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Abstract
Discrete random probability measures are a key ingredient of Bayesian nonpara-
metric inference. A sample generates ties with positive probability and a fundamen-
tal object of both theoretical and applied interest is the corresponding number of 
distinct values. The growth rate can be determined from the rate of decay of the 
small frequencies implying that, when the decreasingly ordered frequencies admit 
a tractable form, the asymptotics of the number of distinct values can be conveni-
ently assessed. We focus on the geometric stick-breaking process and we investigate 
the effect of the distribution for the success probability on the asymptotic behav-
ior of the number of distinct values. A whole range of logarithmic behaviors are 
obtained by appropriately tuning the prior. A two-term expansion is also derived 
and illustrated in a comparison with a larger family of discrete random probability 
measures having an additional parameter given by the scale of the negative binomial 
distribution.

Keywords  Bayesian nonparametrics · Random probability measure · Geometric 
stick-breaking process · Asymptotic growth rate · Occupancy problem

1  Introduction

Discrete random probability measures can be represented by random frequencies at 
random locations as
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The frequencies (wj)j≥1 are (0,  1)-valued variables such that 
∑

j≥1 wj = 1 almost 
surely (a.s.), and the locations (xj)j≥1 are draws from some distribution on a Polish 
space � endowed with the corresponding Borel �-field. Discrete measures like p̃ are 
naturally suited to describe the structure a population made of potentially infinite 
different species or types, labeled by xj , with certain random proportions modeled 
through wj . Clearly, a sample drawn from p̃ will exhibit ties with positive probability 
and thus the random number of distinct values in a sample of size n, here denoted 
by Kn , is of great interest. From a Bayesian nonparametric perspective the law of p̃ 
represents the prior distribution. Inference is carried out by predicting the number 
of new distinct values in an additional sample, conditional on an observed sample. 
See Lijoi et al. (2007b). According to the applied context at issue the distinct values 
or species are interpreted as distinct genes (Lijoi et al. 2007a), words (Teh 2006), 
economic agents (Lijoi et al. 2016), etc. Another important statistical use of discrete 
random probality measures is in mixture modeling, when a layer is added to model 
the data distribution as in

for some probability kernel f(y|x). Here p̃ acts as mixing distribution and Kn repre-
sents the random number of mixture components, thus providing a flexible way to 
model unobserved heterogeneity in the population. The mixture is characterized by 
the component distribution f (y|xj) , usually referred as the jth mixture component, 
and the mixing weights wj . See De Blasi et  al. (2015) for a recent review on the 
inferential implications of different choices of p̃.

In probability theory, distributional properties of Kn are of prime interest in com-
binatorial stochastic processes; see e.g., Arratia et al. (2003), Pitman (2006), Gnedin 
(2010), Gnedin et al. (2007). The techniques employed to study the law of Kn depend 
on the construction of the random frequencies (wj) . Karlin (1967) studied the case of 
fixed frequencies and derived a key result, which forms the basis to establish gen-
eral strong laws for Kn : it states that the growth of Kn is ultimately determined by 
how small the small frequencies are, which can be conveniently expressed by the 
tail behavior of (wj) once decreasingly ordered. In particular, the faster the decay 
to zero, the slower Kn diverges to infinity as n increases. There exist essentially two 
regimes, logarithmic and polynomial growth. Notable examples are, respectively, 
the Dirichlet process (Ferguson 1973) and its two parameter extension known as 
Pitman–Yor process (Pitman and Yor 1997). The associated distributions of the 
frequencies in decreasing order, termed Poisson–Dirichlet and the two-parameter 
Poisson–Dirichlet, respectively, are not tractable enough for a direct application of 
Karlin’s theory. Instead, the distribution of Kn is derived from the Ewens and the Pit-
man–Ewens sampling formulae, cf. Pitman (2006). In the former case Kn is asymp-
totically normal, with both mean and variance of the order log n . In the latter case 
the scale of Kn is n� , where � ∈ (0, 1) is the discount parameter of the Pitman–Yor 
process. The logarithmic growth of the Dirichlet process was first pointed out in 

(1)p̃(dx) =
∑

j≥1
wj𝛿xj(dx).

Yi ∼ f (Yi|Xi), X1,X2,… |p̃ iid
∼ p̃
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Korwar and Hollander (1973). Within the logarithmic regime growth behaviors of 
Kn slower than the logarithm, e.g. (log n)� with 𝛼 < 1 or even iterated logarithms, 
can be achieved with so-called hierarchical processes (Camerlenghi et al. 2019); see 
also Argiento et al. (2020); Bassetti et al. (2020). In this paper we are able to iden-
tify models leading to growth rates of the type (log n)� with 𝛽 > 1 , specifically we 
establish a growth rate (log n)m+2 , for m a nonnegative integer, for a class of tractable 
class of discrete random probability measures. We stress that from a modeling per-
spective it is crucial to have tractable models, which cover the whole range of pos-
sible growth rates. See Lijoi et al. (2007c), De Blasi et al. (2015), Dahl et al. (2017), 
Caron and Fox (2017), Ayed et al. (2019), Di Benedetto et al. (2020) for motivation 
and discussion of these issues in diverse application contexts also beyond exchange-
ability. Note that a power logarithmic growth of E(Kn) can be obtained by means of 
a Dirichlet prior with a somehow artificial sample size-dependent specification of 
the total mass parameter; in particular, one needs the total mass parameter to grow 
with n, which leads to an increasingly informative prior as more data become avail-
able, an unnatural scenario.

The asymptotic evaluation Kn , together with its limiting distribution, has been 
also object of extensive research in the context of regenerative composition struc-
tures; see Gnedin (2010) for a survey. In this setting the frequencies (wj) are con-
structed from the range of a multiplicative subordinator, that is from the exponen-
tial transform 1 − exp{S(t)} of a subordinator S(t). The logarithmic and polynomial 
regimes can be recovered from Karlin’s theory according to the variation at zero 
of the right tail of the Lévy measure of S(t). The log n regime corresponds to finite 
Lévy measures, that is when S(t) is a compound Poisson process. In this case, the 
frequencies (wj) can be conveniently defined in terms of a stick-breaking procedure, 
or residual allocation scheme, with

for (W
�
)
�≥1 independent and identically distributed (iid) (0, 1)-valued random vari-

ables with distribution determined by the Lévy measure. Exploiting the renewal 
representation of the composition structure, aymptotics for the moments of Kn and 
a central limit theorem can be derived; cf. Gnedin (2004), Gnedin et  al. (2009). 
Gnedin et  al. (2006a) show that when the right tail of the Lévy measure is regu-
larly varying at zero with index −1 < 𝛼 < 0 , the scale of Kn is n� and the partition 
structure induced by the Pitman–Yor process can be recovered (Gnedin and Pitman 
2005). In contrast, when the right tail diverges at zero like a slowly varying function, 
e.g. for S(t) a gamma subordinator, a central limit theorem with mean of the order 
(log n)2 and variance of the order (log n)3 is obtained, cf. Gnedin et al. (2006b).

