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Abstract: Based on the recent indications of integrability in the planar ABJ model, we

conjecture an exact expression for the interpolating function h(λ1, λ2) in this theory. Our

conjecture is based on the observation that the integrability structure of the ABJM theory

given by its Quantum Spectral Curve is very rigid and does not allow for a simple consistent

modification. Under this assumption, we revised the previous comparison of localization

results and exact all loop integrability calculations done for the ABJM theory by one of

the authors and Grigory Sizov, fixing h(λ1, λ2). We checked our conjecture against various

weak coupling expansions, at strong coupling and also demonstrated its invariance under

the Seiberg-like duality. This match also gives further support to the integrability of the

model. If our conjecture is correct, it extends all the available integrability results in the

ABJM model to the ABJ model.
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1 Introduction

Integrability of AdS/CFT has a long history and over the past few years gave numerous

exciting results. First discovered in N = 4 SYM in 4D [1], the integrability methods

have been exported to the Aharony-Bergman-Jafferis-Maldacena (ABJM) theory in 3D

(proposed in [2] following [3, 4]) and to some 2D theories as well in the planar limit, see

the reviews [5, 6]. Currently the planar spectrum in many of these examples seems to be

under complete control of integrability but also numerous results are available for Wilson

loops, amplitudes and even 3-point correlators.

The ABJ model [7] is a simple generalization of the 3D N = 6 ABJM Chern-Simons-

matter theory and its gauge group is U(N1)k × U(N2)−k where k indicates the Chern-

Simons level. In the planar limit this theory has two ‘t Hooft couplings λ1 = N1/k and

λ2 = N2/k, and for the particular case λ1 = λ2 we get the ABJM model. The ABJ theory

has a well established AdS dual, but whether or not it is integrable has been unclear for

a long time. One of the reasons for this is that the string dual for the ABJ model is

indistinguishable from that of the ABJM model to all orders in perturbation theory. At

the same time, calculations at weak coupling are highly complicated but also revealed

rather slim differences with the ABJM case. Namely, in every situation studied so far it

was possible to absorb all the dependence on two separate couplings into a redefinition of

the ‘t Hooft coupling of the ABJM model [8–12].

One of the possible approaches to the solution of this theory, which we adopt here,

would be to assume integrability and try to draw some predictions from that. One should be

warned at this point that the θ-term present in the worldsheet string theory [13] could break

– 1 –



J
H
E
P
1
2
(
2
0
1
6
)
0
8
6

integrability, similarly to what may happen in some non-supersymmetric sigma models.

Nevertheless we can play this game, and in particular we will be able to make a prediction

for the single magnon dispersion relation which passes all tests presently available.

Discussing integrability in ABJ(M) theory it is instructive to use the historical path

for a moment. First integrability was developed in the asymptotic limit for very long single

trace operators/strings, the construction being based on the S-matrix which is (up to a

scalar factor) fixed completely by the symmetry [14–16]. The global symmetry of both

ABJ and ABJM theories is the same, which suggests that the integrable structure, if it

exists, is likely to only differ by a redefinition of the coupling constant, as already pointed

out in [8, 9]. For short operators the S-matrix approach becomes unreliable and one should

use the Y-system/TBA [17, 18] or its reformulation as the Quantum Spectral Curve (QSC)

which is a simple set of Riemann-Hilbert equations. The QSC was first formulated in

N = 4 SYM [19, 20] and later extended to the ABJM model in [21]. In particular in [21] it

was noticed that the QSC for the ABJM theory algebraically has exactly the same form as

in N = 4 SYM, suggesting its structure is rather rigid. Indeed, we found it complicated to

modify the QSC construction to incorporate an extra parameter. The conclusion is that it

would be hardly possible to include into the construction two different ‘t Hooft couplings

in any way except replacing λ→ λeff(λ1, λ2).

A key observable in the theory is the magnon dispersion relation representing a simplest

perturbation of a long BPS operator. Symmetry constrains it to be of the form

γ(p) =

√
1

4
+ 4h2(λ1, λ2) sin2 p

2
− 1

2
(1.1)

so that it is given in terms of an interpolating function h(λ1, λ2). At the same time this

interpolating function determines the positions of the branch points in the QSC construc-

tion, where they are situated at ±2h. Thus h is a physical observable of the theory which

plays a central role in the integrability construction. In the next section we describe our

conjecture for this quantity and then go through some tests of our proposal.

