlinear
analyses later, is novel compared with all other studies on Affective Flexibility: no previous
study had considered long-term cardiac indices such as spectral ones.

To highlight the significant evidence uncovered by the linear model, we employed
multilayer non-linear models, such as Supervised Machine Learning. The rationale behind
this decision is that the neuropsychological and physiological components of flexibility
may have complex interactions, and these interactions can be better explored through
a comprehensive and multivariate approach such as ML, as suggested by Uddin et al.
2021 [10]. Traditional linear models may struggle to capture such complex relationships
and might overcall nonlinear associations. It can identify nonlinear and interactive effects,
providing a more nuanced understanding of how cognitive and affective processes jointly
influence flexibility. This flexibility in model representation is precious in the context of
complex human behavior, where linear assumptions may not fully capture the intricacies
of cognitive and affective interactions. Additionally, ML offers predictive capabilities,
enabling us to develop models that can accurately classify individuals based on their flexi-
bility profiles. This predictive power can be precise in clinical settings, where identifying
individuals at risk for cognitive or affective impairments could facilitate early intervention
and personalized treatment plans [75].

Hence, the second model proposed a non-linear approach, with supervised Machine
Learning (ML), including all neuropsychological measurements (those specific to Cogni-
tive Flexibility and all measures of affective and cognitive convergence). The ML model
replicates the considerable ERQ difference: the model included complete neuropsychology
testing and ERQ ranked first. Only three of the top 10 ranking indices directly evaluate
cognitive flexibility (TMTBA, MOCA, and ACE VS); the rest are concurrent measures of
affective states (AES, BDI, and AES), cognitive impairment (CIRS), and global cognitive
performance (CFI self). In our hypothesis, these results could depend on the nature of
the predicted variable, a self-reported measure of Cognitive Flexibility (CFI). In fact, the
literature shows that these self-report questionnaires measure the ability to adapt flexibly
by asking the subject to imitate everyday life situations [24,51]. The CFI would represent a
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more ecological measure of flexibility, managing to integrate affective elements, such as
Emotion Regulation, and more cognitive elements, such as Executive Functions. Regardless,
the model’s discriminative capabilities remained limited and uninformative.

This, however, cannot be stated for physiological measurements. We implemented
a third ML model, which considers all the physiological indices extracted from f-EMG,
BVP, RSP, and SCR as predictors. It has discrete discriminative capabilities, and the model
clearly improved by picking only the first 10 indices.

Prominent among the findings are primarily cardiac indices, i.e., temporal ones (Max
HR and NN50), as indicated by the literature [14], and spectral ones (LF, LF/HF ratio, and
VLF), as anticipated by the linear analysis. Overall, the ML model confirms the limited
evidence from the linear model: subjects with low mental flexibility appear to have higher
sympathetic nervous system activation in response to emotional stimuli, confirmed by
significantly higher maximum heart rate (Max HR). They seem more reactive to emotional
stimuli, maintaining higher levels of sympathetic activation throughout the experiment,
likely linked to emotional dysregulation, as suggested by significantly lower levels of
Reappraisal [26,61,76–79].

In terms of flexibility, RMS values also are novel findings. The root mean square
(RMS) is commonly used as a substitute for standard deviation when the input signal has
a zero mean, referring to the square root of the mean squared departure of a signal from
a baseline or fit. RMS implies a standard deviation or variability in the signal, which fits
nicely with the concept of flexibility defined in terms of adaptive variability. This variability
was described in terms of electromyographic (RMS EMG2/EMG1) and respiratory rate
(RMS RSP). Electromyographic activation is closely related to the valence of the emotional
images seen. In particular, the ratio of EMG2/EMG1 expresses greater activation for
zygomatic facial motion than for corrugator facial motion. Greater variability in activation
of the two facial movements could aid in discriminating between High and Low Flexibility.
Respiration rate, expressed both as mean and RMS, is one of the most important indices in
the ranking.

The last Machine Learning (ML) model only considers the top two of ten ranking
indicators (Max HR and RMS RSP), and it has the highest discriminatory ability between
high and low flexibility. Max HR [beats/min] and RMS respiration rate shed light on
how physiological parameters could interact and discriminate between High and Low
Flexibility: the variability of those with lower levels of flexibility is connected to the presence
of polarization at the upper and lower extremes, as the decision tree and scatterplot show
(Figures 5 and 6). On the other hand, those with high flexibility have scores that are
distributed evenly on average. Those with low cognitive flexibility have extreme values
in the high and low ranges, deceptively creating greater data dispersion. This may help
to explain earlier research results showing higher cardiac variability in people with lower
cognitive flexibility. As the scores of persons with low Flexibility are bipolar at the extremes,
short-term markers such as Max HR and RMSSD will likely show variability. On the other
hand, spectral indices are less impacted because they steal more time.

In conclusion, our findings suggest that physiological measures demonstrate superior
discriminative capabilities between high and low flexibility compared to neuropsycho-
logical tests, highlighting the importance of considering comprehensive bio-physiological
markers to understand better the complexities of flexibility in the context of cognitive and
affective processes.

