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CHAPTER 1 
 
GENERAL INTRODUCTION 
 

1. Endocrine Disrupting Chemicals (EDCs)  
 
Environmental concerns about the massive use of pollutants reached a wake-up call in early 

’60, when Rachel Carson firstly highlighted the terrible effects of pesticides indiscriminately 

used in American agriculture (Carson, 1962). However, the concept of “Endocrine Disruptor” 

was introduced only thirty years later. In 1991, Theo Colborn and colleagues during a workshop 

drafted the Wingspread Statement summarizing the effects of these compounds on human and 

environmental health (Colborn et al., 1992). Finally, in 1996, the USA Environmental 

Protection Agency (EPA) formally introduced the endocrine disruptors as “exogenous agents 

that interfere with the synthesis, secretion, transport, binding, action, or elimination of natural 

hormones in the body that are responsible for the maintenance of homeostasis, reproduction, 

development and/or behavior” (EDSTAC, 1998). More recently, the Endocrine Disrupting 

Chemicals (EDCs) have been defined by the Endocrine Society as “exogenous chemicals, or 

mixture of chemicals, that interfere with any aspect of hormone action and cause adverse effects 

at the level of the organism, its progeny, populations, or subpopulations of organisms” (Zoeller 

et al., 2012).  

 

 
Figure 1. Historical landmarks in EDCs research (adapted from Papalou et al., 2019).  

 

In 2020, an Expert Consensus Statement (La Merrill et al., 2020) identified ten key 

characteristics of EDCs (Fig. 2) which aimed to help recognition, classification, and hazard 

identification of these compounds: 

1. Interaction with or activation of hormone receptors. 

2. Antagonizes hormone receptors.  

3. Altering hormone receptor expression. 

4. Altering signal transduction in hormone-responsive cells.  

5. Inducing epigenetic modifications in hormone-producing or hormone-responsive cells.  

6. Altering hormone synthesis. 

Papalou et al. Endocrine Disrupters & Metabolism

FIGURE 1 | Historical landmarks in the field of EDCs Research.

evident, but may be ultimately manifested many years after the
exposure (12).

• Since environmental pollution is not caused by a single
compound, it is rather reasonable that humans are constantly
exposed not to one, but to a cocktail of EDCs. In a mixture,
the different classes of EDCs interact in an either additive or
synergistic way, making even more difficult not only to predict
the net effect they provoke, but also to evince a cause-and-
effect association between a specific EDC and an associated
effect-disease (28).

Vulnerable Windows of
Susceptibility–Developmental
Programming and Transgenerational
Effects of EDCs
The “Developmental origins of health and diseases” (DOHaD)
hypothesis, initially expressed by David Barker, has introduced
the concept that early life growth and development is vulnerable
to environmental disruptors, which can determine the risk
for health and disease (29). In other words, environmental
disruption during critical developmental windows is capable
of promoting subtle changes in gene expression and biological
molecular processes, which, ultimately, alter permanently the
developmental trajectory and lead to long-lasting dysfunction.

Nutrition has been introduced as a powerful environmental
stimulus that can promote intrauterine modifications,
manifesting later in life as increased vulnerability to obesity
and dysmetabolism. More analytically, undernutrition in utero
and low-birth weight, combined with early catch-up growth

during infancy, was shown to be correlated with augmented
risk for impaired metabolism, cardiovascular disease and
reproductive deregulation in adulthood (30–32). Analogously,
maternal obesity or obesogenic maternal diet during gestation,
was associated with increased oxidative stress in the offspring,
making them sensitive to diabetogenic effects (33, 34).

Apart from nutrition, EDCs also hold a special position
in the DOHaD hypothesis. The “Diethylstilbestrol (DES)
catastrophe” provided the original proof regarding the ability
of EDCs to perturb developmental processes and predispose
to certain diseases. Back in 1940–1970, prescription of DES
to numerous women, in order to prevent miscarriage, led to
reproductive tract anomalies and substantially increased the
incidence of mammary cancer in their offspring (35). Nowadays,
accumulating data support that EDCs impact during critical
developmental windows can be disruptive for multiple systems
involved in human metabolism. For example, both in animal
and human studies, developmental exposure to DES, led to
increased weight gain and adipocyte hyperplasia in the offspring,
predisposing them to obesity during adulthood (36, 37). Likewise,
EDCs acting during fetal or perinatal period, can permanently
perturb adipose tissue function, via altering the programming of
mesenchymal stem cells (38).

One of the main mechanisms, via which EDCs alter
programming of cell and tissue differentiation, is by inducing
epigenetic changes (9, 39). Epigenetic changes are defined as
heritable alterations in gene expression, without any structural
change in DNA sequence, which can be transmitted through
mitosis and/or meiosis. There are several mechanisms, by which
epigenetics can modulate gene expression and modify gene
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exposure (12).

• Since environmental pollution is not caused by a single
compound, it is rather reasonable that humans are constantly
exposed not to one, but to a cocktail of EDCs. In a mixture,
the different classes of EDCs interact in an either additive or
synergistic way, making even more difficult not only to predict
the net effect they provoke, but also to evince a cause-and-
effect association between a specific EDC and an associated
effect-disease (28).

Vulnerable Windows of
Susceptibility–Developmental
Programming and Transgenerational
Effects of EDCs
The “Developmental origins of health and diseases” (DOHaD)
hypothesis, initially expressed by David Barker, has introduced
the concept that early life growth and development is vulnerable
to environmental disruptors, which can determine the risk
for health and disease (29). In other words, environmental
disruption during critical developmental windows is capable
of promoting subtle changes in gene expression and biological
molecular processes, which, ultimately, alter permanently the
developmental trajectory and lead to long-lasting dysfunction.

Nutrition has been introduced as a powerful environmental
stimulus that can promote intrauterine modifications,
manifesting later in life as increased vulnerability to obesity
and dysmetabolism. More analytically, undernutrition in utero
and low-birth weight, combined with early catch-up growth

during infancy, was shown to be correlated with augmented
risk for impaired metabolism, cardiovascular disease and
reproductive deregulation in adulthood (30–32). Analogously,
maternal obesity or obesogenic maternal diet during gestation,
was associated with increased oxidative stress in the offspring,
making them sensitive to diabetogenic effects (33, 34).

Apart from nutrition, EDCs also hold a special position
in the DOHaD hypothesis. The “Diethylstilbestrol (DES)
catastrophe” provided the original proof regarding the ability
of EDCs to perturb developmental processes and predispose
to certain diseases. Back in 1940–1970, prescription of DES
to numerous women, in order to prevent miscarriage, led to
reproductive tract anomalies and substantially increased the
incidence of mammary cancer in their offspring (35). Nowadays,
accumulating data support that EDCs impact during critical
developmental windows can be disruptive for multiple systems
involved in human metabolism. For example, both in animal
and human studies, developmental exposure to DES, led to
increased weight gain and adipocyte hyperplasia in the offspring,
predisposing them to obesity during adulthood (36, 37). Likewise,
EDCs acting during fetal or perinatal period, can permanently
perturb adipose tissue function, via altering the programming of
mesenchymal stem cells (38).

One of the main mechanisms, via which EDCs alter
programming of cell and tissue differentiation, is by inducing
epigenetic changes (9, 39). Epigenetic changes are defined as
heritable alterations in gene expression, without any structural
change in DNA sequence, which can be transmitted through
mitosis and/or meiosis. There are several mechanisms, by which
epigenetics can modulate gene expression and modify gene
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7. Altering hormone transport across cell membranes.  

8. Altering hormone distribution or circulating levels of hormones. 

9. Altering hormone metabolism or clearance.  

10. Altering the fate of hormone-producing or hormone-responsive cells (La Merrill et al., 

2020).  

 

 
Figure 2. Key characteristics of EDCs (from La Merrill et al, 2020).  

 

At present, thousands of chemicals, some banned and some still in use, have been classified as 

EDCs. They represent a heterogeneous class of compounds of both natural and synthetic origin 

(Frye et al., 2012; Gore et al., 2015; Papalou et al., 2019). Natural EDCs are generally plant-

derived dietary compounds (usually called phytoestrogens), which can be found in lots of foods, 

especially in leguminous plants (e.g., soy) (Rietjens et al., 2017), or fungi-produced compounds 

(i.e., mycoestrogens) (Jarosova et al., 2015). Also, some heavy metals, such as mercury, arsenic, 

or cadmium, have been classified as natural EDCs (Vuong et al., 2020).   

Synthetic EDCs can be found in a wide variety of products, such as pesticides, food packaging, 

personal care products, detergents, household goods, fabrics, upholstery, electronics, and 

medical equipment (Gore et al., 2015; Kassotis et al., 2020). From these products they can 

contaminate food (Mantovani, 2016), water (Gonsioroski et al., 2020), soil (Ying & Kookana, 

2005), and ambient air (Rudel & Perovich, 2009).   

 

RNA expression. An EDC that interferes with hormone 
action can do so by interfering with the ability of a hor-
mone to induce these epigenetic changes or by inducing 
these epigenetic changes to interfere with hormone action 
(such as by altering the expression or action of a hormone 
receptor or the transcription of hormone- responsive 
genes68,69). For example, the pesticide methoxychlor 
increases the expression of the DNA methyltransferase 
DNMT3B to hypermethylate DNA, including ESR2 

(which encodes ERβ) in the ovary of developmentally 
exposed rats70. In addition, di(2-ethylhexyl) phthalate 
inappropriately demethylates MR DNA in the testis of 
male mice47. EDCs can also change the expression of non- 
coding RNAs, as is seen with PCBs altering the develop-
mental trajectories of hypothalamic microRNA expression 
in a sexually dimorphic manner71 as well as BPA and 
phthalates affecting microRNA expression in placental, 
Sertoli and breast cancer cell lines72.
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Fig. 1 | The key characteristics of endocrine- disrupting chemicals. Arrows identify the ten specific key characteristics 
(KCs) of endocrine- disrupting chemicals (EDCs). The ± symbol indicates that an EDC can increase or decrease processes 
and effects. KC1 states that an EDC can interact with or activate hormone receptors. KC2 states that an EDC can 
antagonize hormone receptors. KC3 states that an EDC can alter hormone receptor expression. KC4 states that an EDC 
can alter signal transduction (including changes in protein or RNA expression, post- translational modifications and/or  
ion flux) in hormone- responsive cells. KC5 states that an EDC can induce epigenetic modifications in hormone- producing 
or hormone- responsive cells. KC6 states that an EDC can alter hormone synthesis. KC7 states that an EDC can alter 
hormone transport across cell membranes. KC8 states that an EDC can alter hormone distribution or circulating hormone 
levels. KC9 states that an EDC can alter hormone metabolism or clearance. KC10 states that an EDC can alter the fate  
of hormone- producing or hormone- responsive cells. Depicted EDC actions include amplification and attenuation of 
effects. Ac, acetyl group; Me, methyl group.
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“Critical periods” of development, such as intrauterine, perinatal or puberty periods, when 

organisms are particularly sensitive to alterations of the hormonal environment, represent a 

peculiar time window during which exposure to EDCs are extremely dangerous (Frye et al., 

2012). However, exposure during adulthood has been linked to worrying alterations (Frye et 

al., 2012; Rattan et al., 2017).  
 

The mechanisms of action through which EDCs can exert their deleterious effects on the 

organisms have been partially unrevealed, and generally count on the involvement of one or 

more hormone receptors (Wuttke et al., 2010; Yilmaz et al., 2020). However, it is now known 

that also some non-endocrine mediated mechanisms contribute to the adverse effects displayed 

by EDCs exposure (Marty et al., 2018; Toporova & Balaguer, 2020).   

 

Despite their increasing presence and persistence into the environment (Encarnacao et al., 2019) 

and the not insignificant evidence of their health adverse effects (Kahn et al., 2020; Yilmaz et 

al., 2020), EDCs have not been clearly codified into regulations as a hazard category yet 

(Kassotis et al., 2020).   

 
2. Bisphenols (BPs)  
 

Bisphenols (BPs) are organic synthetic compounds characterized by the presence of two 

phenols connected by an alkyl group, mainly used to produce polycarbonate plastics (Catenza 

et al., 2021). They represent an extremely abundant class of synthetic EDCs, as they are present 

in plastic-based consumer goods (Catenza et al., 2021). The concerns on BPs do not only regard 

their massive presence among a long list of products, but also their widespread and persistence 

into the environment (Catenza et al., 2021).   

BPs are not classified as persistent organic pollutants (POPs, i.e., carbon-based organic 

chemicals that are persistent, bioaccumulative and have long-range transport potential) (Guo et 

al., 2019), due to their low tendency to bioaccumulate in the body, as they are usually eliminated 

in urine in less than 24h for most (Collet et al., 2015; Thayer et al., 2015). However, they are 

cause of concerned because of the extensive exposure to them on a daily basis due to their wide 

use (Yilmaz et al., 2020).  

 
Figure 3. Chemical structures of 17-β-estradiol, bisphenol A and bisphenol S. Red circles highlight 

the presence of the phenolic group, common to all the compounds.  

 

Bisphenol A
(BPA)

Bisphenol S
(BPS)

17-β-estradiol
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3. Bisphenol A (BPA)  
 

The first and still the most globally produced BP is the bisphenol A (2,2-bis [4-hydroxyphenol] 

propane; BPA), obtained by condensation of phenol and acetone (Abraham & Chakraborty, 

2020; Catenza et al., 2021). It has been synthetized in 1891 and starting from the Fifties it has 

been largely used for the production of polycarbonate plastics, epoxy resins, other polymers 

and thermal papers (Bousoumah et al., 2021; Catenza et al., 2021). It has been estimated that 

the worldwide consumption amounts up to 8 million metric tons and it is and is expected to 

overtake the 10 million metric tons by 2022 (Abraham & Chakraborty, 2020; Lehmler et al., 

2018).  

 

3.1 Structure and mechanisms of action  
 

Thanks to the presence of two phenolic groups, its structure is similar to the one of the estradiol 

(Fig.3) (Murata & Kang, 2018): in fact, BPA has been initially proposed as synthetic estrogen 

for clinical use (Vogel, 2009) and firstly classified as xenoestrogen (i.e., any exogenous natural 

or synthetic which mimics the effects of estrogens or promotes their production) (Wang et al., 

2021).  

Even if, the most known BPA mechanism of action (Fig.4) was through nuclear estrogen 

receptors (ERs) (Baker & Lathe, 2018), current knowledge supports the idea that BPA could 

lead to either receptor-mediated or non-receptor mediated effects (MacKay & Abizaid, 2018; 

Sonavane & Gassman, 2019). 

 
Figure 4. Mechanisms of BPA activity (adapted from Amjad et al., 2020). 
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lowering the levels of antioxidant enzymes and increasing H2O2 and lipid peroxidation. These 
harmful effects were also capable of affecting the normal development of the kidney, brain, and testis 
as shown in mice model [18]. 
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CAT, and GSH) capable of converting oxidized metabolic products in a stepwise process to H2O2 and 
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[33].  

Figure 1. Mechanisms of Bisphenol A (BPA) activity. Genomic, non-genomic, and direct e↵ects
exerted by BPA are depicted. See the main text for details. BPA, bisphenol A; DMR, di↵erentially
methylated regions; cER, cytoplasmic oestrogen receptor; Cyt-C, cytochrome c; GPCR, G protein-coupled
receptor; MAPK, mitogen-activated protein kinase; mER, membrane-bound oestrogen receptor; nER,
nuclear oestrogen receptor; PI3K, phosphatidylinositol 3-kinase; ROS, reactive oxygen species; TF,
transcription factor.

Meli et al. [18] reported that BPA increases oxidative stress in the rat liver and spermatozoa by
lowering the levels of antioxidant enzymes and increasing H2O2 and lipid peroxidation. These harmful
e↵ects were also capable of a↵ecting the normal development of the kidney, brain, and testis as shown
in mice model [18].

As an androgen receptor antagonist, BPA inhibits N- and C-terminal regions of the androgen
receptor. This facilitates the interaction with a silencing mediator for thyroid hormone receptor and
nuclear receptor co-repressor, subsequently suppressing the proliferation of Sertoli cells [27]. Although
BPA-mediated e↵ects on ER and androgenic receptor are relatively well studied, the mechanisms of
BPA activity in di↵erent cell types/tissues, need to be investigated.

3. Overview of Antioxidant Activity

Antioxidants are broadly classified into two major groups, such as enzymatic and non-enzymatic
antioxidants. Both enzymatic and non-enzymatic antioxidants are capable of regulating the free radical
reactions, subsequently, restore cellular integrity. Enzymatic antioxidants (e.g., SOD, CAT, and GSH)
capable of converting oxidized metabolic products in a stepwise process to H2O2 and later to the
water with the help of cofactors [28–30]. On the other hand, non-enzymatic antioxidants interrupt
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3.1.1 Receptor-mediated mechanisms of action 
 

BPA can bind a wide set of hormone receptors, both nuclear and membrane bound (MacKay & 

Abizaid, 2018; Murata & Kang, 2018; Yilmaz et al., 2020). The increasing number of targeted 

receptors allows to better explain some unclear aspects of BPA pharmacology, including its 

low-dose effects, non-monotonic dose-response curve, and estrogen-independent observed 

effects (MacKay & Abizaid, 2018; Sonavane & Gassman, 2019). Among the targeted receptors, 

here we reported the most studied ones. 

 

Estrogen receptor α (ERα): it was the first described ER, expressed especially in reproductive 

tissues, breast, kidney, bone, white adipose tissue, and liver (Jia et al., 2015).  

In general, ERs count three functional domains: the NH2-terminal domain (NTD), the DNA-

binding domain (DBD), and the COOH-terminal ligand-binding domain (LBD). Within the 

NTD, there is the ligand-independent activation function (AF1) domain involved in 

transcriptional activation of target genes, while in the LBD there is the ligand-dependent 

activation (AF2) (Jia et al., 2015). Particularly, three ERα isoforms (ERαΔ3, ERα36 and 

ERα46) have been identified, produced by the alternative splicing mechanism (Jia et al., 2015). 

Once the ligand-receptor bound occurs, ERs dimerize, thanks to a region present in the DBD, 

and bind specific DNA sequences called estrogen response elements (EREs) (Fuentes & 

Silveyra, 2019; Jia et al., 2015). However, it is now known that more than one third of human 

genes regulated by ERs do not contain EREs (O’Lone et al., 2004), and that they could mediate 

not only genomic but also non-genomic effects (Fuentes & Silveyra, 2019). BPA displays weak 

estrogenic properties, due to its binding to ERs hundred times weaker than 17-β-estradiol 

(Leonel et al., 2020).  

The BPA-ERα bound involves 42 van der Waals interaction and depends on hydrogen binding 

between BPA's dual phenol rings and a series of three polar residues buried within the ligand 

binding domain (LBD) of the receptor (Delfosse et al., 2012). BPA can act on ERα in an 

agonistic and antagonistic manner (MacKay & Abizaid, 2018). Interestingly, it has been 

demonstrated that BPA can acts on ERα as SERM (selective estrogen receptor modulator), 

whose activity mainly involved the AF-1 domain (the ligand-independent transcriptional 

activation function domain) and depends on the cellular context: this could partially explain the 

antagonistic effects on ERα  (Delfosse et al., 2012).   

BPA bound to ERα activates numerous cell signaling pathways, including the ones linked to 

cell growth, migration and proliferation, but also to invasion, apoptosis and drug-resistance (Jia 

et al., 2015).  

 

Estrogen receptor β (ERβ): this receptor was discovered ten years later than ERα, and it is 

expressed especially in the ovary and in male reproductive organs, in the central nervous system 

(CNS), in the cardiovascular system, in the immune system, in lungs, prostate, colon and 

kidneys (Jia et al., 2015). The DBD is highly (97%) conserved between ERα and ERβ, while 

the LBD shows only a 59% amino acid sequence identity, which, however, does not entail any 

significant difference in the structure of the ligand-binding pocket (Jia et al., 2015). 

Interestingly, the AF-1 domain displays only 16% of similarity between the two ERs (Jia et al., 

2015).  

Brigitta Bonaldo
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BPA can bind ERa with higher affinity than ERb (Iwamoto et al., 2021), on which it was firstly 

described to act only as agonist (Hiroi et al., 1999). However, it has been demonstrated that 

BPA can act on ERb also as antagonist (Acconcia et al., 2015), and, more interestingly, as 

coactivator-binding inhibitor (CBI) (Iwamoto et al., 2021).  

BPA bound to ERb activates numerous cell signaling pathways that generally lead to opposite 

effects compared to ERa activation (Murata & Kang, 2018).  

Indeed, the ratio between the two ERs is fundamental to ensure correct cellular functions 

(Fuentes & Silveyra, 2019), and BPA is known to unbalance their expression, usually increasing 

that ERa of and decreasing those of ERb (MacKay & Abizaid, 2018; Murata & Kang, 2018).  

 

Estrogen-related receptor γ (ERRγ): ERRγ is a more recently described orphan nuclear 

receptor (Hong et al., 1999), which is expressed very early during the development in both 

mouse (Hong et al., 1999) and humans (Heard et al., 2000) and is still expressed in adulthood 

especially in endocrine- and metabolic-relevant tissues (Misra et al., 2017). ERRγ does not bind 

estrogens and is a major player in the control of cellular energy metabolism (Toporova & 

Balaguer, 2020). Due to the conformation of its LBD, ERRγ is constitutively active, even in the 

absence of a ligand (Misra et al., 2017).  

BPA seems to display good affinity to ERRγ (MacKay & Abizaid, 2018), and it has been 

proposed as a key mediator of low-dose effects (Toporova & Balaguer, 2020).  

 
G-protein coupled estrogen receptor 1 (GPER-1): GPER-1 was firstly described as an 

orphan receptor, and it has then been demonstrated to bind estrogens (Filardo et al., 2000), even 

if with lower affinity compared to classic ERs, and especially ERa (MacKay & Abizaid, 2018). 

It is a mostly ubiquitous 7-transmembrane receptor (Thomas & Dong, 2006), coupled with G 

proteins that mediate its down-stream effects (Revankar et al., 2005). In particular, the induced 

rapid non-genomic effects include the increase of adenylyl cyclase activity, the mobilization of 

intracellular Ca2+ and the activation of the PI3K and MAPK/ERK signaling pathways. Through 

the activation of these pathways, it can indirectly also mediate some genomic effects which 

partially overlap with the ones activated by ERs (MacKay & Abizaid, 2018).  

BPA displays higher affinity to GPER-1 compared to both classic ERs (MacKay & Abizaid, 

2018), and, in particular, it has been demonstrated that BPA binds GPER-1 with 8 to 50 times 

greater affinity compared to ERα (Thomas & Dong, 2006). BPA seems to act most as an agonist 

on GPER-1, activating the adenylyl cyclase and the MAP-kinase activity (Dong et al., 2011; 

Thomas & Dong, 2006).  

 
Androgen receptor (AR): more recently, AR has been recognized as a BPA target, even if 

BPA displays lower affinity to AR compared to estrogens receptors (MacKay & Abizaid, 2018). 

AR is a nuclear receptor which, after being bound to the ligand, forms homodimers and 

translocates to the nucleus, where it binds the androgen response elements (AREs) (Tan et al., 

2015).  

Most of available studies are performed in vitro and described an antagonistic effect of BPA on 

AR (Fang et al., 2003; Perera et al., 2017; Sun et al., 2006). However, more recent in vivo 

evidence suggested also a potential weak agonistic effect of BPA (Molina-Molina et al., 2013), 

which seems to be tissue-dependent (Kinch et al., 2015).  
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Progesterone receptor (PR): progesterone signaling through PR is fundamental in a lot of 

reproductive events (e.g., establishment and maintenance of pregnancy, ovarian function, 

alveolar development in the mammary gland, sexual behavior) (Grimm et al., 2016; 

Taraborrelli, 2015). The ability of BPA of binding PR was well described in a 2015 study, 

through a molecular docking approach (Rehan et al., 2015). The relationship between BPA and 

PR is not totally clear, however, BPA seems to act mainly as an antagonist (Li et al., 2010).  
 
Peroxisome proliferator-activated receptor γ (PPAR γ): PPARγ is nuclear receptors, which 

thus exerts mainly genomic effects (Janani & Ranjitha Kumari, 2015). After the binding to an 

agonist, it translocates to the nucleus, dimerizes with Retinoid X Receptor (RXR) and bind the 

PPAR response elements (PPREs) (Janani & Ranjitha Kumari, 2015). Among all PPARs, 

PPARγ seems to be the most susceptible to BPA, and in general EDCs, adverse effects 

(MacKay & Abizaid, 2018). BPA acts as an agonist on PPARγ, mediating metabolic alterations 

especially in the adipose tissue (Hoepner, 2019). In silico analysis suggests that BPA displays 

lower affinity for PPARγ compared to estrogen receptors, but, interestingly, its affinity for RXR 

seems to be quite similar to the one of ERα (Montes-Grajales & Olivero-Verbel, 2013). As 

RXR is necessary for PPARγ action, it may represent a new promising BPA-sensitive receptor 

which could unveiled some still unclear BPA effects (MacKay & Abizaid, 2018).  

 

Glucocorticoid receptors (GR): as glucocorticoids regulated a wide range of cell functions, 

the GR nuclear receptor is practically ubiquitous, exerting their genomic effects binding to the 

glucocorticoid response elements (GREs) (Nicolaides et al., 2000). In silico and in vitro 

evidence suggest that BPA should act on GR, directly and indirectly, mediating mainly 

agonistic effects (Zhang et al., 2017). Considered the lack of data, the in vivo situation still 

remains quite unclear (MacKay & Abizaid, 2018).   

 

Thyroid hormone receptors (THRs): the thyroid hormones play a key role in the control of a 

lot of fundamental functions, such as growth, development, and energy expenditure (Ortiga-

Carvalho et al., 2014). THRs are produced in two splicing isoforms, α and β (Ortiga-Carvalho 

et al., 2014). It has been demonstrated that BPA can act on both as an antagonist, displaying 

higher affinity for the β isoform (Kim & Park, 2019). Even if BPA can interfere also with 

thyroid hormones synthesis, metabolism and transporter, current evidence suggests that the 

main mechanism of action in that receptor-mediated (Kim & Park, 2019).  

 

3.1.2 Non-receptor-mediated mechanisms of action 
 

Current literature supports the idea that BPA, as most of other EDCs, acts mainly in a receptor-

dependent manner (MacKay & Abizaid, 2018; Toporova & Balaguer, 2020), mediating either 

genomic or non-genomic effects (MacKay & Abizaid, 2018). Even if distinguishing between 

receptor-mediated and non-receptor mediated mechanisms is quite arduous, considering the 

strict interplay between the different pathways (Ma et al., 2019), some receptor-independent 

effects of BPA have been described.  

Receptor-independent effects of BPA are strictly related to cell cytotoxicity and oxidative stress 

(Amjad et al., 2020; Kose et al., 2020; Ma et al., 2019). In fact, BPA can interfere with the 

activity of different enzymes, especially affecting mitochondrial functions and decrease the 

activity of antioxidant enzymes (Ma et al., 2019), causing the increased production of reactive 
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oxygen species (ROS) (Gassman, 2017). In vitro evidence also proposed BPA as genotoxic 

(Kose et al., 2020). In fact, the generation of ROS, but also of phenoxyl radicals due to BPA 

metabolism, can lead to the damage of the DNA (Kose et al., 2020; Ma et al., 2019). Those 

mechanisms appear to be particularly worrying and suggest the need to reconsider the BPA 

classification among the carcinogen compound class (Jalal et al., 2018).  

 

3.2 Replacing BPA: regulations and substitutes 
 

As the impact of BPA in the organism became clearer (Abraham & Chakraborty, 2020), some 

international bodies (e.g., EFSA, FAO/WHO, U.S. FDA) has extensively characterized its 

toxicity, drafting different risk assessments.   

In particular, the 2015 EFSA BPA risk assessment (EFSA, 2015) established a Tolerable Daily 

Intake (TDI) of 4µg/kg body weight/day. This TDI is more than ten times lower compared to 

the previous one (50µg/kg body weight/day), set in 2006 (EFSA, 2006), and is as well 

temporary (EFSA, 2015).  

In fact, the EFSA is committed to reevaluating the available literature concerning the effects of 

BPA in order to establish if the set TDI is consistent with the current data or if it is necessary 

to reassess it. Furthermore, to protect against exposure especially during neonatal life, BPA has 

already been banned from some specific products, such as the infant feeding bottles, in 2011 

(European Commision, 2011). Finally, in 2016, BPA has been classified by the European 

Commission as reproductive toxicant cat.1B (“presumed human reproductive toxicant”) 

(European Commision, 2016).  

 

Stricter regulations together with the increasing concerns about the impact of BPA on human 

health (Abraham & Chakraborty, 2020), have led to extensive search for safe alternatives 

(Catenza et al., 2021).  

However, to date, the main proposed substitutes are BPA analogues, and recent evidence 

suggest that they display the same, or even worse, endocrine disrupting properties as BPA 

(Catenza et al., 2021; den Braver-Sewradj et al., 2020).   

 
4. Bisphenol S (BPS) 
 

Bisphenol S (2,2-bis [4-hydroxyphenol] sulfone; BPS), obtained by condensation of phenol and 

sulfur trioxide, is, to date, one of the most famous proposed BPA substitutes (Catenza et al., 

2021; den Braver-Sewradj et al., 2020). In fact, BPS was thought to leach fewer monomers into 

food and drink (Kuruto-Niwa et al., 2005) and thus it has been massively used in the production 

of the so-called “BPA-free” consumer goods (Bittner et al., 2014; Catenza et al., 2021; Thoene 

et al., 2020). However, BPS is more resistant to biodegradation and so it tends to accumulate 

and persist in the environment more easily compared to BPA (Qiu, Zhan, et al., 2019; Wu et 

al., 2018).  

Considered its extensive use (Abraham & Chakraborty, 2020; Catenza et al., 2021), BPS has 

already been detected in the environment (e.g., sediment, water, soil, indoor dust) (Catenza et 

al., 2021) and also in human samples (Bousoumah et al., 2021; Liao et al., 2012; H. Wang et 

al., 2020). Even if BPS is more heat- and photo-resistant than BPA (Kuruto-Niwa et al., 2005), 

it is now evident that these properties are not enough to contain the spread of the compound 
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among worldwide human population (Bousoumah et al., 2021; Liao et al., 2012; H. Wang et 

al., 2020).   

 

Despite this, the use of BPS in not formally regulated. In his latest report, in April 2020, the 

EFSA declared that available data support a No Observed Adverse Effect Level (NOAEL) of 

20 mg BPS/kg BW/day for developmental toxicity and developmental immunotoxicity, which, 

however, do not affect the current Specific Migration Limit (SML) of 0.05 mg/kg food (EFSA 

et al., 2020). Therefore, EFSA concluded that there is no need of further limitations, but, as the 

report did not take into consideration all the available toxicological dataset, it committed to re-

evaluate BPS hazard in light of more complete evidence (EFSA et al., 2020). Furthermore, there 

is an ongoing proposal for classification of BPS as Reproductive Toxicant Cat.1B, for its 

adverse effects on development, sexual functions, and fertility (FPS, 2019).  

 
4.1 Structure and mechanisms of action  
 
BPS molecule presents two phenolic groups: thus, it shares the same similarities of BPA to 

estradiol’s structure (Fig.3) (Rochester & Bolden, 2015).  

Available data suggest that metabolism, potencies, and mechanisms of action of BPS are 

worryingly similar to the one of BPA, supporting the idea that the two compounds might display 

similar potential health hazards (Catenza et al., 2021; Rochester & Bolden, 2015).  

 

As the presence of the two phenolic group give BPS the ability to bind to ERs, those receptors 

have been considered among the first mediators of BPS actions. However, as for BPA, it has 

been demonstrated that BPS can bound a wide set of receptors activating numerous cell 

signaling pathways (Fig.6) (Naderi & Kwong, 2020).  

 

4.1.1 BPA and BPS: receptors in comparison 
 

BPS has been demonstrated to act as an agonist on both ERα and ERβ (Naderi & Kwong, 2020), 

showing different affinity compared to BPA possibly due to different recruitment of 

coregulators (Li et al., 2018).  

BPS displays lower affinity to ERα compared to BPA, but it was shown in vitro that BPS would 

act more specifically on ERα showing lower effects on ERβ (Kojima et al., 2019; Li et al., 

2018). These data have not been confirmed by other in vitro and, especially, in vivo studies, 

that showed, conversely, that BPS displays higher affinity to ERβ compared to BPA (Le Fol et 

al., 2017; Marroqui et al., 2021; Molina-Molina et al., 2013).   

There is also some evidence of BPS’ activity on ERRs: in fact, it has been shown that it can 

activate and up-regulate ERRα (Jia et al., 2018) and down-regulate ERRγ (Helies-Toussaint et 

al., 2014). Furthermore, BPS can also act as an agonist on GPER-1 and on membrane ERs 

(mERs), leading to ERK and JKN phosphorylation (Vinas & Watson, 2013). On the AR, BPS 

acts as a weak agonist but, as opposed to BPA, does not display any antagonistic effects  

(Kojima et al., 2019; Molina-Molina et al., 2013).  

The BPS activity on GRs is only partially understood. Previous evidence of lack of BPS’s 

influence on GRs’ activity (Roelofs et al., 2015) have been now rebutted by suggested weak 

antagonistic effects (Zenata et al., 2017).  
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BPS has been shown to have similar agonistic activity of BPA on PPARγ, not only in the 

adipocytes (Ahmed & Atlas, 2016; Boucher et al., 2016) but also in the macrophages (Gao et 

al., 2020) and in the liver  (Qiu, Yang, et al., 2019).   

The TH signaling appears to be a preferential target for the BPS neuroendocrine effects (Naderi 

& Kwong, 2020). In fact, it has been shown, by in vitro and in vivo studies, that BPS can 

interfere with TH homeostasis interacting with THRs (especially THRβ) (Lu et al., 2018) or 

with TH transporters (Zhang et al., 2016), but also altering the activity of the thyroid 

transcription factors or inducing changes in TH synthesis (Naderi & Kwong, 2020). On THRs, 

BPS displays either agonistic or antagonistic effects (Skledar et al., 2016; Zhang et al., 2018). 

 

As for BPA, also for BPS some receptor-independent effects, mainly related to cell cytotoxicity 

and oxidative stress have been described (Naderi & Kwong, 2020; Pelch et al., 2019; Qiu, Zhan, 

et al., 2019): BPS exposure enhances oxidative stress (promoting the production of ROS, the 

lipid peroxidation and reducing the antioxidant activity), increases apoptosis, decreases cell 

viability, and alters enzymatic activity. The increase in oxidative stress caused by BPS has been 

linked, as for BPA, to DNA damage.  

 

 
Figure 5. Schematic representation of BPS mechanisms of action (Naderi and Kwong, 2020).   

 
5. Brain and behavior as targets of BPA and BPS 
 

Considering the variety of molecular targets of BPA (MacKay & Abizaid, 2018), its action can 

affect different tissues in the organism (Fig.5) (Rochester, 2013; Rubin, 2011). Large literature 

describes the effects of BPA on reproductive and reproductive-related tissues, as primary sites 

of adverse outcomes (Tomza-Marciniak et al., 2018). However, it is now widely accepted that 

other tissues represent a target for BPA action (Rochester, 2013; Rubin, 2011). More recently, 

BPA has also been added to the list of the Metabolism Disrupting Chemicals (MDCs, i.e., 

“EDCs that are able to promote metabolic changes that can result in obesity, Type 2 Diabetes 

market as a component of epoxy resins and polycarbonate plastics
(Chen et al., 2016). BPS is also commonly used as a color developer in
thermal papers (Björnsdotter et al., 2017), an anticorrosive agent in
epoxy glues (Viñas et al., 2010), a preservative in canned foodstuffs
(Yang et al., 2014b), and an additive in paper products and currency
bills (Liao et al., 2012b). In comparison to BPA, BPS is more resistant to
biodegradation making it more amenable to accumulate and persist in
the environment (Qiu et al., 2019; Wu et al., 2018). Traces of BPS have
been detected in various environmental matrices, including surface
water (Yamazaki et al., 2015; Zhao et al., 2019), sediments (Jin and
Zhu, 2016), sewage sludge (Song et al., 2014; Yu et al., 2015), paper
products (Goldinger et al., 2015; Molina-Molina et al., 2019; Rocha
et al., 2015), indoor dust and air (Wang et al., 2015), some food items
(Liao and Kannan, 2013; Yang et al., 2014b; Zhou et al., 2019), and
consumer products (Liao et al., 2012b; Pivnenko et al., 2015). More-
over, there is a growing body of literature reporting the widespread
occurrence of BPS in human urine (Ghayda et al., 2019; Liao et al.,
2012a), serum (Li et al., 2020; Wan et al., 2018b), blood (Jin et al.,
2018; Yang et al., 2014a), placental tissue and breast milk (Deceuninck
et al., 2015; Dualde et al., 2019; Pan et al., 2020), maternal and cord
sera blood serum (Liu et al., 2017), and semen (Ghayda et al., 2019),
revealing an increasing risk of human exposure to this contaminant. For
more details regarding BPS concentrations in environmental and bio-
logical samples, we refer the reader to the other reviews (Chen et al.,
2016; Qiu et al., 2019; Wu et al., 2018; Zhao et al., 2019).

