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Strichartz estimates for the metaplectic

representation

Alessandra Cauli, Fabio Nicola and Anita Tabacco

Abstract. We provide new estimates for the matrix coefficients of the
metaplectic representation, inspired by a formal analogy with the Stri-
chartz estimates which hold for several classes of evolution propagators
U(t). The one parameter group of unitary operators U(t) is replaced by
a unitary representation of a non-compact Lie group, the group element
playing the role of time; the case of the metaplectic or oscillatory repre-
sentation is of special interest in this connection, because the Schrödinger
group is a subgroup of the metaplectic group. We prove uniform weak-
type sharp estimates for matrix coefficients and Strichartz-type estimates
for that representation. The crucial point is the choice of function spaces
able to detect such a decay, which in general will depend on the given
group action. The relevant function spaces here turn out to be the so-
called modulation spaces from time-frequency analysis in Euclidean space,
and Lebesgue spaces with respect to Haar measure on the metaplectic
group. The proofs make use in an essential way of the covariance of the
Wigner distribution with respect to the metaplectic representation.

1. Introduction and statement of the main results

We study some new estimates for matrix coefficients of the metaplectic represen-
tations which are inspired by a formal analogy with the dispersive and Strichartz
estimates in PDEs (see e.g. [26] and the references therein). Namely, we know that
the Schrödinger propagator U(t) = eitΔ in Rn satisfies the so-called dispersive
estimate

‖U(t)ψ‖L∞ � |t|−n/2 ‖ψ‖L1 ,

as well as mixed-norm estimates, known as Strichartz estimates, which read

‖U(t)ψ‖Lq(R;Lr(Rn)) � ‖ψ‖L2(Rn)

for 2/q + n/r = n/2, 2 ≤ q, r ≤ ∞ and (q, r, n) �= (2,∞, 2).
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The propagator U(t) is a strongly continuous unitary representation of the
abelian group R. Now, for a non-compact abelian group G, the irreducible unitary
representations are one-dimensional and their matrix coefficients are just (multiples
of) the group characters, with no decay at all. The above decay is in part due to a
lack of “coherence” of the irreducible components of U(t): frequency components
move in different directions and with different speeds.

Motivated by the importance of decay estimates in representation theory and
ergodic theory (see e.g. [19], [21], and the references therein), Strichartz-type es-
timates seem worth investigating for strongly continuous unitary representations
μ : G → U(H) of a non-compact locally compact group G, where H is a Hilbert
space. The representation μ(g) plays now the role of the above propagator U(t).
Generally speaking, we are interested in estimates of the type

(1.1) ||μ(·)ψ‖Lq(G;Xθ) � ‖ψ‖H
for some scale of Banach spaces Xθ, valid for a range of pairs (q, θ).

In this note we develop this idea for the metaplectic groupG = Mp(n,R), that is
the double covering of the symplectic group Sp(n,R), and the corresponding meta-
plectic, or oscillatory, representation, first constructed by Segal and Shale [24], [25]
in the framework of quantum mechanics (see also van Hove [17]), and by Weil [29]
in number theory. This is a strongly continuous unitary representation of Mp(n,R)
in L2(Rn), which turns out to be faithful, so that we can think of Mp(n,R)
as a subgroup of U(L2(Rn)), and the representation is given just by the inclu-

sion. Following [12] we will therefore denote by Ŝ a metaplectic operator and by

S = π(Ŝ) ∈ Sp(n,R) its projection in the symplectic group.

Now, it turns out that the operator eitΔ is a particular metaplectic operator, so
that a natural candidate for the spaces Xθ in (1.1) would seem to be the Lebesgue
spaces. However, the Fourier transform is itself a metaplectic operator, and there-
fore we should actually look for spaces invariant with respect to the action of the
Fourier transform. U(n)-invariance (see Section 4) finally suggests, as right func-
tion spaces, the modulation spaces Mp, widely used in time-frequency analysis;
see [12], [15] and also [10], [11] for the original source and a historical perspective.

