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Abstract: We propose a new statistical analysis of the Acoustic Emissions (AE) produced in a series

of triaxial deformation experiments leading to fractures and failure of two different rocks, namely,

Darley Dale Sandstone (DDS) and AG Granite (AG). By means of q-statistical formalism, we are able

to characterize the pre-failure processes in both types of rocks. In particular, we study AE inter-event

time and AE inter-event distance distributions. Both of them can be reproduced with q-exponential

curves, showing universal features that are observed here for the first time and could be important in

order to understand more in detail the dynamics of rock fractures.

Keywords: Acoustic Emissions; rock deformations and failures; interoccurrence events; nonadditive

entropies; nonextensive statistical mechanics

1. Introduction and Motivations

The analysis of the Acoustic Emissions (AE) in materials subjected to experimental
tests is a very important technique for understanding their damage accumulation and
failure modes [1–7].

AE are high-frequency elastic waves due to micromechanical damage induced by
the micro-cracking. These emissions, therefore, represent indicators of deformation and
fracturing processes occurring within a tested specimen and allow us to monitor cracking
formation, growth and propagation. The detection of the AE can therefore allow both
to understand how the damage accumulates and develops within the material and to
monitor the final rupture. This information could be very useful in geophysics for the
interpretation of field scale seismic signals and the understanding of earthquake precursors.
Furthermore, a deep insight into the cracking propagation in the considered rocks can also
be very important in civil engineering for monitoring the integrity of masonry bridges and
buildings and developing strategies for the safe design of tunnels.

From a seismological point of view AE obey, as earthquakes, the Gutenberg–Richter
relationship between frequency and magnitude [8,9]. Rock fracture and earthquake rupture
are processes obeying similar statistics for source dimensions over more than eight orders
of magnitude. In order to link experimental detailed studies to geophysical signatures
recorded at the field scale, controlled laboratory rock deformation experiments, equipped
with dense micro-seismic arrays for AE detection, have become a routinely used tool [10–12].
The failure process and the pre-failure crack growth and coalescence can be monitored at the
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laboratory scale via AE, which, analogously to earthquake ruptures at the field scale, obey
similar statistics and power-laws in time, space and magnitude [13–15]. Source mechanism
evolution with various effective pressure can also be inferred from AE, allowing us to
determine the effect of the increasing lithostatic pressure on the fracturing mechanisms and
failure modes [16].

Moreover, in a civil engineering context, a deep knowledge of the behavior of the
foundation soil is mandatory in order to correctly take into account soil–structure interac-
tion. Reliable information on the fracturing mechanisms of surrounding rocks is also very
important in the seismic design of tunnels [17,18]. Excavation methods, dimensions and
design parameters of a tunnel strictly depend on the mechanical properties of the rocks
along its alignment. The mechanical information regarding soil and rocks is obtained by
means of appropriate tests performed either in situ or from samples. In the case of tunnels,
the surrounding rocks are subjected to distributed pressures, which may vary in direction
and intensity. When samples of rocks are extracted, it is, therefore, important to reproduce
in three-dimensional (3D) experimental tests the effects of the distributed confinement
pressures. A reliable 3D laboratory test on soils and rocks is the triaxial test which allows us
to evaluate the effect of confinement pressures on the failure load of the specimens [19–22].
Moreover, in this field, the analysis of AE provides important information on the fracturing
mechanisms and global resistance of the involved rocks.

In this paper, we present a new analysis of the AE recorded during conventional
triaxial deformation tests at confining pressures up to 40 MPa [16]. In particular, our exper-
imental setup allows recording AE generated during the loading by the crack initiation,
propagation and growth, leading eventually to macro-fracture formation and sample failure.
In this context, the use of non-extensive q-statistics has recently proved to be particularly
effective in capturing some universal features which emerge during the crack’s propagation
under loading [1,7]. In a previous article, some of the authors of this paper investigated,
by means of q-statistics, AE in uniaxial compression experiments on samples of basalt
and concrete subjected to cyclic loading [5]. The aim of the present study is to apply a
similar statistical analysis to AE obtained in triaxial compression tests in order to take into
account the effect of the confining pressure on the AE release and assess the influence of
increasing confining pressure, different deformation and failure mode on the AE statistical
properties. At variance with previous papers, not only have the time distributions been
investigated but also a joint space-time analysis, which has enabled the quantification of
several new phenomena.

