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KEPLERIAN BILLIARDS IN THREE DIMENSIONS: STABILITY OF
EQUILIBRIUM ORBITS AND CONDITIONS FOR CHAOS

IRENE DE BLASI

Abstract. This work presents some results regarding three-dimensional billiards having a
non-constant potential of Keplerian type inside a regular domain D ⊂ R3. Two models will
be analysed: in the first one, only an inner Keplerian potential is present, and every time the
particle encounters the boundary of D is reflected back by keeping constant its tangential com-
ponent to ∂D. The second model is a refractive billiard, where the inner Keplerian potential is
coupled with a harmonic outer one; in this case, the interaction with ∂D results in a generalised
refraction Snell’s law. In both cases, the analysis of a particular type of straight equilibrium
trajectories, called homothetic, is carried on, and their presence is linked to the topological
chaoticity of the dynamics for large inner energies.

1. Introduction

Three-dimensional billiards, especially in their classical Birkhoff formulation (a ball moving
freely inside a convex and closed domain of R3), have inspired a vast literature since the end
of XX century (see [44] for an extensive summary on the subject). The main problems that
have been studied are the presence of periodic trajectories (see for example [4, 21]) and the ex-
istence of caustics (as in [10]), along with the analysis of equilibrium trajectories ([49]) and the
possible arising of chaotic behaviour ([38, 14]). Besides classical models, some generalisations
have also been considered, as in the case of dual billiards (see [43]) or more complex systems,
like quantum Sinai models ([40]). Moreover, an interesting analogy between outer billiards and
planetary motion has been highlighted by Moser ([37, 36]).
In general dynamical systems, the passage to higher dimensions is usually associated to the aris-
ing of a richer dynamics, sometimes not present otherwise: in the case of billiards, it implies
that the first return map associated to the system passes from being two-dimensional to act
on a four-dimensional phase space. In principle, this could lead to new interesting phenomena,
as for example Arnold diffusion ([3]), usually prevented in two dimensions, for example by the
presence of invariant curves, such as KAM tori ([35]).
The aim of this work is to introduce the study of three dimensional billiards when the dynamics
inside a domain, called D, is determined by a Keplerian attractive potential, generated by a
mass internal to D itself. To do this, we will consider two different models, which differ from
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Figure 1. Reflective and refractive billiards in three dimensions; for the reader’s
convenience, only one half of the boundary ∂D is drawn. Left: reflective case; the
billiard trajectory is composed only by inner Keplerian arcs, which are reflected on
the boundary. Right: refractive case. The particle enters and exits alternatively
from the domain D, in a concatenation of outer harmonic and inner Keplerian
arcs, connected by a refraction rule which deflects the velocity at every passage
trough ∂D.

each others by the interaction of the particle with ∂D.
In the first case, called, in accordance to the known literature, Kepler billiard, whenever the

test particle encounters the boundary of D it is reflected back by an elastic bounce that keeps
constant its velocity’s tangent component (see Figure 1, left). The physical interest of such
model resides in its possible applications to Celestial Mechanics, as well as in the construction
of optical devices. It is for example the case of the motion of a Celestial body which, while
attracted by a central mass, is confined inside a region in the space bounded by a dense outer
ring of particles or dust, acting as a wall. A scattering billiard between narrow discs around
planetary bodies is proposed by Benet (see [33]), who highlights the strong relation between
the model and the Restricted Three Body Problem ([8]), setting up the basis for a study in
higher dimensions as well ([9]). Already in 1977, Hitzl and Hénon ([26]) pointed out the relation
between this class of billiards and the Restricted Three Body Problem: they linked the pres-
ence of second species periodic solutions, when the central mass tends to zero, to critical points
corresponding to consecutively collisional orbits, formed by Keplerian arcs, in a narrow disc
around the central planet. As for the optical applications, it is worth mentioning the behaviour
of ultracold neutrons inside the so-called neutron microscope ([42, 32]), which has the property
of being reflected against suitable walls, while subjected to gravitational forces.
In the second model presented, the particle is no longer confined inside the domain, and is free
to exit undergoing a refraction governed by a generalization of the Snell’s law. Once outside,
the particle is pushed back by a harmonic restoring force, leading to an infinite concatenation of
inner Keplerian arcs and outer harmonic ones (see Figure 1, right). We will refer to this second
model as the refraction galactic billiard, due to its connection with Celestial Mechanics models.
In particular, it is inspired by [18], where the motion of a particle inside an elliptic galaxy
having a central mass is taken into consideration: in this case, the billiard can be interpreted
as the region of influence of the central body, outside which the gravitational attraction of the
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whole elliptical distribution of matter prevails. Let us highlight that, apart from the current
application to galactic motion, refraction billiards can be useful to model a quite vast class of
physical problems, whenever the particle moves under the influence of local forces or different
regimes, depending on its position, are present. In particular, an interesting application of
refraction rules for random combinatorial billiards can be found in [1, 17].
In two dimensions, billiard models with non-constant potentials have been the subject of many
different papers ([22, 41, 28, 29]), investigating for example the possible integrability of the
model ([20]); more generally, models that also involve an outer dynamics, extending the no-
tion of interaction with the billiard’s boundary from a simple reflection, are considered in [23].
Within the class of gravitational Kepler billiards, it is worth mentioning the works [47, 27],
which prove an interesting result about integrability inside focused conics, and [12], where a
wider class of billiards with singularities is taken into account; in [46], the authors propose a
first analysis of the integrability of the three dimensional reflective case by using Kustanheimo-
Stiefel regularisation.
In the planar case, some properties of Kepler and galactic refraction billiards have been al-
ready depicted in [15, 16, 6, 5]: this work is intended as an extension of them, investigating, in
particular, the local stability of suitable equilibrium trajectories (see Figure 2), and, starting
from them, the possible presence of chaotic regimes. It is important to highlight how increasing
the dimensionality does not lead to a straightforward generalization of what is done on the
plane, as the models presented here display a richer dynamics and technical difficulties in the
proving schemes arise. First of all, it is worth to ask whether the billiard dynamics is truly
three-dimensional, since, by conservation of the angular momentum, every arc of our concate-
nations is planar. As we will see analytically, except in the trivial spherical case both reflection
and refraction could change the orbit’s plane, then no invariant planes are generically present.
Moreover, the interaction of Keplerian and harmonic arcs with a closed surface, instead of a
curve, is more complex, and a careful choice of the parameterisation of ∂D is in order. Another
important difference regards the treatment of Keplerian collisional trajectories, of paramount
importance in the forthcoming analysis. While in two dimensions they can be regularised by
following the approach of Levi-Civita (see [31, 30]), in higher dimensions another strategy, rely-
ing on the construction of a suitable four dimensional space, is necessary; the regularisation we
use, due to Kustanheimo and Stiefel, is here presented using Waldvogel’s formalism (see [48]).
We highlight that, although physically not relevant, collision solutions obtained by regularisa-
tion methods are of particular importance from an analytical point of view, since this approach
allows to investigate non-collisional solutions close to the collisional ones. This is exactly the
type of analysis needed in both Section 3 and 4, where close-to-collision arcs are considered.

In order to illustrate the principal results of this work, let us give some notation, providing
an analytical description of the two models proposed; for this reason, let us take a smooth
domain D ⊂ R3, of class at least C3.
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Figure 2. Homothetic collision trajectories in the reflective (left) and refractive
(right) case. The particle follows radial arcs in the direction of a central config-
uration: for the case on the left, the reflection translates into a simple inversion
of the trajectory onto itself; for the case on the right, Snell’s law does not deflect
the velocity vector, since it is orthogonal to the boundary ∂D. The blue sphere
represents the boundary of the Hill’s region associated to the outer potential.

In Keplerian billiards, the particle moves inside D along Keplerian geodesics generated by the
potential

(1.1) VI : D \ {0} → R, VI(z) = H +
µ

|z|
,

corresponding to the gravitational attraction of a m ass with parameter µ > 0 situated at the
origin. More precisely, any solution of the differential problem

(1.2)

z′′(t) = ∇VI(z(t))
1

2
|z′(t)|2 − VI(z(t)) = 0

with H > 0, corresponds to a Keplerian hyperbolic arc with energy equal to H. Every time our
test particle hits the boundary, it is reflected back inside the domain, and continues to move.
In the refractive case the inner Keplerian potential (1.1) is coupled with a harmonic outer one,
defined by

(1.3) VE : R3 \D → R, VE(z) = E − ω2

2
|z|2,

with E , ω > 0. The resulting trajectories are then concatenations of outer elliptic arcs with in-
ner Keplerian ones, joined together on ∂D by a refractive Snell’s law which maintains constant
the tangent component of the velocity through the transition.
In the present paper we will address, for both models, two main problems. The first one is
the existence and stability analysis of a particular class of equilibrium trajectories, called ho-
mothetic (see again Figure 2): these are collision-ejection solutions obtained, via regularization
arguments (see Appendix A), along special directions defined by the so-called central configu-
rations, namely, radial directions orthogonal to ∂D. More precisely, we can give the following
definition.
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Definition 1.1. Let us consider D ⊂ R3 a bounded and regular domain of R3, containing the
origin, and suppose that it is star-shaped with respect to 0. A central configuration is a point
p̄ ∈ ∂D orthogonal to Tp̄∂D.

The existence of central configurations of D is of fundamental importance for the results
presented thorough the whole work: the first one regards the stability of homothetic trajectories.

Theorem 1.2. Let S
.
= ∂D be the boundary of a three-dimensional billiard, and let p̄ ∈ S a

central configuration, κ1 and κ2 the principal curvatures of S in p̄. Then:

(1) in the reflective case, there exists an equilibrium homothetic trajectory of the billiard
along the direction of p̄, given by a collision-ejection arc, whose stability is given by the
quantities

(1.4)

∆1 =
32|p̄|4

µ2
√

V I(p̄)

(
1

|p̄|
− κ1

)[√
VI(p̄)

(
1

|p̄|
− κ1

)
− µ

2|p̄|2
√
VI(p̄)

]

∆2 =
32|p̄|4

µ2
√

V I(p̄)

(
1

|p̄|
− κ2

)[√
VI(p̄)

(
1

|p̄|
− κ2

)
− µ

2|p̄|2
√
VI(p̄)

]
;

(2) in the refractive case, there is an equilibrium trajectory, composed by the concatenation
of an outer homothetic and an inner collision-ejection arc along the direction of p̄, whose
stability depends on the quantities, for i = 1, 2,

(1.5)

∆i = ABCD

A =
16|p̄|
E2µ2

(√
VI(p̄)

)(
κi −

1

|p̄|

)
B = E + (κ1|p̄| − 1)

√
VE(p̄)

(√
VE(p̄)−

√
VI(p̄)

)
C = −µ

√
VI(p̄) + 2|p̄|

[
E + (κi|p̄| − 1)

√
VE(p̄)

(√
VE(p̄)−

√
VI(p̄)

)]√
VI(p̄)

D = µ− 2|p̄|(κ1|p̄| − 1)
(√

VE(p̄)−
√
VI(p̄)

)√
VI(p̄).

In particular, if either ∆1 or ∆2 are positive, then the trajectory is linearly unstable, while when
both the quantities are negative it is linearly stable. More precisely, in both cases the homothetic
trajectory corresponds to a fixed point of a suitable four-dimensional first return map, for which
it holds that

• if ∆1 ·∆2 < 0, then we have a saddle-centre fixed point;
• if both ∆1 and ∆2 are positive, then the fixed point is of saddle-saddle type;
• if ∆1,∆2 < 0, then the fixed point is of centre-centre type.

The above result is achieved by constructing suitable discrete first return maps, which keeps
track of every time the reflective or refractive trajectories hit the boundary S, and treating the
homothetic equilibrium ones as fixed points. In this framework, it is possible to compute the
linear stability of such equilibrium points with the standard tools of discrete dynamical systems
(see [25]).
According to Theorem 1.2, the linear stability of homothetic equilibrium trajectories depends
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on the local geometry of ∂D in p̄, along with the physical parameters defining the potential
VI and, in the refractive case, VE. From a dynamical point of view, this translates into in the
presence of possible bifurcation phenomena when suitably changing the values H, µ, E , ω.
The second proposed result regards the arising of chaotic behaviour, provided some simple
geometric conditions of the boundary are satisfied: in particular, we will link the presence of at
least two central configurations for D which are non antipodal (i.e. the origin does not belong
to the segment between them) and non degenerate (namely, they are non degenerate critical
points for the function p ∈ ∂D 7→ |p|) to the existence of a topological chaotic subsystem for
sufficiently large inner energies H.

Theorem 1.3. Let us suppose that D admits two central configurations which are not antipo-
dal and non degenerate. Then, for sufficiently large inner energies, both the reflective and the
refractive billiards are chaotic.
More precisely, if the inner energy is sufficiently large it is possible to construct first return
maps, restricted to a suitable invariant subset of initial conditions, which are topologically
chaotic.

