
UNIVERSITA’ DEGLI STUDI DI TORINO

SCUOLA DI SCIENZE DELLA NATURA

Ph.D. Program in Computer Science

XXXII cycle

Neural Network Models for Content-Aware
Text Summarization

Advisor:
Prof. Luigi di Caro

Ph.D. Candidate:
Giovanni Siragusa



2



Contents

1 Introduction 9

2 The Summarization Task 13
2.1 Seminal work of Luhn . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Supervised Summarization . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 Classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.2 Textual Features . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.3 Neural Network-based Models . . . . . . . . . . . . . . . . . . 18

2.3 Unsupervised Summarization . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.1 Graph-based models . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.2 Latent Semantic Indexing-based methods . . . . . . . . . . . . 20
2.3.3 Integer Linear Programming-based methods . . . . . . . . . . . 21
2.3.4 Lexical Chain-based methods . . . . . . . . . . . . . . . . . . 22

2.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.5 Existing datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Background on Neural Networks 27
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Rosenblatt’s Perceptron . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3 Artificial Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . 31
3.4 Computational Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.5 Loss Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.6 Word Embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.6.1 Neural Language Model . . . . . . . . . . . . . . . . . . . . . 40
3.6.2 Word2Vec: CBOW and SkipGram . . . . . . . . . . . . . . . . 41
3.6.3 Finding similar words . . . . . . . . . . . . . . . . . . . . . . 44
3.6.4 Glove . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.6.5 FastText . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.6.6 SensEmbed . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.6.7 ELMo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.6.8 BERT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3



4 CONTENTS

3.7 Recurrent Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . 50
3.7.1 Unfolding Recurrent Neural Networks . . . . . . . . . . . . . . 52
3.7.2 Bidirectional Recurrent Neural Network . . . . . . . . . . . . . 54
3.7.3 Long-short Term Memory Networks . . . . . . . . . . . . . . . 55
3.7.4 Gated Recurrent Unit . . . . . . . . . . . . . . . . . . . . . . . 56
3.7.5 Sequence to Sequence model . . . . . . . . . . . . . . . . . . . 57

4 New Frontiers on Neural Text Summarization 61
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2 Coverage Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2.1 Tu et al.’s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.2.2 Mi et al.’s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.2.3 See et al.’s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.2.4 Chen et al.’s (distraction method) . . . . . . . . . . . . . . . . 66
4.2.5 Sankaran et al.’s (temporal attention) . . . . . . . . . . . . . . . 67
4.2.6 Comparison between methods . . . . . . . . . . . . . . . . . . 68

4.3 Copying Out-Of-Vocabulary Words . . . . . . . . . . . . . . . . . . . 69
4.3.1 Merity et al.’s . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.3.2 Zeng et al.’s . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.3.3 Bhoopchand et. al’s . . . . . . . . . . . . . . . . . . . . . . . . 73
4.3.4 Miao et al.’s . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.3.5 Gu et al.’s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.3.6 Gulcehre et al.’s . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.3.7 Nallapati et al.’s . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.3.8 See et al.’s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.3.9 Paulus et al.’s . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.3.10 Comparison between models . . . . . . . . . . . . . . . . . . . 77

4.4 Exploiting Document Content . . . . . . . . . . . . . . . . . . . . . . 78
4.4.1 Retrieve, Rank and Rewrite systems . . . . . . . . . . . . . . . 79
4.4.2 Content Selection . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.4.3 Other Works on Text Summarization . . . . . . . . . . . . . . . 86

5 A Sentence-level Attention for Content-Aware Summarization 89
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.2 How the Model Should Work: A Practical Example . . . . . . . . . . . 91
5.3 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.3.1 Sentence-level Scores . . . . . . . . . . . . . . . . . . . . . . 96
5.3.2 Coverage Method . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.4.1 Attention Analysis . . . . . . . . . . . . . . . . . . . . . . . . 102
5.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115



CONTENTS 5

5.5 Final Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6 Conclusion 133

A McCulloch and Pitts Neuron 137

B Training the Artificial Neural Network 139
B.1 Forward pass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

B.1.1 Feed Forward: a numerical example . . . . . . . . . . . . . . . 140
B.2 Backward pass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

C Generalization 145
C.1 Early Stopping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
C.2 Dropout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

Bibliography 148



6 CONTENTS



Abstract

The large adoption of Neural Networks in Natural Language Processing has brought
to summit several tasks, such as Text Summarization. In this one, Encoder-Decoder
models are used to generate the summary starting from a document (or a set of them).
The Encoder reads the document(s) and creates a fixed vector representation, while the
Decoder uses such vector to generate the summary.

The problem of the Encoder-Decoder Models for Text Summarization are several.
First, they are not able to remember the previous generated words, and for such rea-
son they generate in output repetitions of the same word (or phrase excerpt). Second,
Encoder-Decoder Models are not able to generate words that are outside of their vocab-
ulary, which is important in recall-oriented tasks as Text Summarization. Finally, they
are not able to discern sentences (or words) that are relevant for the summary from those
that are not. Many researchers investigated this problem, providing different solutions.

In this thesis, I first present a wide review of state-of-the-art methods to correct those
issues, that regard: coverage methods to remove repetitions in the output summary;
pointer network models to create a probability distribution over the the document words,
from which one can be selected and copied in output; and document content methods
to analyze the document content and select the relevant sentences (or words). Then,
following the idea of these latter methods, I propose an Encoder-Decoder model that
calculates a two-level attention: a sentence-level attention and a word-level attention.
The former attention finds the sentences that are relevant for the summary, while the
latter one, which is multiplied with the sentence-level attention, captures the relevant
words. In this way, words coming from informative sentences are more likely to be
used by the model, either to be copied in output via the pointer network or to create
the document context. The proposed model obtained notable results in comparison with
state-of-the art ones, showing high abstractive power in generating summaries.

7



8 CONTENTS



Chapter 1

Introduction

The idea of automatically condensing long documents in a short form (i.e., Text Sum-
marization), allowing for efficient and improved reading and understanding of their
content, attracted particular attention in recent years. The main work on this topic
was conducted by Luhn (1958), proposing a selection of relevant sentences of an in-
put document mainly based on words frequencies. Such work paved the way for more
complex systems based on classifiers [Kupiec et al., 1995; Saggion and Poibeau, 2013],
graphs [Mihalcea, 2004; Litvak and Last, 2008; Dohare et al., 2018], Latent Seman-
tic Indexing [Bhandari et al., 2008; Murray et al., 2005; Gong and Liu, 2001; Stein-
berger et al., 2005], clustering [Nomoto and Matsumoto, 2001] and probabilistic mod-
els [Gross et al., 2014]. Furthermore, with the growth of interest in automatic sum-
marization and the possibility of collecting large sets of <document, summary> pairs,
researchers moved from the manual evaluation of summarization systems towards au-
tomatic and semi-automatic approaches, defining a set of metrics [Lin, 2004; Nenkova
and Passonneau, 2004] aiming at capturing the similarity between human-made and
automatically-generated summaries.

At the same time, Neural Networks (NNs, from now on) started to dominate the
field of Natural Language Processing thanks on one hand to their capability of exploit
large datasets and the high accessible computational power nowadays; and on the other
hand, to the ability of producing optimal results in tagging documents, or generating
summaries and translations that resemble the human ones. In this context, NNs based
on the Encoder-Decoder framework [Sutskever et al., 2014; Cho et al., 2014] have been
firstly proposed, such as [Rush et al., 2015; Chopra et al., 2016; Nallapati et al., 2016;
See et al., 2017; Tan et al., 2017; Paulus et al., 2018; Li et al., 2018a,b]. Generally
speaking, an encoder reads the document in input and produces a compressed represen-
tation, which is then used by the decoder to generate the summary. The drawbacks of
these systems concern:

• Out-Of-Vocabulary words: the impossibility to generate words that are outside

9



10 CHAPTER 1. INTRODUCTION

the vocabulary. Such problem arises because NN models require a fixed-size
vocabulary;

• Repetition of words: when the NN generates a word in output, it does not capture
which document words and sentences attended to produce it. This absence of a
memory leads the network to focus on the same document words (or sentences),
producing repetitions in the output;

• Content indifferent: when the NN reads the document, it may decide to focus
on a piece of information, creating a summary that is correct but not related to
the document content. For instance, if a document talks about a “new movie
produced by the actor of Harry Potter”, the network may focus on “the actor
of Harry Potter”, generating a summary on this argument instead of the “new
movie”. This is due by the incapability of the model to discern the relevant and
informative sentences (or words) for the summary from those that are secondary
for the context, treating them equally.

In this thesis, my contribution is twofold:

An up-to-date and structured review of TS techniques to contrast these drawbacks.
These regard:

• Coverage methods [Mi et al., 2016; Tu et al., 2016; Sankaran et al., 2016;
Chen et al., 2016b; See et al., 2017] create an artificial memory to eliminate
the repetitions by keeping into account the previous generated words. Their
application showed a substantial improvement in the performance of the
Encoder-Decoder models;

• Pointer networks [Vinyals et al., 2015] are special NNs that create a proba-
bility distribution over the the document words, from which one can be se-
lected and copied in output. The advantage of these networks is that they can
copy rare words and those that are outside the network vocabulary (which
is fixed and defined a priori). Some researchers applied them only to copy
the words [Nallapati et al., 2016; Miao and Blunsom, 2016; Merity et al.,
2017], while others used them to create a mixture model [Gu et al., 2016;
Gulcehre et al., 2016; See et al., 2017].

• Content-based methods aim to select relevant sentences (or words) and to
improve the generation of the summary. More in detail, they are divided
in two research directions: methods based on templates, and methods that
exploit the salient content of the document. The former one uses human-
written templates containing particular slots that have to be filled with doc-
ument words or phrase excerpts [Zhou and Hovy, 2004; Chen and Bansal,
2018; Cao et al., 2018; Wang et al., 2019]. The latter one, instead, contains
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different approaches: mixing extractive and abstractive techniques [Hsu
et al., 2018]; hierarchical encoders to capture the relevance of each docu-
ment sentence [Tan et al., 2017; Li et al., 2018a]; or word-level masks to
filter out irrelevant words [Zhou et al., 2017; Gehrmann et al., 2018].

A novel Neural Network-based model (relaying on the research trend of exploiting
document content) to capture salient sentences, distinguishing those that are rele-
vant for the summary from those that are not. More in detail:

• I defined a Sequence-to-Sequence model formed by a hierarchical encoder
followed by a Recurrent Neural Network decoder. The encoder first reads
all the words of a sentence to generate the word-level representations; then,
these representations are used to create the sentence-level one;

• I defined a two-level attention mechanism to capture the informativeness
of words and sentences. In detail, the sentence-level attention is based on
a Pagerank algorithm, which is constructed over a graph-based NN. As in
[Tan et al., 2017], the sentences are represented as vertexes, while the edges
capture the connections. I weighted each edge through the cosine similarity
function in order to highlight the redundancy between sentences (i.e., sen-
tences that share a piece of information). The word-level attention is instead
based on Bahdanau et al. (2014)’s one. The peculiarity is that I re-scored
the word-level attention multiplying (and normalizing) it with the sentence-
level one. In this way, words coming from salient sentences are more likely
to be copied or focused by the model;

• I proposed an inference-time penalizing function, based on coverage meth-
ods and reinforcement learning, to remove repetitions in output and improve
the summary.

The evaluation reported that the proposed model is able to generate very good
summaries. Furthermore, I also discovered that the model tends to copy phrase
excerpts only when it found it is necessary, preferring the use of synonyms and
periphrases.

The thesis is composed of the following chapters:

Chapter 2: The Summarization Task. It describes the Summarization task, reporting
how the task is subdivided according to the input, the output and the purpose. It
also cover supervised and unsupervised methods, evaluation and existing datasets;

Chapter 3: Background on Neural Networks. Since the thesis is focused on Neural
Networks, this chapter provides a background on this argument. It starts from the
first perceptron and arrives to Recurrent Neural Networks. It also describes Word
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Embedding, a necessary layer for Neural Networks oriented to Natural Language
Processing (NLP);

Chapter 4: New Frontiers on Neural Text Summarization. This chapter contains the
first contribution of my thesis. It describes the new research trends: coverage
methods, pointer networks and document content methods.

Chapter 5: A Sentence-level Attention for Content-Aware Summarization. This chapter
contains the second contribution of my thesis. It describes the proposed model,
reporting the different sentence-level attention methods and their extensive eval-
uation.

Chapter 6 concludes the thesis.
The interaction between the chapters of this thesis is depicted in Figure 1.1. The

chapters “The Summarization Task” and “Background on Neural Networks” form the
background knowledge necessary to understand the recent research works on Neural
Network-based Text Summarization, described in “New Frontiers on Neural Text Sum-
marization”. The former two chapters can be read independently, but I suggest to follow
the order in the thesis. The latter chapter, instead, provides the fundamental onto which
my model is created.

Figure 1.1: The figure reports the interaction between the chapters.



Chapter 2

The Summarization Task

Nowadays, people are surrounded by large amounts of short-to-long textual data that
come under the form of documents, emails, news, blogs and so forth. Thus, condensing
such data volume while preserving all relevant information, i.e. Text Summarization (or
TS, from now on), is becoming an extremely important task in several applications.

In simple words, TS means to compress a text document in a shorter form, usually
through an input compression rate, maintaining the overall expressed semantics.

In TS, systems are required to understand the text and re-organize the information
to generate semantically and syntactically coherent short summaries. For this reason,
crucial research questions in TS are the following:

1. How is it possible extract the most important content from a document?

2. How is it possible to compress the extracted content to generate the summary?

There exist several types of TS, that can be distinguished on the basis of the input,
the output and the purpose (depicted in Figure 2.1). Based on the input, there exist
single document and multi-document TS. In the former, the input is a single document
to summarize, while in the latter there are several documents that can either come from
a single source of information or from multiple ones. This last case is usually more
complex due to the presence of redundant and segmented pieces of information.

Related to the output, it is possible to opt for extractive or abstractive TS. In extrac-
tive methods, the summary is composed by selecting original sentences from the input
document(s). More in detail, sentences are extracted from the input document(s) and
sorted according to a score which takes into account both the relevance of the sentence
to the summary and its redundancy. Finally, the top-k scored sentences define the sum-
mary. In abstractive methods, instead, summaries are built through a generative use of
words that can be both inside and outside the document(s) vocabulary.

The TS task is also divided according to its purpose: generic, domain-specific and
query-based. While in generic TS does not make any assumption on the domain or

13
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Figure 2.1: The picture shows the different types of Textual Summarization.

content of the documents, thus treating all inputs as homogeneous, in domain-specific
TS the domain knowledge is employed to produce more specific summaries (e.g., TS
of bio-medical documents). Finally, in query-based TS, the final goal is represented by
the creation of summaries answering the input query. In other terms, documents and
sentences are selected according to the query.

Another classification of TS is informative vs descriptive. In informative TS, the
summary is created to inform the reader, while in the descriptive one it reports the
information under an objective view. Furthermore, TS can be also multilingual if either
the input document(s) or the output summary belong to different languages.

Finally, there are three aspects to keep in consideration when a system for TS is
constructed:

Informativeness: the generated summary should contain all salient information present
in the input document(s);

Non-redundancy: the generated summary should not contain multiple sentences that
express the same semantic information, and in general, any type of redundancy;

Readability: since that the summary will be read by an human-being, it should be
coherent and syntactically well formed.

2.1 Seminal work of Luhn
Luhn (1958) has been the first researcher working on TS, opening the research field to
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the current works. He theorized that summaries can be formed using selected sentences
of the input document, containing the most relevant words. According to his idea, a
word is relevant if it is frequent. Thus, he counted the frequency of the words to find
the relevant ones; however, he found that not all frequent words are relevant. Words
such as subjects, determiners, pronouns, and so on are generally too common in texts
to be relevant. From these first results, he then employed two word lists: a stopword
list composed of frequent words that are not relevant, and one containing the relevant
words.

He then defined a pipeline to obtain the summary: first, a document is divided into
sentences; then, a pre-processing phase to remove punctuation characters and stopwords
is applied to those sentences. Finally, a score for each sentence is computed, counting
the number of relevant words in a window (of length 7) and dividing the result by the
window length. He also posed a constraint on the window: relevant words must be sep-
arated by at most 2 irrelevant words. Once sentences are sorted according to their score,
the top-k ones are picked to generate the summary. An example of Luhn’s pipeline is
depicted on Figure 2.2.

Figure 2.2: The figure shows Luhn’s pipeline of a CNN (https://www.cnn.com) docu-
ment excerpt.

2.2 Supervised Summarization
TS can be also divided into supervised and unsupervised, depending on the algorithms
that are used to generate the summaries. To the best of my knowledge, supervised
methods have better performances than unsupervised ones because each component is
strictly tied (or jointly trained) to solve this specific task.

In this section, I will focus on supervised summarization, since most of the recent
research works are based on Neural Networks with supervised training. First, I will
describe two most used Machine Learning classifiers: Support Vector Machines and

https://www.cnn.com
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Naive Bayes, also reporting how the training set for those classifiers can be defined.
Then, I describe the textual features proposed in literature to train those models. Finally,
I illustrate Neural Network-based models for Textual Summarization, reporting the first
proposed ones. A deep description of Neural Networks and their application to Text
Summarization can be found in Chapter 3 and Chapter 4 respectively.

2.2.1 Classifiers
In the supervised context, researchers initially employed techniques such as Support
Vector Machines (SVM) [Cortes and Vapnik, 1995] and Naive Bayes classifiers [Rish
et al., 2001] to capture the relevance of a sentence according to specific characteristics
(e.g., presence of proper nouns, terms in the document title, etc.) and the desired output.

Support Vector Machine (SVM) tries to find the optimal hyperplane that separates
the training data into two disjunctive sets A and B. It is defined as an Integer Linear
Programming:

min ||w||
subject to :

wTxi − b ≥ 1 if xi belongs to A

wTxi − b ≤ 1 if xi belongs to B

(2.1)

where x represents the numerical features of i-th training point, w is a set of weights
learned by the classifier, and b is constant called bias. As we will see in Section 3.2, the
SVM has some grade of resemblance to Rosemblatt’s perceptron [Rosenblatt, 1958].
Naive Bayes classifiers, instead, are a set of classifiers that use the Bayes theorem with
the strong assumption that the features are independent each other. The probability to
assign a class C (e.g., A or B) to the i-th training point is calculated as the product
between the class prior p(C) and the conditional probability p(xi|C):

ŷ = argmax
C

p(C)
n∏
i=1

p(xi|C) (2.2)

where n is the number of training points and ŷ is the assigned class.
In some research works, the classifiers are combined with rich sentence characteri-

zations: Daumé III and Marcu (2002) adopted the Rhetorical Structure Theory [Mann
and Thompson, 1988] to compress the whole text and generate the summary; Leskovec
et al. (2005) used graphs to extract relations from the document sentences and fed them
in input to the classifier. These classifiers can be also used in the post-processing phase
to re-rank the extracted sentences [Barzilay and Lapata, 2008].

The training of such systems requires data that may come under the form of class-
labels or sentences. For instance, in extractive TS, two classes are used to label each
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sentence: a sentence is labelled with 1 if it belongs to the summary (with 0 otherwise).
Then, the system (the SVM or the Naive Bayes) is trained to select the sentences that
will form the summary. The difficult part is to manually tag the training corpus, since
someone has to label each sentence in each document. Some researchers [Nallapati
et al., 2017; Cheng and Lapata, 2016] have successfully tried automatic techniques.
Their idea is to select the document(s) sentences that will form the extractive summary
using the human summary and Rouge-2 (see Section 2.4) score. They start from an
empty summary, adding sentences if they improve the Rouge-2 score between the ex-
tractive summary (composed of the selected sentences) and the human one. At each
step, only the sentence that produces the best Rouge-2 score is added to the summary,
following a greedy strategy. The process is repeated until no sentence increases the
score. Finally, the selected sentences are labelled with 1, while the others are labelled
with 0.

2.2.2 Textual Features
In those classifiers, each sentence is represented as a vector of features. For instance,
it could be a vector that has as many features as the vocabulary size1, whereby each
feature has value 1 if the word appears in the sentence, or 0 if not. Figure 2.3 visually
describes this example.

Figure 2.3: The figures shows a feature matrix for three sentences (s1, s2 and s3). In
this example, the vocabulary contains 20 words. The presence of the word w3 in the
sentence s2 is defined with the value 1.

In general, features consist of (but they are not limited to) the following ones [Kupiec
et al., 1995; Saggion and Poibeau, 2013]:

Term Frequency: One of the most used feature. Each cell contains the frequency of
the corresponding term in the sentence or in the document set. However, this
feature is not a good one since frequent terms could be not relevant, as pointed
out by Luhn.

TF-IDF: the idea of TF-IDF is to promote relevant terms, while demoting common
ones. This is made possible multiplying the Term Frequency (TF) by a regular-
ization factor called Inverse Document Frequency (IDF). The IDF of a word w is

1The number of words in a vocabulary.
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the logarithm of the ratio between the size of the documents set and the number
of documents containing the term w. If the term is present in all the documents
(e.g., if the term is a determiner), its IDF value is zero.

Clue Words: It is used to see if the sentence contains specific terms, such as those
present in a manually-defined list or in the document title. This features could
be either binary (e.g., 1 if the sentence contains a clue word, 0 otherwise) or
numerical (e.g., the number of clue words in the sentence).

Proper Nouns: It is a binary feature that captures the presence or absence of proper
nouns in the sentence. To see whether a sentence contains proper nouns, a search
for words starting with a capital letter is generally used, avoiding those at the
beginning of the sentence.

For instance, Kupiec et al. (1995) proposed a Naive Bayes classifier that uses fea-
tures such as sentence length, presence of proper nouns, presence of thematic words,
paragraph (if the sentence appears in the start of a paragraph or in the end of a para-
graph) and fixed-phrases (e.g., particular unigrams and bigrams such as “this letter” or
“results”).

2.2.3 Neural Network-based Models
Other research works, instead, developed systems that learn how to generate the sum-
mary word-by-word, starting from those produced by humans (i.e., the sentences that
compose the abstract). Such approach, called abstractive TS, is very common for Neu-
ral Network-based Summarization, where models are based on the encoder-decoder
framework. The encoder reads the text in input and generates a fixed-size vector rep-
resentation; then, the decoder uses the vector representation to generate the summary
word-by-word. Details on this neural network models could be found in Section 3.7. To
the best of my knowledge, [Rush et al., 2015; Chopra et al., 2016; Nallapati et al., 2016]
conducted the first works on this research field. Rush et al. (2015) used an attention-
based encoder followed by a neural language model [Bengio et al., 2003] to read the
input text and generate the summary. Chopra et al. (2016) substituted the language
model with a RNN-based one. Finally, Nallapati et al. (2016) adopted the Sequence-to-
Sequence model [Sutskever et al., 2014] for the summarization task. Those models also
use the attention approach proposed by Bahdanau et al. (2014) to select relevant por-
tions of the input text, using them as context to generate the next word in the summary.

2.3 Unsupervised Summarization
After the research work of Luhn (1958), several unsupervised techniques have been
proposed to generate a summary from the input document(s). To the best of my knowl-
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edge, the most relevant ones are: Graph, Latent Semantic Indexing (LSI), Integer Linear
Programming (ILP) and Lexical Chain (LC).

2.3.1 Graph-based models

In graph methods, a graph G=<V, E> is used to represent the document, where the
set of vertex V represents each sentence in the document, while the set of edges E de-
scribes the connections between those sentences. Such connections are computed using
functions that assess the similarity between two sentences (e.g., cosine similarity). The
graphs can be also oriented; in this case, edge direction respects the order of appear-
ance of the sentences in the document: if a sentence i precedes the sentence j in the
document, the edge ei,j will be an out-going edge for i and an in-going edge for j. An
example of graph is depicted in Figure 2.4. Once the graph is constructed, ranking algo-
rithms, such as PageRank [Brin and Page, 1998] or HITS (Hyperlinked Induced Topic
Search) [Kleinberg, 1999], are used to assign a score to each vertex. In details, those
algorithms computes the score of a sentence on the base of its connections. A popu-
lar sentence (i.e., a vertex with many connections) is preferred to be inserted into the
summary since it contains all information present in its neighbour vertexes. The scores
are then used to construct the summary, ranking the vertices in descending order and
picking them until the maximum summary size is reached.

Figure 2.4: The picture shows 5 sentences and their connections. The weight on the
edges describes the similarity between the two sentences.

Others, like Litvak and Last (2008), used the same mechanism to extract relevant
keywords that are used to create the summary. Dohare et al. (2018), instead, fused a
graph approach with Abstract Meaning Representation (AMR) [Banarescu et al., 2013].
In details, they started representing each sentence of the document as a graph; then, they
found relevant nodes and key relations through heuristics. They also expanded those
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Figure 2.5: The picture shows the singular value decomposition of an n × m matrix,
where n is the number of tokens and m is the number of sentences in the document.
Values ai in matrix Σ are the singular values.

graphs to capture surrounding information via Open Information Extraction [Banko
et al., 2007]. Finally, they used the state-of-the-art AMR method to transform the graphs
into a summary.

2.3.2 Latent Semantic Indexing-based methods

Latent Semantic Indexing (LSI), and in general Latent Semantic Analysis, are based on
matrices. The idea is to construct a matrix where rows represent unique words of the
document, and columns represent sentences. Each cell of the matrix can be a binary
value (i.e., term presence in the sentence) or a weight (calculated with TF-IDF, for in-
stance). Once the matrix is constructed, the LSI-based method is applied, transforming
it in the product of three distinct matrices: UΣV T (where T represents the transpose of
the matrix) - see Figure 2.5.

Then, as proposed by Gong and Liu (2001), the matrix V T is used to construct
the summary since it expresses the importance degree of a sentence respects to the
document topics. In detail, for each topic, the most informative sentence is chose using
V T . The process ends when the maximum summary length is reached.

Cagliero et al. (2019) proposed ELSA, a model that combines both LSA-based and
Itemset-based summarizers, being able to consider the correlations between multiple
terms and to summarize texts via LSA. First, they mined the itemsets, i.e. sets of terms
that frequently co-occurs in the same sentence; then, given the concept-by-sentence
matrix built using the extracted itemsets, they applied the LSA method to select the
relevant sentences for the summary.
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2.3.3 Integer Linear Programming-based methods
When I firstly introduced TS task, I said that a summary should be informative, non-
redundant and readable. However, many of the previous presented techniques (both
supervised and unsupervised) have difficulties to respect one or many of those points.
For instance, a LSI-based method could select two sentences that are different at the
syntactical level, but similar on the semantic one. To solve those problems, Integer
Linear Programming (ILP) models are used; an ILP model is an optimization problem
composed of an objective function to maximize (or minimize) and a set of constraints to
hold. ILP-based methods treats TS as a budget maximization coverage problem, where
they select the minimum number of sentences from the input document(s) that maximize
a function (i.e., the informativeness of the selected sentences) under certain constraints
(e.g., the maximum length of the summary).