In short, for a given Schwartz function ϕ ∈ S(Rn) \ {0}, consider the time-
frequency shifts ϕz(y) = eiξ·yϕ(y − x), z = (x, ξ) ∈ Rn ×Rn. Then for 1 ≤ p ≤ ∞
we define the Mp norm of ψ ∈ S ′(Rn), as

‖ψ‖Mp =
( ∫

R2n

|〈ψ, ϕz〉|p dz
)1/p

(with obvious changes when p = ∞). Different windows ϕ give equivalent norms.
We have S(Rn) ⊂ Mp ⊂ S ′(Rn) for every 1 ≤ p ≤ ∞, M2 = L2(Rn), Mp ⊂ M q

if and only if p ≤ q, (Mp)′ = Mp′
if p < ∞. Modulation space norms measure

the phase space concentration of a function; roughly speaking we can think of a
function in Mp as a function having Lp decay at infinity and FLp local regularity.
Let us also observe that modulation spaces have been recently applied in PDEs by
several authors, see e.g. [3], [4], [5], [23], [28] and the references therein (some of
their properties are collected in Section 2).
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We begin with a uniform pointwise decay estimate for matrix coefficients.

Theorem 1 (Uniform pointwise estimate). The following estimate holds :

(1.2) |〈Ŝψ, ϕ〉| � (λ1(S) · · ·λn(S))−1/2 ‖ψ‖M1 ‖ϕ‖M1

for Ŝ ∈ Mp(n,R), ψ, ϕ ∈ S(Rn), and where λ1(S), . . . , λn(S) are the singular

values ≥ 1 of S = π(Ŝ) ∈ Sp(n,R).

The result is sharp as far as the decay is concerned (see Section 4).
As a consequence we can obtain the following weak-type estimates.

Corollary 2 (Uniform weak-type estimate). Let G = Mp(n,R), endowed with its
Haar measure. The following estimate holds :

(1.3) ‖〈Ŝψ, ϕ〉‖L4n,∞(G) � ‖ψ‖M1‖ϕ‖M1 ,

for ψ, ϕ ∈ S(Rn).

Here L4n,∞ is the weak-type L4n space on G = Mp(n,R).
Corollary 2 refines a result by Howe [18], who proved that for fixed ϕ1, ϕ2 ∈

S(Rn) the matrix coefficient in (1.3) is in L4n+ε for every ε > 0 but in general not
in L4n. In fact, in the proof of this result we use the KAK decomposition and, in
the subsequent Proposition 5, bi-invariant functions as in [18].

Estimates for matrix coefficients have a long tradition in representation theory,
see for example [7], [9], [18], [19], [22] and the references therein. Usually, dealing
with a unitary representation of a group G in a Hilbert spaceH , one takes ϕ1, ϕ2 in
K-invariant finite dimensional subspaces of H , K ⊂ G being a maximal compact
subgroup, and the constants in the estimates will depend on the dimension of
such subspaces. Sometimes this finiteness condition is replaced by taking ϕ1, ϕ2

in higher order Sobolev-type spaces, and often an ε-loss in the decay appears, as
above (see e.g. [21]). On the contrary, in (1.3) we have the low regularity spaceM1,
and functions in M1 do not need to have any differentiability, even in a fractional
sense.

Weak-type estimates for matrix coefficients such as (1.3) seem of great interest
in their own right; for example, they could play a key role in extending Cowling’s
strengthened version of the Kunze–Stein phenomenon [8] to groups of rank higher
than 1.

As a consequence of the dispersive estimates we therefore obtain the following
Strichartz-type estimates.

Theorem 3 (Strichartz estimates). Let G = Mp(n,R), endowed with its Haar
measure. The following estimates hold :

‖Ŝψ‖Lq(G;Mr) � ‖ψ‖L2,

for
4n

q
+

1

r
≤ 1

2
, 2 ≤ q, r ≤ ∞.
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The range of admissible pairs (q, r) in Theorem 3 is represented in Figure 1,
which also shows a comparison with the case of the Schrödinger group (as already
observed, the one-parameter group eitΔ is a subgroup of Mp(n,R)). Notice however
that the exponent r refers to different function spaces; in fact we have Lr ⊂ M r

for 2 ≤ r ≤ ∞, with strict inclusion when r > 2. As one can see, the admissibility
condition implies q ≥ 8n. Also, we have a whole region of admissible pairs, and
not just a segment, because the modulation spaces M r are nested, unlike the
Lebesgue spaces. Let us observe that, compared with the trivial estimate for
q = ∞, r = 2, the other admissible pairs (q, r) represent a gain (loss) of time
(space) decay at infinity, as in the case of the propagator eitΔ, but we do no longer
have any smoothing effect, as expected: among the metaplectic operators we also
meet linear changes of variables, which do not produce smoothing in any reasonable
space. This is in turn related to the fact that M1 ⊂M∞ in (1.2).