Discrete random probability measures with wj as in (2), not necessarily with 
identically distributed (W

�
)
�≥1 , have been proposed in Ishwaran and James (2001) 

as a Bayesian nonparametric model and termed stick-breaking priors. The Dir-
ichlet and the Pitman–Yor processes belong to this class, their distinctive prop-
erty being that the law of (wj)j≥1 is invariant under size-biased permutation. In 
this setting, the distribution of W1 is called the structural distribution of (wj) , and 
the limiting behavior of Kn in the Dirichlet and the Pitman–Yor process cases can 

(2)wj = Wj

∏
�<j(1 −W

�
)
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be also derived using Karlin’s theory from the variation at zero of the structural 
distribution; see Gnedin et al. (2007).

In this paper we further broaden the realm of application of the fundamen-
tal result of Karlin in order to derive a two-term expansion of the mean of Kn . 
The expansion relies on de Haan’s regular variation theory and requires a precise 
assessment of the tail behavior of (wj) together with a deconditioning argument, 
cf. Theorem 1. To illustrate the applicability of this technique, we consider the 
geometric stick-breaking process, first proposed in Fuentes-García et al. (2010), 
which gained quite some popularity in Bayesian applications (Mena et al. 2011; 
Gutiérrez et al. 2014; Hatjispyros et al. 2018). It is a discrete random probabil-
ity measure (1) with locations independent of the frequencies and, importantly, 
(wj)j≥1 naturally arranged in decreasing order, which facilitates the evaluation of 
the tail behavior of the sequence. Specifically the frequencies are of geometric 
type,

with p, the probability of success, random and endowed with a (prior) distribution 
�(p) on (0, 1). In Theorem 2 we derive a two-term expansion for a choice of �(p) , 
the key technical tool being the regular variation of fractional integrals. As antici-
pated, the leading term shows that the mean of Kn can covers the whole range of 
logarithmic behaviors (log n)m+2 , for m a nonnegative integer, upon setting �(p) as 
an exponential transform of the gamma distribution of shape parameter m. From a 
practical perspective this result widens the range of achievable asymptotic behav-
iors by means of tractable models and also allows a principled prior elicitation. To 
illustrate the importance of the second-order term in the expansion, we also con-
sider an extension of the geometric stick-breaking process, which has an additional 
parameter s corresponding to the scale of the negative binomial distribution. Such 
a construction reduces to the geometric stick-breaking process when s = 2 and was 
exploited by De Blasi et  al. (2020) within a mixture model, to which the present 
study provides further theoretical support. The frequencies (wj)j≥1 are still decreas-
ingly ordered and are available in closed form for any integer s ≥ 2 . The parameter 
s determines the tail behavior of (wj)j≥1 , the larger s the slower the decay to zero. In 
order to single out the effect of s on Kn , we set s = 3 and compare the asymptotic 
behavior of the mean of Kn with that of the geometric stick-breaking case, while 
keeping �(p) to be uniform. It turns out that Kn grows faster for s = 3 , as predicted 
by Karlin’s theory, the difference however emerging only in the second-order term 
of the expansion, cf. Proposition  2. We conjecture that similar conclusions apply 
also for s an integer larger than 3 and other prior specifications of �(p) , although we 
do not pursue it here. It would be of interest to investigate the asymptotics of higher 
order moments like the variance and whether a central limit theorem holds. These 
are left for future research.

Layout of the paper. In Sect. 2 we review Karlin’s theory and establish a gen-
eral two-term expansion of the mean of Kn . In Sect. 3 we introduce the geomet-
ric stick-breaking process and investigate the impact of the choice of prior �(p) 
on the asymptotic behavior of Kn . In Sect. 4 we deal with the negative binomial 

(3)wj = p(1 − p)j−1, j = 1, 2,…
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extension and apply the asymptotic expansion of Sect.  2 to show that the scale 
parameter s enters in the second order term. Some proofs are deferred to the 
Appendix.

Notation. Let F(x) be a positive nondecreasing function on ℝ with F(x) = 0 for 
x ≤ 0 and � ≥ 0 . The fractional integral of order � of F(x) is given by

We use f ∼ g for f∕g → 1 , the limit being clear from the context. When either f or g 
is random, the notation f ∼a.s. g means that the asymptotic relation holds with prob-
ability one. For x a real number, ⌊x⌋ is the integer part of x.

2 � Occupancy problem and regular variation

Let p̃ be a discrete random probability measure (1). Assume (wj)j≥1 and (xj)j≥1 
are independent with (xj)j≥1 independent and identically distributed form a non 
atomic distribution. Then p̃ is a species sampling model (Pitman 1995). The par-
tition induced by a sample from p̃ depends only on the random frequencies (wj)j≥1 
and can be studied in terms of a multinomial occupancy problem. The theory is 
well established and dates back to the seminal paper Karlin (1967). The main 
tools are a Poissonization argument and regular variation theory. We provide a 
concise overview taking the set-up from Gnedin et al. (2007).

The multinomial occupancy problem can be described as the experiment of 
throwing balls independently at a fixed infinite series of boxes, with probability 
wj of hitting the jth box. First consider the case of fixed, or non random, frequen-
cies. As n balls are thrown, their allocation is captured by the array Xn = (Xn,j)j≥1 
where Xn,j is the number of balls out of the first n that fall in box j. Kn , the number 
of occupied boxes, is then given by Kn =

∑
j≥1 �(Xn,j > 0) with mean

In general, it is difficult to work with E(Kn) since the indicators in Kn are not inde-
pendent. In the Poissonized version of the problem the balls are thrown in continu-
ous time at epochs of a unit rate Poisson process (P(t), t ≥ 0) , which is independent 
of (Xn, n = 1, 2,…) . The balls then fall in the boxes according to independent Pois-
son processes (Xj(t))t≥0 , at rate wj for box j. Hence K(t) ∶= KP(t) =

∑
j≥1 �(Xj(t) > 0) 

and

Encoding the frequencies into the counting measure �(dx) =
∑

j≥1 �wj
(dx) and inte-

grating by parts,

�F(x) =
1

� (� + 1) ∫
x

0

(x − t)�f (t)dt.