One possible explanation for the superior discriminative capabilities of physiological
measures is their ability to capture real-time responses to emotional and cognitive stimuli.
Physiological indices, such as heart rate variability and electromyographic activation,
directly reflect the autonomic nervous system’s dynamic changes in response to emotional
experiences and cognitive demands. In contrast, traditional neuropsychological tests
primarily assess cognitive abilities in controlled settings, which may only partially capture
the complex and adaptive nature of flexibility in real-life scenarios.
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Moreover, physiological measures offer a more holistic representation of an individ-
ual’s emotional and cognitive reactivity, as they integrate both cognitive and affective
aspects of flexibility. For instance, heart rate variability can reflect the interplay between
cognitive appraisal and emotional regulation during adaptive responses to challenges. This
comprehensive approach allows physiological measures to capture the interwoven com-
plexities of flexibility, providing a more accurate and nuanced depiction of an individual’s
flexibility profile.

Furthermore, physiological measures offer the advantage of being less susceptible
to conscious control or cognitive biases that can influence self-report measures used in
traditional neuropsychological assessments. As a result, physiological indices may provide
a more objective and reliable assessment of an individual’s cognitive-affective responses,
enhancing their capacity to distinguish between high and low flexibility.

Despite the enhanced discriminative capabilities of physiological measures, it remains
crucial to consider and integrate both physiological and neuropsychological assessments
in the comprehensive evaluation of flexibility, as they collectively provide a more compre-
hensive and multidimensional understanding of the cognitive-affective aspects underlying
this complex construct.

We hypothesize that considering the numerous behavioral and physiological markers
in a complex non-linear model has allowed relationships that otherwise would not have
occurred.

5. Conclusions

Mental flexibility, with its cognitive-affective and physiological biomarkers, is a com-
plex and multifaceted construct. Studying its components in healthy aging enables a better
understanding of how they work and interact, as a signal of successful aging [59].

Our findings highlight how just two physiological parameters, cardiac variability
(Max HR) and RMS Respiration Rate, can discriminate between high and low flexibility.
In general, physiological measurements are more discriminating and predictive than the
neuropsychological test batteries usually used. Affective flexibility, on the other hand,
measured continuously through physiological measures taken during stimulus display,
is a sound methodology of analysis that captures the full range of changes in behavioral-
physiological typical of flexibility.

This study shows that nonlinear multivariate models can disclose the complicated
relationship between cognitive and emotional flexibility and physiological data. Future
studies could use Virtual Reality (VR) or 360◦ videos to test cognitive and affective flexibility
jointly [80]. Both could allow ecological flexibility studies by placing participants in real-life
scenarios where they must make behavioral, relational, and decision-making judgments.
VR or 360◦ environments can elicit cognitive and affective responses, providing valuable
insights into how individuals adapt and shift cognitive strategies in dynamic and complex
ecological settings, which are similar to the equivalent real ones. Furthermore, they enable
controlled manipulation of stimuli and scenarios, facilitating systematic investigations of
flexibility under various conditions. One potential concern about VR is the cybersickness
or discomfort experienced by participants, which may impact cognitive performance and
emotional responses. Instead, for 360◦ videos the quality and realism of the videos vary,
potentially impacting participant engagement and response validity. Using either tool
depends on the choice of scenarios, whether the participant can interact or only observe,
budget considerations, and the desired level of realism to be achieved.

Finally, both would enable us to investigate flexibility in its two components continu-
ously integrate rather than splitting them into mechanisms or sub-mechanisms.

6. Limitations

The study investigated biopsychological markers of cognitive-affective flexibility in
healthy aging using a sample of 35 participants aged 62–82 years, with a gender imbalance,
as approximately 77% were female. However, this gender unbalance reflects the national
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demographic trend of healthy ageing population, showing a higher number of females than
males (the percentage of female vs. male is 63% to 37%). One potential limitation could be
gender distribution, which may impact the generalizability of the findings. A more balanced
sample should be considered in further studies. Another limitation was the absence of a
control group, such as socially inactive individuals or those with neurological conditions,
to compare flexibility biomarkers between different populations. Therefore, future studies
could consider this group comparison. However, our study minimizes this lack, with
more than 100 variables per subject, including neuropsychological tests and physiological
measures, ensuring high representativeness of intrasubject and between-subject variability.
Although the cross-sectional design provided a snapshot of flexibility at a specific time, a
longitudinal approach could be beneficial for understanding its developmental trajectory.
Therefore, a further step could take into consideration longitudinal analysis on the same
healthy elderly group, to trace flexibility changes (neuropsychological and physiological)
over the time.

Additionally, the study adopted COVID-related images as emotional stimuli, which
are very specific to the period in which the study was conducted; thus, this study could
be replicated with images reporting a broader range of emotional contents. Despite these
limitations, the study offered key and novel insights into cognitive-affective flexibility in
healthy aging and suggested directions for future investigations.
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