In this context, Oliveira et al. (2016) proposed an interesting ILP model. They first
extract concepts (e.g., particular keywords) present in a document. Such concepts are
then weighted according to their score, which takes into account both the position of
the concept in the sentence and how many sentences contain that concept. Then, they
maximize the total weight of the selected concepts under the constrains that:

• the length of the selected sentences have not to exceed the maximum summary
length;

• if a concept is selected, at least one sentence containing the concept have to be
selected;

• if a sentence has some dependencies with other S ones, this sentence can be
inserted into the summary if and only if the S sentences have been previously
inserted.

They evaluated the model on DUC 2001, DUC 2002 and CNN datasets, obtaining high
Rouge scores (for detail about Rouge evaluation, see Section 2.4) with respect to state-
of-the-art models.

Another interesting work is the one of Nishikawa et al. (2010). The authors pro-
posed a method to summarize opinions, i.e. the judgement that a person has towards
an object or one of its aspects, such as the battery of a phone. Their idea is that the
summary could be seen as a direct path from a starting sentence to an ending one.
They constructed a graph where each edge connecting a pair of adjacent sentences has
a weight that expresses their coherence (i.e., the discourse coherence of moving from a
sentence to another one). The rest of their ILP model is similar to [Oliveira et al., 2016],
where they maximize the weight of the selected concepts and the weight of adjacent
sentences. In their work, they used the opinions as concepts, defined as triples of the
form <target, aspect, polarity>, with polarity ∈ [0, 1].
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Finally, Galanis et al. (2012) created a regression model using a Support Vector
Machine, called Support Vector Regression (SVR). Such model uses features such as:
the sentence position, presence of named entities in the text, and a weighting schema
similar to the Term Frequency - Inverse Document Frequency. The SVR is used to
compute a relevance score ai for each i-th sentence in the document. Those scores are
used in the formulation of the ILP model, where they maximize the relevance of the
selected sentences that form the summary while reducing the redundant information.

2.3.4 Lexical Chain-based methods

Other researchers [Saxena and Saxena, 2016; Brunn et al., 2001; Silber and McCoy,
2002; Barzilay and Elhadad, 1999], instead, tried to use Lexical Chains (LC) [Morris
and Hirst, 1991]. Lexical chains are based on the idea of lexical cohesion, i.e. some
relation between words. In details, the LC takes in input a set of words (extracted
from the input document) and uses Wordnet [Miller, 1995] to find the relation between
those words. The words that share some degree of relation (e.g., synonym relation,
merynyms relation and so forth) form a chain. If a word does not form any relation
with other words, it could make a chain by itself. Once the chains are constructed (a
document could have one or more chains), they are scored on the basis of their length
(short chains are preferred). Finally, LCs having the higher scores are used to retrieve
sentences from the document to summarize. Those extracted sentences are used to
construct the summary.

Figure 2.6 depicts an example of lexical chain.

Figure 2.6: The figure shows a possible lexical chain for the word “summarization”.
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2.4 Evaluation
So far, I described the different types of existing TS methods and the features used
in supervised systems. In this section, I will report how the TS tools, also know as
summarizers, are evaluated.

Generally, there exist two ways to evaluate a summarizer: manually or through
automatic methods. The former is a simple (but costly) way to evaluate the summaries,
since it only requires judges. In this case, judges usually express a value between 0
(void) and 10 (perfect) for each of the following aspects of the summary:

• presence of redundancy;

• syntactically accurate;

• semantically coherent;

• quality of the logical structure of the summary;

• presence of relevant information.

Then, those values can be combined with a weighted sum to obtain a single value for
each summary. An average score is calculated to define the overall summarizer quality.

For the automatic evaluation, Rouge (Recall-Oriented Understudy for Gisty Eval-
uation) [Lin, 2004] measures are used. Rouge is based on the idea of Bleu [Papineni
et al., 2002], where the automatic generated summary (called candidate summary) is
compared with the original one (called reference summary). More in detail, Rouge is
composed of several measures, but the most used for summarization are the following:

Rouge-1: comparison of unigrams (tokens) between the reference summaries and the
candidates. The score is the ratio between the number of common unigrams and
the number of those ones present in the reference summary;

Rouge-2: it is similar to Rouge-1, but compares bigrams (pairs of adjacent tokens);

Rouge-L: it takes into account the Longest Common Subsequence (LCS) between two
texts. It is used to overcome the problems of Rouge-1 and Rouge-2 in case of short
texts. Furthermore, it is used to see whether the candidate summary resembles the
reference one.

Nowadays, after the contribution of See et al. (2017), researchers started to use
Meteor2 [Banerjee and Lavie, 2005], since it aligns the candidate with the reference
using exact, stem, and paraphrase matching.

2http://www.cs.cmu.edu/∼alavie/METEOR/

http://www.cs.cmu.edu/$\sim $alavie/METEOR/


24 CHAPTER 2. THE SUMMARIZATION TASK

There exists another method interposed between manually and automatic methods:
Pyramid [Nenkova and Passonneau, 2004]. Pyramid is a semi-automatic method for
summary evaluation. It starts defining a set of SCUs (Summarization Content Unit) that
are not bigger than a clause3 and have a weight. Such set of SCUs emerges by manual
annotations. More in detail, a SCU consists in a set of contributors that express the same
semantic content. The weight of each SCU is defined by the number of its contributions.
Then, SCUs are partitioned into a pyramid, where the partition is based on SCUs weight.
Each tier of the pyramid contains SCUs having the same weight. The number of tiers is
defined by the maximum weight. For instance, if the maximum weight is 4, there will
be 4 tiers. SCUs having the highest score are posed on the top of the pyramid, while
those having the lowest score are posed on the base. The general idea behind tiers is that
the lowest is the tier, less informative its SCUs are. Once the pyramid is constructed,
SCUs are used to automatically assign a score to each summary. The score has a range
in [0, 1] and depends on the SCUs that are present in the text. Highest scores indicate
correct and informative summaries. An optimal summary should contain the first tier
SCUs and, length permitted, SCUs from the the next tiers.

2.5 Existing datasets
For Textual Summarization (TS), researchers have used several corpora through years.
In this section, I digested the most famous ones, reporting (where it is possible) their
size, language and summary type (i.e., how the summary was created) in Table 2.1.

corpus name train size eval. size test size language summary type
CNN/Dailymail 287,226 13,368 11,490 English expert

Gigaword 3,800,000 400,000 400,000 English article headline
LCSTS 2,400,000 8,685 725 Chinese expert

New York 589,284 32,736 32,739 English expert
Reddit 404 24 48 English expert
XSum 204,045 11,332 11,334 English first sentence

Table 2.1: The table reports the number of articles present in the train, evaluation and
test set for CNN/Dailymal, Gigaword, LCSTS, Reddit, XSum and New York corpora.
I also include the language and the type of summary: if it was created by an human
expert, if it is the first sentence of the article or if it is its headline.

The most used dataset comes from the conferences DUC4 (Document Understand-
ing Conference) and TAC5 (Text Analysis Conference). DUC was held for 7 consecutive

3A clause is an Elemental Discourse Unit.
4https://duc.nist.gov
5https://tac.nist.gov

https://duc.nist.gov
https://tac.nist.gov
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years, from 2000 to 2007, and it released a corpus for TS competitions from 2001 to
2007. TAC, instead, was held from 2008 to 2011, releasing a corpus for TS, textual
entailment and question answering each year. The corpus from DUC, especially the one
of 2004, has been used in recent work to compare systems [Rush et al., 2015; Cheng
and Lapata, 2016; Nallapati et al., 2016].

Another famous corpus is CNN/Dailymail dataset, also known as CNN/DM in lit-
erature, composed of articles coming from CNN and Dailymail websites. Each article
is composed of the main text and a set of bullets that represents the summary. It has
been proposed by Hermann et al. (2015), where they used the dataset to evaluate the
capability of neural networks to read a document with anonymized entities and answer
questions. Successively, Nallapati et al. (2017) used Hermann et al.’s corpus to train and
evaluate a neural network for extractive summarization. Finally, See et al. (2017) used
the non-anonymized version to train their neural network for abstractive summarization.
The choice of using a non-anonymized version is twofold:

1. the authors were interested to see the capability of the network to copy words
from the document to the summary;

2. to avoid all the problems created by the algorithm used by Hermann et al. (2015)
to anonymize the documents (see [Chen et al., 2016a] for details).

The non-anonimyzed version of CNN/Dailymail is composed of articles paired with
multi-sentence summaries, consisting in 287,226 training pairs, 13,368 validation pairs
and 11,490 test pairs. Each article has 781 tokens on average, while each summary has
3.75 sentences and 56 tokens on average.

Another corpus is Annotated Gigaword6, created by John Hopkins University’s Hu-
man and Technology Center. The corpus is the annotated version of Gigaword Fifth
Edition, containing automatically-generated syntactic and discourse structures. The Gi-
gaword Fifth Edition contains 4,111,240 articles with very simple and minimal markup
structure. The corpus has been used by [Rush et al., 2015; Nallapati et al., 2016] to train
and evaluate their systems. In their work, the models take in input the article and try
to produce the headline. The authors propose to use 3,800,000 articles for training, and
about 400,000 for validation and testing purpose.

Another famous corpus for Summarization is LCSTS, the Large-scale Chinese Short
Text Summarization dataset [Hu et al., 2015], which has been constructed crawling Sina
Weibo, a popular Chinese social network. In Sina Weibo, people or associations daily
post an article with a short summary (less than 140 Chinese characters). Hu et al. (2015)
started from a subset of 50 popular organization users and collected the users followed
by such popular organization, filtering those ones that have less than 1 million followers.
Their idea is that popular users are able to produce short, informative and grammatically

6https://catalog.ldc.upenn.edu/LDC2012T21

https://catalog.ldc.upenn.edu/LDC2012T21
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correct summaries. Then, they extracted the <text, short summary> pairs produced by
the selected users, and divided them in three subsets: Part-I, Part-II and Part-III. Part-I
contains 2,400,591 pairs that can be used for the training of a system. Part-II and Part-III
contain 10,666 and 1,106 pairs respectively and they are evaluated by 5 human judges.
More in detail, the authors asked to judges to give a score between 1 and 5 to each pair,
according to the objectivity of the summary, its grammar and logic coherence with the
original text. From the analysis of those scores, they found that pairs with a 3, 4 and 5
score are informative, concise and short. They propose to use such pairs to evaluate the
systems.

Another corpus is Reddit7, created by Ouyang et al. (2017). The authors created
the corpus starting from 476 personal narratives collected by Ouyang and McKeown
(2015). Each story has been annotated with an abstractive and extractive summary
using Amazon Mechanical Turk. The annotation produced 1088 aligned abstractive
and extractive summaries. Kedzie et al. (2018) used such corpus to train and evaluate
their system, splitting it into 404 stories for trainset, 24 stories for validation set, and 48
stories for testset.

Another corpus is XSum8, created by Narayan et al. (2018) harvesting BBC articles
ranging over almost a decade (from 2010 to 2017). The corpus contains 226,711 articles
that has been divided into 204,045 articles for training, 11,332 for validation and 11,334
for test. The summary of each article was created by selecting its first sentence, which
is an introductory sentence (usually written by the author of the article) that digests the
content of the article. Each article of the corpus has an average number of words of
431.07, divided into about 19.77 sentences; the summary, instead, has an average length
of 23.26.

Finally, Paulus et al. (2018) propose to use New York annotated corpus9 as further
corpus to train and evaluate summarization systems. The corpus contains article writ-
ten by the New York Times between January 1987 and June 2007. It is composed of
1,800,000 articles, of which over 650,000 articles have a summary written by library
scientists. According to Paulus et al. (2018), the corpus has varied and shorter sum-
maries, with a high level of abstraction of paraphrase. They sorted the 650,000 articles
in chronological order and then used 589,284 articles for training, 32,736 documents
for validation and 32,739 articles for test.

7www.reddit.com
8https://github.com/EdinburghNLP/XSum
9https://catalog.ldc.upenn.edu/ldc2008t19

www.reddit.com
https://github.com/EdinburghNLP/XSum
https://catalog.ldc.upenn.edu/ldc2008t19


Chapter 3

Background on Neural Networks

3.1 Introduction
Neural Networks are Machine Learning algorithms, i.e. algorithms that could be trained
using real-data to solve a specific task (e.g., predict the class of a document). Neural
Networks have been inspired by the structure of the brain, where the fundamental unit
is the neuron (see Figure 3.1) composed of four parts:

Dendrite: It is the input channel of the neuron, which receive electro-magentical sig-
nals from other neurons;

Synapse: It is the output channel of the neuron, used to emits the elabored signal to
other neurons;

Axon: It is another channel that connects the center of the neuron, called Soma, with
the Synapse;

Soma: It is the fundamental part of the neuron. It could be seen as the CPU of a
computer, since it elaborates the signals coming from the Dendrites, and decides
to emit an output (i.e., to activate) or not. If the neuron activates, a signal is
propagated through the Synapse; otherwise, no signal is emitted.

More in detail, the signal received by the neuron from its dendrites could excite
it, which will generate an output if the excitement surpasses a threshold (in jargon,
activate). The input signal could also inhibit the neuron, i.e. the signal prevents the ac-
tivation of the neuron. This binary behaviour is at the base of our 100 billion neurons in
order to understand every complex input coming from the world. For instance, a sound
(that we listened) activates only some part of the brain (those ones that are designed to
elaborate sounds and language), while others (e.g., the one regarding motion) will be
probably inactive1. Such elaboration is performed hierarchically, where the raw signal

1This is an hypothetical representation used to explain how the brain works.

27
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Figure 3.1: The figure represents an human brain’s neuron. The image was taken from
Wikipedia (https://en.wikipedia.org/wiki/Neuron)

is passed to a first layer of neurons. Some of them will fire, while other not. The output
of the layer is passed to another one, and the process is repeated until the brain results
in a final response.

The structure and behaviour of the neurons have been (and it is still) studied by neu-
rologists and logicians in order to replicate it in constructed machines. To the best of my
knowledge, the first work that posed the basis of modern neural network is [McCulloch
and Pitts, 1943], from Warren McCulloch (neuroscientist) and Walter Pitts (logician).
In their work, the authors formalize a logical system where neurons receive boolean
values through the denditres. The neuron aggregates those value via a sum, and the re-
sulting value is passed as input to a function which defines the behaviour of the neuron.
Such function could represent any boolean operator, but the xor. With more details, if
the coming summed value is greater than a given threshold, the function will emits (in
jargon, fire) the value 1; otherwise, the emitted value is 0. In their article, the authors
made also the following assumptions for their system (where some still hold in current
neural network models):

• A neuron can emits or not a value. They call it all-or-none process;

• The excited synapses at a given time are independent from position and previous
activities;

• The structure of the network does not change.

More details about the neuron of McCulloch and Pitts can be found in Appendix
A. Their idea has been further elaborated by Rosenblatt in his perceptron [Rosenblatt,
1958]. Rosenblatt proposed some changes that are the fundamental of modern neural
networks:

https://en.wikipedia.org/wiki/Neuron
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• The input of the neuron could be any value (belonging to Rn), and not just a
boolean one;

• The output of the neuron is a value in the set {−1, 1};

• The input values are multiplied by a set of weight that excites or inhibits the
neuron;

• A training rule to modify the weights of the perceptron.

However, both McCulloch and Pitts’ neuron and Rosenblatt’s perceptron are not
able to solve problems involving non-separable data, or in more general to represent the
xor function. According to Minsky and Papert (1988), many tasks involve non-linearly
separable datasets. This set the research on neural networks aside until backpropagation
was adopted. The backpropagation algorithm has no connection with how the human
brain works, since it is based on the minimization of an objective function using a gra-
dient descent method. It has been the engine of the neural network renaissance, leading
to the creation of Multi-Layer Perceptron, Convolutional Neural Network [LeCun et al.,
1995], and Recurrent Neural Network models [Hochreiter and Schmidhuber, 1997; Gers
et al., 1999; Cho et al., 2014].

3.2 Rosenblatt’s Perceptron
The perceptron model proposed by Rosenblatt (1958) is, to the best of my knowledge,
one of the seminal works on Neural Networks. The architecture of the perceptron in-
volves a set of weights that analyzes the input data to produce an output. The interesting
aspect of the model is that those weights can be modified with respect to the output in
order to reduce the error. Such architecture is at the base of nowadays Artificial Neural
Networks.

Suppose to have a dataset composed of two classes, C1 and C2, and that is linearly
separable. With linearly separable I means that, representing such points on a space,
it is possible to draw an hyperplane that perfectly divides the examples into the two
classes. Figure 3.2 shows a linearly separable dataset. It is a sufficient and necessary
condition for the convergence of Rosenblatt’s perceptron.

The Rosenblatt’s perceptron is capable to learn from the dataset and classify new
examples in input into the two classes. The perceptron calculates a weighted sum of
the input, multiplying the values by the weights and summing the results together. The
resulting value, called local field v, is passed as input to an hard-function ϕ, a sign
function which assign the input to one of the two classes: C1 if the output of the function
is 1, or C2 if it is −1. Let (x1, . . . , xn) be an input vector, and let (w1, . . . , wn) be a
vector of weights. The perceptron is defined by the following equations:
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Figure 3.2: The figure show a linearly separable datasets. The grey line represents the
hyperplane that perfectly separates the points of the two classes.

ϕ(v) =

{
1 if v > 0

−1 if v ≤ 0
(3.1)

v =
n∑
i=1

wn ∗ xn (3.2)

A visual description of the model is depicted in Figure 3.3.

Figure 3.3: The figure shows the structure of a perceptron.

The training of the network is performed changing the weights in order that the
weighted sum of a C1 class example produces a positive local field, while the weighted
sum of a C2 class example produces a negative (or zero) local field. This means it is
drawing an hyperplane that separates the two classes.

For simplicity, let x(m) be the input vector and w(m) be the weights vector at the
m-th timestep. The model has to calculate a vector of weights w such that for each
timestep m:

w(m)Tx(m) > 0 and x(m) ∈ C1

w(m)Tx(m) ≤ 0 and x(m) ∈ C2
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How is it possible to change the weights in order to make the previous statement
true? Generally, each time an example is read, it falls under two cases:

case 1 : The perceptron correctly predicted the class of the example. In this case, the
weights are not updated: w(m+ 1) = w(m);

case 2 : The perceptron wrongly predicted the class of the example:

(1) w(m)Tx(m) > 0 and x(m) ∈ C2, or

(2) w(m)Tx(m) ≤ 0 and x(m) ∈ C1

In (1), the perceptron overestimates, so the weights have to be decreased. In (2), the
perceptron underestimates, so the weights have to be increased. Rewriting w(m)Tx(m)
as v(m) for convenience. Those two changes can be represented as:

w(m+ 1) = w(m)

{
−η(m)x(m) if v(m) > 0

+η(m)x(m) if v(m) ≤ 0
(3.3)

where η(m) is a constant, called learning rate, that controls the update of the
weights. In geometrical terms, each weight update produced by Equation 3.3 moves
the hyperplane, called decision boundary (see Figure 3.2), in such a way that the exam-
ples of the two classes are separated.

Generally, the learning rate is in the range (0, 1]. A large learning rate (e.g., 1.0)
means that all the information contained in x(m) is used; in this case, the update step
will be large, making the network converging fast. A small learning rate (e.g., 0.05)
means that the information contained in x(m) are rescaled to small values; in this case,
the update step will be small, making the network converging slowly.

The Rosenblatt’s perceptron converges if and only if the dataset is linearly separable.
But, what will it happen if the dataset is not linearly separable? The perceptron will
never converge, making the algorithm not useful to solve the task. Since many tasks
are based on non-linearly separable datasets (as reported by Minsky and Papert (1988)),
this reduced the research on Neural Networks until backpropagation2 was adopted in
Artificial Neural Networks.

3.3 Artificial Neural Networks
Artificial neural networks tried to replicate the structure of brain using artificial neurons
(MPNs or perceptrons, for example) organized in a hierarchical manner. These networks
are trained simulating the brain behaviour, where the learning comes from strengthen-
ing connections designed to solve a specific task (e.g., recognizing hand-writing). As

2The backpropation algorithm is described in Appendix B.
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we seen in the perceptron, the learning requires a feedback that is used to modify the
weights of the neurons, producing a specific output given a specific input. Such learn-
ing could be supervised or unsupervised. The former one requires examples of the form
<input, label>, where the label is used to give a feedback to the network. For instance,
the input could be the features of an example and the label could either be a class C1

or C2. In this case, the network is trained to output the correct answer given a specific
input. More in detail, the network receives in input an example and predicts its class; if
the class predicted is different from the label (e.g., the network predictedC2, but the cor-
rect answer is C1), the weights are changed via partial derivatives in order to correctly
recognize the input example. In the unsupervised learning, the network will strengthen
its connection in order to cluster examples with a similar structure, without using any
label. An example of unsupervised neural network is the Self Organizing Map (SOM)
[Kohonen, 1990]. Despite this latter case is very interesting, it is not the focus of this
thesis.

Artificial Neural Networks are composed of three or more layer, and are called feed-
forward since the information flows from the first layer to the last one. The first layer is
called input layer, while the last one is called output layer. Any layer between the input
and the output is called hidden layer. Each layer (except the input one) contains neurons
that are connected with the previous one. If neurons of a layer are connected with all
neurons of the next layer, we said that the network is fully-connected. An architecture
of feed-forward network is depicted in Figure 3.4.

Figure 3.4: The pictures shows a fully-connected feed-forward neural network with
three layers: an input layer, an hidden layer, and an output layers. Colored circles
represent neurons.

Input layer simply reads the data in input and makes them usable for the next layer.
In this layer, I prefer to include word embeddings [Mikolov et al., 2013c; Pennington
et al., 2014], since it transforms each word in input into a numerical representation
usable by the network. In detail, the word embedding is a matrix where each row repre-
sents a word in the vocabulary and each column represents a feature of a word. The idea
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of word embedding comes from distributional semantic approaches, where words are
represented as continue vectors. Such vectors can be pre-trained (generated by a neural
language model) or learned during the training of the model. Word embeddings will be
explained in Section 3.6.

Hidden layers are interposed between input and output layer. The goal of hidden
layers is to extract high-level features that can be used to classify the input. For instance,
hidden layers can combine pixels of an image into edges, edges into object parts, and so
forth.

Output layer is used to make the prediction. One of the most used function in the
output layer is the softmax function, which generates a probability distribution over the
classes. The predicted class is the one with the highest probability. Let x be a vector
belonging to Rm×1, where m is the number of classes. The probability score of i-th
class can be defined as:

softmax(xi) =
exi∑m
j=1 e

xj
(3.4)

This function is widely used in Summarization to predict the next word in output; in
those tasks, the words in the vocabulary are treated as classes.

Activation Functions

Activation Functions are widely used in Neural Network models. For instance, Rosem-
blatt’s perceptron uses the hard-function (or step function) to generate the label. In
general, the activation functions are applied to the weighted sum of the input in order
to produce an output, which can be either an hidden space to extract further features or
an output representation (e.g., a probability distribution over the label set). A common
function is the sigmoid, that maps a value to the range [0, 1].

σ(x) =
1

1 + e−x
(3.5)

The function has a characteristic S-shape and simulates the activation of a neuron. It
could be also used to represent a Bernoulli distribution. The output of sigmoid function
strictly depends from x:

• with positive x, the output tends to 1;

• with negative x, the output tends to 0;

Other most used functions in neural networks are:

hyperbolic tangent: a function that maps a value to the range [-1, +1]. It is one of
the most used function in neural networks since it does not “stuck” the network
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Figure 3.5: The picture shows the geometrical representation of sigmoid function in the
range [−5, 5].

during the training due to values close to zero.

tanh(x) =
ex − e−x

ex + e−x
(3.6)

Figure 3.6: The figure shows the tanh function in the range [−5, 5]

Rectified Linear Unit: also called ReLU. It is a function that maps the input to the
range [0,∞). The idea behind ReLU is to help the model to account interaction
effects, i.e., when a variable affects the prediction on the basis of another one
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(e.g., weight and height).

ReLU(x) = max(0, x) (3.7)

The main advantages of the ReLU function are: (i) it accelerates the training of
the network compared to the previous functions (sigmoid and tanh); (ii) it involves
less expensive mathematical operations than hyperbolic tangent, which derivative
requires the exponential. However, it presents a drawback: larger gradients3 could
update the weights in a such way that the function will not activate (i.e., it returns
0) for any input.

Figure 3.7: The figure shows the ReLU function in the range [−5, 5]

Bias

When I presented the perceptron, I said that it computes a weighted sum of the inputs
values, and then it applies the activation function (e.g., sign or sigmoid). An important
changes to the model is the introduction of a bias value. Such value, which is added to
the local field, makes the neuron more sensible (or insensible) to certain inputs. An ex-
ample of how the sigmoid function varies with different bias values is depicted in Figure
3.8. For instance, in case of a bias equals to 1, the network will be more insensible to
negative inputs.

A compact way to represent the bias function is to treat it as a weight, which is
always multiplied by the constant 1. In this way, it can be easily added to the local field
of the neuron. This new architecture is depicted in Figure 3.9.

3The gradient is a vector whose components are the partial derivatives of the function to which it is
applied.
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Figure 3.8: The figure shows how the sigmoid function changes when different bias
values are added.

Figure 3.9: The image shows a perceptron where the bias is treated as a weight. The
yellow rectangle with b represents the bias.

3.4 Computational Graph
Generally, the architecture of a Neural Network model can be represented using the
computational graph, which describes the variables (weights) involved, how they are
combined to produce an output, and in generally how the layers are organized. The
purpose of the computational graph is not only to describe the network, but also to
provide a structure on which the network can be implemented. The computational graph
can be defined as a Directed Acylic Graph (DAG). In the computational graph, nodes
indicate variables and edges represent interactions between variables. A variable can
be a scalar, a matrix or a tensor. The computational graph contains also operations,
functions of one or more variables. If a variable y depends on the application of a
function on the variable x, an edge between the two variables is drawn, labelling it with
the name of the function. Figure 3.10 shows an example of computational graph.

Both algebraic expressions and computational graphs operate on symbols, variables
that have a specific value. Such symbols can be substitute with numerical value. It
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Figure 3.10: The image shows an example of computational graph.

can be compared with instantiate and initialization in programming languages: first, a
variable that will contain a string (or an integer, for example) is instantiated; then, a
value is assigned to the variable. I will use computational graphs to explain Recurrent
Neural Networks in Section 3.7, one of the most adopted networks in the Summarization
task.

3.5 Loss Functions

Artificial Neural Networks widely differ from Rosemblatt’s perceptron: while this latter
one only checks if its output is aligned with the expected one, artificial neural networks
can access to a plethora of functions that provide an insight of how well the model is
performing on the task. These functions are called in jargon loss functions, and are
used to update the weights (biases included). In the Neural Network architecture, the
loss function is located after the output prediction since it acts on this latter one. For
instance, when a network receives in input the data, it processes them hierarchically
through its layers, emitting the output (which can be a probability distribution over a set
of classes). The output is then compared with the gold standard using the loss function,
which (in this case) expresses how the network has to change the weights in order to
predict the correct class.

