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aDepartment of Applied Mathematics, University of Granada, Campus de Fuentenueva s/n, 18071 Granada,
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Abstract

In this paper we propose the construction of univariate low-degree quasi-interpolating splines in
the Bernstein basis, considering C1 and C2 smoothness, specific polynomial reproduction proper-
ties and different sets of evaluation points. The splines are directly determined by setting their
Bernstein-Bézier coefficients to appropriate combinations of the given data values. Moreover, we
get quasi-interpolating splines with special properties, imposing particular requirements in case of
free parameters. Finally, we provide numerical tests showing the performances of the proposed
methods.

Keywords: Quasi-interpolation, Bernstein basis, Bézier-ordinates.

1. Introduction

It is well-known that the approximation of functions and data in one and high dimensions is
very important and arises from many mathematical problems and scientific applications. In such
a context, quasi-interpolation is a useful tool for its peculiar features: see e.g. the book [1] for
a general overview on the application of quasi-interpolation for solving integral equations [2, 3],
for dealing with problems for partial differential equations [4, 5, 6, 7] and fractional differential
problems [8, 9], for modeling terrain [10], and other standard problems in numerical analysis [11].

Indeed, the construction of classical approximants of a given data set or a function often requires
the resolution of linear systems. Spline quasi-interpolants are local approximants avoiding this
problem, so they are very convenient in practice. In general, a quasi-interpolant for a given function
f is obtained as linear combination of some elements of a suitable set of basis functions. In
order to achieve local control, these basis functions are required to be positive, to ensure stability
and to have small local supports. Bernstein polynomial bases fulfill these requirements. In fact,
Bernstein polynomial bases are extremely helpful mathematical tools as they are simply defined,
easily implemented on computer systems and they represent a wide range of functions and curves.
Among the most powerful properties of these polynomials are the partition of unity and the fact
that they are non-negative.

Taking into account the aforementioned requirements, in this work we propose the construction
of univariate quasi-interpolating splines of degree 2, 3, 4 and 5 in the Bernstein basis, considering
C1 and C2 smoothness, specific polynomial reproduction properties and different sets of evalu-
ation points. The splines are directly determined by setting their Bernstein-Bézier coefficients
to appropriate combinations of the given data values (see also [12, 13, 14] where data/function
approximation in the bivariate case is faced by using such a technique).

Here is an outline of the paper. In Section 2 we give some preliminaries and we introduce the
notations used throughout the paper. Then, in Sections 3 and 4 we construct and study quadratic
and cubic quasi-interpolating splines, respectively. Finally, in Section 5 the quartic and quintic cases
are addressed. In each section, fixing the degree, we propose different quasi-interpolating splines,
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varying the smoothness, the polynomial reproduction properties and the set of evaluation points
necessary to construct them, and we get several possibilities imposing also particular requirements
in case of free parameters. Moreover, in each section we provide numerical tests showing the
performances of the proposed methods.

2. Preliminaries

Throughout this paper, we consider the uniform partition a + hZ of the real line given by the
knots xi ∶= a + i h, i ∈ Z, with a ∈ R and h > 0, yielding subintervals Ii ∶= [xi, xi+1], and the space
Srd ∶= S

r
d (a + hZ) of Cr polynomial splines of degree d on R defined by

Srd ∶= {s ∈ Cr (R) ∶ si ∶= s∣Ii ∈ Pd, i ∈ Z} ,

where r ∈ N and Pd stands for the space of polynomials of degree less than or equal to d ≥ 2.
Since each point x ∈ Ii can be expressed from its barycentric coordinates (1 − t, t), 0 ≤ t ≤ 1,

with respect to Ii as x = (1 − t)xi + t xi+1, then si can be represented in terms of the Bernstein
polynomials relative to Ii, i.e., Bα,i where α ∶= (α1, α2) ∈ N2

0 with length ∣α∣ ∶= α1 + α2 = d. They
are defined as

Bα,i (x) ∶=
d!

α1!α2!
(1 − t)

α1 tα2 , x ∈ Ii,

with t ∶= x−xi

h
. Then, the Bernstein-Bézier (BB-) representation of si is the unique linear combi-

nation
si = ∑

∣α∣=d

bα,iBα,i, (1)

whose coefficients bα,i are said to be the Bézier (B-) ordinates or BB-coefficients of si. They are
naturally linked to the domain points ξα,i ∶=

α1

d
xi +

α2

d
xi+1 in Ii determined by the barycentric

coordinates (α1

d
, α2

d
), ∣α∣ = d. Let Ξd,i ∶= {ξα,i ∈ Ii ∶ ∣α∣ = d} be the subset of all domain points

relative to Ii, and let Ξd ∶= ⊍i∈Z Ξd,i, where ⊍ stands for the union without repetitions. This subset
contains the domain points in all the subintervals induced by the partition of the real line, and it

is equal to the subset {xi+ j
d
, i ∈ Z}, where xi+s ∶= xi + s h for any irreducible rational number s.