2. Experimental Setup and Data Analysis

The AE used in this work have been recorded during conventional servo-controlled
triaxial deformation experiments (Sanchez Technologies, Frépillon, France), installed at
the University of Portsmouth, UK on cylindrical 40 mm × 100 mm samples with an
array of twelve 1 MHz single-component Piezo-Electric Transducers for AE detection [23].
Further details on laboratory methods and experimental conditions can be found in [Benson
et al., 2019]. Triaxial compression tests have been performed at 5, 10, 20 and 40 MPa on
geologically and physically (i.e., fabric, porosity, grain size and cementation) different
lithologies such as the Darley Dale Sandstone (DDS, porosity 14%) and Alzo Granite (AG,
porosity < 1%). Further details on the AE data set and the lithologies can be found in [17].
The AE data sets have been analyzed in terms of source mechanisms time and spatial
evolution before the rupture from some of the authors [17]. AE source mechanisms analysis
has evidenced single fracture nucleation for AG and multiple fracture nucleation for DDS
due to single or multiple competing dilatant and compactant regions. Fracture growth and
propagation appear to be controlled by the different confinements, with increasing pressure
controlling the time evolution and size of dilatant and compactant regions, eventually
controlling crack coalescence into macroscopic fractures [16].

In order to give representative insights on the AE time and amplitude distribution
prior to failure, we plot in Figure 1 the AE amplitude and the AE inter-event time as
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functions of time for two samples: AG at 40 MPa (panels (a) and (b), respectively) and DDS
at 20 MPa (panels (c) and (d), respectively). The inter-event time δτ(n) is the time interval
(in seconds) between two consecutive recordings AE(n) and AE(n − 1) can be defined as:

δτ(n) = tAE(n)− tAE(n − 1)

where tAE(n) is the time at which the n-th AE event does occur and tAE(n − 1) the time of
the previous event.

The coupled analysis of AE amplitude and inter-event times reveals that AG shows
an abrupt increase at the end of the elastic phase, between 500 and 1000 s, then AE
amplitude remains quite constant until failure (which happens at about 2800 s); finally, it
suddenly decreases during the stick-slip AE events occurring in the post-failure phase, with
occasional AE clusters of higher amplitude driven by stress at the fault asperities. On the
other hand, DDS presents a much more gradual AE amplitude increase from 500 to 1500 s,
reaching steady values before failure (which happens at about 2400 s), then a decrease
driven by the post-failure stick-slip processes. The difference between the two behaviors
can be explained by the diverse deformation mechanisms acting on the lithologies. In
particular, at the end of each sequence, a different macroscopic structure can be observed.
For AG, a single damage cycle of crack nucleation and growth is sufficient to propagate
fractures and develop the planar localization leading to dynamic failure. Whilst in DDS,
it can take multiple cycles of nucleation for coalescence to take place due to interacting
mechanisms induced by multiple fracture nucleation sites [16].

Thus, the DDS shows a much clearer premonitory phase, or foreshock, before a critical
damage threshold which would allow coalescence into a larger-scale deformation structure.
For both the samples, failure is characterized by a peak in the AE inter-event time, which
suddenly appears after a sequence of very low values corresponding to the sequence of
high amplitude events before rupture, corresponding to the transition from mm scale
propagating microfractures to a fully developed cm scale fault zone.

In Table 1, we report, for each sample, the time tB at which the breakdown occurs, the
total time tTOT of the experiment, the number N* of AE events before breakdown and the
total number N of AE events present in the corresponding time series. In the following, we
will investigate if q-statistics can help in revealing different structures in these data sets for
increasing levels of confinement.

Table 1. Details of the time series for the different samples.