2 Conjecture for the interpolating function

The conjecture for the expression of h(λ1, λ2) which we put forward in this note is

h(λ1, λ2) =
1

4π
log

(
ab+ 1

a+ b

)
, (2.1)

where a and b (which we assume |a| ≥ 1 and |b| ≥ 1) parameterize λ1 and λ2 in the

following way

λ1 = − 1

4π2

∮ 1/a

a
ω(Z)

dZ

Z
, λ2 = +

1

4π2

∮ −1/b

−b
ω(Z)

dZ

Z
, (2.2)

and where

ω(Z) = log
(√

(Z + b)(Z + 1/b)−
√

(Z − a)(Z − 1/a)
)
. (2.3)
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The map (a, b) → (λ1, λ2) is not single-valued as we shall discuss later in relation to a

Seiberg-like duality. However, for small enough λ1, λ2 it gives unique mapping between the

branch points and the couplings.

For some observables, accessible by the localization, the points a, 1/a, b, 1/b have the

meaning of the end of the cuts on which the roots of the matrix model condense as we also

discuss below.

The main inspiration for our conjecture comes from the calculation of [22] where h was

fixed in the ABJM case by comparing a localization prediction with an integrability-based

result. For the case λ1 = λ2 = λ the integrals can be solved explicitly [23] and our result

for h(λ1, λ2) reduces to the one of [22]

λ =
sinh(2πh)

2π
3F2

(
1

2
,

1

2
,

1

2
; 1,

3

2
;− sinh2(2πh(λ, λ))

)
. (2.4)

This will be discussed in more detail in section 3.

We now describe various tests of our conjecture and make a comparison with the known

results for h(λ1, λ2) in several limits.

2.1 Reality and analyticity

A first test of our formula is that the result for h(λ1, λ2) is real in the physical range

of the parameters, namely for λ1, λ2 ≥ 0 with |λ1 − λ2| < 1 [7]. In fact this is already

rather nontrivial, as the points a and b are complex numbers with no obvious conjugation

symmetry. In order to prove reality it is convenient to parameterize a, b in terms of the

new variables B and κ used in [24] and defined by

4e2πi(B−1/2) = a+
1

a
+ b+

1

b
, 2κeπiB = a+

1

a
− b− 1

b
. (2.5)

As shown in [24], both B and κ are real, and in fact

B = λ1 − λ2 + 1/2 . (2.6)

Moreover, we have

κ ≥ 4| cosπB| . (2.7)

In these variables the expression (2.1) for h(λ1, λ2) takes the form

h(λ1, λ2) =
1

4π
log
(
u+

√
u2 − 1

)
, (2.8)

where we defined

u =
κ2

8
− cos 2πB . (2.9)

From (2.7) it follows that u ≥ 1, so the expression inside the logarithm in (2.8) is real and

greater than 1, and therefore h(λ1, λ2) is indeed real and positive.

Another interesting hint at the correctness of our result is the correspondence between

singular points in the matrix model construction and the structural properties of the QSC.
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In particular, the matrix model description becomes singular at the so-called conifold lo-

cus [24], where either a = ±1 or b = ±1, and consequently one of the branch cuts collapses.

In terms of the interpolating function (2.1), such points correspond either to h(λ1, λ2)→ 0,

or to the complex points h(λ1, λ2)→ i/4 (modulo the i/2 periodicity due to the log in (2.1)).

We would like to point out that the points h = ±i/4 are indeed special ponts in the QSC

formulation, where the branch points in the rapidity plane touch each other, leading to the

formation of a singularity as is the case also for N = 4 SYM. The correspondence with the

matrix model description yields another indirect confirmation of our proposal.

2.2 Weak coupling limit

At weak coupling one has a ∼ b ∼ 1+O(
√
λa) so the contour integral can be expanded first

for a, b ∼ 1 and then computed by residues (similar expansions in this setup were studied

in [23–25], and are known as the orbifold limit of the matrix model). This leads to the

following expression for h(λ1, λ2):

h2(λ1, λ2) = λ1λ2 −
π2

6
λ1λ2 (λ1 + λ2)2 (2.10)

+
π4

360
λ1λ2 (λ1 + λ2)2 (3λ2

1 + 3λ2
2 + 79λ1λ2

)
− π6

15120
λ1λ2 (λ1 + λ2)2 (3λ4

1 + 533λ3
1λ2 + 5336λ2

1λ
2
2 + 533λ1λ

3
2 + 3λ4

2

)
+O

(
|λk|10

)
.