There exist several types of loss function that depend on the task, but the most fa-
mous one is the cross entropy. Suppose to have a fixed model (also knows as hypothesis)
that predicts for m classes [x1, x2, . . . , xm] their occurrence probabilities [y1, y2, . . . ,
ym]. Suppose to observe (in real) k1 instances of class y1, k2 instances of class y2, and
so on up to km instances of class ym. According to the described model, the likelihood
is:

P [data|model] = yk11 y
k2
2 . . . ykmm (3.8)
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Taking the logarithm of Equation 3.8 and changing the sign, it is possible to obtain
the log-likelihood:

− logP [data|model]
= −k1 log y1 − k2 log y2 − · · · − km log ym

= −
m∑
i=1

ki log yi

(3.9)

Defining N = k1 + k2 + · · · + km, the left hand side and the right hand side of
Equation 3.9 can be divided by such value:

− 1

N
logP [data|model]

= −k1
N

log y1 −
k2
N

log y2 − · · · −
km
N

log ym

= − 1

N

m∑
i=1

ki log yi

(3.10)

Setting ŷi =
ki
N

, the equation of the cross entropy is obtained:

CE(ŷ, y) = −
m∑
i=1

ŷi log yi (3.11)

where the part log yi (in case of base 2) represents the minimal number of bits needed
to encode the independent event with probability yi, i.e. it represents the length of the
encoding. In case of only two classes, Equation 3.11 is rewrote as follows:

CE(ŷ, y) = −ŷ log y − (1− ŷ) log(1− y) (3.12)

Other functions that can be used to train a neural network are:

Negative Log Likelihood: It is used when the neural network emits a probability value
for each class. The aim of this loss is to maximize the probability value of a single
class.

L(y) = − log p(y)

Hinge Loss: It is a loss used for maximum margin classification, such as the one per-
formed in the Support Vector Machine. The idea is to draw an hyperplane that
divides the instance of two classes into two distinguished groups. The following
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equation shows the hinge loss for a multi-label classification, where m is gener-
ally set to 1. In the hinge loss, if the predicted class ŷ is the same of y, the result
is 0.

L(ŷ, y) = max(0,m− ŷy)

Cosine Similarity: It is used to measure the similarity of two vectors. This loss has a
range in [−1, 1], where−1 means that the two vectors are different, while 1 means
that the two vectors are the same. A network trained with the cosine similarity
loss will modify the vectors in order to make them close.

L(ŷ, y) =
ŷ · y

||ŷ|| · ||y||

where || · || is L2 norm of the vector.

Kullback Leibler (KL) Divergence: It measures the divergence of a probability dis-
tribution respect to another one. The KL divergence has a range in [0, 1], where
0 means that the two distributions are different, while 1 means that the two dis-
tributions are the same one. The KL divergence is not a symmetric function: it
only measures if the first distribution is similar to the second one. If the two
distributions are swapped, the KL divergence will produce a different value. A
network trained using KL divergence will modify the weights in order to make
the predicted distribution similar to the target one.

L(ŷ, y) =
1

M

m∑
i=1

DKL(ŷi, yi) =
1

M

m∑
i=1

[yi · log(
yi
ŷi
)]

3.6 Word Embedding
When I presented the neural networks, I said that they accept numerical values as inputs.
As consequence, neural networks for Natural Language Processing tasks have to map
vocabulary words to numerical features. But how is it possible to do that? Researchers
found that those vectors can be generated using a neural network. The resulting set of
vectors is called word embedding. In detail, a numerical vector (initialized randomly or
through a uniform distribution) with fixed dimensions is created for each word in the
vocabulary; then, the network is trained to solve a language model task, i.e. predicting
the next word given a fixed-size context window. During the training, the network will
find the features that best represent each word of the vocabulary. Furthermore, those
vectors generate an n-dimensional space where words that appears in the same contexts
(e.g., synonyms or city names) are close, forming clusters.

The idea of representing words as vectors comes from the distributional seman-
tics, where words are defined according the company they keeps [Firth, 1957]. Bengio
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et al. (2003) followed the core of distributional semantic approach, defining a neural
network-based language model. They trained the language model to predict the next
words in a sentence, given a fixed size window of previous words (they are represented
via word embedding). Since the network is trained to predict the next words, it learns
to distinguish them on the basis of their context in a unsupervised fashion. The features
that help to differentiate a word from another are collected in the vectors. Successively,
Mikolov et al. [Mikolov et al., 2013c,a,b] refined the model proposed in [Bengio et al.,
2003]. The authors proposed two variants: Continuous Bag-Of-Words (CBOW) that
is similar to the model of Bengio et al., and SkipGram which is trained to predict the
context that surrounds a target word. They also introduced some techniques to im-
prove the word embedding and to make the training fast, such as hierarchical softmax
and negative sampling. Pennington et al. (2014) proposed a different model to create
the word embedding. They combined statistical information about word co-occurrence
with the word embedding. Other authors tried to include different information into word
embedding. For example, Iacobacci et al. (2015) proposed SensEmbed, where they ap-
plied SkipGram onto disambiguated words. They used BabelNet [Navigli and Ponzetto,
2010] to find the sense of each word in the text. Bojanowski et al. (2017), instead,
included character information; they called the model FastText.

Finally, other authors [Peters et al., 2018; Devlin et al., 2018] redefined the previous
neural-based language models to obtain a deep contextualized word representation. In
this context, ELMo and BERT will be presented.

3.6.1 Neural Language Model

Bengio et al. (2003) proposed a Language Model based on Neural Networks. Their
model is based on a feed forward network that takes in input a phrase excerpt, and
predicts the word that follows that excerpt. In details, they first constructed a training
set where the input is a context window formed by m consecutive words, and the target
is the m+1 word. They created such training set from sentences. Then, they developed
a feed-forward network, depicted in Figure 3.11. The network takes in input the context
window and maps the words to their corresponding word embedding; then, the hidden
layer transforms those embedding into a single vector representation of size 1 × n,
where n is the size of the hidden vector. This vector is then used to emit a probability
distribution over a fixed size vocabulary. The probability distribution is generated using
the softmax function. Supposing that the vocabulary size is V , the softmax function first
transforms the hidden vector into a 1 × V one, multiplying it with a weight matrix of
size n × V ; then it generates the probability distribution applying the exponential and
normalizing the values. Finally, the word having the highest probability is compared
with the target one, and the error is backpropagated.
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Figure 3.11: The image shows Bengio et al. [Bengio et al., 2003] language model.

3.6.2 Word2Vec: CBOW and SkipGram

Mikolov et al. [Mikolov et al., 2013c,a,b] proposed two different models to generate
the word embedding, collected under the name of word2vec. The first one, called Con-
tinuous Bag-Of-Word (CBOW), is similar to the model defined by Bengio et al. In the
description of the model, I will first start from a simplified version (with just one word
in input) to explain all the layers; then, I will describe the real case, where a bag-of-word
is given in input to the network. In the models, I suppose that the vocabulary size is V ,
the size of the hidden layer is H , and that the input is a one-hot vector, i.e. a vector
where one of the V words {x1, x2, . . . , xV } has value 1. I represent this latter vector
with x of size V × 1.

In the simplified version, I will assume that the networks receives only a word in
input and predicts the following word. For instance, suppose to have the sentence “a
brown fox is running”; if the word brown is given in input, the network will predict fox.
In detail, the network multiplies x with the matrix E, which has size H×V . The matrix
E is called word embedding. Since the input vector x has all zeros, except for one value,
it will select from the matrix E the row that corresponds to that value. For instance, if
wk = 1 and wi = 0 for all i ̸= k, the product between x and E will extract the word
embedding that corresponds to wk:

vk = E x (3.13)

where vk is the word embedding of wk, i.e. the k-th row of matrix E. Differently
from the model of Bengio et al., CBOW has a no activation function in the hidden layer.
Once that the word embedding of a word is extracted, the network predicts the next
word. The output layer of the model is the same of Bengio et al. In detail, it multiplies
the vector vk with the matrix W , which has size V × H , in order to produce a score
for each word wj in the vocabulary. Those scores are then transformed into probability
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Figure 3.12: The picture shows the architecture of CBOW (on the left), and SkipGram
(on the right). The image is taken from Mikolov’s research paper [Mikolov et al.,
2013a].

values applying the softmax function. The output layer is defined through the following
equations:

uj = Wk,jvk

p(w = wj) =
exp(uj)∑V
j′=1 exp(uj′)

(3.14)

where uj is the score of the j-th word in the vocabulary, and Wk,j represents the
weight that connects the word embedding of k-th word with the j-th word in output.

In the real version of CBOW, the network does not only take in input one word, but
a context windows composed of C words. Each word wk is then mapped to its word
embedding vk. The main difference between this model and the simplified one is that
each word embedding is not separately passed to the output layer, instead the network
calculates an average vector. Defining the context window words {w1, w2, . . . , wC}
where each w is represented as a one-hot vectors of size C, the output of the hidden
layer is defined as follows:

v =
1

C
(v1 + v2 + · · ·+ vC) (3.15)

The average vector v is then multiplied by the matrix W to obtain a score for each
vocabulary word. This model is depicted in Figure 3.12.

SkipGram is the opposite of CBOW since it swaps the output and the input: instead
of predicting the next word given a context, it predicts the context given a target word.
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Figure 3.13: The image shows a binary tree for a vocabulary containing 5 words. The
arrows in orange shows the path from the root to word w3.

Furthermore, the architecture of the network is a swapped version of CBOW, as it is
reported by Figure 3.12. More in detail, SkipGram is similar to the simplified version of
CBOW up to the hidden layer. For the output layer, it predicts a probability distribution
over the vocabulary for each context word. The error of the network is defined as the
sum of the errors of each target word.

Hierarchical Softmax

One of the biggest problem in calculating the probability distribution over the vocab-
ulary is the bottleneck caused by softmax function. This latter one requires a lot of
time to be computed, especially with very larger vocabulary. To overcome this issue,
hierarchical softmax was adopted. Hierarchical softmax uses a binary tree to store all
the vocabulary words. Given a vocabulary of size V , there are V leaves in the tree, and
V − 1 inner levels. For each word, there exists an unique path from the root to the leaf.
Figure 3.13 shows an example of binary tree for the hierarchical softmax.

In the hierarchical softmax, words do not have a vector associated to them, i.e. one of
the dimension of matrix W is no longer V but a single value. The vector representation,
instead, is moved to to the inner nodes. The probability of emitting a word wi is then
calculated as follows:

p(w = wi) =

L(wi)−1∏
j=1

σ(Jn(w, j + 1) = ch(n(w, j)) v′T
n(w,j)hK) (3.16)

where ch(·) is the left child of inner node n, h is the output of the hidden layer
(the average vector for CBOW, and the embedding of the input word for SkipGrim),
and v′

n(w,j) is a row of the output matrix W that corresponds to the node n(w, j). The
function J·K is defined as follows:
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JxK = {
1 if x is true
−1 otherwise

(3.17)

Let me explain Equation 3.16 through an example. Suppose to calculate the prob-
ability of w3 being an output word, given the tree of Figure 3.13. Such probability can
be defined as a random walk that starts from the root and ends to the leaf in question.
In detail, to calculate the probability of w3, the probabilities of going left and right for
each inner node (root included) are calculated. The probability of going left at node n
is defined as:

p(n, left) = σ(v′
nh) (3.18)

and the probability of going right as:

p(n, right) = σ(−v′
nh) = 1− σ(v′

nh) (3.19)

Hence, following the path from the root to the leaf, the probability of emitting the
word w3 in output is defined as follows:

p(w = w3) = p(n(w3, 1), left) · p(n(w3, 2), right) · p(n(w3, 3), left)

= σ(v′
n(w3,1)

h) σ(−v′
n(w3,2)

h) σ(v′
n(w3,3)

h)
(3.20)

Negative Sampling

Differently from the hierarchical softmax, which simplifies the softmax function, neg-
ative sampling acts on the parameters level. The idea is to simplify the loss function
in order to update only the vectors (output and embedding) of the target word(s), and
the ones of few words that are sampled as negative examples. The noise distribution is
used to sample the negative words, which is defined as an unigram distribution raised

to the
3

4
th power. Given Wneg as the set of sampled negative words, the loss function is

defined as follows:

L = − log(p(w = wj))−
∑

wk∈Wneg

log(p(w = wk)) (3.21)

3.6.3 Finding similar words
When I first described the word embedding, I said that they represent features extracted
by the Neural Network. Since they contain features, it is possible to perform several
operations on them:
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Figure 3.14: An example of word embedding involving three types of animals.

1. a projection into an n-dimensional space (with n equals to 2 or 3), where each
dimension represents a feature. In this way, it is possible to see how words have
been self-organized according to their features;

2. an exploration of the vicinity of a word, retrieving all similar ones that are close
to the target word;

3. word analogies resolution under the form of: a − b = c − d, where a, b, c and d
are words. In the analogy, 3 of 4 words are given; the 4th one is the wildcard that
has to be found. For instance, “Italy - Rome = France - x” is an analogy where the
wildcard is Paris. Such analogy could be read as “if Rome is the capital of Italy,
which is the capital of France?”.

For the first point, Principal Component Analysis (PCA) or t-distributed Stochastic
Neighbor Embedding (t-SNE) [Maaten and Hinton, 2008] could be used to project the
word embedding from an high-dimensional space to a 2-dimensional one. Figure 3.14
shows an example of a represented word embedding.

For points (2) and (3), the cosine similarity function is used to rank the words with
respect to the target one. Given a input word wi, the function is defined as follows:

cosine(E(wi), E(wj)) =
E(wi)

TE(wj)

||E(wi)|| ||E(wj)||
(3.22)

where E(·) is a function that maps a word to its embedding vector, || · || is L2 norm,
and wj is another vocabulary word different from wi. For point (3), Equation 3.22 is
slightly modified in order to include all given information. Supposing that the wildcard
is d, wi will be a − b + c. In this case, each word d in the vocabulary that is closed to
a − b + c in the word embedding is ranked using the cosine function. Then, the word
having the highest score (i.e., the closest one to a − b + c) is selected as answer. The
cosine function for the Italy-France capital example is calculated as:
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cosine(Italy −Rome+ France, d) =

cosine(E(Italy)− E(Rome) + E(France), E(d))
(3.23)

3.6.4 Glove
When I first described word embedding, I said that it is based on the idea that a word
could be defined according to the company it keeps [Firth, 1957]. For such reason, the
previous model tried to capture those information predicting the next words (or all the
words in a given context windows). Pennington et al. (2014), in their model Glove, tried
to further explore this direction, including co-occurrence information extracted from a
corpus.

To define their model, they first started constructing a co-occurrence matrix X ,
where the cell Xi,j contains how many times the word i appears in the same context
of word j. Using this matrix, it is possible to calculate the probability that a word wi
appears in the same context of a word wj:

Pi,j = P (i|j) = Xi,j

Xi

(3.24)

where Xi is the sum of all cells of i-th row, i.e. Xi =
∑

j Xi,j . Using Pi,j , the
relationship of words wi and wj with a context word ŵk can be calculated:

F (wi, wj, ŵk) =
Pi,k
Pj,k

(3.25)

The right-hand side of the above equation is extracted from a corpus, while the left-
hand side may depend of some sort of unspecified parameters. Since Pennington et
al. want to represent words as embedding vectors, they decided that F should encode

the information of
Pi,k
Pj,k

into the vector space. This could be done treating all the three

words in the left-hand side as vectors and computing the difference between the vector
that represents wi with the vector that represents wj . Equation 3.25 is then changed as
follows:

F (wi − wj, ŵk) =
Pi,k
Pj,k

(3.26)

It is possible to notice a problem in Equation 3.26: the arguments of function F are
vectors, while the right-hand side is a scalar. This equation can be solved computing
F with a neural network, but this would obfuscate the linear structure that the authors
want to capture. To prevent that the vector dimensions are mixed in an undesirable way,
they took the dot product of the arguments:
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F ((wi − wj)T ŵk) =
Pi,k
Pj,k

(3.27)

The next step is to include the symmetry of co-occurrence matrix X into the equa-
tion to model the possibility of swapping the two words, i.e. Xi,j = Xj,i. To do this in
a consistently fashion, they have to make the model invariant not only to the exchange
of wi ↔ wj , but also to X ↔ XT . First, they created an homomorphism between the
groups (R, +) and (R>0, ×) as follows:

F ((wi − wj)T ŵk) =
F (wTi ŵk)

F (wTj ŵk)
(3.28)

where function F (·) in the right-hand side is solved by

F (wTi ŵk) = Pi,k =
Xi,k

Xi

(3.29)

The solution of Equation 3.28 is F = exp:

wTi ŵk = log(Pi,k) = log(Xi,k)− log(Xi) (3.30)

Adding the bias of wi and ŵk into the above equation, the following equation is
obtained:

wTi ŵk + bi + b̂k = log(Xi,k)− log(Xi) (3.31)

which will exhibit the exchange property if not for log(Xi). Then, they absorbed
the term log(Xi) into bi because the former is independent from the other terms. The
resulting equation is then:

wTi ŵk + bi + b̂k = log(Xi,k) (3.32)

Equation 3.32 represents the core engine of Glove because it is used to train the
model, and consequently to generate the word embedding. The loss function follows:

L =
V∑
i=1

V∑
j=1

f(Xi,k)(w
T
i ŵk + bi + b̂k − log(Xi,k)) (3.33)

where V is the vocabulary size, and f(·) is a function that satisfies the following
properties:

• f(0) = 0;

• f(x) should be non decreasing in order to not overweight rare word co-occurrences;
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• f(x) should be small for large values of x.

They found that the following function satisfies all the conditions:

f(x) =

{
(x/xmax)

3
4 if x < xmax

1 otherwise
(3.34)

For the value of xmax, Pennington et al. empirically found that 100 gives the best
results. Once the network is trained, the final word embedding of the i-th word of the
vocabulary is obtained summing together the vector wi and the vector ŵi.

3.6.5 FastText
According to Bojanowski et al. (2017), the issue of CBOW and SkipGram is that they
ignore the subwords information (i.e., character n-grams) in the vector representation
of a word. In their work, the authors decided to include the n-grams information in the
softmax function (i.e., in the vector uj - see Equation 3.14). Their idea is that distinct
words have common character n-grams, and that their use could accelerate the learning
of the model and improve the word embedding.

Their model first splits a word into character n-grams. For instance, given the word
rock and an n-gram size of 3, the character n-grams are:

<ro, roc, ock, ck>

where < and > are two special tokens that represent the start and the end of a word.
Then, the extracted n-grams are mapped to vectors and used to represent the word.
Given Sk as the set of n-grams {g1, g2, . . . gn} of a input word wk, the score uj of a
word wj that appears in the same context of wk is calculated as follows:

uj =
∑
g∈Sk

vTg v
′
j (3.35)

where v′
j is the j-th row of the matrix W.

3.6.6 SensEmbed
In SensEmbed, Iacobacci et al. (2015) fused CBOW and SkipGram models with Babel-
Net [Navigli and Ponzetto, 2010] senses. In detail, they first used Babelfy [Moro et al.,
2014] as Word Sense Disambiguation algorithm to assign a sense to each word in the
documents. For instance, given the sentence “a fox is running on the hill”, the disam-
biguation algorithm will produce “a foxn1 is runningv36 on the hilln1 ”, where in hilln1
the superscript represents the Part-Of-Speech tag (in this case noun) and the subscript
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represents the first sense of the term (the id of the synset). Then, they generated the
word embedding using word2vec.

In their experiments, they found that the disambiguated terms lead to a better repre-
sentation of the word embedding. For instance, they found that the words closest to the
financial sense of bank are: commercial bank, national bank, trust company, financial
institution and banking.

3.6.7 ELMo
ELMo (Embeddings from Language Models) [Peters et al., 2018] is a language model
that defines a deep context representation of a word, considering its syntactic role, and
semantic and polysemy meaning. ELMo is composed by two Long Short Time Mem-
ory (LSTM) Neural Networks (see Section 3.7.3). The first LSTM, which reads the
input sentence from left-to-right, produces a vector representation for each i-th token
in sentence. Such vector contains the information of the actual token ti and the pre-
vious context (i.e., t1, t2, . . . , ti−1 previous tokens). Then, each vector representation
is used to predict the next word through a softmax layer, which produces a probabil-
ity distribution over a defined vocabulary. The second LSTM reads the sequence from
right-to-left and predicts the next word. The difference with the forward one is that the
vector representation contains the future context of a i-th token (i.e., ti+1, ti+2, . . . ).

For the training of the network, the authors decided to jointly maximize the log
likelihood of forward and backward directions. Let N be the length of a sentence (i.e.,
the number of tokens), the loss function of ELMo is defined as follows:

L = −
N∑
i=1

(log p(ti|t1, . . . , ti−1;
−→
Θ) + log p(ti|ti+1, . . . , tN ;

←−
Θ)) (3.36)

where
−→
Θ are the parameters of the forward LSTM and

←−
Θ are the parameters of the

backward LSTM. Figure 3.15 shows the architecture of ELMo.

3.6.8 BERT
Differently from ELMo, BERT [Devlin et al., 2018] uses a bidirectional self-attention
[Vaswani et al., 2017] module to extrapolate the features to predict the next word. With
more details, BERT transforms the sequence (i.e., a single sentence or two sentences
packed together) in input adding two special tokens:

1. the token [CLS]: it is used to represent the start of the sentence. Further, the
hidden state calculated on this token is used for classification tasks;
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Figure 3.15: The architecture of ELMo is composed of two distinct LSTMs that generate
a vocabulary distribution from which the next word is selected. The predicted words are
then passed to the loss function.

2. the token [SEP]: it is used to separate each sentence in the sequence.

An example of BERT input follows:

[CLS] A man went to a computer store . [SEP] He bought an SSD . [SEP]

Then, each token (special ones included) are mapped to three embeddings: to a
position embedding, to a token embedding and to a segment embedding. The latter
embedding is used to distinguish to a which sentence a token belongs (e.g., the token
ti will have the segment embedding S1 for the first sentence, and segment S2 for the
second one). The three embeddings representing the token are then fused together, and
the self-attention layer is applied onto them. The training of the model is conducted
in three steps: first, part of the input is masked using the special tag [MASK]; second,
the model reads the context surrounding the token [MASK] and predicts a candidate
that can replace the special token. Finally, the error of predicting the correct candidate
is calculated and the weights are updated. Figure 3.16 shows the architecture of the
model.

3.7 Recurrent Neural Networks
Recurrent Neural Networks (RNN) are a family of artificial neural networks that can
process sequences of variable length. A sequence can be a sentence, a temporal data,
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Figure 3.16: The picture, taken from [Devlin et al., 2018], shows the architecture of
BERT.

or even the pixels of an image. RNNs can reuse the outputs of the previous timesteps,
allowing them to be applied on sequence of different lengths. This sharing is important
when a piece of information can occur in any position of the sequence and has to be
evaluated according to the previous steps. Let us think about a verb in a sentence; we
know that it appears after the noun phrase, but it does not have a fixed position since it
depends on the length of this latter one.

More in detail, a RNN has a backward edge that allows to maintain an internal state,
called hidden state. Such hidden state works as a memory for the network, allowing it
to remember the previous read inputs. At each timestep, the network updates the hidden
state, represented with the vector h, using the information contained in the current input
and the previous hidden state. Once the new hidden state is calculated, the network
emits parts of its information in output, under the form of a vector o. Equation 3.37
represents the RNN:

ht = tanh(U xt +Wht−1 + bh)

ot = softmax(V ht + bo)
(3.37)

where U, W and V are the network parameters, and bh and bo are the biases. At
timestep t = 0, h0 is a zero vector. In the above equation, each member of the output
is generated using the same rule of the previous output. This represents the parameter
sharing.
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3.7.1 Unfolding Recurrent Neural Networks
Section 3.4 described how Neural Networks can be represented formally as a compu-
tational graph. This can be done with Recurrent Neural Networks too, and it is called
unfold. The generated graph has a repetitive structure that represents each timestep of
the network, which typically corresponds to a chain of events. Figure 3.17 shows the
unfolding of a RNN.

Figure 3.17: The image shows the unfolding of a Recurrent Neural Network.

To deeply understand the unfolding operation, and why the RNN has a repetitive
structure, I defined the update of the memory vector h at a timestep t as:

ht = f(ht−1,xt, θ) (3.38)

where θ contains the parameters of the network, and xt is the t-th input. Equation
3.38 is recurrent (and this is why those networks are called RNNs) because the definition
of ht depends on the previous memory state ht−1. Thus, the graph can be unfold at time
t by applying the equation t − 1 times. For instance, if the memory state h is unfolded
for t = 4, the result is:

h4 = f(h3,x3, θ)

= f(f(h2,x2, θ),x3, θ)

= f(f(f(h1,x1, θ),x2, θ),x3, θ)

= f(f(f(f(h0,x0, θ),x1, θ),x2, θ),x3, θ)

Using the unfolded version of the Recurrent Neural Network, Equation 3.37 can
be rewritten in a simplified version that highlights the connections between the hidden
states of adjacent timesteps. The j-th parameter of the hidden state is calculated as:

ztj =
I∑
i=1

wijx
t
i +

H∑
k=1

wkjh
t−1
j

htj = φ(ztj)

(3.39)
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where φ(·) is the activation function (the tanh in our case), I is the number of input
neurons, and H is the number of hidden neurons. Then, the j-th parameter of output
layer is calculated as follows:

otj =
O∑
l=1

wljh
t
j (3.40)

where O is the number of output neurons.
With the unfold procedure, three types of Recurrent Neural Networks can be repre-

sented:

1. A RNN that emits an output for each timestep. This type of network is used either
to tag each element of a sequence or to generate more complex features. For
instance, it could be used to tag each word of a sentence with its corresponding
Part-Of-Speech tag. The graph of this network is depicted in Figure 3.18;

2. A RNN that emits the output only when it reaches the last element of the se-
quence. This type of network is generally used to classify the entire sequence.
The graph is depicted in Figure 3.19;

3. Finally, a RNN that does not emit any output. In this particular case, the last
update of its memory is used as input of another network. For instance, Sequence-
to-Sequence models (see Section 3.7.5) are defined using this architecture. The
graph of this network is depicted in Figure 3.20.

Figure 3.18: The image shows a RNN that emits an output at each timestep. The green
rectangles represent the outputs, while the red circles represent the inputs.
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Figure 3.19: The image shows a RNN that emits an output only at the last timestep. The
green rectangle represents the output of the network that contains the information of all
inputs. The red circles represent the inputs.

Figure 3.20: The image shows a RNN that does not emit any output, but it only updates
the vector h. The red circles represent the inputs.