E(Kn) =
∑

j≥1
(1 − (1 − wj)

n).

�(t) ∶= E(K(t)) =
∑

j≥1(1 − e−twj ).
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where �⃗𝜈(x) = 𝜈([x, 1)), the right tail of � , represents the number of frequencies wj not 
smaller than x. �(t) provides an approximation of E(Kn) for n large according to

cf. Gnedin et al. (2007, Lemma 1). The convenience of working with �(t) is that, 
being �(t) the Laplace–Stieltjes transform of �⃗𝜈(x) , its behavior as t → ∞ is deter-
mined by the behavior of �⃗𝜈(x) as x → 0 by an application of the Tauberian theorem; 
see Bingham et al. (1987) for a full account on Abel-Tauberian theorems for Laplace 
transforms. Hence, ultimately, by regular variation theory the growth of E(Kn) , as 
n → ∞ , is determined by the behavior of �⃗𝜈(x) at zero. In the case of random frequen-
cies, the same result holds with the counting measure �(dx) being replaced by its 
mean measure, and correspondingly adapting the meaning of �⃗𝜈(x) . See Gnedin et al. 
(2007, Section 7, Page 162) and Section 3 for an illustration.

Here we work under the hypothesis that �⃗𝜈(x) is slowly varying at zero, that is 
limx→0 �⃗𝜈(𝜆x)∕ �⃗𝜈(x) = 1 for all 𝜆 > 0 . According to Bingham et al. (1987, Theorems 
1.7.1’ and 1.7.6) [see also Gnedin et al. (2007, Proposition 19)], 𝛷(1∕x) ∼ �⃗𝜈(x) as 
x → 0 , so that via (4)

cf. Karlin (1967,  Theorem  1’). In Theorem  1 we derive a two term expansion of 
E(Kn) under the hypothesis that �⃗𝜈(x) is a de Haan slowly varying function at zero, 
that is for a constant c and a slowly varying function �(x) at zero, called the auxiliary 
function of �⃗𝜈(x),

Theorem 1  If �(x) is slowly varying at zero and c ≥ 0 satisfy (5) for all 𝜆 > 0 , then

where � is the Euler-Mascheroni constant.

The proof consists in an adaptation to the present setting of Bingham et  al. 
(1987,  Theorem  3.9.1) for the study of the remainder of Tauberian theorem, 
𝛷(1∕x) − �⃗𝜈(x) , as x → 0 , combined with an application of (4). The proof is 
reported in the Appendix. In order to apply this result, one needs to establish the 
variation of �⃗𝜈(x) at 0, so some explicit or at least tractable form of �⃗𝜈(x) is in order. 
In the next two sections we apply the asymptotic expansion of Theorem 1 to spe-
cies sampling priors that features stochastically decreasing frequencies for which 
�⃗𝜈(x) is tractable enough.

𝛷(t) = ∫
1

0

(1 − e−tx)𝜈(dx) = t ∫
1

0

e−tx �⃗𝜈(x)dx,

(4)|E(Kn) −�(n)| ≤ 2

n
�(n) → 0

E(Kn) ∼ �⃗𝜈
(
1

n
) as n → ∞,

(5)
�⃗𝜈(𝜆x) − �⃗𝜈(x)

�(x)
→ c log 𝜆, as x → 0.

E(Kn) = �⃗𝜈(1∕n) − c𝛾�(1∕n) + o(�(1∕n)), as n → ∞
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3 � Geometric stick‑breaking process

The geometric stick breaking process is a species sampling model with random fre-
quencies (wj)j≥1 of geometric type,

with random success probability p. The number of frequencies wj not smaller than x, 
max{j ∶ p(1 − p)j−1 ≥ x} , can be explicitly found as the solution in j to the equation 
p(1 − p)j−1 = x . By direct calculation

where the notation �⃗𝜈(x, p) makes the dependence on p explicit. The case of fixed p 
provides an illustration of Theorem 1.

Example 1  Let Kn be the number of distinct values among n iid draws from 
the geometric distribution with success probability p. Accurate formulae for 
the mean and the variance of Kn are given in Archibald et  al. (2006). Since 
�⃗𝜈(x, p) ∼ log x∕ log(1 − p) as x → 0 , �⃗𝜈(x, p) is a de Haan slowly varying function 
with auxiliary function �(x) = 1 and c = 1∕ log(1 − p) , cf. (5). Hence Theorem  1 
yields

in accordance with the expansion of Archibald et al. (2006, Theorem 1).

Now return to the random case with �(p) on (0, 1) denoting the (prior) distribution 
of the success probability p in (3). The results about the expected value of Kn now hold 
with �(dx) being the mean measure of the counting measure 

∑
j≥1 �wj

 and �⃗𝜈(x) obtained 
by averaging the number of frequencies wj not smaller than x with respect to �(p):

In the sequel it is convenient to work with

since m(x) ≤ �⃗𝜈(x) ≤ m(x) + 1 . The variation of �⃗𝜈(x) in zero can then be studied in 
terms of m(x). By the change of variable t = log 1∕p,

wj = p(1 − p)j−1, j = 1, 2,…

�⃗𝜈(x, p) =

⌊
log(x∕p)

log(1 − p)
+ 1

⌋
�(p≥x),

E(Kn) =

⌊
log(np)

| log(1 − p)| + 1

⌋
+

�

| log(1 − p)| + o(1) as n → ∞,

�⃗𝜈(x) = ∫
1

0

�⃗𝜈(x, p)𝜋(p)dp.

m(x) = ∫
1

x

log x − log p

log(1 − p)
�(p)dp,

(6)m(x) = ∫
log 1∕x

0

(
log

1

x
− t

)
�(e−t)f (t)dt, f (t) =

e−t

− log(1 − e−t)
.
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Properties of f (t) in (6) are collected in Lemma 1, whose proof is deferred to the 
Appendix.