The main idea underlying the theorem is the construction of a topological conjugation with
the Bernoulli shift acting on bi-infinite sequences of two symbols. To be more precise, let us
consider the set L = {1, 2}Z, and the so-called Bernoulli shift

(1.6) σ : L → L, s = (sk)k∈Z 7→ s′ = (s′k)k∈Z = (sk+1)k∈Z :

such mapping is the model topological chaotic system (see [19, 24]), and can be used to prove
the chaoticity of more general discrete maps. In particular, given a map F : X → X, if we find
a continuous bijection P : X → L such that the diagram

(1.7)
X X

L L

F

P P

σ

commutes, that is, F is topologically conjugated to σ, then F is itself chaotic. The proof of
Theorem 1.3 will then be based on the search of an invariant set of the first return map, as well
as a conjugation between the latter and σ. In practice, we will construct a one-to-one relation
between bi-infinite sequences on L and suitable billiard trajectories, requiring, through a shad-
owing argument (see also [12]), that they are sufficiently close to juxtaposition of homothetic
arcs.
Domains that satisfy the hypotheses of Theorem 1.3 are called admissible: an example is given
by triaxial ellipsoids having at least one semi-axis different from the other two. The chaoticity
of an ellipsoid both in the reflective and the refractive case is particularly interesting when com-
pared with the classical Birkhoff case, where it is possible to prove the complete integrability
of the system in the ellipsoidal case (see [45]).
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A particular case of domain is represented by the centred sphere (i.e. with the centre coin-
ciding with the origin): here, any point on its surface is a degenerate central configuration.
We will see in Section 2 that in the centred sphere the dynamics reduces to a two-dimensional
integrable billiard with circular boundary when the first initial conditions are chosen (see also
[16]). Moreover, applying Theorem 1.2 to any point, one obtains ∆1\2 = 0 in both refractive
and reflective case: this fact is again not surprising, and translates in the presence of infinite
equilibrium trajectories, degenerate from the point of view of the linear stability. In the Kepler
reflective case, the problem of finding three-dimensional boundaries that, at least at high ener-
gies, lead to chaos, is complemented by the work of Takeuchi and Zhao [46] where the problem
of integrability is taken into account. In general, this overall investigation looks in the direction
of characterising integrable boundaries, in the spirit of the well-known Birkhoff conjecture for
classical billiards (see [11, 39]).

2. Analytical setting

Let us start the description of the dynamical models by taking a regular domain 0 ∈ D ⊂ R3,
namely, an open and bounded subset of R3, containing the origin, with smooth boundary. Let
us suppose that D is star-convex with respect to the origin, define S

.
= ∂D, and suppose that

it is a smooth surface in R3, whose regularity is at least C3.
The surface S represents the boundary of our billiards, with which the trajectories, either in
the reflective or in the refractive case, will interact according to the considered model.

Kepler billiards: reflective case. Let us consider an inner potential as in (1.1): the trajec-
tories of zero energy associated to the potential VI are solutions of the ODE (1.2) for suitable
boundary conditions, and correspond to hyperbolic Keplerian arcs having energy H and a focus
in the origin.
In Kepler billiards, whenever an inner arc intersects the domain’s boundary ∂D it is reflected
back, generating a new trajectory starting from the bouncing point and with an initial velocity
vector which, while preserving the original tangent component, reverts the sign of the normal
one (see Figure 3). The billiard trajectories result then in a concatenation of Keplerian arcs,
related by a reflection rule, described by means of a discrete area-preserving mapping that
keeps track of every time an inner arc intersects the boundary.
To be more precise, let us suppose that a Keplerian arc starts from a point p0 ∈ S with
an inward-pointing initial velocity w0, with |w0| =

√
2(H + µ/|p0|). It represents the unique

solution of the Cauchy problem

(2.1)

{
z′′(t) = ∇VI(z(t))

z(0) = p0, z′(0) = w0

that intersects the surface S again in a point p1 ∈ S and with velocity vector w′
1 (see Figure 4),

which can be decomposed into its tangent and normal part with respect to Tp1S as w′
1,t +w′

1,n.
The next arc in the concatenation will then start from p1 with velocity w1 = w′

1,t − w′
1,n. It
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z1(t)

w1

w2

p

z2(t)

Tp∂D

Figure 3. Reflection rule in three dimensions; for the sake of clarity, only the
tangent plane Tp∂D is drawn. An incoming arc z1, with final velocity w1, is
reflected in a new arc z2, whose initial velocity is given by w2. The two velocities
have the same tangent component with respect to Tp∂D and inverse normal
component. The dashed black line represents the radial direction from the origin
to p, while the red arrow is the inward-pointing normal vector to ∂D in p.

p0
w
0

w′
1

p1

w1

Figure 4. First return map for the reflective case: the trajectory starts in p0
with velocity w0 and meets again ∂D in p1 with velocity w′

1. The latter is reflected
into w1 and one has F : (p0, w0) 7→ (p1, w1).

is clear that, unless w′
1 (and hence w1) is tangent to S, the new velocity vector points again

towards the interior of D, and a new inner Keplerian hyperbola can start with initial conditions
(p1, w1).
The map F : (p0, w0) 7→ (p1, w1) is called first return map, and, whenever well defined, its
iterates give a complete portrait of the behaviour of the concatenation of reflected Keplerian arcs
starting from (p0, w0). We highlight that the construction described above is a generalization in
three dimensions of what happens in the two-dimensional case (see for example [15]), where the
tangent plane reduces to a simple direction in R2. As for the good definition of F, it depends
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on the geometric interaction of Keplerian arcs at a given energy with S: in Section 3.1, we will
delve deeper into this point. Let us notice a final fact about Kepler billiards, which motivates
the necessity to pass carefully from the planar to the spatial case. Being VI a central force
potential, the angular momentum is a conserved quantity along any arc, and, as a consequence,
the Keplerian hyperbolæ lie on planes defined by their initial conditions. It is then natural to
ask whether the concatenations of a reflective Kepler billiard lie always on invariant planes,
reducing the three-dimensional dynamics to a trivial generalization of the two-dimensional one.
Actually, while the plane of the trajectories does not change along Keplerian hyperbolæ, this
could happen during the reflection. This is a consequence of two basic facts:

• given initial conditions (p0, w0), with p0 ∈ S and w0 ∈ R3 pointing inside D, the solution
of (2.1) lies on the plane generated by w0 and

−→
0p0;

• when a velocity w′ is reflected into w in a bouncing point p ∈ S, the new vector belongs
to the plane generated by w′ and the normal unit vector to S in p (see again Figure 3).

As a consequence, whenever in a bouncing point the normal and radial direction do not coin-
cide, the new arc of hyperbola will belong to a different plane with respect to the reflected one
and there are no invariant planes for the whole dynamics.

Galactic refraction billiards: refractive case. The dynamics induced on a refraction bil-
liard is more complex than the one depicted in the Kepler case, since here the particle is no
longer confined inside D, but can exit from the domain, to which it is attracted again by a har-
monic restoring central force. Given again D ⊂ R3 as an open and bounded domain containing
the origin, let us now consider a new discontinuous potential

(2.2) V : R3 \ {0} → R, V (z) =

{
VI(z) if z ∈ D

VE(z) if z /∈ D

where VE is defined in Eq. (1.3). In practice, we are considering a Keplerian potential with
positive energy inside D coupled with a harmonic-type one outside the domain; here, the
constants E and H are such that 0 < E ≤ H. In this case, the zero-energy trajectories inside
D are still Keplerian hyperbolæ at energy H, while the outer arcs are harmonic ellipses with
energy E and centre at the origin.
The complete trajectories in this case are concatenations of outer and inner arcs, connected
by means of a refraction rule which, as in the case of the reflection law, keeps constant the
tangent component velocity vectors during the transition through S. Let us suppose to have
an outer arc intersecting S again in the point p with velocity wE ∈ R3, refracted into an inner
velocity vector wI (see Figure 5). By the energy conservation law, one has |wE| =

√
2VE(p) and

|wI | =
√
2VI(p), where, by Eq.(2.2), VE(p) < VI(p): a preservation of the tangent component

from outside to inside D translates then into an increasing of the normal one, that is, a deflection
of the velocity vector. In particular, if αE and αI are respectively the angles of wE and wI with
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zE(t
)

p

zI(t)

wE

wI

Tp∂D

Figure 5. Refraction rule; for the sake of clarity, only the tangent plane Tp∂D
is drawn. The incoming outer arc zE intersects the boundary in p with velocity
wE, which is refracted into wI , initial velocity for the following inner arc zI . The
two velocity vectors have the same tangent component with respect to Tp∂D.
The red arrow is the inward-pointing normal vector to ∂D in p.

respect to the inward-pointing normal vector to S in p, one has

(2.3)
√

VI(p) sinαI =
√
VE(p) sinαE.

Eq. (2.3) is a generalization for curved interfaces and non-constant potentials of the classical
Snell’s law for light rays, where the refraction indices depend on the two potentials at the
transition point. An analogous way to describe Snell’s refraction law, which will be useful in
Section 3.2, is the following: if e1, e2 is a basis of TpS, one has that

(2.4) ⟨wE, e1⟩ = ⟨wI , e1⟩ and ⟨wE, e2⟩ = ⟨wI , e2⟩, .

where the notation ⟨·, ·⟩ denotes the usual scalar product in R3. Clearly, whenever a velocity
is refracted from inside to outside D, the normal component of the velocity decreases, and the
angle will change again according to the relation (2.3).
Note that, whenever the particle goes from an outer to the subsequent refracted arc, Eq.(2.3) is
solvable for any value of αE, while the contrary is possible only when | sinαI | ≤

√
VE(p)/VI(p).

Geometrically, this translates into the presence of a critical angle with respect to the normal
direction, given by arcsin (VE(p)/VI(p)), under which an inner Keplerian arc must hit S to be
refracted. In general, we will say that trajectories of the refraction billiard are well defined
when every inner arc can be refracted outside.
As in the case of Kepler reflective billiard, it is possible to define a first return map in the
refractive case as well. In this case, it will not consider every intersection of the trajectory with
S, but only the ones occurring after a complete concatenation of an outer and a subsequent
inner arc.
With reference to Figure 6, let us start with (p0, w0) initial conditions for an outer arc, p0 ∈ S

and w0 pointing outside D. The solution of the Cauchy problem associated to VE and with
initial conditions as above is an elliptic arc which will intersect S again, say in a point p̃ and
with velocity w̃′, which will be refracted, according to Snell’s law, into a new vector w̃. The
pair (p̃, w̃) will then be the initial conditions of an inner Cauchy problem, whose solution is
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p0

w0

p̃

w̃′w̃
p1

w′
1

w1

Figure 6. Refractive first return map: the outer arc starts with initial conditions
(p0, w0) and intersects ∂D again in (p̃, w̃′). The velocity w̃′ is refracted into w̃,
initial velocity for an inner arc which meets ∂D again in (p1, w

′
1). The vector w′

1

is refracted into w1 and one finally finds G : (p0, w0) 7→ (p1, w1).

an unbounded hyperbola intersecting again S in a point p1 with velocity vector w′
1. If w′

1 is
sufficiently transverse to S, it will be refracted into a new vector w1, and a new concatenation
of outer-inner arc can start from (p1, w1).
Whenever well defined, the map G : (p0, w0) 7→ (p1, w1) is the first return map associated to
the refraction billiard, and, as in the reflective case, its iterates starting from different initial
points encode our three-dimensional continuous dynamics into a sequence of discrete hitting
points and velocities. Here, the problem of the good definition of the map is more delicate than
in the previous case, since, as a critical angle is now present, the conditions on the inner arcs
for the trajectory to continue are stricter.
In this case, both the potentials VE and VI are centrally symmetric, therefore all the (outer and
inner) arcs are planar. As in the reflective billiard, here a refraction always occurs on the plane
generated by the original velocity and the normal vector to S in the transition point, so that,
whenever radial and normal direction do not coincide, the plane of the concatenation changes
after refraction (see again Figure 5).

As customary in billiards theory, the dynamics in both models depends heavily on the ge-
ometry of D: it will be the aim of next sections to analyse such relation, starting from the
existence of a particular kind of equilibrium trajectories.

3. Homothetic equilibrium trajectories and their stability

In both reflective and refractive billiards, there exists a particular class of equilibrium trajec-
tories whose existence depends only on the local properties of S. These are called homothetic
trajectories, and are composed by straight segments along particular directions of R3, defined by
the so-called central configurations. This section will address the problem of their existence and
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stability. We will make use of some basic facts regarding outer harmonic and inner Keplerian
arcs; for the sake of brevity, some of the technical lemmas used here are proved in Appendix A.

Definition 3.1. A point p̄ ∈ S is called central configuration1 (in short, c.c.) for the domain
D if it is orthogonal to Tp̄S. .

In local coordinates, central configurations correspond to critical points of the distance func-
tion restricted to points in S: let us consider Γ : U → S, U ⊂ R2, (u, v) 7→ Γ(u, v) ∈ S a local
parametrisation of S around p̄, such that Γ(ū, v̄) = p̄. Then

(3.1) p̄ ⊥ Tp̄S ⇐⇒ ∇|Γ(u, v)|(ū,v̄) = 0.

Eq. (3.1) allows us to define a further property for a central configuration.

Definition 3.2. Let p̄ a central configuration, and Γ : U → S a local parametrisation of S

around p̄, Γ(ū, v̄) = p̄. The c.c. is termed non-degenerate if (ū, v̄) is a non-degenerate critical
point of |Γ(u, v)|, namely, its Hessian computed in (ū, v̄) admits two nonzero eigenvalues.

Remark 3.3. Let Γ : U → S be a local chart of S around p̄. For the sake of convenience
and without loss of generality, we will assume that Γ satisfies the following conditions, being
Γu(u, v) and Γv(u, v) the coordinate tangent vectors to S:

• Γ(ū, v̄) = p̄ for some (ū, v̄) ∈ U ;

• Γu(ū, v̄) and Γv(ū, v̄) are orthogonal unit vectors, and, if p̄ is not

umbilical, they are parallel to the principal directions of S in p̄;

• N = Γu(ū, v̄)× Γv(ū, v̄) points inside D.