3.7.2 Bidirectional Recurrent Neural Network

When I first presented the Recurrent Neural Networks, I said they read a sequence in
order, from the first element to the last one. It is possible to imagine an extension of this
model that includes another RNN that reads the sequence from right to left, i.e. from
the last element of the sequence to the first one. The former network (i.e., the one that
reads the sequence left-to-right) is called forward RNN, while the latter one (i.e., the
right-to-left network) is called backward RNN. Generally, to distinguish the two type of
readings, Equation 3.37 is modified as follows:

−→
h t = tanh(U xt +W

−→
h t−1 + bh)

−→o t = softmax(V
−→
h t + bo)

(3.41)

for the forward RNN, and



3.7. RECURRENT NEURAL NETWORKS 55

Figure 3.21: The figure shows a bidirectional RNN. The output of the forward RNN and
the backward RNN are concatenated together. In the figure, the red circles represent the
inputs, the blue rectangles represent each step of the network, and the green rectangles
represent the output.

←−
h t = tanh(U xt +W

←−
h t−1 + bh)

←−o t = softmax(V
←−
h t + bo)

(3.42)

for the backward RNN. Those equations can be represented in a compact way:

−→o t =
−−−→
RNN(xt,

−→
h t)

←−o t =
←−−−
RNN(xt,

←−
h t)

(3.43)

It is possible to concatenate the outputs of the forward RNN with the outputs of the
backward one. The resulting vectors will have access to the previous and future context
of the sequence. Such type of architecture is called bidirectional RNN. Supposing to
process a sequence of words, with the adoption of a bidirectional RNN the meaning
of each word is defined according to the context generated reading all words that ap-
pear before and after the considered word. Figure 3.21 illustrates this neural network
architecture.

3.7.3 Long-short Term Memory Networks
The Long Short Term Memory (LSTM) Network is a RNN developed by Hochreiter and
Schmidhuber (1997). Such network uses two gates: an input gate and an output gate.
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Those gates protect the memory content from perturbations of irrelevant inputs. The
input gate is used by the network to decide when to keep or override the information in
the memory; the output gate, instead, is used to select the information to emit in output.
The role of the output gate is also to prevent the emission of a perturbed signal from the
memory. In this way, error signals trapped in the memory cannot change. This is called
by the authors Constant Error Carousel, because the error tends to not (excessively)
vary at each step.

However, Hochreiter et al.’s LSTM has a drawback. It is not able to forget part of
the information present in the memory, since it can only insert new information in it.
This problem makes the network unfeasible to solve tasks where certain inputs appear
repeatedly in the sequence. To fix that problem, Gers et al. (1999) introduced a forget
gate that has the capability to erase part of the information stored in the memory.

The LSTM is represented in Equation 3.44:

i = σ(Uixt +Wiht−1 + bi)

f = σ(Ufxt +Wfht−1 + bf )

o = σ(Uoxt +Woht−1 + bo)

c̃t = tanh(Uhxt +Whht−1 + bh)

ct = f ⊗ ct−1 + i⊗ c̃t

ht = o⊗ ct

(3.44)

where c is the memory of the LSTM. The symbol ⊗ represents the pointwise prod-
uct. At timestep t = 0, both c0 and h0 are zero vectors.

3.7.4 Gated Recurrent Unit
Gated Recurrent Unit network, or GRU, is a type of Recurrent Neural Network devel-
oped by Cho et al. (2014). It differs from the LSTM by the number of gates used. GRU
uses only two gates: the reset gate r, and the update gate z. The former gate is used to
delete part of information from the previous state, keeping only the relevant ones for the
current element. The latter gate is then used to combine the information coming from
the past sequence with the ones extracted from the current element.

rt = σ(U xt +Wht−1 + br)

zt = σ(U xt +Wht−1 + bz)

h̃t = tanh(U xt +W (rt ⊗ ht−1) + bh)

ht = zt ⊗ h̃t + (1− zt)⊗ ht−1

(3.45)

The advantage of GRU is the reduced number of parameters (compared to LSTM),
which allows the network to rapidly converge. As in the LSTM, h0 is a zero vector.
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3.7.5 Sequence to Sequence model
Let x = [x1, x2, . . . , xM ] be a sequence of M source tokens, and w = [w1, w2, . . . , wN ]
a sequence of N target tokens, with N ≤ M . The Sequence to Sequence model, de-
scribed in Sutskever et al. (2014), is used to transform the sequence x into the sequence
w. Such model belongs to the encoder-decoder framework, where the encoder is trained
to create a vector representation of the sequence in input, and the decoder is trained to
generate the output sequence using the vector representation. Generally, the encoder
and the decoder are jointly trained to minimize the cross-entropy loss function.

Current networks are based on Bahdanau et al. (2014)’s model, i.e., a bidirectional
LSTM Encoder and an unidirectional LSTM Decoder with attention mechanism. The
Sequence-to-Sequence model is depicted in Figure 3.22.

Figure 3.22: The figure represents a Sequence-to-Sequence model. Blue blocks rep-
resent states of the network, while orange arrows represent the passage of parameters
from adjacent states.

Section 4.2 and Section 4.3 will present two new add-on to the model: a coverage
mechanism that is used to fix some drawbacks of attention approach (e.g., focusing
multiple times on the same word locations) and the pointer network, which allows to
copy Out-Of-Vocabulary (OOV) words from the input sequence to the output one. Those
mechanisms are widely used in Neural Networks for Abstractive Text Summarization.

Bidirectional Encoder

The encoder is composed by two LSTMs that read the input sequence x both in forward
and in backward order, producing a sequence of encoder states H = [h1,h2, . . . ,hM ].
Each hi is the result of the concatenation of i-th state of the forward LSTM with the i-th
state of the backward LSTM:

hi = [
−→
h i||
←−
h i]

= [
−−−−→
LSTM(E(xi),

−→
h i−1)||

←−−−−
LSTM(E(xi),

←−
h i−1)]

(3.46)

where || is the concatenate operator, and E(·) is the function that maps a word to
its embed vector. For both the LSTM models, the initial state h0 is defined as a zero-
vector. The last state calculated by the encoder is used as initial state by the decoder,
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which will update it using the word emitted at the previous timestep. For timestep 1,
since the decoder has not emitted any word, a special token <BOS> that represents the
start of the sentence is used.

Decoder

The purpose of the decoder is to compute the conditional probability of the t-th word
given the sequence of the previous generated ones, y<t, and the sequence of the input
tokens x. In detail, the network computes a probability distribution over the vocabulary
from which the most probable “next word” is selected.

p(yt | y<t,x) = softmax(Wout h̃t) (3.47)

where Wout is a learnable parameter of the network. The vector h̃t is computed ex-
tracting relevant features from the context vector ct, generated by the attention method,
and the the current decoder state st:

h̃t = tanh(Wh̃ [ct || st]) (3.48)

where Wh̃ is a learnable parameters of the network.
The decoder state at timestep t is computed feeding the embedding of the previous

emitted word and the previous decoder state to the LSTM:

st = LSTM(E(yt−1), st−1) (3.49)

Attention Approach

In the Sequence-to-Sequence network, st can only capture short-range dependencies
since it has no knowledge of the whole input. To make the network able to capture long-
range dependencies, the attention approach has been adopted. The attention approach
dynamically composes a vector ct that highlights salient passages and words of the
input document. In detail, the current decoder state st and the sequence of encoded
states H are used to calculate a score in the range [0, 1] (with the constraint that the sum
of the scores is equal to 1). Those scores can be interpreted as a probability distribution
whereby states with an high value are the relevant ones. Then, the attention distribution
and the states in H are combined together via a weighted sum to obtain the context
vector ct. The following equations show how to compute ct using Bahdanau et al.
(2014)’s attention:

et,j = vT tanh(Wa [hj || st]) (3.50)
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at,j =
exp(et,j)∑M
k=1 exp(et,k)

(3.51)

ct =
M∑
k=1

at,k hk (3.52)

Bahdanau et al. (2014)’s equations are not the only way to define attention. Luong
et al. (2015) defined and compared the above method with two other ones: bilinear
attention and global attention. The bilinear attention uses a bilinear product to calculate
the correlation between the current decoder step st and the encoder state hj:

et,j = sTt Whj (3.53)

The global attention instead computes a dot product between st and hj:

et,j = sTt hj (3.54)

The authors also demonstrated that bilinear attention and Bahdanau et al.’s attention
produced the best results for Machine Translation. Paulus et al. (2018) adopted the
bilinear attention in their summarization model, obtaining outstanding results.
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Chapter 4

New Frontiers on Neural Text
Summarization

4.1 Introduction
Recurrent Neural Networks (and Neural Networks in general) allowed to improve the
task of Text Summarization, from understanding the document content to generating
more abstractive summaries. But they also posed new challenges to researchers. On my
opinion, Neural Networks suffer from three drawbacks:

Repetitions in output: those networks have no memory about the previous generated
words, thus they tend to repeat words (and sometimes phrase excerpts) in out-
put, disrupting the quality of the generated summary. This has been reported by
Ranzato et al. (2016) and Kiyono et al. (2017), and several researchers have
started to propose coverage methods to avoid repetitions in the output. The idea
of those works is to capture the previous generated words and use them to guide
the network;

Out-Of-Vocabulary words: One of the problem of Neural Networks, as other Machine
Learning algorithms, is the fixed number of classes that can be predicted. In other
words, it is not possible to add new classes to a trained model. Since in NLP tasks
those classes could be words, this means that the model cannot generate new ones.
This problem takes the name of Out-Of-Vocabulary words because those words
are not present in the vocabulary of the model, i.e. the classes to predict. It is
also accentuated in Text Summarization, since the task is a Recall-oriented one
which aims to have all the relevant words of the document in the output summary.
Thus, how can this problem be bypassed? Researchers defined a family of Neural
Networks, called Pointer Networks, that have the ability to copy words from the
input to the output. The application of those networks to the Summarization task

61
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resolved this issue.

Content indifferent: Neural Networks are not capable of deeply understand the con-
tent of a document, i.e. they are not able to distinguish salient sentences from
those that are secondary for the context, treating them equally. Such problem cre-
ates summaries that are correct at syntactic and semantic level, but not related to
the document topic. In this context, researchers tried different methods to capture
the salience via masks, gates, and attention. Others used template-based methods.

In this chapter, I describe the methods present in literature to solve those three draw-
backs. To the best of my knowledge, they form a wide and complete view of the topic.

The remain of this chapter is formed as follows: Section 4.2 presents the coverage
problem, while Section 4.3 covers the Pointer Network models. Finally, Section 4.4
describes the recent works on content selection.

4.2 Coverage Methods
The adoption of the attention approach has brought some drawbacks, i.e., duplicated
words and sentences in the output. Researchers referred to this unwanted behaviour
with two different names:

Lack of coverage In Machine Translation. Since the model has no memory about pre-
vious attention distributions, it tends to focus multiple times on the same word or
source text locations. Researchers have found that a generated output may contain
up to 8 repetitions of the same word or sentence [Sankaran et al., 2016];

Odd-generation In Text Summarization. Kiyono et al. (2017) reported the same prob-
lem.

According to Ranzato et al. (2016), this problem is accentuated by two factors:

• exposure bias: the model is only exposed to train data distribution, and not to its
predictions; in other words, during training we feed the decoder with the previous
target word, while in testing we feed it with the previous output emitted by the
decoder;

• no sequence-level loss: the training is performed computing the loss at word-
level, checking if the predicted word corresponds to the target one, while evalu-
ation is performed at sequence level. Thus, the network generates correct single
words, but the sentence in its whole may be erroneous.

To solve this problem, coverage methods proposed by Koehn (2009) for Statistical
Machine Translation have been adapted to Sequence-to-Sequence models. The original
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method used a vector of the same size of the input sequence. The vector is initialized
with zeros to represent that words are not covered, C = {0x1 , 0x2 , . . . , 0xn}. Then,
it is updated at each decoder step to keep trace of the translated words, changing the
coverage value of a translated word into 1. For instance, suppose that x2 is translated;
the coverage vector is updated as follows: C = {0x1 , 1x2 , . . . , 0xn}. The translation
ends when the vector contains only 1s, C = {1x1 , 1x2 , . . . , 1xn}. However, the original
method cannot be applied to Neural Networks because it is difficult to know which input
words has been translated by the decoder. Furthermore, the case is more complex for
Text Summarization, where encoder words may be used multiple times. A solution is
to use the attention distribution, but it could contain erroneous scores. Thus, How could
the coverage vector be represented? How could the coverage vector be updated? Mi
et al. (2016) and Tu et al. (2016) proposed to represent the coverage vector as a memory
that is updated and read by the model. The idea is to associate a vector, belonging to R,
to each word that describes (for the network) if it has been covered. Let covt,j be the
coverage vector for j-th word at timestep t. It is used to guide the attention approach
to explore different parts of the input sequence and generates correct translations or
summaries. Equation 3.50 is changed as follows:

et,j = vT tanh(Wa [hj || st || covt,j]) (4.1)

In this section, I report the different coverage methods proposed for Neural Network
models. Those methods can be logically divided into:

based on sum of attention scores: I collocated here all those models that use the sum
of all previous generated attention distribution to compute the coverage vector.
It is possible to find the language coverage proposed by Tu et al. (2016), where
the sum of previous attention scores is used to capture the coverage degree of a
word; the method proposed by See et al. (2017), which is a simplified version of
Tu et al. coverage; the method proposed by Chen et al. (2016b), where the sum
of the previous attention scores is subtracted from the attention energy e to force
the network to explore other words; and the model proposed by Sankaran et al.
(2016) where the sum of pre-normalized attention scores is divided by the current
one in order to re-balance the weights according to the previous attended words.

based on RNN: I collocated all those models that use a Recurrent Neural Network to
update the coverage vector of a token. Here, there are the work of Mi et al. (2016)
and Tu et al. (2016) where the coverage vector is used as an internal state, updated
every time the attention distribution is generated in output.

based on embeddings: I collocated those models that represent coverage as embedded
vectors, learned by the network. Such embedded vectors are update at each de-
coder step to account previous attended words. The work of Mi et al. (2016)
belongs to this topic.
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Figure 4.1 depicts the logical division.

Figure 4.1: The figure resumes all coverage works, dividing them by their typology.

4.2.1 Tu et al.’s

Tu et al. (2016) propose two methods to compute the coverage vector: language cover-
age and neural-based coverage. The difference between the two methods regards how
the coverage vector is updated.

In language coverage, described in Equation 4.2, the coverage vector of xj is a
scalar that contains the sum of previous word attention scores, divided by a weight Φj

that indicates the number of target words xj is expected to generate.

covt,j =
1

Φj

t−1∑
t′=1

at′,j (4.2)

In detail, Φj is the fertility of xj (simplified and adapted from the statistical original
one) and it is calculated as follows:

Φj = N σ(Wf hj) (4.3)

where N, sets to 2, is a constant that denotes the maximum number of target words
that a source word can generate, and σ(·) is the sigmoid function. The idea is to change
the value of N according to the source word. At timestep 1, covt,j is initialized to 0.
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Differently from the language coverage, the neural-based coverage uses a Gated
Recurrent Unit (GRU) [Cho et al., 2014] to update the coverage vector of xj word:

covt,j = GRU(covt−1,j, at−1,j,hj, st) (4.4)

In this model, covt,j is treated as the hidden state of the GRU network, which is used
to capture long dependencies, removing old information from covt−1,j and adding the
new ones provided by at−1,j , hj and st.

Tu et al. (2016) also experimented with an auxiliary loss function (for the language
coverage) that penalizes the discrepancies between the sum of attention scores of a word
and its expected fertility:

auxloss =
M∑
j=1

(Φj −
N∑
t=1

at,j)
2 (4.5)

Their empirical studies showed that the auxiliary loss worsen the translations.

4.2.2 Mi et al.’s
Mi et al. (2016) propose a different coverage vector. Since each source word has a
different fertility (the number of target words that a source one could generate), they
decided to create a coverage embedding that is updated at each decoder timestep. They
present two methods to update the coverage embedding of a word: through subtraction
or through a GRU. In subtraction, the coverage embed is updated subtracting the embed
of the previous generated word, weighted by the attention score:

covt,j = covt−1,j − at−1,j Ws yt−1 (4.6)

where Ws is learnable parameter that maps the word embed to the size of the cov-
erage embed.

The idea of Equation 4.6 is that the embedding of yt−1 implicitly carries the words
used to predict it. Furthermore, since each source word can contribute differently to the
generation of yt−1, the authors weighted the value by the attention score of xj , which
works as a sort of gate.

The GRU update, instead, is similar to the one proposed by Tu et al.:

covt,j = GRU(covt−1,j, at−1,j, yt−1) (4.7)

The difference is that Tu et al. initialized the coverage vector with zeros, while in
Mi et al. it is learned by the network.

The authors also used an L2 regularization on the coverage vector, forcing it to be
close to zero:
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auxloss =
N∑
t=1

M∑
j=1

||covt,j|| (4.8)

4.2.3 See et al.’s

See et al. (2017) propose a coverage model for Neural Abstractive Summarization that
resembles Tu’s language model. In details, they removed the parameter Φ from Equation
4.2, defining the coverage of word xj as the sum of its previous attention values:

covt,j =
t−1∑
t′=1

at′,j (4.9)

The authors also introduced an auxiliary loss to penalize overlapping values between
the coverage vector and the attention distribution at each decoder timestep t:

auxloss =
N∑
t=1

min(covt,·, at,·) (4.10)

where covt,· is the coverage vector of all input words and at,· is the attention distri-
bution. Penalizing overlapping values forces the network to focus on different encoder
words.

Differently from the other coverage models, they introduced two changes:

• they didn’t applied the coverage vector at the first decoder step (since the vector
contains only zeros);

• they applied the auxiliary loss on the trained model.

4.2.4 Chen et al.’s (distraction method)

Distraction method is another coverage method for Neural Abstractive Summarization
proposed by Chen et al. (2016b). The name distraction born from the fact that the
authors try to distract the network by subtracting the history of the previous attention
distributions and context vectors. In this way, the network is forced to explore different
encoded words. Their coverage method is composed of two parts: distraction in training
and distraction in decoding. In distraction in training, the authors construct an history
vector for the attention distribution and the context vector, that simply are the sum of
the their values at previous decoder timesteps. Then, they subtract the history vectors in
the calculation of attention distribution and context vector for the current timestep:
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c_histt =
t−1∑
t′=1

ct′

attn_histt =
t−1∑
t′=1

at′,·

et,j = vT tanh(Wa [hj || st]−Ua attn_histt,j)
ct = tanh(Vc ct′ −Uc c_histt)

(4.11)

where ct′ is calculated by Equation 3.52. In distraction in decoding, the authors
introduce three auxiliary loss functions, that are weighted by three different λ values,
to distract the decoder. First, the loss function calculates a score comparing the context
vector (or the attention distribution, or the decoder state) at the current timestep with the
previous ones; then, they select the best score among the calculated ones:

da,t = min
1≤i≤t−1

KL(at, ai)

dc,t = max
1≤i≤t−1

cosine(ct, ci)

ds,t = max
1≤i≤t−1

cosine(st, si)

(4.12)

where da,t is the auxiliary loss for the attention distribution that uses Kullback-
Leibler (KL) divergence to compare the probability distributions1, dc,t is the auxiliary
loss for the context vector and ds,t is the auxiliary loss for the decoder state. The total
loss is then rewrote as follows:

loss =
T∑
t=1

losst + λ1da,t + λ2dc,t + λ3ds,t (4.13)

4.2.5 Sankaran et al.’s (temporal attention)

Temporal attention method [Sankaran et al., 2016] is different from the other coverage
models presented so far. It could be seen as a temporal network that memorizes previous
decisions and uses them to explore different parts of the input text. In temporal attention,
the sum of the previous attention scores is memorized and used to model the scores e.
Let t be the current timestep, the sum of the previous attention distributions bt,j of word
xj , called history, is defined as follows:

1Lower value is better.
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bt,j =
t−1∑
t′=1

exp(et′,j) (4.14)

The history bt is then used to modify the score of et,j:

et,j =
exp(et,j)

bt,j
(4.15)

The remaining steps are the same of Section 3.7.5. Temporal attention substantially
differs from the previous coverage methods for the following reasons:

• It uses no gates to update the coverage vector, as the ones proposed in [See et al.,
2017; Chen et al., 2016b];

• It does not add further learnable parameters to the network;

• It does not require an auxiliary loss function.

Finally, temporal attention can be applied to both Neural Network-based Machine
Translation [Sankaran et al., 2016] and Text Summarization [Paulus et al., 2018].

4.2.6 Comparison between methods
So far, I described different coverage methods that has been created for Neural Machine
Translation and Text Summarization. In this section, I will summarize those methods
through the help of a table, reporting (where it is possible) the results that they obtained
on the same dataset.

Table 4.1 reports each method, its authors, if it introduces further parameters (i.e.,
if the context vector is used to compute the attention score - see Equation 4.1), and if
it requires an auxiliary loss function. With dimension d = 1, I mean that the coverage
value of word xj is represented using a scalar.

I also reported the results of Tu et al.’s methods, Mi et al.’s methods and Sankaran
et al.’s method on machine translation NIST datasets MT05, MT06, and MT08. Table
4.2 shows the Bleu score obtained by the methods on that dataset2.

From the table, it is possible to see that LVNMT+GRU+subtraction+loss achieves
the best BLEU score (36.80). However, GRU coverage and subtraction coverage intro-
duce a lot of parameters to the network, making it subjects to overfit, especially in case
of small datasets. In this case, temporal attention seems the best choice, since it does
not introduce further parameters.

I have not been able to compare the coverage methods for the Neural Abstractive
Summarization task because the models that use them have been trained and tested on
different datasets.

2The scores are taken from the authors’ research articles.
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cov. method authors vect. size d params? auxloss?
language coverage Tu et al. d = 1 yes no

neural-based coverage Tu et al. d = 1 or d = 10 yes no
subtraction Mi et al. d = 100 yes yes

GRU update Mi et al. d = 100 yes yes
See’s coverage See et al. d = 1 yes yes

distraction Chen et al. d = 1 yes yes
temporal attention Sankaran et al. d = 1 no no

Table 4.1: The table summarizes the methods presented in Section 4.2. In the table,
cov. method describes the coverage method name, vect. size d represents the size of the
coverage vector, params describes if the method introduces further parameters to the
model, and auxloss describes if the coverage model uses an auxiliary loss function.

Model MT05 MT06 MT08-news MT08-web
GroundHog 30.61 31.12 - -

+ language with fertility [Tu et al.,
2016]

32.36 32.31 - -

+ neural-based [Tu et al., 2016] 32.73 32.47 - -
LVNMT - 34.53 28.86 26.78

+ temporal attention [Sankaran
et al., 2016]

- 36.34 31.49 27.29

+ GRU [Mi et al., 2016] - 35.59 30.18 27.48
+ subtraction [Mi et al., 2016] - 35.90 30.49 27.63
+ GRU + subtraction + loss [Mi
et al., 2016]

- 36.80 31.83 28.28

Table 4.2: The table reports the Bleu score on NIST datasets MT05, MT06 and MT08
applying the coverage methods. High value is better.

4.3 Copying Out-Of-Vocabulary Words
In Section 3.7.5, I said that the network computes a probability distribution over the
vocabulary, using a softmax function, to emit in output a word. This approach suffers
of two drawbacks:

1. the softmax function is the bottleneck of the network, since it is computed on a
fixed size vocabulary and it requires a lot of time to be executed;

2. even with large vocabularies, some words will be excluded. This is in part caused
by a delexicalization process, where only the most N frequent words are used,
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discarding the others (e.g., very rare words), and in part by the constant creation
of new terms. For instance, people tend to created new nouns every day.

How is it possible to use words that are outside of our vocabulary? The idea is to use
a network to point words in the input and copy them to the output. Such network, called
pointer network [Vinyals et al., 2015], computes a probability distribution over the input
that is used to select the word (or words) having the highest probability. More in detail,
the authors used the attention approach to compute a probability distribution over the
input elements. Then, they selected the one having the highest probability. Figure 4.2
depicts an example of a pointer network over a small text.

Figure 4.2: The figure shows an example of pointer network over the sentence “Juventus
lost game against Tottenham”. The red rectangle is the decoder state which selects
a word from the sentence. In this example, the pointer network will select the word
“Tottenham”.

The pointer network has been widely used in Neural Machine Translation [Gulcehre
et al., 2016], Text Summarization [Miao and Blunsom, 2016; Zeng et al., 2017; Nallapati
et al., 2016; Gu et al., 2016; See et al., 2017; Paulus et al., 2018], Code Suggestion
[Bhoopchand et al., 2017] and Language Model [Merity et al., 2017]. The described
pointer networks can be easily switched one another since they are all variants of the
original one. For instance, Chen and Bansal (2018) adopted a variant of the sparse
pointer network proposed in [Bhoopchand et al., 2017] to select sentences, while Paulus
et al. (2018) adopted, with small changes, the pointer sentinel defined by Merity et al.
(2017). In this section, I describe several pointer networks that have been created, from
the the original model of Vinyals et al. (2015) to the recent ones. Those models widely
differ one another: some models simply use the attention distribution to select a word to
copy, while others create a mixture model combining the vocabulary distribution with
the pointer network distribution. Table 4.3 digests all the presented methods. However,
they are just a small subset of all research works conducted on this topic, but, to the best
of my knowledge, they form a widely background that allows the reader to comprehend
the latest ones.
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Authors Year Description
Vinyals et al. 2015 Attention distribution used to select an

input element to copy.
Nallapati et al. 2016 The network uses a switch to decide

when to copy and when to generate. The
pointer network is simply an attention
distribution over the input.

Gu et al. 2016 Probability of a word defined combining
the vocabulary distribution with the at-
tention distribution. There is no gate that
controls the merge of the two distribu-
tions, but a shared normalization factor
Z.

Miao and Blunsom 2016 Attention distribution over the input used
to select the word to copy in output.

Gulcehre et al. 2016 They define the probability of a word
combining the vocabulary distribution
with the attention distribution. Both dis-
tributions are weighted by a score.

Zeng et al. 2017 Attention distribution used to select the
word to copy. If the copied word is out-
side of the vocabulary, its embedding is
created using the corresponding encoder
state.

Bhoopchand et al. 2017 They used a sparse Pointer Network to
copy only certain words from the input.

Merity et al. 2017 Mixture model between the vocabulary
distribution and the Pointer Network dis-
tribution. The contribution of each distri-
bution is controlled by a gate.

See et al. 2017 Similar to [Merity et al., 2017], they cre-
ate a mixture model combining the vo-
cabulary distribution with the attention
distribution.

Paulus et al. 2018 They propose a model similar to [See
et al., 2017; Merity et al., 2017]. The
main difference is that they do not sum
the attention scores of all identical words.

