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1. Introduction and main theorem

The study of matrix representations for the quaternions has appeared ever since the 
introduction of matrix calculus by Cayley (cf. [1], p.32) in the middle of 19th century. 
The basic idea is to represent the quaternions by square matrices while the two fun-
damental operations, addition and multiplication, are preserved, which is in fact a ring 
homomorphism between the quaternions and a ring of square matrices. Thus a matrix 
representation of the quaternions by definition is a ring homomorphism from the quater-
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nion ring to a n × n matrix ring where n is the representation degree. Let H be the 
Hamiltonian quaternion ring and let ρ : H → Mn(R) be a matrix representation where 
Mn(R) is the n × n real matrix ring. The image ρ(H) of H under ρ can be considered 
as a set of linear transformations on the vector space Rn in a natural way. Then ρ is 
called irreducible if there is no non-trivial proper subspace of Rn stabilized by ρ(H). 
For instance, there is a canonical irreducible real matrix representation ρ : H → M4(R)
defined by

ρ(a + bi + cj + dk) =

⎛
⎜⎝

a −b −c d
b a −d −c
c d a b
−d c −b a

⎞
⎟⎠ , ∀a, b, c, d ∈ R.

This representation is an R-algebra homomorphism. However there are many ways to 
represent H irreducibly in Mn(R) as an R-algebra (cf. [3]), it is well-known that all those 
R-algebra representations are equivalent to each other (cf. [13], Prop.(A)(i)). Yet there 
exists also a family of representations which are not R-algebra homomorphisms. Consider 
a non-trivial field homomorphism σ : R → C which may not be the identity map on 
R (cf. [7], [16]). For each number x ∈ R denote the real and imaginary parts of σ(x)
by σ(x)r and σ(x)i respectively. Let ρσ : H → M4(R) be a map defined by, for each 
h = a + bi + cj + dk ∈ H where a, b, c, d ∈ R,

ρσ(h) =

⎛
⎜⎝
σ(a)r − σ(b)i −σ(a)i − σ(b)r −σ(c)r + σ(d)i σ(c)i + σ(d)r
σ(a)i + σ(b)r σ(a)r − σ(b)i −σ(c)i − σ(d)r −σ(c)r + σ(d)i
σ(c)r + σ(d)i −σ(c)i + σ(d)r σ(a)r + σ(b)i −σ(a)i + σ(b)r
σ(c)i − σ(d)r σ(c)r + σ(d)i σ(a)i − σ(b)r σ(a)r + σ(b)i

⎞
⎟⎠ (1)

It is routine to verify that ρσ is a well-defined irreducible matrix representation which 
is not an R-algebra homomorphism unless σ is the identity map on R (see Eq. (13)
and Prop.2.1). Evidently the family of those irreducible matrix representations of H is 
enormous, since there are infinite many homomorphisms between R and C and each 
of them induces a representation of H as above. The main purpose of this paper is to 
determine all irreducible real and complex matrix representations of H.

To state the main theorem, we recall some notions. For a non-singular matrix X ∈
GLn(R), denote by ιX the inner automorphism of Mn(R) via the conjugation by X. Two 
representations ρ and ρ′ of H with same degree n are said equivalent if there exists a 
non-singular matrix X ∈ GLn(R) such that

ρ(h) = ιX · ρ′(h) = Xρ′(h)X−1, ∀h ∈ H.

Denote by Hom(R, C) the set of field homomorphisms from R to C. Two homomorphisms 
σ, σ′ ∈ Hom(R, C) are said equivalent if either σ = σ′ or σ = κσ′, where κ is the complex 
conjugation of C. This is clearly an equivalence relation of Hom(R, C). Our main result 
is as follows.
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Theorem 1.

(I). A non-trivial real matrix representation of H is irreducible if and only if its repre-
sentation degree is 4.

(II). If ρ : H → M4(R) is an irreducible representation of H, there exist a σ ∈ Hom(R, C)
and a X ∈ GL4(R) such that

ρ = ιX · ρσ (2)

where ρσ is the representation defined by (1) which is induced by σ. Moreover, σ is 
uniquely determined by ρ up to equivalence.