We stress that it is always possible to find such a parametrization, possibly rescaling u and v

and with a change of basis on Tp̄S.
Being p̄ a central configuration, it results p̄ = −|p̄|N : calling κ1 and κ2 the principal curvatures
of S respectively in the direction of Γu(ū, v̄) and Γv(ū, v̄), by direct computation one finds

(3.2) ⟨p̄,Γuu(ū, v̄)⟩ = −|p̄|κ1, ⟨p̄,Γuv(ū, v̄)⟩ = ⟨p̄,Γvu(ū, v̄)⟩ = 0, ⟨p̄,Γvv(ū, v̄)⟩ = −|p̄|κ2.

As a consequence,

(3.3)
∂u|Γ(ū, v̄)| = ∂v|Γ(ū, v̄)| = ∂uv|Γ(ū, v̄)| = 0,

∂2
u|Γ(ū, v̄)| =

1

|p̄|
(1− |p̄|κ1) , ∂2

v |Γ(ū, v̄)| =
1

|p̄|
(1− |p̄|κ2)

and then, whenever p̄ is non degenerate, ∂2
u|Γ(ū, v̄)| and ∂2

v |Γ(ū, v̄)| are different from zero.

Since VI and VE are centrally symmetric, both the inner and outer dynamics admit radial
solutions (possibly collisional in the inner case, see Theorems A.1, A.7); whenever hitting the
boundary in a c.c., such solutions are either reflected back into themselves (reflective case, see

1In the present paper we assume a star-convexity hypothesis on D, not present in [15, 16, 6]. In more general
domains, to define a central configuration we also require that the half-line in the direction of p̄ intersects S
only once.
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Figure 2, left) or they are not deflected by Snell’s law (refractive case, see Figure 2, right). As
a consequence, one can state the following Proposition.

Proposition 3.4. If p̄ ∈ S is a central configuration, both the reflective and refractive billiard
admit equilibrium trajectories along the direction of p̄, called homothetic. In the reflective case,
they are collision-ejection arcs infinitely many times reflected into themselves; in the refractive
case, they are concatenations of outer homothetic arcs and inner collisional ones.

The definition of collision-ejection inner arcs is given in Appendix A, and refers to particu-
lar generalised solutions associated to the Kepler problem which, after hitting the origin, are
reflected; their existence is proved by a regularization technique, see Theorem A.5. In terms of
first return maps, homothetic equilibrium trajectories translate into fixed points, corresponding
to the pair (p̄,−

√
VI(p̄)p̄/|p̄|) for the reflective case and (p̄,

√
2VE(p̄)p̄/|p̄|) for the refractive

one; by analogy with the corresponding trajectories, such points are called homothetic.
As a consequence of Theorems A.1 and A.3, along with the differentiable dependence of Cauchy
problems on initial conditions, both the reflective and refractive first return maps are well de-
fined and differentiable in a neighbourhood of a homothetic fixed point: it is then natural to
investigate their linear stability. To achieve this, we shall make use of the notion of Jacobi
length. Let us then take V ⊂ S as a neighbourhood of p̄ such that V ⊂ Γ(U); if it is sufficiently
small and the inner energy H large enough, for any p0, p1 ∈ U there are exactly one inner and
one outer arcs connecting them respectively at energies H and E , where, in the inner case, the
uniqueness is intended in a suitable homotopy class. Let denote these arcs respectively with
zI(·; p0, p1) and zE(·; p0, p1). We can then define the inner and outer distances between the two
points as the Jacobi lengths of the (unique) arcs connecting them, namely,

(3.4)
dE(p0, p1) = LE(zE(·; p0, p1)) =

∫ T

0

|z′E(t; p0, p1)|
√
VE(z(t; p0, p1))dt,

dI(p0, p1) = LI(zI(·; p0, p1)) =
∫ T

0

|z′I(t; p0, p1)|
√

VI(z(t; p0, p1))dt,

where, with an abuse of notation, the time T > 0 is such that either zE(T ; p0, p1) = p1 or
zI(T ; p0, p1) = p1. By the uniqueness of the arcs, the above quantities are always well defined
and depend only on the endpoints; in the case of a collision-ejection solution one shall make
use of a regularization method. The main properties of dE and dI are described in Appendix
A.
Let us now express the distances in terms of local coordinates, taking (u0, v0), (u1, v1) ∈ U such
that pi = Γ(ui, vi), i = 1, 2, and defining the functions

(3.5) SE\I : U × U → R, (u0, v0, u1, v1) 7→ dE\I (Γ(u0, v0),Γ(u1, v1)) .
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The above functions inherit the regularity of the surface S, and, dropping for brevity the
dependence of zE\I on the points, it is possible to prove (see Appendix A) that

(3.6)

∂1,uSE\I(u0, v0, u1, v1) = −
√

VE\I(Γ(u0, v0))⟨
z′E\I(0)

|z′E\I(0)|
,Γu(u0, v0)⟩

∂1,vSE\I(u0, v0, u1, v1) = −
√

VE\I(Γ(u0, v0))⟨
z′E\I(0)

|z′E\I(0)|
,Γv(u0, v0)⟩

∂2,uSE\I(u0, v0, u1, v1) =
√
VE\I(Γ(u1, v1))⟨

z′E\I(T )

|z′E\I(T )|
,Γu(u1, v1)⟩

∂2,vSE\I(u0, v0, u1, v1) =
√

VE\I(Γ(u1, v1))⟨
z′E\I(T )

|z′E\I(T )|
,Γv(u1, v1)⟩,

where the subscripts 1 or 2 refer respectively to the first or second pair (u, v).
In analogy to the classical theory of billiards, and dynamical systems in general, we will call
the quantities SE\I the generating functions of our dynamics: they will have a crucial role in
the forthcoming analysis. In particular, as a direct consequence of (3.6), both the reflection
and the refraction laws can be expressed in terms of derivatives of SE\I :

• for the reflective case, let us take p0, p1, p2 ∈ Γ(U), pi = Γ(ui, vi), i = 0, 1, 2, connected
by a concatenation of arcs from p0 to p2 passing through p1: the reflection holds in p1

if and only if

(3.7)

{
∂2,uSI(u0, v0, u1, v1) + ∂1,uSI(u1, v1, u2, v2) = 0,

∂2,vSI(u0, v0, u1, v1) + ∂1,vSI(u1, v1, u2, v2) = 0.

• In the refractive case, let us suppose that p0 and p1 are connected by an outer arc, while
p1 and p2 by an inner one. Then, Snell’s law in p1 is equivalent to

(3.8)

{
∂2,uSE(u0, v0, u1, v1) + ∂1,uSI(u1, v1, u2, v2) = 0,

∂2,vSE(u0, v0, u1, v1) + ∂1,vSI(u1, v1, u2, v2) = 0.

In the next Sections, we will see how to use the above relations to determine the linear stability
of homothetic equilibrium trajectories in both reflective and refractive billiards.

3.1. Stability of the homothetics in the reflective case. Let us start by expressing the
first return map F in a suitable set of one-dimensional variables: with reference to Fig-
ure 4, once we fix H the initial and final conditions (p0, w0), (p1, w1) are uniquely deter-
mined by the quadruplets (u0, v0, x0, y0), (u1, v1, x1, y1) ∈ U × R2 such that pi = Γ(ui, vi),
xi = ⟨wi/|wi|,Γu(ui, vi)⟩ and yi = ⟨wi/|wi|,Γv(ui, vi)⟩. In this set of coordinates, the homo-
thetic fixed point (p̄,−

√
VI(p̄)p̄/|p̄|) corresponds to (ū, v̄, 0, 0). We can then construct the

function

(3.9) F̃ : (u0, x0, v0, y0) 7→ (u1, x1, v1, y1),

expressing the first return map locally around (ū, 0, v̄, 0). We observe that, in view of Eqs.
(3.6), F̃ is implicitly defined by the equation Φ(u0, x0, u1, x1, v0, y0, v1, y1) = 0, where Φ is a
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multi-valued function whose components are given by

(3.10)

∂1,uSI(u0, v0, u1, v1) +
√
VI(Γ(u0, v0))x0

∂2,uSI(u0, v0, u1, v1)−
√

VI(Γ(u1, v1))x1

∂1,vSI(u0, v0, u1, v1) +
√

VI(Γ(u0, v0))y0

∂2,vSI(u0, v0, u1, v1)−
√

VI(Γ(u1, v1))y1.

Imposing q̄ = (ū, 0, v̄, 0), it is easy to verify that Φ(q̄, q̄) = 0: our aim now is to use the implicit
function theorem to find DF̃ (q̄), and then study its spectral properties.
The first step consists in finding the second derivatives of SI in q̄: the procedure we use is a
generalization in three dimensions what has been done in [15], where the interested reader can
find more details.
Recalling the choice of the local chart Γ described in Remark 3.3 and making use of a suitable
regularization reasoning, one finds the following Lemma, whose proof is given in Appendix A.

Lemma 3.5. The second derivatives of SI in the homothetic point (ū, v̄, ū, v̄) are given by

(3.11)

∂2
1,uSI(ū, v̄, ū, v̄) = ∂2

2,uSI(ū, v̄, ū, v̄) = I0 + η1

∂2
1,vSI(ū, v̄, ū, v̄) = ∂2

2,vSI(ū, v̄, ū, v̄) = I0 + η2

∂1,u
2,u

SI(ū, v̄, ū, v̄) = ∂2,u
1,u

SI(ū, v̄, ū, v̄) = −I0

∂1,v
2,v
SI(ū, v̄, ū, v̄) = ∂2,v

1,v
SI(ū, v̄, ū, v̄) = −I0

∂1,u
1,v
SI(ū, v̄, ū, v̄) = ∂1,u

2,v
SI(ū, v̄, ū, v̄) = ∂2,u

1,v
SI(ū, v̄, ū, v̄) = ∂2,u

2,v
SI(ū, v̄, ū, v̄) = 0

I0 = − µ

4|p̄|2
√

VI(p̄)
, η1 =

√
VI(p̄)

(
1

|p̄|
− κ1

)
, η2 =

√
VI(p̄)

(
1

|p̄|
− κ2

)
.

Let us then return to Eqs. (3.10), and define

(3.12) D0 = D(u0,x0,v0,y0)Φ(q̄, q̄), D1 = D(u1,x1,v1,y1)Φ(q̄, q̄),

respectively the Jacobian matrices of Φ with respect to the first and second quadruplet, com-
puted in (q̄, q̄). We will prove that D1 is nonsingular, confirming that F̃ : (u0, x0, v0, y0) 7→
(u1, x1, v1, y1) is well defined locally around q̄, and therefore obtaining an explicit formula for
its Jacobian matrix, given by

(3.13) DF̃ (q̄) = − (D1)
−1 D0.

By the choice of the parameterisation Γ, one has that all the above matrices are block diagonal,
and by direct computation, one finds

(3.14) det(D1) = VI (Γ(ū, v̄)) ∂1,u
2,u

SI(ū, v̄, ū, v̄)∂1,v
2,v
SI(ū, v̄, ū, v̄) = VI (Γ(ū, v̄)) I2

0 ̸= 0.
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One can then proceed and compute
(3.15)

DF̃ (q̄) =

(
Cu 0
0 Cv

)

Cu =


−

∂2
u0
SI(ū, v̄, ū, v̄)

∂u0u1SI(ū, v̄, ū, v̄)
−

√
VI (Γ(ū, v̄))

∂u0u1SI(ū, v̄, ū, v̄)

−
∂2
u0
SI(ū, v̄, ū, v̄)∂

2
u1
SI(ū, v̄, ū, v̄)

∂u0u1SI(ū, v̄, ū, v̄)
√
VI (Γ(ū, v̄))

+
∂u0u1SI(ū, v̄, ū, v̄)√

VI (Γ(ū, v̄))
−

∂2
u1
SI(ū, v̄, ū, v̄)

∂u0u1SI(ū, v̄, ū, v̄)



Cv =


−

∂2
v0
SI(ū, v̄, ū, v̄)

∂v0v1SI(ū, v̄, ū, v̄)
−
√

VI (Γ(ū, v̄))

∂v0v1SI(ū, v̄, ū, v̄)

−
∂2
v0
SI(ū, v̄, ū, v̄)∂

2
v1
SI(ū, v̄, ū, v̄)

∂v0v1SI(ū, v̄, ū, v̄)
√
VI (Γ(ū, v̄))

+
∂v0v1SI(ū, v̄, ū, v̄)√

VI (Γ(ū, v̄))
−

∂2
v1
SI(ū, v̄, ū, v̄)

∂v0v1SI(ū, v̄, ū, v̄)

 .