3. Effects of BPS: Mechanisms of toxic action

3.1. Estrogenic action

Over the past few years, several potential mechanisms have been

proposed to explain the BPS effects on the neuroendocrine functions
(Fig. 2, Tables 2, 3, and S1). Like other bisphenolic compounds, BPS
first attracted wide interest in toxicological research because of its es-
trogenic properties. BPS shares a basic structural feature with BPA,
which is the presence of a phenolic OH group resembling the 3-hy-
droxyl group of the E2 required for the effective binding to ERs
(Gallegos Saliner et al., 2003). Estrogenic activity of BPS has been
documented in both in vitro and in vivo studies. For example, the es-
trogenic activity of this compound has been reported using the yeast
two-hybrid system (Hashimoto et al., 2001; Hashimoto and Nakamura,
2000). Several studies demonstrated a weak estrogenic activity of BPS
(compared to BPA and/or E2) using a yeast cell-based transcriptional
and living cell-based bioreporter, human adrenocortical carcinoma cell
line (H295R), and nuclear receptor transactivation assay (Chen et al.,
2002; Molina-Molina et al., 2013; Rajasärkkä et al., 2014; Rosenmai
et al., 2014; Teng et al., 2013). However, comparable estrogenic po-
tency between BPS and BPA (but weaker than E2) was also observed in
other in vitro studies using different assays including cell proliferation
assays, transactivation assays, and morphogenesis assays with a MCF-7
breast cancer cell line (Atlas and Dimitrova, 2019; Grignard et al.,
2012; Kitamura et al., 2005; Kuruto-Niwa et al., 2005). Although the
relative potency of BPS was found to vary in different in vitro assays, the
results indicate that BPS has the potential to interfere with the ER-
mediated pathways and cellular development.

Estrogenic activity of BPS and its potential to disrupt the endocrine
system has also been shown in several in vivo studies (see Table S1 and
Supplementary Information). For example, Yamasaki et al. (2004)
found that BPS induced an estrogenic response in 20 day-old rats in-
dicated by a marked increase in the uterine weight (Yamasaki et al.,
2004). Shi et al. (2019) observed that prenatal exposure to BPS induced
transgenerational abnormalities in the reproductive functions of female

Fig. 2. Schematic drawing representing BPS mechanisms of action. BPS is known to interact with a variety of receptor-mediated signaling pathways, including
estrogen receptor α (ERα), estrogen receptor β (ERβ), membrane estrogen receptors (mERs), G protein-coupled estrogen receptor (GPER), thyroid hormone receptors
(TRs), androgen receptor (AR), glucocorticoid receptor (GR), estrogen related receptors (ERRs), and several other nuclear receptors. Brain aromatase is another target
for BPS toxicity. BPS can also induce oxidative stress through the generation of reactive oxygen species (ROS). Moreover, it can alter the transcription of various
genes as well as interfere with protein post-translational modification. HRE denotes hormone-responsive elements.

M. Naderi and R.W.M. Kwong (QYLURQPHQW�,QWHUQDWLRQDO������������������

�
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Mellitus (T2DM) or fatty liver in animals including humans”) (Heindel et al., 2015), considered 

its huge impact on metabolic relevant tissues (Marraudino et al., 2019; Rubin et al., 2019).   

 

 
Figure 6. The plurality of BPA’s target tissues (Gore et al., 2015).  

 

Effects of BPA on brain and behavior are to date supported by a quite large number of 

experimental and epidemiological studies (Frye et al., 2012; Gore et al., 2019; Mustieles et al., 

2015; Patisaul, 2020; Wolstenholme et al., 2011), which considered exposure during critical 

period of development particularly worrying (Mustieles et al., 2015; Z. Wang et al., 2020; 

Wolstenholme et al., 2011). However, exposure during adulthood is not without concerns (Bao 

et al., 2020; Frye et al., 2012; Gioiosa et al., 2013).  

 

Brain has indeed been demonstrated to be targeted by BPA exposure, especially within the 

sexually dimorphic regions, which are highly sensitive to sex hormones (Frye et al., 2012; 

Patisaul, 2020).  

Among regions which appear to be particularly sensitive to BPA effects have been enumerated 

different hypothalamic areas (e.g., the anteroventral periventricular nucleus, the paraventricular 

nucleus, the ventromedial nucleus, the arcuate nucleus), often correlated with the hypothalamic-

pituitary control of peripheral endocrine system (Frye et al., 2012; Goldsby et al., 2017; 

Patisaul, 2020), but also regions which are highly involved in the response to exogenous stimuli 

(e.g., medial amygdala, bed nucleus of stria terminalis) (Goldsby et al., 2017) or are highly 

dynamic (e.g., hippocampus and cortex)  (Khadrawy et al., 2016; Tavakkoli et al., 2020).   

 

Even if the effects on behaviors are quite difficult to assess, given their dependence on a wide 

range of parameters (Bakoyiannis et al., 2021; Gioiosa et al., 2013), BPA exposure has indeed 

been associated with altered behavioral outcome (Bakoyiannis et al., 2021; Patisaul, 2020; 

Rebolledo-Solleiro et al., 2021; Wolstenholme et al., 2011). An increasing number of 

nant. The United States banned DDT in 1972 due to its
effects on the environment and potential human health
effects, despite the benefit of decreased incidence of ma-
laria and typhoid (38, 39). DDT and its metabolites, di-
chlorodiphenyldichloroethylene (DDE) and dichlorodi-
phenyldichloroethane (DDD), have been associated with
endocrine-related diseases such as testicular tumors (40),
endometrial cancer (41), pancreatic cancer (42), type 2
diabetes mellitus (T2D) (43), and breast cancer (44, 45).

We must note that in the list of chemicals described
above, there are EDCs, such as BPA and phthalates, that
are commonly detected in most of the population because
of their widespread use. These latter EDCs have relatively
low accumulation in body fat tissue; therefore, serum or
urine levels of these chemicals, their metabolites, or spe-
cific reaction products likely reflect the so-called “body
burden,” defined as the total amounts of these chemicals
that are present in the human body at a given point in time.
On the contrary, PCBs, PBDEs, DDT, and DDE are POPs.
These are highly lipophilic and accumulate in the food
chain and in white adipose tissue (WAT) with important
consequences. This storage depot can contain a large res-

ervoir of POPs that are liberated into blood, especially
during weight loss periods. At the same time, it is a mech-
anism of protection as well because it limits the availability
of chemicals to enter the blood and access other tissues,
thereby eliciting detrimental effects. In fact, retention of
POPs in WAT may limit the ability to estimate the real
burden of these chemicals from measurements in serum or
urine levels, as occurs in most animal and human studies.

B. Endocrine systems are a physiological interface with
the environment, and gene-by-environment interactions
are perturbed by EDCs

The endocrine glands are distributed throughout the
body and produce the hormones that act as signaling mol-
ecules after release into the circulatory system (Figure 1).
Development, physiological processes, and homeostatic
functions are regulated and maintained by hormones. Sev-
eral functions of natural hormones are critical for both
health and disease and are relevant to EDCs. First, many
hormones bind to receptors with remarkable affinity, hav-
ing dissociation constants between 10!12 and 10!9 M,
which approximates their very low concentrations in the

Figure 1.

Figure 1. Diagram of many of the body’s endocrine glands in females (left) and males (right).
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experimental studies show that BPA exposure, mainly during critical periods of development 

but also in adulthood (Gioiosa et al., 2013), is linked with behavioral disturbances (i.e., 
disruption of "normal" behavioral patterns) (Rebolledo-Solleiro et al., 2021).  

 

The main affected behaviors appear to be the one which are sexually dimorphic and 

differentiated by exposure to sex hormones during critical periods (Rebolledo-Solleiro et al., 

2021; Wolstenholme et al., 2011). Among them, have been listed the social and socio-sexual 

behavior (Gore et al., 2019; Rosenfeld, 2015), the parental care and especially the mother-infant 

interaction (Keller et al., 2019; Rosenfeld, 2015), learning and memory (Mhaouty-Kodja et al., 

2018), and stress and anxiety (Wiersielis et al., 2020).  

 

BPS has comparable hazard profiles as BPA (den Braver-Sewradj et al., 2020), as it displays 

its effects on the organism in different tissues (den Braver-Sewradj et al., 2020; Rochester & 

Bolden, 2015). As for the BPA, the reproductive-relevant tissues have been initially considered 

as the primary site of adverse outcomes (den Braver-Sewradj et al., 2020; Rochester & Bolden, 

2015).  

However, as Naderi and Kwong recently reviewed, also BPS affects brain and behavior in many 

ways (Naderi & Kwong, 2020). In particular, hypothalamus (e.g., the preoptic area and the 

arcuate nucleus) (Catanese & Vandenberg, 2017; John et al., 2019) has been described as 

particularly sensitive to BPS effects, as well as basolateral amygdala (Hu et al., 2022) and 

prefrontal and frontal cortex (Castro et al., 2015; Mornagui et al., 2019). Particularly worrying 

are the BPS interference with several processes fundamental for neuronal development, such 

as axon guidance, neurite length, serotonergic neurotransmission, glutamatergic synapses and 

long-term depression (Naderi & Kwong, 2020). Last, BPS has been shown to display 

neurotoxicity (Qiu, Zhan, et al., 2019), mainly in hippocampal cell line (Meng et al., 2021; Pang 

et al., 2019).  

 

Affecting the brain, BPS also leads to behavioral alterations (Naderi & Kwong, 2020). In fact, 

in rodents, BPS alters anxiety response (mainly inducing anxiety-like behaviors, contextually 

altering locomotor activity and explorative behavior) (da Silva et al., 2019; Hu et al., 2022), 

sociability (Kim et al., 2015), and maternal care (Catanese & Vandenberg, 2017). Thus, as these 

effects often emerge even at low doses (Bakoyiannis et al., 2021; Naderi & Kwong, 2020; 

Rebolledo-Solleiro et al., 2021), the behavioral outcomes should be taken into consideration to 

reach a complete evaluation of the effects of BPA and BPS exposure (Bakoyiannis et al., 2021).  

 
6. Health risk of exposure to bisphenols 
 

The massive presence of BPA in the daily routine has led to numerous epidemiological studies 

which have highlighted that exposure to BPA, either in developmental or adult age, increases 

the risk of disease development or exacerbation (Cimmino et al., 2020; Rochester, 2013), 

mainly for the reproductive (e.g., polycystic ovary syndrome, endometriosis) (Buck Louis et 

al., 2013; Kechagias et al., 2020), metabolic (e.g., type-2 diabetes, cardiovascular diseases, and 

hypertension) (Sowlat et al., 2016; Wehbe et al., 2020) or immune-mediates ones (Kimber, 

2017; Lazurova et al., 2021).  

Furthermore, exposure during critical periods, such as in utero or before puberty exposure, is 

linked to altered behaviors in children, suggesting potential alteration in the brain in humans  
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(Ejaredar et al., 2017; Mesnil et al., 2020). In fact, exposure to BPA has also been linked to 

neurodevelopmental (e.g., autism spectrum disorders, attention deficit and hyperactivity, 

schizophrenia) (Fujiwara et al., 2016; Tsai et al., 2020), neurobehavioral (e.g., major depressive 

disorders) (Perera et al., 2016), and neurodegenerative diseases (e.g., Alzheimer’s diseases, 

Parkinson’s diseases) (Landolfi et al., 2017; Manivannan et al., 2019; Masuo & Ishido, 2011).  

Considered the already reported presence of BPS in human samples (Bousoumah et al., 2021; 

Liao et al., 2012; H. Wang et al., 2020), and even if its impact on human health is still poorly 

investigated, emerging evidence support the idea that also the exposure to this compound could 

lead to increased risk of some diseases, such as endometriosis (Peinado et al., 2020), metabolic 

diseases (Jones et al., 2021; Ranciere et al., 2019), cardiovascular diseases (An et al., 2021; 

Zhang et al., 2020) or asthma (Mendy et al., 2020).  
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  CHAPTER 2 

 
AIM OF THE THESIS 
 

Bisphenols (BPs), organic synthetic compounds mainly used to produce plastics, are an 

abundant class of synthetic Endocrine Disrupting Chemicals (EDCs; i.e., exogenous chemicals, 

or mixture of chemicals, that interfere with any aspect of hormone action).  

As it is reported in the introduction, the concerns on BPs regard their massive presence among 

a long list of consumer goods and their subsequent widespread into the environment. Bisphenol 

A (BPA) is the first and still the most highly produced BPs. Thanks to its structure, BPA can 

act through different types of nuclear and membrane-bound hormone receptors, exerting a wide 

range of effects on the organism. To stem the deleterious effects of BPA, the extensive search 

for safe alternatives has led to the production of a variety of substitutes. To date, one of the 

most used one is bisphenol S (BPS), which, unfortunately, seems to display the same, or even 

worse, endocrine disrupting properties as the BPA.  

 

Thus, considering that: 

- The worldwide consumption of BPA and BPS is rapidly increasing, leading to alarming 

environmental levels,  

- Even if, the European regulation on BPA has become stricter, its use is still widely 

authorized, and, at present, there are almost no guidelines for the use of its analogues, 

- The consequences of exposure to such compounds differ based on numerous parameters 

(e.g., age, sex, health condition, dose, route and duration of exposure), making the 

evaluation of health hazard particularly tricky to assess,  

The aim of this thesis is to evaluate the effects of oral exposure, either during particularly 

sensitive period of adulthood (i.e., pregnancy and lactation) or during development (i.e., 
perinatal period), to low dose (i.e., 4 µg/kg BW/day, EFSA TDI for BPA) BPA or BPS in the 

murine model.  

 

In particular, this thesis has five main goals:  

1. Investigating, on the direct exposed dams, the long-term consequences of chronic exposure, 

covering pregnancy and lactation and reaching 20 weeks of treatment, to low-dose BPA on 

social behavior and related vasopressin and oxytocin systems;  

2.  Investigating, on the direct exposed dams, the consequences of exposure throughout 

pregnancy and lactation to low dose of either BPA or BPS on the spontaneous maternal 

behavior and related hypothalamic oxytocin system, and how this can affect pups’ survival 

within the first postnatal week;  

3. Evaluating the effects on sexual behaviors and on related hypothalamic kisspeptin system of 

adult male and female mice perinatally exposed to low-dose BPA or BPS;  

4. Evaluating the effects on anxiety-related behaviors and on related serotonin system within 

the Raphe nucleus of adult male and female mice perinatally exposed to low-dose BPA or BPS;  

5. Last, taking the advantage of the Experimental Autoimmune Encephalomyelitis mouse 

model, investigating, in both sexes, the consequences of perinatal exposure to BPA or BPS in 

this mouse model of multiple sclerosis (MS). Considering that MS is a sexual dimorphic and 

multifactorial disease and that environmental components have been implicated in the etiology 
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of MS, exposure to BPs could represent new environmental risk factors which can contribute 

to the different prevalence and clinical features of the disease observed in the two sexes.  
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Effects of chronic exposure to bisphenol A in adult female mice on social behavior,
vasopressin system, and estrogen membrane receptor (GPER1)
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Marilena Marraudino1
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Bisphenol A (BPA), an organic synthetic compound found in some plastics and epoxy resins, is classified as an
endocrine disrupting chemical. Exposure to BPA is especially dangerous if it occurs during specific “critical
periods” of life, when organisms are more sensitive to hormonal changes (i.e., intrauterine, perinatal, juvenile
or puberty periods). In this study, we focused on the effects of chronic exposure to BPA in adult female mice
starting during pregnancy. Three months old C57BL/6J females were orally exposed to BPA or to vehicle (corn
oil). The treatment (4 µg/kg body weight/day) started the day 0 of pregnancy and continued throughout preg-
nancy, lactation, and lasted for a total of 20 weeks. BPA-treated dams did not show differences in body weight
or food intake, but they showed an altered estrous cycle compared to the controls. In order to evidence alter-
ations in social and sociosexual behaviors, we performed the Three-Chamber test for sociability, and analyzed
two hypothalamic circuits (well-known targets of endocrine disruption) particularly involved in the control of
social behavior: the vasopressin and the oxytocin systems. The test revealed some alterations in the displaying
of social behavior: BPA-treated dams have higher locomotor activity compared to the control dams, probably
a signal of high level of anxiety. In addition, BPA-treated dams spent more time interacting with no-tester
females than with no-tester males. In brain sections, we observed a decrease of vasopressin immunoreactivity
(only in the paraventricular and suprachiasmatic nuclei) of BPA-treated females, while we did not find any
alteration of the oxytocin system. In parallel, we have also observed, in the same hypothalamic nuclei, a sig-
nificant reduction of the membrane estrogen receptor GPER1 expression.

Key words: Endocrine disrupting chemicals; BPA; Three-Chamber test; vasopressin, oxytocin; GPER1; par-
aventricular nucleus; suprachiasmatic nucleus.

A
B

ST
R

A
CT

Correspondence: Brigitta Bonaldo, Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole
10,10043 Orbassano (TO), Italy. 
Tel. +39.011.6706632 - Fax: +39.011.2367054. E-mail: brigitta.bonaldo@unito.it 

Conference Presentation: Preliminary results were presented during the XXX national meeting of the Italian
Group for the Study of Neuromorphology (GISN).

Contributions: BB, designed and performed experiments, analyzed data and wrote the draft; AC, MB, performed
experiments and analyzed data; SG, GCP, revised the draft and wrote the paper; MM, designed the experiment,
revised the draft and wrote the paper.

Ethics approval: Animal care and handling were according to the European Union Council Directive of 22nd
September 2010 (2010/63/UE). All the procedures reported in the present study were approved by the Italian
Ministry of Health (407/2018-PR) and by the Ethical Committee of the University of Turin (Project n° 360384). 

Conflict of interest: All authors have no conflicts of interest to declare with respect to the research, authorship,
and/or publication of this article.

2021_s 1 Article.qxp_Hrev_master  02/11/21  22:33  Pagina 72

CHAPTER 3 - Experiment 1

Brigitta Bonaldo
34



                                                                                                                   Article

Introduction
Thousands of chemicals, some banned and some still in use,

have been classified as endocrine disruptor compounds (EDCs),
i.e., exogenous chemicals, or mixture of chemicals, that can inter-
fere with any aspect of hormone action.1 In particular, bisphenols
(BPs), organic synthetic compounds largely used for the produc-
tion of polycarbonate plastics and epoxy resins, are an extremely
abundant class of EDCs. As reviewed by Catenza et al.,2 the first
synthesized BP, bisphenol A (BPA), has been utilized in the pro-
duction of plastics since the 1950s. It is still the most highly pro-
duced BP: in 2018, about 7.2 million tons of BPA have been pro-
duced globally, and its consumption has been estimated to increase
by 3.1 million tons by 2022.3,4 Thanks to its structure, BPA can
interact with a wide set of hormone receptors both nuclear and
membrane-bound, including estrogen receptors (ERα, ERβ,
GPER1, ERRγ), androgen receptor, peroxisome proliferator-acti-
vated receptor γ, glucocorticoid receptors and thyroid hormone
receptors.5,6 The capability of BPA to act through different types of
receptors, differentially distributed in the tissues, is responsible for
the wide range of effects it exerts on the organism.7 BPA, as other
EDCs, is known to have organizational effects during develop-
ment, and/or activational effects in adulthood.1 Exposure to EDCs
is more dangerous if it occurs during specific “critical periods” of
life, such as intrauterine, perinatal, juvenile or puberty periods,
when organisms are more sensitive to hormonal action.8 Early
pregnancy seems to be a particular sensitive period to BPA expo-
sure, linked to the development of some adverse effects, such as
intrauterine growth restriction.8 In addition, pregnancy, delivery
and maternal care are highly regulated by hormonal actions. In
fact, progesterone, prolactin and estradiol are involved in the
organization and activation of brain area appointed to the control
of these functions, such as the medial preoptic area (MePOA), the
bed nucleus of stria terminalis (BST) and the medial amygdala
(MeA) which are enriched in estrogen, vasopressin and oxytocin
receptors.9,10

Vasopressin (AVP) and oxytocin (OXT) systems play a key
role in the control of different type of behaviors, and in particular
the maternal11 and the social one.12-15 They are two nonapeptides
mainly synthesized in neurons of supraoptic (SON) and paraven-
tricular (PVN) nuclei of the hypothalamus, and they, as well as
their analogues in non-mammalian vertebrates, represent target
systems underlying the alterations observed in social behavior
after exposure to different types of EDCs.16-18 There are many stud-
ies, performed not only in rodents, which demonstrated that BPA
exposure, mainly during pre- or peri-natal periods, is linked to
alterations in both AVP and OXT number of neurons and innerva-
tion, especially in sexually dimorphic regions associated with
social and aggressive behaviors and to anxiogenic effects.19

In the present study, we proposed pregnancy as a critical period
not only for the developing fetus but also for the mother. We inves-
tigated the long-term consequences of chronic exposure to low-
dose BPA, starting at mating and continuing throughout pregnancy
and lactation, reaching 20 weeks of treatment, directly on the
exposed dams. Primarily we focused on social behavior18 and on
two of the circuits mainly involved in the control of this behavior,
AVP and OXT,12-15 which are well-known targets of endocrine dis-
ruption,11,16,19 as well as the expression of the membrane estrogen
receptor (GPER1) which is largely present in these nuclei.20

Materials and Methods 

Animals
Adult C57BL/6J male and female mice from our outbred

colony at the Neuroscience Institute Cavalieri Ottolenghi (original-
ly purchased from Envigo, S. Pietro al Natisone, Udine, Italy) were
housed in standard conditions in 45 × 25 × 15 cm polypropylene
mouse cages at 22±2°C, under 12:12 light dark cycle (lights on at
8:00 am). Food and water were provided ad libitum (standard
mouse chow 4RF21, Mucedola Srl, Settimo Milanese, Milan,
Italy). One 3-months old male and two 3-months old female mice
were caged together to achieve a successful mating, assessed by
the evaluation of the presence of the vaginal plug (assumed as ges-
tational day 0, GD0).

Treatment 
BPA (Sigma Aldrich, St. Louis, MO, USA; 239658, CAS 80-

05-7) was prepared for oral administration by dissolving it in corn
oil (Sigma-Aldrich, C8267). 20 pregnant dams were divided into
two experimental groups: control dams (receiving only vehicle,
corn oil; n=10) and treated dams (receiving 4 µg/kg BW/day of
BPA, corresponding to the European TDI; n=10). 

Dams were treated started at GD0, throughout pregnancy and
lactation, and continuing after the weaning of the offspring, for a
total of 20 weeks of treatment. To mimic human exposure condi-
tions, the daily treatment or the vehicle was given orally to the
dams, with a pipette, in order to minimize the discomfort and the
stress provoked to the dams during the treatment.21,22 The dose was
calculated according to their body weight, recorded with an elec-
tronic precision balance (Mod. Kern-440-47N, resolution 0.1 g). 

We monitored the dams, evaluating in particular: i) body
weight (BW), recorded daily; ii) after the weaning, the food intake
(g of food/animal/day) once a week; iii) the estrous cycle, evaluat-
ing the vaginal cytology smears,23 after the 18th week of treatment,
for at least 2 cycles. 

Three-Chamber test
Dams were tested after the 18th week of treatment, in estrus

phase (evaluated by vaginal smear). The test was conducted using
a Three-Chamber social approach apparatus: a rectangular plastic
box consisting of three same-sized chambers (20 cm× 25 cm × 20
cm) with openings in the dividing walls that allowed the subject to
access all three chambers without restriction. A plastic holding
cylinder, for the novel and familiar mice, was placed in each of the
side chambers. These cylinders were drilled to allow interactions
between tester and no-tester mice. 

Tester mice were placed in the room in which the test was per-
formed at least 2 h before starting, to allow the habituation to room
lighting. Before starting and between each session, the testing
apparatus was cleaned with 70% ethanol, being sure to thoroughly
dry the apparatus to avoid exposure of mice to alcohol. The testing
procedure consisted of four chronological sessions: Habituation,
two Sociability sessions, and Social preference.24 Each session
lasted 5 min (schematic representation in Figure 1A) and at the end
of each session the tester mouse was temporally moved to a clean
housing cage while the investigator set up for the next session. As
no-tester mice we selected unknown age-matched male or female
C57BL/6J mice. In the habituation phase (Figure 1A, Session 1)
the tester mouse was placed into the middle chamber and allowed
to explore all three chambers freely. In the first sociability phase
(Figure 1A, Session 2), an age- and gender-matched (female, in
estrus phase) novel C57BL/6J mouse was placed into the holding
cylinder placed in the right chamber. The same occurs in the sec-
ond sociability phase (Figure 1A, Session 3), when an age- and
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Figure 1. Analysis of social behavior of oil-treated and BPA-treated dams through Three-Chamber test. A) Experimental set-up and
schematic representation of the apparatus used for the Three-Chamber test for the four experimental sessions: session 1 (habituation),
session 2 (sociability with the gender-matched mouse), session 3 (sociability with the gender-mismatched mouse) and session 4 (social
preference). B) Representative images for total distance traveled by Oil-treated dams (left column) or BPA-treated ones (right column)
during the four sessions of the test. C,D) Time spent by the oil-treated (light gray) or BPA-treated (dark gray) dams within the three
different chambers (left, center and right chamber) of the apparatus during (C) the third session (sociability with gender-mismatched
mouse) and (D) the fourth session (social preference) of the test. E,F) Frequency in sniffing (E) and grooming (F) behavior during the
four sessions of the test displayed by the oil-treated (light gray) or BPA-treated (dark gray) dams. Data are expressed as mean ± SEM.
One-way ANOVA revealed a significant effect of the treatment for p≤0.05. 
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gender-mismatched (male) novel C57BL/6J mouse was presented
to tester mouse in the holding cylinder placed in the left chamber.
In the fourth and last session (Figure 1A, Session 4), the social
preference was assessed, presenting to the tester mice both known
female (right chamber) and male (left chamber) in the holding
cylinder.

Each session was recorded with a camera placed above the
apparatus in order to subsequently perform the behavioral analysis
through the Ethovision XT program (Noldus Information
Technology, Wageningen, The Netherlands). For each session we
measured different parameters (listed above) in order to evaluated
sex-dependent sociability, anxiety-related and explorative behav-
iors of the tester mouse: 
- Distance: the total distance traveled (cm) by the tester mice in

each chamber and in the total arena. 
- Time: the time (s) spent in the different chambers by the tester

mice. 
- Sniffing: the number of times and the time (s) spent by the

tester mouse interacting with the no-tester mice in the holding
cup or exploring the different chambers. 

- Self-grooming: the number of times and the time (s) spent by
the tester mouse grooming itself. 

- Rearing: number of times and time (s) spent by the tester
mouse rearing (i.e., the mouse is standing only on its posterior
legs).

Fixation and tissue sampling
Dams were sacrificed after 20 weeks of treatment, in the estrus

phase, assessed by vaginal smear, by deep irreversible anesthesia
(intraperitoneal injection of zoletil 80 mg/kg/ rompum 10 mg/kg)
and transcardially perfused with 4% paraformaldehyde (PFA)
solution. Brains were removed and stored in a 4% PFA solution for
24 h, followed by several washings in 0.01 M saline phosphate
buffer (PBS). Finally, they were stored in a 30% sucrose solution
in PBS at 4°C, frozen in isopentane pre-cooled in dry ice at -35°C
and stored in a deep freezer at -80°C until sectioning.25

Brains (5±1/group) were serially cut in the coronal plane at 40
µm thickness with a cryostat, in four series. The plane of section-
ing was oriented to match the drawings corresponding to the coro-
nal sections of the mouse brain atlas.26 Sections were collected in
a cryoprotectant solution27 and stored at -20°C. Three series were
processed, for AVP, OXT and GPER1 immunohistochemistry,
using the free-floating technique.

Immunohistochemistry 
The presence of AVP, OXT, or GPER1 was detected by

immunohistochemistry performed, according to our previous stud-
ies,20,25,28 on free-floating sections. Briefly, the sections were
washed overnight in PBS at pH 7.3. The following day, sections
were first washed in PBS containing 0.2% Triton X-100 for 30 min
and then treated to inhibit endogenous peroxidase activity with a
solution of PBS containing methanol/hydrogen peroxide for 20
min. Sections were then incubated for 30 min with normal goat
serum (Vector Laboratories, Burlingame, CA, USA) and incubated
overnight at room temperature with anti-AVP antibody (gift of Dr.
Michael Sofroniew, UCLA, Los Angeles, CA, USA, Rabbit,
1:20,000)29,30 or anti-OXT antibody (EMD Millipore AB911,
Rabbit, 1:10,000) diluted in PBS, pH 7.3-7.4, containing 0.2%
Triton X-100. For GPER1 immunohistochemistry sections were
washed for 30 min at room temperature in PBS containing 0.2%
Triton X-100 and 0.2% BSA and then incubated 48 h at 4°C with
anti-GPER-1 antibody (Abcam, Cambridge, UK, ab39742, Rabbit,
1:250) diluted in PBS containing 0.2% Triton X-100, 0.2% BSA
and 3% normal serum goat (Vector Laboratories). A biotinylated
goat anti-rabbit secondary antibody (Vector Laboratories) was then

employed at a dilution of 1:250 for 60 min at room temperature
(dilution of 1:300 for 120 min at room temperature for GPER1).
The antigen-antibody reaction was revealed by 60 (AVP and OXT)
or 90 (for GPER1) min incubation with avidin-peroxidase complex
(Vectastain ABC Kit Elite; Vector Laboratories). The peroxidase
activity was visualized with a solution containing 0.400 mg/ml
3,3-diamino-benzidine (Sigma-Aldrich, Milan, Italy) and 0.004%
hydrogen peroxide in 0.05 M Tris-HCl buffer at pH 7.6. Sections
were mounted on chromallum-coated slides, air-dried, cleared in
xylene and cover slipped with New-Entellan mounting medium
(Merck, Milan, Italy). These antibodies were successfully used in
previous studies.25,28,31-33 The specificity of these antisera was pre-
viously assessed,34-36 but, as a further control, we omitted the pri-
mary antiserum or the secondary biotinylated one, replaced with
PBS. In both cases positive cell bodies and fibers were totally
absent.

Quantitative analysis
For quantitative analysis, selected standardized sections of

comparable levels covering the paraventricular nucleus (PVN,
Bregma -0.58 to -0.94 mm), the supraoptic nucleus (SON, Bregma
-0.58 to -0.94 mm), the suprachiasmatic nucleus (SCh, Bregma -
0.34 to -0.82 mm) and the medial amygdala (MeA, Bregma -1.06
to 1.22 mm) were chosen according to the mouse brain atlas.26 Two
sections for each nucleus were acquired with a NIKON DS-U1
digital camera (Software of acquisition: NIS-Element AR 2.10)
connected to a NIKON Eclipse 90i microscope (Nikon Italia
S.p.A., Florence, Italy). Images were digitized by using a 20x
objective. Digital images were processed and analyzed by ImageJ
(v. 2.10/1.53c; Wayne Rasband, NIH, Bethesda, MD, USA). 
Measurements were performed within predetermined fields
(region of interest, ROI), boxes of fixed size and shape that are
inserted inside each labeled considered nucleus (0.066 mm2 for
SON; 0.077 mm2 for SCh; 0.104 mm2 for MeA). The PVN was
instead divided into subregions, following the different distribution
within the nucleus of the two analyzed systems.26 On one hand, for
the AVP- immunoreactivity (ir) analysis, the PVN (total area 0.049
mm2) was divided into two sub-regions, the anterior parvicellular
nucleus (PaAP, 0.013 mm2) and the ventral nucleus (PaV, 0.036
mm2). On the other hand, for the OXT-ir analysis, the PVN (total
area 0.068 mm2) was divided in three subregions, the dorsal
cap/lateral magnocellular part (PaDC/PaLM, 0.013 mm2), the
medial parvicellular part (PaMP, 0.035 mm2) and the medial mag-
nocellular part (PaMM, 0.02 mm2). Finally, the GPER1-ir was ana-
lyzed in the entire PVN.

We evaluated the extension of the immunoreactivity (cell bod-
ies, dendrites, fibers) in all the selected nuclei as fractional area
covered by immunopositive material.37 In addition, we counted the
number of AVP-positive cells in PVN, SON and SCh, while the
OXT-positive cells were counted in PVN and SON.

Statistical analysis 
Quantitative data were examined with SPSS 26 statistic soft-

ware (SPSS Inc., Chicago, USA) by one-way analysis of variance
(ANOVA). Differences were considered statistically significant for
values of p ≤0.05. Data are shown as mean ± SEM (mean standard
error).

Results 

Effects of chronic adult exposure to BPA on physiologi-
cal parameters of the dams

The performed treatment had not significant effects on body
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weight or food intake of the dams (data not shown). However, the
estrous cycle of the BPA-exposed dams seems to be altered com-
pared to the one of the control dams. In fact, the percentage of time
spent in the estrus phase was significantly increased (p=0.041) in
the BPA-treated dams (63.58±5.62%) compared to the controls
(44.34±5.91%).

Three-Chamber test 
Results obtained from the analysis of the Three-Chamber test

are summarized in Table 1 and Table 2, reporting all the values.
Here we highlight the most interesting results (Figure 1), for each
session: 

Session 1 (Habituation). The total distance traveled by the
BPA-treated dams was significantly higher compared to the con-
trols (p=0.018) (Figure 1B). Furthermore, BPA dams also showed
higher total sniffing behavior than controls (p=0.007) (Figure 1E). 

Session 2 (Sociability with the gender-matched mouse). The
total distance covered by the BPA-treated dams was, again, signif-
icantly higher compared to the controls (p=0.006) (Figure 1 B).
Both groups preferred to spend time in the right chamber, where
the female no-tester animal was placed, but, interestingly, BPA-
treated dams did more sniffing compared to the controls (p=0.04)
(Figure 1E). 

Session 3 (Sociability with the gender-mismatched mouse). In
this session, the distance covered by BPA-treated dams was signif-
icantly higher compared to the controls (p=0.005) only in the left
chamber, where the male no-tester animal was placed (Figure 1B).

Both BPA- and oil-treated dams preferred to spend the time in the
left chamber, but the BPA-treated groups demonstrated a tendency
to spend less time in this chamber compared to the control
(p=0.058) (Figure 1C). Moreover, BPA-treated dams spent more
time in the right chamber compared to the controls (p=0.014)
(Figure 1C). Besides, BPA-treated group did more grooming com-
pared to the control (p=0.001), spending more time doing it
(p=0.006) (Figure 1F). 

Session 4 (Social preference). We did not find any significant
differences in this last session. However, we noticed that difference
of time spent in the two chambers was flattened in the BPA-treated
group (p=0.759), showing no preference (Figure 1D). Moreover,
the BPA-treated dams had a tendency (p=0.074) to spend less time
sniffing the male no-tester mice compared to the controls (Figure
1E). Finally, the BPA-treated dams showed a tendency to do more
rearing compared to the control (p=0.053), spending more time
doing it (p=0.064).

AVP-ir analysis 
The analysis of the   AVP-ir (summarized in Table 3) revealed

that the PVN (Figure 2 A-C) and the SCh (Figure 3) were affected
by the treatment, whereas there was no effect on SON and MeA
(Table 3). 

In particular, we observed a significative reduction (Figure 2A)
in both number of cells (p=0.005) (Figure 2B), and fractional area
(p=0.036) (Figure 2C) in the total PVN. This reduction is mainly
due to the reduction of AVP-ir in the PaV of the BPA-treated group

[page 76]                                         [European Journal of Histochemistry 2021; 65(s1):3272]

Table 1. Results obtained from the analysis of the distance traveled and of the time spent in the total arena or different chambers of the
Three-Chamber test. Data are reported as mean ± SEM. One-way ANOVA revealed a significant effect of the treatment for p≤0.05. 