This expansion can be compared against the direct 4-loop perturbative calculation of [10,

11] (later also confirmed in [12]), which gives

h2
4−loop(λ1, λ2) = λ1λ2 + h4 (λ1λ2)2 + h4,σλ1λ2(λ1 − λ2)2 (2.11)

where

h4 = −2π2

3
, h4,σ = −π

2

6
, (2.12)

perfectly matching our result! Thus our result reproduces all three known coefficients in

the perturbative expansion (one coefficient at the leading order and two at the next order).

A part of the 6-loop dilatation operator in ABJ theory was computed in [27]. It would

be interesting to complete this calculation and obtain 6-loop anomalous dimensions to

make a more detailed comparison at weak coupling. Weak coupling results based on the

QSC formulation were obtained in [26].

2.3 Partial weak coupling limit

Another interesting limit where we can make a comparison with known data is the limit

where only one of the ‘t Hooft couplings goes to zero. In this limit (which is in fact an

expansion near the conifold locus with a ∼ 1 or b ∼ 1) again the integrals (2.2) can be
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solved analytically, resulting in the following expression1

h2(λ1, λ2) =
λ1

π
sin (πλ2) +

λ2
1

3
sin2

(
πλ2

2

)
(1− 5 cos (πλ2)) (2.13)

+
πλ3

1

720
(−639 sin (πλ2) + 600 sin (2πλ2)− 227 sin (3πλ2)) +O

(
λ4

1

)
.

This limit was considered in [28] where a conjecture was put forward for the dilatation

operator at leading order in λ1 but to all loops in λ2. Very recently that conjecture was

confirmed in [29] and put on firmer grounds.2 Remarkably, the prediction for the leading

order in λ1 given in these papers precisely matches the first term in the expansion above!

This provides another nontrivial test of our conjecture, to all orders in λ2.

2.4 Strong coupling

We consider now the strong coupling regime in which λ1, λ2 →∞, while λ1−λ2 stays finite.

Notice that this is the generic physical strong coupling region since unitarity was argued

in [7] to require |λ1 − λ2| ≤ 1. This limit was studied in detail in [24] and it is convenient

to switch from a, b to κ and B defined by (2.5). Due to (2.6), B is finite in this regime.

The strong coupling expansion of κ is then arranged as the convergent expansion [24]

κ ∼ eπ
√

2λ̂

1 +
∑
l≥1

cl (x, y) e−2lπ
√

2λ̂

 , (2.14)

with x = (π
√

2λ̂)−1, y = −e2πiB, where we see the appearance of the redefined t’Hooft

parameter

λ̂ ≡ λ1 + λ2

2
− 1

2

(
B − 1

2

)2

− 1

24
=
λ1 + λ2

2
− 1

2
(λ1 − λ2)2 − 1

24
, (2.15)

which from string theory arguments is expected to be the natural variable at strong cou-

pling [13, 24]. The coefficients cl(x, y) appearing in (2.14) can be written as polynomials

in x and cos(2πmB), with m = 0, . . . , l. Using the first two coefficients computed in [24]

it is simple to determine the strong coupling behaviour of our proposal for h(λ1, λ2),

h(λ1, λ2) =

√
λ̂

2
− log(2)

2π
− e−2π

√
2λ̂ cos(2πB)

π

(
1 +

1

π 2
√

2λ̂

)
(2.16)

−e
−4π
√

2λ̂

2π

(
6 + cos(4πB) +

16 + 9 cos(4πB)

4π
√

2λ̂
+

cos(2πB)2

π2 λ̂
+

cos(2πB)2

4
√

2π3 λ̂
3
2

)

+O
(
e−6π
√

2λ̂

)
.

1Curiously the first term in this expansion is highly similar to an effective coupling arising in some higher

spin theories. We are grateful to S. Komatsu for a discussion of this point.
2It is remarkable that all-loop integrability at least in some sector was established in [29], even though

the θ term in the dual worldsheet theory is nontrivial in this partial weak coupling limit (it is equal to

2π(λ1 − λ2) + π, see e.g. [13]).
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As we see the result written in terms of the shifted λ̂ is indistinguishable from that in the

ABJM model to all orders in perturbation theory in the natural world-sheet coupling λ̂.