It is possible to check that, as expected while dealing with area-preserving discrete maps,
det(Cu) = det (Cv) = 1, and the characteristic polynomial associated to DF̃ (q̄) can be factorised
as p(λ) = pu(λ)pv(λ), where pu\v(λ) = λ2 − tr(Cu\v) + 1. The matrix DF̃ (q̄) admits then two
pairs of eigenvalues (λu, λ

−1
u ), (λv, λ

−1
v ) corresponding respectively to variations of (u0, x0) from

(ū, 0) and (v0, y0) from (v̄, 0). Such eigenvalues could be either real or complex, depending on
the sign of the discriminants

(3.16) ∆u = tr(Cu)
2 − 4, ∆v = tr(Cv)

2 − 4 :

taking into account Eqs. (3.11), one finds

(3.17)

∆u =
4η1(2I0 + η1)

I2
0

=
4

I2
0

√
VI(p̄)

(
1

|p̄|
− κ1

)[√
VI(p̄)

(
1

|p̄|
− κ1

)
− µ

2|p̄|2
√

VI(p̄)

]
,

∆v =
4

I2
0

√
VI(p̄)

(
1

|p̄|
− κ2

)[√
VI(p̄)

(
1

|p̄|
− κ2

)
− µ

2|p̄|2
√
VI(p̄)

]
.

The linear stability of (ū, 0, v̄, 0) (and, as a consequence, of the homothetic trajectory) then
depends both on the geometric properties of S in p̄, in terms of principal curvatures, and on
the physical parameters involved in the problem, namely, the inner energy H and the mass
parameter µ. In particular, it holds that:

• whenever ∆u > 0,∆v > 0, every eigenvalue is real, and the homothetic is a saddle in
every direction;

• if ∆u ·∆v < 0, then we have a saddle-centre configuration;
• if ∆u < 0 and ∆v < 0, then we can conclude that the homothetic trajectory is a centre,

thus linearly stable.
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Remark 3.6. Let us notice that, if ∆u = 0 or ∆v = 0, we are in a degenerate case, where
we can not deduce the linear stability of our equilibrium trajectory. This is for example what
happens when κi = |p̄|−1 for either i = 1 or i = 2: geometrically, in this case the normal section
of S in p̄ either in the direction of Γu(ū, v̄) or in the direction of Γv(ū, v̄) is locally a circle of
radius |p̄|.
If in particular S is a sphere of radius R, it results that in every point κ1 = κ2 = 1/R: in
this case, every radial direction corresponds to a degenerate homothetic fixed point for the first
return map, forming a two-dimensional invariant subspace of the four-dimensional phase space.

The previous conclusions prove Theorem 1.2, in the reflective case, which is the first funda-
mental result of this paper.

3.2. Stability of the homothetics in the refractive case. In the refractive case we use
the same procedure described in Section 3.1, with two main differences: the first is that,
here, we have to take into account composite concatenations of outer and inner arcs, then the
dimensionality of the problem increases. Secondly, we will have to consider refraction Snell’s
law, whose variational characterization in terms of generating functions is given in Eq. (3.8).
Let us recall the first return map G associated to the refractive billiard (see again Figure
6): given (p0, w0) as the initial conditions of an outward-pointing harmonic arc, it returns
(p1, w1) final conditions obtained after a concatenation outer-inner arc, including refractions,
passing through the point p̃ ∈ S. As in the reflective case, whenever p0, p̃, p1 ∈ V , we can
describe the local dynamics by means of a set of four one-dimensional coordinates, describing
points on S and related velocities. In particular, let us consider (u0, v0), (ũ, ṽ), (u1, v1) ∈ U and
(x0, y0), (x1, y1) ∈ R2 such that

(3.18)
p0 = Γ(u0, v0), p̃ = Γ(ũ, ṽ), p1 = Γ(u1, v1),

xi = ⟨ wi

|wi|
,Γu(ui, vi)⟩, yi = ⟨ wi

|wi|
,Γv(ui, vi)⟩, i = 0, 1.

By virtue of Eqs. (3.6) and (3.8), whenever such coordinates represent a concatenation of
refracted arcs, they have to satisfy the relations

(3.19)

∂1,uSE(u0, v0, ũ, ṽ) +
√
VE(Γ(u0, v0))x0 = 0

∂2,uSE(u0, v0, ũ, ṽ) + ∂1,uSI(ũ, ṽ, u1, v1) = 0

∂2,uSI(ũ, ṽ, u1, v1)−
√
VE(Γ(u1, v1))x1 = 0

∂1,vSE(u0, v0, ũ, ṽ) +
√
VE(Γ(u0, v0))y0 = 0

∂2,vSE(u0, v0, ũ, ṽ) + ∂1,vSI(ũ, ṽ, u1, v1) = 0

∂2,vSI(ũ, ṽ, u1, v1)−
√
VE(Γ(u1, v1))y1 = 0,

where the third and last equations are a direct consequences of Eq. (2.4). Eqs. (3.19) define
implicitly the refractive first return map in the new coordinates, and can be summarized in the
form Ψ(u0, x0, v0, y0, ũ, ṽ, u1, x1, v1, y1) = 0, where the components of Ψ are the l.h.s. of (3.19).
The homothetic equilibrium solution in the refractive case corresponds to the coordinates u0 =
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ũ = u1 = ū, v0 = ṽ = v1 = v̄, x0 = x1 = y0 = y1 = 0: again, we will use the implicit function
theorem to compute the Jacobian matrix of the first return map

(3.20) G̃ : (u0, x0, v0, y0) 7→ (u1, x1, v1, y1)

in the fixed point q̄ = (ū, 0, v̄, 0). Since derivatives of the components of Φ are involved, we have
to use again the second derivatives of the generating functions SE\I computed in the homothetic
trajectories: while the ones of SI have been already given in Lemma 3.5, those of SE are listed
below.

Lemma 3.7. The second derivatives of SE in the homothetic point (ū, v̄, ū, v̄) are given by

(3.21)

∂2
1,uSE(ū, v̄, ū, v̄) = ∂2

2,uSE(ū, v̄, ū, v̄) = E0 + ϵ1

∂2
1,vSE(ū, v̄, ū, v̄) = ∂2

2,vSE(ū, v̄, ū, v̄) = E0 + ϵ2

∂1,u
2,u

SE(ū, v̄, ū, v̄) = ∂2,u
1,u

SE(ū, v̄, ū, v̄) = −E0

∂1,v
2,v
SE(ū, v̄, ū, v̄) = ∂2,v

1,v
SE(ū, v̄, ū, v̄) = −E0

∂1,u
1,v
SE(ū, v̄, ū, v̄) = ∂1,v

1,u
SE(ū, v̄, ū, v̄) = ∂1,u

2,v
SE(ū, v̄, ū, v̄) = ∂2,v

1,u
SE(ū, v̄, ū, v̄)

= ∂1,v
2,u

SE(ū, v̄, ū, v̄) = ∂2,u
1,v
SE(ū, v̄, ū, v̄) = ∂2,u

2,v
SE(ū, v̄, ū, v̄)

= ∂2,v
2,u

SE(ū, v̄, ū, v̄) = 0,

where

(3.22) E0 =
E

2|p̄|
√
VE(p̄)

, ϵ1 =
√

VE(p̄)

(
κ1 −

1

|p̄|

)
, ϵ2 =

√
VE(p̄)

(
κ2 −

1

|p̄|

)
.

The proof of the above result is analogous to the one already presented in [15], and is resumed
in Appendix A.
As in the reflective case, we will start by computing

(3.23) A0 = D(u0,x0,v0,y0)Ψ(q̄, ū, v̄, q̄), A1 = D(ũ,ṽ,u1,x1,v1,y1)Ψ(q̄, ū, v̄, q̄) :

if det(A1) ̸= 0, then, locally around the homothetic point, the function

(3.24) G̃1 : (u0, x0, v0, y0) 7→ (ũ, ṽ, u1, x1, v1, y1),

whose last four component represent precisely the first return map G̃ as in Eq. (3.20), is well
defined.
Again, by direct computations and using Eqs. (3.19), (3.22), (3.11), one finds

(3.25) det(A1) =
(
I0E0

√
VE(ū, v̄)

)2
̸= 0
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and, as a consequence,

(3.26)

DG̃(q̄) =

(
Bu 0
0 Bv

)
, Bu =

(
b11 b12
b21 b22

)
b11 =

ϵ1(ϵ1 + η1 + I0) + E0(2ϵ1 + η1 + I0)

E0I0

b12 =
√

VE(Γ(ū, v̄))
E0 + ϵ1 + I0 + η1

E0I0

b21 =
2E0ϵ1(I0 + η1) + ϵ21(I0 + η1) + E0η1(2I0 + η1) + ϵ1η1(2I0 + η1)

E0I0

√
VE(Γ(ū, v̄))

b22 =
E0(I0 + η1) + ϵ1(I0 + η1) + η1(2I0 + η1)

E0I0

.

and analogous relations for Bv, replacing ϵ1, η1 with ϵ2, η2. Again, it is easy to prove that
det(DG̃(q̄)) = det(Bu) = det(Bv) = 1, and that its four eigenvalues are coupled into two pairs
(λu, λ

−1
u ), (λv, λ

−1
v ), which are either real or conjugate complex depending on the sign of

(3.27)
∆′

u = tr(Bu)
2 − 4 =

(ϵ1 + η1)

E2
0I2

0

(2E0 + ϵ1 + η1) (2I0 + ϵ1 + η1) (2E0 + ϵ1 + 2I0 + η1)

∆′
v = tr(Bv)

2 − 4 =
(ϵ2 + η2)

E2
0I2

0

(2E0 + ϵ2 + η2) (2I0 + ϵ2 + η2) (2E0 + ϵ2 + 2I0 + η2)

.

According to the same rules already described in Section 3.1, the signs of ∆′
u and ∆′

v determine
if the homothetic point q̄, in the four-dimensional first return map for the refractive dynamics,
is of centre-centre, saddle-centre or saddle-saddle type,. Substituting I0, E0, ϵ1\2, η1\2 with their
formulas in terms of principal curvatures and physical parameters, given in Eqs. (3.11) and
(3.22), one finds Theorem 1.2, in the refractive case.
A comparison between the result obtained in the present paper and the one contained in [15,
Theorem 1.1] shows that here we obtain the same result where we consider variations parallel
to the principal directions of S in p̄.

4. Chaotic behaviour

The main scope of Section 3 was the analysis of the first return map, in both reflective and
refractive models, locally around a particular class of equilibrium trajectories defined by central
configurations. In the present section, central configurations will be the key ingredient to prove
a more global property on the dynamics, related to the presence of chaotic behaviour, at least
for a subset of initial conditions. More precisely, we will link the geometric properties of the
domain D to the presence of topological chaos for large inner energies. As already described in
Section 1, the proving scheme is based on finding a conjugation between the first return map,
expressed in a suitable set of variables, and the Bernoulli shift of two symbols, constructing
trajectories which are the composition of arcs that shadow either homothetic segments or a
juxtaposition of them. What we will obtain is a symbolic dynamics, where billiard trajectories
of the two models can be encoded by sequences of symbols (see [19]).
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4.1. Chaoticity of the reflective Kepler billiard. Let us start by providing the proof of
Theorem 1.3 in the case of reflection billiards, and then suppose that the domain D admits two
non antipodal and non degenerate central configurations, called p̄1 and p̄2. As in the previous
sections, let us construct two local charts around p̄1, p̄2, given by Γ(i) : Ui → S, Ui ⊂ R2 open,
i = 1, 2, with the properties described by Remark 3.3, where we will denote with κ

(i)
1 , κ

(i)
2 the

principal curvatures of S in p̄i.
Given ε > 0, let us define the squares

(4.1) R(i)
ε

.
=
[
ū(i) − ε, ū(i) + ε

]
×
[
v̄(i) − ε, v̄(i) + ε

]
, i = 1, 2,

and the corresponding compact images on S given by V (i)
ε

.
= Γ(i)

(
R(i)

ε

)
. By Theorem A.7,

if ε is sufficiently small and we fix H sufficiently large, for every p0, p1 ∈ ∪2
i=1V

(i)
ε we have a

unique inner arc zI(·; p0, p1), not homotopic to p0p1 in span(0, p0, p1), connecting them; in the
following, we will always assume H > H, such threshold being defined in Theorem A.7.
As a consequence, in the above setting, we can ensure the good definition and regularity of the
inner generating function

(4.2) SI :

(
2⋃

i=1

R(i)
ε

)2

→ R.

Definition 4.1. Given a bi-infinite sequence of points p = (pk)k∈Z, pk ∈ ∪2
i=1V

(i)
ε , let us call

z̃(·; p) : R → D the unique concatenation of inner arcs connecting pk to pk+1, k ∈ Z.
Equivalently, given the sequence ξ̄ = (uk, vk)k∈Z such that (uk, vk) ∈ ∪2

i=1R
(i)
ε , pk = Γ(1\2)(uk, vk),

the same concatenation can be denoted by z̃(·; ξ).
Possibly translating the time, we will always suppose that z̃(0; p) = p0.

We notice that, whenever p is a n-periodic sequence with periodicity modulus [p] = (p1, . . . , pn),
the concatenation z̃(·; p) is itself a periodic trajectory composed by n Keplerian arcs.

Definition 4.2. Given p periodic with [p] = (p1, . . . , pn), and ξ̄ the corresponding sequence
of parameters, [ξ] = (u1, v1, . . . , un, vn), the total Jacobi length of the concatenation z̃(·; p) is
given by

(4.3) W (p) =
n∑

i=1

LI(zI(·; pi, pi+1)) =
n∑

i=1

SI(ui, vi, ui+1, vi+1),

with the convention that pn+1 = p1. Again, with an abuse of notation we will denote the above
quantity as well with W (ξ).