Chamber                                           Arena                                  Left chamber                        Center                             Right chamber
Parameter                                                                           Session 1 (Habituation)

Distance traveled (cm)                 Oil: 86408.452±10979.28                     Oil: 32590.944±4441.891           Oil: 19823.03±2448.964                   Oil: 3394.478±4713.435
                                                           BPA: 126892.944±10764.76                   BPA: 51877.389±5830.23         BPA: 31452.311±3025.188               BPA: 43563.244±3842.471
                                                                         (p=0.018)                                              (p=0.018)                                   (p=0.009)                                         (p=0.135)
Time (s)                                                 Oil: 300.181±0.035                               Oil: 112.626±7.141                     Oil: 78.492±5.561                             Oil: 109.063±6.56
                                                                   BPA: 300.11±0.03                                BPA: 112.076±7.272                    BPA: 62.311±5.031                         BPA: 125.724±10.482
                                                                         (p=0.153)                                              (p=0.958)                                   (p=0.046)                                         (p=0.197)

Session 2 (Sociability with no-tester female)

Distance traveled (cm)                Oil: 83438. 054±12399.336                   Oil: 41711.411±6090.7754         Oil: 21088.391±3296.322                  Oil: 20638.252±4315.31
                                                            BPA: 137443.87±11607.57                      BPA: 66523±7443.3324             BPA: 36700.822±3511.7                 BPA: 34220.044±3806.443
                                                                         (p=0.006)                                               (p=0.02)                                    (p=0.005)                                         (p=0.031)
Time (s)                                                 Oil: 300.197±0.041                                Oil: 71.936±8.824                       Oil: 52.725±5.93                            Oil: 175.509±12.648
                                                                 BPA: 300.111±0.031                              BPA: 92.209±12.174                     BPA: 37.272±4.22                           BPA: 170.63±12.226
                                                                         (p=0.116)                                              (p=0.196)                                   (p=0.049)                                         (p=0.785)

Session 3 (Sociability with no-tester male)

Distance traveled (cm)                 Oil: 111206.4±17506.127                    Oil: 19509.378±2115.5327         Oil: 30649.682±5578.267                Oil: 61047.344±12048.584
                                                            BPA: 124788.84±15582.89                  BPA: 40075.422±6023.7911       BPA: 33305.933±4539.924               BPA: 51407.489±6711.153
                                                                          (p=0.57)                                                (p=0.05)                                    (p=0.717)                                         (p=0.495)
Time (s)                                                  Oil: 300.158±0.04                               Oil: 191.422±14.775                    Oil: 35.453±5.911                            Oil: 73.281±12.224
                                                                 BPA: 300.138±0.038                              BPA: 156.247±8.873                    BPA: 30.607±5.213                          BPA: 113.283±7.809
                                                                         (p=0.722)                                             (p=0.058)*                                  (p=0.547)                                         (p=0.014)

Session 4 (Social preference)

Distance traveled (cm)                Oil: 110284.94±15934.653                    Oil: 33876.808±6436.024         Oil: 31700.611±5075.1257                Oil: 44707.522±8985.061
                                                           BPA: 124198.21±17361.655                  BPA: 47583.567±8235.806         BPA: 33132.369±5619.05               BPA: 43482.278±7476.7306
                                                                         (p=0.563)                                              (p=0.208)                                   (p=0.852)                                         (p=0.918)
Time (s)                                                 Oil: 300.181±0.035                              Oil: 154.534±19.698                      Oil: 30.981±4.9                             Oil: 114.666±16.898
                                                                 BPA: 300.137±0.038                              BPA: 123.32±14.641                   BPA: 47.487±13.349                         BPA: 129.33±12.524
                                                                         (p=0.413)                                              (p=0.222)                                   (p=0.263)                                         (p=0.496)

*Tendency towards significance (0.05<p<0.06).                                                                                                                                                                                                                                           
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compared to the controls (cell number, p<0.005, fractional area,
p<0.043). Also, in the SCh we observed a significant reduction in
the BPA-treated group (Figure 3A) of AVP-ir in both number of
cells (p=0.002) (Figure 3B) and fractional area (p=0.004) (Figure
3C). 

The analysis of both number of cells and fractional area
revealed no effects of the treatment in the SON, as well as in the
MeA. 

OXT-ir analysis
The analysis of the OXT-ir did not show any significant differ-

ence between groups in the analyzed nuclei (Table 3). 
In particular, we did not observe any difference in the total

PVN (Figure 2D), both in number of cells (p=0.806) (Figure 2E)
and fractional area (p=0.548) (Figure 2F). Moreover, the further
analysis of the PVN subnuclei (PaDC/PaLM, PaMP, PaMM) con-
firmed the absence of effects of treatment on OXT-ir: in fact, the
two experimental groups also maintained the same distribution of
the OXT-ir within the subnuclei, both for the number of cells
(PaDC/PALM, p=0.557, PaMP, p=0.967. PaMM, p=0.888) (Figure
2E) and the fractional area (PaDC/PALM, p=0.349. PaMP,
p=0.678. PaMM, p=0.588) (Figure 2F).  

The treatment did not affect the OXT-ir in the SON and in the
MeA (Table 3). 

GPER1-ir analysis 
We performed the quantitative analysis for GPER1-ir in all

analyzed nuclei (Table 3). This analysis revealed a significant
effect of the treatment only in PVN and SCh, the nuclei in which
we observed also significant changes in AVP-ir. In particular, we
observed a significative reduction (Figure 4) in GPER1-ir in terms
of fractional area both in PVN (Figure 4 A,B) (p<0.001) and in
SCh (Figure 4C) (p=0.003) in the BPA-treated animals compared
to the control ones. 

Discussion
The results of this study support the idea that pregnancy repre-

sents a particularly sensitive period of adult life for endocrine dis-
ruption and that the continued exposure to BPA could lead to
behavioral and neuroendocrine circuits alterations not only in the
offspring but also in the exposed dams. In fact, we observed some
alterations in the displaying of social behavior, although BPA-
treated dams did not lose the sociability skills. Interestingly BPA-
treated dams demonstrated higher interactions towards no tester
female and lower interactions toward the male one compared to the
control dams. The analysis of two systems strongly correlated to
the control of social behavior, vasopressin and oxytocin hypothal-
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Table 2. Results obtained from the analysis of different behaviors (sniffing, grooming, rearing, escape) during the four sessions of the
Three-chamber test. Data are reported as mean ± SEM, both as frequency (F) and cumulative duration (CD). One-way ANOVA revealed
a significant effect of the treatment for p≤0.05.                                                                                                               

Parameter                                           Session 1                       Session 2                         Session 3                                  Session 4

Sniffing in left chamber (F)                      Oil: 11.556±2.304                        Oil: 23±4.69                           Oil: 23.778±2.666                                  Oil: 19.444±2.982 
                                                                        BPA: 20.889±3.442                  BPA: 19.222±2.645                     BPA: 24.667±1.763                                    BPA: 24±3.742
                                                                               (p=0.039)                                (p=0.493)                                  (p=0.784)                                              (p=0.355)
Sniffing in left chamber (CD)                   Oil: 14.406±6.052                   Oil: 28.382±9.533                      Oil: 28.139±5.012                                  Oil: 22.754±5.103 
                                                                        BPA: 24.374±7.767                  BPA: 20.507±4.379                     BPA: 25.218±5.88                                 BPA: 28.824±6.332
                                                                               (p=0.326)                                (p=0.464)                                    (p=0.71)                                                (p=0.446)
Sniffing in right chamber (F)                      Oil: 16.444±2.9                     Oil: 16.222±3.122                      Oil: 23.667±2.744                                  Oil: 26.333±3.693 
                                                                            BPA: 20±3.202                     BPA: 26.222±3.205                    BPA: 29.778±3.403                                 BPA: 20.111±1.495
                                                                               (p=0.422)                                 (p=0.04)                                    (p=0.181)                                               (p=0.138)
Sniffing in right chamber (CD)                 Oil: 15.296±3.934                   Oil: 15.013±4.427                        Oil: 25.64±4.322                                    Oil: 30.39±6.766
                                                                        BPA: 17.696±4.013                   BPA: 28.142±5.49                      BPA: 28.64±4.442                                BPA: 16.886±2.062
                                                                               (p=0.675)                                (p=0.081)                                   (p=0.635)                                               (p=0.074)
Total sniffing (F)                                              Oil: 28±2.724                     Oil: 39.222±3.792 B                     Oil: 47.444±2.672                                  Oil: 45.778±3.696 
                                                                        BPA: 40.889±3.203                   PA: 45.444±2.739                      BPA: 54.444±3.096                                xBPA: 44.111±4.185
                                                                               (p=0.007)                                (p=0.202)                                   (p=0.089)                                               (p=0.769)
Total sniffing (CD)                                       Oil: 29.702±6.396                   Oil: 43.396±8.201                      Oil: 53.779±4.394                                  Oil: 53.144±6.394 
                                                                        BPA: 42.072±7.248                  BPA: 48.649±5.579                    BPA: 53.858±5.868                                BPA: 45.710±6.386
                                                                               (p=0.219)                                (p=0.604)                                   (p=0.992)                                               (p=0.423)
Grooming (F)                                                 Oil: 9.667±1.616                    Oil: 11.889±3.615                        Oil: 8.889±1.791                                    Oil: 7.111±1.829 
                                                                         BPA: 5.556±1.573                   BPA: 22.444±3.969                    BPA: 18.444±1.651                                    BPA: 13±3.023
                                                                               (p=0.087)                                (p=0.067)                                   (p=0.001)                                               (p=0.115)
Grooming (CD)                                            Oil: 18.911±2.250                   Oil: 17.102±5.858                       Oil: 9.131±2.402                                   Oil: 11.697±2.935 
                                                                        BPA: 11.991±4.758                  BPA: 32.649±5.845                     BPA: 20.64±2.787                                  BPA: 21.738±9.423
                                                                               (p=0.207)                                (p=0.079)                                   (p=0.006)                                               (p=0.324)
Rearing (F)                                                    Oil: 13.889±1.798                     Oil: 4.333±1.75                        Oil: 10.333±2.635                                   Oil: 5.222±1.176 
                                                                        BPA: 17.667±4.794                    BPA: 7.556±3.72                          BPA: 11±2.217                                     BPA: 9.111±1.448
                                                                               (p=0.408)                                (p=0.421)                                   (p=0.849)                                              (p=0.053)*
Rearing (CD)                                                  Oil: 14.74±2.692                       Oil: 3.92±1.75                           Oil: 9.584±3.055                                     Oil: 3.06±0.993 
                                                                        BPA: 17.908±4.794                   BPA: 5.742±2.678                      BPA: 8.284±1.488                                   BPA: 6.283±1.282
                                                                               (p=0.573)                                (p=0.577)                                   (p=0.707)                                               (p=0.064)

*Tendency towards significance (0.05<p<0.06).                                                                                                                                                                                                                                         
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amic systems, highlighted alterations in the  AVP-ir in the hypo-
thalamic paraventricular and suprachiasmatic nuclei, while we did
not find any alteration in the oxytocin system. In addition, the sub-
sequent analysis of the GPER1-ir in PVN and SCh, revealed a sig-
nificative reduction of the signal in the BPA-treated dams com-
pared to the control ones. 

Rodents are social animals, they not only live in groups, per-
ceiving isolation as a great stress, but they are also engaged in a
wide variety of social behaviors throughout life.18 Therefore, alter-
ations in the social skills due to EDCs exposure may have very

serious implications on the quality of life of those animals, impact-
ing different aspects of their social lives and altering their response
to other animals and to the environment.18 Social behavior is a
well-known target of endocrine disruption and specifically of BPA
exposure, in particular during pre- and peri-natal periods, led to
alterations in adult social and sociosexual behaviors in several
species.18,38 However, in the literature, there are few works high-
lighting the behavioral effects of chronic exposure to BPA during
adulthood in female mice, as most of them focus on different expo-
sure and targets, and are mainly performed in rats.39-41 Our results

Table 3. Results obtained from the analysis of AVP-ir, OXT-ir and GPER1-ir in all the selected nuclei. Data are reported as mean ±
SEM, both, when possible, as number of positive cells and fractional area. One-way ANOVA revealed a significant effect of the treatment
for p≤0.05.                                                                                                                                                             

Marker                             Nucleus                         Number of positive cells                                                   Fractional area (%)

AVP                                               PVN                                                       Oil: 84.8±10.841                                                                                  Oil: 116.762±19.091
                                                                                                                     BPA: 43.2±6.262                                                                                   BPA: 66.548±5.709
                                                                                                                          (p=0.005)                                                                                               (p=0.036)
                                                      PaAP                                                      Oil: 29.7±5.178                                                                                     Oil: 45.412±7.021
                                                                                                                      BPA: 25±6.569                                                                                     BPA: 30.089±5.368
                                                                                                                        (p=0.053)*                                                                                             (p=0.121)
                                                      PAV                                                         Oil: 55.1±5.932                                                                                     Oil: 71.35±13.803
                                                                                                                      BPA: 28±3.943                                                                                     BPA: 36.459±4.653
                                                                                                                          (p=0.005)                                                                                               (p=0.043)
                                                      SCh                                                           Oil: 72±4.41                                                                                       Oil: 37.293±1.659
                                                                                                                     BPA: 33.2±8.032                                                                                   BPA: 27.607±1.852
                                                                                                                          (p=0.002)                                                                                               (p=0.004)
                                                      SON                                                     Oil: 22.286±1.345                                                                                   Oil: 26.462±1.254
                                                                                                                    BPA: 21.917±1.65                                                                                  BPA: 25.356±1.342
                                                                                                                          (p=0.864)                                                                                               (p=0.828)
                                                      MeA                                                                    -                                                                                                   Oil: 2.235±0.246
                                                                                                                                                                                                                                      BPA: 2.219±0.372
                                                                                                                                                                                                                                            (p=0.971)
OXT                                              PVN                                                        Oil: 28.6±1.958                                                                                      Oil: 48.921±5.08
                                                                                                                   BPA: 29.375±2.366                                                                                 BPA: 43.667±6.848 
                                                                                                                          (p=0.806)                                                                                               (p=0.548) 
                                                      PaDC/PaLM                                             Oil: 4.1±0.4                                                                                       Oil: 11.331±2.414
                                                                                                                     BPA: 5.125±1.82                                                                                    BPA: 8.189±1.729
                                                                                                                          (p=0.557)                                                                                               (p=0.349)
                                                      PaMM                                                  Oil: 11.331±2.414                                                                                   Oil: 21.898±0.781
                                                                                                                    BPA: 8.189±1.729                                                                                  BPA: 22.937±2.532 
                                                                                                                          (p=0.349)                                                                                               (p=0.678)
                                                      PaMP                                                      Oil: 6.3±1.102                                                                                      Oil: 15.692±3.425
                                                                                                                    BPA: 5.875±2.989                                                                                  BPA: 12.541±4.515
                                                                                                                          (p=0.888)                                                                                               (p=0.588)
                                                      SON                                                       Oil: 23.7±1.991                                                                                     Oil: 19.903±0.983
                                                                                                                     BPA: 20.4±1.089                                                                                   BPA: 20.022±1.009 
                                                                                                                          (p=0.184)                                                                                               (p=0.935)
                                                      MeA                                                                    -                                                                                                   Oil: 2.029±0.358
                                                                                                                                                                                                                                      BPA: 1.956±0.316 
                                                                                                                                                                                                                                            (p=0.883)
GPER1                                          PVN                                                                     -                                                                                                  Oil: 21.253±0.489 
                                                                                                                                                                                                                                     BPA: 12.921±0.489 
                                                                                                                                                                                                                                            (p<0.001)
                                                      SCh                                                                     -                                                                                                  Oil: 31.735±1.467
                                                                                                                                                                                                                                     BPA: 23.139±1.114
                                                                                                                                                                                                                                            (p=0.003)
                                                      SON                                                                    -                                                                                                   Oil: 20.27±1.341
                                                                                                                                                                                                                                     BPA: 19.787±1.862 
                                                                                                                                                                                                                                             (p=0.84)
                                                      MeA                                                                    -                                                                                                   Oil: 9.482±0.647
                                                                                                                                                                                                                                      BPA: 9.201±0.248
                                                                                                                                                                                                                                            (p=0.699)

*Tendency towards significance (0.05<p<0.06).                                                                                                                                                                                                                        
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support the idea that BPA exposure led to alterations in the display-
ing of social behavior, even when it occurs in adult life. The analy-
sis of sex-driven social behavior through the Three-Chamber test
highlighted some alterations in the BPA-treated dams. The higher
distance traveled displayed by the BPA-treated dams during the

test indicates a higher locomotor activity compared to the control
dams that could be due to a higher level of anxiety. In the literature,
it has been demonstrated that exposure to BPA can cause alter-
ations in the anxiety state in rodents.39 In particular, BPA exposure
is associated to increased anxiety-like behavior in rodents,19 not

[page 79][European Journal of Histochemistry 2021; 65(s1):3272]

Figure 2. AVP-ir and OXT-ir in the PVN of oil-treated and BPA-treated dams. A) Representative image of AVP-ir in a coronal section
of PVN of oil-treated (left images) or BPA-treated (right images) dams. Analysis of AVP-ir in PVN, expressed both as (B) number of
AVP positive cells and (C) fractional area (FA), revealed a significant reduction in BPA-treated dams (dark gray) compared to the control
ones (light gray), mainly due to the ventral component of the nucleus (PaV). D) Representative image of oxytocin signal in a coronal
section of PVN of oil-treated (left images) or BPA-treated (right images) dams. Analysis of OXT-ir in PVN, expressed both as (E) number
of OXT positive cells and (F) fractional area (FA), in oil-treated (light gray) and BPA-treated (dark gray) dams did not show any effect
link to the treatment. Data are expressed as mean ± SEM. One-way ANOVA revealed a significant effect of the treatment for p≤0.05.
AVP, vasopressin; OXT, oxytocin; PVN, paraventricular nucleus; PaAP, anterior parvicellular nucleus; PaV, ventral nucleus;
PaDC/PaLM, dorsal cap/lateral magnocellular part; PaMP, medial parvicellular part; PaMM, medial magnocellular part; FA, fractional
area; *third ventricle. 
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only when the exposure occurred during the perinatal period,42 but
also in adulthood.43 Long-term oral exposure to BPA during adult-
hood is associated with alterations of anxiety-related behaviors
mainly in male mice.43 Interestingly, our treatment highlighted the
fact that also female mice can be affected by anxiety-related
behavioral changes when the chronic exposure involved the sensi-
tive periods of pregnancy and lactation. Moreover, the two socia-

bility sessions showed that BPA-treated dams did not lose the
sociability skills, spending in both sessions more time in the cham-
ber with the no-tester animals. However, BPA-treated dams have
shown a tendency (p=0.058) to interact (higher sniffing behavior)
more with the no-tester female compared to the controls, suggest-
ing that they have no interest in interacting with the male. In the
last session, the lack of sex-dependent social preference was more

Figure 3. AVP-ir in the SCh of oil-treated and BPA-treated dams. A) Representative image of AVP-ir in a coronal section of SCh of oil-
treated (left images) or BPA-treated (right images) dams. Analysis of AVP-ir in SCh, expressed both as (B) number of AVP positive cells
and (C) fractional area (FA), revealed a significant reduction in BPA-treated dams (dark gray) compared to the control ones (light gray).
Data are expressed as mean ± SEM. One-way ANOVA revealed a significant effect of the treatment for p≤0.05. AVP, vasopressin;   OXT,
oxytocin; SCh, suprachiasmatic nucleus; FA, fractional area; *third ventricle.
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evident in the BPA-treated group, and it seems to be even more
evident towards the male no-tester mouse. Previous studies per-
formed in rodents have demonstrated that different kinds of expo-
sure to BPA cause different alterations in the social and socio-sex-
ual behavior: in particular, the interactions between same-sex and
opposite-sex no-tester animal seems to be differentially affect-
ed.18,19 These studies suggest that the alterations in social behavior

linked to BPA exposure and alterations in mechanisms which are
involved also in sexual preference and behavior could come
together.2,44,45 Furthermore, it is known that olfactory discrimina-
tion, which is fundamental in both social and sexual behavior, can
be altered by BPA exposure.45,46

Vasopressin and oxytocin systems play a key role in the control
of social behavior.13,15 They have been therefore recognized as the
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Figure 4. GPER1-ir in the PVN and SCh of oil-treated and BPA-treated dams. A) Representative images of GPER1-ir in a coronal sec-
tion of PVN of oil-treated (left image) or BPA-treated (right image) dams. Analysis of GPER1-ir, expressed as fractional area (FA),
revealed a significant reduction in BPA-treated dams (dark gray) compared to the control ones (light gray), both in PVN (B) and in
SCh (C). Data are expressed as mean ± SEM. One-way ANOVA revealed a significant effect of the treatment for p≤0.05. GPER1, G
protein-coupled estrogen receptor 1; PVN, paraventricular nucleus; SCh, suprachiasmatic nucleus; FA, fractional area; *third ventricle.
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main target systems underlying the alterations observed in social
behavior after exposure to different types of EDCs;19,47 neverthe-
less these abilities of environmental chemicals, including BPA, to
alter nonapeptide signaling is poorly documented. Our analysis
highlighted a decrease of AVP-ir in some of the analyzed hypothal-
amic nuclei of BPA-treated dams, but not for OXT-ir.

OXT plays a central role in the control of aggression, anxiety,
pair and social bonding especially in females.10,48,49 Nevertheless,
we did not find any alterations in all the analyzed nuclei. Although
the potential for BPA to disrupt the OXT-OXT receptor systems
has previously been shown, the performed treatments were differ-
ent from ours, in terms of dose, animal model, period of exposure
and way of administration.50 Moreover, the OXT system is highly
dynamic, it is therefore possible that the effects of BPA could be
different depending on brain region, gender and age. 

We detected significant alterations of the AVP expression in
the SCh and in the PVN. In fact, in both nuclei, BPA-treated dams
showed a significant decrease of AVP-ir in terms of both number
of cells and fractional area. Although it is not yet fully clear how
exposure to BPA can directly influence the reduction in the number
of cells expressing AVP in the SCh and in the PVN, it is conceiv-
able that chronic exposure to BPA induces a chronic, direct or indi-
rect, modulation of the AVP system. BPA is a xenoestrogen and
thanks to its structure can pass the blood brain barrier and bind
estrogen receptors exerting multiple effects.51 AVP positive cells
located in the SCh and in the PVN express estrogen receptors.52,53

In vitro studies showed that estradiol, acting through ERβ and
GPER1, induces a downregulation of AVP expression.54-56 Thus,
BPA can possibly mediate a direct downregulation of AVP expres-
sion through this pathway. Furthermore, the ability of BPA to alter
estrous cycle is well known in the literature.57,58 In fact, we also
have observed a significant increase in the time spent in estrus
phase in our BPA-treated females. Longer time spent in estrus,
together with altered level of circulating estradiol, could be partial-
ly responsible to indirect modulation of BPA through estrogen
receptor on AVP expression in SCh and PVN. 

The SCh is involved in the regulation and maintenance of cir-
cadian rhythms.59 In the literature, numerous studies show how
prolonged exposure to BPA affects the homeostasis of this sys-
tem.60 Levels of circulating sex steroid hormones are responsible to
the modulation of circadian rhythms and particularly of circadian
locomotor rhythms and estrus phase is associated with higher loco-
motor activity in rodents.61 Therefore, the persistence of estrus
could be responsible of the higher distance traveled by our BPA-
treated mice. Nevertheless, alterations in locomotor activity are
considered as marker of altered stress response.62 Stress responses
are integrated and regulated at PVN level involving AVP and cor-
ticotropin-releasing hormone (CRH) neurons.63 In physiological
conditions, following exposure to stress stimuli, there is an
increase in the AVP mRNA levels in the PVN with consequent
excitation of the entire hypothalamic-pituitary axis (HPA).64

Chronic exposures to different type of stress stimuli, including
exposure to BPA, alter the homeostasis of the stress axis by influ-
encing its inactivation, for example through changes in the stability
of the AVP mRNA, causing its anticipated degradation and an
incorrect signaling mechanism.65

In rodents, GPER1 is strongly expressed in PVN and SCh,66

with a high co-expression with vasopressin neurons,56,66 and is
involved in the control of a variety of behaviors, including the
social one.67,68 Interestingly, it is known that BPA displays low
affinity for ERβ and high affinity for GPER1.69 The analysis within
these nuclei, which displayed significant AVP-ir alteration, high-
lighted significant effect also on GPER1-ir. In fact, it shown a sig-
nificant reduction in GPER1-ir in BPA-treated dams compared to
the control ones. Although GPER1 seems to be involved in rapid

change of both AVP-ir and social behavior,56,67 in our study we
showed effects of long-term exposure to BPA on its expression.
This response can be due to down-regulation mechanisms, which
often follow the desensitization of the receptor caused by repeated
or chronic administrations.70 GPER1 could be involved at first in
the down regulation of AVP-ir and then could go through down-
regulation mechanisms itself.

In conclusion, our results support the idea that pregnancy rep-
resents a critical period in adulthood for endocrine disruption. In
fact, the exposure to BPA may pose a risk even in adulthood (given
the long-term exposure period, the persistence of these compounds
in the environment and the ability of bisphenols to accumulate in
certain compartments of the body). In particular, we showed that
chronic exposure to low-dose BPA in adult female mice led to
long-term alterations in both social behavior and a decrease of the
vasopressin system in PVN and SCh, along with decreased expres-
sion of GPER1 within the same nuclei. These findings could be
explained as BPA direct and indirect effects at central level, which
could, finally, be partially linked to alterations in the behavioral
outcome. 
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CHAPTER 4 – Experiment 2 
 
Exposure to either bisphenol A or S represents a risk for crucial behaviors for pup 

survival, such as spontaneous maternal behavior and related oxytocinergic circuits in 

mice.  
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ABSTRACT  

 

Background: Maternal behavior depends on a multitude of factors, including the 
environmental ones, such as Endocrine Disrupting Chemicals (EDCs), which are increasingly 
attracting attention. Bisphenol A (BPA), an EDC present in plastic, is known to exert negative 
effects on maternal behavior. Bisphenol S (BPS), a BPA-substitute, seems to share some 
endocrine disrupting properties.  
Objectives: In this study we focused on the analysis of the effects of low-dose (i.e., 4µg/kg 
body weight/day, EFSA TDI for BPA) BPA or BPS exposure throughout pregnancy and 
lactation in mice.  
Methods: We administered adult C57BL/6J females orally BPA, BPS, or vehicle from mating 
to offspring weaning. We assessed the number of pups at birth, the sex ratio and the percentage 
of dead pups in each litter and during the first postnatal week we observed the spontaneous 
maternal behavior. Finally, we analyzed the oxytocin system, known to be involved in the 
control of the maternal care, in the hypothalamic magnocellular nuclei.  
Results: At birth, pups from BPA-treated dams tended to have lower male-to-female ratio 
compared to controls, while the opposite was observed among BPS-treated dams’ litters. 
During the first postnatal week, offspring mortality impacted differentially BPA and BPS 
litters, with more female dead pups among the BPA litters, while more male dead pups in the 
BPS litters, sharpening the difference in the sex ratio. BPA- and BPS- treated dams spent 
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significantly less time in pup-related behaviors than controls. Oxytocin immunoreactivity in the 
paraventricular and supraoptic nuclei was increased only in the BPA-treated dams.  
Discussion: Alterations in maternal care, along with the treatment itself, may affect, later in 
life, the offspring physiology and behavior. The exposure to BPs during sensitive 
developmental periods represents a risk for both dams and offspring, even at low 
environmentally-relevant doses, through the functional alteration of neural circuits controlling 
fundamental behaviors for pup survival, such as maternal behaviors. 
 

Keywords: endocrine disrupting chemicals, environmentally low doses, BPA, BPS, OXT, 
paraventricular nucleus, supraoptic nucleus.  
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Introduction  

 

Endocrine Disrupting Chemicals (EDCs) are defined as “exogenous chemical(s), or mixtures 
of chemicals, which can interfere with any aspect of hormone action”, leading to deleterious 
effects not only on individuals, which are directly exposed, but also on their progeny (Gore et 
al., 2015). Current knowledge strongly supports the idea that exposure to EDCs represent a real 
risk for both wildlife and human health (Ribeiro et al., 2017; Street et al., 2018). Increasing 
concerns are linked to the effects of some EDCs on brain and behavior (Bakoyiannis et al., 
2021).  
 
Bisphenols (BPs) belong to the class of EDCs capable of perturbing different aspects not only 
of brain development or neurochemistry (Itoh et al., 2012), but also of behavior (Bakoyiannis 
et al., 2021; Gioiosa et al., 2013). In particular, most of the available studies, performed in 
rodents, are focused on the effects of bisphenol A (BPA) on behavior (Wolstenholme et al., 
2011). BPA is still the most highly produced BP (Catenza et al., 2021; Lehmler et al., 2018). 
Exposure to BPA during well-known critical period of development, such as the pre- or peri-
natal one (Street et al., 2018), leads later in life to consequences on a wide set of behaviors, 
including the exploratory, the anxiety-like, the social, the sexual and the parental behavior 
(Bakoyiannis et al., 2021; Keller et al., 2019; Rosenfeld, 2015). However, few data are available 
regarding the effects of exposures to other BPs during adulthood (Bakoyiannis et al., 2021). As 
the deleterious effects of BPA become clearer, some substitutes have been proposed, such as 
bisphenol S (BPS). BPS was thought to leach fewer monomers into food and drink (Kuruto-
Niwa et al., 2005), therefore is one of the BPA analogs mainly used to produce the BPA-free 
goods (Thoene et al., 2020). Even though BPS is more heat- and photo-resistant than BPA 
(Kuruto-Niwa et al., 2005), it is now evident that these properties are not enough to contain the 
spread of the compound among worldwide human population (Bousoumah et al., 2021; Liao et 
al., 2012). Furthermore, an increasing number of studies are highlighting that the BPS endocrine 
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disrupting properties are comparable to those of BPA (Catenza et al., 2021; Chen et al., 2016; 
Eladak et al., 2015; Li et al., 2018; Thoene et al., 2020). Still, little concern has been raised on 
the behavioral outcomes linked to BPS exposure.  
Maternal behavior is crucial for pup survival and represents a complex variety of behaviors 
(Kohl et al., 2017), which can be modulated by a multitude of factors. For instance, the oxytocin 
(OXT) secretion at delivery and/or pup behavior (e.g., suckling, callings etc.) facilitate the 
occurrence of some aspects of maternal behavior (Bealer et al., 2010; Panaro et al., 2020). OXT 
magnocellular system in the hypothalamus, within the paraventricular (PVN) and supraoptic 
nuclei (SON), is known to be the source of intracerebral OXT, by means of its huge number of 
projections within in the cerebral ventricles (Althammer et al., 2021). Indeed, the OXT system 
is a key regulator of maternal behavior (Caldwell et al., 2017; Kohl et al., 2017; Yoshihara et 
al., 2018).  
 
Nowadays, there is growing scientific evidence that the environmental exposure to EDCs, in 
particular to BPs, is capable of impacting on maternal behavior and of inducing long lasting 
effect on the offspring (Keller et al., 2019). Specifically, BPA is known to affect the OXT 
system (Keller et al., 2019; Patisaul, 2020), which is highly involved in the regulation of 
maternal care (Caldwell et al., 2017; Kohl et al., 2017; Yoshihara et al., 2018). Also, BPA 
exposure during the pre- or peri-natal period has already been linked to alterations in the 
maternal behavior (Keller et al., 2019; Palanza et al., 2002). However, very few studies focused 
on the BPS effects on the OXT system and behavior of directly exposed dams (Catanese & 
Vandenberg, 2017; da Silva et al., 2019; Naderi et al., 2021) and on their offspring (Catanese 
& Vandenberg, 2017).  
 
In the present study, we propose pregnancy and lactation as a “critical period” for the adult 
dams (Alonso-Magdalena et al., 2010; Alonso-Magdalena et al., 2015) directly exposed to BPs. 
Therefore, we investigate the consequences of exposure throughout pregnancy and lactation to 
low dose (4µg/kg BW/day, assessed by the European Food Safety Authority as the Tolerable 
Daily Intake, TDI, for BPA) ((EFSA), 2015) of either BPA or BPS. We monitored both dams 
and offspring, observing the spontaneous maternal behavior of the dams during the first post-
natal weeks of the pups and assessing the number of pups at birth, the sex ratio and the 
percentage of dead pups in each litter. Finally, we focused on OXT system within the PVN and 
SON, a well-known target of EDCs (Keller et al., 2019; Patisaul, 2020), which is highly 
involved in the control of this behavior (Caldwell et al., 2017; Kohl et al., 2017; Yoshihara et 
al., 2018).  

Methods  

Animals  

Adult C57BL/6J mice from our vivarium at the Neuroscience Institute Cavalieri Ottolenghi 
(originally purchased from Envigo, S. Pietro al Natisone, Udine, Italy) were housed in standard 
conditions in 45 × 25 × 15 cm polypropylene mouse cages at 22 ± 2 °C, under 12:12 light dark 
cycle (lights on at 10:00 AM). Food (standard mouse chow 4RF21, Mucedola srl, Settimo 
Milanese, Italy) and water were provided ad libitum. One male and two female mice (3-month-
old) were housed together to achieve a successful mating, assessed by the evaluation of the 
presence of the vaginal plug (assumed as gestational day 0, GD0) (Hasegawa et al., 2017).  
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Animal care and handling were according to the European Union Council Directive of 22nd 
September 2010 (2010/63/UE); all the procedures reported in the present study were approved 
by the Italian Ministry of Health (407/2018-PR) and by the Ethical Committee of the University 
of Torino (Project n° 360384). The experimental design conforms to the ARRIVE guidelines 
originally published by Kilkenny et al. in 2010 (Kilkenny et al., 2010).  

Chemical administration 

BPA (Sigma Aldrich, 239658, CAS 80-05-7) or BPS (Sigma Aldrich, 103039, CAS 80-09-1) 
were prepared for oral administration, dissolving them in corn oil (Sigma-Aldrich, C8267). 35 
pregnant dams were assigned randomly to three experimental groups: control dams (vehicle, 
corn oil; n=10), BPA-treated dams (4 µg/kg BW/day of BPA, corresponding to the European 
TDI; n=10) and BPS- treated dams (4 µg/kg BW/day of BPS; n=15). We decided to test the 
same dose for both BPA and BPS to allow a precise comparison of the effects of the two BPs. 
Besides, although BPS is one of the most used BPA substitutes and it has already been detected 
in environmental and human samples (Catenza et al., 2021), at present no user guidelines are 
available.  
From GD0, throughout both pregnancy and lactation, until weaning of the offspring at postnatal 
day 28 (PND28), accordingly to their experimental groups, dams were administered either BPA 
or BPS or corn oil. To resemble human exposure conditions, the daily administration was via 
os, by means of a pipette, in order to minimize dams’ stress (Bo et al., 2016; Palanza et al., 
2002). The dose was calculated according to their body weight, measured with an electronic 
precision balance (Mod. Kern-440-47N, resolution 0.1g).  
 
Observation of spontaneous maternal behavior  

Mice are mostly active during the dark phase of the light/dark daily cycle. Moreover, possible 
alterations due to exposure to hormonally active agents are detectable only during such active 
(dark) phase (Palanza et al., 2002). Therefore, the spontaneous maternal behavior was assessed 
observing lactating dams in their own home cages, from 08.00 AM to 10.00 AM (i.e., the last 
two hours of the dark phase), throughout the first postnatal week (PND1-7, considering PND1 
as the day after the pup delivery, which is PND0). Dams were monitored by means of 
instantaneous sampling procedure. Briefly, each dam was observed every 4 min for a total of 
30 observations. The observation period lasted 120 min and it was conducted with the aid of 
25-W red lights, which mice cannot see (Palanza et al., 2002). During each observation, the 
experimenter recorded which behavior the lactating female was displaying. First, the 
experimenter defined whether the dam was either inside or outside the nest. Afterwards, the 
exhibited behaviors were as follows:  
1) Nursing, the dam was nursing the pups and was not nursing with her body arched over the 
pups.  
2) Arched-back nursing, the female was nursing with her body arched all over the pups (arched 
back posture).  
3) Licking pups, the dam was licking or grooming her pups. 
4) Nest building: the dam was engaged in some aspect of nest building. 
5) Eating, the dam was nibbling at a food pellet.   
6) Drinking, the dam was drinking from the water bottle. 
7) Self-grooming, the dam was grooming her own body. 
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8) Active, the dam was moving around the cage in general activity, not engaged in the above 
behaviors. 
9) Resting, the dam was lying motionless outside the nest, with no pup attached to her nipples. 
By grouping the observed data, two additional dependent variables were produced and 
analyzed: the category of the pup-related behaviors and that of the pup-unrelated behaviors. 
The pup-related behavior category was the sum of the observations for nursing, arched-back 
posture, licking pups and nest-building behaviors. The pup-unrelated behavior category was the 
sum of the observations for eating, drinking, self-grooming, active and resting behaviors 
(Bertocchi et al., 2011; Palanza et al., 2002).  
 