Let us mention that in the ABJM model this result was reproduced through two loops at

strong coupling from a direct string theory calculation [30]. It would be interesting to try to

extricate the nonperturbative terms in (2.16) from a first principles worldsheet calculation.

2.5 Symmetry

The function h(λ1, λ2) is expected to be invariant under the transformation

(λ1, λ2)→ (2λ2 − λ1 + 1, λ1) (2.17)

which corresponds to a Seiberg-like duality linking ABJ theories with two different gauge

groups, U(N1)k ×U(N2)−k and U(2N2 −N1 + k)k ×U(N1)−k [7]. Using the matrix model

arising from localization, this duality was proved for some observables at finite N1, N2

in [31–33]. Let us briefly discuss how this symmetry manifests itself in the planar limit and

show that our result is invariant under it.3

In fact the transformation (2.17) can be easily understood by a simple rearranging of

the integration contours. To understand exactly how that works we solved numerically

the underlying discrete matrix model saddle point equation for some large number of roots

(∼ 1000) for two sets of (λ1, λ2) related by the symmetry. The distribution of the roots is

given in figure 1.

The way the symmetry works is that the parameters get mapped as (a, b) → (b, a).

Whereas one of the integration contours remains unchanged (up to a sign flip), the sec-

ond one winds around the origin and another cut. The pole at the origin gives +1 as an

extra contribution and the second encircled cut gives twice λ2, resulting in the transforma-

tion (2λ2 − λ1 + 1, λ1). We notice that the transformation (a, b) → (b, a) keeps h(λ1, λ2)

unchanged ensuring the symmetry of that quantity.

Note that one can start from ABJM theory where λ1 = λ2 and generate predictions

for h(λ1, λ2) with non-equal couplings. It is quite notable that in our proposal all these

configurations are automatically taken into account.

3 Motivation for the proposal from the QSC

Our main motivation comes from the calculation of [22] where the function h(λ1, λ2) was

determined for λ1 = λ2 (i.e. in the ABJM theory) by comparing the localization results

with the integrability-based Quantum Spectral Curve calculation. Let us first summarize

that calculation and then discuss its extension that we propose in the ABJ case.

The Quantum Spectral Curve captures the exact anomalous dimensions of all local

single trace operators in ABJM model. Being based on integrability, it provides the result

in terms of the effective coupling h. While one cannot compute a part of the spectrum via

localization, the idea is to compare the localization result for the 1/6 BPS Wilson loop with

the integrability prediction for the slope function which describes the anomalous dimensions

3Its effect at strong coupling was also discussed in [24].
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Figure 1. Numerical solution of the ABJ matrix model for two sets of dual couplings. We see that

the branch points are exactly the same (up to a sign), while for the second configuration one of the

cuts encircles the origin and another cut. This results in an extra contribution +1 from the pole

at the origin and 2λ2 from the second (red) cut which results in 2λ2 − λ1 + 1 for the total integral

around the new contour. As the branch points simply flip their signs and interchange a ↔ b the

interpolating function remains invariant.

in the small spin limit. These two observables are known to be closely related in the N = 4

SYM theory so one can expect a similarity between them in the ABJM model as well.

The slope function γL is defined as the leading coefficient in the expansion of the

conformal dimension ∆ of sl(2) sector operators with twist L at small spin S,

∆− L− S = γL S +O(S2) , (3.1)

and it is a nontrivial function of the coupling. In [22] it was computed from the QSC and

the result is written in terms of the key building blocks

Iα,β =

∮
dy

∮
dz

√
y − e4πh

√
y − e−4πh

√
z − e4πh

√
z − e−4πh

yαzβ

z − y
(3.2)

with the integrals going around the cut [e−4πh, e4πh]. Here the integrand has branch points

at

z1 = e4πh, z2 = e−4πh, z3 =∞, z4 = 0 . (3.3)

The main idea of [22] is to use the structural similarity between these integrals and the

localization result of [23] for the 1/6-BPS Wilson loop. The localization prediction can be