Lemma 1  The function f (t) defined in (6) is nondecreasing on ℝ+ with 
limt→0 f (t) = 0 , limt→∞ f (t) = 1 and 1 − f (t) ∼ e−t∕2 as t → ∞ . Moreover 
∫ ∞

0
(1 − f (t))dt = � , with � = −� �(1) − ∫ ∞

0
(log x)e−xdx the Euler-Mascheroni 

constant.

The variation at zero of m(x) is determined by f (t) and the success probability 
distribution �(p) . First consider p uniformly distributed on the unit interval.

Proposition 1  Let p in (3) be uniformly distributed on (0, 1). Then

Proof  For �(p) = �(0,1)(p) , m(x) in (6) is given by

where F(t) = ∫ t

0
f (s)ds and 1F(x) = ∫ x

0
(x − t)f (t)dt is the fractional integral of order 

one of F. To prove the first statement, it is sufficient to prove it for m(x) in place of 
�⃗𝜈(x) . Integrating by parts, 1F(x) = ∫ x

0
F(t)dt . Hence, since log 1∕x → ∞ as x → 0 , 

we derive an asymptotic expansion of F(x) as x → ∞ . According to Lemma 1, f (x) 
is a distribution function on ℝ+ . Moreover, given 1 − f (t) ∼ e−t∕2 as t → ∞ , the dis-
tribution function f (x) has moments of any order and, in particular, the first moment 
is equal to the Euler-Mascheroni constant � . Then, F(x) is regularly varying at infin-
ity with exponent � = 1 and, as x → ∞,

Computing ∫ x

0
F(t)dt with the asymptotic expansion F(x) ∼ x − � + O(e−x) leads to

Substituting x for log 1∕x yields the first statement. In view of the application of 
Theorem 1, note that, as x → 0,

�⃗𝜈(x) =
1

2

(
log 1∕x

)2
− 𝛾 log 1∕x + O(1), x → 0

E(Kn) =
1

2
(log n)2 + o(log n), n → ∞.

m(x) = ∫
log 1∕x

0

(log 1∕x − t)f (t)dt = 1F(log 1∕x),

(7)F(x) = x − ∫
x

0

(1 − f (t))dt = x − � + ∫
∞

x

(1 − f (t))dt = x − � + O(e−x).

1F(x) = ∫
x

0

F(t)dt =
(x − �)2

2
+ O(1), x → ∞.

m(�x) − m(x) =
1

2

(
(log(�x))2 − (log x)2

)
+ �

(
log(�x) − log x) + O(1)

=
1

2

(
(log x)2 + 2 log � log x − (log x)2

)
+ O(1) = log � log x + O(1)
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so that, as x → 0 , (m(�x) − m(x))∕ log x → log � . Hence �⃗𝜈(x) is a de Haan slowly 
varying function at zero with auxiliary function �(x) = log x and c = 1 , cf. (5). An 
application of Theorem 1 yields the second statement. 	�  ◻

Remark 1  Using only the leading term of the expansion of m(x) in the application 
of Theorem 1, we would get the second-order term in the asymptotic expansion of 
E(Kn) wrong, i.e., differing by � log n . Hence, in this case, an application of Kara-
mata’s Theorem to the evaluation of ∫ x

0
(x − t)f (t)dt would be not precise enough, as 

the latter would yield ∫ x

0
(x − t)f (t)dt ∼

1

2
xF(x) and, in turn, m(x) ∼ 1

2
(log

1

x
)2.

Next we tackle the case of the success probability distribution �(p) chosen such 
that the integrand in (6) behaves like tmf (t) for m a positive integer. This is obtained 
by setting p = e−X for X ∼ ga(m + 1, 1) , a gamma distributed random variable with 
shape m + 1 and unit rate. Note m = 0 yields the uniform distribution considered in 
Proposition 1. As detailed in Theorem 2 below, this choice makes E(Kn) grow as a 
power of log n with exponent determined by m. Before that, we first provide an illus-
tration of how the arguments used in Proposition 1 can be adapted to the case m = 1 , 
paving the way for the techniques used in the general case.

Example 2  By direct calculation, the density function of p
d
=e−X , for X ∼ ga(2, 1) , is 

�(p) = − log p . Then m(x) in (6) is given by

where the second equality follows by integration by parts. We first derive an asymp-
totic expansion for ∫ x

0
tf (t)dt as x → ∞ . Since

using the asymptotic expansion F(x) = x − � + O(e−x) in (7) we find

so that

and, in turn,

We look now for the auxiliary function �(x) of the slowly varying function m(x). We 
have

m(x) = ∫
log 1∕x

0

(log 1∕x − t)tf (t)dt = ∫
log 1∕x

0 ∫
t

0

sf (s)ds dt,

∫
x

0

tf (t)dt = xF(x) − ∫
x

0

F(t)dt = xF(x) − 1F(x)

∫
x

0

tf (t)dt = x(x − �) + O(xe−x) −
(x − �)2

2
+ O(1) =

x2

2
+ O(1)

∫
x

0 ∫
t

0

sf (s)ds dt = ∫
x

0

(
t2

2
+ O(1)

)
dx =

x3

6
+ O(x)

m(x) =
1

6

(
log

1

x

)3

+ O(log x).
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so that, as x → 0

Hence, the auxiliary function of �⃗𝜈(x) is found to be �(x) = (log x)2 with c = −
1

2
 , cf. 

(5). Note that, because of the cancellation of the (log 1∕x)2 term in the expansion 
of m(x) for x → ∞ , the derivation of �(x) only requires the leading term of m(x). 
The latter can be alternatively obtained by using regular variation theory. Since 
∫ x

0
tf (t)dt is regularly varying at infinity with index 2, Karamata’s theorem yields 

∫ x

0
(x − t)tf (t)dt

/
x ∫ x

0
tf (t)dt →

1

3
 as x → ∞ . A second application of Karamata’s 

Theorem yields ∫ x

0
tf (t)dt

/
x2f (x) →

1

2
 to conclude that, as x → ∞,

Since f (x) → 1 as x → ∞ , we get m(x) ∼ 1

6
(log 1∕x)3 . Finally, by applying Theo-

rem 1 we conclude that

It is worth stressing that �(p) = − log p yields E(p) = 1∕4 , i.e., a mass shift to lower 
values of p compared to �(p) = 1 . This, according to �⃗𝜈(x, p) ∼ log x∕ log(1 − p) , 
favors larger values of E(Kn|p) , which explain a faster growth of E(Kn).

The asymptotic expansion of E(Kn) , for m any positive integer, is derived in the 
following theorem. The key ingredient consists in expressing ∫ x

0
tmf (t)dt in terms 

of fractional integrals of F(x).