The aim of this paper is to construct quasi-interpolation operators (QIO for short) Qd,r,k ∶

C (R)Ð→ Srd exact on Pk, k ≤ d, without using a basis of B-splines of Srd . This will be achieved by
defining the BB-coefficients of the restriction of the quasi-interpolant (QI for short, also for quasi-
interpolation) Qd,r,kf ∶= Qd,r,k [f] to each subinterval Ii from the values of f at specific points lying
in a neighbourhood of Ii depending on the degree (d), the regularity (r) and the exactness (k).
As the partition is uniform, it will suffice to define the BB-coefficients associated with the domain
points in a set Di such that Ξd = ∪i∈ZDi. A classical result [15] shows that for an enough regular
function f there exists a constant C independent of f and h such that ∥Qd,r,kf − f∥∞,Ii ≤ Ch

k+1

∥f (k+1)∥
∞,Ii

for all i ∈ Z.

3. Quadratic quasi-interpolants

This section is devoted to define a QIO Q2,1,k using the strategy described above.

3.1. QI from point values at knots and midpoints

The C1 quadratic QI Q2,1,1f will be constructed assuming that the values f (xi) and f (xi+ 1
2
)

are known and such that Q2,1,1 is exact on P1.
Since Q2,1,1f ∈ S1

2 , following (1) we write

Qf∣Ii = ∑
∣α∣=2

bα,i (f)Bα,i.

The B-ordinates bα,i (f) are linked to the domain points xi, xi+ 1
2
, and xi+1, so that we choose

Di = {xi, xi+ 1
2
}, i ∈ Z, to produce a partition of Ξ2 (see Figure 1). Therefore, only b(2,0),i (f) and
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xi−1

b(2,0),i−1(f)

xi− 1
2

b(1,1),i−1(f)

xi

b(0,2),i−1(f)
b(2,0),i(f)

xi+ 1
2

b(1,1),i(f)

Di xi+1

b(0,2),i(f)

Figure 1: The set Di, the three points at which the function to be approximated is evaluated and the BB-coefficients
involved to get C1 continuity.

b(1,1),i (f) must be defined so that Q2,1,1 satisfies the required conditions. They will be defined
from the values of f at points ξ(1,1),i−1 = xi− 1

2
, ξ(2,0,),i = xi and ξ(1,1,),i = xi+ 1

2
by writing them in

the form
bα,i (f) = µα,0f (xi− 1

2
) + µα,1f (xi) + µα,2f (xi+ 1

2
) , α ∈ {(2,0) , (1,1)} , (2)

so that masks µα ∶= (µα,0, µα,1, µα,2) ∈ R3 must be determined.

Proposition 1. Under the above conditions, the masks µ(2,0) = ( 1
2
,0, 1

2
) and µ(1,1) = (0,0,1) are

the only ones that give rise to a C1 quadratic QI Q2,1,1f such that the operator Q2,1,1 defined as
Q2,1,1 [f] = Q2,1,1f is exact on P1.

Proof. Let Q = Q2,1,1. Qf is C1 continuous at xi if and only if

b(2,0),i (f) =
1

2
(b(1,1),i−1 (f) + b(1,1),i (f)) .

Replacing in this expression each of the BB-coefficients given in (2) and equalling to zero each of
their coefficients f (a + h (i + j)), the C1 regularity is equivalent to the following conditions:

µ(1,1),0 = µ(1,1),1 = 0, 2µ(2,0),0 = µ(1,1),0 + µ(1,1),2, 2µ(2,0),1 = µ(1,1),1,2µ(2,0),2 = µ(1,1),2. (3)

On the other hand, the exactness of Q on P1 is achieved by imposing that the BB-coefficients
of the monomials mk (x) ∶= x

k, k ∈ N ∪ {0}, equal those of Qmk for k = 0,1. Taking into account

that (1,1,1) and (xi, xi+ 1
2
, xi+1) are the BB-coefficients relative to Ii of m0 and m1 as quadratic

polynomials, respectively, and also the expressions of bα,i (mk) given by (2), after simplification,
the required exactness is achieved if and only if the following additional constraints hold:

µ(2,0),0 + µ(2,0),1 + µ(2,0),2 = 1, µ(1,1),0 + µ(1,1),1 + µ(1,1),2 = 1, µ(2,0),0 − µ(2,0),2 = 0, (4)

−µ(1,1),0 + µ(1,1),2 =
1

2
, µ(2,0),0 + 2µ(2,0),1 + 3µ(2,0),2 = 2.

The system constituted by the equations given in (3)-(4) has a unique solution given by the masks
appearing in the statement. ◻

The BB-coefficients of Q2,1,1f relative to Ii are

b(2,0),i (f) =
1

2
(f (xi− 1

2
) + f (xi+ 1

2
)) , b(1,1),i (f) = f (xi+ 1

2
) , b(0,2),i (f) =

1

2
(f (xi+ 1

2
) + f (xi+ 3

2
)) .

Increasing exactness requires defining the BB-coefficients as linear combinations of five point val-

ues f (xi−1+ j
2
), j = 0,1,2,3,4 (see Figure 2). Then, we use masks µα ∶= (µα,0, µα,1, µα,2, µα,3, µα,4).

In short,

bα,i (f) =
4

∑
j=0

µα,jf (xi−1+ j
2
) , α ∈ {(2,0) , (1,1)} . (5)

The following result holds.