Table 4.3: The table summarizes the several Pointer Network models described in this
section.
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4.3.1 Merity et al.’s
Merity et al. (2017) integrated the pointer network in a Recurrent Neural Network
(RNN) language model to copy a word of the sequence that is outside of the vocabulary.
In their model, the RNN reads N-1 words in a sequence and predicts the N -th word,
using the state hN−1. Those latter states, represented with hi, are then saved in order to
compute the probability distribution. In detail, the current RNN state hN−1 is used to
compute the query q

q = tanh (WhN−1 + b) (4.16)

which is then multiplied with the previous RNN state hi to select a word in the
sequence

a = softmax([qThi||qT s]) (4.17)

In Equation 4.17, qT s is used to create a mixture model combining the vocabulary
distribution with the pointer network distribution, where s is the sentinel, a vector which
values are learned by the model. For the vector, their model takes the name of pointer
sentinel. Since the last value of the softmax (the sentinel) is extracted to compute the
mixture model, the other ones are scaled using the following formula:

âj =
1

1− aj
qT s (4.18)

Finally, given the extracted value as g (a scalar), the probability of a word yi in
output can be computed as follows:

p(yi|y<i,x) = g · pvocab(yi|y<i,x) + (1− g) ·
∑
j∈I(yi)

âj (4.19)

where x is the input sequence and I(·) is the function that returns the index of all
words equal to yi.

4.3.2 Zeng et al.’s
Zeng et al. proposed an interesting idea in their paper [Zeng et al., 2017]. They say that
people tend to read again the document to summarize: the first time is to understand
the content of the document, while the second time is to extract relevant information.
Thus, they implemented a re-read mechanism. First, they read a sequence of words
x = [x1, x2, . . . , xn] using a RNN (LSTM or GRU), producing a set of encoded states
H = [h1,h2, . . . ,hn]. Then, such states are read by another RNN that produces a
sequence H′ = [h′

1,h
′
2, . . . ,h

′
n]. The last state of the second encoded sequence is used

as input for the decoder. They also extended the model with a pointer network that
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uses the attention distribution to copy an input word into the summary. Since many
words copied by the pointer network are not present in the vocabulary, they defined an
innovative way to create an embedding vector for such words. Supposing that xi is the
copied word, and that it is not present in the vocabulary, the embedding of xi is created
as follows:

E(xi) = tanh (Wh′
i + b) (4.20)

where E(·) is the function that maps a word to its embedded vector.

4.3.3 Bhoopchand et. al’s
Bhoopchand et al. (2017) implemented a neural network to propose code suggestions
based on the existing RNN language models. Their model, an attention-based RNN lan-
guage model, reads a snipped of code and suggest the next sequence of tokens. It uses a
sparse pointer network to copy words representing function identifiers, class identifiers,
and so on from the input to the output. Their method is called sparse because they obtain
a pseudo-sparse distribution removing some words. Given m as a vector of ids for the
identifiers and the attention score vector e computed by the network, they produce the
attention distribution through the following formula:

si =

{
ej if mj = i

−C otherwise

a = softmax(s)

(4.21)

where C is a large constant. The obtained distribution a is used to select the word
to copy. Finally, similar to Merity et al. (2017), they created a mixture model summing
the vocabulary distribution with the pointer network distribution. The contribution of
the two distributions is regulated by a parameter λ, which is computed by the network.
A variation of this model can be found in Section 4.4.

4.3.4 Miao et al.’s
Miao and Blunsom (2016) propose an auto-encoder network for the task of sentence
compression, where the goal is to compress a sentence removing irrelevant words from
it. Their network is composed of three parts: an encoder, a BiLSTM that encodes
the sentence in input; a compressor, a LSTM that creates the compressed version of
the sentence using the pointer network; and a decoder, a LSTM that takes in input the
compressed sentence and produces the input sentence. In detail, the pointer network
computes an attention vector α over the input using the encoder states and the current
compressor state. Then, the next word is selected from α.
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Since the auto-encoder is not enough to generate a coherent compressed sentence,
they decided to introduce a forced-attention model, which simply decides either to
copy a word from the input or to generate one from the vocabulary. The improve-
ment is obtained sharing the pointer-network of the auto-encoder with the one of the
forced-attention, where the latter one is trained on a small dataset of labeled sentence-
compression pairs. Finally, the network is trained using reinforcement learning due to
the non-derivability of the model.

4.3.5 Gu et al.’s
Gu et al. (2016) propose a Sequence to Sequence model for Text Summarization that
uses the pointer network to copy words that are outside of the vocabulary. Their idea
is to use a probability value (a sort of switch) to choose either to copy a word from the
document in input or to generate one picking it from the vocabulary. Initially, they define
two sets that are used to compute the probabilities: the set of words in the vocabulary V ,
which is extended with the token UNK for the words that are outside the vocabulary; and
the set of unique words in the document X . They also define the set of words outside
the vocabulary with V . Then, given the previous generated sequence y<i and the input
sequence x, the probability of generating the word yi is calculated as:

p(yi|y<i,x) = p(yi, g|y<i,x) + p(yi, c|y<i,x) (4.22)

where p(yi, g|·) is the probability of selecting a word from V :

p(yi, g|·) =


1

Z
eψg(yi) if yi ∈ V

0 if yi ∈ X ∩ V
1

Z
eψg(unk) if yi ̸∈ V ∪X

(4.23)

and p(yi, c|·) is the probability to copy a word from the document:

p(yi, c|·) =


1

Z

∑
j∈I(yi) e

ψc(xj) if yi ∈ X
0 otherwise

(4.24)

and Z is the normalization term shared between the two models. The model re-
sembles the one proposed in [Merity et al., 2017], since both combines the two proba-
bilities: generation and copying. The main difference is that Merity et al. control the
contribution of both probability distributions directly via a gate g, while Gu et al. use
the normalization term Z.

Both the function ψc and ψg are computed by the network, which uses the encoder
state h and the decoder state s:
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ψg(yi) = vTi Wg si

ψc(yi = xj) = σ(hTj Wg)si
(4.25)

where vi is the one-hot vector for the i-th word in the vocabulary.

4.3.6 Gulcehre et al.’s
Gulcehre et al. (2016) propose a Sequence to Sequence model for Text Summarization
and machine translation that uses a pointer network to copy words that are outside of the
vocabulary. In detail, their model uses two type of softmax: a shortlist softmax that is
computed over the vocabulary, and the location softmax that is the pointer network. In
the following equations, I use ps for the shortlist softmax and pl for the location softmax.
Their model calculates the probability of a output sequence y as follows:

p(y, z|x) =
∏
i∈T

ps(yi, zi, |y<i,x)×∏
i∈T

pl(yi, zi|y<i,x)
(4.26)

where x is the encoded input and T is the set of timesteps. The two probabilities are
computed as follows:

ps(yi, zi = 1|y<i,x) =ps(yi|zi = 1,y<i,x)×
p(zi = 1|y<i,x)

(4.27)

pl(yi, zi = 0|y<i,x) =pl(yi|zi = 0,y<i,x)×
p(zi = 0|y<i,x)

(4.28)

The probability p(zi|·) is called switch network and it is used to switch between the
shortlist softmax and the location softmax. Such switch network is different from the
one proposed by Nallapati et al. (2016), since it does not force the network to just copy
or generate. It is similar to the ones proposed by Merity et al. (2017) and See et al.
(2017), where the switch is used to weight the two distribution. The probability of the
switch network is calculated as follows:

p(zi = 1|y<i,x) = σ(f(x,hi−1))

p(zi = 0|y<i,x) = 1− σ(f(x,hi−1))
(4.29)

where f(·) is a multi-layer perceptron, x is the input sequence, and hi−1 is the
previous output of the multi-layer perceptron.
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4.3.7 Nallapati et al.’s

Nallapati et al. (2016) defined a decoder extended with a pointer network to copy words
from input to the output. The decoder uses a switch to decide either to select a word from
the vocabulary or to copy a word from the input. If the switch is turned on, the decoder
produces a word in the normal fashion (selecting it from the vocabulary); otherwise, it
uses the attention distribution over word positions in the document. The activation of
the switcher is defined as follows:

s = σ(v · (Whi +Uyi−1 +Vci + b)) (4.30)

where hi is the current decoder state, yi−1 contains the embedding of the previous
emitted word, and ci is the context vector.

In case that the switch is not active, the network selects the word with the highest
probability from the attention distribution:

ei,j = exp(v · (Whi−1 +Uyi−1 +Vhei + b))

pi = max
j

ei,j
(4.31)

where he is the encoder hidden state, and pi is the probability to copy the i-th word.

4.3.8 See et al.’s

Differently from previous research works, See et al. (2017) propose a very simple but
efficient pointer network. Their idea is to treat the attention distribution α, used to
construct the context vector, as the output of the pointer network. Then, they create a
mixture model summing together the vocabulary distribution and the attention distribu-
tion. In detail, the probability of the output word yi is computed as in [Merity et al.,
2017]:

p(yi|y<i,x) =g · pvocab(yi|y<i,x)

+ (1− g) ·
∑
j∈I(yi)

aj (4.32)

The difference from Merity et al’s work is that the value g is not extracted from
the distribution, but it is computed separately using the context vector ci, the current
decoder state hi, and the previous decoder output yi−1:

g = σ(Wci +Vhi +Uyi−1 + b) (4.33)
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4.3.9 Paulus et al.’s

Paulus et al. (2018) propose a simple pointer network to copy an input word. As in [See
et al., 2017], they combine the vocabulary distribution with the attention distribution.
However, they do not sum the scores of the same word, but they treat all words as
“different ones”. Thus, the final distribution of a word yi is composed as follows:

p(yi|y<i,x) = g · pvocab(yi|y<i,x) + (1− g) · ai (4.34)

where a is the attention vector, and the score g is computed using the current decoder
state hi, the current context vector ci and the novel decoder context vector cdi :

g = σ(Whi +Vci +Ucdi + b) (4.35)

The decoder context vector is the weighted sum of all decoder states up to timestep
i− 1:

ei,j = hjWhi

βi = softmax(ei)

cdi =
i−1∑
j=1

βjhj

(4.36)

The idea is to provide more information about the previous states to the network and
avoid repetitions.

4.3.10 Comparison between models

In this section, I described the several pointer networks present in literature, starting
from the first one created by Vinyals et al. (2015); these are used to copy in output
documents words that are outside the NN’s vocabulary.

Now, I compare them, reporting their performance on the same dataset for Text Sum-
marization. The problem, however, is that some models have been trained and tested
on different ones (e.g., Merity et al. (2017)’s model is trained on the Penn TreeBank),
while others have been designed for different tasks (see the model of Bhoopchand et al.
(2017) for code generation). Thus, I decided to report the Rouge scores of only those
that have been evaluated either on Gigaword or CNN/Dailymail dataset. For the for-
mer one, I compare Miao and Blunsom (2016)’s model and Zeng et al. (2017)’s model,
while for the latter dataset, the models of Nallapati et al. (2016), See et al. (2017), and
Paulus et al. (2018). To perform a proper comparison, I only consider their baseline one
(i.e., the model that only uses the pointer network).
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Table 4.4 reports the results on the CNN/Dailymail dataset. From the table, it is
possible to see that Paulus et al.’s model has the best R-1 and R-L scores. This is due by
the use of the bilinear attention, which better captures the relation between the decoder
state and an encoder one.

Model R-1 R-2 R-L
Nallpati et al.’s model 35.46 13.3 32.65

See et al.’s model 36.4 15.66 33.42
Paulus et al.’s model 37.86 14.69 34.99

Table 4.4: The table reports the Rouge scores on the CNN/Dailymail dataset. High
value is better.

Table 4.5 reports the results on the Gigaword dataset, where the model of Miao et al.
obtained the best results thanks to its extractive ability and the training via Reinforce-
ment Learning.

Model R-1 R-2 R-L
Miao et al.’s model 34.17 15.94 31.92
Zeng et al.’s model 27.96 12.65 26.18

Table 4.5: The table reports the Rouge scores on the Gigaword dataset. High value is
better.

4.4 Exploiting Document Content
Neural Abstractive Summarization is a constantly changing field, where many new re-
search directions are appearing, while others are converging onto a single one. I identi-
fied two very interesting research directions: 1) Retrieve, Rank and Rewrite Summariza-
tion (R3S from now on) systems [Chen and Bansal, 2018; Cao et al., 2018; Wang et al.,
2019] and 2) Content Selection methods [Zhou et al., 2017; Gehrmann et al., 2018; Hsu
et al., 2018; Tan et al., 2017; Li et al., 2018a]. Both are emerged in the last two years. In
the former one, which I address with the name of R3S systems, the systems are trained
to select a sentence from the input document or an external resource (retrieve and rank
part) that is salient (i.e., that expresses the content of a sentence in a very concise man-
ner). The selected sentences are then rewrote (substituting, adding and deleting words)
to generate the summary. In the latter one, researchers have defined layers, masks, and
network structures to uncover salient sentences, while removing redundant informa-
tion. Other interesting works integrated further information into Sequence-to-Sequence
models (e.g., external knowledge or topic information) or improved the capability of the



4.4. EXPLOITING DOCUMENT CONTENT 79

model to create a better document representation that contains all salient information for
the summary.

4.4.1 Retrieve, Rank and Rewrite systems
In Section 4.2, I described how Sequence-to-Sequence (S2S) models tend to focus mul-
tiple times on the same words, producing summaries that contains up to 8 repetitions
of the same word. This impact on the readability and informativeness of the generated
summaries. The problem is caused by the generation of long summaries because the
S2S model tends to lose the control. Fortunately, the adoption of coverage methods
have solved, and in some extreme case mitigated, such behaviour.

Other researchers [Cao et al., 2018; Chen and Bansal, 2018], however, have ex-
plored the problem under a different point-of-view. Their idea is that an human-written
sentence is fluent, non-redundant and well structured, compared to the ones generated
by the model. They pioneered a new set of of systems, that I named with Retrieve, Rank
and Rewrite Summarization (R3S) systems inspired by the title of Cao et al.’s paper,
where the model is trained to select a human-written sentence and rewrite it using the
high abstractive power of the S2S model in order to generate the summary. Successively,
Wang et al. (2019) improved this architecture.

Cao et al.’s model

Cao et al. (2018) try to solve the problem regarding the generation of long summaries
using template-based summarization (e.g., the templates used in [Zhou and Hovy, 2004]).
A template is a general manually-written summary which can be automatically filled
with information extracted from the document. For instance,

[REGION] shares [open/closed] [NUMBER] percent [lower/higher]

is a template that could be rewritten as “UK shares open 7 percent higher”. They used
Lucene3 to store the templates, and retrieve those ones that are similar to a given sen-
tence x. Then, both the sentence x and the retrieved templates t = [t1, t2, . . . , tn] are
encoded using a Bidirection GRU. Those encoded representations are used to assign a
score, through the function s(·), to the retrieved templates:

s(t, x) = σ(hTt Whx + b) (4.37)

where ht is the encoded representation of the template, hx is the encoded represen-
tation of the sentence, and σ(·) is the sigmoid function. The template with the highest
score is then selected and concatenated with the encoded representation of the sentence

3https://lucene.apache.org/

https://lucene.apache.org/
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x to form the hidden representation hc. Such representation is used in the decoder to
create the summary, rewriting the template with the document information.

Cao et al. compared their model, called Re3Sum, against Rush et al. (2015)’s ABS
model and Chopra et al. (2016)’s ABS model, on the Gigaword Dataset. Table 4.6
shows the Rouge scores.

Model Rouge-1 Rouge-2 Rouge-L
ABS [Rush et al., 2015] 29.55 11.32 26.42

ABS+ [Rush et al., 2015] 29.78 11.89 26.97
RAS-Elman [Chopra et al., 2016] 33.78 15.97 31.15

Re3Sum [Cao et al., 2018] 37.04 19.03 34.46

Table 4.6: The table shows the comparison of Chopra et al.’model, Rush et al.’s model
with Cao et al.’s model on Gigaword corpus.

Chen et al.’s model

Differently from Cao et al., Chen and Bansal (2018) selected a set of sentences from the
input document and rewrote them to create the summary. More in detail, their model
is composed of a hierarchical encoder followed by a decoder. The hierarchical encoder
first reads the words of a sentence using a Convolutional Neural Network [LeCun et al.,
1995] to create the sentence representation. Then, it processed all the sentence repre-
sentations via a bidirectional LSTM. The decoder, instead, selects a document sentence
using a sparse pointer-network [Bhoopchand et al., 2017], whereC is set to infinity. The
constant is used to skip all those sentences that the model has already selected. Finally,
the selected sentence is rewritten by the decoder.

Chen et al. compared their model against See et al. (2017)’s Pointer Genera-
tor model, Paulus et al. (2018)’s model, and Nallapati et al. (2017)’s models on
CNN/Dailymail corpus, obtaining state-of-the-art results. Table 4.7 reports the com-
parison.
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Model Rouge-1 Rouge-2 Rouge-L
Nallapati et al.† 39.6 16.2 35.3

lead-3 [Nallapati et al., 2017]† 39.02 15.7 35.5
Paulus et al.† 38.30 14.81 35.49

Paulus et al.(RL)† 39.87 15.82 36.90
Pointer Generator [See et al., 2017] 39.53 17.28 36.38

Chen and Bansal(RL) 40.88 17.80 38.54

Table 4.7: The table shows the comparison between Chen et al.’s model with Nallapati et
al.’s models, See et al.’s model and Paulus et al.’s model. In the table, RL stands for Re-
inforcement Learning training method, while † means that the model cannot be strictly
compared since it is trained and tested on the anonymized version of CNN/Dailymail
corpus.

Wang et al.’s model

Wang et al. (2019)’s model for template summarization uses a bidirectional selective
encoder to extract relevant passages of the input article and fill the template. It starts
ranking all the templates using a neural network called Fast Rerank Module. More in
detail, the Fast Rerank Module first extracts a set of features from the article and the
template using a Gated Linear Unit (GLU) [Dauphin et al., 2017]. Then, it constructs
a similarity matrix comparing each feature of the article with those of the templates.
The constructed matrix is then passed in input to a max pooling layer followed by a
Multi-Layer Perceptron (MLP) to select a template. The selected template is given in
input to a Bidirectional LSTM to calculate the hidden states ht, which are used to filter
the hidden states ha of the article. In other words, a gate gi is calculated for each i-th
word as follows:

gi = σ(Wah
a
i +Wth

t
i + bg). (4.38)

Then, the gate of each word is multiplied to the corresponding article hidden state:

hgi = hai ⊗ gi (4.39)

where ⊗ is the pointwise product. The authors also calculated a confidence degree d,
which captures how much the article is credible. Such degree is used to add some ha

information (a residual) to hg states as follows:

zai = dhgi + (1− d)hai (4.40)

where the score d is calculated as:

di = σ((hai )
TWdh

t
i + bd) (4.41)
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The final states za are used to calculate the energies (i.e., e scores) of the attention. They
called their model BiSET.

Table 4.8 reports the results obtained by Wang et al.’s model on Gigaword corpus.

Model Rouge-1 Rouge-2 Rouge-L
ABS [Rush et al., 2015] 29.55 11.32 26.42

ABS+ [Rush et al., 2015] 29.78 11.89 26.97
RAS-Elman [Chopra et al., 2016] 33.78 15.97 31.15

Re3Sum [Cao et al., 2018] 37.04 19.03 34.46
BiSET [Wang et al., 2019] 39.11 19.78 36.87

Table 4.8: The table reports the results obtained by Wang et al.’s model on Gigaword
corpus.

4.4.2 Content Selection
When people summarize a text, they first read the document to highlight sentences
that are salient (i.e., being relevant to construct the summary) and novelty (i.e., non-
redundant). Those mechanisms, modelled in extractive summarization, have not been
adopted in Text Summarization with Neural Networks, where the networks are based
on the Sequence-to-Sequence model (see Section 3.7.5). This means that the networks
give the same relevance to all words (and abstractly, to all sentences), without discern-
ing the relevant ones. For instance, if a document talks about both a big snow storm and
a man that started to sell snow, the network may decide to focus on just one piece of
information, creating a summary that is grammatically and semantically correct, but it
is not related to the document.

To improve the summary generation, researchers have started to experiment with
the different layers of the Sequence-to-Sequence model, adding gates, masks, sentence
scores, or a combination of all. Those methods can be separated onto two levels:

word-level: mechanisms that obscure or filter redundant and irrelevant information.
Zhou et al. (2017) defined a gate to filtered out irrelevant information from the
encoded states, while Gehrmann et al. (2018) proposed a mask to do not consider
certain words.

sentence-level: Hsu et al. (2018) decided to use extractive techniques to assign a score
to each sentence. Scores take in consideration the content, the novelty (i.e., if the
sentence is not redundant) and the importance of the sentence. Then, the score
of a sentence is multiplied with the attention scores of all words appearing in
that sentence. This multiplication can be seen as a soft mask, compared with the
one of Gehrmann et al. (2018), that elicits relevant words and passage from the
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document. Tan et al. (2017) adopted a graph-based sentence-level attention to
capture such information. The difference between Hsu et al.’s idea and Tan et
al.’s idea is that the model can re-score the sentences according to the previous
used information.

Finally, Li et al. (2018a) decided to incorporate both word-level and sentence-level
methods into a hierarchical decoder model [Tan et al., 2017]. The following sections
will explain deeply all the proposed works.

I reported in Table 4.9 the Rouge scores for all the models, except for Zhou et al.’s
one which has been trained and tested on Gigaword dataset.

Model Rouge-1 Rouge-2 Rouge-L
Nallapati et al.† 39.6 16.2 35.3

lead-3 [Nallapati et al., 2017]† 39.02 15.7 35.5
Paulus et al.† 38.30 14.81 35.49

Paulus et al.(RL)† 39.87 15.82 36.90
Pointer Generator [See et al., 2017] 39.53 17.28 36.38

Gehrmann et al. 41.22 18.68 38.34
Hsu et al. 40.68 17.97 37.13
Tan et al. 38.1 13.9 34.0
Li et al. 41.54 18.18 36.47

Table 4.9: The table reports Rouge scores for all described models (except for Zhou et
al.’s one). In the table, RL stands for Reinforcement Learning training method, while
† means that the model cannot be strictly compared since it is trained and tested on the
anonymized version of CNN/Dailymail corpus.

Zhou et al.’s Selective Gate

Zhou et al. (2017) proposed a gate to filter irrelevant and redundant information from
the encoder states. First they read the input sequence x = [x1, . . . , xn] using a Bidirec-
tional GRU4, producing a sequence of states H = [h1, . . . ,hn]. Each i-th state is the
concatenation of i-th forward state and backward state:

hi = [
−→
hi ||
←−
hi ] (4.42)

Then, they construct the document representation s using the first backward state
and the last forward state:

4The tokens of the input sequence are mapped to their word embedding before being processed by the
GRU.
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s = [
−→
hn||
←−
h1] (4.43)

The document representation is used to filter non-salient and redundant information
from the encoder states, simply measuring the relation between the encoder state hi and
the document s:

sGatei = σ(Ws hi +Us s+ b)

h′
i = sGatei ⊗ hi

(4.44)

where ⊗ represents the pointwise multiplication. Those filtered states are then used
to compute both the attention and the context vector c.

Gehrmann et al.’s attention mask

As I said in the introduction of this section, people tend to focus (i.e., pose attention)
on relevant passages of the document to create the summary. Gehrmann et al. (2018),
inspired by this human-mechanism, defined an hard mask that is applied on the attention
distribution. The mask creates a sparse distribution modifying the values as follows:

p(ãi|y<i,x) =

{
p(ai|y<i,x) if qi > ϵ

0 otherwise
(4.45)

where qi is the probability that the i-th word is selected, calculated as:

qi = σ(Wq hi + bq) (4.46)

where h is an encoder state and ϵ is an hyperparameter of the model. After that the
new distribution scores are calculated, they are re-normalized to obtain the distribution.

Hsu et al. model

Hsu et al. (2018) fused Extractive and Abstractive Text Summarizzation into one model.
In their model, extractive techniques are used to give a score to each sentence, i.e., how
much a sentence is relevant for the summary. Then, the score of a sentence is multiplied
with the attention scores of the words that appear in that sentence. In this way, the atten-
tion distribution is re-scored, focusing only on those words that are informative for the
summary. Their idea is that “words coming from less attended sentences are less likely
to be generated”, i.e. words coming from sentences that are not salient for the summary
are not selected (or focused). Given the word-attention scores α = [α1, . . . , αn] and
the sentence scores β = [β1, . . . , βm], the final word-attention scores are calculated as
follows:
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δi =
αi ∗ βs(i)∑
j αj ∗ βs(j)

(4.47)

where s(·) is a function that returns the sentence index where the i-th word appears.
The product ensures that δ will be high only when both αi and βs(i) are high. However,
the drawback of their approach is that the scores remain fixed at each decoder timestep,
not capturing the information that have already been used. This drawback is fixed in [Li
et al., 2018a].

Tan et al.’s model

Tan et al. (2017) propose a different model compared with the previous ones. Their
model is a hierarchical Sequence-to-Sequence model with a graph based attention. With
the term hierarchical, I mean a model that first generates a sentence representation read-
ing all the words present in that sentence (e.g., using a recurrent neural network), and
then it processes all the sentences with another neural network (e.g., another recurrent
network) to generate the document representation. Generally, such model is only ap-
plied to the encoder, but they extended it also to the decoder. This means that they
first generate a summary-sentence representation, and then they use this latter one to
generate the words of the sentence. In this case, the sentence-decoder takes in input
the document representation as initial state, while the word-decoder takes in input the
current sentence-decoder state as initial state. At each timestep, the sentence-decoder is
updated using the last word-decoder state. The sentence-decoder stops when it gener-
ates the special token <EOD> (End of Summary). They also used a double attention: a
sentence-level attention and a word-level attention. The sentence-level attention is used
to capture the relevance of each sentence, i.e., if a sentence is informative. Furthermore,
since a sentence can have a piece of information contained in other sentences, they de-
cided to use a graph-based attention. The graph-based attention computes the attention
score of a sentence using the current sentence-decoder state, the sentence-encoder state
(for which the score has to be calculated), and all other sentences. In detail, their idea is
that a sentence is relevant if it is heavily linked with many sentences. The sentence-level
attention is calculated as follows:

f(t+ 1) = λWD−1f(t) + (1− λ)y (4.48)

where f = [f1, . . . , fm] is the set of attention scores of the sentences, t expresses
the current iteration, D is a diagonal matrix with its (i, i)-elements equal to the sum of
the i-th column of the adjacent matrix W. λ is a damping factor and it is passed as
hyperparameter. Finally, y is calculated as follows:
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yi =


1

|T |
if i ∈ T

0 otherwise
∀i (4.49)

where T is a topic. They treated the current sentence-decoder state as the topic.
Thus, y is always a one-hot vector.

Li et al.’s model

Li et al. (2018a) define a hierarchical Sequence-to-Sequence model based on the ideas
of Zhou et al. (2017) and Hsu et al. (2018) for sentence filtering and scoring, respec-
tively. In detail, their model reads the words of a sentence using a Bidirection GRU
to generate the sentence representation. Then, all sentence representations are read by
another Bidirectional GRU to compose the document representation. Such document
representation is used to compute the selective gate for each sentence as in [Zhou et al.,
2017].

The sentence-decoder state is initialized using the document representation, and it
is update using the last state of the previous generated sentence and the sentence-level
attention α. The latter parameter is passed in input for the coverage mechanism. Once
the weights are calculated, the sentence-level context is computed as:

cs =
∑
i

αih
′
i (4.50)

where h′
i is the sentence representation after the application of the selective gate.