Figure 1. Admissible pairs for Strichartz estimates.

Let us observe that similar estimates seem worth investigating for other uni-
tary representations, e.g. the oscillatory representation restricted to subgroups of
Mp(n,R) (cf. [1], [2], and [6]), unitary representations of linear Lie groups such
as SL(n,R) or more general semisimple Lie groups. Part of the problem is to iden-
tify low regularity spaces strictly tailored to the given representation, playing the
role of the modulation spaces used here. We plan to carry on this investigation in
future work.

The paper is organized as follows. In Section 2 we recall some preliminary
results on time-frequency methods used in the proofs of the main results. That
material is mainly extracted from [12]; see also [14]. Section 3 is devoted to the
proof of the above results. Finally, in Section 4 we collect some concluding remarks.

2. Preliminaries

We recall here a number of definitions and results that we will use in the following.
We refer to [12], [16], [20] for details.

2.1. Notation

We denote by 〈·, ·〉 the inner product in L2(Rn), linear in the first argument. The
notation A � B, for expressions A,B ≥ 0, means A ≤ CB for a constant C
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depending only on the dimension n and parameters which are fixed in the context.
We also write A � B for A � B and B � A.

The symplectic group is denoted by Sp(n,R), and we set U(2n,R) := Sp(n,R)∩
O(2n,R) � U(n). We also set

J =

(
0 I
−I 0

)
.

We will need the Young inequality for weak type spaces, which reads as follows.
On a measure space X , for 0 < p <∞ the weak-type Lebesgue space Lp,∞(X)

is defined as the space of measurable functions f : X → C such that

‖f‖Lp,∞ := sup
λ>0

{λ · (meas{x : |f(x)| ≥ λ})1/p} <∞.

Let now G be a unimodular locally compact Hausdorff group. Let

1 < p, q, r <∞,
1

p
+

1

r
=

1

q
+ 1.

Then there exists a constant Cp,q,r > 0 such that for all f in Lp(G) and g in
Lr,∞(G) we have

(2.1) ‖f ∗ g‖Lq(G) ≤ Cp,q,r ‖g‖Lr,∞(G) ‖f‖Lp(G).

2.2. Modulation spaces

Fix a window function ϕ ∈ S(Rn) \ {0}. The short-time Fourier transform of a
function/temperate distribution ψ ∈ S ′(Rn) with respect to ϕ is defined by

Vϕψ(x, ξ) = (2π)−n

∫
Rn

e−iξ·y ψ(y)ϕ(y − x) dy, x, ξ ∈ R
n.

For 1 ≤ p, q ≤ ∞ and a Schwartz function ϕ ∈ S(Rn) \ {0}, the modulation space
Mp,q(Rn) is defined as the space of ψ ∈ S ′(Rn) such that

‖ψ‖Mp,q :=
( ∫

Rn

(∫
Rn

|Vϕψ(x, ξ)|p dx
)q/p

dξ
)1/q

<∞,

with obvious changes if p = ∞ or q = ∞.
If p = q, then we write Mp instead of Mp,p.
We will also need a variant, sometimes called Wiener amalgam norm in the

literature, defined by

‖ψ‖W (FLp,Lq) :=

∫
Rn

(∫
Rn

|Vϕψ(x, ξ)|pdξ
)q/p

dx
)1/q

,

where the Lebesgue norms appear in the inverse order. Both these norms provide
a measure of the time-frequency concentration of a function and are widely used
in time-frequency analysis [12], [15].