Proposition 2. The masks µ(2,0) = (− 1
4
,1,− 1

2
,1,− 1

4
) and µ(1,1) = (0,0,− 1

2
,2,− 1

2
) produce the

unique C1 quadratic QI Q2,1,2f such that the operator Q2,1,2 defined as Q2,1,2 [f] = Q2,1,2f is
exact on P2.
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xi−1

b(2,0),i−1(f)

xi− 1
2

b(1,1),i−1(f)

xi

b(2,0),i(f)
b(0,2),i−1(f)

xi+ 1
2

b(1,1),i(f)

Di xi+1
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Figure 2: The set Di, the five knots and midpoints around xi at which the function to be approximated is evaluated,
and the BB-coefficients involved to get C1 continuity.

xi−2 xi− 3
2

xi−1 xi− 1
2

xi Di
xi+ 1

2
xi+1 xi+ 3

2
xi+2

Figure 3: The set Di, the five knots around xi at which the function to be approximated is evaluated, and the
BB-coefficients involved to get C1 continuity.

Proof. The proof runs as in Proposition 1. By (5), Q = Q2,1,2 is C1 continuous at xi if and only
if µ(1,1),0 = µ(1,1),1 = 0 and

2µ(2,0),0 − µ(1,1),0 − µ(1,1),2 = 0, 2µ(2,0),1 − µ(1,1),1 − µ(1,1),3 = 0, 2µ(2,0),2 − µ(1,1),2 − µ(1,1),4 = 0,

2µ(2,0),3 − µ(1,1),3 = 0, 2µ(2,0),4 − µ(1,1),4 = 0.

The exactness of Q on P2 is equivalent to the following conditions:

µ(2,0),0 + µ(2,0),1 + µ(2,0),2 + µ(2,0),3 + µ(2,0),4 = 1, µ(1,1),0 + µ(1,1),1 + µ(1,1),2 + µ(1,1),3 + µ(1,1),4 = 1,

µ(2,0),0 +
1

2
µ(2,0),1 −

1

2
µ(2,0),3 − µ(2,0),4 = 0, µ(1,1),0 +

1

2
µ(1,1),1 −

1

2
µ(1,1),3 − µ(1,1),4 =

1

2
,

1

2
µ(2,0),1 + µ(2,0),2 +

3

2
µ(2,0),3 + 2µ(2,0),4 = 1, µ(2,0),0 +

1

4
µ(2,0),1 +

1

4
µ(2,0),3 + µ(2,0),4 = 0,

µ(1,1),0 +
1

4
µ(1,1),1 +

1

4
µ(1,1),3 + µ(1,1),4 = 0,

1

4
µ(2,0),1 + µ(2,0),2 +

9

2
µ(2,0),3 + 4µ(2,0),4 = 1.

Solving the system with these 15 linear equations the claim follows. ◻

The obtained masks determine the QI Q2,1,2f in each interval: its BB-coefficients are

b(2,0),i (f) = −
1

4
f (xi−1) + f (xi− 1

2
) −

1

2
f (xi) + f (xi+ 1

2
) −

1

4
f (xi+1) ,

b(1,1),i (f) = −
1

2
f (xi) + 2f (xi+ 1

2
) −

1

2
f (xi+1) ,

b(0,2),i (f) = −
1

4
f (xi) + f (xi+ 1

2
) −

1

2
f (xi+1) + f (xi+ 3

2
) −

1

4
f (xi+2) .

3.2. QI from point values at knots

We complete the quadratic case by considering the construction of QIs Qkn
2,1,2f exact on P2

assuming that only the values of the knots are known (see Figure 3), i.e., we consider BB-coefficients
of the form

bα,i (f) =
4

∑
j=0

µα,jf (xi+j−2) , α ∈ {(2,0) , (1,1)} . (6)

The superscript kn is used to indicate that the QI is defined only from point values at knots.

Proposition 3. Let us suppose that the BB-coefficients of Qkn
2,1,2f relative to the interval Ii are

given by (6). Then, the operator Qkn
2,1,2 defined as Qkn

2,1,2 [f] = Q
kn
2,1,2f is exact on P2 and produces

C1 QIs if and only if µ(2,0) = (λ, 1
8
− 2λ, 5

8
, 3
8
+ 2λ,− 1

8
− λ) and µ(1,1) = (0,2λ, 1

4
− 6λ,1 + 6λ,− 1

4
− 2λ)

with λ ∈ R.
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Proof. The proof is similar to those of Propositions 1 and 2. With the masks given in (5),
Qf = Qkn

2,1,2f is C1 continuous at xi if and only if µ(1,1),0 = 0, −2µ(2,0),4 + µ(1,1),4 = 0 and

−2µ(2,0),k + µ(1,1),k + µ(1,1),k+1 = 0, k = 0,1,2,3.

The exactness of Q on P2 is equivalent to the following conditions:

µ(2,0),0 + µ(2,0),1 + µ(2,0),2 + µ(2,0),3 + µ(2,0),4 = 1, µ(1,1),0 + µ(1,1),1 + µ(1,1),2 + µ(1,1),3 + µ(1,1),4 = 1,

−2µ(2,0),0 − µ(2,0),1 + µ(2,0),3 + 2µ(2,0),4 = 0, −2µ(1,1),0 − µ(1,1),1 + µ(1,1),3 + 2µ(1,1),4 =
1

2
,

−µ(2,0),0 + µ(2,0),2 + 2µ(2,0),3 + 3µ(2,0),4 = 1, 4µ(1,1),0 + µ(1,1),1 + µ(1,1),3 + 4µ(1,1),4 = 0,

µ(2,0),0 + µ(2,0),2 + 4µ(2,0),3 + 9µ(2,0),4 = 1, 4µ(2,0),0 + µ(2,0),1 + µ(2,0),3 + 4µ(2,0),4 = 0.