– 7 –
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written as

〈W1/6〉 =
1

4iπ2λ1
I1, I1 =

a∫
1/a

dX arctan

√
(a+ 1/a)X − 1−X2

(b+ 1/b)X + 1 +X2
(3.4)

where the integrand has two branch cuts [1/a, a] and [−b,−1/b] formed by the condensa-

tion of eigenvalues in the matrix model of [34] (see figure 1 for some numerical solutions

of the matrix model). In the QSC calculation four branch points (3.3) appear as well,

suggesting they could be mapped to those of the localization result. Indeed with a Mobius

transformation we can map

a→ e4πh, 1/a→ e−4πh, −b→∞, −1/b→ 0 , (3.5)

and evaluating the conformal cross-ratio of these points before and after the map gives

h =
1

4π
log

(
ab+ 1

a+ b

)
. (3.6)

Our key observation is that exactly the same logic seem to work perfectly in the ABJ

model, i.e. for non-equal couplings λ1, λ2. The localization result in this case has exactly the

same form (3.4), although it of course depends on two couplings λ1, λ2 which determine a, b

via the relations (2.2) obtained in [23] which we presented in section 2. Moreover, assuming

the ABJ model is integrable it seems likely that the only change in the QSC would amount

to using a different interpolating function h(λ1, λ2). This is suggested by the apparent

rigidity of the QSC construction together with hints from perturbative calculations and

the partial weak coupling limit discussed above. In this case we would get again the same

relation (3.6) fixing h(λ1, λ2). It is important to mention that the exact form of certain

effective coupling constants appearing in integrable subsectors of N = 2 SYM theories were

recently conjectured, using a different approach, in [35–37].

4 Conclusion

In this note we proposed a conjecture for the exact all-loop interpolating function h(λ1, λ2)

in ABJ theory which should enter all integrability-based calculations in this model. Equiva-

lently we give a prediction for a nontrivial physical quantity - the single magnon dispersion

relation. Our proposal is based on the same logic that allowed to fix this interpolating

function for λ1 = λ2 (i.e. in the ABJM model) — namely, we map the branch points of

the spectral curve arising in localization results to the branch points of the integrability-

based Quantum Spectral Curve calculation. This approach turns out to work remarkably

well even when the two couplings are different. Our conjecture matches all known predic-

tions: four-loop perturbative results at weak coupling, an all-loop prediction in the limit

λ1 � λ2, and the leading strong coupling prediction together with the expected shift of the

coupling constant at strong coupling. It also has the required invariance under a Seiberg-

like transformation of the couplings. The fact that all these nontrivial checks are passed is

remarkable and even somewhat surprising given the compact form of our proposal.
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One should bear in mind that it still remains an open question whether the ABJ the-

ory is indeed integrable. We would like to emphasize the importance of a perturbative

calculation which would check whether integrability persists at higher orders at weak cou-

pling. To get significant new data one would likely need to compute the dilatation operator

or anomalous dimensions at 6 loops, which though difficult may be possible to do in the

superspace approach of [12]. At the same time the match of our result, which implicitly

assumes integrability, with all the known data suggests that the ABJ theory is indeed

integrable. The mechanism we propose allows to make several new predictions for ABJ

theory, simply by replacing λ with λeff(λ1, λ2) in the corresponding ABJM results. The

replacement rule is completely determined by our proposal. We present its weak coupling

expansion in appendix A.

Finally, while the approach of [22] which we use in this paper is based on comparing

the localization and integrability predictions for different observables, an even more direct

test would be to compute the same observable by both methods. This might be possible

to do for the generalized cusp anomalous dimension if an integrability description similar

to that in the N = 4 SYM case [38–40] is found for it.
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A Weak coupling map from ABJM to ABJ

Assuming our conjecture for the exact function h(λ1, λ2) is correct, and that integrable

structure of the ABJ theory differs from the one in ABJM only by changing the interpo-

lating function, all integrability calculations done in the ABJM case would immediately be

translated to the ABJ theory. In other words, the value of any observable computable by

integrability in ABJ theory would be trivially obtained from the ABJM result by replacing

the ABJM coupling constant λ with an effective coupling λeff(λ1, λ2) defined by

h(λeff, λeff) = h(λ1, λ2) . (A.1)
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In particular, at weak coupling we have the expansion

λeff =
√
λ1λ2 +

√
λ1λ2(λ1 − λ2)2

[
−π

2

12
+
π4
(
λ2

1 + 32λ2λ1 + λ2
2

)
1440

(A.2)

−
π6
(
5λ4

1 + 178λ2λ
3
1 + 1618λ2

2λ
2
1 + 178λ3

2λ1 + 5λ4
2

)
120960

+ . . .

]
,

which is straightforwardly obtained from (2.10).
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