Sample tB tTOT N* Events before Breakdown Tot. N Events

AG-5 MPa 2398 s 3395 s 2367 2751

AG-10 MPa 1767 s 2445 s 1577 1956

AG-20 MPa 2160 s 2973 s 1874 2367

AG-40 MPa 2857 s 4566 s 4419 5533

DDS-5 MPa 2400 s 2540 s 1067 1100

DDS-10 MPa 5808 s 6248 s 4802 5334

DDS-20 MPa 2409 s 3348 s 5760 6714

DDS-40 MPa 9710 s 11,736 s 10,659 11,696
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and (b), and DDS 20 MPa, panels (c) and (d).

2.1. AE Amplitudes

To start, let us look at the amplitude of the probability density function (PDF) of the
acoustic emissions for our eight considered samples. Firstly, we explore these distributions
by dividing each time series into four parts (time intervals):

- From the beginning to 30% tB;
- From 30% tB to 70% tB;
- From 70% tB to breakdown;
- After breakdown.

Of course, the number of data included in each time interval could even be quite small;
however, such a procedure could bring out otherwise hidden details of the process leading
to the rupture.

In Figure 2, the amplitude PDFs for AG (a) and DDS (b) samples, within each time
interval and for each level of confinement, are plotted; the number of events included in
each time interval is also reported in legenda.
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levels of confinement. Each data set has been divided into four time intervals, three before breakdown

(0–30%, 30–70%, 70–100%) and the last one after failure. In the legend, for each interval and each level

of confinement, the number of AE events is reported in parentheses. Only distributions extracted

from more than 50 events are shown in the panels.

We will not show distributions corresponding to time intervals with less than 50 AE
events, due, of course, to the too-poor statistics. We also anticipate that amplitude data
for DDS at 5 MPa are not reliable since they have been affected by a problem with the
pre-amplifier gain during the experiment.

Comparing the various panels for the two types of lithologies, one immediately notices
several features which reveal some kind of universal behavior:

(i) Events in the first time interval (within 30% tB) are always too few to give consistent
distributions, regardless of the material;

(ii) Distributions before and after failure are quite similar, again regardless of the material,
with an initial sudden increase, a peak and a slow decrease for high amplitudes;
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(iii) Distributions after failure are more peaked for both AG and DDS.

Our approach identifies the background general behavior driving the main mechanical
phases of nucleation, growth, and coalescence of micro fractures in rock fracture, regardless
of the prevalence of a specific phase in a specific deformation stage driven by the different
lithologies and effective pressures.

In Figure 3, the complete probability distributions for the whole time series of the
different samples are reported both in Lin-Lin (Figure 3a,b) and in Log-Lin (Figure 3c,d)
scale. It immediately appears that, for both the materials and for all the confinements, all
the curves collapse one onto the others (with the exception of DDS 5 MPa, which has been
excluded for the reasons explained before) and in all cases show power-law tails which
overlap one over the others. The shape of the Lin-Lin curves is similar to that found in
Figure 2, but the plots in Log-Lin scale tell us that we are in presence of fat tails. This result
confirms that the amplitude of the AE events is scale-invariant and obeys a power-law as
the earthquake’s frequency-magnitude distribution [9]. Both the distributions (Figure 3c)
and (Figure 3d) can be well fitted (through a non-linear least squares method) with the
following function, given by the product of a quadratic term and a q-exponential one
(which, for q > 1, is a power-law):

y = A0(x − x0)
2(1 − (1 − qA)βA|x − x0|)

1
1−qA (1)

where A0 = 7000, βA = 40, qA = 1.19 and x0 = 0.15. The maximum of this distribution
occurs precisely at |x| = 2/[βA(3 − 2qA)]. Notice that the power-law, which is introduced
as a pre-factor of the q-exponential function, is similar to the density of states which is
present in the Planck law for the black-body radiation. Its origin is here possibly related
to three-dimensional nearly isotropic stresses. Similar power-law pre-factors turn out to
be necessary for diverse complex situations, such as the volume distributions in stock
exchanges [24], distributions of transverse momenta of hadronic jets produced in proton-
proton high-energy collisions at CERN/LHC [25] and COVID-19 peaks in the recent
pandemic [26], among others.
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the four levels of confinement are reported, both in Lin-Lin (a,b) and in Log-Lin (c,d) scale. The

Log-Lin curves have also been fitted with the non-linear function reported in Equation (1). Correlation

coefficients of 0.68 for panel (c) and 0.74 for panel (d) confirm the good quality of the fits.