The solution of this system leads to the masks in the statement. ◻

The obtained masks determine Qkn
2,1,2f in each interval Ii: its BB-coefficients are

b(2,0),i (f) = λf (xi−2) + (
1

8
− 2λ) f (xi−1) +

5

8
f (xi) + (

3

8
+ 2λ) f (xi+1) − (

1

8
+ λ) f (xi+2) ,

b(1,1),i (f) = 2λf (xi−1) + (
1

4
− 6λ) f (xi) + (1 + 6λ) f (xi+1) − (

1

4
+ 2λ) f (xi+2) ,

b(0,2),i (f) = λf (xi−1) + (
1

8
− 2λ) f (xi) +

5

8
f (xi+1) + (

3

8
+ 2λ) f (xi+2) − (

1

8
+ λ) f (xi+3) .

Remark 1. It might be thought that this constructive process would lead to the same masks as
those provided by the classical QI exact on P2 based on the C1 quadratic B-spline M3 centered at
the origin (see [16]), i.e.

Qf =∑
i∈Z

1

8
(−f (a + h (i − 1)) + 10f (a + hi) − f (a + h (i + 1)))M3 (

⋅ − a

h
− i) .

They are (− 1
16
, 9
16
, 9
16
,− 1

16
,0) and (0,− 1

8
, 5
4
,− 1

8
,0). It is clear that no value of λ leads to these

masks.

Remark 2. Having a free parameter would allow the construction of QIs with particular charac-
teristics, such as superconvergence at specific points, typically the knots and midpoints of the Ii
intervals. A simple calculation proves that λ = − 1

16
produces errors

∣Q
kn
2,1,2f (xi) − f (xi)∣ = ∣b(2,0),i (f) − f (xi)∣ = O (h4) ,

∣Q
kn
2,1,2f (xi +

h

2
) − f (xi +

h

2
)∣ = ∣

1

4
(b(2,0),i (f) + 2b(1,1),i (f) + b(2,0),i+1 (f)) − f (xi +

h

2
)∣ = O (h4) .

The resulting masks are

µ(2,0) = (−
1

16
,
1

4
,
5

8
,
1

4
,−

1

16
) and µ(1,1) = (0,−

1

8
,
5

8
,
5

8
,−

1

8
) .

Consider the differential QI

Df =∑
i∈Z

(f (xi− 1
2
) −

h2

8
f ′′ (xi− 1

2
))Mi,

where Mi is the quadratic B-spline supported on [a + (j − 2)h, a + (j + 1)h]. It is exact on P2.
If the linear functional

di [f] ∶= f (xi− 1
2
) −

h2

8
f ′′ (xi− 1

2
)

is discretized from the values of f at the knots lying in the support of Mi, then the linear functional

d̃i [f] ∶=
1

8
(−f (xi−2) + 5f (xi−1) + 5f (xi) − f (xi+1))

5



Figure 4: From left to right, the plots of test functions f1, f2 and f3.

results. The masks corresponding to

D̃f =∑
i∈Z
d̃i [f]Mi

are also µ(2,0) and µ(1,1).

Remark 3. Another way to choose a value of the parameter λ is to minimize an upper bound of
the infinity norm of the operator Qkn

2,1,2. Since

∥Q
kn
2,1,2∥∞

≤ max{∥µ(2,0)∥1 , ∥µ(1,1)∥1} ,

where the 1-norm of v ∶= (v1, . . . , vn) is given by ∥v∥1 ∶= ∑
n
i=1 ∣vi∣, we propose to determine λ by

minimizing

U2 (λ) ∶= max{∥µ(2,0)∥1 , ∥µ(1,1)∥1}

= max{
5

8
+ ∣

1

8
− 2λ∣ + ∣

1

8
+ λ∣ + ∣λ∣ + ∣

3

8
+ 2λ∣ , ∣

1

4
− 6λ∣ + ∣

1

4
+ 2λ∣ + 2 ∣λ∣ + ∣1 + 6λ∣} .

This is a (non strictly) convex function. Its absolute minimum is equal to 3
2

. It is attained at every

value of λ lying in the interval [− 1
8
,0]. The value λ = 0 produces the masks µ(2,0) = (0, 1

8
, 5
8
, 3
8
,− 1

8
)

and µ(1,1) = (0,0, 1
4
,1,− 1

4
). And λ = − 1

8
gives the masks µ(2,0) = (− 1

8
, 3
8
, 5
8
, 1
8
,0) and µ(1,1) =

(0,− 1
4
,1, 1

4
,0).

3.3. Numerical tests
To test the performance of some of the obtained C1 quadratic QIs we will use the following

functions:

f1 (x) =
3

4
e−2(9x−2)

2

−
1

5
e−(9x−7)

2
−(9x−4)2

+
1

2
e−(9x−7)

2
−

1
4 (9x−3)

2

+
3

4
e

1
10 (−9x−1)−

1
49 (9x+1)

2

,

f2 (x) =
1

2
x cos4 (4 (x2 + x − 1)) ,

f3 (x) = −
1

4
xe−x/2 sin (3πx) .