(III). Two irreducible real matrix representations ρ and ρ′ of H are equivalent if and 
only if the field homomorphisms σ and σ′, determined by ρ and ρ′ respectively, are 
equivalent.

It follows from Theorem 1.(II) that an irreducible representation ρ is an R-algebra 
homomorphism if and only if it is equivalent to ρσ where σ is the identity map on 
R. Hence we obtain again the classical property that all irreducible R-algebra matrix 
representations of H are equivalent. Meanwhile Theorem 1.(III) indicates that there 
exists a one-to-one correspondence between the equivalence classes of the irreducible 
real matrix representations of H and those of the field homomorphisms from R to C (see 
Cor. 4.1).

The proof of Theorem 1 relays on a few properties of some simple subalgebras of Mn(R), 
those properties are studied in the section 2. The property (I) of the theorem is proved 
by Proposition 2.1. A characterization of irreducible complex matrix representations of 
H (see Theorem 2) is developed in the section 3, which is essential for obtaining our 
main result. The proof of Theorem 1 is finalized in the section 4.

2. Preliminaries

Through out this section we fix a real matrix representation ρ : H → Mn(R) and 
study some related subalgebras of Mn(R) that plays an essential role for determining the 
representation. Denote by R[ρ(H)] the subagebra of Mn(R) generated by ρ(H). Since the 
vector space Rn is a Mn(R)-module in a natural way, it is also a R[ρ(H)]-module by the 
restriction of coefficients.

Lemma 2.1. A representation ρ : H → Mn(R) is irreducible if and only if Rn is a simple 
R[ρ(H)]-module.

Proof. This comes directly from the definitions of simple module and irreducible repre-
sentation. �
Lemma 2.2. If a subalgebra of Mn(R) has no zero-divisor, it is a division ring.
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Proof. Let A be a subalgebra of Mn(R) without zero-divisor. It is enough to show that 
every non-zero element of A is invertible with its inverse still in A. For an arbitrary non-
zero matrix X ∈ A consider its characteristic polynomial det(xIn −X) =

∑n
i=0 aix

i ∈
R[x], where In is the n ×n identity matrix. Then (

∑n
i=1 aiX

i−1)X = −a0In. Since X is 
not a zero-divisor, a0 �= 0 and we have

−
(

n∑
i=1

a−1
0 aiX

i−1

)
X = In.

Hence X is a non-singular matrix with its inverse −(
∑n

i=1 a
−1
0 aiX

i−1) ∈ A. �
Denote the center of R[ρ(H)] by C.

Lemma 2.3. Let ρ : H → Mn(K) be an irreducible representation. The center C of R[ρ(H)]
is a field.

Proof. Since ρ is irreducible, Rn is a simple R[ρ(H)]-module by Lemma 2.1. Let 
EndR[ρ(H)](Rn) be the set of endomorphisms of Rn as a R[ρ(H)]-module. Recall Schur’s 
Lemma (cf. [11], p.28) which claims that the endomorphisms of a simple module form 
a division ring. Then C has no zero-divisor since it is contained in the division ring 
EndR[ρ(H)](Rn). It follows from Lemma 2.2 that C has to be a division ring, which 
means that C is a field since it is a commutative ring. �
Corollary 2.1. Let ρ and C be as above.

(i). ρ is an R-algebra homomorphism if and only if ρ(R) = RIn. In this case, C = RIn.
(ii). If ρ is not an R-algebra homomorphism, then C is a field extension of RIn with 

extension degree [C : RIn] = 2 and C ∼= C.