Theorem  2  Let p in (3) have distribution �(p) defined by p
d
=e−X with 

X ∼ ga(m + 1, 1) and m a positive integer. Then

Proof  Since �(p) = (− log p)m∕m! , m(x) in (6) becomes

6
(
m(�x) − m(x)

)
= −(log x + log �)3 + (log x)3 + O(log x)

= −3 log �(log x)2 + O(log x)

m(�x) − m(x)

(log x)2
→ −

1

2
log �.

∫ x

0
(x − t)tf (t)dt

x3f (x)
→

1

2

1

3
=

1

6
.

E(Kn) =
1

6
(log n)3 +

1

2
�(log n)2 + o(log2 n).

�⃗𝜈(x) =
(log 1∕x)m+2

(m + 2)!
+ O

(
(log x)m), x → 0

E(Kn) =
(log n)m+2

(m + 2)!
+ 𝛾

(log n)m+1

(m + 1)!
+ o((log n)m+1), n → ∞.

(8)m(x) = ∫
log 1∕x

0

(log 1∕x − t)
tm

m!
f (t)dt = ∫

log 1∕x

0 ∫
t

0

sm

m!
f (s)ds dt,
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where the second equality follows again by integration by parts. Recall that, for an 
integer-valued index, fractional integrals correspond to “ higher order ” primitives 
of f (x) : F(x) = 0F(x) , 1F(x) = ∫ x

0
F(t)dt and

By repeated integration by parts the inner integral in (8) is found to be

Next, we exploit the asymptotic evaluation (7), F(x) = x − � + O(e−x) as x → ∞ , to 
find

We get

As for the xm+1-term we obtain

where in the last step we used

A similar application of the binomial formula shows that the xm-term is zero, namely

(k+1)F(x) = ∫
x

0

(x − t)d kF(t) = ∫
x

0
kF(t)dt, k = 1, 2,…

∫
x

0

tm

m!
f (t)dt =

m∑

k=0

(−1)k

(m − k)!
xm−kkF(x).

1F(x) =
(x − �)2

2
+ O(1) =

x2 − 2�x

2
+ O(1)

2F(x) =
(x − �)3

3!
+ O(x) =

x3 − 3�x2

3!
+ O(x)

kF(x) =
(x − �)k+1

(k + 1)!
+ O(xk−1) =

xk+1 − (k + 1)�xk

(k + 1)!
+ O(xk−1).

∫
x

0

tm

m!
f (t)dt =

m∑

k=0

(−1)k

(m − k)!
xm−k

(
xk+1 − (k + 1)�xk

(k + 1)!
+ O(xk−1)

)

= xm+1
m∑

k=0

(−1)k

(m − k)!(k + 1)!
+ �xm

m∑

k=0

(−1)k+1

(m − k)!k!
+ O(xm−1).

m∑

k=0

(−1)k

(m − k)!(k + 1)!
=

m+1∑

k=1

(−1)k−1

(m + 1 − k)!(k)!
=

1

(m + 1)!

m+1∑

k=1

(
m + 1

k

)
(−1)k−1

= −
1

(m + 1)!

(
m+1∑

k=0

(
m + 1

k

)
(−1)k − 1

)
=

1

(m + 1)!
,

m+1∑

k=0

(
m + 1

k

)
(−1)k =

m+1∑

k=0

(
m + 1

k

)
(−1)k(+1)m+1−k = (−1 + 1)m+1 = 0.
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Hence, we have

which yields

to conclude that, as x → 0,

In view of m(x) ≤ �⃗𝜈(x) ≤ m(x) + 1 , the first statement is proved. We now proceed to 
derive the auxiliary function �(x) of m(x) and, in turn, of �⃗𝜈(x) . We have

so that, as x → 0,

So we find �(x) = (log(x))m+1 and c = (−1)m+2∕(m + 1)! in (5). Note that

Finally, an application of Theorem 1 yields the second statement. 	�  ◻

Remark 2  The phenomenon observed in Example 2 for m = 1 , namely the cancella-
tion of the term (log 1∕x)2 in the expansion of m(x), applies to any m ≥ 1 meaning 
that the term (log 1∕x)m+1 cancels out. Since the auxiliary function �(x) is found to 
be of the order (log 1∕x)m+1 , we conclude that for any m ≥ 1 the leading term in the 
expansion of m(x) is sufficient for the derivation of the second-order term in the 
expansion of E(Kn) according to Theorem 1. As observed in Example 2, a double 
application of Karamata’s Theorem yields the leading term of m(x) as it yields, for 
x → ∞,

m∑

k=0

(−1)k+1

(m − k)!k!
= −

m∑

k=0

(−1)k

(m − k)!k!
= −

1

m!
(−1 + 1)m = 0.

∫
x

0

tm

m!
f (t)dt =

xm+1

(m + 1)!
+ O(xm−1),

∫
x

0 ∫
t

0

sm

m!
f (s)ds dt = ∫

x

0

(
tm+1

(m + 1)!
+ O(tm−1)

)
dt =

xm+2

(m + 2)!
+ O(xm)

m(x) =
(log 1∕x)m+2

(m + 2)!
+ O

(
(log x)m

)
.

(m + 2)!
(
m(�x) − m(x)

)
= (− log(�x))m+2 − (− log x)m+2 + O

(
(log x)m

)

= (−1)m+2
(
(log x + log �)m+2 − (log x)m+2

)
+ O

(
(log x)m

)

= (−1)m+2(m + 2) log �(log x)m+1 + O
(
(log x)m

)

m(�x) − m(x)

(log x)m+1
→

(−1)m+2

(m + 1)!
log �.

c�(1∕n) =
(−1)m+2

(m + 1)!
(− log n)m+1 =

(−1)m+2+m+1

(m + 1)!
(log n)m+1 = −

(log n)m+1

(m + 1)!
.
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These calculations can be easily extended to the case of p
d
=e−X for X ∼ ga(1 + �, 1) 

with 𝜌 > −1 . Since �(e−t)f (t) is regularly varying at infinity with index 𝜌 + 1 > 0,

so we obtain

However, a more accurate approximation of ∫ x

0
(x − t)�(e−t)f (t)dt is necessary in 

order to apply Theorem  1 and obtain the second-order term in the expansion of 
E(Kn).