We have Mp1,q1 ⊆ Mp2,q2 if and only if p1 ≤ p2 and q1 ≤ q2. Similarly
W (FLp1 , Lq1) ⊆W (FLp2 , Lq2) if and only if p1 ≤ p2 and q1 ≤ q2.
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The duality goes as expected:

(2.2) (Mp,q)′ =Mp′,q′ , 1 ≤ p, q <∞,

and in particular
|〈f, g〉| � ‖f‖Mp ‖g‖Mp′ .

Particularly important is the case of the Gelfand triple

M1 ⊂ L2(Rn) ⊂M∞.

We observe that
S(Rn) ⊂M1 ⊂ L2(Rn)

with dense and strict inclusions. For atomic characterizations of the space M1 we
refer to [12], [15].

We will also use the complex interpolation theory for modulation spaces, which
reads as follows: for 1 ≤ p, q, pi, qi ≤ ∞, i = 0, 1, 0 ≤ θ ≤ 1,

1

p
=

1− ϑ

p0
+
ϑ

p1
,

1

q
=

1− ϑ

q0
+
ϑ

q1
,

we have
(Mp0,q0 ,Mp1,q1)ϑ =Mp,q.

2.3. The Wigner distribution

We now introduce a quadratic time-frequency distribution which will play a key
role in the following. Again it represents a basic tool in the analysis of signals [15]
and in phase space quantum mechanics [12], [13]. We refer to [12], [13] for details.

The cross-Wigner distribution W (ψ, ϕ) of functions ψ, ϕ ∈ L2(Rn) is defined
to be

W (ψ, ϕ)(x, ξ) = (2π)−n

∫
Rn

e−iξ·y ψ
(
x+

y

2

)
ϕ
(
x− y

2

)
dy.

We also set Wψ =W (ψ, ψ).
We recall the important Moyal identity (see e.g. Theorem 182 in [12]):

(2.3) 〈Wψ,Wϕ〉L2(R2n) = (2π)−n |〈ψ, ϕ〉|2.
We will also need the following estimates.

Proposition 4. We have

‖W (ψ, ϕ)‖L1(R2n) � ‖ϕ‖M1 ‖ψ‖M1 ,(2.4) ∫
Rn

sup
x∈Rn

|W (ψ, ϕ)(x, ξ)| dξ � ‖ϕ‖M1 ‖ψ‖M∞,1(2.5)

and ∫
Rn

sup
ξ∈Rn

|W (ψ, ϕ)(x, ξ)| dx � ‖ϕ‖M1 ‖ψ‖W (FL∞,L1).(2.6)
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Proof. Formula (2.4) is proved in Proposition 3.6.5 of [12].
Let us prove (2.5) and (2.6). It is easy to see that

(2.7) |W (ψ, ϕ)(x, ξ)| = 2n |Vϕψ(2x, 2ξ)|,

so that it is sufficient to prove similar estimates with W (ψ, ϕ)(x, ξ) replaced by
Vϕψ(x, ξ). To this end we recall from Lemma 11.3.3 in [15] that, for ϕ, ϕ0 ∈ S(Rn)
such that ‖ϕ0‖ �= 0 and ψ ∈ S ′(Rn) we have

(2.8) |Vϕψ(x, ξ)| � 1

‖ϕ0‖2 (|Vϕ0ψ| ∗ |Vϕϕ0|)(x, ξ) for all (x, ξ) ∈ R
2n.

Now, we apply this inequality with a fixed Schwartz window ϕ0 and we also
observe that

|Vϕϕ0(x, ξ)| = |Vϕ0ϕ(−x,−p)|.
The desired estimates for Vϕψ(x, ξ) then follow by applying the Young inequality
for mixed-norm Lebesgue spaces in (2.8). �

We have already recalled in the Introduction the existence of the metaplectic
representation μ : Mp(n,R) → U(L2(Rn)). One of the most important property of
the cross-Wigner distribution (essentially, the defining property of the metaplectic
representation) is its covariance with respect to the action of metaplectic operators
(see e.g. Corollary 2.17 in [12]). Namely

(2.9) W (Ŝψ, Ŝϕ)(z) =W (ψ, ϕ)(S−1z), z ∈ R
n × R

n.

for every Ŝ ∈ Mp(n,R), with projection S ∈ Sp(n,R).