Functions f1 and f2 are the 1D-versions of Franke’s and Nielson’s functions [17, 18]. Their plots
over the interval I = [0,1] appear in Figure 4, and their QIs will be defined in I. The tests are
carried out for a sequence of uniform mesh with knots xi = ih, i = 0, . . . , n, where h = 1

n
.

In general, for a given QI Qnf , the associated error is estimated as

En (f) = max
0≤`≤200

∣Qnf (z`) − f (z`)∣ ,

where z` are equally spaced points in I. The estimated numerical convergence order (NCO) is
given by the rate

NCO ∶=
log (En1/En2)

log (n2/n1)
.

Table 1 shows the errors and NCOs obtained for the three test functions using the two considered
from the QIs given in Proposition 2 and Remark 2. They are in good agreement with the theoretical
results.

Figure 5 shows the plots of the errors incurred when approximating the test functions in the
interval I by the QIs whose masks are given in Proposition 2 and Remark 2. Visually the graphs
of the QIs are indistinguishable from those of the test functions. The results provided by the QI
based on values at knots and midpoints are slightly better.
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f1 f2 f3
n error NCO error NCO error NCO
16 2.58 × 10−2 5.67 × 10−2 3.59 × 10−4

32 3.31 × 10−3 2.964 4.63 × 10−3 3.618 3.47 × 10−5 3.373
64 2.56 × 10−4 3.692 3.49 × 10−4 3.729 3.88 × 10−6 3.159
128 2.48 × 10−5 3.368 3.36 × 10−5 3.380 4.68 × 10−7 3.052
256 2.96 × 10−6 3.068 3.60 × 10−6 3.220 5.77 × 10−8 3.019
n error NCO error NCO error NCO
16 7.62 × 10−2 9.58 × 10−2 1.10 × 10−3

32 1.08 × 10−2 2.822 1.40 × 10−2 2.772 7.60 × 10−5 3.853
64 8.17 × 10−4 3.722 1.13 × 10−3 3.639 5.93 × 10−6 3.679
128 5.56 × 10−5 3.877 7.85 × 10−5 3.842 5.60 × 10−7 3.404
256 4.13 × 10−6 3.752 6.15 × 10−6 3.674 6.33 × 10−8 3.146

Table 1: Errors and NCOs for f1, f2 and f3 in applying the QIs in Proposition 2 (top) and Remark 2.

Figure 5: Plots of QI errors for f1, f2 and f3 after dividing the interval I into n = 64 equal parts. Top, those
corresponding to C1 quadratic QI exact on P2 based on values at knots and midpoints. Bottom, those provided by
Qkn

2,1,2 with λ = − 1
16

.

4. Cubic quasi-interpolants

This section aims to construct cubic QIs Q3,r,k following a procedure similar to the one used
above. Although the exactness on P1 and P2 could be imposed, we will restrict ourselves to the
case k = 3 to define operators Q3,r ∶= Q3,r,3. The first step is to choose a partition of Ξ3. This

case allows to select a subset symmetrical with respect to the knot, namely Di = {xi− 1
3
, xi, xi+ 1

3
},

so that only the BB-coefficients associated with those domain points have to be defined. We write

Q3,rf∣Ii = ∑
∣α∣=3

bα,i (f)Bα,i,

and we opt to simplify the notation by not indicating that the BB-coefficients bα,i (f) depend on
r.

4.1. C1 cubic quasi-interpolation from point values at knots and midpoints

Also in this case we guess

bα,i (f) =
4

∑
j=0

µα,jf (xi−1+ j
2
) , α ∈ {(3,0) , (2,1) , (1,2)} , (7)

for masks µα ∶= (µα,0, µα,1, µα,2, µα,3, µα,4). Figure 6 shows how the subset Di is chosen, as well as
the points at which the function is evaluated to define the BB-coefficients.

We have the following result.
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xi−1

b(3,0),i−1(f)
xi− 2

3

b(2,1),i−1(f)
xi− 1

2
xi− 1

3

b(1,2),i−1(f)
xi

b(0,3),i−1(f)
b(3,0),i(f)

xi+ 1
3

b(2,1),i(f)

Di
xi+ 1

2
xi+ 2

3

b(1,2),i(f)
xi+1

b(0,3),i(f)

Figure 6: The BB-coefficients associated with the three points in the set Di are calculated from point values at the
five marked knots and midpoints.

Proposition 4. The operator Q3,1 is exact on P3 and produces C1 cubic QIs if and only if

µ(3,0) = (κ,−4κ,1 + 6κ,−4κ,κ) ,

µ(2,1) = (−
1

18
+

1

4
λ + 2κ,−λ − 8κ,

1

3
+

3

2
λ + 12κ,

8

9
− λ − 8κ,−

1

6
+

1

4
λ + 2κ) ,

µ(1,2) = (
1

36
(2 − 9λ) , λ,

1

6
(10 − 9λ) ,

1

9
(9λ − 8) ,

1

12
(2 − 3λ)) ,

with κ,λ ∈ R.

Proof. The proof is similar to that of Proposition 1. Q3,1f is C1-continuous at xi if and only if

b(3,0),i (f) =
1

2
(b(1,2),i−1 (f) + b(2,1),i (f)) .