4 � Negative binomial extension

In the following we use the notation wj(p) for the jth frequency as a function of the 
parameter p. Recall that the asymptotic behavior of E(Kn) depends on the behavior 
at zero of the tail mean measure �⃗𝜈(x) = ∫ 1

0
�⃗𝜈(x, p)𝜋(p)dp, where �(p) is the success 

probability distribution, and �⃗𝜈(x, p) = #{j ∶ wj(p) ≥ x} is the number of frequen-
cies larger than a threshold x ∈ [0, 1] . When the frequencies wj(p) are decreasing, 
�⃗𝜈(x, p) = sup{j ∶ wj(p) ≥ x} , that is �⃗𝜈(x, p) is obtained in terms of the inverse of wj(p) 
with respect to j. In the case of geometric frequencies the inverse is explicitly found 
to be log(x∕p)∕ log(1 − p) + 1 , thus we have �⃗𝜈(x, p) = ⌊log(x∕p)∕ log(1 − p) + 1⌋ for 
p ≥ x or, equivalently, for w1(p) ≥ x . In Section 3, the behavior in zero of �⃗𝜈(x) was 
studied in terms of

based on the fact that m(x) ≤ �⃗𝜈(x) ≤ m(x) + 1.
In this section we consider a different model for wj(p) that can be seen as an 

extension of the geometric case. To this aim, we resort to a derivation of the geo-
metric weights wj(p) = p(1 − p)j−1 as a special case of a general construction of dis-
tributions on the positive integers with decreasing frequencies. Let �(r;p) be a prob-
ability function for r = 1, 2,… with parameter p ∈ (0, 1) . Then

∫ x

0
(x − t)tmf (t)dt

xm+2f (x)
→

1

m + 1

1

m + 2
.

∫ x

0
(x − t)�(e−t)f (t)dt

x�+2f (x)
→

1

� (� + 1)

1

� + 1

1

� + 2
=

1

� (� + 3)

E(Kn) ∼
1

� (� + 3)
(log n)�+2.

m(x) = �
1

0

log(x∕p)

log(1 − p)
�(w1(p)≥x)�(p)dp,

wj(p) =
∑

r≥j
�(r;p)

r
, j = 1, 2,… ,
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form a decreasing sequence, wj(p) > wj+1(p) , of positive numbers summing up to 
one. As such, (wj(p))j≥1 defines a new distribution on the positive integers para-
metrized by p. An interesting instance of �(r;p) is given by

that is the negative binomial distribution shifted by one. The geometric frequencies 
are obtained by taking the scale parameter s = 2 . In fact

An explicit expression for wj(p) can be found for any integer s ≥ 2 . When s = 3 , dif-
ferentiating with respect to the geometric series one finds

to conclude that

Similar formulae are derived for s > 3 : one finds that wj(p) is proportional to the 
geometric probability p(1 − p)j−1 multiplied by a polynomial in (j, p) of order deter-
mined by s. Details are omitted. For instance, s = 4 yields

With a closed form expression of wj(p) , an asymptotic evaluation of �⃗𝜈(x, p) can be 
derived for x → 0 , and in turn, for �⃗𝜈(x) , so that the asymptotics of E(Kn) is obtained 
through Theorem 1. Let us restrict attention to s = 3 with wj(p) as in (9) and �(p) the 
uniform distribution. Our goal is to investigate the asymptotics of E(Kn) in compari-
son with the geometric case of Proposition 1. It is reasonable to expect that E(Kn) 
grows at a faster rate: in fact, the larger s, the larger the mean of the negative bino-
mial distribution �(r;s, p) , so wj(p) decrease slower in j for s = 3 compared to s = 2 , 
which corresponds to the geometric case. This implies that �⃗𝜈(x, p) grows slower as 
x → 0 for s = 3 and, in turn, via a Tauberian theorem E(Kn) grows faster as n → ∞ . 
In Proposition 2 we establish that the asymptotic behavior of E(Kn) differs from the 
one found in Proposition 1 only in the second order term of the expansion.

�(r;p) = �(r;s, p) =

(
r + s − 2

r − 1

)
ps(1 − p)r−1, r = 1, 2,…

wj(p) =
∑

r≥j
p2(1 − p)r−1 = p2(1 − p)j−1

∑

i≥1
(1 − p)i−1

= p2(1 − p)j−1
∑

i≥0
(1 − p)i = p(1 − p)j−1.

2(1 − p)

p3
wj(p) =

∑

r≥j
(r + 1)(1 − p)r = −

d

dp

∑

r≥j
(1 − p)r+1 = −

d

dp

(1 − p)j+1

p

=
(1 − p)j

p2

(
(j + 1)p + (1 − p)

)
=

(1 − p)j

p2

(
1 + jp

)

(9)wj(p) = p(1 − p)j−1
1 + jp

2
, j = 1, 2,…

wj(p) = p(1 − p)j−1
2 + 2jp + jp2 + j2p2

6
, j = 1, 2,…
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Proposition 2  Let wj(p) be defined as in (9) and p be uniformly distributed on (0, 1). 
Then

Proof  Let m(x, p) ≥ 0 be defined by

which corresponds to the solution in m to the equation wm+1(p) = x . Note that 
m(x, p) ≥ 0 when w1(p) ≥ x , �⃗𝜈(x, p) = ⌊m(x, p) + 1⌋�(w1(p)≥x) and, as in the geometric 
case, m(x) ≤ �⃗𝜈(x) ≤ m(x) + 1 for

Equation (11) provides an asymptotic expansion of m(x, p) as x → 0 . The proof is 
reported in the Appendix and involves the Lambert W function (Corless et al. 1996).

An heuristic derivation inspired by (Barndorff-Nielsen and Cox 1989,  Example 
3.13) is as follows. In equation (10), we have that for small x, m(x, p) will be large 
and the term p(1 − p)m(x,p) is thus dominant. Rewrite the equation after taking the 
log and keeping m(x, p) on the left hand side,

It defines a convergent iterative scheme via

with m(1)(x, p) solution to p(1 − p)m(x,p) = x , that is

�⃗𝜈(x) =
1

2

(
log

1

x

)2

+ log
1

x
log log

1

x
− 𝛾 log

1

x
− (1 + log 2) log

1

x

+ O
(
log log

1

x

)
, x → 0

E(Kn) =
1

2

(
log n

)2
+ log n log(log n) − (1 + log 2) log n + o(log n), n → ∞.