Observations on dams’ physiological parameters and offspring measures  

We monitored the dams, recording the body weight (BW), assessed daily until the sacrifice (at 
weaning of the pups, PND28), and the food intake (g of food/animal/day) once a week starting 
from the delivery until PND28.  
In the offspring we measured the body weight at birth (PND0) and at weaning (PND28). We 
assessed the sex ratio (n°males/n°females) (Grech, 2020) in each litter at birth (PND0) and at 
PND7. From PND0 to PND7 we monitored the number of dead pups in each litter, assessing it 
once a day in the morning.  
 
Fixation and tissue sampling  

According to the standard procedures of our laboratory (Bonaldo et al., 2021), dams were 
sacrificed at PND28, after the offspring’s weaning. Dams were sacrificed, by deep irreversible 
anesthesia (intraperitoneal injection of Zoletil 80 mg/kg/ Rompum 10 mg/kg) and transcardially 
perfused with 4% paraformaldehyde (PFA) solution. Brains were removed and stored in a 4% 
PFA solution for 24 hours, followed by several washings in 0.01 M saline phosphate buffer 
(PBS, pH 7.3-7.4). Finally, they were stored in a 30% sucrose solution in PBS at 4 °C, frozen 
in isopentane pre-cooled in dry ice at 35 °C and stored in a deep freezer at 80 °C until sectioning. 
Brains (n=4/group) were serially cut in the coronal plane at 30µm thickness with a cryostat, in 
four series. The plane of sectioning was oriented to match the drawings corresponding to the 
coronal sections of the mouse brain atlas (Paxinos et al., 2001). Sections were collected in a 
cryoprotectant solution (Watson  Jr. et al., 1986) and stored at -20 °C.  
 
Oxytocin immunohistochemistry  

The OXT presence was detected by immunohistochemistry performed on free-floating sections 
from one series. Briefly, the sections were washed overnight in phosphate buffer (PBS) at pH 
7.3. The following day, sections were first incubated with citrate buffer (citric acid 10 mM, 
0.05% Tween, pH 6.0) previously heated at 95°C for antigen retrieval and then washed three 
times in PBS. Next, the sections were washed in PBS containing 0.5% Triton X-100 for 30 min 
and then treated to inhibit endogenous peroxidase activity with a solution of PBS containing 
methanol/hydrogen peroxide for 20 min. Sections were then incubated for 30 min with normal 
goat serum (Vector Laboratories) and incubated overnight at room temperature with anti-OXT 
antibody (EMD Millipore AB911, Rabbit, 1:5.000) diluted in PBS, pH 7.3–7.4, containing 
0.5% Triton X-100. A biotinylated goat anti-rabbit secondary antibody (Vector Laboratories, 
Burlingame, CA, USA) diluted in PBS, pH 7.3–7.4, containing 0.2% Triton X-100 was then 
employed at a dilution of 1:200 for 60 min at room temperature. The antigen-antibody reaction 
was revealed by 60 min incubation with avidin–peroxidase complex (Vectastain ABC Kit Elite, 
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Vector Laboratories, Burlingame, CA, USA). The peroxidase activity was visualized with a 
solution containing 0.400 mg/ml 3,3-diamino-benzidine (Sigma-Aldrich, Milan, Italy) and 
0.004% hydrogen peroxide in 0.05 M Tris–HCl buffer at pH 7.6. Sections were mounted on 
chromallum-coated slides, air-dried, cleared in xylene and cover slipped with New-Entellan 
mounting medium (Merck, Milano, Italy). This antibody was successfully used in previous 
studies (Bonaldo et al., 2021; Villanueva et al., 2012). The specificity of this antiserum was 
previously assessed (Sawyer et al., 1986) but, as a further control, we omitted the primary 
antiserum or the secondary biotinylated one, replaced with PBS. In both cases positive cell 
bodies and fibers were totally absent. 
 

Quantitative analysis  

For quantitative analysis, selected standardized sections of comparable levels covering the 
paraventricular nucleus (PVN, Bregma -0.58 to -0.94 mm) and the supraoptic nucleus (SON, 
Bregma -0.58 to -0.94 mm), were chosen according to the mouse brain atlas (Paxinos et al., 
2001). Three sections for each nucleus were acquired with a NIKON DS-U1 digital camera 
(Software of acquisition: NIS-Element AR 2.10) connected to a NIKON Eclipse 90i microscope 
(Nikon Italia S.p.S., Firenze, Italy). Images were digitized by using a 20x objective for the PVN 
acquisition and a 40x objective for the SON acquisition. Digital images were processed and 
analyzed by ImageJ (version 2.10/1.53c; Wayne Rasband, NIH, Bethesda, MD, USA). 
Measurements were performed within predetermined fields (region of interest, ROI), boxes of 
fixed size and shape that are inserted inside each labeled considered nucleus (0.101 mm2 for 
SON). The PVN was instead divided into subregions, following the different distribution within 
the nucleus of the analyzed system (Bonaldo et al., 2021). The PVN (total area 0.068 mm2) was 
divided in three subregions, the dorsal cap/lateral magnocellular part (PaDC/PaLM, 0.013 
mm2), the medial parvicellular part (PaMP, 0.035 mm2) and the medial magnocellular part 
(PaMM, 0.02 mm2).  
We evaluated the extension of the immunoreactivity (cell bodies, dendrites, fibers) in all the 
selected nuclei as fractional area (FA) covered by immunopositive material (Marraudino, Ponti, 
et al., 2021). In addition, we also counted the number of OXT-positive cells in the two analyzed 
nuclei.  
 

Statistical analysis 

Data obtained from observation of spontaneous maternal behavior were analyzed by two-way 
analysis of variance (ANOVA) for repeated measures (time and treatment as independent 
variables) for the day-by-day evaluation and by one-way ANOVA (treatment as independent 
variable) when the weekly mean of each behavior was taken into consideration. Dams’ data 
(body weight and food intake) were analyzed by two-way ANOVA for repeated measures (time 
and treatment as independent variables) to evaluate whether the data changed during the days 
of experimentation. Whereas the litters’ data were examined by two-way ANOVA (sex and 
treatment as independent variables), with SPSS 27 statistic software (SPSS Inc., Chicago, 
USA). Immunohistochemical data from dams’ brain were analyzed by one-way ANOVA 
(treatment as independent variable). If the ANOVA was significant, the post-hoc analysis was 
performed using the Tuckey’s HSD test. Differences were considered statistically significant 
for values of p ≤0.05. Data are shown as mean ± SEM (mean standard error).  
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Results  

Effects of exposure to BPA or BPS on spontaneous maternal behavior  

Direct observation of mother-pup interactions highlighted the impact of BPs exposure on 
different aspects of spontaneous maternal behavior (Fig.1). Remarkably, the analysis of the 
weekly means of dams’ behaviors yielded that both BPA and BPS dams spent more time on 
average outside the nest compared to control dams (Fig.1A), even if the difference was only 
close to significance (F(2,27)=3.107, p=0.061). In line with these observation, exposure to BPs 
significantly decreased the average time spent by dams in pup-related behavior (F(2,27)=4.814, 
p=0.016; Fig.1B), especially the average time spent by the BPS dams (p=0.016; Fig.1B), 
compared to controls; whereas, both BPs significantly increased the average time spent in pup-
unrelated behaviors by dams (F(2,27)=6.358, p=0.005; Fig.1C), compared to controls (BPA, 
p=0.04; BPS, p=0.006; Fig.1C). 
The analysis of each specific behavior of the lactating dams showed that both BPs decreased 
significantly the average time spent in licking-pup behavior by dams (F(2,27)=4.566; p=0.02; 
Fig.1D), in particular BPS compared to controls (p=0.02; Fig.1D). BPs dams tended to 
decrease significantly the weekly average time spent in arched-back posture (F(2,27)=3.316, 
p=0.052; Fig.1D) and increased the average time spent in general activity (F(2,27)=3.476, 
p=0.045; Fig.1D).  
When running the day by day analysis, we observed that there was a significant effect of the 
treatment by time interaction on time spent by dams in pup-related behaviors (F(12,162)=2.072, 
p=0.021; Fig.1E), in particular on PND1 BPA dams spent significantly less time in behaviors 
related to the care of the pups compared to controls (p=0.01). On PND1 BPA dams spent 
significantly more time in general activity when compared to control dams (p=0.01, Fig.1F; 
treatment by time interaction just missed significance: F(12,162)=1.649, p=0.083 ). 
 

Effects of exposure to BPA or BPS on dams’ body weight and food intake throughout both 

pregnancy and lactation 

Neither BPA nor BPS had significant effects on either body weight or food intake of the dams 
(respectively, F(2, 8)=0.481, p=0.955; F(2, 6)=0.408, p=0.873; data not shown). Moreover, BPs 
did not affect body weight increase during pregnancy (F(2, 27)=0.633, p=0.539; 
Oil:14.99±0.677g; BPA:15.18±0.845g; BPS:16.1±0.706g) or body weight decrease after the 
delivery (F(2, 27)=0.015, p=0.985; Oil:-11.74±0.415g; BPA:-11.78±0.547g; BPS:-
11.87±0.628g).   
 
Effects of exposure to BPA or BPS on litters  

The effects of BPs administered to dams on their offspring are summarized in Table 1.  
Both BPA and BPS had not significant effects on pup total number per litter at birth (F(2, 

32)=1.825, p=0.178; Fig.2A). However, exposure was almost significant on the sex ratio 
(n°males/n°females) at birth (F(2,32)=2.642, p=0.087; Fig.2B), but it was significant after the 
first postnatal week of pups (F(2, 27)=3.904, p=0.032; Fig.2C). There were more male pups than 
females among the BPA litters as opposed to BPS litters in which there were more female pups 
than males (Table 1), compared to control litters. Interestingly, the sharpening of this sex 
difference at PND7 was linked to the difference in pups’ death, which was differential between 
litters (Fig.2D). Remarkably, when the two sexes were analyzed separately, the effect of 
exposure on pup death was significant (respectively, for females: F(2, 32)=2.844, p=0.073; for 
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males: F(2, 32)=3.689; p=0.036; Fig.2D). In particular, female pups from BPA-litters tended to 
die more (p=0.056; Fig.2D) compared to controls, as opposed to BOS litters in which there 
were significantly more male dead pups (p=0.037; Fig.2D). We also noticed that BPA pups 
tended to die during the first postnatal week, while BPS pups tended to die during or right after 
the birth (PND0). Moreover, in the 33.3% of the cases (5 out of 15), BPS dams lost the entire 
litter, and were thus excluded from the analysis of the spontaneous maternal behavior.  
We observed a significant difference in body weight of female pups at birth (Table 1), due to 
the differences between the BPA and the BPS female pups (BPA females pups weighted less 
than BPS ones; p=0.001; Fig.2E), while no significant difference due to the treatment was 
highlighted on pups’ body weight at weaning (Fig.2F).  
 

Table 1 
 Oil BPA BPS One-way ANOVA 

Mean ± SEM Mean ± SEM Mean ± SEM F p 
Total number of pups per 
litter 7±0.333 8.61±0.658 8.61±0.47 1.825 0.718 

Total number of male pups 
per litter 3.9±0.504 4.7±0.3 2.8±0.368 6.057 0.006 

Total number of female 
pups per litter 3.1±0.407 3.4±0.636 4±0.39 1.013 0.375 

Percentage of male pups at 
PND0 57.5±7.068 60.791±4.554 40.069±4.1 4.962 0.013 

Percentage of female pups 
at PND0 45.83±5.439 39.209±4.954 58.598±4.731 4.070 0.027 

Sex ratio at PND0 1.75±0.53 2.091±0.531 0,891±0.193 2.642 0.087 
Sex ratio at PND7 1.64±0.52 2.517±0.541 0.747±0.196 3.904 0.032 
Percentage of dead pups 5.04±2.071 25.792±6.953 37.407±12.09 2.844 0.073 
Percentage of dead male 
pups 5.833±3.056 17.5±3.056 43.333±12.786 3.689 0.036 

Percentage of dead female 
pups 1.667±1.667 41.31±10.856 34.286±12.451 3.412 0.045 

Body weight of male pups 
at PND0 1.33±0.022 1.284±0.014 1.341±0.022 2.408 0.095 

Body weight of female 
pups at PND0 1.293±0.021 1.234±0.022 1.335±0.016 6.931 0.002 

Body weight of male pups 
at PND28 13.975±0.229 14.533±0.309 14.2±0.475 0.819 0.444 

Body weight of female 
pups at PND28 13.267±0.015 12.853±0.387 13.171±0.208 0.633 0.533 

Table 1. Data collected from the litters of Oil-, BPA- or BPS-treated dams. Data are reported 
as Mean ± SEM. In bold, significant effect of treatments (p ≤ 0.05) as revealed by one-way 
ANOVA.  
 
 Effects of exposure to BPA or BPS on oxytocin system   

The analysis of the immunoreactivity for OXT (summarized in Table 2) showed a differential 
effect of BPs in the analyzed nuclei of exposed dams. We observed a significant difference in 
the total PVN, both in number of cells (F(2, 9)=6.858, p=0.016; Fig.3B) and fractional area (F(2, 

9)=7.186, p=0.014 Fig.3C). This difference was due to a significant increase in OXT-ir, both 
in terms of OXT+ cell number (p=0.014) and fractional area (p=0.012) in the BPA-treated 
dams compared to the control ones (Fig.3). Moreover, the further analysis of the PVN subnuclei 
(PaDC/PaLM, PaMP, PaMM) confirmed the effects of BPA treatment on OXT-ir. Interestingly, 
both OXT+ cell number (Fig.3B; p<0.001) and fractional area (p=0.015; Fig.3C) were increase 
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in PAMP, but only fractional area was affected in PAMM (p=0.006; Fig.3C). No significant 
effects due to BPA treatment were found in PaDC/PaLM (Fig.3).  
Analogously, we observed a significant effect of exposure in OXT-ir in SON (Fig.4), both in 
number of cells (F(2, 9)=6.956, p=0.015; Fig.4B) and fractional area (F(2, 9)=4.322, p=0.048; 
Fig.4C). Once again, this difference was due to a significant increase in OXT-ir, both in terms 
of OXT+ cell number (p=0.012; Fig.4B) and fractional area (p=0.048; Fig.4C) in the BPA-
treated dams when compared to the controls.  
Remarkably, the analysis on the OXT-ir in PVN (Fig.3) and SON (Fig.4) of the BPS-treated 
dams did not highlight any significant effect of exposure in these nuclei compared to the control 
dams.  
 

Table 2 

n° OXT+ cells Oil BPA BPS One-way ANOVA 
Mean ± SEM Mean ± SEM Mean ± SEM F (2, 9) p 

PVN 30.333±4.503 49.417±3.794 36.417±2.626 6.858 0.016 
PaDC/PaLM 6.5±1.323 7.75±0.832 7.583±0.956 0.412 0.674 
PaMP 16.25±2.149 30.167±0.986 21.083±1.848 16.633 0.001 
PaMM 7.583±1.511 11.25±2.016 7.75±1.343 1.578 0.259 
SON 15.833±0.995 20±0.527 17.833±1.280 6.946 0.015 

% FA Oil BPA BPS One-way ANOVA 
Mean ± SEM Mean ± SEM Mean ± SEM F (2, 9) p 

PVN 37.157±4.474 57.757±3.143 43.843±4.026 7.186 0.014 
PaDC/PaLM 13.804±2.091 16.752±1.314 13.432±1.207 1.313 0.316 
PaMP 17.879±1.372 26.223±1.419 20.494±2.083 6.639 0.017 
PaMM 6.616±1.661 14.844±1.066 9.927±1.388 8.830 0.008 
SON 9.889±0.568 12.221±0.651 10.445±0.531 4.322 0.048 

Table 2. Results obtained from the analysis of OXT-ir in PVN and SON. Data are reported as 
Mean ± SEM, both as number of positive cells and fractional area (% FA). In bold, significant 
effect of treatments (p ≤ 0.05) as revealed by one-way ANOVA.  
 

Discussion 

 
Overall, the present results support the idea that in adulthood, as well as during development, 
there are some critical periods, which are sensitive to EDC perturbation of the hormonal 
environment. Under present conditions, the direct exposure to either BPA or BPS during both 
pregnancy and lactation led to some alterations in dams’ brain and behavior. In both BPA- and 
BPS-treated dams, we observed a decrease in pup-related behaviors, along with an increase in 
pup-unrelated behaviors. Interestingly, only the BPA dams showed a significant increase in the 
OXT-ir in the PVN and SON.  
During the first postnatal week, offspring mortality impacted differentially BPA and BPS 
litters, with more female dead pups among the BPA litters, while more male dead pups in the 
BPS litters, sharpening the difference in the sex ratio. 
 
Maternal behavior consists of a set of behaviors, and it is known to be “activated” at or close to 
the delivery, under the influence of several different factors, such as the drop in circulating 
levels of progesterone together with an increase in circulating estradiol, and the intracerebral 
release of OXT due to vagino-cervical stimulation (Keller et al., 2019). Considering that 
maternal behavior mainly depends on the action of specific hormones on hormone receptors, it 
is a well-known target of endocrine disrupting chemicals (Keller et al., 2019). BPA exposure 
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during critical period of development is known to cause some alterations in the maternal 
behavior of the adult females (Keller et al., 2019), however, little is known about the effects on 
the dams directly exposed to EDCs  (Keller et al., 2019; Kundakovic et al., 2013; Palanza et al., 
2002). Furthermore, the effects of BPS have been poorly investigated (Catanese & Vandenberg, 
2017). Our results showed that exposure to low dose of both BPs caused alterations in the 
displaying of the maternal behaviors on the directly exposed dams, particularly the BPS dams 
(less time in pup-related behavior). This suggests more alarming outcomes compared to 
previous studies (Catanese & Vandenberg, 2017), in which, however, different dose, 
administration and mouse strain were used, highlighting the need of further investigation on 
BPS effects. We also confirmed some, partially previously described (Kundakovic et al., 2013; 
Palanza et al., 2002), effects of BPA treatment on maternal behavior, underlying the changes at 
PND1, when we also observed the highest mortality rate among these litters. This seems to 
suggest that in the BPA-treated dams some impairments, or at least a delay, in the activation of 
the maternal care and in the recognition of the pups can occur.  
 
Considering the observed behavioral alterations, the analysis of the OXT-ir in PVN and SON, 
highlighted some alterations due to BPA exposure. In the two nuclei, BPA exposure increased 
both the number of OXT-positive cells and the fractional area covered by immunoreactive 
structures, whereas BPS exposure did not. Previous studies evidenced organizational effects of 
neonatally administered BPA on the OXT system in the PVN (Patisaul, 2020; Witchey et al., 
2019), probably acting through estrogen receptor β (ERβ) (Patisaul et al., 2003; Witchey et al., 
2019). No data are available for the BPS, but BPS seems to impact less on ERβ, which is 
fundamental for estrogen pathway regulation in magnocellular neurons of the hypothalamus 
(Mitra et al., 2003), and more to estrogen receptor α (ERα) compared to BPA (Catanese & 
Vandenberg, 2017; Nourian et al., 2020). Thus, BPA and BPS may be involved in different 
mechanisms in order to induce the outcomes. In the present study, we observed the effects of a 
continuous exposure to BPs from the gestational to the lactating period, showing that only BPA, 
probably acting through ERβ, impacted altering the OXT system. On the one hand, BPS could 
involve other receptors, possibly the G protein-coupled estrogen receptor (GPER) largely 
present in the PVN (Grassi et al., 2016; Marraudino, Carrillo, et al., 2021), which mediates 
rapid estrogen signaling (Naderi & Kwong, 2020), and so the alterations of the circuits 
controlling the maternal behavior could be more dynamic and restricted to the observational 
period, on the other one, it could impact on other neural circuits (Naderi & Kwong, 2020). It is 
also interesting to note that when the BPA exposure is prolonged after the lactating period no 
alterations of the OXT system in both PVN and SON were observed (Bonaldo et al., 2021), 
thus the changes observed in the present study seems directly related to the alteration of the 
maternal behavior that was no longer expressed in long-term exposed dams.  
 
At PND0, BPA litters showed a tendency towards higher male-to-female ratio compared to 
controls, while we observed the opposite among the BPS pups (lower male-to-female sex ratio 
compared to controls). Besides, the percentage of dead pups was higher in the BPs-treated 
dams’ litters, compared to the controls’ ones. Remarkably, the offspring mortality impacted 
differentially BPA and BPS litters, with more female pups found dead in the BPA litters, while 
more male pups found dead in the BPS litters, sharpening the difference in the male-to-female 
ratio at PND7.  
Even though BPs did not affect the total number of pups per litter at birth, they tended to alter 
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the sex ratio, with more female pups among BPA litters and more male pups among the BPS 
groups, compared to the controls. After the first postnatal week, this difference was sharpened, 
due to pups’ mortality, which affected differentially the two sexes among BPA and BPS litters. 
If on one hand female pups from BPA litters seemed to be more affected compared to male 
ones, on the other hand male pups from BPS litters, which are overall the ones displaying the 
highest mortality, died significantly more frequently compared to controls. It is known that 
prenatal exposure of female mice to either BPA or BPS cause fertility problems, such as reduced 
pregnancy rates, delivery, and nursing issues, and increased pups’ mortality (Shi, Sekulovski, 
et al., 2019; Shi, Whorton, et al., 2019). In our experiments we showed that also the direct 
exposed dams could be affected by similar impairments. Furthermore, to the best of our 
knowledge, we described for the first time the different sex ratio among litters of directly 
exposed dams. This peculiar effect of both treatments is particularly tricking to understand, and 
it could be linked to in utero altered conditions which can promote the implant or the selective 
loss of fetus of one sex compared the other one (Kobayashi et al., 2010). For example, BPs 
exposure could have led to alterations not only in hormonal levels, but also in metabolic/energy 
state of the mother. In fact, it is known that male fetuses are more sensitive to unbalanced energy 
state, or stress in general, compared to females (Kobayashi et al., 2010). This could be the case 
in the BPS litters, in which we also observed an increased male pups’ mortality, particularly at 
the delivery or right after birth, suggesting some prior problems. In the BPA-litters, the 
underlying mechanism could be different. We observed only a tendency towards lower female-
to-male ratio at birth, together with a tendency towards an increased pups’ mortality within the 
first postnatal week, especially at PND1. This suggests a relevant impact on pups’ survival of 
the first postnatal day care, which appeared to be the most impacted by the treatment, as we 
discuss below.  
 
Exposure to BPs, particularly BPA, is known to affect different aspects of reproduction 
(Chianese et al., 2018; Rubin, 2011; Vom Saal, 2016), and pregnancy itself (Filardi et al., 2020; 
Pergialiotis et al., 2018) . Known effects of BPA and the emerging ones of BPS on reproduction 
in female mice mostly followed pre- or peri-natal exposure (Shi, Whorton, et al., 2019). 
However, under present conditions we showed that, not only the offspring, but also the exposed 
dams could be affected by EDCs. 
 
One of the limits of our study is that we performed the experiment in an inbred mouse model. 
Despite this, our results on the spontaneous maternal behavior of BPs-treated dams are in line 
with those performed on CD-1 strain (Catanese & Vandenberg, 2017; Palanza et al., 2002). In 
fact, the study published by Palanza et al. in 2002 highlighted a decrease in pup-related behavior 
in CD-1 dams exposed to BPA (10 µg/kg BW/day) in adulthood (Palanza et al., 2002). 
Furthermore, a more recent study by Catanese et al. showed some alterations in spontaneous 
maternal behavior in CD-1 dams exposed during pregnancy and lactation to two different doses 
of BPS (i.e., 2 µg/kg BW/day or 200 µg/kg/BW/day), highlighting major effects on those 
exposed to the higher dose (Catanese & Vandenberg, 2017). Another limit for the present study 
is that for each BPs we tested only one dose, i.e., 4µg/kg BW/day which is indicated by the 
EFSA as the TDI for BPA. Even if a further evaluation of different doses is needed to achieve 
a full risk assessment of exposure to those EDCs, nonetheless our results showed some 
significant impairments at the tested dose which is considered “tolerable”.   
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In conclusion, exposure to BPs, even at low, but environmentally relevant, doses, particularly 
when it occurs during sensitive periods of adulthood, such as pregnancy and lactation, 
represents a risk not only for the developing offspring, but also for the dams themselves, 
through the functional alteration of neural circuits controlling fundamental behaviors, such as 
maternal behavior. Present results support the idea that new and more specific strategies are 
necessary to reduce and to contain the impact of environmental BPs on public health. 
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Figure 1. Analysis of spontaneous maternal behavior of Oil-, BPA and BPS-treated dams. 

Overall percentage of time spent out of nest (A), performing pup-related (B) or unrelated (C) 
behaviors by oil- (light gray), BPA- (gray) or BPS-treated (dark gray) dams within the seven 
days of observation of the spontaneous maternal behavior. (D) Overall percentage of time spent 
in the different analyzed behaviors by oil- (light gray), BPA- (gray) or BPS-treated (dark gray) 
dams. The analysis of daily percentage of time spent (E) performing pup-related behaviors or 
(F) active highlighted significant effects of BPA treatment on these parameters especially at 
postnatal day 1 (PND1). Data are expressed as mean ± SEM. One-way ANOVA (A, B, C) or 
two-way ANOVA for repeated measures (E, F, G) followed by Tuckey’s HSD test revealed a 
significant effect of the treatments for p ≤ 0.05. PND = postnatal day.   
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Figure 2. Effects of BPA and BPS exposure to the litters. (A) Total number of pups per litter 
at birth. Sex ratio (n° females/n° males) among litters at birth (B) and after the first postnatal 
week (C). (D) Percentage of total dead pups (left), male dead pups (center) and female dead 
pups (right) among litters obtained from oil (light gray), BPA- (gray) and BPS- (dark gray) 
treated dams. Body weight of male (left side of the graph) or female (right side of the graph) 
pups obtained from oil (light gray), BPA- (gray) and BPS- (dark gray) treated dams at birth 
(E) and after the first postnatal week (F). Data are expressed as mean ± SEM. One-way 
ANOVA followed by Tuckey’s HSD test revealed a significant effect of the treatments for p ≤ 
0.05. PND = postnatal day.   
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Figure 3. Oxytocin immunoreactivity in the PVN of oil-, BPA- and BPS- treated dams. (A) 
Representative image of oxytocin immunoreactivity in a coronal section of PVN of oil-treated 
(left image), BPA-treated (central image) and BPS-treated (right image) dams. Analysis of 
OXT-ir in PVN, expressed both as (B) number of OXT+ cells and (C) fractional area (FA), 
revealed a significant increase in BPA-treated dams (gray) compared to the control ones (light 
gray), mainly due to the medial magnocellular component of the nucleus (PaMM), while no 
significant effects were detected among the BPS-treated dams (dark gray). Data are expressed 
as mean ± SEM. One-way ANOVA followed by Tuckey’s HSD test revealed a significant effect 
of the treatments for p ≤ 0.05. Scale bar = 50µm. OXT = oxytocin; PVN = paraventricular 
nucleus; PaAP = anterior parvicellular nucleus; PaV = ventral nucleus; PaDC/PaLM = dorsal 
cap/lateral magnocellular part; PaMP = medial parvicellular part; PaMM = medial 
magnocellular part; FA = fractional area; * = third ventricle.   
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Figure 4. Oxytocin immunoreactivity in the SON of oil-, BPA- and BPS- treated dams. (A) 
Representative image of oxytocin immunoreactivity in a coronal section of SON of oil-treated 
(left image), BPA-treated (central image) and BPS-treated (right image) dams. Analysis of 
OXT-ir in SON, expressed both as (B) number of OXT+ cells and (C) fractional area (FA), 
revealed a significant increase in BPA-treated dams (gray) compared to the control ones (light 
gray), while no significant effects were detected among the BPS-treated dams (dark gray). Data 
are expressed as mean ± SEM. One-way ANOVA followed by Tuckey’s HSD test revealed a 
significant effect of the treatments for p ≤ 0.05. Scale bar = 50µm. OXT = oxytocin; SON = 
supraoptic nucleus; FA = fractional area.   
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CHAPTER 5 – Experiment 3 
 
Perinatal exposure to bisphenol A or S alters differently sexual behavior and kisspeptin 
system in mice  
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2 Department of Neuroscience “Rita Levi-Montalcini”, University of Turin, Via Cherasco 15, 
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ABSTRACT  
 
The effects of bisphenol A (BPA), a highly diffused endocrine disrupting chemical found 
mainly in plastics, on neural circuits and behaviors are well-known. However, the effects of its 
substitutes have not been fully investigated. For this reason, we have performed in the present 
study a comparison of the effects of perinatal exposure to bisphenol A (BPA) or S (BPS) on the 
kisspeptin system and reproductive behaviors in mice. 
C57BL/6 dams were orally treated with a dose of 4 µg/kg body weight/day of BPA or BPS or 
with vehicle alone, from mating until the weaning of the offspring. We monitored the 
development of the offspring until postnatal day 90, when we analyzed the reproductive 
behavior (two-bedding T-Maze test and sexual behavior).  
BPA caused a delay of the puberty in females, while BPS caused an anticipation in males, and, 
both BPs altered the estrous cycle in females. BPA-exposed males showed fewer mounts and 
intromissions and less time spent in the arm with the female bedding, while BPS-exposed males 
showed an increased number of mounts and intromissions and anogenital sniffing. Control 
males showed fewer mounts and intromissions towards BPS-exposed females.  
The immunohistochemical analysis of the hypothalamic kisspeptin system highlighted some 
alterations in treated groups. In BPA- or BPS-treated females we observed an increase of 
kisspeptin within the rostral periventricular area, while BPA led to an increase in the 
paraventricular nucleus and BPS induced a reduction compared to control females. Among 
males, we observed a significant increase in the arcuate nucleus of BPA-treated males and a 
significant decrease in the paraventricular nucleus of BPS-treated ones. These results support 
the idea that perinatal exposure to low-dose of both BPA or BPS is altering, in a sexually 
differentiated way, some reproductive-relevant parameters, sexual behaviors and kisspeptin 
hypothalamic nuclei.  
 
Keywords: endocrine disrupting chemicals, EDCs, BPA, BPS, kiss, hypothalamus, rostral 
periventricular area of the third ventricle, RP3V, paraventricular nucleus, PVN, arcuate 
nucleus, Arc  
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Introduction  
 
Bisphenols (BPs) are organic synthetic compounds mainly used to produce polycarbonate 
plastics (Catenza et al., 2021). They are an extremely abundant class of synthetic Endocrine 
Disrupting Chemicals (EDCs, i.e., exogenous chemical, or mixtures of chemicals, that interfere 
with any aspect of hormone action) (Gore et al., 2015). The exposure to BPs is known to be 
responsible of a variety of adverse reproductive outcomes in the two sexes (Frye et al., 2012), 
impacting both on physiological (Siracusa et al., 2018) and behavioral aspects (Brehm & Flaws, 
2019; Frye et al., 2012; Rebolledo-Solleiro et al., 2021) of reproduction.  
 
Bisphenol A (BPA), the first synthetized BP, is known to be a reproductive toxicant in humans, 
affecting the oocyte and sperm production and quality, the uterine and ovary’s health (e.g., 
association with increased risk of endometriosis and polycystic ovary syndrome, PCOS), and 
the hormones’ production in Sertoli and Leydig cells (Siracusa et al., 2018). Deleterious effects 
on male and female reproductive systems have been demonstrated in rodents (Rubin, 2011; 
You & Song, 2021), in which BPA exposure has been associated also with alterations of the 
sexual behavior (Palanza et al., 2021; Rebolledo-Solleiro et al., 2021), especially when the 
exposure occurs during critical period of development, such as the pre- or peri-natal one  
(Bakoyiannis et al., 2021; Rebolledo-Solleiro et al., 2021). However, given the complexity of 
sexual and socio/sexual behaviors, current literature mainly reported not obvious and often not 
consistent alterations (Arambula & Patisaul, 2019; Palanza et al., 2016, 2021). Despite this, 
previous studies generally highlighted a reduction in the sex-differences which are usually 
observed in the socio-sexual responses (Palanza et al., 2021).  
 
Public health concerns persuaded the European Food Safety Authority (EFSA), after 
completing a full risk assessment, to establish a tolerable daily intake (TDI) for BPA, which is 
now set at 4 μg/kg of body weight (BW)/day (EFSA, 2015). Afterwards, BPA has been banned 
from the production of some consumer products (European Commision, 2011), and several 
structural analogues have been proposed (Catenza et al., 2021; Liu et al., 2021). Among these, 
bisphenol S (BPS), is, at present, one of the most used (Liao et al., 2012; Liao & Kannan, 2013, 
2014), and it has already been detected in environmental and human samples (Wu et al., 2018). 
Increasing evidence suggest that BPS is not a safe alternative to BPA (den Braver-Sewradj et 
al., 2020; Mustieles et al., 2020; Naderi & Kwong, 2020; Thoene et al., 2020), as they share not 
only some structural similarities but also the endocrine disrupting properties (den Braver-
Sewradj et al., 2020; Eladak et al., 2015; Gramec Skledar & Peterlin Masic, 2016; Naderi & 
Kwong, 2020; Rochester & Bolden, 2015). Therefore, the European Chemical Agency (ECHA) 
had classified as toxic for reproduction both BPA (Repr. 1B, H360F, i.e., may damage fertility) 
and temporarily BPS (Repr. 2, H361f), for which the evaluation is still ongoing (European 
Chemicals Agency, n.d.).  

Brigitta Bonaldo
69



BPS, as well as BPA, is known to have some effects on reproductive-relevant parameters in 
rodents, such as alterations of estrous cycle, folliculogenesis, plasma hormone levels, decreased 
implantation index, and decreased fertility in females, and decreased sperm counts and motility 
in males (den Braver-Sewradj et al., 2020).  
If, on one hand, effects on sexual behavior of BPA exposure appear not to be consistent (Palanza 
et al., 2021), on the other one, potential effects of BPS still remain unexplored.  
 
Even though behavioral outcomes of BPs exposure are still poorly addressed, alarming data 
come from the fact that different neural systems engaged in the control of sexual behavior are 
known to be affected by, at least, BPA exposure (Gore et al., 2019; Patisaul, 2020).  
Among them, the kisspeptin (kiss) system is highly involved in the control of key aspects of 
reproductive functions, such as regulation of puberty onset and estrous cycle, and also peculiar 
behaviors like mate-preference and lordosis (Harter et al., 2018; Hellier et al., 2019; Navarro 
& Tena-Sempere, 2011).  
In rodents, two major populations of kiss neurons, both in the hypothalamus, have been 
described: the one located in the rostral preoptic area of the third ventricle (RP3V) (Herbison, 
2008), which responds to estrogens increasing kiss synthesis, and the other located in the 
arcuate nucleus (Arc), which responds to estrogens inhibiting of kiss production (Gottsch et al., 
2004; Smith, Cunningham, et al., 2005; Smith, Dungan, et al., 2005). The kiss neurons from 
RP3V and Arc project primarily to the GnRH neurons as well as to other hypothalamic and 
extrahypothalamic areas (Yeo & Herbison, 2011), among which the paraventricular nucleus 
(PVN) arises as major target of the system (Marraudino et al., 2017; Yeo & Herbison, 2011). 
Within the whole kiss system (cells and projections), females display a much higher number of 
cells and fibers compared to males (Clarkson & Herbison, 2011; Kauffman, 2009; Knoll et al., 
2013; Marraudino et al., 2017; Overgaard et al., 2013).  
Kiss plays a fundamental role in the control of the activity of hypothalamic-pituitary-gonadal 
(HPG) axis. In fact, the gonadotropin-releasing hormone neurons (GnRH), the key regulators 
of gonadotropin pulsatile secretion, which is critical for the regulation puberty and fertility 
(Herbison, 2016), express the kisspeptin receptor 1 (kiss1r) (Novaira et al., 2014). GnRH 
neurons have the cell body mainly located in the rostral preoptic area (POA) and send their 
projections to the median eminence, where gonadotropins are release into the portal vasculature 
(Roa & Tena-Sempere, 2018). Their activity is regulated by estrogens via estrogen receptor α 
(ERα), which is not expressed in those neurons but is present in the kiss ones (Herbison, 2016). 
Thus, it has been demonstrated that the kiss/kiss1r signaling controls the estrogen-mediated 
regulation of GnRH, regulating the generation of the surge in the POA, and of the pulse in the 
Arc (Herbison, 2020).  
 