3. Proof of the main results

In this section we prove Theorem 1, Corollary 2 and Theorem 3.

Proof of Theorem 1. By the Moyal identity (2.3) and the covariance property (2.9),
we have

|〈Ŝψ, ϕ〉|2 = (2π)n〈W (Ŝψ),Wϕ〉L2(R2n) = (2π)n〈Wψ(S−1·),Wϕ〉L2(R2n).

We now can write S−1 = S1U1 with S1 ∈ Sp(n,R) positive definite and U1 ∈
U(2n,R). Hence, by an orthogonal change of variable we obtain

|〈Ŝψ, ϕ〉|2 = (2π)n〈Wψ(S1·),Wϕ(UT
1 ·)〉L2(R2n).

We now diagonalize S1, S1 = UT
2 DU2 where

D = diag(λ1, . . . , λn, λ
−1
1 , . . . , λ−1

n )

with λ1 ≥ · · · ≥ λn ≥ λ−1
n ≥ · · · ≥ λ−1

1 > 0 and U2 ∈ U(2n,R).



8 A. Cauli, F. Nicola and A. Tabacco

With a further change of variable we obtain

|〈Ŝψ, ϕ〉|2 = (2π)n〈Wψ(UT
2 D ·),Wϕ(UT

1 U
T
2 ·)〉L2(R2n).

Let
F1 =Wψ(UT

2 ·) =W (Û2ψ), F2 =Wϕ(UT
1 U

T
2 ·) =W (Û2 Û1ϕ).

We estimate

〈Wψ(UT
2 D ·),Wϕ(UT

1 U
T
2 ·)〉L2(R2n)

=

∫
R2n

F1(λ1x1, . . . , λnxn, λ
−1
1 ξ1, . . . , λ

−1
n ξn)F2(x, ξ) dxdξ

≤
∫
R2n

sup
ξ∈Rn

|F1(λ1x1, . . . , λnxn, ξ1, . . . , ξn)| sup
x∈Rn

|F2(x, ξ)| dxdξ

= λ−1
1 · · ·λ−1

n

∫
Rn

sup
ξ∈Rn

|F1(x, ξ)| dx
∫
Rn

sup
x∈Rn

|F2(x, ξ)| dξ

� λ−1
1 · · ·λ−1

n ‖Û2ψ‖M1 ‖Û2ψ‖W (FL∞,L1) ‖Û2 Û1ϕ‖M1 ‖Û2 Û1ϕ‖M∞,1 ,

where we used, in the last line, Proposition 4. Using the inclusions

M1 =M1,1 ↪→M∞,1, M1 =W (FL1, L1) ↪→ W (FL∞, L1)

we continue the above estimate as

〈Wψ(UT
2 D ·),Wϕ(UT

1 U
T
2 ·)〉L2(R2n) � λ−1

1 · · ·λ−1
n ‖Û2ψ‖2M1‖Û2 Û1ϕ‖2M1 .

It is then sufficient to show that

‖Û2ψ‖M1 ≤ C ‖ψ‖M1(3.1)

and

‖Û2 Û1ϕ‖M1 ≤ C ‖ϕ‖M1(3.2)

for a constant C > 0 independent of Û1, Û2.
Let us verify (3.1), which implies (3.2) too.

This follows by observing that, for a suitable choice of the window, Û is an
isometry ofMp, for 1 ≤ p ≤ ∞, U ∈ U(2n,R). In fact, if ϕ0 denotes a (conveniently

normalized) Gaussian, we have Ûϕ0 = cϕ0, |c| = 1 (Proposition 252 in [12]; see
also [14]), so that

|Vϕ0 Ûψ(z)| = |V
̂Uϕ0

Ûψ(z)| = |Vϕ0ψ(U
−1z)|, z ∈ R

2n,

whence ‖Ûψ‖Mp = ‖ψ‖Mp . �

In order to prove Corollary 2 we need the following preliminary result.
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Proposition 5. Let α > 0, β > 0. Consider the function

h(S) = (λ1(S) · · ·λn(S))−α

on Sp(n,R), where λ1(S), . . . , λn(S) are the singular values ≥ 1 of the symplectic
matrix S.