Proof. The first assertion is obviously true. For the second assertion, if ρ is not an 
R-algebra homomorphism, ρ(R) is not contained in RIn. Then C is a non-trivial field 
extension of RIn by Lemma 2.3. Since C is an R-subalgebra of Mn(R), it is finite dimen-
sional over RIn. Hence C is an algebraic field extension of RIn, which means that C has 
to be isomorphic to C since the latter is the unique non-trivial algebraic field extension 
over R up to isomorphism. Consequently [C : RIn] = [C : R] = 2. �
Lemma 2.4. Let ρ : H → Mn(R) be an irreducible representation. Then R[ρ(H)] is a 
simple algebra. More over, if ρ is not an R-algebra homomorphism, then

dimRR[ρ(H)] = 8. (3)
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Proof. Since the center C of R[ρ(H)] is a field extension of ρ(R) by Corollary 2.1 and 
ρ(H) is a simple ρ(R)-algebra, the tensor product C ⊗ρ(R) ρ(H) is a simple C-algebra 
(cf. [11], p.226). Note that

R[ρ(H)] = C[ρ(H)] =
{

m∑
i=1

ciρ(hi)|∀ci ∈ C,∀hi ∈ H,m ∈ N, 1 ≤ i ≤ m

}
.

The map φ : C ⊗ρ(R) ρ(H) → C[ρ(H)] defined by

φ

(
m∑
i=1

ci ⊗ ρ(hi)
)

=
m∑
i=1

ciρ(hi),∀ci ∈ C,∀hi ∈ H,m ∈ N, 1 ≤ i ≤ m

is a surjective C-algebra homomorphism. The simplicity of C ⊗ρ(R) ρ(H) implies that φ
must be an isomorphism, which results in the simplicity of the algebra C[ρ(H)]. More 
over, if ρ is not an R-algebra homomorphism, C is a two dimensional R-subalgebra of 
R[ρ(H)] while

dimCC[ρ(H)] = dimC C ⊗ρ(R) ρ(H) = dimρ(R)ρ(H) = 4.

Therefore

dimRR[ρ(H)] = dimRC[ρ(H)] = dimRC · dimCC[ρ(H)] = 2 · 4 = 8. �
Corollary 2.2. Let ρ be as above which is not an R-algebra homomorphism. Then 
R[ρ(H)] ∼= M2(C).

Proof. The isomorphism φ defined in the proof of the above lemma gives rise to an 
isomorphism between R[ρ(H)] and C⊗ρ(R) ρ(H). Note that ρ(H) is a quaternion algebra 
over the field ρ(R) and that C is an algebraically closed field by Corollary 2.1. This 
implies that C ⊗ρ(R) ρ(H) is a quaternion algebra which is isomorphic to M2(C) (cf. 
[15], §2.2.4). Hence we have an isomorphism between R[ρ(H)] and M2(C) since M2(C)
is isomorphic to M2(C). There is also an alternative way to determine an isomorphism 
between R[ρ(H)] and M2(C) through the algorithm of identifying the matrix ring for 
quaternion algebras (cf. [14], §4). �
Proposition 2.1. A matrix representation ρ : H → Mn(R) is irreducible if and only if 
n = 4.

Proof. Suppose that ρ is irreducible. Then R[ρ(H)] is a simple subalgebra of the central 
simple R-algebra Mn(R) by Lemma 2.4. Denote by CMn(R)(R[ρ(H)]) the centralizer of 
R[ρ(H)] in Mn(R). Recall the double centralizer theorem (cf. [11], p.232) which claims 
that the dimension of a central simple algebra is equal to the product of the dimension 
of a simple subalgebra and the dimension of its centralizer. We have
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dimRR[ρ(H)] · dimRCMn(R)(R[ρ(H)]) = dimRMn(R) = n2. (4)

Since CMn(R)(R[ρ(H)]) is contained in EndR[ρ(H)]R
n which is a division ring by Schur’s 

Lemma, it is an integral domain. Hence by Lemma 2.2, CMn(R)(R[ρ(H)]) is a division 
R-algebra. Note that by Frobenius’ real division algebra classification theorem (cf. [5], 
[10]) the existing finite-dimension division R-algebras, up to an isomorphism, are just R, 
C and H. Hence the dimension of CMn(R)(R[ρ(H)]) over R can be just 1, 2 or 4. If ρ is 
an R-algebra homomorphism, then R[ρ(H)] = ρ(H). In this case, the identity (4) turns 
to

dimRρ(H) · dimRCMn(R)(ρ(H)) = 4 · dimRCMn(R)(ρ(H)) = n2 (5)

which means that the dimension of CMn(R)(ρ(H)) has to be either 1 or 4. However, it is 
obvious that dimRCMn(R)(ρ(H)) �= 1 because, otherwise, the above identity implies that 
n = 2 and ρ would become an isomorphism between H and M2(R) which is false. Hence

dimRCMn(R)(ρ(H)) = 4.