The hypothalamic kiss system is known to be a target of endocrine disruption (Marraudino et 
al., 2021; Patisaul, 2013; Tena-Sempere, 2010), although few study directly investigated the 
effects of BPA, showing, in female rats, mainly a decreased expression of kiss in some 
hypothalamic nuclei (Cao et al., 2012; Navarro et al., 2009; Patisaul et al., 2009). In female 
mice, adult oral exposure to BPA (20µk/kg BW) results in an increased expression of both Kiss 
mRNA and protein in the RP3V, while the intracerebroventricular injection of BPA into the 
right lateral ventricle caused an increase as well in kiss mRNA within the RP3V, depending in 
both cases on the phase of the estrous cycle (X. Wang et al., 2014). More recently, it has been 
demonstrated in female mice that oral treatment with low-doses (5, 10, or 40 µg/kg BW/day) 
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BPA during the perinatal period caused an impairment of the developmental maturation Kiss 
system, with a consequently higher number of kisspeptin cells in RP3V and a fewer one in the 
Arc (Ruiz-Pino et al., 2019). If, on one hand, available data concerning the effects of BPA on 
Kiss system are mainly limited to females, on the other one, the possible effects of BPS are still 
not investigated at all. Still, the level of exposure to both BPs is increasing, due to their 
persistence in the environment (Chen et al., 2016; Vasiljevic & Harner, 2021; Wu et al., 2018).  
 
Considering the low consistence of data regarding the BPA effects on sexual behavior and the 
limited ones available on kiss system, and the complete lack of data regarding possible effects 
of BPS exposure, in this study we aimed to evaluate the potential effects on sexual behaviors 
of adult male and female mice perinatally exposed to low-dose BPA or BPS (EFSA TDI for 
BPA, 4 μg/kg BW/day), performing the Two-bedding T-maze test and observing their 
spontaneous sexual behavior. Last, thanks to immunohistochemical techniques, we investigated 
the possible alterations of the kiss systems within the RP3V, Arc and PVN hypothalamic nuclei, 
which are known to be involved in the control of different aspect of reproductive-relevant 
parameters and behaviors (Harter et al., 2018; Hellier et al., 2019; Navarro & Tena-Sempere, 
2011) and to be targeted at least by BPA exposure (Patisaul, 2013; Ruiz-Pino et al., 2019).  

Materials and methods  

Animals  
Adult C57BL/6J mice from our colony at the Neuroscience Institute Cavalieri Ottolenghi 
(originally purchased from Envigo, S. Pietro al Natisone, Udine, Italy) were housed in standard 
conditions in 45 × 25 × 15 cm polypropylene mouse cages at 22 ± 2 °C, under 12:12 light dark 
cycle (lights on at 10:00 AM). Food (standard mouse chow 4RF21, Mucedola srl, Settimo 
Milanese, Italy) and water were provided ad libitum. One male and two female mice (3-month-
old) were housed together to achieve a successful mating, assessed by the evaluation of the 
presence of the vaginal plug (assumed as gestational day 0, GD0) (Hasegawa et al., 2017).  

Animal care and handling were according to the European Union Council Directive of 22nd 
September 2010 (2010/63/UE); all the procedures reported in the present study were approved 
by the Italian Ministry of Health (407/2018-PR) and by the Ethical Committee of the University 
of Torino (Project n° 360384).  

Treatments  
Experimental procedures are summarized in Figure 1. BPA (Sigma Aldrich, 239658, CAS 80-
05-7) or BPS (Sigma Aldrich, 103039, CAS 80-09-1) were prepared for oral administration by 
dissolving them in corn oil (Sigma-Aldrich, C8267). 12 pregnant dams were assigned randomly 
to three experimental groups: control dams (receiving only vehicle, corn oil; n=4), BPA-treated 
dams (receiving 4 µg/kg BW/day of BPA, corresponding to the European TDI; n=4) and BPS-
treated dams (receiving 4 µg/kg BW/day of BPS; n=4). The dose was calculated daily according 
to dams’ body weight, recorded with an electronic precision balance (Mod. Kern-440-47N, 
resolution 0.1g).  
We tested the same dose for both BPA and BPS to allow a precise comparison of the effects of 
the two bisphenols. Moreover, at present, although BPS is one of the most used BPA substitutes 
and it has already been detected in environmental and human samples (Catenza et al., 2021), at 
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present no user guidelines are available. Dams were treated starting at GD0, throughout 
pregnancy and lactation, until weaning of the offspring at postnatal day 28 (PND28). To 
resemble human exposure conditions, the daily treatment or the vehicle was given orally to the 
dams, by means of a pipette, to minimize dams’ stress (Bo et al., 2016; Palanza et al., 2002). 
This type of administration allowed us to perform a perinatal treatment (covering both pre-natal 
and post-natal critical window of development) (Neier et al., 2019) on the offspring. In fact, it 
is known that both BPA and BPS can pass first through the placenta and then into the milk 
during the lactation (Cimmino et al., 2020; Mao et al., 2020).  

 

 
Figure 1. Schematic temporal representation of experimental procedures.  

 
Litters were reduced to 8 pups at birth, to obtain an equal number of pups of both sexes, sexed 
via the measurement of the anogenital distance (AGD) (Manno  3rd, 2008). The pups were 
weaned at PND28 and housed in monosexual groups of 4 mice. They were monitored weekly 
until adulthood when the behavioral tests were performed.  
We monitored the mice weekly, from the weaning until the sacrifice, evaluating in particular: 
- Body weight (BW), recorded once a week. 
- Food intake (FI, measured as g of food/animal/day) once a week. 
- AGD: measured before the puberty onset (PND21), after the puberty onset (PND45), at 
PND60 (young adult) and PND90 (adult).  
- Puberty onset, assessed by the Vaginal Opening (VO) in females (Gaytan et al., 2017) and by 
the balano-preputial Separation (BS) in males (Spears et al., 2013).   
- The estrous cycle, evaluating the vaginal cytology smears (McLean et al., 2012), for at least 
2 cycles (PND80-90 approximately).  
 
Behavioral tests  
Around PND90 the sexual-odor preference and the sexual behavior itself were evaluated 
performing the two-bedding T-maze test (Nunes, 2009; Yano, Sakamoto, and Habara 2012; 
Habedank, A.; KahnauP; Lewejohann 2021) and the observation of the spontaneous sexual 
behavior (Carvalho et al., 2018; Liu et al., 2020; McGill, 1962) (n=10±1 /group). The females, 
both testers and no-testers, were tested in estrus phase, assessed by vaginal smear (McLean et 
al., 2012). On the days of tests, mice were placed in the room in which the tests were performed 
at least 2 hours before starting, to allow the habituation to the room. Before starting and between 
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each trial, the testing apparatus were cleaned with 70% ethanol, being sure to thoroughly dry 
the apparatus to avoid exposure of mice to alcohol. The tests were performed in the dark, using 
only a 25-W red light, which mice cannot see, to help the operator to manipulate the animals 
(Palanza et al., 2002). Each test was recorded with an infrared camera placed above the 
apparatus in order to subsequently perform the behavioral analysis through the Ethovision XT 
Software (Noldus Information Technology, Wageningen, The Netherlands).  
 

Two-bedding T-Maze  
The test was performed using T-shaped maze (schematized in Fig. 3A), with 3 arms of equal 
size (50 × 10 cm x 15 cm walls). Before proceeding with the testing session, to exclude the 
preference for one of the two arms, the animals underwent to a first phase of habituation to the 
empty apparatus, in which they were placed at the base of the T and allowed to free explore it 
for 5 min. Then the mice were momentarily placed into a clean cage, while the operator added 
bedding obtained from unknown age-matched in estrus females’ cage into the right arms of the 
apparatus and unknown age-matched males-derived bedding into the left one (Yano et al., 
2012). For the testing session, the animals were positioned at the base of the T and were allowed 
to freely explore the apparatus for 10 minutes (Nunes, A C; da Luz Mathias, M; Ganem, 2009). 
After the recording, the parameters described in Table 1 were analyzed thanks to Ethovision 
XT Software (Noldus Information Technology, Wageningen, The Netherlands). Some 
parameters (reported in Table 1) were evaluated for both the entire length of right or left arms, 
and specifically for the bedding spots placed within each arm. This allowed us to discriminate 
a more general, still odor-guided, exploration of the arms with a specific interaction with the 
female or male bedding.  
 

Parameter Description 
Cumulative Duration 
(CD) 

The cumulative time (s) spent by the tester in the central, in the right or in the 
left arm, and in the female or male bedding.  

Latency to first entry The time passed (s) until the mouse first entered the right and the left arm, or the 
female and male bedding. 

Frequency of entrance The number of times the tester mouse entered in the central, in the right or in the 
left arm, and in the female or male bedding. The mouse was considered to have 
entered right or left arm if all four paws had left the central arm.  

Distance  The total distance traveled (cm) by the tester mice in the whole apparatus during 
the trial.  

Mean velocity (v) The mean velocity (cm/s) displayed by the tester mouse during the trial.  
Table 1. Parameters analyzed for each mouse in the two-bedding T-maze recorded trials. 
 

Sexual Behavior 
The observation of spontaneous sexual behavior was performed into a square arena (30 × 30 × 
38 cm walls), in which the male was introduced during the habituation phase to the room, 2 
hours before the beginning of the test to ensure that the territoriality of the male inside the cage 
is established, which is necessary for a good expression of male sexual behavior (Carvalho et 
al., 2018). The test lasted 30 minutes: after the first 5 minutes, the receptive female was 
introduced into the arena and, after the recording, the parameters (Carvalho et al., 2018; 
Osakada et al., 2018) described in Table 2 were analyzed thanks to Ethovision XT Software 
(Noldus Information Technology, Wageningen, The Netherlands). Unknown age-matched 
female (in estrus) or male mice were used as no-tester during the testing of experimental males 
and females respectively. The male- (i.e., mount, intromission) and female- (i.e., lordosis, 
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rejection) specific behaviors and were analyzed for either tester or no-tester mice depending on 
the recorded session.  
 

Parameter Description 
Self-grooming The number of times (frequency) the tester mouse licked or scratched its fur, washed 

its face, or licked its genitalia. 
Allo-grooming The number of times (frequency) the tester mouse licked or scratched the fur, washed 

the face, or licked the genitalia of no-tester mouse.  
Sniffing  The number of times (frequency) the tester mouse olfactorily explored the no-tester 

one, either motionless or moving.  
Anogenital sniffing The number of times (frequency) the tester mouse olfactorily explored the genitalia of 

no-tester one. 
Mount Attempts of the male to mount the female, in the absence of intromission.  
Intromission Successful attempts of the male to mount the female, which led to ejaculation (avoided 

by the intervention of the operator). 
Lordosis Sexually receptive posturing in which the female presents its hindquarters by curving 

the lumbar region of the back towards the floor. 
Protected rearing The number of times the tester mouse reared on its hind paws in the border of the arena. 
Unprotected 
rearing 

The number of times the tester mouse reared on its hind paws in the center of the arena. 

Rearing Total number of times the tester mouse reared on its hind paws in the center or in the 
border of the arena. 

Rejection Sets of behavioral response (hiding the lumbar region of the back or attack the male) 
through which the females avoid or reject the male’s exploring.  

Table 2. Parameters analyzed for each mouse in the sexual behavior recorded trials. 
 
Fixation and tissue sampling  
At least 10 days after the performing of the behavioral tests, mice were sacrificed, by deep 
irreversible anesthesia (intraperitoneal injection of Zoletil 80 mg/kg/ Rompum 10 mg/kg) and 
transcardially perfused with 4% paraformaldehyde (PFA) solution. Females were sacrificed in 
estrus phase, assessed by vaginal smear (McLean et al., 2012). Brains were removed and stored 
in a 4% PFA solution for 24 hours, followed by several washings in 0.01 M saline phosphate 
buffer (PBS). Finally, they were stored in a 30% sucrose solution in PBS at 4 °C, frozen in 
isopentane pre-cooled in dry ice at 35 °C and stored in a deep freezer at 80 °C until sectioning 
(Marraudino et al., 2017).  
Brains (n=4/group) were serially cut in the coronal plane at 30µm thickness with a cryostat, in 
four series. The plane of sectioning was oriented to match the drawings corresponding to the 
coronal sections of the mouse brain atlas (Paxinos et al., 2001). Sections were collected in a 
cryoprotectant solution (Watson  Jr. et al., 1986) and stored at -20 °C.  
 
Kisspeptin immunohistochemistry  
The presence of kiss was detected by immunohistochemistry performed on free-floating 
sections from one series. Briefly, the sections were washed overnight in phosphate buffer (PBS) 
at pH 7.3. The following day, sections were first incubated with citrate buffer (citric acid 10 
mM, 0.05% Tween, pH 6.0) previously heated at 95°C for antigen retrieval and then washed 
three times in PBS. Next, the sections were washed in PBS containing 0.5% Triton X-100 for 
30 min and then treated to inhibit endogenous peroxidase activity with a solution of PBS 
containing methanol/hydrogen peroxide for 20 min. Sections were incubated for 30 min with 
blocking solution containing  normal goat serum (Vector Laboratories, Burlingame, CA, USA) 
diluted in PBS, and then incubated one overnight at room temperature with polyclonal anti-kiss 
antibody (AC#566, a generous gift of Drs A. Caraty, I. Franceschini and M. Keller, Tours, 
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France; Rabbit, 1:5.000) diluted in PBS containing 0.5% Triton X-100. A biotinylated goat anti-
rabbit secondary antibody (Vector Laboratories, Burlingame, CA, USA) diluted in PBS, pH 
7.3–7.4, containing 0.2% Triton X-100 was then employed at a dilution of 1:200 for 60 min at 
room temperature. The antigen-antibody reaction was revealed by 60 min incubation with 
avidin–peroxidase complex (Vectastain ABC Kit Elite, Vector Laboratories, Burlingame, CA, 
USA). The peroxidase activity was visualized with a solution containing 0.400 mg/ml 3,3-
diamino-benzidine (Sigma-Aldrich, Milan, Italy) and 0.004% hydrogen peroxide in 0.05 M 
Tris–HCl buffer at pH 7.6. Sections were mounted on chromallum-coated slides, air-dried, 
cleared in xylene and cover slipped with New-Entellan mounting medium (Merck, Milano, 
Italy). The production, characterization, and specificity of used antibody has been described 
(Franceschini et al., 2006) and successfully used in previous studies (Marraudino et al., 2017, 
2018). As a further control, we omitted the primary antiserum or the secondary biotinylated 
one, replaced with PBS. In both cases positive cell bodies and fibers were totally absent.  
 
Quantitative analysis  
For quantitative analysis, selected standardized sections covering the rostral periventricular area 
of the third ventricle (RP3V, Bregma 0.26 to –0.22 mm), the paraventricular nucleus (PVN, 
Bregma -0.58 to -0.94 mm) and the arcuate nucleus (Arc, Bregma -1.58 to -1.82 mm) were 
chosen according to the mouse brain atlas (Paxinos et al., 2001). Two sections of comparable 
levels for each nucleus were acquired with a NIKON DS-U1 digital camera (Software of 
acquisition: NIS-Element AR 2.10) connected to a NIKON Eclipse 90i microscope (Nikon 
Italia S.p.S., Firenze, Italy). Images were digitized by using a 20x objective for the nuclei 
acquisition. Digital images were processed and analyzed by ImageJ (version 2.10/1.53c; Wayne 
Rasband, NIH, Bethesda, MD, USA). Measurements were performed within predetermined 
fields (region of interest, ROI), boxes of fixed size and shape that are inserted inside each 
labeled considered nucleus (0.074 mm2 for the RP3V and 0.118 mm2 for the Arc). The PVN 
(total area 0.120 mm2) was instead subdivided into four same-size squares (0.03 mm2), 
following the different distribution within the nucleus of the analyzed system  (Marraudino et 
al., 2017; Paxinos et al., 2001). In particular, we analyzed the distribution of kiss-ir within the 
dorsomedial (DM, 0.03 mm2), the dorsolateral (DL, 0.03 mm2) and the ventromedial (VM, 0.06 
mm2) regions of the PVN (Marraudino et al., 2021).  
We evaluated the extension of the immunoreactivity (cell bodies, dendrites, fibers) in all the 
selected nuclei as fractional area covered by immunopositive material. In addition, we also 
counted the number of kiss-positive cells in the RP3V, but not in the Arc, as the high density 
of fibers does not allow to clearly see the cell bodies (the detailed procedures were described 
in (Marraudino et al., 2021; Viglietti-Panzica et al., 1994).  
 
Statistical analysis  
BW, FI and AGD were analyzed by three-way (sex, treatment, and time as independent 
variables) analysis of variance (ANOVA). All other quantitative data were analyzed by two-
way way (sex and treatment as independent variables) ANOVA with SPSS 27 statistic software 
(SPSS Inc., Chicago, USA). If the ANOVA was significant, the post-hoc analysis was 
performed using the Tuckey’s HSD test. Comparison between the estrous cycle evaluations was 
performed using the Student’s t-test. Differences were considered statistically significant for 
values of p≤0.05. Data are shown as mean ± SEM (mean standard error).  
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Results  
 
Effects of perinatal exposure to BPA or BPS on body weight, food intake and 
reproductive-related parameters  
The analysis using three-way ANOVA for BW (F(2,22)=0.610, p=0.919; Fig.1A), FI 
(F(2,20)=0.296, p=0.999; Fig.1B), and AGD (F(2,23)=0.258, p=0.956; Fig.2C,), with age, sex, 
and treatment considered as independent variables, showed no overall significant effects. In 
particular, no significant effects of BPA or BPS treatment on these parameters were observed 
(F(2,22)=0.460, p=0.985, Fig.2A; F(2,20)=0.802, p=0.711, Fig.2B; F(2,23)=0.426, p=0.861, 
Fig.1C), while the sexual dimorphism was  maintained (F(2,22)=22.929, p<0.001, Fig.2A; 
F(2,20)=14.452; p=0.001, Fig.2B; F(2,23)=396.435, p<0.001; Fig.2C).  
 
The perinatal treatment with both BPA or BPS resulted in a huge alteration of the puberty onset 
(F(5,54)=34.522, p<0.001; Fig.2D). In particular, compared to the controls, the BPS caused in 
males a significant anticipation of the BS (p=0.007; Fig.2D), while the BPA caused in females 
a significant delay in VO (p<0.001; Fig.2D). Together these alterations caused the appearance 
of a sexual dimorphism in puberty onset between the BPs-treated males and females (p<0.001), 
which was not present between the controls (p=0.112).  
Moreover, the subsequent analysis of estrous cycle in adult females revealed that both BPA and 
BPS treatments caused an alteration of the time spent in the different phases of the estrous cycle 
(Fig.2E). In particular, both BPA- (p=0.02) and BPS-treated (p=0.004) females spent more 
time in estrus and less time in metestrus (BPA, p=0.046; BPS, p=0.037), with a tendency to 
decrease also the time spent in diestrus (BPA, p=0.058; BPS, p=0.083), compared to control 
females (Fig.2E).  
 
Effects of perinatal exposure to BPA or BPS on sexual-related behaviors 
Results obtained from the analysis of the two-bedding T-maze test and of the sexual behavior 
are summarized in Table 3 and Table 4 respectively. Here we highlight the most interesting 
results (Figure 3 and 4).  
 

Two-bedding T-maze 
The analysis of the Two-bedding T-maze test (Figure 3) highlighted some significant 
differences among the groups (summarized in Table 3).   
First, we observed that control males spent less time in the left arm (p=0.010, Table 3) and 
tended to spend more time in the right arm (p=0.090, Table 3) and in the presence of the female 
bedding (p=0.078, Fig.3E) compared to control females.  
The BPA treatment caused significant alterations in males. In fact, compared to control males, 
the BPA-treated ones spent more time and entered more frequently in the left arms (p=0.001, 
Table 3; p=0.013, Table 3) and within the male bedding (p=0.004; Fig.3B; p=0.002, Fig.3D). 
Conversely, they spent less time in the right arm (p=0.003, Table 3) and within the female 
bedding (p=0.001, Fig.3E) in which they entered less frequently (p=0.046; Fig.3G), compared 
to control males. Moreover, BPA-treated males displayed also higher latency to first entry in 
the right arm (p=0.026, Table 3) also in presence of the females bedding (p=0.027, Fig.3F) 
compared to control ones. These results suggest that BPA treatment in males caused an 
alteration in sexual preference driven by sexual odor, increasing that towards males and 
decreasing that towards females.  
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On the other hand, BPS-treated males showed only higher latency to first entry in the left arm 
(p=0.001, Table 3) and in the presence of the males bedding (p=0.005, Fig.3C) compared to 
control males, suggesting that they were less likely to explore the male odor marked area of the 
apparatus.  
In females, both BPs did not cause any significant alterations (Table 3 and Fig.3).  
 
Parameter Oil BPA BPS ANOVA 

Males Females Males Females Males Females F (5, 57) p 
Cumulative duration (s) in:  
Central 
arm  

90.068±
5.033 

89.701±1
2.689 

73.538±2.
986 

82.03±8.
561 

88.745±8.
285 

79.513±3.5
58 

0.364 0.871 

Right arm  255.716
±20.58 

179.755±
25.642 

146.381±
10.087 

212.597±
26.983 

226.998±
17.664 

179.71±15.
624 

3.929 0.004 

Female 
bedding  

216.331
±20.645 

146.63±1
9.918 

104.452±
9.337 

179.409±
24.083 

175.742±
17.5 

158.933±14
.37 

4.413 0.002 

Lefty arm 219.134
±19.478 

323.927 
±24.428 

348.676 
±10.897 

269.026 
±24.457 

247.147±
20.823 

265.503±23
.471 

5.411 0.000 

Male 
bedding  

172.466
±18.072 

240.965±
30.349 

289.145±
12.661 

234.483±
484 

196.462±
17.091 

235.702±22
.077 

3.566 0.007 

Latency (s) to first entry in:  
Right arm 19.396±

5.296 
25.771±1

.099 
85.227±2

0.182 
58.82±25

.912 
18.45±6.4

64 
36.821±10.

622 
3.374 0.010 

Female 
bedding 

27.294±
8.313 

59.924±2
3.757 

130.11±4
0.143 

75.403±2
6.182 

20.474±6.
376 

37.685±10.
639 

3.269 0.012 

Left arm 4.855±1
.251 

9.427±3.
058 

13.562±2.
729 

14.779±6
.252 

40.144±1
0.449 

19.946±5.5
78 

4.624 0.001 

Male 
bedding 

6.132±1
.227 

14.706±6
.255 

10.4±1.80
6 

18.308±5
.88 

34.86±7.6
25 

19.992±5.9
61 

3.448 0.009 

Frequency of entrance in: 
Central 
arm 

25±1.62
6 

23.182±2
.071 

24.273±0.
764 

22.778±1
.847 

24.182±1.
705 

25.364±1.5
12 

0.788 0.562 

Right arm 9.4±0.7
02 

8±0.751 6.364±0.3
38 

8.667±1.
404 

9.546±0.9
57 

8.727±0.58
9 

2.098 0.079 

Female 
bedding 

11±0.89
4 

8.364±1.
081 

7.273±0.4
88 

8.778±1.
011 

9.818±0.8
93 

10.546±0.8
46 

2.595 0.035 

Left arm 9.2±0.7
57 

10±1 13.182±0.
749 

9.556±0.
868 

9.182±0.6
15 

11.818±0.8
61 

4.123 0.003 

Male 
bedding 

10.1±0.
823 

10.091±0
.879 

15.364±1.
012 

10.889±1
.419 

10.273±0.
675 

11.272±0.7
4 

4.994 0.001 

Distance 
traveled 
(cm) 

3202.17
2±156.8

19 

3160.798
±168.202 

3316.475
±109.292 

2543.76±
554.771 

3167.388
±124.673 

3438.581±1
58.07 

1.211 0.316 

Mean 
velocity 
(cm/s) 

5.337±0
.261 

5.268±0.
28 

5.529±0.1
82 

9.44±.53
4 

5.282±0.2
09 

5.958±0.35
6 

2.851 0.023 

Table 3. Results obtained from the analysis of the parameters during the two-bedding T-maze 
test. Data are reported as Mean ± SEM. Two-way ANOVA (sex and treatment as independent 
variables) revealed a significant effect for p ≤ 0.05, highlighted in bold.  
 

Sexual Behavior 
The analysis of the spontaneous sexual behavior (Figure 4) highlighted some significant 
differences among the groups (summarized in Table 4).  
First, while we had no difference in grooming (F(5.57)=2.250, p=0.062; Table 4), we observed 
higher allo-grooming (p<0.001, Fig.4A), higher anogenital sniffing (p<0.001; Fig.4D) and 
higher unprotected rearing (p=0.044, Fig.4H) in control males compared to control females. 
These sexual differences were generally maintained; however, some specific parameters were 
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affected by the treatments. In fact, BPA treatment in males seemed to cause a general reduction 
in the sexual behavior, even if not significantly, as we observed lower allo-grooming (Fig.3A), 
lower anogenital sniffing (Fig.4D), lower number of mounts (Fig.4E) and intromissions 
(Fig.4F). Moreover, we observed lower rejections displayed by the no-tester females used to 
test the BPA-treated males, due to their general lower attempts of approaching (Fig.4B). 
Conversely, in the BPS-treated males we observed a significant increase in the anogenital 
sniffing (p<0.001, Fig.3D) compared to control males, along with an increase, even if not 
significantly, in the number mounts (Fig.3E) and intromissions (Fig.3F). Furthermore, we 
observed higher rejections displayed by the no-tester females used to test the BPS-treated males, 
due to their general higher attempts of approaching them (Fig.3B).  
In females, both BPs did not cause any significant alterations (Fig.4). However, the analysis of 
the no-tester males suggested, even if not significantly, a reduced interest towards the BPS-
treated females, as they displayed both lower number of mounts (Fig.4E) and intromissions 
(Fig.4F).  
 
Parameter Oil BPA BPS ANOVA 

Males Females Males Females Males Females F (5, 57) p 
Self-
grooming 

15.1±1.
59 

33.8±10.
499 

12±1.635 33.222±1
1.232 

14.91±3.0
04 

23.636±3.8
6 

2.250 0.062 

Allo-
grooming 

54.4±4.
622 

8.7±1.91
9 

42.636±2.
107 

8.667±1.
405 

50.364±5.
066 

8.455±1.18
6 

47.625 <0.001 

Sniffing  21.1±1.
506 

26.7±2.4
33 

21.909±1.
412 

27.889±3
.225 

19.273±1.
356 

28.364±2.6
88 

3.202 0.013 

Anogenital 
sniffing 

22.3±3.
377 

2±0.6 15.091±3.
38 

3±0.85 33.634±3.
904 

2.363±0.52
8 

23.888 <0.001 

Mount 6.1±2.4
88 

4.5±2.07 1.455±0.8
24 

5.111±2.
27 

5.727±2.7
01 

1.636±0.70
4 

1.064 0.390 

Intromission 1.2±0.7
59 

3.8±1.56
1 

0.273±0.2
73 

2.556±2.
31 

1.819±0.9
52 

0.636±0.45
3 

1.210 0.317 

Lordosis 1.1±0.0
95 

1±0 1±0 1±0 1±0 1±0 1.044 0.401 

Protected 
rearing 

70.2±3.
773 

62.5±7.4
68 

41.09±3.5
15 

65.778±9
.902 

53.818±5.
582 

70±7.81 6.391 <0.001 

Unprotected 
rearing 

28.8±4.
228 

9.2±1.81 31.545±3.
904 

16.556±5
.352 

35.636±6.
647 

10.727±3.3
2 

3.004 0.018 

Rearing 99±7.34 71.7±9.2
78 

72.636±4.
243 

82.333±1
4.172 

89.455±1
0.325 

80.727±9.8
92 

1.184 0.329 

Rejection 5.5±1.3
94 

26.7±7.4
12 

3.272±1.3
01 

19.556±6
.912 

15.727±2.
562 

15.909±3.8
22 

2.837 0.023 

Table 4. Results obtained from the analysis of the parameters during the sexual behavior. The 
male- (i.e., mount, intromission) and female- (i.e., lordosis, rejection) specific behaviors are 
reported for either tester or no-tester (gray box) mice depending on the recorded session. Data 
are reported as Mean ± SEM. Two-way ANOVA (sex and treatment as independent variables) 
revealed a significant effect for p ≤ 0.05, highlighted in bold.  
 
Kiss-ir analysis 
The analysis of the immunoreactivity for kiss (summarized in Table 5) revealed that both BPs 
treatment affected the analyzed hypothalamic nuclei, differently in the two sexes.  
 
First, we corroborated the presence of sexual dimorphism within all the analyzed nuclei in 
control mice (Table 5). In fact, oil-treated female mice displayed higher kiss-ir in RP3V, both 
in terms of number of Kiss-positive cells (p<0.001, Fig.5B) and FA (p<0.001, Fig.5C), in the 
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PVN (p<0.001, Fig.4E), and particularly within all its regions (DM, p<0.001, Fig.5F; DL, 
p=0.015, Fig.5G; VM, p<0.001, Fig.5H), and also in Arc (p=0.001, Fig.5L) compared to 
control males. The treatments did not alter the presence of the sexual dimorphism (Table 5 and 
Fig.5), except for the BPA-treated males and females in the Arc, which resulted in the abolition 
of sexual differences (p=0.126, Fig.4L), due to a significant increase of kiss-ir among BPA-
treated males compared to control males within the nucleus (p=0.013, Fig.5L).  
 

Number of kisspeptin positive cells 
Zone Oil BPA BPS ANOVA 

Males Females Males Females Males Females F (5, 18) p 
RP3V 3.75±0.3

22 
17.75±1.8 4.75±0.25 26.75±2.

287 
3.625±0.3

15 
28.75±1.61

3 
73.319 <0.001 

Fractional Area (%) 
Zone Oil BPA BPS ANOVA 

Males Females Males Females Males Females F (5, 18) p 
RP3V 2.413±0.

443 
15.889±1.0

1   
3.605±0.236 22.624±1

.992 
2.813±0.3 27.394±2.0

92 
75.457 <0.001 

PVN 5.156±0.
205 

20.575±0.9
45 

3.6±0.112 26.289±0
.751 

3.883±0.2
3 

15.865±0.2
45 

350.278 <0.001 

- DM 1.241±0.
063 

3.87±0.322 0.856±0.075 4.983±0.
329 

0.946±0.0
75 

3.477±0.19
9 

70.552 <0.001 

- DL 0.818±0.
22 

1.493±0.14
2 

0.367±0.054 1.499±0.
105 

0.234±0.0
5 

0.922±0.10
8 

17.893 <0.001 

- VM 3.097±0.
44 

15.213±0.8
91 

2.377±0.162 19.929±0
.858 

2.704±0.2
17 

11.292±0.1
07 

186.919 <0.001 

Arc 15.013±1
.136 

24.652±1.1
2 

22.539±2.36
5 

27.833±1
.01 

10.963±0.
893 

29.616±1.2
9 

27.849 <0.001 

Table 5. Results obtained from the analysis of kiss-ir in all selected nuclei. Data are reported as 
Mean ± SEM, both as number of positive cells and fractional area for the RP3V and as fractional 
area alone for PVN and Arc. Two-way ANOVA (sex and treatment as independent variables) 
revealed a significant effect for p ≤ 0.05, highlighted in bold. RP3V = rostral periventricular 
area of the third ventricle, PVN = paraventricular nucleus, DM = dorsomedial region of the 
paraventricular nucleus, DL = dorsolateral region of the paraventricular nucleus, VM = 
ventromedial region of the paraventricular nucleus, Arc = arcuate nucleus.  
 
The major alterations were found in BPs-treated female mice. BPA-treated females showed a 
significant increase in RP3V, in both number of kiss-positive cells (p=0.002, Fig.5B) and FA 
(p=0.016, Fig.5C) and in the total PVN (p<0.001, Fig.5E), which was mainly due to the DM 
(p=0.016, Fig.5F) and VM (p<0.001, Fig. 5H) regions of the nucleus. The BPS-treated females 
showed likewise a significant increase in RP3V, in both number of kiss-positive cells (p<0.001, 
Fig.5B) and FA (p<0.001, Fig.5C), compared to control ones. Conversely, in the PVN, they 
showed a significant reduction of kiss-ir (p<0.001, Fig.5E), which was mainly due to the VM 
(p=0.001, Fig.5F) region of the nucleus, but was significant also in the DL (p=0.05, Fig.5G) 
part. Both treatments did not affect kiss-ir within the Arc in the females (Fig.5H).  
 
Particularly interesting is that in the BPA-treated males, as we said, we observed a significant 
increase in kiss-ir only in the Arc (p=0.013, Fig.5L) compared to control ones, while no 
significant effects were found in RP3V (p=0.995, Fig.5B; p=0.994, Fig.5C) neither in PVN 
(p=0.323, Fig.5E) or its DM (p=0.785, Fig.5F), DL ( p=0.173, Fig.5G) and VM (p=0.934, 
Fig.5H) regions. On the other hand, BPS-treated males displayed a significant decrease of kiss-
ir in the DL (p=0.043, Fig.5G) compared to control males, while no significant effects were 
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found in RP3V (p=1.000, Fig.5B; p=1.000, Fig.5C), in total PVN (p=0.531, Fig.5E) or its DM 
(p=0.915, Fig.5F) and VM (p=0.995, Fig.5H) regions, neither in Arc (p=0.350, Fig.5L).  
 
Discussion 
 
The results of this study highlighted that perinatal exposure to low-dose of both BPA or BPS is 
altering, in a sexually differentiated way, not only some reproductive-relevant parameters but 
also sexual behaviors and kiss-ir within the RP3V, PVN, and Arc hypothalamic nuclei.  
 
First, we corroborated previous results describing alterations in the puberty onset and in the 
estrous cycle due to BPs exposure (den Braver-Sewradj et al., 2020; Rubin, 2011; You & Song, 
2021). Our work, however, highlights different effects of the two tested BPs in the two sexes. 
In fact, we showed that BPA-treated females displayed a delay in the VO, while BPS-treated 
males displayed an anticipation of the BS. BPA exposure during critical periods is known to 
cause alterations either in terms of anticipation (Nikaido et al., 2004; Ruiz-Pino et al., 2019) or 
delay (Franssen et al., 2016; Naule et al., 2014; Vandenberg et al., 2007) of the puberty onset 
in female rodents. Perinatal low-dose BPA exposure did not seem to affect puberty onset in 
males, as emerged also by little evidence present in the literature (Hass et al., 2016). 
Interestingly, our data showed that also BPS exposure affected pubertal timing, but only in 
males, anticipating the BS. Even if there is some evidence of BPS effects on reproductive 
functions (den Braver-Sewradj et al., 2020), accelerated puberty has been reported only in 
females (Shi et al., 2019). We observed this effect in males. Effects of BPs exposure described 
in the literature appeared to be quite variable, and this variance in the results had been linked 
to differences in experimental models, time windows, doses, and routes of exposure, and 
potentially to different effects of BPA at central (e.g., the kiss-mediated regulation of GnRH 
pulsatile secretion) and peripheral (e.g., canalization which led to VO) levels (Franssen et al., 
2021; Ruiz-Pino et al., 2019).  
Another important point related to the analyzed reproductive parameters regards the alterations 
of the estrous cycle. The analysis of the estrous cycle in adult females revealed that both BPA 
and BPS treatments caused an alteration of the time spent in the different phases of the estrous 
cycle, increasing the time spent in estrus in spite of non-estral phases. These results are in line 
with available literature, which described prolonged estrous cycle in female mice treated in 
developmental-relevant time windows with both BPs (den Braver-Sewradj et al., 2020; Rubin, 
2011; You & Song, 2021).  
 