This, together with conditions equivalent to the exactness on P3, results in a system on 20 equations,
having the 2-parametric family of solutions given in the statement. ◻

The parameters can be chosen to satisfy various properties of interest, as in Section 3. For
example, the QI could interpolate the point values at the knots, or be superconvergent at certain
points, or be near-minimally normed, or a combination of properties, if compatible. In the following
we indicate the conditions on the parameters leading to the considered properties.

Interpolation at knots

Since µ(3,0) = (κ,−4κ,1 + 6κ,−4κ,κ), the value κ = 0 produces the mask (0,0,1,0,0) for the
BB-coefficient b(3,0),i (f), so it is equal to f (xi) and the QI interpolates the value of f at xi.
The parameter λ remains free, so interpolation at knots can be combined with the minimization
of an upper bound of the infinity norm of the resulting operator, Q0

3,1, defined from the masks

µ0
(3,0) = (0,0,1,0,0), µ0

(2,1) = (− 1
18
+ 1

4
λ,−λ, 1

3
+ 3

2
λ, 8

9
− λ,− 1

6
+ 1

4
λ) and

µ0
(1,2) = (

1

36
(2 − 9λ) , λ,

1

6
(10 − 9λ) ,

1

9
(−8 + 9λ) ,

1

12
(2 − 3λ)) .

Therefore, an upper bound to ∥Q0
3,1∥∞

is given by

U0
3 (λ) ∶= max{∥µ0

(3,0)∥1
, ∥µ0

(2,1)∥1
, ∥µ0

(1,2)∥1
}

= max{1,
1

36
∣2 − 9λ∣ + ∣λ∣ +

1

6
∣2 + 9λ∣ +

1

9
∣8 − 9λ∣ +

1

12
∣2 − 3λ∣ ,

1

36
∣2 − 9λ∣ + ∣λ∣ +

1

6
∣10 − 9λ∣ +

1

9
∣8 − 9λ∣ +

1

12
∣2 − 3λ∣} .

It is a strictly convex function (see Figure 7). It reaches its absolute minimum only at λ = 4
9
,

providing the QIO Q
0, 49
3,1 defined from (0,0,1,0,0), ( 1

18
,− 4

9
,1, 4

9
,− 1

18
) and (− 1

18
, 4
9
,1,− 4

9
, 1
18

).

Table 2 shows the errors and NCOs when Q
0, 49
3,1 is applied to approximate f1, f2 and f3. It uses

point values at knots and midpoints and is interpolatory at knots.
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Figure 7: Graph of the objective function U0
3 in a neigbourhood of the point at which it attains its minimum value.

f1 f2 f3
n error NCO error NCO error NCO
16 1.15 × 10−2 8.43 × 10−3 4.85 × 10−5

32 5.67 × 10−4 4.346 7.81 × 10−4 3.432 3.02 × 10−6 4.007
64 3.72 × 10−5 3.929 5.14 × 10−5 3.925 1.87 × 10−7 4.015
128 2.17 × 10−6 4.098 3.16 × 10−6 4.025 1.18 × 10−8 3.990
256 1.39 × 10−7 3.968 1.80 × 10−7 4.133 7.18 × 10−10 4.034

Table 2: Errors and NCOs obtained when Q0, 4
9

3,1 is used for approximating f1, f2 and f3.

Superconvergence at midpoints

Applying de Casteljau’s algorithm, the value of Q3,1 at midpoint xi+ 1
2

is given by the expression

q1/2 (f) ∶=
1

8
(b(3,0),i (f) + 3b(2,1),i (f) + 3b(1,2),i+1 (f) + b(3,0),i+1 (f)) .

As the operator is exact on P3, the error ε1/2 (f) ∶= q1/2 (f) − f (xi+ 1
2
) is null on P3. A simple

calculation shows that ε1/2 (m4) =
1
16
h4 (−1 + 24κ). Therefore, the choice κ = 1/24 gives rise to a

QI Q
1
24

3,1f superconvergent at xi+ 1
2
. As again λ is a free parameter, so it is also possible to minimize

the infinity norm toQ
1
24

3,1. In this case, the minimum value of the upper bound is reached uniquely at

λ = 5
18

, which provides forQ
1
24 ,

5
18

3,1 the masks µ(3,0) = ( 1
24
,− 1

6
, 5
4
,− 1

6
, 1
24

), µ(2,1) = ( 7
72
,− 11

18
, 5
4
, 5
18
,− 1

72
)

and µ(1,2) = (− 1
72
, 5
18
, 5
4
,− 11

18
, 7
72

).

Superconvergence at domain points inside intervals

Analogously, given that the values of Q3,1 at xi+ 1
3

and xi+ 2
3

are

q1/3 (f) ∶=
1

27
(8b(3,0),i (f) + 12b(2,1),i (f) + 6b(1,2),i+1 (f) + b(3,0),i+1 (f))

and

q2/3 (f) ∶=
1

27
(b(3,0),i (f) + 6b(2,1),i (f) + 12b(1,2),i+1 (f) + 8b(3,0),i+1 (f)) ,

respectively, the errors ε1/3 (f) ∶= q1/3 (f) − f (xi+ 1
3
) and ε2/3 (f) ∶= q2/3 (f) − f (xi+ 2

3
) are null on

P3 and the equalities ε2/3 (m4) =
h4

324
(27λ + 594κ − 28) and ε2/3 (m4) =

h4

324
(27λ − 378κ + 4) hold.