Then it follows again from the identity (5) that n = 4. Now if ρ is not an R-algebra 
homomorphism, then by Lemma 2.4 the identity (4) turns to

8 · dimRCMn(R)(R[ρ(H)]) = n2

In this case, the dimension of CMn(R)(R[ρ(H)]) has to be 2 and therefore n = 4.
On the other hand, given a representation ρ : H → M4(R), note that R4 is an Artinian 

R[ρ(H)]-module and that it contains a non-trivial simple submodule, say V ⊆ R4. Then 
V induces an irreducible subrepresentation of ρ with the representation degree equal to 
dimRV . The above discussion on the degree of irreducible representation confirms that 
dimRV = 4. This means that V = R4, therefore ρ is irreducible. �
3. Complex matrix representations of H

The irreducible complex matrix representations of H, apart from their own significance 
and applications, are essential for us to determine the real matrix representations. In 
this section we study those complex matrix representations by classifying them up to 
equivalence.

Proposition 3.1. A complex matrix representation � : H → Mn(C) of H is irreducible if 
and only if n = 2.

Proof. Denote by C[�(H)] the C-subalgebra of Mn(C) generated by �(H). Note that the 
vector space Cn is a C[�(H)]-module in a natural way, which is a simple module if and 
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only if � is an irreducible representation. Suppose that � is irreducible. It follows from 
Schur’s Lemma

EndC[�(H)]C
n = CIn (6)

Since �(R) is contained in the center of C[�(H)] which, in its turn, contained in 
EndC[�(H)]C

n, we obtain that

�(R) ⊆ CIn. (7)

This implies that C⊗�(R)�(H) is a central simple C-algebra. Consider a map ϕ : C⊗�(R)
�(H) → C[�(H)] defined by

ϕ(
m∑
i=1

ci ⊗ �(hi)) =
m∑
i=1

ci�(hi),∀ci ∈ C,∀hi ∈ H,m ∈ N, 1 ≤ i ≤ m

which is a surjective C-algebra homomorphism. The simplicity of C ⊗�(R) �(H) implies 
that ϕ is an isomorphism and therefore C[�(H)] is a simple subalgebra of Mn(C). It 
follows from the double centralizer theorem of central simple algebra (cf. [11], p.232) 
that

dimCC[�(H)] · dimCCMn(C)(C[�(H)]) = dimCMn(C) = n2, (8)

where CMn(C)(C[�(H)]) is the centralizer of C[�(H)] in Mn(C). Note that

CIn ⊆ CMn(C)(C[�(H)]) ⊆ EndC[�(H)]C
n.

Then the identity (6) implies that dimCCMn(C)(C[�(H)]) = 1. More over, the C-algebra 
isomorphism ϕ implies that

dimCC[�(H)] = dimC C ⊗�(R) �(H) = 4

Thus the identity (8) implies that n = 2.
It is obvious, on the other hand, that every non-trivial 2-dimensional complex matrix 

representation of H has to be irreducible since there exists no 1-dimensional irreducible 
subrepresentation for H. �
Proposition 3.2. Let � : H → M2(C) and �′ : H → M2(C) be two complex representations 
of H. Denote by �|R and �′|R the restrictions of � and �′ on R respectively. If �|R = �′|R, 
then there exists a matrix Z ∈ GL2(C) such that �′ = ιZ�.