As described in the introduction, the effects of BPA exposure on sexual behavior described in 
the literature appear not to be consistent (Bakoyiannis et al., 2021; Palanza et al., 2021), and 
almost nothing is known about the potential effects of BPS. In the present study, we reported 
that both BPs partially altered some aspects of sexual and sexual-related behaviors, mainly in 
males. 
The Two-bedding T-maze test allows investigating the sexual-odor preference of the tester mice 
(Habedank, A.; KahnauP; Lewejohann, 2021; Nunes, A C; da Luz Mathias, M; Ganem, 2009). 
BPs treatments induced, in our experiment, some alterations of these behaviors chiefly in males. 
In particular, BPA-treated males seemed to be the most affected, spending more time within 
the left arms and particularly in the presence of male bedding compared to the controls, 
suggesting an alteration in sexual preference driven by sexual odor, increasing that towards 
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males and decreasing that towards females. On the other hand, BPS-treated males showed 
higher latency to first enter in the left arm with or without the male bedding compared to control 
ones, suggesting that they were less likely to explore the male odor-marked area of the 
apparatus. We found no significant alterations in treated females.  
The analysis of spontaneous sexual behavior suggested that sex differences in peculiar 
behaviors were generally maintained among the treated group. However, some specific 
behaviors were affected by the treatments. Once again, BPA treatment in males seemed to cause 
a general reduction (lower allo-grooming, anogenital sniffing, lower number of mounts and 
intromissions) in the approach towards no-tester females, which displayed lower rejections 
towards them due to their lower insistence. Conversely, in the BPS-treated males, we observed 
a general increase (higher anogenital sniffing, tendency to higher number of mounts and 
intromissions) in the approach towards no-tester females, which, for their part, displayed higher 
rejections towards them due to their higher insistence. Also in this case, we did not observe any 
significant alterations in the treated females. However, the analysis of the no-tester males 
suggested a reduced interest (lower number of mounts and intromissions) towards the BPS-
treated females.  
 
Thus, our study suggested that both BPs partially altered some aspects of sexual and sexual-
related behaviors, mainly in males. Overall, BPA-treated males displayed the major alterations 
in both indirect (odor-driven) and direct sexual behaviors. This could be in line with the general 
reduction in the sex differences, which are usually observed in the socio-sexual responses, due 
to EDCs exposure (Palanza et al., 2021). Furthermore, it has been recently described that the 
exposure of male mice to BPA led to increased socio-sexual exploration with the same sex (Gao 
et al., 2020) and to the elimination of the preference for opposite-sex urine odor (J. Wang et al., 
2021). Furthermore, it has been reported that low-dose BPA caused also decreased number of 
intromissions, lower copulatory efficiency and higher mount and intromission latency in male 
rats, while female sexual behavior is not affected (Jones et al., 2011) or is even potentiated 
(Farabollini et al., 2002). On the other hand, even if some behavioral outcomes of BPS exposure 
started to become clearer (Naderi & Kwong, 2020), such as an impairment in social behavior 
(Mornagui et al., 2019), there are no precise evidence concerning its effects on sexual behavior 
either in males or females. Despite this, we observed both a potentiated male sexual behavior 
in BPS-treated mice and an interesting reduction in no-tester males’ approach towards BPS-
treated females, which could be linked to alteration of female pheromone production which is 
highly important in the control of a wide set of behavioral responses in mice (Stowers & 
Liberles, 2016).  
 
Previous studies revealed that the kisspeptin system is particularly sensitive to exposure to 
several EDCs including BPA (Bateman & Patisaul, 2008; Bellingham et al., 2009; Cao et al., 
2012). In the present study, we demonstrate that kiss-ir is differentially affected in both sexes 
by BPs treatment in all analyzed hypothalamic nuclei. We showed that BPA-treated females 
had a significant increase in RP3V, in the total PVN (mainly due to the DM and VM regions of 
the nucleus), while the BPS-treated ones showed a significant increase in RP3V and a 
significant reduction in the PVN (mainly due to the VM region but present also in the DL). In 
the BPA-treated males, we observed a significant increase in the Arc, while the BPS-treated 
ones displayed a significant decrease in the DL. However, all these changes had no effects on 
the sexual differences of the system. Our results corroborated the idea that kiss system is a 
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target of BPA action (Ruiz-Pino et al., 2019; X. Wang et al., 2014) and highlighted, for the first 
time, that it could be affected also by BPS exposure during the perinatal period.  
 
In females, BPA and BPS had the same effect in RP3V, causing an increase in kiss-ir, which 
has been already described for BPA (Ruiz-Pino et al., 2019; X. Wang et al., 2014). Both BPA 
and BPS could act as positive modulators of ERα (Park et al., 2020), contributing to the 
observed alterations in puberty onset and in the estrous cycle. Considering the delicate 
positive/negative feedback control of the reproductive functions (Kaprara & Huhtaniemi, 
2018), those alterations could lead to an impairment of the HPG axis (Pivonello et al., 2020; 
Santoro et al., 2019), which could give rise to a self-maintained distorted mechanism.  
Conversely, we observed the opposite effect of the treatments within the female PVN. In the 
BPA-treated females, we observed an increased kiss-ir in the medial region of the nucleus, 
where corticotropin-releasing hormone (CRH) and thyrotropin-releasing hormone (TRH) 
parvocellular neurons, highly involved in the control of organism homeostasis, are located 
(Kondo et al., 2021; Wamsteeker Cusulin et al., 2013), and in which the nucleus displayed the 
highest expression of newly identified kisspeptin receptor (Npffr1) (Higo et al., 2021). This 
alteration could be in line with the previous one, considering the role of kiss in integrating 
metabolic inputs in order to regulate reproductive functions (Harter et al., 2018). On the other 
hand, we observed a kiss-ir reduction in VM of BPS-treated females: these opposite effects 
could be due to the fact that estrogen receptors are differentially impacted by the two BPs  
(Catanese & Vandenberg, 2017; Nourian et al., 2020), even if both are known to act on all 
estrogen receptors (Park et al., 2020). BPS seems to impact less on ERβ, which is fundamental 
for estrogen pathway regulation in magnocellular neurons of the hypothalamus (Mitra et al., 
2003), and more on ERα compared to BPA (Catanese & Vandenberg, 2017; Nourian et al., 
2020). Considering the different expression of the two ERs within PVN (Mitra et al., 2003), it 
is possible that BPA could act directly on PVN population through ERβ locally expressed, while 
BPS could act indirectly on PVN, through ERα present in neurons projecting to this nucleus 
(Catanese & Vandenberg, 2017; Grassi et al., 2010; Nourian et al., 2020; Park et al., 2020). 
Interestingly, we observed that BPS decreased kiss-ir in the DL of both treated males and 
females. In this region, are located not only part of the neurosecretory magnocellular neurons 
(Otero-Garcia et al., 2016), but also long-projecting pre-autonomic neurons, which send their 
axons to the brainstem and the spinal cord (lateral gray horn of the spinal column), and GABA-
ergic interneurons (Ferguson et al., 2008; Geerling et al., 2010). The long-projecting pre-
autonomic neurons in DL are known to project to the Nucleus of the Solitary Tract (NTS) 
(Ferguson et al., 2008; Geerling et al., 2010), which is mainly involved in life-sustaining 
functions (e.g., appetite, digestion, breathing, and blood pressure) (Gasparini et al., 2020) but it 
has potential roles in the regulation of both reproduction and stress axis (for a review see 
(Brunton & Russell, 2008). Thus, if in females the alterations could be linked to altered 
reproductive parameters (NTS is involved in circuits controlling estrous cyclicity) (Feng et al., 
2007), in males an alteration could be hypothesized of NTS integration of reproductive and 
stress axis (Grover et al., 2020), resulting in a partially altered sexual behavior.  
 
Last, the observed increase in kiss-ir within the Arc of BPA-treated males could be linked to 
the different alterations observed in the sexual behaviors. First, kiss in Arc is hugely involved 
in the control of metabolism and energy balance (Dudek et al., 2018; Padilla et al., 2019; Patel 
& Smith, 2020): reproduction is strictly related to the metabolism of the organism and 
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impairment in the perception of the energy state could lead to alterations in the sexual behavior 
(Patel & Smith, 2020). Furthermore, even if it seems that less-described kisspeptin neurons 
located in the amygdala play a central role in the olfactory control of the gonadotropic axis (R 
Pineda et al., 2017; Rafael Pineda et al., 2021), also kiss population in the Arc appear to be a 
target of pheromone actions (Boehm et al., 2005), and in particular of male ones (Sakamoto et 
al., 2013), potentially underlying the altered behavior observed both during the Two-bedding 
T-maze and the sexual one.  
 
In conclusion, our results suggest that perinatal exposure to both BPA and BPS, even at low 
dose, leads to alterations in reproductive-related parameters in the two sexes and also in the 
displaying of sexual behavior, especially in males. Both BPs, differentially in the two sexes, 
affected kiss system in the RP3V, PVN, and Arc hypothalamic nuclei, and these impairments 
could be partially linked to the observed physiological and behavioral alterations. The possible 
health implications of exposure to BPs must be avoided, or at least limited, by new and more 
stringent regulations on the use of these compounds. 
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Figure 2. Effects of BPA and BPS exposure on body weight, food intake and reproductive-
related parameters. Body weight (A) and food intake (B) weekly evaluation from the weaning 
(PND28) until the sacrificed of the animals. (C) Measurement of anogenital distance (AGD) 
before puberty (PND21), after puberty (PND45), in young adult (PND60) and adult (PND90) 
mice. (D) Evaluation of puberty onset through the assessment of the PND of vaginal opening 
(VO) for females and balano-preputial separation (BS) for males. (E) Mean percentage of time 
spent in the different phases of the estrous cycle, assessed by vaginal cytology smears, in the 
Oil- (left), BPA- (center) or BPS- (right) treated females. Data are expressed as mean ± SEM. 
Statistical analysis revealed a significant effect for p ≤ 0.05 (* = vehicle vs treatment; # = male 
vs female). BW = body weight; FI= food intake; AGD = anogenital distance; PND = postnatal 
day.   
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Figure 3. Analysis of Two-bedding T-maze test in control and BPs-treated mice. (A) 
Schematic representation of the two-bedding T-maze apparatus. Time spent (B, E), latency to 
first entry (C, F), and frequency of entrance (D, G) in the male (up) or female (bottom) bedding 
by the Oil-(light gray), BPA-(gray) or BPS-(dark gray) treated male (left side of the graphs) or 
female (right side of the graphs) mice. Data are expressed as mean ± SEM. Two-way ANOVA 
revealed a significant effect for p ≤ 0.05 (* = vehicle vs treatment; # = male vs female). CD = 
cumulative duration.   
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Figure 4. Analysis of spontaneous sexual behavior in control and BPs-treated mice. The 
histograms show the frequency (number of times) the Oil-(light gray), BPA-(gray) or BPS-
(dark gray) treated male (left side of the graphs) or female (right side of the graphs) mice 
displayed the following specific behaviors during the recorded session: (A) allo-grooming, (B) 
rejection, (C) sniffing, (D) anogenital sniffing, (E) mounts and (F) intromissions. Male- (i.e., 
mount, intromission) and female- (i.e., rejection) specific behaviors are reported for either tester 
(fill bar) or no-tester (dotted bar) mice depending on the recorded session. Data are expressed 
as mean ± SEM. Two-way ANOVA revealed a significant effect for p ≤ 0.05 (* = vehicle vs 
treatment; # = male vs female).   
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Figure 5. Kisspeptin immunoreactivity in the analyzed hypothalamic nuclei of control and 
BPs-treated mice. Representative images of kisspeptin immunoreactivity in a coronal section 
of (A) RP3V, (D) PVN and (I) Arc of control female. Analysis of kiss-ir in RP3V, expressed 
both as (B) number of kiss+ cells and (C) fractional area (FA). Analysis of kiss-ir, expressed as 
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fractional area (FA), in (E) total PVN, in (F) DM, in (G) DL, in (H) VM and in (L) Arc.  In the 
histograms (B, C, E, F, G, H, L) the oil-treated mice are shown in light gray, BPA-treated mice 
are shown in gray, and BPS-ones are shown in dark gray. Male mice are shown on the left side 
of the graph, while females are on the right side. Data are expressed as mean ± SEM. Two-way 
ANOVA revealed a significant effect for p ≤ 0.05 05 (* = vehicle vs treatment; # = male vs 
female). Scale bar = 50µm. + = positive; kiss = kisspeptin; RP3V = rostral periventricular area 
of the third ventricle, PVN = paraventricular nucleus, DM = dorsomedial region of the 
paraventricular nucleus, DL = dorsolateral region of the paraventricular nucleus, VM = 
ventromedial region of the paraventricular nucleus, Arc = arcuate nucleus; FA = fractional area; 
* = third ventricle.   
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Perinatal exposure to bisphenol A or S: effects on anxiety-related behaviors and 
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ABSTRACT 
 
Bisphenols (BPs), organic synthetic compounds used in the production of plastics, are an 
extremely abundant class of Endocrine Disrupting Chemicals, i.e., exogenous chemicals, or 
mixtures of chemicals, that can interfere with any aspect of hormone action. Exposure to BPs 
can lead to a wide range of effects and it is especially dangerous if it occurs during specific 
critical periods of life. Focusing on the effects of perinatal exposure to BPA or to its largely 
used substitute BPS, we treated C57BL/6 dams orally with a dose of 4µg/kg body weight/day 
(i.e., EFSA Tolerable Daily Intake dose) of BPA or BPS dissolved in corn oil or with vehicle 
alone, starting with mating and continuing until the weaning of the offspring. In adulthood 
(PND90), the offspring of both sexes performed the elevated plus maze and the open field tests.  
Both testes highlighted alterations in some parameters in both BPA- and BPS-treated mice, 
suggesting different effects of the BPs exposure on anxiety-related behavior in males 
(anxiolytic) and females (anxiogenic). Therefore, thanks to immunohistochemical techniques, 
we analyzed the serotonergic system in dorsal (DR) and median (MnR) raphe nuclei, which are 
highly involved in the control of anxiety-related behavior. In control mice, we detected sex 
dimorphism of the system in the DR only, with control females showing higher values of 5-
HT-ir when compared to control males. BPA-treated males displayed a significant increase of 
5-HT-ir in all analyzed nuclei, whereas BPS-treated males showed an increase in ventral DR 
only. In females, both BPA- and BPS-treated groups showed a significant increase of 5-HT-ir 
in dorsal DR compared to the controls, and BPA-treated females also showed a significant 
increase in MnR. In conclusion, exposure during early phases of life to both BPA or BPS is 
altering, in a sexually differentiated way, both anxiety-related behavior and the Raphe 
population of serotonin neurons which is involved in the control of this behavior.  
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Introduction  
 
Growing literature considered the Endocrine Disrupting Chemicals (EDCs), i.e., “exogenous 
chemicals, or mixtures of chemicals, that interfere with any aspect of hormone action”, as 
substantial and costly public health problems due to their pervasiveness and their associations 
with chronic disease (Gore et al., 2015; Kahn et al., 2020).  
More recent concerns regard the possibility of EDCs to alter brain development, 
neurochemistry, and behaviors (Bakoyiannis et al., 2021). Among EDCs, exposure to 
bisphenols (BPs), and in particular to bisphenol A (BPA), seems to impact the behavioral 
outcome, especially when the exposure occurs during critical periods of development, such as 
the pre- or perinatal one (Bakoyiannis et al., 2021; Rebolledo-Solleiro et al., 2021).  
However, because of several health issues, the European Food Safety Authority (EFSA), after 
completing a full risk assessment in 2006 (EFSA, 2006), established a tolerable daily intake 
(TDI) for BPA of 50 μg/kg of body weight (BW)/day, which has been reduced in 2015 from 50 
to 4 µg (EFSA, 2015). Contextually, the European Commission has imposed BPA removal 
from some consummatory goods, such as infant feeding bottles (European Commision, 2011) 
or other foodstuffs (Andersson et al., 2018). Considering BPA limitations, some substitutes 
have been proposed. Thanks to its increased stability (Kuruto-Niwa et al., 2005), one of the 
most used is bisphenol S (BPS), which unfortunately shares with BPA not only some structural 
similarities but also the endocrine-disrupting properties (Eladak et al., 2015; Gramec Skledar 
& Peterlin Masic, 2016; Naderi & Kwong, 2020; Rochester & Bolden, 2015). In fact, emerging 
evidence highlighted that BPS seems not to be a safe alternative to BPA: despite this, it is still 
poorly investigated, and no specific limitations are currently available (den Braver-Sewradj et 
al., 2020; Mustieles et al., 2020; Naderi & Kwong, 2020; Thoene et al., 2020).  
 
Anxiety consists of several, and mostly conserved among mammals, reactions (somatic, 
cognitive, emotional, and behavioral) combined to achieve a successful evolutionary 
mechanism to survive or to cope with really or potentially threatening stimuli (Hohoff, 2009). 
Correct activation of the anxiety state is needed to react properly to those stimuli. Thus, anxiety 
enables an individual to adapt to environmental challenges (Gold, 2015; Hohoff, 2009). If 
anxiety responses are inappropriate, the ability to adapt to environmental conditions is 
compromised (Gold, 2015).  
 
There is some evidence that exposure to BPA at any time of life alters the anxiety responses in 
rodents (Bakoyiannis et al., 2021; Rebolledo-Solleiro et al., 2021), producing anxiogenic or 
anxiolytic effects, depending on the considered dose, period of exposure, sex, and experimental 
model (Rebolledo-Solleiro et al., 2021). Interestingly, perinatal exposure to BPA, which 
induces alteration in anxiety, has been associated with changes in hormones receptors’ levels 
within the brain.  
In particular, BPA anxiogenic effects, seen mainly in developmentally exposed females in rats 
(Gioiosa et al., 2013; Poimenova et al., 2010; Zhou et al., 2015), seem to be linked to increased 
levels of plasma corticosterone (Chang et al., 2016; Poimenova et al., 2010) and to decreased 
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estrogen receptor α (ERα) (Chang et al., 2016), estrogen receptor β (ERβ), and melanocortin 
receptors (Patisaul et al., 2012) in different regions of the brain.  
More recent works also investigated the effects of BPS in anxiety-related behaviors. It has been 
recently demonstrated that 10-weeks post-lactational exposure of male mice to 100 µg/kg/day 
BPS mediated anxiogenic effects (Mornagui et al., 2019); juvenile exposure of male mice to 
either BPA or BPS (dose of 1 mg/kg BW/day or 100 µg/kg BW/day) also led to an increase in 
the anxiety state, along with hyperactivity of basolateral amygdala (BLA), strongly involved in 
fear and anxiety responses (Hu et al., 2022). Interestingly, few works investigated the effects 
of perinatal exposure to BPS in mice (dose of 0.2 mg/kg BW/day) or rats (dose of 10 µm/kg 
BW/day or 50 mg/kg BW/day), associating it to an increase in anxiety-like behaviors, mainly 
in males (Kim et al., 2015).  
 
The serotonergic system, within the dorsal (DR) and median (MnR) raphe nuclei, is particularly 
relevant for the control of anxiety behaviors (Ren et al., 2018; Zangrossi & Graeff, 2014). 
Serotonin (5-hydroxytryptamine, 5-HT) is a monoamine neurotransmitter, synthesized from the 
amino acid tryptophan (Zhang et al., 2004). In the central nervous system (CNS), 5-HT is 
produced into small clusters of cells, defined as raphe nuclei, extending from the midbrain to 
the medulla oblongata and reaching several CNS areas (Hornung, 2010). Of the nine raphe 
nuclei (B1-B9), five (rostral) are in the midbrain and in the rostral pons, and four (caudal) are 
in caudal pons and medulla (Hornung, 2010). From the rostral nuclei, and especially from DR 
and MnR, the projections reached different forebrain structures, while from the caudal ones 
projections are primarily sent to the spinal cord (Ren et al., 2019).  
 
Recent evidence supports the view of a dual role of 5-HT (anxiolytic and anxiogenic) in the 
control of anxiety-like behaviors (Gordon & Hen, 2004). Griebel has proposed that the dual 
effects, anxiolytic and anxiogenic, of 5-HT, are due to the different involvement and 
distribution within brain areas of 5-HT receptors (Griebel, 1995). Daekin and Graeff proposed 
that 5-HT increase or decrease anxiety-related responses depending on the targeted brain areas 
(i.e., enhancing it in the forebrain areas and reducing it in subcortical structures) (Deakin & 
Graeff, 1991). Last, Gray and McNaughton supposed that 5-HT, on one hand, promotes fear 
response activating the amygdala and the periaqueductal gray, on the other one it decreases 
anxiety, inhibiting the hippocampus (Davidson & Jarrard, 2004).  
Notably, DR and MnR display high specialization in terms of functional connectivity (Ren et 
al., 2018). This is in line with the theory proposed by Deakin and Graeff theory, according to 
which two main pathways are involved in the control of anxiety behaviors (Deakin & Graeff, 
1991). The first originates in the DR, goes through the medial forebrain bundle, and reaches the 
amygdala and the frontal cortex, facilitating avoidance behaviors (Deakin & Graeff, 1991). The 
second starts in the MnR and reaches the hippocampus, promoting resistance to chronic stress 
(Deakin & Graeff, 1991).  
 
As BPA has been reported to alter anxiety-related behaviors (Bakoyiannis et al., 2021; 
Rebolledo-Solleiro et al., 2021), some studies have investigated its impact on the serotonergic 
system. In particular, it has been shown, in male rats, that a single intracranial injection of BPA 
(0.1-10 µg/kg BW) on postnatal day 2 led to an increase 5-HT levels in the hippocampus, 
appreciable not only 5 days but also 28 days after the injection (Matsuda et al., 2010). Another 
study, performed in mice, highlighted that perinatal exposure to BPA (20 µg/kg BW/day) led, 
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both in males and females, to an increase in 5-HT in different brain areas (caudate and putamen 
nuclei, dorsal raphe nucleus, thalamus, and substantia nigra) appreciable at 3, 10 and 15 
postnatal weeks (Nakamura et al., 2010). Furthermore, it has been demonstrated, in female mice 
perinatally exposed to a low-dose BPA (250 ng/kg/day), an increase in the 5-HT turnover in 
the hippocampus (Matsuda et al., 2013). All these results suggest that perinatal exposure to 
BPA may perturb 5-HT metabolism and signaling also in a long-term fashion.  
 
Considering the increasing level of exposure to both BPs, due to their persistence in the 
environment (Chen et al., 2016; Vasiljevic & Harner, 2021; Wu et al., 2018), and the lack of 
data regarding the BPS, in this study we aimed to evaluate the potential sexually dimorphic 
effects on anxiety-related behaviors (tested through the Elevated Plus Maze and the Open Field 
test) (Carola et al., 2002; Lezak et al., 2017) of adult male and female mice perinatally exposed 
to low-dose (4 µg/kg BW/day) of BPA or BPS. In parallel, we investigated the possible 
alterations of serotonergic systems in the DR and MnR, which is known to be involved in the 
control of different aspects of anxiety-related behaviors (Ren et al., 2018; Zangrossi & Graeff, 
2014) and to be targeted at least by BPA exposure (Castro et al., 2015; Matsuda et al., 2010, 
2013; Nakamura et al., 2010).  

Materials and methods 

Animals  
Adult C57BL/6J mice from our colony at the Neuroscience Institute Cavalieri Ottolenghi 
(originally purchased from Envigo, S. Pietro al Natisone, Udine, Italy) were housed in standard 
conditions in 45 × 25 × 15 cm polypropylene mouse cages at 22 ± 2 °C, under 12:12 light dark 
cycle (lights on at 10:00 AM). Food (standard mouse chow 4RF21, Mucedola srl, Settimo 
Milanese, Italy) and water were provided ad libitum. One male and two female mice (3-month-
old) were housed together to achieve a successful mating, assessed by the evaluation of the 
presence of the vaginal plug (assumed as gestational day 0, GD0) (Hasegawa et al., 2017).  

Animal care and handling were according to the European Union Council Directive of 22nd 
September 2010 (2010/63/UE); all the procedures reported in the present study were approved 
by the Italian Ministry of Health (407/2018-PR) and by the Ethical Committee of the University 
of Torino (Project n° 360384).  

Treatments  
BPA (Sigma Aldrich, 239658, CAS 80-05-7) or BPS (Sigma Aldrich, 103039, CAS 80-09-1) 
were prepared for oral administration by dissolving them in corn oil (Sigma-Aldrich, C8267). 
12 pregnant dams were assigned randomly to three experimental groups: control dams 
(receiving only vehicle, corn oil; n=4), BPA-treated dams (receiving 4 µg/kg BW/day of BPA, 
corresponding to the European TDI; n=4) and BPS-treated dams (receiving 4 µg/kg BW/day of 
BPS; n=4). The dose was calculated daily according to dams’ body weight, recorded with an 
electronic precision balance (Mod. Kern-440-47N, resolution 0.1g).  
We decided to test the same dose for both BPA and BPS to allow a precise comparison of the 
effects of the two bisphenols. Moreover, at present, although BPS is one of the most used BPA 
substitutes and it has already been detected in environmental and human samples (Catenza et 
al., 2021), at present no user guidelines are available. Dams were treated starting at GD0, 
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throughout pregnancy and lactation, until weaning of the offspring at postnatal day 28 (PND28). 
To resemble human exposure conditions, the daily treatment or the vehicle was given orally to 
the dams, by means of a pipette, to minimize dams’ stress (Bo et al., 2016; Palanza et al., 2002). 
This type of administration allowed us to perform a perinatal treatment (covering both prenatal 
and postnatal critical window of development) (Neier et al., 2019) on the offspring. In fact, it 
is known that both BPA and BPS can pass first through the placenta and then into the milk 
during the lactation (Cimmino et al., 2020; Mao et al., 2020).  
 
Litters were reduced to 8 pups at birth, to obtain an equal number of pups of both sexes, sexed 
via anogenital distance (AGD) (Manno  3rd, 2008). The pups were weaned at PND28 and 
housed in monosexual groups of 4 mice. They were monitored weekly until adulthood when 
the behavioral tests were performed.  
 
Behavioral tests  
Around PND90 the anxiety-related behaviors were evaluated performing the Elevated Plus 
Maze (EPM) test and the Open Field (OF) test (n=10±1/group) (Carola et al., 2002; Kraeuter et 
al., 2019; Kulesskaya & Voikar, 2014; Lezak et al., 2017; Seibenhener & Wooten, 2015; Walf 
& Frye, 2007). The females were tested in estrus phase, assessed by vaginal smear (McLean et 
al., 2012). On the day of the test, mice were placed in the room in which the test was performed 
at least 2 hours before starting, to allow the habituation to the room. Before starting and between 
each trial, the testing apparatus were cleaned with 70% ethanol, being sure to thoroughly dry 
the apparatus to avoid exposure of mice to alcohol. The EPM is particularly sensitive to testing 
conditions (Albani et al., 2015; Shoji & Miyakawa, 2021) and so it was the first performed test, 
followed by the OF, after at least 1 hour (Carola et al., 2002; Schmitt & Hiemke, 1998). The 
tests were performed in the dark, using only a 25-W red light, which mice cannot see, to help 
the operator to manipulate the animals (Palanza et al., 2002). Each test was recorded with an 
infrared camera placed above the apparatus in order to subsequently perform the behavioral 
analysis through the Ethovision XT Software (Noldus Information Technology, Wageningen, 
The Netherlands).  

 
Elevated Plus Maze (EPM)  

The EPM test apparatus was a plus-cross shaped platform comprising two open arms (30 cm x 
5 cm) and two closed arms (30 cm x 5 cm x 15 cm walls) originating from a central platform 
(5 cm x 5 cm) and raised 60 cm above the floor (Longo et al., 2014). To start, the tester mouse 
was gently placed in the center of the platform. Then it was allowed to freely explore the 
apparatus for 10 minutes. After the recording, the parameters (Carola et al., 2002) described in 
Table 1 were analyzed for the first 5 minutes of the test thanks to Ethovision XT Software 
(Noldus Information Technology, Wageningen, The Netherlands).  
  

Open Field (OF)  
OF apparatus consisted in an unfamiliar arena (45 cm × 45 cm x 38 cm walls), which is divided 
into a central (20 x 20 cm) and a peripheral zone (Longo et al., 2014). At the beginning, the 
mouse was placed in the corner of the apparatus and was allowed to explore the arena for 10 
minutes. After the recording, the parameters (Carola et al., 2002) described in Table 2 were 
analyzed for the first 5 minutes of the test thanks to Ethovision XT Software (Noldus 
Information Technology, Wageningen, The Netherlands).  
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Parameter Description 
Cumulative Duration (CD) The cumulative time (s) spent by the tester mouse in the center, in the 

open arms or in the closed ones.  
Frequency of entrance The number of times the tester mouse entered in the center, in the closed 

or open arms. The mouse was considered to have entered an arm if all 
four paws had left the center square.  

Distance  The total distance traveled (cm) by the tester mice in the center, in each 
arm and in the total arena. 

Latency to first entry in open 
arms 

The time passed (s) until the mouse first entered the open arms.  

Mean velocity (v) The mean velocity (cm/s) displayed by the tester mouse during the trial.  
Protected head-dipping The number of times the tester mouse scanned over the side of the center 

of the platform towards the floor. 
Unprotected head-dipping The number of times the tester mouse scanned over the side of the open 

arms of the platform towards the floor. 
Head-dipping Total number of times the tester mouse scanned over the side of the 

platform (center and open arms) towards the floor. 
Table 1. Parameters analyzed for each mouse in the EPM recorded trials.  
 

Parameter Description 
Cumulative Duration (CD) The cumulative time (s) spent by the tester mouse in the center 

or in the border of the arena  
Frequency of entrance The number of times the tester mouse entered in center or in the 

border The mouse was considered to have entered the zone if all 
four paws had overtaken the borderline between the two.  

Distance  The total distance traveled (cm) by the tester mice in the center, 
in the border and in the total arena. 

Latency to first entry in the center of 
arena 

The time passed (s) until the mouse first entered the center of 
the arena.   

Mean velocity (v) The mean velocity (cm/s) displayed by the tester mouse during 
the trial.  

Grooming The number of times the tester mouse licked or scratched its fur, 
washed its face, or licked its genitalia.  

Protected rearing The number of times the tester mouse reared on its hind paws in 
the border of the arena.  

Unprotected rearing The number of times the tester mouse reared on its hind paws in 
the center of the arena.  

Rearing Total number of times the tester mouse reared on its hind paws 
in the center or in the border of the arena.  

Table 2. Parameters analyzed for each mouse in the OF recorded trials.  
 
Fixation and tissue sampling  
At least 10 days after the performing of the behavioral tests, mice were sacrificed, by deep 
irreversible anesthesia (intraperitoneal injection of Zoletil 80 mg/kg/ Rompum 10 mg/kg) and 
transcardially perfused with 4% paraformaldehyde (PFA) solution. Females were sacrificed in 
the estrus phase, assessed by vaginal smear (McLean et al., 2012). Brains were removed and 
stored in a 4% PFA solution for 24 hours, followed by several washings in 0.01 M saline 
phosphate buffer (PBS). Finally, they were stored in a 30% sucrose solution in PBS at 4 °C, 
frozen in isopentane pre-cooled in dry ice at 35 °C and stored in a deep freezer at 80 °C until 
sectioning (Marraudino et al., 2017).  
Brains (n=4/group) were serially cut in the coronal plane at 30 µm thickness with a cryostat, in 
four series. The plane of sectioning was oriented to match the drawings corresponding to the 
coronal sections of the mouse brain atlas (Paxinos & Franklin, 2001). Sections were collected 
in a cryoprotectant solution (Watson  Jr. et al., 1986) and stored at -20 °C.  
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Serotonin immunohistochemistry  
The presence of serotonin (5-HT) was detected by immunohistochemistry performed on free-
floating sections from one series. Briefly, the sections were washed overnight in 0.01 M 
phosphate buffer (PBS), pH 7.3. The following day, sections were first incubated with citrate 
buffer (citric acid 10 mM, 0.05% Tween, pH 6.0) previously heated at 95°C for antigen retrieval 
and then washed three times in PBS. Next, the sections were washed in PBS containing 0.5% 
Triton X-100 for 30 min and then treated to inhibit endogenous peroxidase activity with a 
solution of PBS containing methanol/hydrogen peroxide for 20 min. Sections were first 
incubated for 30 min with blocking solution containing  normal horse serum (Vector 
Laboratories, Burlingame, CA, USA) and bovine serum albumin (Sigma-Aldrich, Milan, Italy) 
diluted in PBS 0.5% Triton X-100, and then incubated two overnight at +4°C with anti-5-HT 
antibody (Immunostar,#20079, Goat, 1:2.500) diluted in the blocking solution. A biotinylated 
horse anti-goat secondary antibody (Vector Laboratories, Burlingame, CA, USA) diluted in 
PBS, pH 7.3–7.4, containing 0.2% Triton X-100 was then employed at a dilution of 1:200 for 
60 min at room temperature. The antigen-antibody reaction was revealed by 60 min incubation 
with avidin–peroxidase complex (Vectastain ABC Kit Elite, Vector Laboratories, Burlingame, 
CA, USA). The peroxidase activity was visualized with a solution containing 0.400 mg/ml 3,3-
diamino-benzidine (Sigma-Aldrich, Milan, Italy) and 0.004% hydrogen peroxide in 0.05 M 
Tris–HCl buffer at pH 7.6. Sections were mounted on chromallum-coated slides, air-dried, 
cleared in xylene and cover slipped with New-Entellan mounting medium (Merck, Milano, 
Italy). This antibody was successfully used in previous studies (García-González et al., 2017; 
Li et al., 2020) and its specificity was tested by the factory (https://www.biocompare.com/9776-
Antibodies/2874940-5-HT-Serotonin-Goat-Antibody/#citations). As a further control, we 
omitted the primary antiserum or the secondary biotinylated one, replaced with PBS. In both 
cases positive cell bodies and fibers were totally absent.  
 
Quantitative analysis  
For quantitative analysis, a selected standardized section covering the Dorsal Raphe Nucleus 
(DR, Bregma -4.60 to -4.84 mm) and Median Raphe Nucleus (MnR, Bregma -4.36 to -4.48 
mm), were chosen according to the mouse brain atlas (Paxinos & Franklin, 2001). Single 
section for each nucleus was acquired with a NIKON DS-U1 digital camera (Software of 
acquisition: NIS-Element AR 2.10) connected to a NIKON Eclipse 90i microscope (Nikon 
Italia S.p.S., Firenze, Italy). Images were digitized by using a 20x objective for the nuclei 
acquisition. Digital images were processed and analyzed by ImageJ (version 2.10/1.53c; Wayne 
Rasband, NIH, Bethesda, MD, USA). Measurements were performed within predetermined 
fields (region of interest, ROI), boxes of fixed size and shape that are inserted inside each 
labeled considered nucleus (456.706 mm2 for the DR; 238.818 mm2 for the MnR). The DR was 
also divided into two subregions, the dorsal region (DRD, 375.348 mm2) and the ventral regiont 
(DRV, 81.268 mm2), following the different distribution within the nucleus of the analyzed 
system (Paxinos & Franklin, 2001; Ren et al., 2018).  
We evaluated the extension of the immunoreactivity (cell bodies, dendrites, fibers) in all the 
selected nuclei as fractional area (FA) covered by immunopositive material (Marraudino et al., 
2021; Viglietti-Panzica et al., 1994). In addition, we also counted the number of 5-HT-positive 
cells in the two analyzed nuclei.  
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Statistical analysis  
Data were analyzed by two-way analysis of variance (ANOVA) (sex and treatment used as 
independent variables) with SPSS 27 statistic software (SPSS Inc., Chicago, USA). If the 
ANOVA was significant, the post-hoc analysis was performed using the Tuckey’s HSD test. 
Differences were considered statistically significant for values of p ≤0.05. Data are shown as 
mean ± SEM (mean standard error).  
 
Results  
 
Effects of perinatal exposure to BPA or BPS on anxiety-related behaviors  
Results obtained from the analysis of the EPM and OF tests are summarized in Table 3 and 
Table 4 respectively. Here we highlight the most interesting results (Figure 1 and 2).  
 