Therefore, superconvergence is achieved at xi +
h
3

if 27λ+594µ = 28, while it will realised at xi +
2h
3

if 27λ − 378µ = −4. It is obtained at both points if and only if κ = 8/243 and λ = 76/243, in
which case the masks are µ(3,0) = ( 8

243
,− 32

243
, 97
81
,− 32

243
, 8
243

), µ(2,1) = ( 43
486

,− 140
243

, 97
81
, 76
243

,− 11
486

) and

µ(1,2) = (− 11
486

, 76
243

, 97
81
,− 140

243
, 43
486

). They provide the QIO Q
8

243 ,
76
243

3,1 .
For this operator Table 3 shows the errors and NCOs when the tests functions are approximated.

Plots of QI errors for n = 64 appear in Figure 8.
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f1 f2 f3
n error NCO error NCO error NCO
16 9.25 × 10−3 7.45 × 10−3 3.68 × 10−5

32 4.13 × 10−4 4.485 5.70 × 10−4 3.707 2.31 × 10−6 3.994
64 2.48 × 10−5 4.057 3.79 × 10−5 3.910 1.44 × 10−7 4.006
128 1.77 × 10−6 3.809 2.41 × 10−6 3.974 8.62 × 10−9 4.060
256 1.10 × 10−7 4.010 1.52 × 10−7 3.993 5.79 × 10−10 3.898

Table 3: Errors ∣ f` −Q
8

243
, 76
243

3,1 f`∣, ` = 1,2,3, and NCOs.

Figure 8: Plots of QI errors when the operator Q
8

243
, 76
243

3,1 is applied to f`, ` = 1,2,3

.

Small infinity norm

Another way to select the parameters λ and µ is to minimize the upper bound

U3 (λ,µ) ∶= max{∥µ(3,0)∥1 , ∥µ(2,1)∥1 , ∥µ(1,2)∥1}

=
1

36
max{∣2 − 9λ∣ + 4 ∣8 − 9λ∣ + 6 ∣10 − 9λ∣ + 3 ∣2 − 3λ∣ + 36 ∣λ∣ ,10 ∣κ∣ + ∣1 + 6κ∣ ,

4 ∣9λ + 72κ − 8∣ + 36 ∣λ + 8κ∣ + 3 ∣3λ + 24κ − 2∣ + ∣9λ + 72κ − 2∣ + 6 ∣9λ + 72κ∣ + 2}

of the infinity norm of Q3,1. It is a strictly convex function and Figure 9 shows the structure of
the projection of the graph of U3 around the unique point where it reaches its absolute minimum:
it is the point of intersection of four planes. It follows that ∥Q3,1∥∞ ≤ U3 (

8
9
,− 1

9
) = 13

9
. The masks

associated with these parameter values are µ(3,0) = (− 1
9
, 4
9
, 1
3
, 4
9
− 1

9
), µ(2,1) = (− 1

18
,0, 1

3
, 8
9
,− 1

6
) and

µ(1,2) = (− 1
6
, 8
9
, 1
3
,0,− 1

18
).

4.2. C1 quasi-interpolation from point values at knots

When only the point values at knots are known, we look for a QIO Qkn
3,1 exact on P3 such that

Qkn
3,1f is C1 continuous. Its BB-coefficients are of the form

bα,i (f) =
4

∑
j=0

µα,jf (xi−2+j) , α ∈ {(3,0) , (2,1) , (1,2)} (8)

for masks µα ∶= (µα,0, µα,1, µα,2, µα,3, µα,4) (see Figure 10).
The following result holds, whose proof goes as in the previous cases.

Proposition 5. The operator Qkn
3,1 is exact on P3 and produces C1 cubic QI if and only if

µ(3,0) = (κ,−4κ,1 + 6κ,−4κ,κ) ,

µ(2,1) = (−λ + 2κ,−
1

9
+ 4λ − 8κ,

5

6
− 6λ + 12κ,

1

3
+ 4λ − 8κ,−

1

18
− λ + 2κ) ,

µ(1,2) = (λ,
1

9
− 4λ,

7

6
+ 6λ,−

1

3
− 4λ,

1

18
+ λ) ,

κ and λ being free parameters.
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Figure 9: Projection of the graph of the objective function in a neighbourhood of the point at which its absolute
minimum is attained.

xi−2 x
i− 5

3
x
i− 4

3
xi−1

x
i− 2

3
x
i− 1

3
xi

x
i+ 1

3
x
i+ 2

3
Di xi+1

x
i+ 4

3
x
i+ 5

3
xi+2

Figure 10: The BB-coefficients associated with the three points in the set Di are calculated from point values at
the five marked knots.

Again, the two-parameter dependence allows one to construct QIs with specific properties: in-
terpolation (I), superconvergence at the midpoints (SC 1/2), superconvergence at a point resulting
from dividing each interval into three equal parts (SC 1/3 & SC 2/3), or minimum value of the
upper bound of the uniform norm of the operator provided by the maximum of the 1–norm of the
masks, i.e. near-best (NB-) QI.

Table 4 shows the results obtained in several cases combining superconvergence, interpolation
and near minimal infinity norm.