They use the sentence-level context to initialize the word-level decoder for the current
sentence. The word-level decoder is the same of the other models, where the current
word-decoder state and the word-level context are used to generate the vocabulary dis-
tribution. However, in order to model the importance of each sentence, they multiply
the word-level attention scores of a sentence with the sentence scores as in [Hsu et al.,
2018].

4.4.3 Other Works on Text Summarization
Other researchers tried to solve the Summarization task from different point-of-views.
Some research works [Liu and Lapata, 2019; Song et al., 2019; Kryściński et al., 2018]
used a pre-trained language model to improve the summary generation. Their idea is
that the language model carries both fluency and domain style since it is able to deeply
understand the meaning of each token. In detail, Liu and Lapata (2019) and Song et al.
(2019) used BERT-based models [Devlin et al., 2018] to solve the Summarization task.
The former authors adapted BERT for Extractive Summarization. They modified the
final layer of BERT to compute a score for each sentence which expresses if it has
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to be selected for the summary. The latter authors, instead, developed a Sequence-to-
Sequence model based on BERT. Such model, as BERT, removes random words from
the input to improve the generalization and the word embedding. Furthermore, thanks
to the decoder, it can be applied to any language generation task, such as Abstractive
Summarization. Kryściński et al. (2018), instead, proposed to extend the Sequence-
to-Sequence model proposed by Paulus et al. (2018) with a language model that inte-
grates external knowledge. In detail, they used a three layer stacked LSTM, trained on
CNN/Dailymail corpus, to create the language model. Then, the output of the stacked
LSTM is used, together with the current decoder state and the context vector, to predict
the next word. Their idea is to allow the decoder to focus on attention and extraction,
while the language model is responsible to generate the summary.

Other authors, like Narayan et al. (2018), preferred to use the topic model to tied the
model output to the document. They proposed both the task of extreme summarization,
where the goal is to create a very short sentence that contains all relevant information
of the input document, and a topic-based model to accomplish such task. Their model
is an encoder-decoder one, enriched with document-topic distribution and word-topic
distribution. More in detail, given tD as the topic distribution of the document and tw as
the topic distribution of the words, the encoder and decoder word inputs are defined as
follows:

ewe = [E(we) || P (we) || twe ⊗ tD]
ewd

= [E(wd) || P (wd) || tD]
(4.51)

where theE(·) is the function that returns the embedding of a word, P (·) is the func-
tion that returns the position embedding of a word (i.e., where the word appears in the
sentence). we and wd are the encoder input word and decoder input word, respectively.
The concatenation of the word embedding with the document-topic distribution forces
the model to generate a summary that has the same theme of the document.

Finally, Ma et al. (2018) and Li et al. (2017) used autoencoders to capture the la-
tent structure of the summaries. Ma et al. proposed to use an autoencoder to improve
the ability of the Sequence-to-Sequence model of creating a fixed-size document rep-
resentation. First, they defined an autoencoder to create a representation zs of an input
summary. Such autoencoder is trained using the abstractive summaries present in the
trainset. Then, they trained the Sequence-to-Sequence model, passing both the docu-
ment sentences and the target summary. During the training, they forced the model to
minimize the distance between the document representation zd (created by the sequence-
to-sequence) and the representation zs. Such distance is measured as follows:

d(zs, zd) =
λ

Nh

||zd − zs||2 (4.52)
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where λ is an hyperparameter of the model to balance the distance loss and Nh is
the number of hidden neurons, used to limit the magnitude of the distance function. Li
et al., instead, found that the summaries follow a latent structure composed of “Who
Action What”. They fused the decoder with a variational autoencoder to capture such
structure from the data and use it to improve the quality of the summaries.



Chapter 5

A Sentence-level Attention for
Content-Aware Summarization

In the previous chapters I described different aspects of the Summarization task, moving
from its definition to the recent models based on Neural Networks. I started describing
the task in Chapter 2, highlighting the different facets about how it can be solved (e.g.,
with Neural Networks, with graph-based methods, with lexical chains-based methods,
and so forth). Then, I moved on describing Neural Networks, and specifically those
ones that can be used for Summarization in Section 3.7. However, those models suffer
from three drawbacks: (i) repetitions in the output summary; (ii) the impossibility of
generating output words that are outside of the Neural Network vocabulary; (iii) the
impossibility to distinguish the relevant and informative sentences from the other ones,
treating all of them equally. Following the recent research works conducted to contrast
this latter issue, I propose a method based on a graph to capture the relevance of a
sentence (via a score) according to two factors:

1. the summary that the network has already generated up to the current timestep,
and

2. the information contained in the other sentences.

Then, the attention score of a word is multiplied by the score of the sentence where that
word appears. In this way, I normalize the word-level scores according to the relevance
of the sentences in the document.

5.1 Introduction
The main drawback of Neural Network-based models for Summarization is their inca-
pability of capturing the salience of each sentence. They treat all words and sentences

89
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as equals, not distinguishing those that are relevant for the summary from those that are
used as semantic glue to connect the different parts of the document. For instance, if
a document talks about both a big snow storm and a man that started to sell snow, the
network may decide to focus on just one piece of information (e.g., the snow storm),
creating a summary that is grammatically and semantically correct, but not related to
the desired target output (e.g., the man who sells the snowballs).

To solve this drawback, I decided to assign a score to each sentence that represents
its saliency. A high score means the sentence is relevant for the summary, while a low
score means the sentence is not useful for it. These sentence-level scores are than mul-
tiplied by the word-level ones to focus only on words that appear in salient sentences.
However, a document could have redundant sentences, i.e. sentences that have a similar
content; thus, analyzing those ones in a stand-alone fashion is not the correct way to
proceed. The score of a sentence has to be calculated not only considering itself and the
decoder state, but also the information contained in the other ones.

I decided to apply a graph-based method to calculate the scores. Such method, as
reported in Section 2.3, creates a graph G=<V, E> where the set of vertex V represents
each sentence in the document, while the set of edges E describes the connections
between those sentences. These connections are defined via a similarity function (e.g.,
cosine similarity), which score is reported as the weight of the edge. Then, an algorithm
(e.g., HITS or Pagerank) is applied on the resulting graph to obtain a score for each
vertex analyzing its connections. I reported this mechanism in the model using a graph-
based Neural Network [Veličković et al., 2017; Tan et al., 2017; Klicpera et al., 2018;
Yao et al., 2019], which (generally) requires an adjacency matrix and a feature matrix
(the sentence representations) to be applied.

My proposed model is composed of a hierarchical encoder to compute both word-
level and sentence-level representations, followed by a Recurrent Neural Network de-
coder. In detail, the hierarchical encoder can be seen as two Bidirectional Recurrent
Neural Networks (RNNs from now on); the one at word-level, called word-encoder,
is a bidirectional RNN that reads each word of a sentence and emits its representation,
while the one at sentence-level, called sentence-encoder, uses the last states of the word-
encoder to compute the sentence representations. I then used this latter ones to calculate
the sentence-level scores, using the graph-based method, at each decoder timestep.

In this chapter, my contribution is twofold:

1. A sentence-level attention based on a graph. The sentence-level attention is then
multiplied with the word-level one to rescore these latter values;

2. An inference-time score to remove repetitions and attention errors, based on the
coverage vector and reinforcement learning.

This chapter is structured as follows: Section 5.2 describes with an example how the
model should work; Section 5.3 describes the proposed model, reporting the proposed
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sentence-level attention methods; Section 5.4 describes the training of those models and
the results obtained. Finally, the chapter concludes with Section 5.5.

5.2 How the Model Should Work: A Practical Example
In this section, I am going to explain how the model should work. I will start reporting
a CNN/Dailymail article and its topics. Then, I will explain which topic the model has
to use to generate the summary and the words regarding it. Finally, I will highlight how
the proposed model will select those words and use them to generate the summary.

Let us start with a document present in the CNN/Dailymail corpus regarding a man
that started to sell snow online:

A Massachusetts man has found a way to profit from the several feet of
snow in his yard: He’s shipping it to people in warmer climates for the bar-
gain price of $89 for six pounds.

Kyle Waring, of Manchester-by-the-Sea, just outside of Boston, got the idea
while shoveling snow earlier this winter and launched ShipSnowYo.com.

At first he shipped 16.9-ounce snow-filled bottles for $19.99, but he found
the snow melted by the time it arrived at its destination.

So he came up with a new plan, selling six pounds at a time and shipping
the snow via overnight delivery.

The ShipSnowYo website specifically appeals to buyers in warmer states.

‘Wouldn’t you love to make snowballs and touch snow for the first time?!’
it reads. ‘Now you can!

‘This is historic snow. Boston Snow. . .

The storms so far on the northeast have broken historic records and contin-
ues to release it’s anger on the city of Boston.

Over 70 inches of snow have been dumped on the Greater Boston area in
the last 17 days.
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For simplicity, I separated each sentence of the article in different lines. The article
presents two topics: the first one regards that a man in Massachusetts started to sell
snow via ShipSnowYo.com website. This is the main topic onto which the reference
summary is created, and the one that the model should use to create the final summary.
The second topic regards the Boston storm, which broken historic records; it gives more
details to the reader, describing the context of the article and the reasons behind the
snow sell. This topic is not relevant for the model and should be avoided in the creation
of the summary. However, the model could copy via the pointer network some words to
enrich the generated summary, providing more context to this latter one.

A problem of Neural Networks oriented to the Summarization task is that they tend
to focus to irrelevant information. For instance, in the above article a simple Sequence-
to-Sequence model could focus on the last part of the article (the snow storm) - pro-
ducing a summary on this topic - which despite being correct, it is not related to the
human one. To overcome this issue, many researcher added layers and masks to avoid
these irrelevant information. In this thesis, I structured the model to find the relevant
sentences and use them to create the summary. More in detail, the proposed model first
reads each sentence to capture its meaning via a vector representation using a Recurrent
Neural Network. Then, it combines those sentences to have a general view of the article.

At each timpestep, the sentence representations, together with the general view of
the article and the current generated summary, are used to calculate a score for each sen-
tence that highlights its relevance to the summary. These scores are produced using the
Pagerank algorithm, which is capable to handle both the relevance and the redundancy
of the sentences. For instance, in the above document the algorithm will assign an high
score (close to 1) to the first 6 sentences since they are related to the same topic and are
relevant to the summary. The remaining 3 sentences, instead, will receive a lower score
because they are not strictly connected to the previous ones and they are not relevant
for the summary. However, in some particular cases, the Pagerank algorithm could se-
lect an irrelevant sentences if it contains particular words that should be included into
the summary. Finally, the scores and the weights of the attention layer are multiplied
together to select the relevant passages and the words to copy in output.

Since the scores affect the sentence representation, they have an impact to the pointer
network too. In this case, the pointer network will select the relevant terms only from
the first 6 sentences. For instance, it may select: “Kyle Waring” or “ShipSnowYo.com”;
these terms are not present in the model’s vocabulary.

Let me further explain how the model will generate the summary through an exam-
ple. For simplicity, I will skip intermediate passages to focus on how the model selects
the sentences to continue the summary. Let me assume that the model has already
generated the summary “Kyle Waring”. Let me suppose that the next excerpts that the
model could generate are “launched ShipSnowYo.com” or “is shipping”. In this case,
the model will give an high score to the first and second sentences because it requires
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them to continue the summary. Assuming that the model generated “is shipping”, now
it requires to generate what Kyle is shipping. Thus, it will give an high score to the
fourth sentence to focus on “six pounds”, “snow” and “via overnight delivery” (this one
will be copied using the pointer network). Combining them together, the summary is:
“Kyle Waring is shipping six pounds of snow via overnight delivery”. At this point, the
only word missing is the price. Since it is present in the first sentence, the model will
give an high score to this one. The final word “$89” will be copied to the summary via
the pointer network.

5.3 Model
Let x = [x1, x2, . . . , xM ] be a sequence of M source tokens (the tokens of the input
document), and w = [w1, w2, . . . , wN ] a sequence of N target tokens (the tokens of the
summary), with N ≤ M . Neural Network-based encoder-decoder models, also knows
as Sequence-to-Sequence models [Sutskever et al., 2014] (Seq2Seq from now on), are
used to transform the sequence x into the sequence w. Generally, the encoder and the
decoder are jointly trained to minimize the cross-entropy loss function.

My proposed model is similar to the one of Nallapati et al. (2016). It consists of
a hierarchical Bidirectional LSTM Encoder and an attention-based LSTM Decoder. In
detail, differently from the classic encoder, the hierarchical one is composed of two en-
coders, each one formed by a Bidirectional LSTM. For simplicity, I will call the first
encoder word-encoder, and the second one sentence-encoder. First, the word-encoder
generates a sentence representation reading all M words of a sentence; then, the sen-
tence representations are read by the sentence-encoder to generate the document repre-
sentation. Let x1 = [x1,1, x1,2, . . . , x1,M ] be the tokens that compose the first sentence
of the document, and D = [x1, . . . ,xK ] the set of K sentences that compose the docu-
ment. At each step i, the word-encoder is fed with the input tokens x1,i and produces two
encoded states:

−→
h 1,i and

←−
h 1,i, where the first one is generated by reading the sentence

words from left-to-right, while the latter one by reading the sentence words right-to-left.
Those two states are distinguished through the jargon terms forward state and backward
state. Equations 5.1 and 5.2 represent the forward and backward states construction:

−→
h i,j =

−−−−→
LSTMW (E(xi,j),

−→
h i,j−1) (5.1)

←−
h i,j =

−−−−→
LSTMW (E(xi,j),

←−
h i,j−1) (5.2)

where
−−−−→
LSTMW represents the word-level forward LSTM,

←−−−−
LSTMW the backward

one, and E(·) is a function that returns the word-embedding [Mikolov et al., 2013c;
Pennington et al., 2014] of an input word. Once the encoded states of a sentence are
generated, the last forward state

−→
h i,M and the last backward state

←−
h i,1 are concatenated
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together to generate the sentence representation hi. Such operation is represented in
Equation 5.3:

hi = [
−→
h i,M ||

←−
h i,1] (5.3)

where || is the concatenation operator. Then, the sentence representations [h1, . . . ,hK ]

are passed to the sentence-encoder which will produce a forward state
−→
d i and backward

state
←−
d i. The document representation d is constructed as for the sentence representa-

tion, concatenating the last forward state with the last backward one:

d = [
−→
d K ||

←−
d 1] (5.4)

Similar to the encoder, on each step t the decoder (a single unidirectional LSTM)
receives in input the embedding of the previous word1, the decoder state st and the con-
text vector ct, and uses them to emit a word in output (the network emits a probability
distribution over the vocabulary that is used to select the next word). In my model, the
decoder state is initialized with the last state of the sentence-level encoder which cap-
tures all the information present in the document. The context vector ct is calculated as
in [Bahdanau et al., 2014]:

ct =
M∑
k=1

âtk hk (5.5)

where the score âk represents the attention score, calculated through the attention
approach, and hk is the representation of the t-th word.

In my model, the attention scores â are computed differently from the other models
that can be found in the literature. Inspired by the works of Hsu et al. (2018), Nallapati
et al. (2016) and Tan et al. (2017), I decided to combine the word-level attention with
the sentence-level scores to select only those words coming from sentences that are
relevant for the summary. Given b as the sentence-level scores and a as the word-level
scores, I computed the attention scores â as follows:

âi =
ai ∗ bs(i)∑M
k=1 ak ∗ bs(k)

(5.6)

where a scores are computed by Equation 5.7 (the symbol T in vT is the transpose
operator). The b scores are calculated using a graph-based Neural Network, which
keeps into account both the current decoder state st and the sentence representations.
The graph-based network is described in Section 5.3.1. The model is depicted in Figure
5.1.

1During training it is the embedding of the target word wt−1, while in testing it is the embedding of
the previous word emitted by the decoder.
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Figure 5.1: The figure shows the proposed model. The sentence-selection method is
described in Section 5.3.1.

ej = vT tanh(We [st||hj] + be)

ati =
exp(etj)∑M
k=1 exp(e

t
j)

(5.7)

For the output, I adopted the mixture model proposed by See et al. (2017), which
combines the probability of a vocabulary word with its attention score to deal with the
Out-Of-Vocabulary (OOV) problem and rare words. Thus, the probability of emitting a
word yi at step t is computed as follows:

ot = Wc [ct||st] + bc

P (yti) =β softmax(Wo ot + bo)

+ (1− β)
∑
w=yt

âtw

(5.8)

where Wo, Wc, bo and bc are learnable parameters and yt−1 is the previous emitted
word. β is a value within the range [0, 1] used to mix the two distributions and it is
calculated through Equation 5.9, where Wb and bb are learnable parameters.

β = sigmoid(Wb [E(yt−1)||ct||st] + bb) (5.9)

In the Equation 5.8, β is used to control how much information coming from the
attention distribution will entry in the vocabulary distribution. If β is close to 1, the
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model generates the next word only using the vocabulary (i.e., selecting the word with
the highest probability over the vocabulary); if β is close to 0, then the model uses the
attention distribution over the input document. This latter case is used by the model to
copy OOV words.

I trained the model to minimize the sum of the negative log-likelihood of the se-
quence of target words w∗:

loss =
1

N

N∑
t=1

−log P (w∗
t ) (5.10)

During the evaluation of the model, I found that it tends to generate summaries that
have repeated words (or sentences). This problem is common in the task of Neural-
based Abstractive Summarization, as I reported in Section 4.2. I thus decided to apply
some tricks both in training and inference step to contrast this issue. In the training step,
I applied the coverage method defined by See et al. (2017); a short description of the
method is reported in Section 5.3.2. At inference time, I decided to modify the scoring
function of the beam search:

s(x, y) =
logp(y)

|y|
(5.11)

in order to include the length penalty ln(y) defined by Gehrmann et al. (2018),
which encourages the network to generate long and rich summaries. The length nor-
malization is defined as:

ln(y) =
(5 + |y|)α

(5 + 1)α
(5.12)

where α is an hyperparameter that controls the length of the summary. High α values
lead to long summaries. The score function is then rewrote as:

s(x, y) =
logp(y)

ln(y)
(5.13)

I also set a minimum summary length based on the training data. Additionally,
I followed [Paulus et al., 2018] restricting the beam search to never repeat the same
trigram in the summary.

5.3.1 Sentence-level Scores
In the introduction, I described that current Neural Network-based models for the Ab-
stractive Summarization task are not able to distinguish between sentences that are in-
formative and salient for the summary from those that are not. Hsu et al. (2018) and Tan
et al. (2017) tried to solve this issue adopting a two-level attention: first, they computed
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a score for each sentence and each word; then, a word score is multiplied by the score
of the sentence where it appears. This multiplication allows to have an high word-level
attention score only for those words that appear in sentences having an high sentence-
level score (i.e., that are relevant for the summary). In this way, it ensures that salient
words are more likely to be copied in output through the pointer network (see Chapter
4.3), and that the context vector poses its focus only onto certain (relevant) words.

I propose three methods based on graph to compute the sentence-level scores. All
methods compare each sentence with the current decoder state in order to find infor-
mative sentences according to the summary generated so far. However, if a sentence
is only compared with the decoder state, the informativeness of the other ones is not
captured. For such reason, I decided to adopt a graph method since it permits to keep
into account all those aspects. For instance, suppose that the score for the sentence d1
has to be calculated. If d1 is compared with the decoder state d, only the relevance of d1
with respect to the generated summary is captured. Now, suppose that the score for the
sentence d3 has to be calculated too, and that d3 contains the same facts of d1 and adds
more ones. If d3 is compared with d, only its relevance with respect to the summary
is captured, and not with d1 too. In other words, it is not possible to know (unless all
the sentences are manually compared) if a sentence is more informative than another
one. With the adoption of the graph attention, a sentence is not only compared with
the decoder state, but with the other ones that are similar. Such comparison allows to
assign an high score to informative and relevant sentences while pushing the score of
the redundant ones down. Figure 5.2 depicts an example of graph score calculation.

Figure 5.2: A graphical example of the score calculation of sentence d3. Dotted arrows
represent the relations between the current sentence and the other representations.

I propose three sentence-level attention methods based on graph, each one calcu-
lating the scores in a different way. More in detail, differently from Tan et al. (2017)
that defined the matrix A via a bilinear product of the sentences (to which they added
the decoder state), I decided to adopt the Pagerank method for the Summarization task.
Following Yao et al. (2019), where the adjacent matrix is filled using Pointwise Mutual
Information or TF-IDF, I decided to use the cosine similarity function. Given two vec-
tors −→a and

−→
b , the cosine similarity function returns a value in the range [−1, 1], where

−1 indicates that the two vectors are opposite and 1 that are the same one. Further, the
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cosine similarity ensures that the diagonal of A contains only values equal to 1 (because
the vector is compared with itself), adding self-loops to the graph while normalizing
the values (generally, the graph network requires to add the identity matrix to A for
normalization). In detail, A is defined as follows:

A[i, j] = cosine(di,dj) (5.14)

where di and dj are two sentence representations (for simplicity, I threat the current
decoder state as a sentence). Figure 5.3 shows an example of a weighted graph with its
adjacent matrix.

Figure 5.3: The image shows a graph composed of four sentence representations (on the
left) and its corresponding adjacent matrix (on the right).

I called the three methods: cosine-pagerank, cosine-graph and pagerank-scores.

Cosine-Pagerank Attention Method

This method is similar to the one proposed by Tan et al. (2017) to compute the Pagerank
scores. Following their idea, I defined it as follows:

b = softmax((1− λ)(I − λA D−1)−1y) (5.15)

where I is the identity matrix,A is the adjacent matrix of the graph,D is the diagonal
matrix where the i-th diagonal element is equal to the sum of the i-th columns of the
matrix A, and y is a one-hot vector of size K + 1. It has all values equal to zero except
on the one that represents the decoder state. The scalar λ is the dumping factor.
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Cosine-Graph Attention Method

The problem of Equation 5.15 is that it does not use a weight matrix to modify the
scores. The missing of that learnable parameter does not permit the neural network to
adapt to the inputs, increasing the accuracy of the model and speeding up the conver-
gence. For this reason, I decided to use a classic graph neural network, which is defined
as follows:

b = softmax(AD−1 F W ) (5.16)

where F is a matrix that contains all the sentences representation plus the current
decoder state, and W is the learnable parameter of the model. As for cosine-pagerank,
the matrix A is defined through Equation 5.14.

Pagerank Score Method

The problem of cosine-pagerank and cosine-graph is the probability distribution calcu-
lated over the sentences. The probability distribution could focus onto a single sentence,
while (partially) ignoring the others that could be relevant to generate the next word.
However, the model could require more than one sentence to understand a passage in
the text and create the context vector, or a specific sentence in order to copy a word
to the output. Hence, imposing a probability distribution over the sentences could lead
to sub-optimal summaries. I thus decided to assign a score comprises in the range [0,
1] to each sentence. In this way, the model will decide which ones are important for
the summary, whether it requires them for the context vector or the pointer network. I
modified Equation 5.15 as follows:

b = σ((1− λ)(I − λÃ D−1)−1y) (5.17)

where Ã is defined applying the Rectified Linear Unit (ReLU) function to the ad-
jacent matrix A, and σ(·) is the sigmoid function. The ReLU function removes all the
negative values from the matrix (or vector) to which is applied, leaving only those that
are equal or greater than 0. Applying it to the adjacent matrix A means that all those
edges connecting sentences that are dissimilar are removed, leaving only the ones be-
tween sentences that share a common piece of information. In this way, the model
selects the best sentence for each cluster of similar ones. Figure 5.4 shows the adjacent
matrix of the Figure 5.3 after the ReLU.

5.3.2 Coverage Method
To contrast the word and sentence repetitions, I decided to add a coverage vector to
Equation 5.7 to force the model to attend other words during the summary generation.
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Figure 5.4: The image shows a graph composed of four sentence representations (on the
left) and its corresponding adjacent matrix (on the right). To increase the visual impact,
I remove the edges with score 0.

I decided to use a coverage vector instead of the temporal attention due to the pointer
network of Equation 5.8. During my experiments, I found that any method that directly
modifies the attention scores has a terrible impact on the learning of the model. In detail,
the model is not able to calculate a proper attention distribution, and as consequence to
copy words in the output.

I defined the coverage vector covt as the sum of the attention distributions:

covt =
N∑
t=1

ât (5.18)

The coverage vector, as reported in [See et al., 2017], is a non-normalized distribu-
tion over the document words that represents the degree of coverage that those words
have received from the attention method. Highest the coverage score of a word is, more
that word has been attended. Note that I did not set the maximum score of each cell to
1 because a word could be attended multiple times in the Summarization task.

I then modified the Equation 5.7 to include the coverage vector:

etj = vT tanh(We [st||hj||covt] + be)

ati =
exp(etj)∑M
k=1 exp(e

t
j)

(5.19)

Since at the first decoder timestep the model has not generated an attention distribu-
tion yet, I defined the coverage vector as a zeros one.
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Finally, I used the auxiliary loss proposed by See et al. (2017) to penalize the over-
lapping between the attention distribution and the coverage vector:

covloss =
N∑
i=1

M∑
j=1

min(aij, cov
i
j) (5.20)

During my experiments with the coverage loss, I noticed that it tends to produce
semantically wrong summaries. In my opinion, since the coverage loss has an impact
on the attention, it indirectly impacts to the sentence-level attention and the sentence
representations too, invalidating part of the training made by the model. I decided to
use such loss at inference time in order to guide the model on selecting those words that
minimize the overlap between the attention and the coverage vector. Thus, I have to
modify Equation 5.13 to include the covloss. The problem, however, is how to rewrite
the equation to reward the model when it generates a word that minimize such overlap,
and penalizing it otherwise. I combined the covloss with the reinforcement learning
q-function because this latter one has the wanted behaviour. In detail, the q-learning
function allows the model to adapt to the environment, selecting the best action (in this
case, the best word to generate) at each timestep. I have to specify that the proposed
function is not a q-learning one, even if it is based on that; it does not calculate a score for
each state (timestep) and action (generated word) as for those of reinforcement learning.
I defined the score function, called covscore, as follows:

covscoret = covscoret−1 +
1

t
(covlosst − covscoret−1) (5.21)

which is added to Equation 5.13:

s(x, y) =
logp(y)

ln(y)
+ covscore (5.22)

5.4 Evaluation

I defined 6 models combining the three different sentence-level attention methods, the
coverage vector, the auxiliary loss and the covscore function. In detail, I trained and
tested the following models:

Seq2Seq + cosine-graph attention: It is the hierarchical model that uses the cosine-
graph attention to compute the sentence-level scores;

Seq2Seq + cosine-pagerank attention: The hierarchical sequence-to-sequence model
with the pagerank attention;
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Seq2Seq + pagerank scores: the model computes the sentence-level scores through
the sigmoid function. It is the model that gave the best results in the evaluation.
For such reason, I used the coverage vector, the covloss and the covscore on it;

Seq2Seq + pagerank scores + coverage: It uses the coverage vector to reduce dupli-
cated tokens in the generated summary;

Seq2Seq + pagerank scores + coverage + covloss: Previous model with the use of the
coverage loss;

Seq2Seq + pagerank scores + coverage + covscore: Instead of using the coverage loss,
it uses the covscore function at inference time.