We have h ∈ Lβ,∞ on Sp(n,R), with respect to the Haar measure, if αβ ≥ 2n.

Proof. We have to estimate the measure of the set

Dλ = {S ∈ Sp(n,R) : h(S) ≥ λ}, λ > 0

or equivalently ∫
Sp(n,R)

χDλ
dS,

where χDλ
is the indicator function of Dλ. Observe that Dλ = ∅ if λ > 1 so that

we can suppose 0 < λ ≤ 1.
Recall that if f : Sp(n,R) → C is U(2n,R)-bi-invariant, its integral with respect

to the Haar measure is given by

(3.3)

∫
Sp(n,R)

f(S)dS =C

∫
t1≥···≥tn≥0

f(at)
∏
i<j

sinh
ti−tj
2

∏
i≤j

sinh
ti+tj
2

dt1 · · · dtn

for some constant C > 0, where

at =

(
et/2 0

0 e−t/2

)
, t = diag(t1, . . . , tn), (t1, . . . , tn) ∈ R

n.

We use formula (3.3) with f = χDλ
since h, and therefore f , is U(2n,R)-bi-

invariant. We have
h(at) = e−α(t1+···+tn)/2.

Hence h(at) ≥ λ if and only if

t1 + t2 + · · ·+ tn ≤ Aλ := −2 logλ/α.

By (3.3),

measDλ = C

∫
t1≥t2≥···≥tn≥0
t1+···+tn≤Aλ

∏
i<j

sinh
ti − tj

2

∏
i≤j

sinh
ti + tj

2
dtn · · · dt1.

Now we have∏
i<j

sinh
ti − tj

2

∏
i≤j

sinh
ti + tj

2
≤ exp

(∑
i<j

( ti − tj
2

+
ti + tj

2

)
+ t1 + · · ·+ tn

)
= exp

(
(n− 1)t1 + (n− 2)t2 + · · ·+ tn−1 + t1 + · · ·+ tn

)
= etne2tn−1e3tn−2 · · · ent1 .
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By first integrating with respect to the variable tn from tn = 0 to tn = Aλ− tn−1−
· · · − t1, we obtain

measDλ ≤ C

∫
t1≥t2≥···≥tn−1≥0

tn−1≤Aλ−tn−2−···−t1

eAλ etn−1 · · · e(n−1)t1 dtn−1 · · · dt1.

Now we can repeat the same argument for tn−1 and so on. We obtain

measDλ ≤ C enAλ = Cλ−2n/α, 0 < λ ≤ 1.

Hence measDλ ≤ C′λ−β if 2n/α ≤ β, which is the desired result. �

Proof of Corollary 2. Using (1.2) it is sufficient to prove that the function

Ŝ �−→ (λ1(S) · · ·λn(S))−1/2

is in L4n,∞ on Mp(n,R) with respect to the Haar measure. Since this function
factorizes through Sp(n,R), it is enough to prove that the function

h(S) := (λ1(S) · · ·λn(S))−1/2

is in L4n,∞ on Sp(n,R). This follows from Proposition 5 with α = 1/2, β = 4n. �

We are now ready to prove the Strichartz estimates for the metaplectic repre-
sentation.

Proof of Theorem 3. We know that

(3.4) ‖Ŝψ‖L2 = ‖ψ‖L2

for ψ ∈ L2(Rn), which gives the desired Strichartz estimate for q = ∞, r = 2,
because M2 = L2, and also for q = ∞, 2 ≤ r ≤ ∞, because L2 ↪→ M r for r ≥ 2.
Hence from now on we can suppose q <∞.

By Theorem 1 and (2.2) we have

‖Ŝψ‖M∞ � (λ1(S) · · ·λn(S))−1/2 ‖ψ‖M1 .

By interpolation with (3.4) we obtain, for every 2 ≤ r ≤ ∞,

(3.5) ‖Ŝψ‖Mr � (λ1(S) · · ·λn(S))−(1/2−1/r) ‖ψ‖Mr′ .