Let us now start with the construction of our symbolic dynamics, finding a way to describe
the concatenations z̃ through bi-infinite sequences of two symbols, each of them corresponding
to the neighbourhood of one of the two central configurations. To this aim, let us define
L .
= {1, 2}Z, endowed with the distance (see [24])

(4.4) ∀s = (sk)k∈Z, s′ = (s′k)k∈Z ∈ L d(s, s′)
.
=
∑
k∈Z

δ(sk, s
′
k)

4|k|
, δ(i, j) =

{
1 if i ̸= j

0 if i = j
.
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V (1)
ε

w0

p̄2

p2
p̄1p1

p3
V (2)
ε

Figure 7. Illustration of a periodic trajectory realising the sequence s ∈ L with
periodicity modulus [s] = (1, 1, 2). It is composed by three Keplerian arcs, hitting
the boundary respectively in V (1)

ε V (1)
ε and V (2)

ε .

Definition 4.3. Given p as in Definition 4.1 and the corresponding concatenation z̃(·; p), we
say that it realises a sequence s ∈ L if and only if ∀k ∈ Z pk ∈ V (sk)

ε , namely, in terms of
parameters ξ, it holds (uk, vk) ∈ R(sk)

ε .

The correspondence between trajectories and bi-infinite sequences in L is illustrated in Figure
7. Although for any p ∈ ⊗Z

(
∪2

i=1V
(i)
ε

)
there exists a unique concatenation connecting them,

it is clear that a priori nothing ensures that such concatenation satisfies the reflection law at
every bouncing point: the next proposition guarantees that, at least in the periodic case, there
is a one-to-tone correspondence between sequences in L and billiard trajectories realising them.

Proposition 4.4. Possibly restricting ε, there exists H1 such that, for every H > H1 and s ∈ L
periodic, exists a unique billiard trajectory that realises s.

Proof. Let us fix s ∈ L periodic, with [s] = (s1, . . . , sn) and let us define the set

(4.5) Us
.
= ⊗n

k=1R
(sk)
ε ;

identifying every ξ with its periodic extension, we already know that, for every ξ ∈ Us, there
exists a unique periodic concatenation z̃(·; ξ) which connects

(
Γ(sk)(uk, vk)

)
k∈Z, whose length

is given by (4.3). Moreover, by the variational characterization of reflected arcs depicted in
(3.7), we can notice that, given ξ̂ ∈ Us, the corresponding z̃(·; ξ̂) satisfies the reflection law in
every bouncing point if and only if ∇W (ξ̂) = 0. In practice, the problem of finding a billiard
trajectory realising s is translated into searching for a critical point of the length functional
W (ξ) in the set Ůs.
To find such critical point, we shall make use of the Poincaré-Miranda Theorem (see [34] and
[6, Theorem 2.12]). In particular, if we are able to prove that, for every k = 1, . . . , n,

(4.6)

{
∂uk

W (ξ)|uk=ū(sk)−ε · ∂uk
W (ξ)|uk=ū(sk)+ε < 0

∂vkW (ξ)|vk=v̄(sk)−ε · ∂vkW (ξ)|vk=v̄(sk)+ε < 0,

then there is a critical point of Ws in Ůs. To prove (4.6), let us introduce an asymptotic relation
holding for fixed-ends Keplerian arcs when H → ∞ (see [13] and [6, Appendix B]): for every
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p0, p1 ∈ R3 \ {0} not antipodal and every H > 0

(4.7) dI(p0, p1) =
√
H (|p0|+ |p1|) +

µ√
H

(
g(p0, p1;H)− log

( µ

2H

))
,

where g(p0, p1;H) is C2−bounded when H → ∞ uniformly in p0, p1.
As a consequence, for every k = 1, . . . , n we have

(4.8)
S(uk, vk, uk+1, vk+1) =

√
H(|Γ(sk)(uk, vk)|+ |Γ(sk+1)(uk+1, vk+1)|)

+
µ√
H

(
g
(
Γ(sk)(uk, vk),Γ

(sk+1)(uk+1, vk+1);H
)
− log

( µ

2H

))
,

(4.9)

∂uk
W (ξ) =2

√
H∂uk

|Γ(sk)(uk, vk)|+
µ√
H

(
∂2,ug

(
Γ(sk−1)(uk−1, vk−1),Γ

(sk)(uk, vk);H
)

+ ∂1,ug
(
Γ(sk)(uk, vk),Γ

(sk+1)(uk+1, vk+1);H
) )

∂vkW (ξ) =2
√
H∂vk |Γ(sk)(uk, vk)|+

µ√
H

(
∂2,vg

(
Γ(sk−1)(uk−1, vk−1),Γ

(sk)(uk, vk);H
)

+ ∂1,vg
(
Γ(sk)(uk, vk),Γ

(sk+1)(uk+1, vk+1);H
) )

.

By the boundedness of g, if H is sufficiently large, the sign of the above quantities is completely
determined by the partial derivatives of |Γ(sk)(uk, vk)|. Recalling that all the pairs (uk, vk) are
close to the ones defining central configurations (ū(i), v̄(i)), the following Lemma, which will be
proved rigorously afterwards, holds.

Lemma 4.5. If p̄ ∈ S is a non degenerate central configuration and the local chart around p̄

is parameterised as in Remark 3.3, then there exists ε̄ > 0 such that, for every 0 < ε < ε̄, ∃
C(ε) > 0 such that Rε

.
= [ū− ε, ū+ ε]× [v̄ − ε, v̄ + ε] ⊂ U and for every (u0, v0) ∈ Rε

(4.10) ∂u|Γ(ū−ε, v0)| ·∂u|Γu(ū+ε, v0)| < −C(ε), ∂v|Γv(u0, v̄−ε)| ·∂v|Γv(u0, v̄+ε)| < −C(ε).

Let us then take ε, C such that the above Lemma holds for both p̄1 and p̄2: taking H
sufficiently large, Eqs. (4.6) are true for every k = 1, . . . , n, and then, by Poincaré-Miranda
theorem, there exists ξ̂ ∈ Ůs such that ∇W (ξ̂) = 0. As a consequence, z̃(·; ξ̂) is a periodic
billiard trajectory which realises s.
As for the uniqueness of the critical point ξ̂ (and, as a consequence, of the corresponding
periodic billiard trajectory), let us notice that, since p̄1 and p̄2 are non degenerate, by Eqs.
(3.3), ∂2

u\v|Γ(i)(ū(i), v̄(i))| are different from 0. As a consequence, taking a sufficiently small
ε and H sufficiently large, one has that for every k = 1, . . . , n the quantities ∂2

uk
W (ξ) and

∂2
vk
W (ξ) are bounded from zero: this implies the strict monotonicity of ∂uk

W , ∂vkW for every
k = 1, . . . , n, and therefore the uniqueness of ξ̂.
Let us conclude by noticing that, for every s ∈ L periodic, the partial derivatives of W (ξ) :

Us → R always have the same form, involving only three consecutive pairs (u, v) of ξ: this
means that the estimates used above are independent on s, and that the thresholds found for
ε and H are uniform in the periodic words of L. □
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Proof of Lemma 4.5. To fix the ideas, let us suppose that (ū, v̄) is a saddle point for |Γ(u, v)|:
recalling Eqs. (3.3),

(4.11) A1
.
=

(
1

|p̄|
− κ1

)
= ∂2

u|Γ(ū, v̄)| < 0, A2
.
=

(
1

|p̄|
− κ2

)
∂2
v |Γ(ū, v̄)| > 0.

By the regularity of S, for every (u0, v0) ∈ U there are (u′, v′), (u′′, v′′) in the segment between
(ū, v̄) and (u0, v0) such that

(4.12)

∂u|Γ(u0, v0)| =∂u|Γ(ū, v̄)|+ ∂2
u|Γ(ū, v̄)|(u0 − ū) + ∂uv|Γ(ū, v̄)|(v0 − v̄)

+
∂3
u|Γ(u′, v′)|

2
(u0 − ū)2 + ∂uuv|Γ(u′, v′)|(u0 − ū)(v0 − v̄)

+
∂uvv|Γ(u′, v′)|

2
(v0 − v̄)2

∂v|Γ(u0, v0)| =∂v|Γ(ū, v̄)|+ ∂2
v |Γ(ū, v̄)|(v0 − v̄) + ∂uv|Γ(ū, v̄)|(u0 − ū)

+
∂3
v |Γ(u′′, v′′)|

2
(v0 − v̄)2 + ∂vvu|Γ(u′′, v′′)|(u0 − ū)(v0 − v̄)

+
∂vuu|Γ(u′′, v′′)|

2
(u0 − ū)2.

Since Γ is at least C3, the third derivatives of |Γ(u, v)| are uniformly bounded in (u, v): let us
call C1 > 0 the constant bounding their moduli.
For every ε > 0 such that Rε

.
= [ū− ε, ū+ ε]× [v̄ − ε, v̄ + ε] ⊂ U and every (u0, v0) ∈ Rε, one

has

(4.13)

∂u|Γ(ū− ε, v0)| = −A1ε+
∂3
u|Γ(u′, v′)|

2
ε2 − ∂uuv|Γ(u′, v′)|ε(v0 − v̄)

+
∂uvv|Γ(u′, v′)|

2
(v0 − v̄)2

≥ −A1ε− 2C1ε
2

∂u|Γ(ū− ε, v0)| ≤ A1ε+ 2C1ε
2, ∂v|Γ(u0, v̄ − ε)| ≤ −A2ε+ 2C1ε

2,

∂v|Γ(u0, v̄ + ε)| ≥ A1ε− 2C1ε
2,

and then, taking ε sufficiently small, one can find Eqs. (4.10). □

Starting from the one-to one correspondence between sequences in L and periodic billiard
trajectories realizing them, it is possible to construct a symbolic dynamics in the case of reflec-
tive three dimensional billiards. From this moment on, we will always assume that ε and H
satisfy the hypotheses of Proposition 4.4.
Following what already described in Section 1, let us start by defining the projection map P .

Definition 4.6. Let s ∈ L, and suppose that there exists z̃(·, p) that satisfies s, according to
Definition 4.3. Setting (p0, w0)

.
=
(
z̃(0; p), z̃′(0; p)

)
, we say that P (p0, w0) = s.

In practice, the projection map links initial conditions of billiard trajectories to sequences in
s realised by them. Let us observe that, whenever z̃ is a billiard trajectory and not a simple
concatenation of arcs, it is completely determined by the initial conditions.
From Proposition 4.4, we already know that if s is periodic there is a unique pair of initial
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conditions (p0, w0) ∈ V (s0)
ε × R3 which is projected onto s, then P is well defined in this

case. We will now construct a subset X of the initial conditions for the first return map
F : (p0, w0) 7→ (p1, w1) as defined in Section 1, such that:

• F is infinitely-many times forward and backward well defined on X, and F (X) = X;
• the projection P is well defined on X, that is, all orbits with initial conditions in S

intersect S only in ∪2
i=1V

(i)
ε ;

• recalling the definition of Bernoulli shift given in (1.6), it holds σ ◦ P = P ◦ F .

If the above conditions are satisfied, it is possible to construct the commutative diagram

(4.14)
X X

L L

F

P P

σ

From [19], if P is bijective and continuous, then F is topologically chaotic on X, and then
Theorem 1.3 holds in the reflective case.
Let us start with the construction of X, and consider the set of initial conditions

(4.15) Ψ =

{
(p0, w0) ∈ S × R3 | p0 ∈

2⋃
i=1

V (i)
ε , |w0| =

√
2VI(p0), w0 points inside D

}
.

Any initial condition in Ψ leads to a Keplerian inner arc which intersects again S. Let us restrict
Ψ so that the corresponding arcs encounter only V (i)

ε , for some i = 1, 2, and with velocities
transversal to S: let us call this set A ⊂ Ψ. We can ensure that F : (p0, w0) 7→ (p1, w1) (see also
Figure 4) is well defined in A; for the reversibility of the flow associated to the inner problem,
we can also observe that the inverse mapping F−1 is well defined on F (A). Let us now consider
the set

(4.16) X
.
=
⋂
k∈Z

F k(A),

that is, the set of initial conditions for which all the backward and forward iterates of F are
well defined and the corresponding billiards trajectories intersect S in ∪2

i=1V
(i)
ε .

By virtue of Proposition 4.4 X is not empty, and it is invariant under F : with an abuse of
notation, we will still denote with F the restriction of the first return map to X.
Let us now observe that the projection map P is surely well defined on X: given (p0, w0) ∈ X,
let us call p = (pk)k∈Z the sequence of all the bouncing points of the corresponding billiard
trajectory; we can then say that

(4.17) P (p0, v0) = s ∈ L ⇐⇒ ∀k ∈ Z pk ∈ V (sk)
ε .