Proof. Since both � and �′ are irreducible by Proposition 3.1, it follows from (7) that 
both �(R) and �′(R) are contained in CI2. The assumption that �|R = �′|R gives rise to 
a surjective C-algebra homomorphism ψ : C ⊗�(R) �(H) → C ⊗�′(R) �

′(H) defined by



62 Y. Chen / Linear Algebra and its Applications 706 (2025) 55–69
ψ

(
m∑
i=1

zi ⊗ �(hi)
)

=
m∑
i=1

zi ⊗ �′(hi), ∀zi ∈ C, hi ∈ H,m ∈ N, 1 ≤ i ≤ m

which has to be an isomorphism since the algebras involved are simple. Let ϕ : C ⊗�(R)
�(H) → C[�(H)] be a map defined by

ϕ

(
m∑
i=1

zi ⊗ �(hi)
)

=
m∑
i=1

zi�(hi), ∀zi ∈ C, hi ∈ H,m ∈ N, 1 ≤ i ≤ m

and let ϕ′ : C ⊗�′(R) �
′(H) → C[�′(H)] be a map defined by

ϕ′

(
m∑
i=1

zi ⊗ �′(hi)
)

=
m∑
i=1

zi�
′(hi), ∀zi ∈ C, hi ∈ H,m ∈ N, 1 ≤ i ≤ m.

Obviously both ϕ and ϕ′ are C-algebra isomorphisms. Together with ψ, they induce a 
map ψ′ : C[�(H)] → C[�′(H)] such that the following diagram commutes.

C ⊗�(R) �(H) ψ−−−−→ C ⊗�′(R) �
′(H)

ϕ

⏐⏐� ⏐⏐�ϕ′

C[�(H)] ψ′

−−−−→ C[�′(H)]

In particular, ψ′ is a C-algebra isomorphism since it is a composition of other tree 
C-algebra isomorphisms. Recall Noether-Skolem Theorem (cf. [11], p.230) which claims 
that every isomorphism between two simple subalgebras of a central simple algebra comes 
from the restriction of an inner automorphism of the algebra. Since both C[�(H)] and 
C[�′(H)] are simple subalgebras of M2(C), ψ′ must come from an inner automorphism of 
M2(C). Thus there exists a Z ∈ GL2(C) such that

ψ′(x) = ZxZ−1,∀x ∈ C[�(H)].

Following the above commutative diagram we have

�′(h) = ψ′�(h) = Z�(h)Z−1 = ιZ · � (h),∀h ∈ H.

Thus �′ = ιZ · �. �
A particular case of the complex matrix representations of H is where the representa-

tion is an R-algebra homomorphism. Recall a canonical complex matrix representation 
�C : H → M2(C) defined by

�C(a + bi + cj + dk) =
(
a + bi −c− di
c− di a− bi

)
, ∀a, b, c, d ∈ R.
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This is a R-algebra matrix representation indeed. It is known that the R-algebra rep-
resentations of H in M2(C) are equivalent to each other (cf. [8], p.197). As a direct 
consequence of the Propositions 3.1 and 3.2, we obtain this classical property again.

Corollary 3.1. Up to equivalence, there exists a unique irreducible complex matrix repre-
sentation for H as an R-algebra, that is �C.

There are a lot of irreducible complex matrix representations of H which are not 
equivalent to �H. For instance, consider a non-trivial endomorphism σ ∈ End(C) and 
define a map �σ : H → M2(C) by

�σ(a + bi + cj + dk) =
(
σ(a + bi) −σ(c + di)
σ(c− di) σ(a− bi)

)
, ∀a, b, c, d ∈ R. (9)

It is obvious that �σ is an irreducible representation which is not equivalent to �C unless 
the restriction of σ on R is the identity map of R.

Theorem 2. Let � : H → M2(C) be a complex matrix representation of H, then there exist 
a σ ∈ End(C) and a Z ∈ GL2(C) such that

� = ιZ · �σ,

where ιZ is the inner automorphism of M2(C) via conjugation by Z.

Proof. Since � is irreducible by Proposition 3.1, it follows from (7) that for each a ∈ R

there is a a� ∈ C such that �(a) = a�I2. This induces a homomorphism σ� : R → C

defined by

σ�(a) = a�,∀a ∈ R.