Elevated Plus Maze (EPM)  
The statistical analysis of the EPM highlighted some significant differences among the groups 
(summarized in Table 3). First, as expected, we observed that control males are more anxious 
compared to control females, as they spent less time in open (p=0.003I, Fig.1B) and more time 
in closed arms (p=0.012, Fig.1C), displayed higher latency to first entry in open arms (p=0.008, 
Fig.1H) and lower number of head-dipping (p=0.021, Fig.1I). Interestingly, the treatment with 
both BPs seemed to disrupt these sex-driven differences (Table 3 and Fig.1).  
In fact, perinatal treatment with BPA in males caused a significant decrease in time spent in 
closed arms (p=0.012, Fig.1C) together with an increased number of entries (p=0.023, Fig.1G) 
and a decrease in the latency to first entry (p=0.002, Fig.1H) in open arms, in which they tended 
to travel more distance (p=0.053, Fig.1E), compared to control males. On the other hand, BPA 
treatment in females caused a significant decrease in time spent in open arms (p=0.048, Fig.1B) 
together with an increase in the distance traveled (p=0.025, Fig.1E), compared to control 
females.  
Perinatal treatment with BPS in males is linked, even if not significantly, to the increase in time 
spent in open arms (p=0.471, Fig.1B) and to the decrease in time spent in the closed ones 
(p=0.667, Fig.1C) compared to control males. It also caused a significant decrease in the 
latency to first entry in open arms (p=0.010, Fig.1C), in which they tended to travel more 
distance (p=0.058, Fig.1E) compared to control ones. Conversely, BPS-treated females, 
compared to control ones, seemed to spend less time in open arms (p=0.086, Fig.1B) and 
displayed a significant increase in time spent in the closed ones (p=0.011, Fig.1C), in which 
they traveled more distance (p=0.006, Fig.1F). 
Finally, both BPs set aside the differences in number of head-dipping (Fig. 1I).  
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Parameter Oil BPA BPS ANOVA 
Males Females Males Females Males Females F (5, 57) p 

Cumulative duration (s) in: 
Center 44.641 

± 4.819 
82.66 ± 
7.826 

69.489 ± 
3.63 

84.891 ± 
8.627 

52.651 ± 
3.252 

57.28 ± 
6.562 

6.628 <0.001 

Open arms 27.883 
± 4.144 

68.966 ± 
8.602 

53.626 ± 
8.771 

39.276 ± 
9.299 

43.54 ± 
5.782 

41.145 ± 
5.620 

3.760 0.005 

Closed arms 226.986
± 8.499 

148.516 
± 10.878 

174.604 ± 
10.286 

175.994 
± 13.437 

199.824 ± 
8.059 

199.842 ± 
11.084 

6.390 <0.001 

Frequency of entrance in: 
Center 24.6 ± 

1.31 
32.727 ± 

2.232 
31.455 ± 

2.006 
29.75 ± 
2.372 

28 ± 
2.284 

27.455 ± 
2.738 

1.656 0.160 

Open arms 8.9 ± 
0.888 

15.909 ± 
1.786 

16.909 ± 
2.395 

12.25 ± 
1.287 

12.636 ± 
1.439 

15.364 ± 
1.835 

2.973 0.019 

Closed arms 14.5 ± 
0.764 

16.455 ± 
1.021 

16.455 ± 
0.666 

17.875 ± 
1.623 

16.636 ± 
1.771 

14.091 ± 
1.131 

1.123 0.359 

Distance (cm) traveled in: 
Arena 46603.9

21±315
6.563 

45885.65
±7783.54

3 

77262.60
9±2833.9

46 

80483.59
9±841.29

0 

73579±86
79.094 

75878.268±
5133.699 

5.715 <0.001 

Center 22599.1
6±1673.

799 

21562±2
91±3815.

782 

36798.47
3±1267.8

68 

37800.02
5±4469.5

77 

34287.41
8± 

37853±458
2±414 

4.058 0.003 

Open arms  22014.9
6±1688.

617 

21488.58
±4214.15

5 

36475±19
56±229 

38163.05
±4214.90

3 

36293.24
5±4337.1

69 

31545.582±
2915.674 

4.485 0.002 

Closed arms  1989.80
1± 

339.334 

2834.779 
±580.471 

3988.336
± 611.876 

4520.524 
±603.451 

2999.208 
±5 84.489 

6479.432 ± 
1086.564 

5.168 0.001 

Latency (s) to 
first entry in 
open arms  

22.938 
± 5.370 

5.790 ± 
1.650 

3.470 ± 
1.034 

7.775 ± 
1.947 

6.152 ± 
1.885 

15.646 ± 
5.217 

4.923 0.001 

Mean velocity 
(cm/s) 

4.066 ± 
0.257 

3.690 ± 
0.149 

4.893 ± 
0.233 

4.893 ± 
0.356 

4.369 ± 
0.257 

5.242 ± 
0.284 

5.114 0.001 

Protected 
head-dipping 

7.8 ± 
0.49 

11.091±0
.986 

11.182 ± 
0.903 

9.375 ± 
0.979 

10.182 ± 
1.750 

8.636 ± 
1.28 

1.279 0.286 

Unprotected 
head-dipping 

3.5 ± 
1.186 

10.182 ± 
2.296 

6.546 ± 
1.841 

6.875 ±s 
2.282 

3.903 ± 
1.221 

6.364 ± 
1.011 

1.929 0.104 

Head-dipping 11.3±1.
325 

21.272±1
.893 

17.728±1.
799 

16.25±2.
927 

14.091±2.
343 

15±2.074 2.524 0.039 

Table 3. Results obtained from the analyzed parameters within the first 5 minutes of the EPM 
test. Data are reported as Mean ± SEM. Two-way ANOVA (sex and treatment used as 
independent variables) revealed a significant effect for p ≤ 0.05, highlighted in bold.  
 

Open Field (OF)  
The statistical analysis of the OF highlighted some significant differences among the groups 
(summarized in Table 4). The analysis confirmed the sex differences, emerged also in the 
analysis of the EPM, between control males and females. In fact, males spent less time in the 
center (p=0.019, Fig.2A) and more time in the border (p=0.019, Fig.2B), in which they traveled 
lower distance (p=0.003, Fig.2D), and displayed higher latency to first entry in the center 
(p=0.003, Fig.2F) along with a tendency of enter the center less frequently (p=0.065, Fig.1E) 
compared to females. Moreover, males traveled, in the entire arena, significantly (p=0.003) 
more distance compared to females (Table 3). Once again, the treatment with both BPs seemed 
to disrupt these sex-driven differences.  
In fact, BPA treatment in males is linked, even if not significantly, to more time spent in the 
center (p=0.615, Fig.2A) and less time spent in the border (p=0.614, Fig.2B) of the arena 
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compared to controls. Furthermore, they displayed a significant decrease in latency of first entry 
in the center (p=0.001, Fig.2F) compared to control males. On the other hand, BPA-treated 
females spent, even if not significantly, less time in the center (p=0.834, Fig.2A) and more time 
in the border (p=0.832, Fig.2B) of the arena compared to the controls.  
The BPS treatment in males caused, even if not significantly, similar alterations compared to 
the BPA one, decreasing the time spent in the center (p=0.319, Fig.2A) and increasing that 
spent in the border (p=0.318, Fig.2B), compared to controls. Moreover, BPS-treated males 
showed a significant decrease in latency of first entry in the center (p=0.041, Fig.2F) compared 
to control ones. Conversely, BPS-treated females spent, even if not significantly, less time in 
the center (p=0.834, Fig.2A) and more time in the border (p=0.536, Fig.2B) of the arena 
compared to the control ones. 
Finally, both BPs set aside the differences in frequency of entries in the center of the arena (Fig. 
2E).  
 
Parameter Oil BPA BPS ANOVA 

Males Females Males Females Males Females F (5, 57) p 
Cumulative duration (s) in: 
Center 12.295 ± 

1.909 
24.470 ± 

3.226 
18.109 ± 

2.679 
19.928 ± 

1.83 
19.896 ± 

3.032 
18.376 ± 

2.175 
2.283 0.058* 

Border 287.84 ± 
1.91 

275.649 
± 3.226 

282.928 ± 
2.681 

280,212 
± 1.831 

280.235 ± 
3.033 

281.758 ± 
2.177 

2.287 0.058* 

Frequency of entrance in: 
Center 11.5 ± 

1.551 
19.636 ± 

2.325 
17 ± 
2.183 

16.778 ± 
2.080 

18 ± 
2.195 

18.376 ± 
2.175 

2.365 0.051* 

Border 12.5 ± 
1.551 

20.545 ± 
2.302 

17.909 ± 
2.125 

17.667 ± 
2.021 

19 ± 
2.195 

21.273 ± 
1.556 

2.387 0.049 

Distance traveled (cm) in: 
Arena 55078.65 

± 
1456.051 

51255.73 
± 

939.741 

51996.06 
± 1332.43 

49384.66 
± 

1625.357 

51413.93 
± 1332.43 

53713.63 ± 
1313.416 

2.072 0.082 

Center 54216.45 
± 

1540.589 

49436.68
2 ± 

954.328 

51144.02
8 ± 

1428.175 

47927.61
1 ± 

1707.159 

50050.98
2 ± 

1488.990 

52460.318 
± 1414.765 

2.366 0.053* 

Border 862.203 ± 
178.520 

1819.045 
± 

207.095 

852.031 ± 
143.619 

1457.047 
± 

145.799 

1362.946 
± 182.690 

1253.307 ± 
155.909 

4.692 0.001 

Latency to 
first entry in 
the center (s) 

40.496 ± 
10.606  

12.268 ± 
4.131 

8.589 ± 
2.464 

10.044 ± 
3.961 

18.689 ± 
3.402 

5.716 ± 
1.967 

6.118 <0.001 

Mean velocity 
(cm/s) 

11.542 ± 
0.514 

13.064 ± 
0.739 

14.021 ± 
1.074 

11.381 ± 
0.785 

13.401 ± 
0.816 

14.328 ± 
0.796 

2.254 0.061 

Grooming 3.3 ± 
0.423 

2.455 ± 
0.718 

3.818 ± 
0.761 

4.222 ± 
1.267 

4.091 ± 
0,623 

2.182 ± 
0.519 

1.373 0.248 

Protected 
rearing 

31.2 ± 
2.284 

33.364 ± 
3.619 

33.363 ± 
2.487 

27.667 ± 
2.609 

34.273 ± 
2.512 

33.455 ± 
2.146 

0.765 0.579 

Unprotected 
rearing 

3.8 ± 
1.254 

6.455 ± 
1.391 

4.273 ± 
1.685 

6.111 ± 
1.670 

6.818 ± 
2.231 

4.455 ± 
0.888 

0.667 0.650 

Rearing 35.9 ± 
2.834 

39.819 ± 
3.968 

37.455 ± 
2.774 

33.778 ± 
3.179 

41.091 ± 
4.564 

38.182 ± 
2.354 

0.573 0.720 

Table 4. Results obtained from the analyzed parameters within the first 5 minutes of the OF 
test. Data are reported as Mean ± SEM. Two-way ANOVA (sex and treatment as independent 
variables) revealed a significant effect for p ≤ 0.05, highlighted in bold. * Tendency towards 
significance (0.05 <p<0.06).  
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5-HT-ir analysis  
The statistical analysis of the immunoreactivity for 5-HT (summarized in Table 5) revealed that 
both BPs treatment affected the analyzed nuclei, differently in the two sexes.  
First, we corroborated the presence of sexual dimorphism within the DR in oil-treated mice, in 
terms of FA (p=0.001, Fig.3E), both in the dorsal (p=0.050, Fig.3F) and in the ventral regions 
(p=0.004, Fig.3G) of the nucleus, with males showing lower FA compared to females (Fig.3A, 
upper level).  
The treatment with BPA caused the highest alterations in males within all the analyzed nuclei 
(Fig.3 left side-central level; Fig.4 central column-upper level). In fact, we observed an 
increase of 5-HT-ir, both in terms of number of cells and FA, in DR (p=0.001, Fig.3B; p<0.001, 
Fig.3E), in the DRD (p=0.007, Fig.3C; p<0.001, Fig.3F), in DRV (p=0.001, Fig.3D; p<0.001, 
Fig.3G) and also in the MnR (p=0.006, Fig.4B; p=0.003, Fig.4C) of BPA-treated males 
compared to the control ones. In BPA-treated females (Fig.3 right side-central level; Fig.4 
central column-lower level), we noticed a significant increase in FA in DRD (p=0.009, Fig.3F) 
and in MnR (p<0.001, Fig.4C), compared to control females. 
The perinatal treatment with BPS caused in males a significant increase in the FA of DR 
(p=0.001, Fig.3E), due to a significant increase in the ventral component of the nucleus, 
appreciable both in terms of number of cells (p=0.031, Fig.3D) and FA (p=0.004, Fig.3G), 
compared to controls.  
In BPS-treated females (Fig.3 right side-lower level; Fig.4 left column-lower level), we noticed 
a significant increase in FA in DRD (p=0.020, Fig.3F), compared to the control ones. 
 

Number of serotonin positive cells 
Zone Oil BPA BPS ANOVA 

Males Females Males Females Males Females F (5, 18) P 
DR 133.75 ± 

7.793 
150.75 ± 

3.613   
209.25 ± 

8.702 
138.5 ± 
13.295 

158.5 ± 
16.795 

174.75 ± 
4.423 

7.106 0.001 

DRD 101.25 ± 
4.644 

107.5 ± 
4.806 

154 ± 7.223 87.5 ± 
11.449 

111.25 ± 
14.585 

127.75 ± 
7.204 

6.576 0.001 

DRV 32.5 ± 
3.663 

43.25 ± 
2.496 

55.25 ± 
3.544 

51 ± 
3.189 

47.25 ± 
2.358 

47 ± 2.858 6.479 0.001 

MnR 27.5 ± 
1.936 

39 ± 3.629 46.25 ± 
2.780 

46.25 ± 
5.391 

32.25 ± 
1.436 

37.5 ± 
2.062 

5.055 0.005 

Fractional Area (%) 
Zone Oil BPA BPS ANOVA 

Males Females Males Females Males Females F (5, 18) p 
DR 19.964 ± 

0.701 
34.835 ± 

1.472 
47.689 ± 

0.907 
43.58 ± 
4.123 

34.657 ± 
1.424 

43.047 ± 
1.813 

22.874 <0.001 

DRD 7.871 ± 
0.569 

12.881 ± 
0.627 

20.149 ± 
0.761 

19.172 ± 
1.344 

12.694 ± 
0.988 

18.601 ± 
1.832 

18.917 <0.001 

DRV 12.094 ± 
0.866 

21.954 ± 
1.214 

27.540 ± 
0.567 

24.408 ± 
3.087 

21.963 ± 
1.576 

24.446 ± 
0.51 

11.382 <0.001 

MnR 4.518 ± 
0.406 

7.795 ± 
0.924 

10.605 ± 
1.456 

17.68 ± 
1.163 

6.992 ± 
0.462 

5.145 ± 
0.861 

26.013 <0.001 

Table 5. Results obtained from the analysis of 5-HT-ir in all selected nuclei. Data are reported 
as Mean ± SEM, both as number of positive cells and fractional area. Two-way ANOVA 
revealed a significant effect for p ≤ 0.05, highlighted in bold. DR = dorsal raphe; DRD = dorsal 
region of the dorsal raphe; DRV = ventral region of the dorsal raphe; MnR = median raphe.  
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Discussion  
 
To date, the effects of BPs on various aspects of endocrine control, such as reproduction (den 
Braver-Sewradj et al., 2020; Tomza-Marciniak et al., 2018) or metabolism (den Braver-Sewradj 
et al., 2020; Rubin et al., 2019), are widely debated, but very little is known about the possible 
effects of potential effects of BPs on anxiety-like behaviors. The results of this study 
highlighted that exposure to both BPA and BPS during early phases of life is altering, in a 
sexually differentiated way, both anxiety-related behaviors and serotonin population within the 
Raphe nucleus, which is involved in the control of these behaviors, in the adult animals.  
 
During the EPM test, BPA-treated males showed a significant increase in the time spent in the 
open arms compared to the control ones and a decrease of the latency of the first entry in the 
open arms, that was also displayed by BPS-treated males, while among females a significant 
decrease in time spent in open arms was observed in the BPA-treated group, together with an 
increase in time spent in the closed ones among the BPS-treated ones. The OF test showed that 
both treatments disrupted the sexual-driven differences in the analyzed behaviors, mainly 
decreasing anxiety-related behaviors in males and increasing them in females. These behavioral 
alterations suggested different effects of the BPs exposure in the two sexes: anxiolytic in males 
and anxiogenic in females.  
Therefore, we analyzed the serotonergic system in the Raphe complex, which is highly involved 
in the control of anxiety-related behaviors. We performed an immunohistochemical analysis of 
the 5-HT-ir, both in terms of number of cells and fractional area, in the DR, distinguishing its 
dorsal (DRD) and ventral (DRV) component, and in the MnR. In control mice, we detected 
sexual dimorphism of the system in the DR only, with control females showing higher values 
of 5-HT-ir when compared to control males. BPA-treated males displayed a significant increase 
of 5-HT-ir in all analyzed nuclei, whereas BPS-treated males showed an increase in DRV only. 
In females, both BPA- and BPS-treated groups showed a significant increase of 5-HT-ir in DRD 
compared to the controls, and BPA-treated females also showed a significant increase in MnR. 
Interestingly, both treatments caused alterations within the analyzed nuclei, increasing 5-HT-
ir. However, while in males the increase seemed to be due to an increased number of 5-HT-
positive cells, in females the alterations were appreciable only in terms of fractional area.  
 
The EPM test allows to evaluate different aspects of anxiety-related behaviors, leaning on the 
balance between the natural tendency of rodents to avoid open or elevated spaces and their 
innate curiosity to explore unknown new areas (Carola et al., 2002; Lezak et al., 2017). A less 
anxious mouse will spend more time in the open arms compared to a more anxious one (Carola 
et al., 2002; Lezak et al., 2017). In the OF test, instead, mice with lower anxiety tend to spend 
more time in the center of the arena compared to the border, exploring more the open space 
(Carola et al., 2002; Lezak et al., 2017).  
Our results firstly confirmed previous evidence of sexual dimorphism in anxiety-related 
behaviors (Cover et al., 2014; Donner & Lowry, 2013). In fact, both the EPM and the OF test 
showed that control, in estrus, females displayed less anxious behaviors, basically spending 
more time in open and unprotected zones compared to control males. The perinatal treatment 
with both BPs disrupted these sex-driven behavioral differences. On one hand, treated males 
seemed to be less anxious and more explorative; on the other one, treated females became more 
anxious compared to control ones. These results suggest an anxiolytic effect of tested BPs in 
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males and an anxiogenic one in females. It has already been shown that exposure to BPA, during 
critical periods, alters anxiety-related behaviors. In particular, males exposed in utero to low-
dose BPA displayed a decrease in anxiety-related behavior (Kundakovic et al., 2013), while 
some anxiogenic effects have been shown in females exposed in utero (Kundakovic et al., 2013) 
or during the pre- or postnatal periods (Gioiosa et al., 2013) to low-dose BPA. Our data 
corroborated previous results, in which perinatal exposure to low-dose BPA has anxiolytic 
effects in males and anxiogenic effects in females. Interestingly, we noticed that the same 
effects are also mediated by BPS. Until now, BPS effects on anxiety in rodents have been poorly 
investigated. There is some evidence of anxiogenic effects of BPS exposure in females (Hu et 
al., 2022), while available studies suggest an increase in anxiety-related behaviors also in males 
(da Silva et al., 2019; Hu et al., 2022; Kim et al., 2015; McDonough et al., 2021; Mornagui et 
al., 2019). However, this discrepancy could be due to the different timing, dose, and way of 
BPS administration, which are known to be particularly accountable for the observable effects 
mediated by EDCs  (Gioiosa et al., 2013).  
 
The analysis of the serotonin system within the DR and MnR showed some significant effects 
of both BPs. First, we corroborated previous results, that described a sexual dimorphism in 
rodents’ DR (Domínguez et al., 2003; Rubinow et al., 1998), with control females showing 
higher 5-HT-ir compared to control males.  
Then, we demonstrated that perinatal exposure to either low-dose BPA or BPS caused an 
increase in 5-HT-ir in the analyzed nuclei, which impacts differentially the two sexes.  
We observed an increase in both number of cells and FA in all analyzed nuclei in the BPA-
treated males, while the increase was limited to DRV in the BPS-treated ones. These results are 
coherent with the anxiolytic effect of both BPs on males. In fact, 5-HT neurons located in DR 
are particularly involved in regulating the anxiety response, mainly promoting a decrease in the 
anxiety-like behaviors (Bocchio et al., 2016; Ren et al., 2018), thanks to the projections of the 
DRD to the subcortical regions and of the DRV to the cortical ones (Ren et al., 2018). Moreover, 
also the increase in the 5-HT-ir in the MnR, observed in the BPA-treated males, may be 
responsible for the anxiolytic effects, acting similarly to a 5-HT antagonist and so activating 
negative feedback in presynaptic serotonergic neurons located within the nucleus (Domínguez 
et al., 2003).  
In both BPA- and BPS-treated females the effects were appreciable only in terms of FA. In fact, 
we observed an increase in 5-HT-ir in the DRD in both BPA- and BPS-treated females, and 
also in MnR of the BPA-treated ones, compared to controls. Since we did not notice any 
significant alterations in terms of number of cells, the increase in FA seems to be mainly due 
to an increase in serotonergic fibers and dendritic branching. In the literature, it is well described 
the impact of sex hormones on brain development and plasticity, and particularly the structural 
effects on neurite outgrowth, synaptogenesis, and dendritic branching mediated, especially in 
females, by estrogen and progesterone (Barth et al., 2015; Giannini et al., 2019). It could be 
possible that the opposite effect on anxiety-related behaviors of BPA and BPS in the two sexes 
is linked to a differential targeting of the serotonin neurons, which involved the cell bodies in 
males and the fibers and the dendritic branching in the females. It has been observed that 
perinatal BPA exposure can alter 5-HT metabolism and signaling: it increases 5-HT production 
in DR in both male and female rats (Nakamura et al., 2010), and it induces 5-HT increase in the 
hippocampus of female mice, accompanied by increased fear memory (Matsuda et al., 2013). 
However, the mechanisms by which BPA alters 5-HT expression have not been clearly 

Brigitta Bonaldo
109



understood, even if some studies suggested dysregulation of tryptophan hydroxylase (TPH) 
(Castro et al., 2015; Yao et al., 2020). On the other hand, the effects of BPS on serotonin are 
not widely reported. Despite this, we showed that BPS mediates similar effects, suggesting that 
it could act similarly to BPA. Moreover, both BPA and BPS are known to act on a wide set of 
hormone receptors (Delfosse et al., 2012; den Braver-Sewradj et al., 2020; Murata & Kang, 
2018; Park et al., 2020; Rochester & Bolden, 2015), detectable in brain areas involved in the 
control of anxiety-related behaviors (Landgraf, 2001; Nomura et al., 2005; Walf & Frye, 2006). 
Considering this, the observed effects could be linked to the high presence of ERβ (Mitra et al., 
2003; Nomura et al., 2005), which is efficiently targeted by both BPA and BPS (Liu et al., 2019; 
Molina-Molina et al., 2013; Naderi & Kwong, 2020), within analyzed Raphe nuclei and 
especially in the DR one (Sheng et al., 2004). In fact, ERβ plays a crucial role in the regulation 
of anxiety-related behaviors in mice (Borrow & Handa, 2017; Imwalle et al., 2005). 
Furthermore, it is known that the expression of ERβ is sexually dimorphic (Mogi et al., 2015; 
Zhang et al., 2002) and that in utero exposure to BPA could lead to region-specific changes in 
the expression of genes encoding estrogen receptors within the brain (Kundakovic et al., 2013). 
Interestingly, ERβ gene expression decreases in the hypothalamus of female mice exposed to 
low-dose BPA, but it increases in the males (Kundakovic et al., 2013). Thus, we can speculate 
that, on one hand, both BPA and BPS could cause a decrease in the expression of ERβ in female 
Raphe nuclei, which is known to led to an increase in anxiety-like behaviors (Imwalle et al., 
2005), while, on the other one, they can cause an increase in the males along with a consequent 
decrease in the anxiety. The potential alterations of ERβ expression within the Raphe nuclei 
could particularly impact the serotonergic neurons, given the high co-expression (Nomura et 
al., 2005). Those serotonergic neurons are richly connected to other brain regions, and in 
particular to several hypothalamic nuclei (Ogawa et al., 2014). Particularly, corticotropin-
releasing hormone (CRH) neurons located in the paraventricular nucleus of the hypothalamus 
(PVN) are extremely integrated with serotonin signaling, influencing stress-related responses 
which are fundamental in the control of the anxiety (Jørgensen et al., 2002). The potential 
disruption of the stress axis, well-known target of BPs’ action (Michael Caudle, 2016), is 
another mechanism possibly involved in the observed behavioral alterations.  
 
In this study, we suggest that perinatal exposure to both BPA and BPS, even at low dose, leads 
to a disruption of sexual differences in the displaying of anxiety-related behaviors, which could 
be partially linked to alterations of the serotonergic system within the dorsal and median Raphe 
nuclei.  
As the EFSA TDI for BPA appears not to be completely safe and the regulation in BPS use is 
still not available, our results support the need to further regulate the use of both BPs, in order 
to limit, or possibly avoid health implications.  
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Figure 1. Analysis of anxiety-related behaviors of control and treated mice through 
Elevated Plus Maze Test. Time spent in the center (A), in open arms (B) or in closed arms (C) 
by oil- (light gray), BPA- (gray) or BPS- (dark gray) treated male mice (left side of the graph) 
or female mice (right side of the graph). Total distance traveled in the center (D), in open arms 
(E) or in closed arms (F) by oil- (light gray), BPA- (gray) or BPS- (dark gray) treated male 
mice (left side of the graph) or female mice (right side of the graph). (G) Number of entries in 
open arms displayed by oil- (light gray), BPA- (gray) or BPS- (dark gray) treated male mice 
(left side of the graph) or female mice (right side of the graph) within the first 5 minutes of the 
test. (H) Latency to first entry in open arms displayed by oil- (light gray), BPA- (gray) or BPS- 
(dark gray) treated male mice (left side of the graph) or female mice (right side of the graph) 
within the first 5 minutes of the test. (I) Total number of head-dipping performed by oil- (light 
gray), BPA- (gray) or BPS- (dark gray) treated male mice (left side of the graph) or female 
mice (right side of the graph) within the first 5 minutes of the test. Data are expressed as mean 
± SEM. Two-way ANOVA revealed a significant effect for p ≤ 0.05 (* = vehicle vs treatment; 
# = male vs female). CD = cumulative duration.   
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Figure 2. Analysis of anxiety-related behaviors of control and treated mice through Open 
Field Test. Time spent in the center (A) or in the border (B) of the arena by oil- (light gray), 
BPA- (gray) or BPS- (dark gray) treated male mice (left side of the graph) or female mice (right 
side of the graph). Total distance traveled in the center (C) or in the border (D) of the arena by 
oil- (light gray), BPA- (gray) or BPS- (dark gray) treated male mice (left side of the graph) or 
female mice (right side of the graph). (E) Number of entries in the center of the arena displayed 
by oil- (light gray), BPA- (gray) or BPS- (dark gray) treated male mice (left side of the graph) 
or female mice (right side of the graph) within the first 5 minutes of the test. (H) Latency to 
first entry in the center of the arena displayed by oil- (light gray), BPA- (gray) or BPS- (dark 
gray) treated male mice (left side of the graph) or female mice (right side of the graph) within 
the first 5 minutes of the test. Data are expressed as mean ± SEM. Two-way ANOVA revealed 
a significant effect for p ≤ 0.05 (* = vehicle vs treatment; # = male vs female). CD = cumulative 
duration.   
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Figure 3. Serotonin immunoreactivity in the DR of control and treated mice. (A) 
Representative image of serotonin immunoreactivity in a coronal section of DR of oil-treated 
(upper level), BPA- (central level) or BPS- (lower level) treated male (left) or female (right) 
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mice. Analysis of 5-HT-ir in total DR (as (B) number of 5-HT+ cells and (E) fractional area), 
in DRD (as (C) number of 5-HT+ cells and (F) fractional area) and in DRV (as (D) number of 
5-HT+ cells and (G) fractional area). In the histograms (B, C, D, E, F, G) the oil-treated mice 
are shown in light gray, BPA-treated mice are shown in gray, and BPS-ones are shown in dark 
gray. Male mice are shown on the left side of the graph, while females are on the right side. 
Data are expressed as mean ± SEM. Two-way ANOVA revealed a significant effect for p ≤ 
0.05 (* = vehicle vs treatment; # = male vs female). Scale bar = 100µm. 5-HT = serotonin; FA 
= fractional area; DR = dorsal raphe; DRD = dorsal region of dorsal raphe; DRV = ventral 
region of dorsal raphe; * = cerebral aqueduct.   
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Figure 4. Serotonin immunoreactivity in the MnR of control and treated mice. (A) 
Representative image of serotonin immunoreactivity in a coronal section of MnR of oil-treated 
(left), BPA- (center) or BPS- (right) treated male (up) or female (down) mice. Analysis of 5-
HT-ir in MnR, expressed both as (B) number of 5-HT+ cells and (C) fractional area. In the 
histograms (B, C) the oil-treated mice are shown in light gray, BPA-treated mice are shown in 
gray, and BPS-ones are shown in dark gray. Male mice are shown on the left side of the graph, 
while females are on the right side. Data are expressed as mean ± SEM. Two-way ANOVA 
revealed a significant effect for p ≤ 0.05. Scale bar = 100µm. 5-HT = serotonin; FA = fractional 
area; MnR = median raphe; * = cerebral aqueduct.   
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CHAPTER 7 – Experiment 5 
 
Effects of perinatal exposure to bisphenol A or S in EAE model of multiple sclerosis  
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ABSTRACT  
 
Epidemiological studies support the idea that multiple sclerosis (MS) is a multifactorial disease, 
overlapping genetic, epigenetic, and environmental factors. A better definition of 
environmental risks is critical to understand both etiology and the sex-related differences of 
MS. Exposure to Endocrine Disrupting Compounds (EDCs) fully represents one of these risks. 
EDCs are natural or synthetic exogenous substances (or mixtures) that alter the functions of the 
endocrine system. Among synthetic EDCs, exposure to bisphenol A (BPA) has been implicated 
in the etiology of MS, but to date, controversial data has emerged. Furthermore, nothing is 
known about bisphenol S (BPS), one of the most widely used substitutes for BPA. As exposure 
to bisphenols will not disappear soon, it is necessary to clarify their role also in this pathological 
condition defining their role in disease onset and course in both sexes. In this study, we 
examined, in both sexes, the effects of perinatal exposure to BPA and BPS in one of the most 
widely used mouse models of MS, experimental autoimmune encephalomyelitis (EAE). 
Exposure to bisphenols seemed to be particularly deleterious in males. In fact, both BPA- and 
BPS-treated males showed anticipation of the disease onset and an increased motoneuron loss 
in the spinal cord. Overall, BPA-treated males also displayed an exacerbation of EAE course 
and an increase in inflammation markers in the spinal cord. Analyzing the consequences of 
bisphenols exposure on EAE will help to better understand the role of both xenoestrogens and 
endogenous estrogens on the sexually dimorphic characteristics of MS.  
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Experimental Autoimmune Encephalomyelitis, MS 
 
Author’s contributions  
BB designed and performed experiments, analyzed data, and wrote the draft. AC, FM, MB and 
FN performed experiments. MM and GCP revised the draft and wrote the paper.  

Brigitta Bonaldo
123



Disclosures about potential conflict of interest  
All authors have no conflicts of interest to declare with respect to the research, authorship, 
and/or publication of this article. 
 
Introduction  
 
Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system (CNS), 
characterized by perivascular infiltration of inflammatory cells, demyelination, axonal loss, and 
gliosis (Thompson et al., 2018). MS has a different prevalence in the sexes and the female-to-
male ratio varies between 1.5:1 and 2.5:1, with a trend toward higher values in more recent 
studies (2.3 - 3.5:1) (Harbo et al., 2013; Ortona et al., 2016). This data, indicating an increase 
in MS among women but not men, has led to in-depth studies of differences in the immune 
system or nervous system between women and men, which could be caused by gonadal 
hormones, genetic differences, different environmental exposures, and/or modern lifestyle 
(Alfredsson & Olsson, 2019; Ascherio & Munger, 2016; Olsson et al., 2017).  
In general, women exhibit stronger humoral and cellular immune responses than men and this 
is thought to influence the different susceptibility to develop autoimmune disease (Rubtsova et 
al., 2015). This rapid increase could likely yet unidentified changes in the environment or 
nutrition (Alfredsson & Olsson, 2019; Ascherio & Munger, 2016). The effect of sex on the 
clinical features of MS is unclear, but there is evidence that women generally have an early 
onset of disease, have a slightly lower prevalence of primary progressive disease course, and 
generally show less progression to disability than men (Bergamaschi, 2007; Harbo et al., 2013; 
Olsson et al., 2017).  
 
Among the main factors affecting these sex differences, gonadal hormones and different 
responses to environmental factors appear to be particularly significant (Rubtsova et al., 2015).  
The role of sex hormones in MS appears to be limited to women, however, the situation is much 
more complex (Ortona et al., 2016). Due to the presence of hormone receptors on immune cells, 
sex hormones can affect the activities of the immune system and potentially influence the risk, 
activity, and progression of autoimmune diseases (Moulton, 2018). In general, estrogen and 
prolactin act as humoral immunity enhancers, while testosterone and progesterone act as natural 
immunosuppressants (Pierdominici et al., 2010). In the case of estrogen, there are different 
effects depending on the dose: lower levels stimulate specific immune activities while higher 
levels (such as those in pregnancy) inhibit them (Whitacre et al., 1999). Hence, sex hormones 
have different effects depending not only on the concentration but also on the cell type and 
receptor subtype expressed on a given cell type (Ortona et al., 2016).  
 
In view of the wide range of effects that sex hormones play within the CNS (Spence & Voskuhl, 
2012), it is possible to hypothesize these hormones has a role in MS, acting not only on immune 
system cell populations but also on the CNS ones (Spence & Voskuhl, 2012): some endogenous 
and exogenous estrogens are useful in MS patients both during pregnancy (Gilli et al., 2010) 
and when using oral contraceptives (Sena et al., 2012). However, their action appears to be 
effective only in the early stages of MS (Spence & Voskuhl, 2012). Estrogen can also act on 
astrocytes which modulate neuronal death and inflammation through several pathways. The 
action of estrogens is mediated through the estrogen receptor α (ERα) that reduces 
inflammation, demyelination and axonal loss (Spence et al., 2011; Tiwari-Woodruff et al., 
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2007), while the estrogen receptor β (ERβ) has a more controversial role. It is not involved in 
endogenous estrogen protection but can respond to exogenous ligands, protecting against 
demyelination and axonal loss and stimulating endogenous myelination (Crawford et al., 2010; 
Spence & Voskuhl, 2012). In women, studies are underway for estriol treatment with anti-
inflammatory, neuroprotective and immunomodulatory effects (Voskuhl et al., 2016). The role 
of ERβ in MS is less known, but it is an attractive therapeutic candidate in association with 
some anti-inflammatory drugs. Indeed, estriol binds to ERα and ERβ weaker than estradiol, but 
it binds to ERβ stronger than to ERα, the main cause of estrogenic effects on breast cancer and 
cardiovascular disease (Voskuhl et al., 2016). Interestingly, a more recent study, performed in 
the Experimental Autoimmune Encephalomyelitis (EAE) model of MS, demonstrates that in 
this model, along with inflammation and demyelination in the spinal cord, is present 
inflammation of the hypothalamic tissue, in both females and males. This inflammation results 
in the downregulation of different genes in males and female, leading to sex-specific changes 
downstream in the hypothalamic-pituitary-axis (HPA) (Milosevic et al., 2020), supporting the 
idea that EAE partially also modeled sex-specific characteristics of the disease (Ryan & Mills, 
2021).  
 