Proposition 4.7. Given P : X → L defined as in (4.17), it holds that

(1) the diagram in (4.14) commutes;
(2) P is bijective;
(3) P is continuous.
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Proof. Property (1) is straightforward by construction: if we consider (p0, w0), (p1, w1) ∈ X

such that (p1, w1) = F (p0, w0), it is clear that the sequences of bouncing points starting from
p0 and p1 are one the shift of the other.
As for the second point, from Proposition 4.4 we can say that whenever s is periodic there exists
a unique (p0, w0) ∈ X which projects into s. Let us then take s ∈ L a non periodic sequence,
and consider, for every n ≥ 0, s(n) periodic with [s(n)] = (s−n, . . . , s0, . . . , sn); considering the
distance defined in (4.4), one has s(n) → s as n → ∞. Again by proposition 4.4 for every
n ≥ 0 there exists a unique ξ(n) ∈ Us(n) such that the corresponding concatenation z̃(·; ξ(n))
realises s(n). With an abuse of notation, let us extend ξ(n) by periodicity, and denote [ξ(n)] =

(u
(n)
−n, v

(n)
−n, . . . , u

(n)
0 , v

(n)
0 , . . . , u(n)

n , v(n)n ). For every fixed k ∈ Z, it results that (u
(n)
k , v

(n)
k ) ∈ R(sk)

ε

for n sufficiently large: by compactness, (u(n)
k , v

(n)
k ) → (ũk, ṽk) for some (ũk, ṽk) ∈ R(sk)

ε up to a
subsequence.
With a diagonalization procedure, we can state the existence of a subsequence (an)n∈N ⊂ N
and a sequence ξ̃ ∈ ⊗k∈ZR

(sk)
ε such that

(4.18) ∀k ∈ Z
(
u
(an)
k , v

(an)
k

)
→ (ũk, ṽk).

Let us then consider z(·; ξ̃) the concatenation of inner arcs which connects the points p̃k =

Γ(sk)(ũk, ṽk): by convergence and the C1 dependence of both Cauchy problems and the reflection
law from initial conditions, z(·; ξ̃) is a billiard trajectory that realises s. The uniqueness of z(·; ξ̃),
and, as a consequence, of the corresponding initial conditions, follows from the uniqueness of
the sequences ξ(n) in Us(n) .
Let us now pass to the continuity of P , and start with a preliminary observation. Taking any
two points p0, p1 ∈ ∪2

i=1V
(i)
ε , it holds that the time that zI(·; p0, p1) takes to go from p0 to p1 is

bounded uniformly in the endpoints.
Let us now fix (p0, w0) ∈ X, and call s the sequence in L such that P (p0, w0) = s. By the
convergence of d(·, ·) in L, for every ϵ > 0 there exists k0 ∈ N such that, for every s′ ∈ L,

(4.19)
∑
|k|>k0

δ(sk, s
′k)

4|k|
< ϵ;

if we will prove that there exists δ > 0 such that, if |(p0, w0)− (p1, w1)| < δ, then

(4.20)
∑
|k|≤k0

δ(sk, s
′
k)

4|k|
= 0,

then the continuity of P over X follows immediately. Eq. (4.20) corresponds to ask that, called
s′ = P (p1, v1), for every k = −k0, . . . , 0, . . . , k0, we have the equality sk = s′k, namely, the
billiard trajectories with initial conditions (p0, w0) and (p1, w1) bounce in the same compact
sets of S for 2k0 + 1 times. By the boundedness of the times to go from two points with an
inner arc, we can find a time interval [−a, a] such that every billiard trajectory with initial
conditions in X encounters the boundary S at leats 2k0 + 1 times, and then the thesis follows
from continuity of Cauchy problems with respect to initial conditions. □
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Proposition 4.7 completes the proof of Theorem 1.3 in the reflective case, defining a conju-
gation between the Bernoulli shift and the first return map F restricted to the subset of initial
conditions X.
Let us conclude this section by highlighting a geometrical property of the billiard trajectories
starting with initial conditions in X: not only they cross S close to the homothetic trajecto-
ries defined by p̄1, p̄2; by continuity, they remain close to them for all forward and backward
times. For this reason, one can refer to this type of construction as a shadowing procedure,
since defining P one ends up in building trajectories close to juxtaposition of homothetic arcs
(see Figure 7). As we will see in the next section, an analogous scheme will be applied in the
refractive case.

4.2. Chaoticity of the three dimensional refractive galactic billiard. The aim of this
section is to apply the reasoning already illustrated in Section 4.1 to the refractive model:
although in principle the procedure followed is the same as in the reflective case, the presence
of the outer dynamics, and the fact that the first return map follows a concatenation of two arcs
instead of one at a time, doubles the dimensionality of the problem. Also in this case, we will
conjugate the Bernoulli shift of two symbols with the refractive first return map G as defined
in Section 1 and Figure 6, restricting it to a suitable subset of initial condition of trajectories
which shadow either homothetic trajectories or juxtapositions of them; for the sake of brevity,
we will not re-write the proofs which are analogous of the ones in Section 4.1, limiting ourselves
in highlighting the differences between the two models.
Let us then consider p̄1 and p̄2 as in Section 4.1, and suppose again that the local charts around
them have the properties listed in Remark 3.3. Defining the squares R(i)

ε as in (4.1), and the
corresponding images on S, denoted by V (i)

ε , Theorems A.7 and A.1 ensure that, whenever ε is
sufficiently small and H large enough,

(4.21)

∀p0, p1 ∈ V (i)
ε , i = 1, 2, ∃|zE(·; p0, p1) outer arc connecting p0 to p1;

∀p0, p1 ∈
2⋃

i=1

V (i)
ε ,∃|zI(·; p0, p1) inner arc as in Theorem A.7 connecting p0 to p1.

In terms of local coordinates, this translates into the good definition of the outer and inner
generating functions (see Eq. (3.5))

(4.22) SE :
2⋃

i=1

(
R(i)

ε

)2 → R, SI :

(
2⋃

i=1

R(i)
ε

)2

→ R.

As in the reflective case, we will now define a infinite concatenation of outer and inner arcs
crossing the surface S in V (i)

ε , and, in the case of periodic trajectories, the relative Jacobi length.
In this case, we will always suppose that the outer arcs connect points close to each others,
while inner ones act as transfer trajectories, possibly moving the particle between different
regions of S. To fix the notation, let us give the following definition.
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Definition 4.8. Let us consider a sequence of points p =
(
p
(E)
k , p

(I)
k

)
k∈Z

⊂
(
V (i)
ε × V (i)

ε

)Z
, and

consider the unique concatenation z̃(·; p) : R → R3 composed, for every k ∈ Z, by the outer arc
connecting p

(E)
k to p

(I)
k and the inner arc connecting p

(I)
k to p

(E)
k+1. As in Definition 4.1, we will

always suppose that z̃(0; p) = p
(E)
0 .

In terms of local parameterisation, let us set ξ = (u
(E)
k , v

(E)
k , u

(I)
k , v

(I)
k )k∈Z the sequence of pa-

rameters corresponding to p; identifying z̃(·; ξ) .
= z̃(·; p). Whenever ξ (and hence p) is periodic

with periodicity modulus

(4.23) [ξ] =
(
u
(E)
1 , v

(E)
1 , u

(I)
1 , v

(I)
1 . . . , u(E)

n , v(E)
n , u(I)

n , v(I)n

)
,

the corresponding concatenation is composed by 2n arcs and its Jacobi length is given by

(4.24) W (ξ) =
n∑

k=1

SE(u
(E)
k , v

(E)
k , u

(I)
k , v

(I)
k ) + SI(u

(I)
k , v

(I)
k , u

(E)
k+1, v

(E)
k+1),

where again n + 1 = 1. By virtue of Eq.(3.8), the concatenation z̃(·; ξ̂) is a billiard trajectory
(i.e. satisfies Snell’s law at every transition point) if and only if ∇W (ξ̂) = 0.

To construct a symbolic dynamics, let us take again the set of bi-infinite sequences L = {1, 2}Z

endowed with the distance (4.4): given a concatenation of arcs z̃(·; p), we will say that z̃ realises
a sequence s ∈ L if and only if for every k ∈ Z it holds p

(E\I)
k ∈ V (sk)

ε .
We are now ready to state the one-to-one relation between billiard trajectories and periodic
sequences of L in the refractive case as well.

Proposition 4.9. Possibly restricting ε, there exists H2 > 0 such that, for every H > H2

and every s ∈ L periodic, there exists a unique billiard trajectory for the refractive case which
realises s.

Proof. The proof is analogous to the one of Proposition 4.4, although the presence of an outer
dynamics makes the estimates on W more delicate. Again, the idea is to find a unique critical
point for W (ξ) inside a suitable set of parameters, provided ε is sufficiently small and H
sufficiently large. For the sake of brevity, with an abuse of notation we will use the same
symbols as in the previous section.
First of all, let us notice that, by the regularity of VE and the compactness of V (i)

ε , i = 1, 2,
once the outer energy E is fixed, one has that SE, along with all its derivatives, is bounded by
a constant C uniformly in the endpoints.
Let us then fix s ∈ L a periodic sequence, [s] = (s1, . . . , sn), and consider

(4.25) Us
.
= ⊗n

k=1

(
R(sk)

ε

)2
:
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given now W : Us → R, by Miranda theorem we can ensure the existence of a critical point for
the length function if we prove

(4.26)


∂
u
(E)
k

W (ξ)|uk=ū(sk)+ε · ∂u(E)
k

W (ξ)|uk=ū(sk)+ε < 0

∂
v
(E)
k

W (ξ)|vk=v̄(sk)+ε · ∂v(E)
k

W (ξ)|vk=v̄(sk)+ε < 0

∂
u
(I)
k
W (ξ)|uk=ū(sk)+ε · ∂u(I)

k
W (ξ)|uk=ū(sk)+ε < 0

∂
v
(I)
k
W (ξ)|vk=v̄(sk)+ε · ∂v(I)k

W (ξ)|vk=v̄(sk)+ε < 0.

By direct computations and taking into account Eq. (4.8), one has

(4.27)

∂
u
(E)
k

W (ξ) = ∂2,uSI(u
(I)
k−1, v

(I)
k−1, u

(E)
k , v

(E)
k ) + ∂1,uSE(u

(E)
k , v

(E)
k , u

(I)
k , v

(I)
k )

= 2
√
H∂uk

|Γ(sk)(u
(E)
k , v

(E)
k )|

+
µ√
H

(
∂2,ug

(
Γ(sk−1)(u

(I)
k−1, v

(I)
k−1),Γ

(sk)(u
(E)
k , v

(E)
k )
))

+ ∂1,uSE(u
(E)
k , v

(E)
k , u

(I)
k , v

(I)
k ),

and analogous formulas for all the other derivatives. By the uniform boundedness of the
derivatives of SE and the non-degeneracy of p̄i, one can use the same argument as in Proposition
4.4 to find a lower bound in H, uniform in the sequences s, such that inequalities (4.26) hold.
One can then find ξ̂ ∈ Ůs critical point for W (ξ), whose uniqueness is again guaranteed possibly
reducing ε starting from the non degeneracy of the central configurations. □

Proposition 4.9 is again the starting point to construct a conjugation between the refractive
first return map G : (p0, w0) 7→ (p1, w1), restricted to a suitable invariant set of initial conditions,
and Bernoulli shift σ. The construction of the projection map P from initial conditions of
billiard trajectories and orbits is analogous to the one presented in Definition 4.6: if z̃(·) ≡ z̃(·; p̄)
realises a word s ∈ L, then P (z̃(0), z̃′(0)) = s.
Let us then construct a set of initial conditions Y where we can ensure the good definition and
invariance under G, along with the good definition of P : Y → L and the commutativity of the
diagram

(4.28)
Y Y

L L

G

P P

σ

We refer to [6] for a more detailed explanation, holding in two dimensions. Let us start by
defining, for i = 1, 2, the sets

(4.29) Ξ
(+)
i =

{
(p0, w0) ∈ V (i)

ε × R3, | |w0| =
√

2VE(p0), w0 points outside D
}
;

in practice, we will search for initial conditions in ∪2
i=1Ξ

+
i which generates billiard trajectories

satisfying sequences in L. Recalling the definition of G given in Section 1, and in particular
Figure 6, let us define B ⊂ ∪2

i=1Ξ
+
i such such that:

• G is well defined on (p0, w0) and G(p0, w0) = (p1, w1) ∈ ∪2
i=1Ξ

+
i ;

• if p0 ∈ V (i)
ε , the transition point p̃ of the concatenation starting from (p0, w0) is again

in V (i)
ε .
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As in the reflective case, G is clearly well defined on B and the inverse mapping G−1 is well
defined on G(B) by reversibility. Define then

(4.30) Y
.
=
⋂
k∈Z

Gk(B)

to obtain a set of initial conditions which is invariant under G, where the first return map is
infinitely-many forward and backward well defined, and such that every trajectory starting with
conditions in Y realises a sequence in L. It is then possible to construct the diagram (4.28),
and, following the same proof as in Proposition 4.7, proving the same result in the refractive
case.

Proposition 4.10. Given P : Y → defined as in (4.17), it holds that

(1) the diagram in (4.14) commutes;
(2) P is bijective;
(3) P is continuous.

This concludes the proof of Theorem 1.3 in the refractive case as well.
The chaoticity stated in Theorem 1.3 could be related to the results of [18], where the authors
conclude, with a mixed numerical and analytical approach, that the three dimensional model
where VI and VE are simply superimposed admits positive Lyapunov exponents, giving a first
hint of chaos.
Let us conclude by noticing that the geometric hypothesis on D identified in Theorem 1.3 is a
sufficient condition to have local chaos at large inner energies: it is possible that, considering a
different symbolic dynamics, such condition can be extended to other domains’ shapes.

Appendix A. Analytical preliminaries

This Appendix is intended for the reader’s convenience as a complement to the paper, by
giving more details on the analytical tools and results used in Sections 3 and 4. In particular,
Section A.1 summarises some known facts on the existence of fixed-ends solution for the outer
and inner problem; in the case of a Keplerian potential we shall deal with the presence of the
singularity at the origin, so it will be necessary to extend our notion of solution and, at the
same time, to consider a suitable regularization procedure in three dimensions. In Section A.2
we will introduce the concept of Jacobi distance (see also [2]), specifying its properties, and of
generating functions SE\I that we use in both Section 3 and 4, including the proofs of Lemmas
3.5 and 3.7.