I trained and tested them on CNN/DailyMail dataset [Hermann et al., 2015], which
contains online articles paired with multi-sentence summaries. I used the script supplied
by Nallapati et al. (2016) to obtain the dataset, which consists in 287,226 training pairs,
13,368 validation pairs and 11,490 test pairs. Each article has 781 tokens on average,
while each summary has 3.75 sentences and 56 tokens on average. Differently from
Nallapati et al., I used an non-anonymized version of the dataset2.

The models have 256 dimensional hidden layer and 128 dimensional embedding
layer. Following See et al. (2017), I used a small vocabulary comprises of 50k tokens for
both source and target. I set the dumping factor λ to 0.9. All the weights are initialized
with a normal distribution with mean 0 and standard deviation 0.1. The models are
trained using AdaGrad [Duchi et al., 2011] with a learning rate of 0.15. I also used
gradient clipping with a gradient norm of 2.0 and dropout [Srivastava et al., 2014] with
probability 0.2 (keep probability of 0.8) to improve model generalization. I used the
loss on the validation set for early stopping3. The training was performed on a single
GPU RTX 2080Ti, with a batch size of 8. At testing time, I used a beam size of 5 and
an α value of 1.4 for the length penalty. I set the maximum number of encoder input
sentences to 8. I truncated the length of each sentence to 50 tokens, and the length of the
summary to 100 tokens in order to speed up the convergence of the models. In detail,
I started the training with an article length of 200 tokens and a summary length of 50
tokens, and I progressively increased those values.

I trained the models for about 1,200,000 iterations. The training of each model took
about 5 days of computation.

5.4.1 Attention Analysis
Before looking to overall results obtained through Rouge scores, I would like to focus
on the attention scores calculated by the models to understand how they learned.

2Please, see [Chen et al., 2016a] for problem regarding the anonymized version.
3See Appendix C for more details about dropout and early stopping.
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During my experiments, I noticed that the sentence-level scores have a large impact
on the word-level ones, focusing only onto the relevant words of the sentence. This
is evident in the plots of the attention scores, where the model interactions come to
light. In these plots, dark colors represent high attention scores (i.e., the model focused
on that sentence or word), while bright colors represent low attention scores (i.e., the
model lightly consider a sentence or a word).

In this section, I will analyze the plots produced by “Seq2Seq + cosine-graph atten-
tion”, “Seq2Seq + cosine-pagerank attention” and “Seq2Seq + pagerank scores”.

Cosine-Pagerank Attention

Figure 5.5 shows the sentence-level distribution for Cosine-Pagerank Attention method.
From the picture, it is possible to see that the model was able to select the relevant
sentence at each timestep. The only case where it selected more than one sentence is in
the first three timesteps.

Figure 5.5: The figure shows the sentence-level distribution calculated using Cosine-
Pagerank Attention method.

Looking to the word-level attention distribution depicted in Figure 5.6, it is possible
to notice that the sentence-scores did not have a large impact on the word level. It
smoothed them, leaving only a value associated to California.

An other example of sentence-level and word-level scores are depicted in Figure
5.7 and Figure 5.8 respectively. In the former figure, the model focused to multiple
sentences (with different attention degree). This means it found those sentences relevant
to construct the summary. However, such probability distribution did not improve the
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Figure 5.6: The figure shows the word-level distribution when it is combined with
Cosine-Pagerank Attention method. In detail, the image represents the distribution on
the fourth sentence. On the left column, the summary words; on the bottom, the sen-
tence words.
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word-level attention distribution. As reported by Figure 5.8, the model focused to the
same words at different timesteps.

Figure 5.7: The figure shows the sentence-level distribution calculated using Cosine-
Pagerank Attention method.
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Figure 5.8: The figure shows the word-level distribution when it is combined with
Cosine-Pagerank Attention method. In detail, the image represents the distribution on
the fourth sentence. On the left column, the summary words; on the bottom, the sen-
tence words.
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Cosine-Graph Attention

Figure 5.9 shows the sentence-level distribution for Cosine-Graph Attention method.
In the figure, there are 4 sentences that received an attention score at each timestep.
Furthermore, the 4th, the 5th and the last sentences are the ones that received high
scores.

Figure 5.9: The figure shows the sentence-level distribution calculated using Cosine-
Graph Attention method.

Such behaviour had an impact on the word-level attention distribution, where the
model focused only on certain words, as depicted in Figure 5.10. More in detail, the
model, despite the repetitions in the summary, focused on ncaa, different, filed and
athletes. It is also possible to notice that the model focused on this latter word at almost
each timestep.

I report another example of sentence-level and word-level attention distribution in
Figures 5.11 and 5.12, respectively. The former figure is similar to Figure 5.9, where the
model attended the same sentences. Figure 5.12 shows another example of word-level
attention distribution, where the model focused on the same words at each timestep.
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Figure 5.10: The figure shows the word-level distribution when it is combined with
Cosine-Graph Attention method. In detail, the image represents the distribution on the
third sentence. On the left column, the summary words; on the bottom, the sentence
words.
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Figure 5.11: The figure shows the sentence-level distribution calculated using Cosine-
Graph Attention method.
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Figure 5.12: The figure shows a word-level distribution when it is combined with
Cosine-Graph Attention method. The network was not able to focus on specific words,
leading to multiple repetitions. On the left column, the summary words; on the bottom,
the sentence words.
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Pagerank Score Method

The previous plots reported that the model was not able to focus on words that are
relevant for the summary. On one hand, the Cosine-Pagerank Attention was able to
select the relevant sentence at each timestep, but this distribution terribly impacted on
the word-level attention. On the other hand, the Cosine-Graph Attention was not able
to select the relevant sentence, but it attended the relevant words. It generally focused
on different sentences at each timestep, assigning the same score to those ones.

The problem of the previous methods is that they tried to select only one sentence at
each timestep, but using a single sentence could not be sufficient to find salient words
(or phrase excerpts) for the summary. The model could need two or more sentences to
understand a passage. Furthermore, since Equation 5.8 includes all the attention scores
of a word into the vocabulary distribution, the sentence-level attention could smooth, or
in the worst case delete, those values.

For this reason, I substituted the softmax function in the sentence-level attention
with a sigmoid one. This change had a positive impact on both sentence-level and
word-level attention scores. As illustrated by the sentence-level scores of Figure 5.13
and Figure 5.14, the model was able to select the relevant sentence at each timestep
(dark colors). It also gave a score to the other sentences according to their relevance for
the summary.

Figure 5.13: The figure shows the sentence-level distribution calculated using Pagerank
Score method.

The scores also allowed the model to copy words from the document to the summary,
as it possible to see from the word-level attention of Figure 5.15 and Figure 5.16.
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Figure 5.14: The figure shows the sentence-level distribution calculated using Pagerank
Score method.
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Figure 5.15: The figure shows the word-level distribution when it is combined with
Pagerank Score method. On the left column, the summary words; on the bottom, the
sentence words.
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Figure 5.16: The figure shows the word-level distribution when it is combined with
Pagerank Score method. On the left column, the summary words; on the bottom, the
sentence words. From the figure, it is possible to see that the pointer network substituted
the special token <UNK> (that represents a token outside of the network vocabulary)
with 123rd.
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5.4.2 Results
In this section, I will report Rouge scores (Rouge-1, Rouge-2 and Rouge-L) [Lin, 2004]
of my models. I compared them with 5 state-of-the-art NN-based models to understand
if they are able to learn the mapping function from the document to the summary. The
state-of-the-art models are the following ones:

See et al. (2017)’s pointer generation model. It is a Sequence-to-Sequence model that
combines the vocabulary distribution with the attention distribution to select Out-
Of-Vocabulary or rare words.

Nallapati et al. (2016)’s hierarchical model. It is a hierarchical encoder followed by
a RNN decoder. They combined the word attention distribution with the sentence
one. Differently from my models, they used a simple attention method for the
sentences.

Nallapati et al. (2016)’s pointer model. This model is similar to the hierarchical one,
but with the difference that it uses a vanilla encoder and no sentence-level atten-
tion distribution. It also uses a pointer network to copy words from the input text
to the summary.

Hsu et al. (2018)’s model. In their article, Hsu et al. propose a model that combines
extractive with abstractive summarization. In detail, they first use a NN-based
model to assign a score to each sentence. The score expresses if the sentence
should be used to generate the summary or not. Then, they use a Sequence-
to-Sequence model to generate the summary. In this latter one, the word-level
attention scores and the sentence-level attention scores are combined together.
Differently from my models where the sentence scores change according to the
decoder state, their ones are fixed.

Tan et al. (2017)’s abstractive model. The model proposed by Tan et al. is a hierar-
chical encoder followed by a hierarchical decoder. To initialize the sentence-level
decoder, they use a graph-based attention over the document sentences. In detail,
the sentence-level attention is used to create a sentence context, which is fed in
input to the word-level decoder as initial state.

Once I trained the models, I calculated their average summary length. The idea
is that if the average summary length of a model is short, its Rouge scores will be
low because only few tokens will be in common. With a long summary, the Rouge
scores will be high because there is an high chance that a lot of tokens are present
in the reference one. Table 5.1 reports the average summary length for the proposed
models. It is possible to see that “Seq2Seq + cosine-pagerank attention” is the model
with the shortest average summary length. The model closest to the average length of
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the reference summaries is “Seq2Seq + pagerank scores + coverage + covscore”, which
has an average length of 55 tokens (1 token less than the reference one).

Model Avg. summary length
Seq2Seq + cosine-graph attention 44.40 tokens

Seq2Seq + cosine-pagerank attention 43.70 tokens
Seq2Seq + pagerank scores 52.36 tokens

Seq2Seq + pagerank scores + coverage 54.22 tokens
Seq2Seq + pagerank scores + coverage + covloss 44.28 tokens

Seq2Seq + pagerank scores + coverage + covscore 55 tokens
Reference summary 56 tokens

Table 5.1: The table reports the average summary length for the models and the refer-
ence summary.

Table 5.2 reports the results obtained from all the models. Comparing the average
summary lengths of Table 5.1 with the Rouge scores of Table 5.2, it is possible to no-
tice that the models with the longest summaries obtained the best results. The models
“Seq2Seq + pagerank scores + coverage” and “Seq2Seq + pagerank scores + coverage
+ covscore” obtained highest R-1 and R-2 than Nallapati et al.’s ones. I suspect that my
models have a low R-L due to their high abstraction power: since the generated sum-
maries contain tokens that are not present in the reference ones, the Longest Common
Sequence is short.

On the other hand, both “Seq2Seq + cosine-pagerank attention” and “Seq2Seq +
cosine-graph attention” have very low Rouge F1 scores. Those scores are inline with
the attention plotting, i.e. that the two models neither learned to recognize the best
sentence nor to focus on the relevant words and passages. In my opinion, the prob-
lem of those models is that the sentence-level attention had a disastrous impact on the
word-level one, modifying those scores and invalidating the learning. I also suspect that
keeping the scores of dissimilarity sentences in the matrix A do not help the model to
discern the relevant sentences; on the other hand, the ReLU function helps to identify
the sentence clusters and pick the relevant ones. Further, both “cosine-pagerank atten-
tion” and “cosine-graph attention”generated summaries with words not related to the
document topic.

I noticed that the auxiliary loss did not improve the Rouge scores. Since the auxiliary
loss modifies the attention scores, it also impacts on the sentence-level ones and shakes
the sentence representations, invalidating part of the training. This is supported from the
fact that the covloss incremented the loss on the validation set from 3.5 to 3.8, instead
of decreasing it.

Giving those results, I can conclude that the proposed graph-based sentence-level
attention generally performs better than the sentence-level attention proposed by Nal-
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lapati et al. (2016). It allows to generate more abstractive summaries as reported in
Section 5.4.2, at the cost of sacrificing recall. More in detail, since Rouge only evalu-
ates the presence of tokens of the generated summary in the reference one, it indirectly
penalizes models that use synonyms and periphrasis. Indeed, my best model has a very
high precision (41.76 for R-1, 16.27 for R-2 and 27.16 for R-L) but a very low recall
(33.22 for R-1, 13.03 for R-2 and 21.50 for R-L).

This is also the reason why my models have lower Rouge scores than the ones of See
et al.. Those latter models are more oriented on copy words from the input document
than generating novel ones, as it possible to notice comparing their novelty depicted in
Figure 5.19, which is close to 0, with mine in Figure 5.18.

Finally, my models under-perform respect to Hsu et al. (2018) and Tan et al. (Tan
et al.) ones. This is an expected result since their ones have a more complex architecture
and use more complex features.
The model of Hsu et al. is composed of two trained models: an extractive model to se-
lect the sentences that are useful for the summary and an abstractive one to digest them;
mine, instead, are jointly trained to compute a score on each sentence and generate the
summary. It does not know which sentence is better for the summary.
The model of Tan et al. uses both a sentence-level attention and a word-level attention,
but in a different way. Their model uses an hierarchical decoder to generate the sum-
mary. First, it generates a decoder state for each sentence of the summary using the
sentence-level attention; then, it generates the words of a sentence using the word-level
attention and the pointer-network. Compared to my models that only combines both
attentions and require less resources to be trained, their one is resource intensive be-
cause the hierarchical decoder adds a further million parameters (neurons), which have
a positive impact on the results.
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Model R-1 R-2 R-L
See et al.’s pointer generation 29.7 9.21 23.24
See et al.’s pointer generation with coverage 36.44 15.66 33.42
Nallapati et al.’s pointer model† 32.1 11.7 29.2
Nallapati et al.’s hierarchical model† 31.8 11.6 28.7
Hsu et al.’s model 40.68 17.97 37.13
Tan et al.’s model 38.1 13.9 34.0
Seq2Seq + cosine-pagerank attention 15.03 2.70 11.03
Seq2Seq + cosine-graph attention 15.92 2.84 11.51
Seq2Seq + pagerank scores 26.77 9.67 19.04
Seq2Seq + pagerank scores + coverage 34.50 13.47 22.26
Seq2Seq + pagerank scores + coverage + covscore 34.67 13.61 22.36
Seq2Seq + pagerank scores + coverage + covloss 25.14 7.56 16.78

Table 5.2: The table reports the Rouge-1 (R-1), Rouge-2 (R-2) and Rouge-L (R-L)
F1 scores. The symbols † means that the model cannot be directly compared to mine
because it has been trained and tested on the anonymized version of the dataset.

I report an example of summaries generated by my models in Table 5.3, where it is
possible to note that “Seq2Seq+pagerank scores” generated a summary rich of details.
Furthermore, the model copied the first sentence of the source article in the summary.
The model “Seq2Seq+cosine-graph attention” duplicated the same sentence multiple
times in the summary, while the one generated by “Seq2Seq+cosine-pagerank atten-
tion” is difficult to read due to the repetitions. The model also substituted “amnesty in-
ternational” with “national geographic”. The adoption of the coverage vector removed
a small portion of the first sentence from the summary of the “Seq2Seq+pagerank
scores” model, leaving the rest intact. On the other hand, the use of the coverage loss
substantially modified the summary, focusing on the use of terrorism and the number of
executions. Finally, the covscore function kept the generated summary of the coverage-
based model, adding a sentence to the end of it.
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Source Document
governments around the world are using the threat of terrorism – real or perceived
– to advance executions, amnesty international alleges in its annual report on the
death penalty. “the dark trend of governments using the death penalty in a futile
attempt to tackle real or imaginary threats to state security and public safety was
stark last year,” said salil shetty, amnesty’s secretary general in a release. “it is
shameful that so many states around the world are essentially playing with people’s
lives – putting people to death for ‘terrorism’ or to quell internal instability on the
ill-conceived premise of deterrence.” [...]
Human Summary
amnesty ’s annual death penalty report catalogs encouraging signs, but setbacks in
numbers of those sentenced to death. organization claims that governments around
the world are using the threat of terrorism to advance executions. the number of
executions worldwide has gone down by almost 22 compared with 2013, but death
sentences up by 28.
Seq2Seq + cosine-pagerank attention
report published by the national security agency in the national geographic report.
the report was compiled by the national institute of national security. the report was
compiled by the national institute of national security.
Seq2Seq + cosine-graph attention
a number of executions in the united states has risen by 17 per cent in the past
decade. it was the first time in a history of violence in the united states. it was the
first time in a history of violence in the united states.
Seq2Seq + pagerank scores
governments around the world are using the threat of terrorism – real or perceived
– to advance executions, amnesty international alleges in its annual report on the
death penalty. the report, ‘death sentences and executions 2014,’ cited the example
of pakistan lifting a six-year moratorium on the execution of civilians following the
horrific attack on a school in peshawar.
Seq2Seq + pagerank scores + coverage
amnesty international alleges in its annual report on the death penalty. the report,
“death sentences and executions 2014,” cited the example of pakistan lifting a six-
year moratorium on the execution of civilians following the horrific attack on a
school in december.
Seq2Seq + pagerank scores + coverage + coverage loss
governments around the world are using the threat of terrorism – real or perceived –
to advance executions, amnesty international says. the report, ‘death sentences and
executions 2014’ cited the example of pakistan lifting a six-year moratorium on the
execution of civilians.
Seq2Seq + pagerank scores + coverage + covscore
amnesty international alleges in its annual report on the death penalty. the report,
“death sentences and executions 2014,” cited the example of pakistan lifting a six-
year moratorium on the execution of civilians following the horrific attack on a
school in december . amnesty has gone down by almost 22% on the previous year.

Table 5.3: The table shows the summaries generated by my models, and the original
one created by the human.



120 CHAPTER 5. A SENTENCE-LEVEL ATTENTION

Table 5.4 reports another example. From the table, it emerges that “Seq2Seq +
pagerank scores” produced again a good summary. There is only a small error in the
summary, caused by the phrase excerpt “somalia’s internationally recognized govern-
ment that had been under pressure from al-shabaab”. The summary generated by the
other two models, instead, contains several errors and repetitions. In “Seq2Seq+cosine-
graph attention”, the model repeated the sentence “al-shabaab has been linked with a
string of deadly attacks in somalia”, substituting the subject with kenyan. In “Seq2Seq
+ cosine-pagerank attention”, there is the repetition of the first and second sentences.
The adoption of the coverage vector corrected the errors made by “Seq2Seq + pagarank
scores” model, while the use of coverage loss lightly improved the summary. The use
of the covscore function modified part of the summary, including more details about the
“beliefs” of the terrorist group.
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Source Document
the terrorist group al-shabaab has claimed an attack on garissa university college in
eastern kenya, in which many people have been killed and still more taken hostage.
the attack is another step in the ongoing escalation of the terrorist group’s activities,
and a clear indicator that the security situation in east africa is deteriorating fast.
somalia-based al-shabaab has been behind a string of recent attacks in kenya, the
most well-known of them being the massacre at the westgate shopping centre in
nairobi in 2013. [...]
Human Summary
terrorist group al-shabaab has attacked a kenyan college, killing and taking
hostages. it is a clear indicator the security situation in east africa is deteriorat-
ing, says stefan wolff. more than military action aloe is needed to combat terrorism
in the region, he says.
Seq2Seq + cosine-pagerank attention
al-shabaab has been linked with attacks in somalia and syria. the group has been
linked to a string of attacks in somalia. the group has now been linked with a move
to somalia.
Seq2Seq + cosine-graph attention
al-shabaab has been linked with a string of deadly attacks in somalia. the kenyan
government has been linked with a string of attacks. al-shabaab has claimed respon-
sibility for the attack in kenya.
Seq2Seq + pagerank scores
al-shabaab has been behind a string of attacks in kenya, the most well-known of
them being the massacre at westgate shopping centre in part of somalia’s interna-
tionally recognized government that had been under pressure from al-shabaab. the
attack is another step in the ongoing escalation of the terrorist group’s activities, and
a clear indicator that the security situation in east africa is deteriorating fast.
Seq2Seq + pagerank scores + coverage
al-shabaab has been behind a string of recent attacks in kenya. the attack is another
step in the ongoing escalation of the terrorist group’s activities, and a clear indicator
that the security situation in east africa is deteriorating fast.
Seq2Seq + pagerank scores + coverage + coverage loss
al-shabaab has been behind a string of recent attacks in kenya. it has yet to recover
almost quarter of a century later this year. the attack is another step in the ongoing
escalation of terrorist group’s activities, and a clear indicator that security situation
in east africa is deteriorating.
Seq2Seq + pagerank scores + coverage + covscore
al-shabaab has been behind a string of recent attacks in kenya. the attack is another
step in the ongoing escalation of the terrorist group’s activities. al-shabaab is pre-
dominantly driven by the same radical interpretation of the koran as al-qaeda and
isis (also known as islamic state).

Table 5.4: Another example of the summaries generated by my models. In this exam-
ple, “Seq2Seq + pagerank scores” generated a phrase excerpt that is not related to the
summary.
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Table 5.5 reports some interesting summaries generated by the models. Both “Seq2Seq
+ cosine-pagerank attention” and “Seq2Seq + cosine-graph attention” generated a sum-
mary that is not related to input document. The models are not able to generalize, and
combined the term died - related to the document - with nancy regan or jfk. “Seq2Seq +
cosine-pagerank attention”, instead, repeated the same sentence multiple times. “Seq2Seq
+ pagerank scores” is the only model that was able to generate a syntactically and se-
mantically correct summary. The only error of the model is at the start of the first
sentence, where it generated a phrase excerpt that is erroneous with respect to the re-
maining text. Again, the use of the coverage vector slightly improved the summary.
However, the model started to associate Anna Frank with the phrase excerpt “her hus-
band” which is semantically incorrect. The use of the coverage loss corrected some
errors, but it added the sentence “she was separated from their mother and sent away to
work as slave labor at the camp in germany” that is not relevant for the summary. Fi-
nally, the use of the covscore function corrected the errors of the “Seq2Seq + pagerank
scores + coverage” model, producing a more concise summary.
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Source Document
seventy years ago, anne frank died of typhus in a nazi concentration camp at the
age of 15. just two weeks after her supposed death on march 31, 1945, the bergen-
belsen concentration camp where she had been imprisoned was liberated – timing
that showed how close the jewish diarist had been to surviving the holocaust. but
new research released by the anne frank house shows that anne and her older sister,
margot frank, died at least a month earlier than previously thought. [...]
Human Summary
read more about anne frank’s cousin, a keeper of her legacy. museum: anne frank
died earlier than previously believed. researchers re-examined archives and testi-
monies of survivors. anne and older sister margot frank are believed to have died in
february 1945.
Seq2Seq + cosine-pagerank attention
nancy reagan died at the age of 81, aged 88. she was found dead at the age of 81,
aged 88. she was found dead at the age of 81.
Seq2Seq + cosine-graph attention
jfk died peacefully at the age of 81. she was found dead at the scene of the death of
her late grandmother. she was found dead in the house of her late grandmother ’s
house.
Seq2Seq + pagerank scores
anne frank’s final entry that same year, anne frank died of typhus in a nazi concen-
tration camp at the age of 15. but new research released by the anne frank house
shows that anne and her older sister margot frank died at least a month earlier than
previously thought.
Seq2Seq + pagerank scores + coverage
anne frank’s final entry that same year, anne and her older sister, died at least a
month earlier than previously thought. anne and her husband were separated from
their mother and sent away to work as slave labor at the age of 15.
Seq2Seq + pagerank scores + coverage + coverage loss
seventy years ago, anne frank died of typhus in a nazi concentration camp at the age
of 15. she was separated from their mother and sent away to work as slave labor at
the camp in germany.
Seq2Seq + pagerank scores + coverage + covscore
anne frank died of typhus in a nazi concentration camp at the age of 15. she died at
least a month earlier than previously thought. she had been imprisoned since 1945,
and died in 1945.

Table 5.5: The table shows another example of the summaries generated by my models.
Differently from the previous one, this reports some errors of the models.

Figure 5.17 reports the average percentage of duplicate n-grams. The measure gives
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an insight both on the reasons behind the low Rouge F1 scores and on the impact of the
coverage vector; in detail, a model with duplicate tokens in the summary could have low
Rouge F1 scores because those repetitions prevent the generation of relevant terms while
stretching the summary until it satisfies the minimum length. I computed the average
percentage of duplicate n-grams as follows: for each method, I counted the number of
repeated n-grams (from 1-grams to 4-grams) in the generated summaries, and I divided
it by the length of the summary. From the figure, it is possible to notice that “Seq2Seq
+ cosine-pagerank attention” has the highest number of repeated 1-grams, followed
by “Seq2Seq + pagerank scores”. This latter model has also the highest number of
repeated 2-grams, 3-grams and 4-grams. The application of the coverage vector on this
model reduced the repetitions. Such value is further reduced with the application of the
coverage loss, but it did not improve the Rouge scores as reported by Table 5.2. Finally,
the application of the covscore function produced summaries with an average n-gram
repetition close to the reference ones.

Figure 5.17: The figure shows the average percentage of repeated n-grams (from 1-gram
to 4-gram) for each sentence-level attention method and the reference summary.

Ablation Study

In the description of the model, I suggested the use of the length penalty lp(·) to improve
the summary. Such function controls the length of the summary through a parameter α
in the range (0,∞); an high value forces the beam search to generate long summaries,
while a low one forces to have short summaries. But this function really improves the
Rouge scores of the model with respect to Equation 5.11? Is it better to use an high α
value or a low one?

In this section, I perform an ablation study to answer those questions. For the study, I
will compare 4 models based on “Seq2Seq + pagerank scores + coverage” with different
settings on the score function. In details, the settings are:
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no-lp: this model does not use the length penalty on the beam search, but only the
score function of Equation 5.11. I will use this model as a baseline to analyze the
improvement of the length penalty.

0.6 lp: It uses the length penalty with α sets to 0.6. I set a low value to check if forcing
the beam search to generate short summary could improve their informativeness.

1.0 lp: I set α to 1.0 to analyze if the exponent has some sort of impact on the lp
function.

1.4 lp: I set α to 1.4 to verify if long summaries are more informative than short ones.
Since the model is forced to generate long sentences (and in general, more sen-
tences), it has to use all the words it finds relevant.

Table 5.6 reports the average length of the generated summaries. The value α had an
impact on the average length: with α set to 0.6, the beam search produced summaries
with an average length of about 47.91 tokens, while with the value 1.4 it produced
summaries with an average length of about 55 tokens.

Model setting Avg. summary length
Seq2Seq + pagerank scores + coverage no-lp 54.12 tokens
Seq2Seq + pagerank scores + coverage 0.6 lp 47.91 tokens
Seq2Seq + pagerank scores + coverage 1.0 lp 54.21 tokens
Seq2Seq + pagerank scores + coverage 1.4 lp 55.18 tokens
Reference Summaries - 56 tokens

Table 5.6: The table reports the average summary length for the different settings.