2.2. AE Inter-Event Times

Let us now shift our attention to the AE inter-event times. In particular, we will study
the complementary cumulative (decumulative) probability distributions of AE inter-event
times for both the AG and DDS samples, adopting only data before breakdown.
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To build the decumulative distribution P (>δτ) of the inter-event time series, one has
to report, for each value of δτ in the interval [0, 1000], the fraction of inter-event times
which are greater than that value. Therefore, in the Log-Log scale, one could expect a curve
starting from one for small values of δτ, then, after a certain inflection point, gradually
decreasing with some kind of peculiar behavior for high values of δτ.

In similar experiments [1,5], these decumulative distributions exhibited clear power-
law tails, which can be framed in the context of the q-generalized thermo-statistics; actually,
in these cases simple q-exponential functions were able to well fit the obtained curves,
thus unveiling the fractal or multifractal nature of the breakdown process. In the results
presented here, as shown in Figure 4 for AG and in Figure 5 for DDS, we found something
more complex than the expected power-law tails. In fact, the decumulative PDFs for both
types of analyzed materials seem to further change slope in correspondence of a second
inflection point, whose time position decreases with increasing the confinement for DDS,
while it seems to oscillate for AG. This new kind of behavior could still be described
in the framework of q-thermo-statistics, but adopting the following more general fitting
function [27]:

y = A(1 − (1 − q1)β1x)
1

1−q1 + (1 − A)

(

1 −
λ

β2
+

λ

β2
e(q2−1)β2x

)
1

1−q2
(2)
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correlation coefficients are above 0.8, thus confirming the good quality of the fits.

It is composed of the sum of a first standard q-exponential function (with normalization
factor 0 < A < 1, inverse temperature β1 and entropic index q1) and a second function
containing (in addition to a normalization factor (1 − A), an inverse temperature β2 and
an entropic index q2) a further parameter λ > 0, which ensures that the total function
monotonically vanishes for increasing inter-times with appropriate behavior. See [28] for a
similar crossover in the area-preserving dynamics of the standard map for intermediate
values of the control parameter. It has been shown, for instance in [27–30], that the fitting
parameter A is directly related to the comparative sizes, in the nontrivial phase space of the
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system, of the visitations of the regions related to q-exponentials characterized either by q1

or by q2.
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Looking at Figures 4 and 5, it can be appreciated that function (2) is able to well-
fit (through a non-linear least squares method) all the PDFs, regardless of the material,
provided that the following parameters are chosen.

In the previous table, Table 2, one can notice that, for any material and confinement,
typically β1 ≫ β2 and q1 < q2. Moreover, in correspondence of the same amount of
confinement, values of A coincide for AG and DDS. A double q-exponential behavior,
although rare, occasionally emerges in complex systems. Such is the case for the nucleotide
inter-distances in DNA sequences of Homo Sapiens [31].

Table 2. Details of the fitting parameters of Equation (2) for the eight samples considered.