A.1. Existence of fixed-ends solution for the outer and inner problem. In this section
we address the problem of finding fixed-ends solution for the outer or inner dynamics at given
energies, which stays either outside or inside our domain D. By construction of our billiards,
it is indeed crucial that, given two points on the domain’s boundary S = ∂D, a solution of
z′′ = ∇VE(z) connecting them stays always outside D; on the other hand, and Keplerian arc
connecting them can not exit from D.
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Let us start by stating the existence and uniqueness of the solution of the outer problem, which
is ensured provided that the endpoints are sufficiently close to each others.

Theorem A.1. For a fixed E > 0, there exists δ > 0 such that, for every p0, p1 ∈ S such that
|p0 − p1| < δ, there exist a unique T > 0 and a unique trajectory z(·; p0, p1) : [0, T ] → R2that is
solution of the problem

(A.1)


z′′(t) = −ω2z(t), ∀t ∈ [0, T ]
1

2
|z′(t)|2 − ω2

2
|z(t)|2 = E ∀t ∈ [0, T ]

z(0) = p0, z(T ) = p1
z(t) /∈ D̄ ∀t ∈ (0, T )

In particular:

• if p0 ̸= p1, the arc belongs to the plane generated by p0, p1 and the origin;
• if p0 = p1, the solution is a radial homothetic arc along the direction of the endpoints,

which starts from p0, is reflected back against the boundary of the Hill’s region associated
to the outer potential (that is, {z ∈ R3 | |z|2 = 2E}), and returns on the same point
(see Figure 2).

The proof of the above Theorem is straightforwardly based on a simple transversality argu-
ment starting from the homothetic arcs, which takes into account the star-convexity of D with
respect to the origin (for more details, see [15]).

As for the inner dynamics, we have the additional difficulty given by the presence of a
singularity at the origin: to treat this case, it is necessary to introduce a more general definition
of solution, called of collision-ejection.

Definition A.2. An arc z : R → R3 is called a collision-ejection solution for the problem

(A.2)


z′′(t) = − µ

|z(t)|3
z(t)

1

2
|z′(t)|2 − µ

|z(t)|
= H

if there exists t∗ ∈ R such that z(t∗) = 0 and z(t) is a C2 solution of (A.2) for any compact
subset of R \ {t∗}.

We highlight that collision-ejection solutions are a particular case of generalised solutions as
described in [2].
Let us now fix two generic points p0, p1 ∈ R3\{0}, and consider the fixed-end Keplerian problem

(A.3)


z′′(t) = − µ

|z(t)|3
z(t) t ∈ [0, T ]

1

2
|z′(t)|2 − µ

|z(t)|
= H t ∈ [0, T ]

z(0) = p0, z(T ) = p1
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Figure 8. Left: fixed-ends Keplerian outer arcs for the non-collisional and non-
antipodal case (blue) and collision-ejection case (black). In the first case, the
two arcs belong to the plane containing the origin and the two points. Right:
Keplerian arcs connecting two antipodal points: they form a surface obtaining
by rotating a Keplerian planar arc.

for some T > 0. If the two points are not coincident nor collinear with the origin, it is always
possible to find exactly two Keplerian arcs connecting them at a given energy (see also Figure
8).

Theorem A.3. Given H > 0 and two points p0, p1 ∈ R3 \ {0}, p0 ̸= p1 and not collinear
with the origin, there are exactly two solutions of (A.3), each of them belonging to the plane Π

generated by p0, p1 and the origin itself.
Moreover, one of these arcs is always homotopic to the segment connecting p0 to p1 in Π, while
the other is not.

The proof of the above result is completely analogous to the one in [6, Lemma B.1]: once
the plane Π is defined, by the conservation of the angular momentum we already know that
the arcs, if existent, belong to it; therefore, the dimensionality of the problem reduces to two
and we can argue as in the planar case.
As a consequence of the above theorem, we have that, whenever the endpoints are not collinear
with the origin and different from each other, it is always possible to recover the uniqueness of
the Keplerian arc connecting them by simply fixing the homotopy class: for reason that will
be clear later, we will always choose the arc belonging to the homotopy class which does not
contain p0p1, which we call zI(·; p0, p1). When the origin belongs to the segment between the
endpoints, it is possible to find infinitely-many Keplerian arcs connecting them with the same
energy H > 0: they are rotations of the same planar arc (see Figure 8).
We stress that, in both the inner and outer case, any solution of the problem is planar as a
consequence of the conservation of the angular momentum, depending on the radial symmetry
of VE and VI .
While in the case described in Theorem A.3 we always find classical C2 solutions of the asso-
ciated problem, this is not the case when p0 = p1: indeed we can not exclude that the systems
enters into collision. For this reason, a regularization of three-dimensional Kepler problem is in
order: in the present paper, we propose the Kustanheimo-Stiefel regularization in the notation
of Waldvogel (see [48]), which can be considered as a three dimensional generalization of the
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classical Levi-Civita one (see [30]). Waldvogel’s construction involves the definition of a suit-
able four-dimensional space, called quaternion space, and of a conformal transformation that,
working like the classical complex square in Levi-Civita case, allows to conjugate Problem (A.3)
to a harmonic non-singular one. Here we propose a brief summary of Waldvogel’s argument:
the interested reader can find more details in [48].
Let us start by defining three imaginary units î, ĵ, k̂ satisfying

(A.4) î2 = ĵ2 = k̂2 = −1, îĵ = −ĵ î = k̂, ĵk̂ = −k̂ĵ = î, k̂î = −îk̂ = ĵ :

the quaternion space U is given by

(A.5) U .
=
{
x = x(0) + x(1)î+ x(2)ĵ + x(3)k̂ | x(n) ∈ R ∀n = 0, . . . , 3

}
≃ R4.

The space U is a non-commutative algebra on R, and it is immediate to notice that

(A.6) R3 ≃
{
x ∈ U | x(3) = 0

}
:

with an abuse of notation, we will identify any vector in R3 with elements in U whose last
component is null. It is possible to define the usual norm on U, given by

(A.7) |x| .
=

3∑
i=0

(
x(i)
)2

,

the adjoint operator

(A.8) x∗ .
= x(0) + x(1)î+ x(2)ĵ − x(3)k̂,

and the mapping

(A.9) KS : U → R3 x 7→ z = x x∗.

The mapping KS corresponds to the Kustanheimo-Stiefel mapping, and it is easy to verify
that, for any z ∈ R3, its preimages through KS are given by

(A.10) x = x0

(
cosϕ+ k̂ sinϕ

)
, ϕ ∈ T, x0 =

z + |z|√
2(z(0)) + |z|

∈ R3.

The map KS is a generalization of the classical Levi-Civita transformation in four dimensions:
to mimic the regularization algorithm holding in the planar case, it is necessary to understand
how it behaves under differentiation. By imposing the bilinear relation

(A.11) 2(x(3)dx(0) − x(2)dx(1) + x(1)dx(2) − x(0)dx(3)) = 0,

one has straightforwardly that d (KS) (x) = 2x x∗: when x ∈ R3, then x = x∗ and d(KS)(x) =

2xdx, which is exactly the derivation rule of the complex square.
By using the quaternions formalism and the relations described above, it is possible to construct
a change in both spatial coordinates (through KS) and time parameter, described in full details
in [48], which leads to the following result.

Proposition A.4. For fixed p0, p1 ∈ R3 and H > 0, problem (A.3) is conjugated, through the
transformations

(A.12)
d

dt
=

1

2r

d

ds
, x x∗ = z, r = |z| = |x|2,
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to the regularised system, in U,

(A.13)


ẍ(s)− Ω2x(s) = 0, s ∈ [−T̃ , T̃ ]
1

2
|ẋ(s)|2 + Ω2

2
|x(s)|2 = HKS, s ∈ [−T̃ , T̃ ]

x(−T̃ ) = x0, x(T̃ ) = x1,

with x(s) ∈ U for every s ∈ [−T̃ , T̃ ], for a suitable T̃ > 0, Ω2 = 2H, HKS = µ, and endpoints

(A.14) x0 = −
p
0
+ |p0|√

2
(
p
(0)
0 + |p

0
|
) , x1 =

p
1
+ |p1|√

2
(
p
(0)
1 + |p

1
|
) .

Let us highlight that, by virtue of Eq. (A.10), we have one degree of freedom in choosing the
preimages x0, x1 of p0, p1. The choice made in Proposition A.4 has two main reasons: first of
all, x0, x1 ∈ R3; secondly, this is the same choice made in the Levi-Civita case when searching
for the collision trajectory (see for example [6]), where one takes respectively the negative and
positive determination of the complex square root.
Using the above proposition, it is possible to treat the case p0 = p1.

Theorem A.5. Let H > 0 and take p0 ∈ R3 \ {0}. Then there exists T > 0 such that system

(A.15)


z′′(t) = − µ

|z(t)|3
z(t) t ∈ [0, T ]

1

2
|z′(t)|2 − µ

|z(t)|
= H t ∈ [0, T ]

z(0) = z(T ) = p0

admits a unique collision-ejection solution, parallel to the radial direction corresponding to p0,
which after collision is reflected back along the same line.

Proof. Without loss of generality, let us suppose that p0 = (R, 0, 0), R > 0: by central symme-
try, the following reasoning applies to any p0 ∈ R3 \ {0}. According to Proposition A.4, the
problem is conjugated in U to

(A.16)


ẍ(s) + Ω2x(s) = 0
1

2
|ẋ(s)|2 + Ω2

2
|x(s)|2 = HKS

x(−T̃ ) = x0 = −x1 = x(T̃ ) = −
√
R ∈ U

whose solution is trivially given by

(A.17) x̃(s) =

√
2HKS

Ω
sinh(Ωs) ∈ U, s ∈ [−T̃ , T̃ ], T̃ =

1

Ω
arcsinh

(
Ω
√
R√

2HKS

)
.

Returning to the physical space, the above solution corresponds to a collision-ejection arc given
by

(A.18) z̃(t) = x̃(s(t)) x̃∗(s(t)) = x̃2(s(t)), t ∈ [0, TI ]

for a suitable TI > 0. The solution z̃(t) is always parallel to the x−axis, starts from p0, bounces
at the origin and returns at the initial point along the same direction. □
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There is a strong relation between classical solutions of Problem (A.3) and collision ones:
it is in fact possible to prove that, taking the unique solution of the problem which is not
homotopic to p0p1 and taking the limit p0 → p1, the arc zI(·; p0, p1) will tend precisely to the
straight collision-ejection solution in the direction of p1. This is the reason for the choice if the
homotopy class made before.
Now that the existence of an arc connecting points in R3 is ensured, let us return to our original
problem: take p0, p1 ∈ S and search for a Keplerian inner arc connecting them. If the points
are not antipodal to each others, we are able to find a solution of the inner problem that goes
from p0 to p1; nevertheless, we still have to prove that such solution is always internal to D.
This is true whenever the inner energy is sufficiently large, as a consequence of the following
classical result in Celestial Mechanics (cfr. [7, pp.273-274]).

Lemma A.6. Let us take p0, p1 ∈ R3 \ {0} not aligned with the origin, and consider the arcs
zI(·; p0, p1) not homotopic to p0p1 for increasing values of H. Then, it holds that they converge
in C0−norm to the broken line composed by the segments p00 and 0p1.

Putting together all the informations above, we can finally state the final result of this Section,
claiming the existence and uniqueness of inner arc provided that the energy is sufficiently large.

Theorem A.7. There exists H > 0 such that, for every H > H, p0, p1 ∈ S not antipodal, there
is a unique solution of the inner fixed-ends problem (A.3), denoted by zI(·; p0, p1), which is not
homotopic to p0p1 and stays completely inside D. If p0 = p1, zI(·; p0, p1) is a collision-ejection
arc.

The proof is a simple consequence of Theorems A.3, A.5 and Lemma A.6, along with the
star-convexity of the domain D and the compactness of its boundary S.

A.2. Jacobi distance, generating function and their derivatives. A very useful analyt-
ical tool to describe the geometric properties of outer and inner arcs in our billiard models, as
well as to construct suitable first return maps, is given by the Jacobi length. In the present
section we summarise the principal definitions and properties we use in the whole paper, along
with the proofs of Lemmas 3.7 and 3.5; for more details, one can see [15] and the references
therein.

Let us start by considering a regular potential V : R3 → R, and, given p0, p1 ∈ R3, let us
consider z ∈ H1([0, T ],R3) such that z(0) = p0 and z(T ) = p1: given E ∈ R, the Jacobi length
of z is given by

(A.19) L(z(·)) =
∫ T

0

|z′(t)|
√
E + V (z(t)) dt.