(10)p(1 − p)m(x,p)
1

2

(
1 + p + pm(x, p)

)
= x,

m(x) = �
1

0

m(x, p)�(w1(p)≥x)dp.

(11)

m(x, p) =
log x∕p

log(1 − p)

−
1

log(1 − p)
log

(
1

2

(
1 + p + p

log x∕p

log(1 − p)
+

p

log(1 − p)
log

−2 log(1 − p)

p

))

+
1

log(1 − p)
O

(
log(log 1∕x)

log 1∕x

)
.

m(x, p) =
log x∕p

log(1 − p)
−

1

log(1 − p)
log

(
1

2

(
1 + p + pm(x, p)

))
.

m(k)(x, p) =
log x∕p

log(1 − p)
−

1

log(1 − p)
log

(
1

2

(
1 + p + pm(k−1)(x, p)

))
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For k = 2 we get

which nearly matches the expansion in (11). Now we use it to evaluate the behavior 
of m(x) and, in turn, �⃗𝜈(x) as x → 0 . Note that

where x̃ is defined by w1(x̃) = x , that is x̃(1 + x̃)∕2 = x . It is easy to check that 
x ≤ x̃ ≤ 2x for any x and x̃ ∼ 2x as x → 0 . In order to exploit the derivation of the 
asymptotic expansion of m(x) as x → 0+ in the geometric case, cf. proof of Proposi-
tion 1, we use (11) as follows:

From Proposition 1, as x → 0

The first statement of the thesis about the behavior of �⃗𝜈(x) as x → 0 is then implied 
by m(x) ≤ �⃗𝜈(x) ≤ m(x) + 1 and by showing that, as x → 0,

As for (12), the maximum of (log x∕p)∕ log(1 − p) is attained at p = p(x) , where 
p(x), the solution to the first-order equation in p −(1 − p) log(1 − p) + p log x∕p = 0 , 
goes to zero as x → 0 . It can be shown that that p(x) ≥ 2x for x ≤ 1∕4 , that is 
(log x∕p)∕ log(1 − p) is increasing for x ≤ p ≤ 2x and x sufficiently small. Since 
2x ≥ x̃,

so (12) follows. As for (13), note that by the change of variable t = log 1∕p,

m(1)(x, p) =
log x∕p

log(1 − p)
.

m(2)(x, p) =
log x∕p

log(1 − p)
−

1

log(1 − p)
log

(
1

2

(
1 + p + p

log x∕p

log(1 − p)

))
,

m(x) = �
1

0

m(x, p)�(w1(p)≥x)dp = �
1

x̃

m(x, p)dp,

m(x) = ∫
1

x

log x∕p

log(1 − p)
dp − ∫

x̃

x

log x∕p

log(1 − p)
dp + ∫

1

x̃

(
m(x, p) −

log x∕p

log(1 − p)

)
dp.

∫
1

x

log x∕p

log(1 − p)
dp =

1

2

(
log

1

x

)2

− � log
1

x
+ O(1).

(12)∫
x̃

x

log x∕p

log(1 − p)
dp = O(1)

(13)
∫

1

x̃

(
m(x, p) −

log x∕p

log(1 − p)

)
dp = log

1

x
log log

1

x
− (1 + log 2) log

1

x
+ O

(
log log

1

x

)
.

�
x̃

x

log x∕p

log(1 − p)
dp ≤ �

2x

x

log x∕p

log(1 − p)
dp ≤ x

log x∕(2x)

log(1 − 2x)
= −x log 2∕ log(1 − 2x) ≤ log 2∕2
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for f (t) in (6) and F(t) the primitive of f (t) . By equation (11), (7) and x̃ ∼ 2x as 
x → 0 , we have that, as x → 0,

In studying the asymptotic behavior of the integral in the last display, it is sufficient 
to focus on

since the extra terms inside the logarithm satisfy

for 0 ≤ p ≤ 1 . By the change of variable t = log 1∕p

for f (t) defined in (6). Hence, (13) is implied by

as x → ∞ . We have

The first term on the right hand side is log x(x − � + O(e−x)), as x → ∞ , due to the 
asymptotic expansion of F(x) in (7). The second term is easily shown to be bounded 
in absolute value uniformly in x. As for the third term, we are left to show that

∫
1

x̃

−
1

log(1 − p)
dp = ∫

log 1∕x̃

0

f (t)dt = F(log 1∕x̃),

∫
1

x̃

(
m(x, p) −

log x∕p

log(1 − p)

)
dp

= − log 2 log 1∕x + O(log(log 1∕x))

+ ∫
1

x̃

−
1

log(1 − p)
log

(
1 + p + p

log x∕p

log(1 − p)
+

p

log(1 − p)
log

−2 log(1 − p)

p

)
dp.

∫
1

x̃

−
1

log(1 − p)
log

(
1 + p

log x∕p

log(1 − p)

)
dp,

−2e−1 ≤ p +
p

log(1 − p)
log

−2 log(1 − p)

p
≤ 1

∫
1

x̃

−
1

log(1 − p)
log

(
1 + p

log x∕p

log(1 − p)

)
dp = ∫

log 1∕x̃

0

log
(
1 +

(
log 1∕x̃ − t

)
f (t)

)
f (t)dt,

(14)r(x) = ∫
x

0

log
(
1 +

(
x − t

)
f (t)

)
f (t)dt = x log(x) − x + O(log x),

r(x) = ∫
x

0

(
log x + log f (t) + log

1 +
(
x − t

)
f (t)

xf (t)

)
f (t)dt

= log(x)F(x) + ∫
x

0

f (t) log f (t)dt + ∫
x

0

log

(
1 +

1 − tf (t)

xf (t)

)
f (t)dt.

∫
x

0

log

(
1 +

1 − tf (t)

xf (t)

)
f (t)dt = −x + log x + O(1),
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as x → ∞ . To this aim, it is convenient to split the integral as

The first integral in (15) is bounded in x since

whereas the last integral is a positive and finite constant. As for the second integral 
in (15), since 1 − f (t) ∼ e−t∕2 for t → ∞ , cf. Lemma 1,

as x → ∞ and

by direct calculation. Hence (14), and in turn (13), follow. The proof of the first 
statement of the proposition is then complete. The second statement about the 
expansion of E(Kn) , as n → ∞ , follows from an application of Theorem 1. 	�  ◻

Appendix

Proof of Theorem 1

The proof follows arguments similar to those of Bingham et al. (1987, Theorem 3.9.1). 
It consists in evaluating 

(
𝛷(n) − �⃗𝜈(1∕n)

)
∕�(1∕n) in the decomposition

Indeed, as 𝛷(n) ∼ �⃗𝜈(1∕n) and �(1∕n) are slowly varying, 
|E(Kn) −�(n)| ≤ 2

n
�(n) = o(�(1∕n)) , cf. (4), so the conclusion follows by showing 

that 
(
𝛷(n) − �⃗𝜈(1∕n)

)
∕�(1∕n) → −c𝛾 . To this aim,

(15)∫
1

0

log

(
1 +

1 − tf (t)

xf (t)

)
f (t)dt + ∫

x

1

log

(
1 +

1 − tf (t)

xf (t)

)
f (t)dt.