Table 5.7 reports the Rouge scores of the 4 tested models, where it is possible to
notice that the use of the length penalty substantially improved the quality of the sum-
maries, increasing the scores of about 3 points for R-1, 2 points for R-2 and 1 point
for R-L. The second interesting aspect is that the length penalty boosts the performance
only when α has a value different from 1.0. For this latter case, there is no significant
difference from the no-lp setting. Finally, the highest Rouge scores are obtained with
the 1.4 lp setting, meaning that the model was able to include all the salient words in the
summary.
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Model setting R-1 R-2 R-L
Seq2Seq + pagerank scores + coverage no-lp 29.14 11 20.15
Seq2Seq + pagerank scores + coverage 0.6 lp 33.52 13.05 21.98
Seq2Seq + pagerank scores + coverage 1.0 lp 29.23 11.14 20.23
Seq2Seq + pagerank scores + coverage 1.4 lp 34.50 13.47 22.26

Table 5.7: The table reports the Rouge-1 (R-1), Rouge-2 (R-2) and Rouge-L (R-L) F1
scores for the different beam search settings.

Analyzing the Rouge scores in comparison to the average summary length, it is
interesting to notice that the length penalty not only impacted on the length of the sum-
maries, but also on their quality. Setting α to 0.6 led to short (about 47 tokens) and
informative summaries, while increasing it to 1.4 had only a small impact on the Rouge
scores, despite it produced the longest ones. The only borderline case is α set to 1,
where the results are the same of the no-lp setting.

Abstractiveness of the models

One important point to evaluate is the capability of the models to generate abstractive
summaries. This implies complex operations that a model has to be capable to do,
such as using synonyms and making periphrasis, which could decrease the likelihood
of matching the reference (gold) summaries. To evaluate the abstractiveness of the
models, I decided to calculate the average percentage of novel n-grams, which measures
the capability of the model to generate n-grams that are not present in the reference
summary. A low percentage of this measure means that the model is more conservative
and tends to use words that appear in the document, while an high percentage means
that the model is abstractive and tends to generate summaries that contain synonyms
and periphrasis.

Figure 5.18 depicts the percentage of novel n-grams present in the generated sum-
maries. I computed these percentages in the following way: for each n-gram (1-gram
to 4-gram), I counted how many (unique) n-grams of the generated summary are not
present in the reference one. Then, I divided such count by the total number of (unique)
n-grams in the generated summary. The figure shows that “Seq2Seq + cosine-pagerank
attention” and “Seq2Seq + cosine-graph attention” have the highest number of novel n-
grams, surpassing 60% for the 1-grams and being close to 90% for the 4-grams. In my
opinion, those two methods have a lot of novel n-grams because they tend to generate
words that are not related to the input document, and thus not present in the reference
summary (see Table 5.5 for an example). “Seq2Seq + cosine-pagerank score”, instead,
has less novel n-grams percentage than the other two methods because its summaries
are strictly related to the input document. Further, the number of novel n-grams remains
unchanged with the application of the coverage vector, meaning that the model used all
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words that it considered relevant for the summary. Finally, the coverage loss increased
the number of novel n-grams. Such increment, however, is due to generation errors of
the model, i.e. the model tends to generate summaries that contain words not related to
the topic of the document. The application of the covscore slightly increased the number
of novel n-grams.

Figure 5.18: The figure shows the average percentage of novel n-grams (from 1-ngram
to 4-gram) for each sentence-level attention method.

Comparing the novelty of the models to the one of See et al. (2017) reported in
Figure 5.19, it is possible to notice that their pointer network has a n-gram novelty close
to 0 (with a peak of about 15% on 4-gram), while mine varies from 55% to 80%. The
ability of their model to copy as much as possible from the input document, while using
the vocabulary distribution only to connect the phrase excerpts, allowed them to obtain
high Rouge scores at the cost of reducing synonyms and periphrases, i.e. n-grams that
are not present in the reference summary. Further, those copied phrase excerpts boost
the recall because all the relevant words of the document are in the generated summary.
On the other hand, my models rely on the vocabulary distribution, copying from the
input document only when they found it is necessary. As a consequence, they have a
very high novelty that leads to low recall.

I also computed the average β value of Equation 5.8 to check if the models are
more oriented towards the vocabulary or the pointer network. Table 5.8 reports the
average β value for each model. The models “Seq2Seq + cosine-pagerank attention”
and “Seq2Seq + cosine-graph attention” have a low average β value, denoting that
they largely use the pointer network to copy words (compared to the other models).
They also have a standard deviation of 0.15, which expresses how the models oscillates
between the use of the vocabulary and the pointer network. The β value increases with
the adoption of the pagerank scores method and its variations, reaching the peak with
the “Seq2Seq + pagerank scores + coverage + coverage loss” model. This latter one
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Figure 5.19: The figure shows the novelty of See et al.’s model [See et al., 2017]. The
image is taken from their article.

has an average β value of 0.95, meaning that the model seldom uses the pointer network
to copy relevant words.

Model Avg. β value
Seq2Seq + cosine-pagerank attention 0.84± 0.15
Seq2Seq + cosine-graph attention 0.84± 0.15
Seq2Seq + pagerank scores 0.92± 0.04
Seq2Seq + pagerank scores + coverage 0.93± 0.03
Seq2Seq + pagerank scores + coverage +
covscore

0.93± 0.03

Seq2Seq + pagerank scores + coverage +
coverage loss

0.95± 0.03

Table 5.8: The table reports the average β value for each model. High β values denote
that the model tends to use of the vocabulary distribution in the generation of the next
word, while low β values denote that the model tends to copy words from the input
document through the pointer network.

Finally, I computed the average number of summary sentences that have a phrase
excerpt copied from the input document. I obtained such percentage comparing each
summary sentence with each document one via Longest Common Subsequence (LCS
from now on). If the output of the LCS is greater than 15 tokens4 (i.e., the summary
sentence contains more then 15 tokens that appear in the document one), I marked the

4I defined this threshold empirically, analyzing the LCS outputs for the different models.
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sentence as copied. Then, I normalized the number of copied sentences on the number
of summary sentences.

Figure 5.20 reports the results of this evaluation. Both “Seq2Seq + pagerank scores”
and “Seq2Seq + pagerank scores + coverage” have a percentage close to 50, i.e. half
of their summary sentences contain phrase excerpts of the input document. The high
percentage of the former model is due to the phrase repetitions in the output summary
(i.e., repeating the same sentence multiple times); indeed, it is one of the three models
with the highest number of repetitions, as reported by Figure 5.17. The adoption of the
coverage vector slightly reduced such percentage, but it remains high due to repetitions
in the summary.

Comparing Figure 5.20 with Figure 5.17, it is possible to notice that both results are
aligned: if the number of repetition is high, then the number of sentences with copied
phrase excerpts is high too. In fact, the percentage decreased with the adoption of the
coverage loss and the covscore, that penalize repetitions in the output summary. In the
former one, the percentage is lower than 40, while it slightly decreases for the latter one,
being 45% . However, I have to say that those percentages will never be close to zero
because the model will always copy words from the document, either via the pointer
network or the vocabulary distribution, when it found a relevant phrase excerpt for the
summary. The only contradictory cases are “Seq2Seq + cosine-pagerank attention” and
“Seq2Seq + cosine-graph attention”, caused by both the inability of these models to
generate proper summaries and the high number of repetitions in the output.

Figure 5.20: The table shows the average number of summary sentence that have a
phrase excerpt copied from the input document.
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5.5 Final Considerations
In this chapter, I presented a Neural Network-based model for Summarization. The
model uses an hierarchical encoder to obtain both word and sentence representations.
Then, it computes a score for each sentence that expresses its importance with respect to
the other ones. Those scores are used to adjust the word-level attention ones, ensuring
that the network will focus only on the important words. Further, since I used a pointer
network model, the network will only copy in the summary those words coming from
the informative sentences.

I proposed three methods to calculate the sentence-level attention scores, each one
based on a graph-based NN [Veličković et al., 2017; Tan et al., 2017; Klicpera et al.,
2018; Yao et al., 2019]. Such network allows to keep into account both the decoder state
and the other sentences that are similar to the consider one. Following Tan et al. (2017),
I based two methods on Pagerank, while the remaining one is a classic graph-based
NN. For all these methods, I defined the adjacent matrix through cosine similarity to
capture similar sentences and to select the best one. I called the three attention methods:
cosine-pagerank attention, cosine-graph attention and pagerank scores.

From the analysis of the attention plots, I noticed that the methods cosine-pagerank
attention and cosine-graph attention were not able to compute a correct word-level at-
tention, negatively impacting on the model. This impact was confirmed by Table 5.2,
where the two methods obtained very low Rouge scores [Lin, 2004]. I think that both
methods did not work well due to: (i) the negative weights in the adjacency matrix A:
the presence of those weights distracted the method in finding the relevant sentences,
worsting the performance; and (ii) the softmax function: in some cases, this function
could assign all the probability mass to a single sentence (see Figure 5.5 for a real case),
deleting the other ones. This issue had a bad impact on the word-level attention, as it is
possible to see in Figure 5.6. The cosine-graph attention method was able to contrast
part of the issues thanks to the learnable parameter, slightly increasing the Rouge scores.

The pagerank scores method, instead, was able to compute a correct sentence-level
and word-level attention. For the former one, the method was able to select the best
sentences at each timestep. It also gave a small score to sentences that are not salient
for the summary to copy some words in output via the pointer network (since this one
is based on the attention scores). These scores had a positive impact on the word-level
attention, allowing the model with the pagerank scores method to focus on the relevant
words. I also noticed that the model copied some phrase excerpts of the document in
the generated summary.

The application of the coverage vector to this model boosted the Rouge scores to
34.67 for R-1, 13.61 for R-2, and 22.36 for R-L, performing better than the models of
Nallapati et al. (2016). However, my models have lower scores (about 2 Rouge points)
than See et al. (2017)’s models; I found that this is due to their high abstractive power,
i.e. the ability of using synonyms and periphrases. In detail, since Rouge is a metric
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that only evaluate the presence of tokens of the generated summary in the reference
one, it indirectly penalizes abstractive models. Indeed, my best model has a very high
precision (41.76 for R-1, 16.27 for R-2 and 27.16 for R-L), but a low recall (33.22 for
R-1, 13.03 for R-2 and 21.50 for R-L) because it is not able to return all those terms that
are present in the reference summaries. The abstractive power of my models has been
confirmed by both the novelty scores (see Figure 5.18) and the β values (see Table 5.8).
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Chapter 6

Conclusion

In this thesis, I started describing the Summarization task in Chapter 2, where I reported
the different subtasks that have emerged after the seminal work of Luhn (1958). I di-
vided those subtasks in supervised and unsupervised ones. Supervised tasks are based
either on Support Vector Machines (or Naive Bayes) or Neural Networks. In the for-
mer case, features like TF-IDF and Part-Of-Speech tags are used to assign a value to
each sentence according to its relevance for the summary; high score sentences are then
selected to form the summary. In the latter case, an Encoder-Decoder Neural Network
model is used to generate the summary. Such model reads the input document through
the encoder, producing a document representation; then, the representation is used to
generate the summary word-by-word.

I described the Neural Network models in Chapter 3, covering the existing architec-
tures, as Recurrent Neural Networks models (in Section 3.7) and their Encoder-Decoder
variation. I then provided a wide review of recent research trends on Neural Network-
based Text Summarization in Chapter 4. I divided it in three macro-blocks: coverage
methods in Section 4.2, pointer network models in Section 4.3 and document content
methods in Section 4.4. The first two sections illustrate the solutions to two important
Encoder-Decoder model drawbacks: word repetitions in the output and the impossi-
bility of generating Out-Of-Vocabulary (OOV) words, respectively. Coverage methods
create a sort of memory that keeps into account the previous generated words. In this
way, the network does not focus on the same document words (or sentences), produc-
ing repetitions in the output. Pointer networks [Vinyals et al., 2015], instead, create a
probability distribution over the document words, from which one can be selected and
copied in output. Some researchers applied them only to copy rare words or OOV words
[Nallapati et al., 2016; Miao and Blunsom, 2016; Merity et al., 2017], while others used
them to create a mixture model [Gu et al., 2016; Gulcehre et al., 2016; See et al., 2017].
Finally, the latter section, document content methods, describes a set of methods used
to analyze the document content. More in detail, they are divided in two research direc-
tions: methods based on templates, and methods that exploit the salient content of the
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document. The former is based on template-based Text Summarization, where human-
written templates are used to generate the summary. Those templates contain particular
slots that have to be filled with document words or phrase excerpts [Zhou and Hovy,
2004; Chen and Bansal, 2018; Cao et al., 2018; Wang et al., 2019]. The latter one,
instead, contains different approaches: mixing extractive and abstractive techniques to
extract the relevant sentences and use them to create the summary [Hsu et al., 2018];
hierarchical encoders to capture the relevance of each document sentence in order to ei-
ther initialize the decoder or re-score the word-level attention [Tan et al., 2017; Li et al.,
2018a]; or word-level masks to filter out irrelevant words [Zhou et al., 2017; Gehrmann
et al., 2018].

Finally, I described the proposed Neural Network-based model in Chapter 5. It is
composed of an hierarchical encoder followed by a decoder that combines sentence-
level attention scores with the word-level ones. The idea is to overcome the problem of
the model of distinguishing relevant and informative sentences for the summary from
those that are not. More in detail, the combination of those two-level representations
highlights which sentences and words are relevant for the summary such that words
coming from salient sentences are more likely to be copied in output, and that the model
poses its focus only onto the relevant text passages. I proposed three sentence-level
attention methods, each one based on a graph-based Neural Network because it captures
the relevance of a sentence according to both the current decoder state (i.e., the summary
generated up so far) and the other sentences. For all sentence-level attention methods, I
initialized the adjacency matrix through cosine similarity.

From the evaluation, I found that only one attention model produced very good
results, being able to capture the sentence saliency. In detail, I based this model on
Pagerank, but with a sigmoid activation function. Such function allowed the Neural
Network to select salient sentences, whereby it needed them either for the context vec-
tor or to copy words with the pointer network. The model obtained very high Rouge
scores, being close to the model proposed by See et al. (2017) (about 2 Rouge points
low). Such difference is due to the high abstractive power of the proposed model; it
tends to largely use the vocabulary distribution and seldom the pointer network, as op-
posed to See et al.’s model. The evaluation part showed that the model has both an high
average β values (i.e., it generates the next word using the vocabulary) and novelty (i.e.,
the capability of the model of generating words not present in the reference summary).
The remaining two attention methods, instead, produced very good sentence-level scores,
but their impact on the word-level ones was disastrous; they assigned all the attention to
a single sentence, zeroing the word-level scores for the other ones. Furthermore, such
behaviour prevented the model to copy rare words in the output summary. For those
reasons, they obtained very low Rouge scores.

As future works, I am interested to improve the recall of the model, which is its
weakness. In detail, it has a very high Precision, but a very low Recall since it is not
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able to retrieve all the relevant words for the summary. To increment the Recall, I
think that the use of topics generated by an LDA model [Blei et al., 2003] could be
useful since they capture the semantic content and the domain style of the document,
tying the summary to it. I will also improve the graph-based sentence-level attention,
which showed very good results. I will follow Hsu et al. (2018)’s idea, training the
sentence-level attention (through a loss function) to recognize the best sentences for the
summary. However, the method proposed by Hsu et al. cannot be directly adopted;
I have to define a loss that can adapt to the generated summary, identifying the best
sentences and penalizing the model in case that it does not select them. Finally, I will
continue to study how to improve the covscore function, since it was able to slightly
increase the performance of the model while reducing redundancy and attention errors.
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Appendix A

McCulloch and Pitts Neuron

The McCulloch and Pitts Neuron (MPN from now on) is a neuron that accepts a set of
boolean inputs [x1, x2, . . . , xn] (I will describe them with x from now on) through its
input channels (dendrites), and emits a value in the set of {0, 1}. The value 0 means that
the MPN has not fired, while the value 1 means it has fired.

The MPN could be represented as a combination of two functions f and g:

• g aggregates the inputs via a sum operation. These inputs could be excitatory or
inhibitory. Excitatory inputs could make the MPN fires when they are combined
together; inhibitory inputs, instead, could alone prevent the MPN to fire.

• f emits in output either 0 or 1. In details, the function f simply applies a transfor-
mation (e.g., a sign function) on the output of function g and checks if the output
is greater or equal than a given threshold θ. If it is, the MPN will fire (i.e., it emits
1); otherwise, the MPN will not fire (i.e., it emits 0).

Function g and f are represented in Equation A.1.

g(x) =
n∑
i=1

xi

f(g(x)) =

{
1 if sign(g(x)) ≥ θ

0 if sign(g(x)) < θ

(A.1)

I will now make an example to explain how the MPN works and the difference
between excitatory and inhibitory inputs. Suppose to have a MPN that decides for a
person if it is convenient to buy a t-shirt or not. Its features could be:

1. likeColor: it describes if the person likes or not the color of the t-shirt;
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2. doesNotFit: it describes if the person can wear or not the t-shirt (e.g., it is too
small or too big);

3. isCotton: it describes if the fabric is cotton;

4. likeDesign: it describes if the person likes the design.

Inputs (1), (3) and (4) are excitatory because they could affect the decision when
their aggregation is considered. For instance, if inputs (3) and (4) are 1, the person can
buy the shirt because it is made of cotton and they like the design. The only inhibitory
input is (2) because it could affect alone the decision. For instance, if all inputs are 1,
only doesNotFit is taken into consideration, since the person cannot buy a t-shirt that
they cannot wear.

Since the MPN accepts and emits boolean values, it can represent the boolean func-
tions AND and OR. For those functions, f can be defined as a function that compares
the result of the function g with the given threshold θ. Figure A.1 shows the MPN for
the AND function, while Figure A.2 shows the MPN for the OR function. In all the
figures, values x1 and x2 represent the inputs, while y represents the output. The value
represented inside the neuron is the threshold θ.

Figure A.1: The image represents a MPN for the AND function (on the left), and its
geometrical representation (on the right), i.e. x1 + x2 ≥ θ = 2.

Figure A.2: The image represents a MPN for the OR function (on the left), and its
geometrical representation (on the right), i.e. x1 + x2 ≥ θ = 1.



Appendix B

Training the Artificial Neural Network

In Section 3.2, I said that the proposed algorithm cannot be applied to xor problems (or
non-linearly separable dataset). The problem is that many tasks can be defined as xor
problems. To overwhelm this issue, backpropagation algorithm was adopted.

The training of current Neural Network models is composed of two steps: forward
step and backward step. In the former one, the network processes the data hierarchically
through its layers, emitting an output which can be a number (in case of regression) or
a probability distribution over a set of classes. The output is then compared with a gold
standard using an objective function (in jargon, loss function). Then, in the latter step,
the network uses the result of the objective function to modify its weights, which are
update in reverse order (from output to input) via partial derivatives.

Figure B.1: The picture shows a neural network with one hidden layer. The input and
hidden layers have 3 neurons, while output layer has one neuron (red circle).

For the description of forward step and backward step, I will use the feed-forward
network depicted in Figure B.1. Such network is defined by the following equations:

h = sigmoid(Wx)

y = sigmoid(Uh)
(B.1)
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where x = [x1, x2, x3], and h = [h1, h2, h3]. In this model, I will adopt the mean
squared error as loss function:

L(y, g) =
1

2
(g − y)2 (B.2)

to train the network to distinguish between two classes C1 and C2, where C1 is
represented with 1 and C2 with 0.

B.1 Forward pass
In the forward pass, the network receives in input a set of training examples, called
batch, which are pairs formed of the input data x and the golden label g:

{(x1, g1), (x2, g2), (x3, g3), . . . , (xn, gn)}

For instance, the training examples could be composed of <image, label> pairs or
<sentence, summary> pairs. Those input values will activate the layers of the network,
which will emit a value (i.e., the class) for each example. The predicted class of each
example is then compared with its golden label g using the loss function of Equation
B.2. Such equation will highlight how much the predicted class is far from the correct
one. Then, the sum of the errors of the batch examples is passed to the second step, the
backward step, in order to update the weights of the network. In detail, the network will
change the weights in order to minimize the loss function.

B.1.1 Feed Forward: a numerical example

I will make a numerical example to explain how the forward pass works. For the exam-
ple, I will use the model depicted in Figure B.1, with the following input x:

x =

x1x2
x3

 =

−0.16−0.21
−0.96


the weight of the hidden layer W:

W =

w1,1 w1,2 w1,3

w2,1 w2,2 w2,3

w3,1 w3,2 w3,3

 =

 0.2 −0.28 −2.0
0.56 0.34 −1.25
1.22 −0.39 2.4


and the weight of the output layer U:
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U =
[
u1 u2 u3

]
=

[
−0.60 2.2 7.4

]
The output of the first layer, that I called h, is calculated as follows:

h = sigmoid

(
Wx

)

= sigmoid

(w1,1 w1,2 w1,3

w2,1 w2,2 w2,3

w3,1 w3,2 w3,3

x1x2
x3

)

= sigmoid

(0.2 · −0.16 +−0.28 · −0.21 +−2.0 · −0.96
0.56 · −0.16 + 0.34 · −0.21 +−1.25 · −0.96
1.22 · −0.16 +−0.39 · −0.21 + 2.4 · −0.96

)

= sigmoid

(−1.89−1.36
2.19

)
=

0.870.79
0.1


The output value y is calculated in the same way of the hidden layer:

y = sigmoid(Uh)

= sigmoid

([
−0.60 · 0.87 + 2.2 · 0.79 + 7.4 · 0.1

])
=

[
0.12

]
Supposing that the ground truth label of the example is C1, the loss function is

computed as the difference between of y and the gold class value 1 to maximize the
output score:

L(y, g) =
1

2
(1− 0.12)2 = 0.38

B.2 Backward pass
In the previous section, I presented the loss function L which is used to compute the
error of the network, i.e. how distant is the output of the network respect to the de-
sired one. The function is also used to train the network, modifying the weights (bias
included) in order to reduce the error of the network. In this section, I present how the
network uses L and how the weights change with respect to the error. The operation
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of changing the weights according to the objective function is called backward pass
because it traverses the network from the output layer to the input one, i.e. in reverse
order. The algorithm that implements the backward pass is called backpropagation, or
simply backprob.

So far, I said that a neural network uses the weights to respond to input values,
activating neurons and producing output values. Thus, there exists a correlation between
the weights and the error function. The error can be represented with respect to a single
weight (or bias) w as depicted in Figure B.2.

Figure B.2: The images shows an hypothetical loss function with respect to a weight w.
The red dot represents the optimal weight value, which leads to the minimum error.

Since the error depends from a weight w, its partial derivative can be calculated
to obtain the direction towards w is updated; this procedure is called gradient descent.
Figure B.3 shows an example of gradient descend. The yellow point represents the new
value of the weight with respect to the error. The process can be repeated until the red
point is reached.

The above description can be transposed in mathematical terms. According to the
notion of the derivative, there are two possible directions toward the weight can be
updated:

• if
∂L

∂w
> 0, then the network is overestimating, i.e. L augments when the weight

is augmented. In this case, the weight is decreased;

• if
∂L

∂w
< 0, then the network is underestimating, i.e. L augments when the weight

is reduced. In this case, the weight is increased.

Those two cases can be compacted into a single equation:
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Figure B.3: The images shows the gradient descent from a starting point (in green) to
the minimum one (in red). The red rows show the gradient direction.

wt+1 = wt −
∂L

∂w
(B.3)

where the minus will increase the weight if the partial derivative is negative, or
decrease the weight if the partial derivative is positive.
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Appendix C

Generalization

When I described the artificial neural networks, I said that they are trained to minimize
the error on the training set. Such training could capture the intrinsic bias which occurs
in the instances of the training set, impacting on the test set results. The issue of whether
the training set performance has an impact on the test set (and in which measure) is
called generalization, and it is fundamental in Machine Learning. A neural network
that generalizes can give a proper answer on data that they have never seen before. For
instance, suppose that a neural network to recognize cats in pictures is trained, and that
a picture of a cat with a green fur is provided to the network. If the neural network
was trained on a large cat dataset, it should recognize that the picture shows a cat. In
general, the largest is the training set the better is the generalization. There are methods
to improve the generalization of the network (also knows as regularizes) that have been
proposed during the years. In this thesis, I used two regularizes: early stopping and
dropout.

C.1 Early Stopping

Early stopping uses part of the training set, which forms the validation set, to evaluate
the stopping criteria. A criterion could be the comparison of the error on the training
set with respect to the error on the validation set. If the error on validation set is lower
than the one in the training set, the training is stopped. Another criterion, generally
used in combination with the first one, is to check if the error on the validation set does
not decrease significantly for a fixed number of iterations (or epochs). If the error does
not decrease, it means that the network cannot further generalize (and the training it
stopped).

Some reader can think about to substitute the validation set with the test set, since
the network has to be evaluated on this latter one. The test set should not be used for
evaluation until the training is completed. The reason is twofold: on one hand, it is a
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indirect training on the test set; on the other hand, it is not possible to evaluate if the
network is able or not to generalize on unseen data.

However, the early stopping presents several drawbacks. A problem is that part of
the training set has to be used to create the validation set; this could reduce the per-
formance and the generalization of the network, especially if the training set is small.
Another problem is that the validation set could be distant from the test set, not repre-
senting an accurate predictor of the performance of the network. Finally, there is no rule
to define the optimal size of the validation set. Some researchers prefer to use the 5%
of the training set, while others the 10%.

C.2 Dropout
Dropout [Srivastava et al., 2014] is another technique to generalize neural networks.
Differently from the early stopping, it does not operate on the error function, but directly
on the layers. In detail, dropout is a mask composed of binary values (zeros and ones)
that is multiplied (pointwise) to the layer input. The mask is constructed sampling the
values from a Bernoulli distribution, where each cell of the mask has a probability p to
be 1, and probability 1 − p to be 0. The probability p is chosen by the user (it is an
hyperparameter of the network).

The idea of dropout is to shutdown some connections (those ones where the mask
contains 0), and consequently the neurons, simulating as if there were several simplified
versions of the same neural network. Each version, composed of only those neurons
where the signal is propagated, is then exposed to a batch of training examples and it
will learn the features that are useful to distinguish them. The idea is that a network
trained using dropout is able to learn a wide range of features, since only a part of
neurons are active for each batch. Suppose to have a layer of a Multi-Layer Perceptron
defined as follows:

y(l) = tanh(W(l) x(l−1) + b(l)) (C.1)

where l represents the l-th layer of the network, y(l) the output of the layer, and
x(l−1) the input of the layer. The dropout on this layer is defined through the following
equations:

rj ∼ Bernoulli(p)

x̂ = r⊗ x(l−1)

y(l) = tanh(W(l) x̂(l−1) + b(l))

(C.2)

where ⊗ represents the pointwise multiplication. At test time, since dropout is still
applied to l-th layer, W(l) is rescaled by p, i.e. pW(l). In this way, all information of
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x(l−1) will be used. An example of dropout on a Multi-Layer Perceptron is depicted in
Figure C.1.

Figure C.1: The figure shows: on the left, a Multi-Layer perceptron without dropout;
on the right, the same network with dropout. The cross represents a shutdown neuron.
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