KEPLERIAN BILLIARDS IN THREE DIMENSIONS 35

It is possible to show (see for example [15]) that solutions of the fixed-ends problem at energy
E defined by

(A.20)


z′′(t) = ∇V (z(t))
1

2
|z′(t)|2 − V (z(t)) = E

z(0) = p0, z(T ) = p1

correspond to critical points of the corresponding Jacobi length in the space of the H1 functions
which connect p0 to p1; moreover, the functional L is invariant under reparametrizations.
Let us now suppose that, given p0, p1 as endpoints, the problem (A.20) admits a unique solution,
denoted by z(·; p0, p1): it is then possible to use the functional L to define the Jacobi distance
between p0 and p1 as d(p0, p1) = L (z(·; p0, p1)). The function d(·, ·) is well defined for every
pair of endpoints for which the solution z is unique, and depends on the potential V , as well as
on the energy E. Whenever well defined, d(·, ·) is of class C∞ in both variables, and it holds

(A.21) ∇1d(p0, p1) = −
√
V (p0)

z′(0)

|z′(0)|
, ∇2d(p0, p1) = −

√
V (p1)

z′(T )

|z′(T )|
,

where ∇1\2 refer to the gradient respectively with respect to the first and second point.
Returning to the billiard model, we can apply the above definitions to the inner and outer
dynamics to characterise arcs which start and end on the domain’s boundary S.
Let us start with the reflective case, where the potential involved is the sole inner one: in
principle, to define properly the Jacobi distance of two points on S connected by an inner arc
we have two problems: the lack of uniqueness of Keplerian hyperbolæ connecting two non-
antipodal points and the singularity of VI at the origin. The first problem is solved by choosing
suitably the homotopy class where searching for our arcs, as it is done in Theorem A.7. As for
the singularity, we already explained in A.4 how it is possible to conjugate the Kepler problem
to a regular fixed ends problem in the quaternion space U: such conjugation has consequences
on the definition of the Jacobi length in the inner case, which we will denote with LI . In
particular, by direct computations one can prove the following lemma.

Lemma A.8. Let p0, p1 ∈ R3 and let zI(·; p0, p1) be the solution (possibly of collision-ejection)
of (A.3) of Theorem A.7, while x(·;x0, x1) is the corresponding conjugated solution in (A.1).
Then it holds

(A.22) LI(zI(·; p0, p1)) = 2LKS (x(·;x0, x1))
.
=

∫ T̃

−T̃

|ẋ(τ)|
√

Ω2

2
|x(τ)|2 +HKS dτ.

In particular, the formula holds when p0 = p1, then in the case of collision-ejection arcs.

Through the above lemma, we are able to define the inner Jacobi distance dI(p0, p1)
.
=

LI(zI(·; p0, p1)) for every pair of non antipodal2 points, even coincident.
Let us now describe how to use the Jacobi distance to give a variational interpretation of the
reflection law. To this aim, let us take two points p0, p1 ∈ S, and suppose that, taking H

2Let us notice that the non antipodality is not a restrictive hypothesis for our analysis, since we will never
work with antipodal endpoints.
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sufficiently large, they are connected by a concatenation of inner arcs passing through p̃ ∈
S: considering dI(p0, p̃) and dI(p̃, p1), it is possible to define the total Jacobi length of the
concatenation through p̃ as

(A.23) f : p̃ 7→ dI(p0, p̃) + dI(p̃, p1).

The point p̃ is critical for f constrained to S if and only if for every e ∈ Tp̃S it holds ⟨∇f(p̃), e⟩ =
0, namely, recalling (A.21)3,

(A.24) ⟨z′I(T ; p0, p̃), e⟩ = ⟨z′I(0; p̃, p1), e⟩,

which defines precisely the reflection law. In other words, asking that a concatenation is con-
nected by a reflection is equivalent to ask that the transition point is a critical point for the total
Jacobi length of two consecutive arcs.
Let us now pass in local coordinates, and, given p0, p1 ∈ S not antipodal and H sufficiently
large, let us consider two local charts Γ(i) : Ui → S, i = 0, 1, around the two points. We can
then rewrite locally the Jacobi distance through the function

(A.25) SI : U0 × U1 → R, (u0, v0, u1, v1) 7→ dI
(
Γ(0)(u0, v0),Γ

(1)(u1, v1)
)
.

The function SI is at least C2, and by the chain rule one finds the derivatives’ formulas listed
in Eqs. (3.6). Such derivatives depend on the parameterisation and find a closed explicit for-
mula only knowing the initial or final velocity vector of the inner arc. In our computations, we
will need to find explicit formulas only in the case of homothetic arcs, in the proof of Lemma 3.5.

As for the refractive case, once one has p0, p1 ∈ S sufficiently close, by theorem A.1 there exists
a unique outer arc zE(·; p0, p1) connecting them, and using the same reasoning as before one can
define a Jacobi distance dE(p0, p1)

.
= LE(zE(·; p0, p1)), where LE is the Jacobi length relative to

VE, and the corresponding representation in local coordinates SE(u0, v0, u1, v1). Here, the outer
potential VE is smooth, and then no regularisation procedures are necessary. Of course, the
inner dynamics is described by the same equations as in the reflective model, and by analogy
with the previous case, whenever p0, p1 ∈ S are connected by a concatenation of refracted arcs
passing through a point p̃ ∈ S, it results that the latter is a critical point for the function

(A.26) p 7→ dE(p0, p) + dI(p, p1) :

in local coordinates, one retrieves Eqs. (3.8). Let us now take into account Lemmas 3.7, 3.5,
used in Section 3 to compute the linear stability of homothetic trajectories. Taking p̄ ∈ S

central configuration according to Definition 3.1, consider a local chart Γ as in Remark 3.3.
Lemmas 3.7 and 3.5 provide respectively the expressions of the second derivatives of SE and
SI when computed in correspondence of a homothetic arc, namely, in the case u0 = u1 = ū and
v0 = v1 = v̄, as functions of the geometric parameters and the geometric properties of S in p̄.
As for the outer dynamics, the proof is completely analogous to the one presented, in the case of

3With an abuse of notation, here and in the following we will denote with T > 0 the final time necessary to
arrive to the second endpoint, which clearly depends on the points and the potential.
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a two-dimensional dynamics, in [15, Section 5.2]: we will focus then on the proof the Lemma in
the inner case, where the use of a different regularization technique requires some adjustments
to what has been already done in two dimensions.

Proof of Lemma 3.5. For the sake of simplicity, let us suppose that p̄ belongs to the x−axis,
and in particular p̄ = (R, 0, 0): in any other case, a simple rotation of the reference frame will
lead to the same conclusion. Let us then consider the collision-ejection inner solution zI(t; p̄, p̄),
and the corresponding solution x(τ) in the regularised system, which, according to Proposition
A.4, has endpoints x0 = −

√
R ∈ U and x1 =

√
R ∈ U: from Lemma A.8, it is sufficient to find

the second derivatives of LKS to find the ones of LI . By the choice of the parameterisation
Γ, we have that p̄ = |p̄|x̂, Γu(ū, v̄) = ẑ, Γv(ū, v̄) = ŷ, N(ū, v̄) = −x̂, where x̂, ŷ and ẑ are the
canonical basis of R3 ⊂ U.
Since we need to consider infinitesimal variations on S from p̄, it is necessary to compute the
local preimages of S through the transformation KS locally around x0 and x1. Identifying,
with an abuse of notation, Γ(u, v) ∈ U, let us consider the subsets of U parameterised by
(A.27)

Γ± : U → U, Γ−(u, v) = − Γ(u, v) + |Γ(u, v)|√
2 (Γ(0)(u, v) + |Γ(u, v)|)

, Γ+(u, v) =
Γ(u, v) + |Γ(u, v)|√

2 (Γ(0)(u, v) + |Γ(u, v)|)
.

By construction, for every (u, v) ∈ U it holds Γ±(u, v) ∈ R3; moreover, Γ−(ū, v̄) = x0 and
Γ+(ū, v̄) = x1. Let us now compute the tangent vectors of Γ±, by taking into account the
bilinear relation (A.11):

(A.28)
(
Γ−(u, v)

)2
= Γ(u, v) ⇒ 2Γ−(ū, v̄)Γ−

u (ū, v̄) = Γu(ū, v̄) :

considering Γ−
u (ū, v̄) = x(0) + x(1)î+ x(2)ĵ + x(3)k̂ as an unknown element of U, one has

(A.29) −2
√
R
(
x(0) + x(1)î+ x(2)ĵ + x(3)k̂

)
= ĵ ⇒ Γ−

u (ū, v̄) = − 1

2
√
R
ĵ;

with the same reasoning, one can find Γ+
u (ū, v̄) = (2

√
R)−1ĵ, Γ−

v (ū, v̄) = −(2
√
R)−1î and

Γ+
u (ū, v̄) = (2

√
R)−1î.

Let us now pass to the second derivatives of Γ±: differentiating again Eq. (A.29), one has

(A.30) 2
(
Γ−
u (u, v)

)2
+ 2Γ−(u, v)Γ−

uu(u, v) = Γuu(u, v).

Projecting along the first component in U, and again treating Γ−
uu(ū, v̄) = x(0) + x(1)î+ x(2)ĵ +

x(3)k̂ as an unknown vector, one can take into account Eqs. (3.2), finding

(A.31)

(
2
(
Γ−
u (ū, v̄)

)2
+ 2Γ−(ū, v̄)Γ−

uu(ū, v̄)
)(0)

= Γ(0)
uu (ū, v̄)

⇒
(
2

(
− 1

2
√
Rĵ

2

− 2
√
R
(
x(0) + x(1)î+ x(2)ĵ + x(3)k̂

)))(0)

= −κ1

⇒
(
Γ−
uu(ū, v̄)

)(0)
= − 1

2
√
R

(
1

2R
− κ1

)
,
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and, with the same reasoning,

(A.32)

(
Γ+
uu(ū, v̄)

)(0)
=

1

2
√
R

(
1

2R
− κ1

)
,
(
Γ−
vv(ū, v̄)

)(0)
= − 1

2
√
R

(
1

2R
− κ2

)
,

(
Γ+
vv(ū, v̄)

)(0)
=

1

2
√
R

(
1

2R
− κ2

)
(
Γ−
uv(ū, v̄)

)(0)
=
(
Γ−
vu(ū, v̄)

)(0)
=
(
Γ+
uv(ū, v̄)

)(0)
=
(
Γ+
vu(ū, v̄)

)(0)
= 0.

Let us now define a new Jacobi distance in U, given by

(A.33) SKS(u0, v0, u1, v1) = dKS(Γ
−(u0, v0),Γ

+(u0, v0)) = LKS(x(·; Γ−(u0, v0),Γ
+(u0, v0)) :

from Lemma A.8, it holds SI(u0, v0, u1, v1) = 2SKS(u0, v0, u1, v1), and the derivatives of SKS

are in the same form already found for SE\I in Eqs. (3.6).
Let us now compute the homogeneous derivative ∂2

1,uSKS(ū, v̄, ū, v̄); all the other derivatives
can be found following the same reasoning:

(A.34) ∂1,uSKS(u0, v0, u1, v1) = − 1√
2
⟨ẋ
(
−T̃ ; Γ−(u0, v0),Γ

+(u1, v1)
)
,Γ−

u (u0, u1)⟩.

Let us denote with e−u
.
= Γ−(u0, v0)/|Γ−(u0, v0)|: deriving the above equation in u0, one finds

(A.35)

∂2
1,uSKS(u0, v0, u1, v1) =− 1√

2
|Γ−(u0, v0)|2⟨

d

dτ

(
∂e−u x

(
τ ; Γ−(u0, v0),Γ

+(u1, v1)
))

|τ=−T̃
,Γ−

u (u0, u1)⟩

− 1√
2
⟨ẋ(−T̃ ; Γ−(u0, v0),Γ

+(u1, v1)),Γ
−
uu(u0, u1)⟩,

where ∂e−u x
(
τ ; ; Γ−(u0, v0),Γ

+(u1, v1)
)

is the variation of the solution of the fixed-ends regu-
larised problem moving the first point in the direction of e−u . By standard variational arguments
and direct computations (see [15] for more details), one can find, in the homothetic,

(A.36)

x̄(−T̃ ) = −2
√
R ∈ U, x̄(T̃ ) = 2

√
R ∈ U, ˙̄x(−T̃ ) = ˙̄x(T̃ ) =

√
2HKS + Ω2R ∈ U

d

dτ

(
∂e−u x̄(τ)

)
|τ=−T̃

= − HKS + Ω2R√
R
√
2HKS + Ω2R

Γ−
u (ū, v̄),

d

dτ

(
∂e−v x̄(τ)

)
|τ=−T̃

= − HKS + Ω2R√
R
√
2HKS + Ω2R

Γ−
v (ū, v̄)

d

dτ

(
∂e+u x̄(τ)

)
|τ=−T̃

= − HKS√
R
√
2HKS + Ω2R

Γ+
u (ū, v̄)

d

dτ

(
∂e+v x̄(τ)

)
|τ=−T̃

=
HKS√

R
√
2HKS + Ω2R

Γ+
v (ū, v̄)

d

dτ

(
∂e−u x̄(τ)

)
|τ=T̃

= − HKS√
R
√
2HKS + Ω2R

Γ−
u (ū, v̄)

d

dτ

(
∂e−v x̄(τ)

)
|τ=T̃

= − HKS√
R
√
2HKS + Ω2R

Γ−
v (ū, v̄)

d

dτ

(
∂e+u x̄(τ)

)
|τ=T̃

=
HKS + Ω2R√

R
√
2HKS + Ω2R

Γ+
u (ū, v̄)

d

dτ

(
∂e+v x̄(τ)

)
|τ=T̃

=
HKS + Ω2R√

R
√
2HKS + Ω2R

Γ+
v (ū, v̄),
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where e±v , e+u are defined analogously to e−u . Inserting (A.36) into (A.35), and computing the
other second derivatives, one finally obtains Eqs. (3.11). □
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