�
1

0

log

(
1 +

1 − tf (t)

xf (t)

)
f (t)dt ≤ 1

x �
1

0

(
1 − tf (t)

)
dt,

∫
x

1

log

(
1 +

1 − tf (t)

xf (t)

)
f (t)dt ∼ ∫

x

1

log
(
1 +

1 − t

x

)
dt

∫
x

1

log
(
1 +

1 − t

x

)
dt = −x + log x + 1

E(Kn) = �⃗𝜈(1∕n) +
𝛷(n) − �⃗𝜈(1∕n)

�(1∕n)
�(1∕n) + E(Kn) −𝛷(n).
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where in taking the limit we used the dominated convergence theorem, cf. global 
bounds in Bingham et al. (1987, Theorem 3.8.6). 	�  ◻

Proof of Lemma 1

We will use the following integral representation of the Euler-Mascheroni constant:

By the change of variable t = − log(1 − e−x) so that dt = −
e−x

1−e−x
dx and 

x = − log(1 − e−t) , we obtain

It is easy to check that limt→0 f (t) = 0 and limt→∞ f (t) = 1 . As for the tail behavior, 
by the Taylor expansion of log(1 + x) = x − x2∕2 + O(x3) as x → 0 , we find that, as 
t → ∞,

	�  ◻

Proof of Equation (11)

Let W(z) be the Lambert function defined by W(z)eW(z) = z, where W(z) is a multival-
ued function that has, for z a real number, two branches, the principal branch W0(z) 
for W(z) ≥ −1 , and the branch W−1(z) for W(z) < −1 . We have that limz→0+ W0(z) = 0 
while limz→0− W−1(z) = −∞ . In particular, according to Corless et  al. (1996,  Sec-
tion 4), as z → 0−

𝛷(1∕x) − �⃗𝜈(x)

�(x)
=

1

�(x)

[

∫
∞

0

1

x
e−y∕x �⃗𝜈(y)dy − ∫

∞

0

�⃗𝜈(x)e−𝜆d𝜆

]

=
1

�(x)

[

∫
∞

0

e−𝜆 �⃗𝜈(𝜆x)d𝜆 − ∫
∞

0

�⃗𝜈(x)e−𝜆d𝜆

]

= ∫
∞

0

�⃗𝜈(𝜆x) − �⃗𝜈(x)

�(x)
e−𝜆d𝜆

→ ∫
∞

0

c(log 𝜆)e−𝜆d𝜆 = c𝛤 �(1) = −c𝛾 , as x → 0,

� = ∫
∞

0

(
1

1 − e−x
−

1

x

)
e−xdx.

� = ∫
∞

0

(
1

1 − e−x
−

1

x

)
e−xdx = ∫

∞

0

(
1 −

1 − e−x

x

)
e−x

1 − e−x
dx

= ∫
∞

0

(
1 −

e−t

− log(1 − e−t)

)
dt = ∫

∞

0

(
1 − f (t)

)
dt.

1 − f (t) = 1 −
e−t

− log(1 − e−t)
∼ 1 −

e−t

e−t + e−2t∕2
=

e−2t∕2

e−t + e−2t∕2
∼

e−t

2
.
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By algebraic manipulation of (10)

where, in the last display,

Solving for m(x, p),

where we used the branch W−1 of W(z) since z in (17) is ≤ 0 and W(z) ≤ −1 . The fact 
that W(z) ≤ −1 is easily checked by using m(x, p) ≥ 0 . In fact

and 1+p
p

log(1 − p) decreases from −1 to −∞ for p ∈ (0, 1) . From (17) one finds that 
z → 0− as x → 0+ . In particular, from w1(p) > x , that is p(1 + p)∕2 > x , it follows 
that

and the lower bound is larger than −e−1 for any p ∈ (0, 1) . Hence log(−z) < −1 and 
log(− log(−z)) > 0 . By direct calculation

and

(16)W−1(z) = log(−z) − log(− log(−z)) + O

(
log(− log(−z))

log(−z)

)
.

p(1 − p)m(x,p)
1

2
(1 + p + pm(x, p)) = x; elog(1−p)m(x,p)(1 + p + pm(x, p)) = 2x∕p;

(1 + p + pm(x, p)) log(1 − p)elog(1−p)m(x,p) =
2x log(1 − p)

p
;

(1 + p + pm(x, p)) log(1 − p)elog(1−p)(1∕p+1+m(x,p) =
2x log(1 − p)

p
e(1∕p+1) log(1−p);

log(1 − p)

p
(1 + p + pm(x, p))e

log(1−p)

p
(1+p+pm(x,p))

=
2x log(1 − p)

p2
e

1+p

p
log(1−p)

;

log(1 − p)

p
(1 + p + pm(x, p)) = W(z),

(17)z =
2x log(1 − p)

p2
exp

(1 + p

p
log(1 − p)

)
.

(18)m(x, p) =
1

p log(1 − p)

(
pW−1(z) − log(1 − p)

)
− 1,

1

p log(1 − p)
(pW(z) − log(1 − p)) − 1 ≥ 0; pW(z) − log(1 − p) ≤ p log(1 − p);

pW(z) ≤ log(1 − p)(1 + p); W(z) ≤ log(1 − p)
1 + p

p

1 + p

p
log(1 − p) exp

(1 + p

p
log(1 − p)

) ≤ z ≤ 0

log(−z) = log(1 − p)

(
log x∕p

log(1 − p)
+

1

log(1 − p)
log

−2 log(1 − p)

p
+

1 + p

p

)
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Substitute in (18) W−1(z) for log(−z) − log(− log(−z)) according to the two terms 
expansion in (16), to find

The remainder of the expansion is easily found. 	�  ◻
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