Sample A β1 q1 β2 q2 λ

AG-5 MPa 0.975 3.5 1.48 0.01 1.7 0.09

AG-10 MPa 0.98 2.0 1.32 0.02 2.5 0.19

AG-20 MPa 0.98 1.3 1.2 0.04 2.0 0.13

AG-40 MPa 0.983 2.6 1.16 0.017 1.4 0.12

DDS-5 MPa 0.975 1.5 1.4 0.0001 1.7 0.055

DDS-20 MPa 0.98 4.1 1.24 0.017 1.5 0.20

DDS-40 MPa 0.983 4.6 1.16 0.015 2.4 0.19

2.3. AE Positions and Inter-Event Distances

Finally, let us investigate the eventual clustering in space of the AE events. In order to
do this, we first explore the behavior of their subsequent positions (expressed in meters),
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ordered in time before breakdown (with a blue scale of decreasing intensity) and projected
on the three planes X-Y, X-Z and Y-Z, for both AG (Figure 6) and DDS (Figure 7) samples
with the usual confinements.
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Spatial distributions of AE show a higher clustering of events in AG, where fracturing
occurs throughout localized planar fractures, while more scattered nucleation centers,
related to dilatant patches, occur before failure in DDS.

It is also useful to study the probability distribution of the AE inter-event distances
(also expressed in meters), defined as the metric distance between the 3D spatial positions
of two subsequent recorded AE events inside a given sample during an experiment:
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d(n) =

√

[xAE(n)− xAE(n − 1)]2 + [yAE(n)− yAE(n − 1)]2 + [zAE(n)− zAE(n − 1)]2 (3)

In Figure 8, we plot the distributions of the inter-event distances before rupture obtained
for both AG (top panel) and DDS (bottom panel) at the different levels of confinement. What
we observe is a Planck-like distribution, with a maximum and an asymmetric tail, which
can be well fitted (through a non-linear least squares method) by the following function:

y =
A x3

eBx − 1
(4)

where the values of the two fitting parameters (A = 4.8 × 107 and B = 132) are independent
of the type of materials and of the confinement, thus revealing again some kind of universal
behavior. On the other hand, it is well visible a single narrow peak around zero for some
AG samples, in particular those with intermediate levels of confinement, while this peak
is completely absent for DDS samples. This different behavior might be explained by
the single fracture nucleation mechanisms observed for AG, which implies high spatial
clustering. For DDS samples, instead, multiple fracture nucleation mechanisms due to
multiple fracturing regions have been observed [16] and these imply a diffused seismicity
and a low clustering.
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quality of the fits.

To close this analysis, let us finally look at the decumulative distributions P (>d) of the
inter-event distances before rupture, which are shown in Figure 9 for AG samples and in
Figure 10 for DDS ones.
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As for the inter-event times’ decumulative PDFs, in this case, it is also possible to
fit (through a non-linear least squares method) all the distributions with q-exponential
functions, but in this case, it is enough to use single standard q-exponentials with inverse
temperature β and an entropic index q. Notice that, in analogy to what has been found
in [32], values of the entropic indexes are all below 1, not indicating a power-law behavior
but revealing the presence of a cut-off in the distributions. Moreover, as shown in Table 3,
in agreement with a further finding of [32], calling qτ the first entropic index q1 obtained
for the inter-event time PDFs (see Table 2) and qd the entropic index just found for the
inter-event distance, it can be noticed that the sum qτ + qd oscillates around 2 for all the
samples, regardless of both material and confinement. This result is also similar to what
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has been observed in regional seismicity data from Japan and California and numerically
verified using the two-dimensional Burridge–Knoppoff model [32].

Table 3. The sum of the entropic indices qτ and qd for the 8 considered samples oscillates around 2.

Sample qτ qd qτ+qd

AG-5 MPa 1.48 0.76 2.24

AG-10 MPa 1.32 0.75 2.07

AG-20 MPa 1.2 0.69 1.89

AG-40 MPa 1.16 0.75 1.91

DDS-5 MPa 1.4 0.78 2.18

DDS-10 MPa 1.32 0.75 2.07

DDS-20 MPa 1.24 0.69 1.93

DDS-40 MPa 1.16 0.79 1.95

In Figure 11, the entropic index qτ is reported as a function of qd. The figure clearly
shows that the linear behavior holds quite well with an error of 10% for almost all the samples.

Entropy 2023, 25, x FOR PEER REVIEW 14 of 16 
 

 

 
Figure 11. The entropic index �� is reported as a function of �� for the eight considered samples 
(colored circles) and it is compared with the line �� = 2 − ��. The ±10% area around the line is 
colored in brown. Notice that the points corresponding to AG-10 MPa and DDS-10 MPa coincide. 