In addition to endogenous estrogens, the organism can be targeted by natural (phytoestrogens 
and mycoestrogens) or synthetic (xenoestrogens) compounds with estrogenic activity, i.e., 
Endocrine Disruptors Compounds (EDCs). There are thousands of chemicals, including 
pesticides and herbicides, dust, plastics, medical and/or dietary components, that have been 
classified as EDCs (Gore et al., 2015). Exposure to EDCs is more dangerous if it occurs during 
specific “critical periods” of life, such as intrauterine, perinatal, juvenile or puberty periods, 
when organisms are more sensitive to hormonal action, however, exposure to EDCs in 
adulthood also can alter physiology (Frye et al., 2012).   
Environmental estrogens may display a synergic/additive effect with endogenous estrogens 
potentially also affecting the immune response. Moreover, there is a considerable burden of 
evidence in vitro and in vivo that these compounds may exert immunotoxic effects (Chighizola 
& Meroni, 2012; Ortona et al., 2016). There is also robust evidence that EDCs change the 
expression, abundance, and distribution of steroid hormone receptors in the developing CNS. 
Research on different EDCs consistently shows effects on mRNA levels, protein expression, 
and neuroanatomical distribution of nuclear hormone receptors studied to date, as well as 
functional consequences of altered receptor action (Gore et al., 2015).  
The link between the CNS and the immune system is bidirectional, in fact receptors for 
neuropeptides, neurotransmitters, and hormones are located also in lymphoid organs and the 
activation of the immune system leads to changes in hypothalamic, autonomic, and endocrine 
functions (Bahadar et al., 2015). Furthermore, the autonomic and neuroendocrine outflow 
interacts with the immune system via pituitary-adrenal axis, modulating immune functions, thus 
representing a crucial link of CNS-immune interaction and autoimmune diseases (Bahadar et 
al., 2015). Therefore, the exposure to EDCs could increase risks or intensifying aggressiveness 
of autoimmune diseases affecting the CNS, above all MS (Ascherio et al., 2012).  
 
One of the most known and studied EDCs is bisphenol A (BPA), a synthetic compound present 
into a variety of common consumer goods made by plastics and epoxy resins (Abraham & 
Chakraborty, 2020). BPA-based plastic is clear and tough and is made into a variety of common 
consumer goods (Abraham & Chakraborty, 2020). There is some evidence that BPA exposure 
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can alter the function of some systems, including the immune system (Kimber, 2017; Rochester, 
2013). In fact, BPA exposure in mice is associated with enhanced cytokine and antibody 
production, and decreased numbers of regulatory T cells, although many of the reports focused 
on adult, as opposed to gestational, exposure to BPA (Kimber, 2017; Rochester, 2013). The 
risk to public health due to BPA exposure was recognized by EFSA in the 2015 (EFSA, 2015): 
the tolerable daily intake (TDI) for BPA was reduced from 50 to 4 µg/kg body weight/day, but 
the BPA substitutes, such as bisphenol S (BPS), have no specific limitations, even if they seem 
to have the same, or even worse, endocrine disrupting properties as the BPA (den Braver-
Sewradj et al., 2020; Eladak et al., 2015; Gramec Skledar & Peterlin Masic, 2016; Rochester & 
Bolden, 2015).  
Data on the effects of BPA exposure on different MS animal models appear to be particularly 
controversial, either excluding (Krementsov et al., 2013) or supporting (Brinkmeyer-Langford 
et al., 2014; Rogers et al., 2017) its potential effects on peculiar aspects of the disease.  
 
Considering the increasing exposure to EDCs, and in particular to BPs, and that environmental 
components have been implicated in the etiology of MS, it is important to properly examine 
their role in the onset and course of the disease. Thus, taking the advantage of the EAE mouse 
model of MS, this study aimed to better understand the consequences of perinatal exposure to 
BPA and to evaluate and compare the one of BPS, in mice of both sexes. We assessed daily the 
severity of the disease both by carrying out a clinical evaluation and testing the motor 
symptoms, evaluating the performance with the rotarod. Finally, we evaluated the degree of 
inflammation and the motoneuron loss, thanks to histological investigations.  

Materials and methods  

Animals  
Adult C57BL/6J mice from our colony at the Neuroscience Institute Cavalieri Ottolenghi 
(originally purchased from Envigo, S. Pietro al Natisone, Udine, Italy) were housed in standard 
conditions in 45 × 25 × 15 cm polypropylene mouse cages at 22 ± 2 °C, under 12:12 light dark 
cycle (lights on at 10:00 AM). Food (standard mouse chow 4RF21, Mucedola srl, Settimo 
Milanese, Italy) and water were provided ad libitum. One male and two female mice (3-month-
old) were housed together to achieve a successful mating, assessed by the evaluation of the 
presence of the vaginal plug (assumed as gestational day 0, GD0) (Hasegawa et al., 2017).  

Animal care and handling were according to the European Union Council Directive of 22nd 
September 2010 (2010/63/UE); all the procedures reported in the present study were approved 
by the Italian Ministry of Health (407/2018-PR) and by the Ethical Committee of the University 
of Torino (Project n° 360384).  

Treatments  
BPA (Sigma Aldrich, 239658, CAS 80-05-7) or BPS (Sigma Aldrich, 103039, CAS 80-09-1) 
were prepared for oral administration by dissolving them in corn oil (Sigma-Aldrich, C8267). 
12 pregnant dams were assigned randomly to three experimental groups: oil-treated dams 
(receiving only vehicle, corn oil; n=4), BPA-treated dams (receiving 4 µg/kg BW/day of BPA, 
corresponding to the European TDI; n=4) and BPS-treated dams (receiving 4 µg/kg BW/day of 
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BPS; n=4). The dose was calculated daily according to dams’ body weight, recorded with an 
electronic precision balance (Mod. Kern-440-47N, resolution 0.1g).  
We decided to test the same dose for both BPA and BPS to allow a precise comparison of the 
effects of the two bisphenols. Moreover, at present, although BPS is one of the most used BPA 
substitutes and it has already been detected in environmental and human samples (Catenza et 
al., 2021), at present no user guidelines are available. Dams were treated starting at GD0, 
throughout pregnancy and lactation, until weaning of the offspring at postnatal day 28 (PND28). 
To resemble human exposure conditions, the daily treatment or the vehicle was given orally to 
the dams, by means of a pipette, to minimize dams’ stress (Bo et al., 2016; Palanza et al., 2002). 
This type of administration allowed us to perform a perinatal treatment (covering both prenatal 
and postnatal critical window of development) (Neier et al., 2019) on the offspring. In fact, it 
is known that both BPA and BPS can pass first through the placenta and then into the milk 
during the lactation (Cimmino et al., 2020; Mao et al., 2020).  
 
Litters were reduced to 8 pups at birth, to obtain an equal number of pups of both sexes, sexed 
via the measurement of the anogenital distance (AGD) (Manno  3rd, 2008). The pups were 
weaned at PND28 and housed in monosexual groups of 4 mice. They were monitored weekly 
until adulthood (PND56) when the experimental procedures were performed.  
 
EAE induction and clinical evaluation  
Chronic EAE has been induced in 8 weeks-old mice of both sexes (n=9/group) (Constantinescu 
et al., 2011). Briefly, mice have been immunized by subcutaneous immunization under the 
rostral part of the flanks and at the base of the tail with 300µl of 200 µg/mouse of myelin 
oligodendrocyte glycoprotein (MOG35–55; Espikem, Florence, Italy) in incomplete Freund's 
adjuvant containing 8 mg/ml of Mycobacterium tuberculosis (strain H37Ra; Difco Laboratories 
Inc., St Henry, Detroit, Michigan, USA), and two intravenous injections of 500 ng of Pertussis 
toxin (Duotech, Milan, Italy) the day of immunization and 48 hour after (i.e., 2 day post 
immunization, dpi) (Montarolo et al., 2014, 2015).  
 
Body weight (BW) and clinical score (CS; 0=healthy; 1=limp tail; 2=ataxia and/or paresis of 
hind limbs; 3=paralysis of hind limbs and/or paresis of forelimbs; 4=tetra paralysis; 5=dying or 
death) have been recorded daily by a blind investigator. This analysis allows to evaluate the 
clinical differences in the onset and progression of the disease (Constantinescu et al., 2011; 
Montarolo et al., 2014, 2015).  
Furthermore, since the rotarod test could be used as a more quantitative and precise clinical 
assessment of the disease course than the clinical score alone (van den Berg et al., 2016), mice 
underwent rotarod performance test daily (Mouse RotaRod, Ugo Basile 47600, Milan, Italy), 
starting from 6 dpi until the time of the sacrifice (28 dpi). The 1-5 dpi period has been used to 
train the animals in the use of the device and to obtain reference values (baseline). The test 
consisted in a single 300 second session during which the rod speed has been increased linearly 
from 4 rpm to 40 rpm (van den Berg et al., 2016). When the mouse was not capable of 
maintaining its balance and fell of the device, it fell and triggered a sensor, and the time (s) was 
recorded (latency).  
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Within the four weeks (0-28dpi) of EAE-follow up, we also monitored the food intake (FI, 
g/animal/day; once a week) and, in females, we checked the estrous cycle, for at least 2 cycles, 
evaluating the vaginal cytology smears (McLean et al., 2012).  
 
Fixation and tissue sampling 
At 28 dpi, mice were sacrificed, by deep irreversible anesthesia (intraperitoneal injection of 
Zoletil 80 mg/kg/ Rompum 10 mg/kg) and transcardially perfused with 4% paraformaldehyde 
(PFA) solution. Spinal cords were removed and stored in a 4% PFA solution for 24 hours, 
followed by several washings in 0.01 M saline phosphate buffer (PBS). Finally, they were 
embedded in paraffin. Paraffin-embedded spinal cords were cut in the transversal plane at 10 
µm thickness with a microtome and collected on gelatin-coated slides. The plane of sectioning 
was oriented to match the drawings corresponding to the transversal sections of the mouse 
spinal cord atlas (Watson et al., 2009).  
 
Histological evaluations  
10µm-thick paraffin-embedded sections on gelatin-coated slides, representative of the entire 
spinal cord, were stained with Hematoxylin-Eosin (Montarolo et al., 2014, 2015) or Cresyl 
Violet (Nissl Staining) (Morales et al., 2006), to detect the presence of the perivascular 
inflammatory infiltrates (PvIIs; n=9 animals/group) and the motoneurons (MNs; n=5 
animals/group) respectively. Presence of PvIIs and MNs loss are assessed as signs of the disease 
(Bolton & Smith, 2015; Constantinescu et al., 2011; Frezel et al., 2016; Gushchina et al., 2018).  
 
Briefly, the staining was performed as follows: after deparaffinization, sections were stained 
with the Hematoxylin and Eosin procedure, by using Sigma-Aldrich (St. Louis, Missouri, USA) 
reagents, or they were Nissl-stained with 0.1% Cresyl Violet (Sigma-Aldrich, St. Louis, 
Missouri, USA). Dehydrated sections were covered with New-Entellan mounting medium 
(Merck, Milano, Italy).  
 
Quantitative analysis  
Neuropathological findings were quantified in 10 complete cross-sections of spinal cord per 
mouse representative of whole spinal cord levels. The sections were acquired and analyzed with 
the Neurolucida software connected to an E-800 Nikon microscope with a 20x objective (Glaser 
& Glaser, 1990). The number of PvIIs or MNs was calculated and expressed as the numbers of 
PvIIs or MNs per mm2.  
The representative images in Figure 3 were acquired with a NIKON DS-U1 digital camera 
(Software of acquisition: NIS-Element AR 2.10) connected to a NIKON Eclipse 90i microscope 
(Nikon Italia S.p.S., Firenze, Italy). Images were digitized by using a 10x or 40x objective for 
the acquisition.  
  
Statistical analysis  
BW, FI, CS and latency at the rotarod performance test were analyzed by three-way (sex, 
treatment and time as independent variables) analysis of variance (ANOVA). All other 
quantitative data were analyzed by two-way (sex and treatment as independent variables) 
ANOVA with SPSS 27 statistic software (SPSS Inc., Chicago, USA). If the ANOVA was 
significant, the post-hoc analysis was performed using the Tuckey’s HSD test. Comparison 
between the estrous cycle evaluations was performed using the Student’s t-test. Differences 
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were considered statistically significant for values of p ≤0.05. Data are shown as mean ± SEM 
(mean standard error).  
 
Results  
 
Effects of BPs on body weight, food intake and estrous cycle of EAE-affected mice  
The analysis of BW showed some differences (F(2,48)=1.498, p=0.011; Fig.1A), due to the sex 
differences in the BW, which was always maintained (p<0.001; Fig.1A). The treatments had 
no effects on BW (F(2,48)=0.472, p=0.627; Fig.1A). All the experimental groups displayed a 
similar BW trend, showing a decrease (Fig.1A) in the acute phase (within the second week post 
immunization) of the disease due to the increased EAE severity.  
The analysis of FI did not show any differences between the groups (F(2,8)=0.950, p=0.485; 
Fig.1B), but highlighted a significative decrease among all groups within the first and second 
post-immunization week (p<0.001), due to the increased EAE severity which caused difficult 
in reaching the food placed in an upper container in the cage. To avoid further stress to the 
animals, the food was then placed on the cage ground, and the FI returned to starter levels and 
the BW partially recovered (Fig.1B). 
 
The analysis of estrous cycle in EAE-affected females revealed that both BPA and BPS 
treatments caused an alteration of the time spent in the different phases of the estrous cycle 
(Fig.1C). Both BPs-treated females spent more time in estral phases (proestrus and estrus; Oil 
vs BPA, p<0.001; Oil vs BPS, p=0.004), and less in non-estral ones (metestrus and diestrus; 
Oil vs BPA, p=0.008; Oil vs BPS, p=0.004) compared to oil-treated ones (Fig.1C). In 
particular, BPS-treated females spent more time in proestrus compared to oil-treated females 
(p=0.031; Fig.1C).  
 
Effects of BPs on EAE onset and course  
The clinical evaluation of EAE course was assessed daily, assigning both the CS and evaluating 
the rotarod performance (as latency of fall) in all experimental groups (Figure 2).  
 
First, the analysis of the daily CS showed some significant differences in the disease course 
(F(2,48)=6.481, p=0.003; Fig.2A). That is due to an increased CS among the BPA-treated males, 
which displayed also higher maximus reached CS (Fig. 2C) and a significantly higher 
cumulative CS (p=0.004, Fig. 2D) compared to oil-treated males. Interestingly, BPS-treated 
males displayed a significant increase in CS, compared to oil-treated ones, only at 7dpi (p=0.44) 
and 8 dpi (p=0.004). Furthermore, both BPA- (p=0.027) and BPS- (p<0.001) treated males 
showed an anticipation in disease onset (Fig.2 B) compared to the oil-treated ones, which 
disrupt the sexual dimorphism present among the oil-treated mice where the females displayed 
an anticipated onset compared to males (p=0.011, Fig.2B).  
 
The analysis of the daily rotarod performance showed some significant differences among 
groups (F(2,48)=4.069, p=0.023; Fig.2E), due to the fact that BPS-treated males displayed lower 
latency at 7dpi (p=0.020) compared to oil-treated ones. Among oil-treated groups, females 
showed lower latency at 27dpi (p=0.020) and 28 dpi (p=0.043) compared to males.  
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Effects of BPs on histological parameters in the spinal cord  
The presence of PvIIs, observed in Hematoxylin-Eosin stained sections of spinal cord, and the 
MNs loss, measured in Cresyl Violet stained sections, are assessed as signs of disease severity 
(Figure 3).  
 
The quantification of PvIIs highlighted some significant differences among the groups 
(F(5,54)=12.656, p<0.001; Fig.3C). First, oil-treated females displayed significantly higher 
values compared to oil-treated males (p=0.013, Fig.3C). This sexual dimorphism was disrupted 
in the treated groups. In fact, BPA-treated males showed a significant increase compared to oil-
treated males (p<0.001, Fig.3), while BPA-treated females showed a significant decrease 
compared to oil-treated females (p=0.006, Fig.3), causing an opposite and extreme sexual 
difference (p<0.001, Fig.3C). On the other hand, BPS-treated males showed no difference 
compared to oil-treated ones (p=0.999, Fig.3C), while BPS-treated females showed a 
significant decrease compared to oil-treated females (p=0.033, Fig.3C), thus causing the 
disappearance of the sexual dimorphism in BPS-treated animals.  
 
The analysis of MNs loss showed some significant differences among the groups (F(5,24)=3.189, 
p=0.024; Fig.3D). In particular, both BPA- (p=0.044) and BPS- (p=0.027) treated males 
displayed a decreased number of MNs compared to the oil-treated ones (Fig.3D), while we 
found no differences among the females (Fig.3D).  
 
Discussion  
 
MS is a multifactorial disease, which overlaps with genetic, epigenetic, and environmental 
factors (Ascherio et al., 2012; Ascherio & Munger, 2016; Waubant et al., 2019). Thus, defining 
the environmental risks is a crucial turning point to better understand the great variability of the 
diseases in terms of etiology, progression, and sexual prevalence (Ascherio et al., 2012; 
Ascherio & Munger, 2016).  
In our study, we highlighted, in EAE model of MS, how exposure to either BPA or BPS, during 
a critical period of development, affected the disease onset and course, differentially in the two 
sexes. BPs treatment seemed to be particularly serious in males. In fact, BPA-treated males 
displayed the greatest alterations, showing a more aggressive disease in terms of anticipation 
of disease onset, clinical score, inflammation and motoneuron loss in the spinal cord. 
Furthermore, also BPS-treated males displayed an anticipation of the disease onset and a higher 
motoneuron loss in the spinal cord compared to oil-treated males. Among females, we did not 
notice any significant differences in the evaluated disease-related parameters, except for fewer 
PvIIs in the spinal cord, which did not come along with a recovered number of motoneurons.  
 
The effect of sex on the clinical features of MS is unclear, but there is evidence that women 
generally have an early onset of disease, have a slightly lower prevalence of primary 
progressive disease course, and generally show less progression to disability than men 
(Bergamaschi, 2007; Harbo et al., 2004). So, even if MS is more prevalent in women compared 
to men, men generally developed a more aggressive and progressive form of the disease (Harbo 
et al., 2013; Ortona et al., 2016). As environmental exposures play a role in determining those 
differences (Alfredsson & Olsson, 2019; Ascherio & Munger, 2016), our results support the 
idea that exposure to BPs could lead to an exacerbation of the diseases in males.  
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Data on the effects of BPA exposure on different MS animal models appear to be controversial, 
while we have no information about the BPS. A 2013 study in EAE-affected female mice did 
not support the hypothesis that gestational BPA exposure represents a significant contributor to 
the increasing female MS risk (Krementsov et al., 2013). On the contrary, another 2013 study 
investigated, both in male and female mice, the effects of perinatal BPA exposure on Theiler’s-
virus-induced demyelination (TVID), another murine model of MS, showing that perinatal BPA 
exposure resulted in a decreased level of viral antibodies, accelerated the onset of TVID 
symptoms, increased inflammation in both the spinal cord and digestive tract, and amplified 
immune-related gene expression changes induced by viral infection (Brinkmeyer-Langford et 
al., 2014). The controversial results could be linked to the fact that MS is modeled using 
different animal models which reflect only partially the characteristic of the disease (Lassmann 
& Bradl, 2017; Procaccini et al., 2015), and also to the different periods and ways of 
administration, and dose selected for BPA treatment (Panzica & Melcangi, 2016).  
However, our results are in line with the work of Rogers et al. (Rogers et al., 2017), which 
demonstrated that gestational exposure to BPA lowered the threshold for EAE onset, especially 
in male mice. It is interesting to notice that we observed the deleterious effects of the exposure 
at a lower dose (4 µg/kg BW/day vs 1 or 3 mg/kg BW/day). Moreover, we also highlighted the 
pathological signs of the disease at spinal cord levels. Finally, for the first time, we described 
the effect of BPS exposure in a murine model of MS. A more recent paper shows that 
subchronic exposure to BPA in mice led to deregulation of inflammatory cytokines and 
oxidative stress, possibly linked to neurotoxicity, axonal damage, and myelin degeneration 
(Khan et al., 2019). This mechanism could underlie the motoneuron loss in an immune system-
independent way, which seemed to be the case, especially in BPS-treated males, displaying a 
significant decrease in the number of motoneurons without any increase in PvIIs compared to 
oil-treated ones. Increasing in vitro evidence describes the neurotoxic potential of BPS (Meng 
et al., 2021; Pang et al., 2019), while the inflammatory potential of BPS appears to be less 
compared to the one of BPA (Kobayashi et al., 2010; Profita et al., 2021).  
In females, we did not observe any statistically relevant effects of both BPs on disease onset 
and course, except for a reduction in PvIIs in the spinal cord. This could be due to the effects 
of BPs on the estrous cycle. In fact, both BPA and BPS led to an increase of time spent in estral 
phases in treated females compared to oil-treated ones. This phase is characterized by increasing 
levels of estrogens which are known to exert an anti-inflammatory neuroprotective effect 
(Spence & Voskuhl, 2012). In particular, BPS-treated females spend more time in proestrus, 
which has been described as protective at least against neurological symptoms in the EAE 
models (Rahn et al., 2014).  
 
It is important to underline the fact that the observed alterations are present in adult animals, 
following perinatal exposure. Perinatal BPA and BPS could cause an impairment either in 
immune system cell populations and in motoneurons which is maintained in adulthood or that 
could cause an altered response to stimuli. Moreover, both BPs could accumulate within some 
compartments of the organism and face a slow release (Charisiadis et al., 2018; Venisse et al., 
2019). Finally, different effects observed in males and females could be due also to the fact that 
males appeared to be particularly vulnerable to developmental exposure to BPs (Kobayashi et 
al., 2010).   
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Studying the effects of exogenous compounds with estrogenic activity can help to better 
understand the role of endogenous hormones and to identify the mechanisms underlying sex 
differences in MS (Harbo et al., 2013; Ortona et al., 2016). Furthermore, a better definition of 
environmental risks is necessary. Investigating the effects of BPs exposure can help better 
determine their deleterious properties, which may be particularly relevant in pathological 
conditions. Additionally, defining BPs as a real risk of developing or worsening MS can help 
devise new strategies to reduce exposure for sensitive people or patients (e.g., avoiding specific 
environments, do not use plastic food/water containers, etc.). 
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Figure 1. Effects of BPA and BPS exposure on body weight, food intake and estrous cycle 
of EAE-affected mice. Daily body weight (A) and weekly food intake (B) evaluation from the 
day of immunization (0 dpi) until the sacrifice (28 dpi) of the animals. (C) Mean percentage of 
time spent in the different phases of the estrous cycle, assessed by vaginal cytology smears, in 
the Oil- (left), BPA- (center) or BPS- (right) treated EAE-affected females. Data are expressed 
as mean ± SEM. Statistical analysis revealed a significant effect for p ≤ 0.05 (* = vehicle vs 
treatment; # = male vs female; §=comparison between different timepoints). BW = body 
weight; FI= food intake; dpi = day post immunization.   
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Figure 2. Effects of BPA and BPS exposure on EAE clinical evaluations. (A) Daily clinical 
score evaluation from the day of immunization (0 dpi) until the sacrifice (28 dpi) of the animals. 
(B) Mean dpi of disease onset in the Oil- (left), BPA- (center) or BPS- (right) treated EAE-
affected male (left side of the graph) and female (right side of the graph) mice. Mean (C) 
maximus clinical score and (D) cumulative clinical score reached by the Oil- (left), BPA- 
(center) or BPS- (right) treated EAE-affected male (left side of the graph) and female (right 
side of the graph) mice. Data are expressed as mean ± SEM. Statistical analysis revealed a 
significant effect for p ≤ 0.05 (* = vehicle vs treatment; # = male vs female). CS = clinical 
score; Max CS = maximus clinical score; cum CS = cumulative clinical score; dpi = day post 
immunization.   
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Figure 3. Analysis of perivascular inflammatory infiltrates and motoneuron loss in spinal 
cord sections of Oil-, BPA- or BPS-treated EAE-affected mice. Representative images of 
(A) Hematoxylin-Eosin and (B) Nissl staining in a transversal section of spinal cord from an 
Oil-treated EAE-affected male mice. Analysis of the (C) presence of PvIIs and (D) motoneuron 
loss in the spinal cords of Oil- (left), BPA- (center) or BPS- (right) treated EAE-affected male 
(left side of the graph) and female (right side of the graph) mice. Data are expressed as mean ± 
SEM. Statistical analysis revealed a significant effect for p ≤ 0.05 (* = vehicle vs treatment; # 
= male vs female). Scale bar = 100 µm (10x) or 50 µm (40x). PvIIs = perivascular inflammatory 
infiltrates; MNs = motoneurons; *central canal.   
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CHAPTER 8 
 
GENERAL CONCLUSIONS 
 
Increasing exposure to Endocrine Disrupting Chemicals (EDCs, i.e., exogenous chemicals, or 
mixture of chemicals, that interfere with any aspect of hormone action and cause adverse effects 
at the level of the organism, its progeny, populations, or subpopulations of organisms) (Zoeller 
et al., 2012)  is linked to public health concerns (Yilmaz et al., 2020) and economic implications 
(Kassotis et al., 2020).  
Among EDCs, bisphenols (BPs) represent an extremely abundant class of synthetic EDCs, 
present in plastic-based consumer goods (Catenza et al., 2021). The extensive exposure to them 
on a daily basis due to their wide use is the main cause of concern (Yilmaz et al., 2020).  
Bisphenol A (BPA) is the first and still the most highly produced BP (Catenza et al., 2021), but, 
as the evidence of its deleterious effects increase, some substitutes have been proposed 
(Abraham & Chakraborty, 2020). One of the most used one is bisphenol S (BPS), which seems 
to display the same, or even worse, endocrine disrupting properties as the BPA (Catenza et al., 
2021; den Braver-Sewradj et al., 2020).  
Considering the variety of molecular targets of both BPA and BPS (den Braver-Sewradj et al., 
2020; MacKay & Abizaid, 2018), their action can affect different tissues in the organism 
(Rochester, 2013; Rochester & Bolden, 2015). In particular, effects of BPA on brain and 
behavior are supported by a quite large number of experimental and epidemiological studies 
(Frye et al., 2012; Gore et al., 2019; Mustieles et al., 2015; Patisaul, 2020; Wolstenholme et al., 
2011) and those investigating deleterious effects of BPS are alarmingly increasing (Naderi & 
Kwong, 2020).  
 
The main aim of the thesis was to evaluate the effects, on both brain and behavior, of oral 
exposure, either during particularly sensitive period of adulthood (i.e., pregnancy and lactation) 
or during development (i.e., perinatal period), to low dose (i.e., 4µg/kg BW/day, EFSA TDI for 
BPA) (EFSA, 2015) BPA or BPS in C57BL/6J mice. To do so, five experiments were 
performed.  
 
In the first experiment (Chapter 3) (Bonaldo et al., 2021), the long-term consequences of 
chronic exposure (covering pregnancy and lactation and reaching 20 weeks of treatment) to 
low-dose BPA on social behavior and related vasopressin (AVP) and oxytocin (OXT) systems 
of the direct exposed dams were investigated. Those dams displayed altered social behavior, 
interacting more with females and less with males compared to the controls. Interestingly, 
immunohistochemical analysis highlighted a decreased AVP-immunoreactivity (ir) in the 
hypothalamic paraventricular (PVN) and suprachiasmatic (SCh) nuclei, along with a reduction 
in G-protein-coupled estrogen membrane receptor 1 (GPER-1)-ir in the same nuclei, of the 
BPA-treated dams compared to controls. Conversely, no alterations were found in the OXT 
system.  
In the second experiment (Chapter 4), the consequences of exposure throughout pregnancy and 
lactation to low dose of either BPA or BPS on the spontaneous maternal behavior and related 
hypothalamic OXT system, and how this can affect pups’ survival within the first postnatal 
week, were investigated. In both BPA- and BPS-treated dams, a decrease in pup-related 

Brigitta Bonaldo
141



behaviors, along with an increase in pup-unrelated behaviors, was observed. Interestingly, only 
the BPA-treated dams showed a significant increase in the OXT-ir in the PVN and in the 
supraoptic nucleus (SON). Moreover, within the first postnatal week, offspring mortality 
impacted differentially BPA and BPS litters, with more female dead pups among the BPA 
litters, while more male dead pups in the BPS litters, sharpening the difference in the sex ratio 
observed at birth (i.e., lower number of females in BPA litters and lower number of males in 
the BPS ones). 
In these two experiments, the effects of exposure to BPs in adulthood were evaluated. Even if 
in the first experiment we focused on BPA (still the most produced and widespread BP), 
performing a chronic treatment (20 weeks) which covered pregnancy and lactation, and in the 
second one we tested both BPA and BPS administered exactly during pregnancy and lactation, 
it can be assumed that, although exposure to EDCs is known to exert the most deleterious effects 
if it occurs during critical periods of development, exposure during adulthood is also matter of 
concerns (Frye et al., 2012; Rattan et al., 2017). In fact, pregnancy and lactation seem to 
represent particularly sensitive periods of adult life for endocrine disruption (Nesan & 
Kurrasch, 2020). Thus, adult exposure to BPs can impact not only on the mother-pup interaction 
and so, both directly and indirectly, on pups’ survival, but also on the direct exposed dams, 
altering fundamental behaviors and related neuroendocrine circuits, essential for guaranteeing 
the quality of life of those animals (Beery & Kaufer, 2015; Cummings et al., 2010; Gore et al., 
2019). Last, impairments in the maternal care could lead to long term epigenetic modifications 
(Curley & Champagne, 2016), which could be implied, along with the treatments themselves, 
in some alterations observed in the offspring (discussed below), such as altered response to 
stress and social stimuli and related neural circuits (Curley & Champagne, 2016), but also 
altered immune system’s responses (Meagher et al., 2010; Parker & Douglas, 2010; Zajdel et 
al., 2019).  
 
In the third (Chapter 5) and fourth (Chapter 6) experiments the effects on sexual and anxiety-
related behaviors and on neural systems involved in the control of these behaviors were 
evaluated in adult male and female mice perinatally exposed to low-dose BPA or BPS.  
The third experiment is focused on sexual behavior and related hypothalamic kisspeptin (kiss) 
system. The treatments resulted in sexually differentiated alterations of some reproductive-
relevant parameters (i.e., puberty onset and estrous cycle), sexual behaviors and kiss-ir within 
the rostral periventricular area of the third ventricle (RP3V), the PVN and the arcuate (Arc) 
hypothalamic nuclei. Exposure to BPs affected pubertal timing, with BPA causing a delay in 
females and BPS causing an anticipation in males. Both BPs altered estrous cycle in females, 
increasing the time spent in estrus in spite of non-estral phases. Furthermore, both BPs partially 
altered some aspects of sexual and sexual-related behaviors, mainly in males. In particular, 
BPA-treated males seemed to be the most affected, spending less time exploring the female 
bedding and showing fewer mounts and intromissions, while BPS-exposed males showed an 
increased number of mounts, intromissions and anogenital sniffing. Last, the 
immunohistochemical analysis highlighted that both BPs caused an increase of kiss-ir within 
the RP3V, while BPA led to an increase of the PVN innervation, and BPS induced a reduction 
in treated females compared to the control ones. Among males, BPA caused an increase of kiss-
ir in the Arc while BPS caused a decrease of the PVN innervation, compared to controls.  
The fourth experiment is focused on anxiety-related behavior and related serotonergic system 
within the raphe nucleus. Behavioral analysis suggested that both BPs altered anxiety-related 
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behaviors, mediating mainly anxiolytic effects in males and anxiogenic effects in females. The 
immunohistochemical analysis highlighted that BPA caused an increase of serotonin (5-HT) ir 
in the dorsal (DR) and median (MnR) raphe of males and in dorsal region of DR and in the 
MnR of females, while BPS led to an increase of 5-HT-ir in the ventral region of DR in males 
and in the dorsal region of DR in females. Interestingly those differences were evident in terms 
of number of 5-HT+ cells in males, and of fractional area in females.  
Even if these two experiments are separately presented, in both the effects of exposure to BPs 
during the perinatal period were evaluated. In fact, it is interesting to point out that analyzed 
behaviors are highly interconnected. It is known the impaired response to stress stimuli has an 
impact also on sexual and socio-sexual behaviors (Magariños et al., 2018). Nevertheless, kiss 
and 5-HT play a role in the regulation of both behavioral aspects (Mills et al., 2021; Olivier et 
al., 2011). On one hand, the central administration of kiss to male mice mediates anti-depressive 
effects (Tanaka et al., 2013), while its role on anxiety is still controversial, even if its central 
administration in male rats resulted in promoting anxiety-like behaviors (Csabafi et al., 2013). 
On the other hand, 5-HT role in the control of sexual behaviors is more investigated. In fact, 
increased 5-HT, particularly in the amygdala and in the hypothalamus, leads to an inhibition of 
male sexual and emotional behaviors (Iovino et al., 2019), while it seems to play a more 
controversial role in female sexual behavior, linked to the receptor expression patterns in 
different brain regions (Snoeren et al., 2014). Interestingly, even if some studies supported the 
idea of minor or strictly time-depending role of 5-HT in the control of female sexual behaviors 
(Hegstad et al., 2020), the activation of 5-HT1A receptor (Kishitake & Yamanouchi, 2003; 
Snoeren, Chan, et al., 2011; Snoeren, Refsgaard, et al., 2011) or the increased 5-HT availability 
in the synapse (Adams et al., 2012; Uphouse et al., 2006) inhibits paracopulatory behavior and 
lordosis in female rats.  
Finally, from these experiments, it can be generally assumed that:  
- A confirmation that perinatal period is a critical time window during which exposure to both 
BPA and BPS leads to long-term consequences in brain and behaviors (Bakoyiannis et al., 2021; 
Frye et al., 2012) and that this is also true for BPS;  
- Effects of exposure to BPA or BPS are different and sometimes opposite in the two sexes, 
underlying the necessity of including both sexes when potential effects of an EDC are evaluated 
(Gioiosa et al., 2013);  
- The tested dose (i.e., 4µg/kg BW/day, EFSA TDI for BPA) (EFSA, 2015) appeared not to be 
safe for BPA nor for BPS, which is still without regulation.  
 
Last, in the fifth experiment (Chapter 7), taking the advantage of the Experimental 
Autoimmune Encephalomyelitis (EAE) mouse model of multiple sclerosis (MS), the effects on 
some aspects of the disease were evaluated in adult male and female mice perinatally exposed 
to low-dose BPA or BPS. As MS is a sexually dimorphic and multifactorial disease and various 
environmental components have been implicated in its etiology (Belbasis et al., 2015; 
Bergamaschi, 2007; Olsson et al., 2017), exposure to BPs is proposed as new environmental 
risk factor which can contribute to the different prevalence and clinical features of the disease 
observed in the two sexes (Harbo et al., 2013; Ortona et al., 2016). In fact, BPA led to the 
development of more aggressive disease in terms of anticipation of disease onset, clinical score, 
inflammation, and motoneuron loss in the spinal cord in males, and also BPS-treated males 
displayed an anticipation of the disease onset and a higher motoneuron loss in the spinal cord 
compared to the vehicle-treated ones. Among females, both BPA and BPS did not seem to alter 
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the evaluated disease-related parameters, except for fewer perivascular inflammatory infiltrates 
in the spinal cord, which did not come along with a recovered number of motoneurons. 
Considering the controversial data about BPA effect on MS (Krementsov et al., 2013; Rogers 
et al., 2017) and the lack of data about BPS, these results support the idea that exposure to both 
BPA and BPS represents a potential risk factor for MS, especially in males. Indeed, these results 
are in line with the fact that, even if MS is more prevalent in women compared to men, men 
generally develop a more aggressive and progressive form of the disease (Harbo et al., 2013; 
Ortona et al., 2016), and, as environmental exposures play a role in determining those 
differences (Alfredsson & Olsson, 2019; Ascherio & Munger, 2016), exposure to BPs could 
lead to an exacerbation of the diseases in males.  
 
To conclude, our results strengthened previous data about deleterious effects of exposure, both 
in adulthood and during critical periods of development, to BPA and highlighted those of BPS, 
which, therefore, cannot represent a safe alternative. Furthermore, BPs exposure altered not 
only some physiological and behavioral parameters in healthy conditions but also exacerbated 
some aspects of MS pathology. Thus, a better definition of environmental risks represented by 
BPA and its analogue BPS is necessary to plan new strategies and draft updated guidelines to 
reduce, or possibly avoid, exposure to these compounds.   
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