Extending σ� to an endomorphism σ of C, we have for all a ∈ R

�(a) =
(
σ(a) 0

0 σ(a)

)
= �σ(a)

where �σ is the matrix representation defined by (9). Then it follows from Proposition 3.2
that there exists a Z ∈ GL2(C) such that � = ιZ · �σ. �
4. Proof of Theorem 1

The following property of simple algebra is needed for proving Theorem 1.

Proposition 4.1. Let R and R′ be isomorphic Artinian simple rings. Suppose that the 
center C(R) of R is algebraically closed. Then every ring homomorphism from C(R) to 
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the center C(R′) of R′ can be extended to a homomorphism from R to R′. In particular, 
if the homomorphism between the two centers is an isomorphism, then the extended 
homomorphism is an isomorphism between R and R′.

Proof. Note that C(R) and C(R′) are isomorphic to each other since they are the centers 
of two isomorphic rings. Hence C(R′) is algebraically closed since so is C(R). It follows 
from Wedderburn-Artin theorem (cf. [11], P. 50) that there exist isomorphisms α : R ∼=
Mm(C(R)) and α′ : R′ ∼= Mm(C(R′)) for some m ∈ N. If β : C(R) → C(R′) is a ring 
homomorphism, we can extend β to a homomorphism β̃ : Mm(C(R)) → Mm(C(R′))
defined by, for (cij) ∈ Mm(C(R)),

β̃((cij)) = (β(cij)) ∈ Mm(C(R′)), ∀cij ∈ C(R), 1 ≤ i ≤ m, 1 ≤ j ≤ m.

Then the composition α′ −1β̃α : R → R′ is an extension of β as required. Obviously if β
is an isomorphism, so is β̃. �

The proof of Theorem 1.(I) is achieved by Proposition 2.1. We prove in the following 
the properties (II) and (III) of the theorem.

The poof of Theorem 1.(II). Suppose first that ρ is not an R-algebra homomorphism. 
Note that by Corollary 2.2 R[ρ(H)] and M2(C) are isomorphic finite-dimension cen-
tral simple algebras with algebraically closed centers C and CI2 respectively. Obviously 
RI4 ⊆ C and there exists a field isomorphism α : C → CI2 satisfying

α(aI4) = aI2 ∈ M2(C), ∀a ∈ R. (10)

It follows from Proposition 4.1, that α can be extended to a ring isomorphism α̃ :
R[ρ(H)] → M2(C). Since ρ(H) ⊆ R[ρ(H)], considering ρ as a ring homomorphism from 
H to R[ρ(H)] we obtain a complex matrix representation α̃ · ρ : H → M2(C), which is 
irreducible by Proposition 3.1. Then Theorem 2 asserts that there exist a σ ∈ End(C)
and a matrix Z ∈ GL2(C) such that α̃ ·ρ = ιZ ·�σ. In other words, we have a commutative 
diagram

H
�σ−−−−→ M2(C)

ρ

⏐⏐� ⏐⏐�ιZ

R[ρ(H)] α̃−−−−→ M2(C)

(11)

Let μ : C → M2(R) be the canonical real matrix representation of C which is defined by

μ(a + bi) =
(
a −b
b a

)
,∀a, b ∈ R,

and let μ̃ : M2(C) → M4(R) be an extension of μ defined by
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μ̃

(
z1 z2
z3 z4

)
=

(
μ(z1) μ(z2)
μ(z3) μ(z4)

)
,∀zi ∈ C, 1 ≤ i ≤ 4.