Let G = Mp(n,R), as in the statement. We apply the usual TT ∗ method (see [26],

page 75) to the operator Tψ = Ŝψ. To prove that T : L2 → Lq(G;M r) continu-
ously, we will verify that

TT ∗ : Lq′(G;M r′) → Lq(G;M r)

continuously.
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We have

T ∗F (·) =
∫
G

Ŝ−1F (Ŝ, ·) dŜ

if F (Ŝ, x) is, say, a continuous function on G× Rn with compact support. Hence

[TT ∗F ](Ŝ, ·) =
∫
G

ŜŜ′−1
F (Ŝ′, ·) dŜ′.

Using (3.5) we can estimate this expression, for every 2 ≤ r ≤ ∞, 1 ≤ q ≤ ∞, as

‖TT ∗F‖Lq(G;Mr) ≤
∥∥∥ ∫

G

∥∥ŜŜ′−1
F (Ŝ′, ·)∥∥

Mr dŜ′
∥∥∥
Lq(G)

≤
∥∥∥ ∫

G

(h ◦ π)(ŜŜ′−1)‖F (Ŝ′, ·)‖Mr′ dŜ′
∥∥∥
Lq(G)

,(3.6)

where we set h(S) = (λ1(S) · · ·λn(S))−(1/2−1/r) as a function on Sp(n,R) and
π : G = Mp(n,R) → Sp(n,R) is the projection.

Finally suppose that the pair (q, r) satisfies 2 ≤ q, r ≤ ∞ and 4n/q+1/r ≤ 1/2;
see Figure 1. Observe that this implies q > 2 and we are also supposing q < ∞,
which implies r > 2. Choose

α =
1

2
− 1

r
,

1

β
=

2

q
.

We see that α, β > 0 and αβ ≥ 2n so that, by Proposition 5, we have h ∈ Lβ,∞

in Sp(n,R) and h ◦ π ∈ Lβ,∞ on G. Moreover we have 1/q + 1 = 1/q′ + 1/β, 1 <
q, q′, β <∞. Hence we can apply the weak-type Young inequality (2.1) on G to the
last expression in (3.6), and we see that it is therefore dominated by ‖F‖Lq′(G;Mr′ ).

This concludes the proof. �

4. Concluding remarks

4.1. The motivation for modulation spaces

Let us point out the main elements which led us to consider the modulation
space M1 and its dual M∞ as natural candidates for the dispersive estimate (1.2).

Estimate (1.2) clearly does not hold with M1 andM∞ replaced by L1 and L∞,

respectively, because, for example, the pointwise multiplication by eit|x|
2

is a meta-
plectic operator but Lebesgue norms do not detect any decay as |t| → +∞. Hence
we focused on a space which controls L1 decay in space and L1 decay in momentum,
as M1 indeed does.

But in the course of the proof of Theorem 1 we also used in an essential way
another property ofM1, namely that the set of operators Û are uniformly bounded
on M1 when U = π(Û) varies in U(2n,R), as proved in (3.1).

Motivated by these issues, it would be very interesting to get characteriza-
tions of function spaces, in particular modulation spaces, in terms of symplectic
invariance.
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4.2. Sharpness of the results

It is easy to see that the exponent −1/2 in (1.2) is sharp. In fact, one can apply
that estimate to a Gaussian function ψ and the metaplectic operator

Ŝψ(x) = c
√
detL ψ(Lx)

(for suitable c∈C, |c|=1), with L=diag(λ1, . . . , λn), λ1, . . . , λn≥1. We have

S = (λ−1
1 , . . . , λ−1

n , λ1, . . . , λn)

(cf. Proposition 116 in [12]) and

‖Ŝ ψ‖M∞ � (λ1 · · ·λn)−1/2,

as proved in Lemma 3.2 of [5] (and in Lemma 1.8 of [27] in the case λ1 = · · · = λn).

Let us observe that the exponent 4n in (1.3) is sharp as well; in fact Howe [18]
proved that for fixed ϕ1, ϕ2 ∈ S(Rn) the matrix coefficients in general do not
belong to L4n.

Acknowledgments. The authors are very indebted to Professors Elena Cordero,
Michael Cowling, Jaques Faraut and Vladimir Uspenskiy for discussions and re-
marks which improved the paper in an essential way.
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