As rock fracture and earthquake rupture are processes obeying similar statistics for 
source dimensions over more than eight orders of magnitude [9] the results of this study 
can be meaningful, within the scaling limitations, to larger scale mechanisms, such as the 
collapse prediction of building materials and the interpretation of deformation mecha-
nisms preceding and accompanying earthquake ruptures. Our findings at the laboratory 
scale reveal that regardless of the deformation mechanisms taking place at different effec-
tive pressures and for different lithologies, the macroscopic coalescence into a larger-scale 
deformation structure and its seismic output would be controlled by the multiscale tran-
sition from mm scale fractures into a cm scale fault zone. Within the limitations of upscal-
ing, the micromechanisms observed can have relevance for understanding the defor-
mation mechanisms observed at the field scale, providing new insights for developing 
monitoring strategies for earthquake precursory detection. 

3. Conclusions 
We investigated by means of q-formalism the Acoustic Emissions (AE) produced in a 

series of triaxial deformation experiments leading to fractures and failure of two different 
materials, namely, Darley Dale Sandstone (DDS) and AG Granite (AG). We have shown 
that pre-failure processes in both types of rocks, and in particular AE inter-event time and 
AE inter-event distance distributions, can be reproduced with q-exponential curves, 
showing universal features that have been observed here for the first time. This quantita-
tive characterization could be important in order to understand more in detail the pro-
cesses of rock fracture dynamics and deformation mechanisms. It is certainly a step for-
ward and very useful to study more in-depth how the obtained results, which give sup-
port to similar previous investigations where q-statistics has been used, may have im-
portant applications in civil engineering and in the analysis of soil–structure interaction, 
as well as in geophysics for the comprehension of seismic signals preceding and accom-
panying earthquakes. 

Figure 11. The entropic index qτ is reported as a function of qd for the eight considered samples

(colored circles) and it is compared with the line qτ = 2 − qd. The ±10% area around the line is

colored in brown. Notice that the points corresponding to AG-10 MPa and DDS-10 MPa coincide.

As rock fracture and earthquake rupture are processes obeying similar statistics for
source dimensions over more than eight orders of magnitude [9] the results of this study
can be meaningful, within the scaling limitations, to larger scale mechanisms, such as the
collapse prediction of building materials and the interpretation of deformation mechanisms
preceding and accompanying earthquake ruptures. Our findings at the laboratory scale
reveal that regardless of the deformation mechanisms taking place at different effective
pressures and for different lithologies, the macroscopic coalescence into a larger-scale de-
formation structure and its seismic output would be controlled by the multiscale transition
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from mm scale fractures into a cm scale fault zone. Within the limitations of upscaling,
the micromechanisms observed can have relevance for understanding the deformation
mechanisms observed at the field scale, providing new insights for developing monitoring
strategies for earthquake precursory detection.

3. Conclusions

We investigated by means of q-formalism the Acoustic Emissions (AE) produced in a
series of triaxial deformation experiments leading to fractures and failure of two different
materials, namely, Darley Dale Sandstone (DDS) and AG Granite (AG). We have shown
that pre-failure processes in both types of rocks, and in particular AE inter-event time
and AE inter-event distance distributions, can be reproduced with q-exponential curves,
showing universal features that have been observed here for the first time. This quantitative
characterization could be important in order to understand more in detail the processes of
rock fracture dynamics and deformation mechanisms. It is certainly a step forward and
very useful to study more in-depth how the obtained results, which give support to similar
previous investigations where q-statistics has been used, may have important applications
in civil engineering and in the analysis of soil–structure interaction, as well as in geophysics
for the comprehension of seismic signals preceding and accompanying earthquakes.
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Abbreviations

AE Acoustic Emissions

DDS Darley Dale Sandstone

AG Alzo Granite

3D Three dimensional

PDF Probability density function

Lin-Lin Linear-Linear

Log-Lin Logarithmic-Linear

Log-Log Logarithmic-Logarithmic
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