Obviously μ̃ is an R-algebra homomorphism. Hence μ̃(M2(C)) is a subalgebra of M4(R)
which is R-isomorphic to M2(C). Note that α̃−1(M2(C)) is also a subalgebra which is 
isomorphic to M2(C) since α̃ is an R-algebra isomorphism by the identity (10). Thus 
μ̃(M2(C)) and α̃−1(M2(C)) are isomorphic simple subalgebras of M4(R). It follows from 
Noether-Skolem Theorem (cf. [11], p. 230) that there exists a non-singular matrix Y ∈
GL4(R) such that α̃−1(T ) = Y μ(T )Y −1 for all T ∈ M2(C). Thus we have a commutative 
diagram

M2(C) M2(C)

α̃−1

⏐⏐� ⏐⏐�μ̃

M4(R) ιY−−−−→ M4(R)

Combining this diagram with the diagram (11), we build a commutative diagram

H
�σ−−−−→ M2(C)

ρ

⏐⏐� ⏐⏐�ιZ

R[ρ(H)] α̃−−−−→ M2(C) M2(C)

ι

⏐⏐� ⏐⏐�α̃−1

⏐⏐�μ̃

M4(R) M4(R) ←−−−−
ιY

M4(R)

where ι is the immersion map. Therefore, for all h ∈ H,

ρ(h) = ιY · μ̃ · ιZ · �σ(h) = ιY · ιμ̃(Z) · μ̃ · �σ(h) = ιX · μ̃ · �σ(h) (12)

where X = Y μ̃(Z). For the endomorphism σ of C, we denote its restriction on R still 
by σ without any confusion and let ρσ be the real matrix representation defined by (1). 
Note that σ(i) = ±i. It is a routine to verify that, if σ(i) = i,

μ̃ · �σ = ρσ. (13)

In this case, we have an equation that ρ = ιX · ρσ by (12). If σ(i) = −i, then

μ̃ · �σκ = ρσ

where κ is the complex conjugation of C. Note that the restrictions of �σ and �σκ on R
are equal, consequently there is a non-singular matrix Z ∈ GL2(C) such that �σ = ιZ ·�σκ
by Proposition 3.2. Then it follows from (12) that
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ρ = ιX · μ̃ · �σ = ιX · μ̃ · ιZ · �σκ = ιX′ · ρσ

where X ′ = Xμ̃(Z). Thus for both cases we obtain the identity (2).
If ρ is a R-algebra homomorphism, then ρ(H) and μ̃ · �C(H) are isomorphic simple 

R-subalgebras of M4(R). In this case we obtain again by Noether-Skolem Theorem that

ρ = ιX · μ̃ · �C = ιX · ρσ

for a non-singular matrix X ∈ GL4(R), where σ is the identity map of R.
Finally, for each irreducible representation ρ, the uniqueness of the homomorphism 

σ ∈ Hom(R, C) determined by ρ up to equivalence is a direct consequence of the following 
proposition. �
Proposition 4.2. Let σ and σ′ be non-trivial homomorphisms from R to C. Then ρσ and 
ρσ′ are equivalent if and only if σ and σ′ are equivalent.

Proof. Suppose that σ and σ′ are equivalent. If σ �= σ′, then σ = κσ′. Hence for an 
arbitrary a ∈ R,

σ(a)r = σ′(a)r, σ(a)i = −σ′(a)i.

This leads to a matrix equation

ρσ(a) = Kρσ′(a)K−1, ∀a ∈ R

where

K =

⎛
⎜⎝

0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0

⎞
⎟⎠ ∈ M4(R).

We also have

ρσ(i) = Kρσ′(i)K−1

and

ρσ(j) = Kρσ′(j)K−1.

Since H is generated by R, i and j, above equations imply that ρσ = ιK · ρσ′ . Thus ρσ
and ρσ′ are equivalent.

On the other hand, if ρσ and ρσ′ are equivalent, there exists a non-singular matrix 
X ∈ GL4(R) such that
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Xρσ(h) = ρσ′(h)X, ∀h ∈ H. (14)

By writing X =
(
X1 X2
X3 X4

)
where Xi ∈ M2(R) for 1 ≤ i ≤ 4, we have

(
X1 X2
X3 X4

)(
0 I2

−I2 0

)
= Xρσ(j) = ρσ′(j)X =

(
0 I2

−I2 0

)(
X1 X2
X3 X4

)
.

This results in

X1 = X4, X2 = −X3.

Denoting by Σa and Σ′
a the matrices 

(
σ(a)r −σ(a)i
σ(a)i σ(a)r

)
and 

(
σ′(a)r −σ′(a)i
σ′(a)i σ′(a)r

)
respec-

tively, we have by (14) that for all a ∈ R

(
X1 X2
−X2 X1

)(
Σa 0
0 Σa

)
= Xρσ(a) = ρσ′(a)X =

(
Σ′

a 0
0 Σ′

a

)(
X1 X2
−X2 X1

)
.

This implies that

X1Σa = Σ′
aX1, (15)

and

X2Σa = Σ′
aX2. (16)

Moreover, by writing D =
(

0 −1
1 0

)
, we have

(
X1 X2
−X2 X1

)(
D 0
0 −D

)
= Xρσ(i) = ρσ′(i)X =

(
D 0
0 −D

)(
X1 X2
−X2 X1

)
.

This yields two matrix equations: X1D = DX1 and X2D = −DX2. The first equation 
implies that

X1 =
(
x −y
y x

)
(17)

while the second equation implies that

X2 =
(
s t
t −s

)
(18)

for some x, y, s, t ∈ R. Note that
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(
x −y
y x

)(
σ(a)r −σ(a)i
σ(a)i σ(a)r

)
=

(
σ(a)r −σ(a)i
σ(a)i σ(a)r

)(
x −y
y x

)
,∀a ∈ R.

If X1 is not a zero matrix, then by (17) it has to be invertible and the equation (15)
gives rise to an identity

(
σ(a)r −σ(a)i
σ(a)i σ(a)r

)
=

(
σ′(a)r −σ′(a)i
σ′(a)i σ′(a)r

)
,∀a ∈ R

which implies that σ = σ′. If X1 is the zero-matrix, since X is non-singular, X2 must 
be non-zero and therefore it has to be non-singular by (18). Hence the equation (16)
becomes

(
s t
t −s

)(
σ(a)r −σ(a)i
σ(a)i σ(a)r

)(
s t
t −s

)−1

=
(
σ′(a)r −σ′(a)i
σ′(a)i σ′(a)r

)
,∀a ∈ R.

However, a direct matrix calculation also results in

(
s t
t −s

)(
σ(a)r −σ(a)i
σ(a)i σ(a)r

)(
s t
t −s

)−1

=
(
κσ(a)r −κσ(a)i
κσ(a)i κσ(a)r

)
.

Those two equations imply that σ′ = κσ. Thus we obtain that σ and σ′ are equivalent. �
In particular, if a matrix representation ρ has different decomposition

ρ = ιX · ρσ = ιX′ · ρσ′

then σ and σ′ are equivalent by Proposition 4.2. Hence we obtain the uniqueness prop-
erty of Theorem 1.(II). The property (III) of Theorem 1 is a direct consequence of 
Proposition 4.2. Thus we complete the proof of Theorem 1.

The following corollary is an immediate consequence of Theorem 1, it indicates how 
huge is the family of the irreducible real matrix representations of H (cf. [2], §3).

Corollary 4.1. There exists a one-to-one correspondence between the equivalence classes 
of the irreducible real matrix representation of H and those of the field homomorphisms 
from R to C.

Remark. In [3] and [6] there is a concrete calculation of total 48 R-algebra representations 
of H by computing distinct bases for quaternion subalgebras of M4(R). Each of those bases 
consists of 3 ordered skew-symmetric signed permutation matrices, which are possible 
images of i, j,k under a representation. A similar calculation is also applicable to each 
equivalence class of irreducible representations of H since, for an arbitrary σ ∈ Hom(R, C), 
the imagines of i, j,k under ρσ are also skew-symmetric signed permutation matrices.
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We observe that the method used for obtaining Theorem 1 can be extended to the 
study for the matrix representations of complex quaternions with a few suitable adjust-
ments (cf. [4], [12]), however a detailed discussion is beyond the content of this paper.

Among various applications of the matrix representations of the quaternions we men-
tion its fundamental role in the studies of quaternion matrices and their equations (cf. 
[9]). Certainly a complete classification for the irreducible representations, as described 
by Theorem 1 and Theorem 2, provides a powerful tool for those studies.
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