As shown in Table 4, when interpolation is required at the knots, the parameter κ takes the
value zero and λ is free. This allows to minimize the upper bound of the uniform norm of the
operator provided by the 1–norms of the masks. It is a strictly convex function, whose absolute
minimum is reached at λ = − 1

36
. Therefore, for κ = 0 and λ = − 1

36
the uniform norm of the QIO

is less than or equal to 3/2 and the masks associated with xi, xi +
h
3

and xi −
h
3

are (0,0,1,0,0),

( 1
36
,− 2

9
,1, 2

9
,− 1

36
) and (− 1

36
, 2
9
,1,− 2

9
, 1
36

), respectively.

Also the SC 1/2 case shown in Table 4 (κ = 1
384

) gives rise to a family of masks depending
on λ. Again, it is possible to determine its value in such a way that it results in an operator
with almost minimal infinity norm. It is straightforward to prove that the upper bound attains at
λ = − 29

1152
its minimum value, which is equal to 97

64
≈ 1.516. The masks of xi, xi +

h
3

and xi −
h
3

are

( 1
384

,− 1
96
, 65
64
,− 1

96
, 1
384

), ( 35
1152

,− 67
288

, 65
64
, 61
288

,− 29
1152

) and (− 29
1152

, 61
288

, 65
64
,− 67

288
, 13
1152

), respectively.
Regarding the result on the NB case included in Table 4, Figure 11 illustrates the structure of

the objective function near the (unique) point where it attains its absolute minimum.
The performance of the QI SC 1/3 & 2/3 included in Table 4 is illustrated in Table 5, where

the errors when approximating the test functions are shown.

4.3. C2 cubic quasi-interpolation

It is natural to ask whether the use of point values at knots and midpoints makes it possible
to get C2 cubic QIs exact on P3. The following result holds.

Proposition 6. There is no QIO exact on P3 that provides C2 cubic QIs whose BB-coefficients
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κ λ µα, α ∈ {(3,0) , (2,1) , (1,2)} UB

I 0 free Depending on λ

SC 1/2 1
384

free Depending on λ

(0,0,1,0,0)

I & SC 1/3 0 − 1
27

( 1
27
,− 7

27
, 19
18
, 5
27
,− 1

54
) 14

9
= 1.556

(− 1
27
, 7
27
, 17
18
,− 5

27
, 1
54

)

(0,0,1,0,0)

I & SC 2/3 0 − 1
54

( 1
54
,− 5

27
, 17
18
, 7
27
,− 1

27
) 14

9
= 1.556

(− 1
54
, 5
27
, 19
18
,− 7

27
, 1
27

)

( 1
486

,− 2
243

, 82
81
,− 2

243
, 1
486

)

SC 1/3 & 2/3 1
486

− 25
972

( 29
972

,− 56
243

, 82
81
, 52
243

,− 25
972

) 245
162

= 1.512

(− 25
972

, 52
243

, 82
81
. − 56

243
, 29
972

)

(− 1
18
, 1
9
, 1
2
, 5
9
,− 1

9
)

NB − 1
18

− 1
12

(− 1
12
, 4
9
, 2
3
,0,− 1

36
) 11

9
= 1.222

(− 1
36
,0, 2

3
, 4
9
,− 1

12
)

Table 4: Parameter values obtained by imposing on cubic QIs constructed from point values at knots the charac-
teristics specified. The value of the upper bound (UB) of the infinity norm of the operator when its masks do not
depend on any parameters is the reported in the last column. When masks do not depend on any parameter, they
are given in the natural order µ(3,0), µ(2,1) and µ(2,2).

Figure 11: Representation of projection of the objective function in a neighbourhood of the point at which it reaches
its absolute minimum.

f1 f2 f3
n error NCO error NCO error NCO
16 3.46 × 10−2 2 − 92 × 10−2 4.37 × 10−5

32 1.20 × 10−4 4.846 1.94 × 10−3 3.914 2.31 × 10−6 4.241
64 3.14 × 10−5 5.261 5.50 × 10−5 5.137 1.45 × 10−7 3.998
128 1.77 × 10−6 4.149 2.37 × 10−6 4.537 8.72 × 10−9 4.053
256 1.11 × 10−7 3.997 1.51 × 10−7 3.974 5.78 × 10−10 3.914

Table 5: Errors and NCOs for f1, f2 and f3 when the QI SC 1/3 & 2/3 is used.
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have the structure given in (7). At most it is possible to reproduce P1, in which case the masks are

µ(3,0) = (
1

6
,0,

2

3
,0,

1

6
) , µ(2,1) = (0,0,

2

3
,0,

1

3
) , µ(1,2) = (

1

3
,0,

2

3
,0,0) .

Proof. C1 continuity at xi is equivalent to the following conditions on the masks:

−2µ(3,0),k + µ(2,1),k + µ(1,2),k = 0, k = 0,1,2,4.

Moreover, C2 continuity at xi is obtained if and only if µ(2,1),0 = µ(2,1),1 = µ(1,2),3 = µ(1,2),4 = 0 and

2µ(1,2),0 − 2µ(2,1),0 − µ(2,1),2 = 0,2µ(1,2),1 − 2µ(2,1),1 − µ(2,1),3 = 0,

µ(1,2),0 + 2µ(1,2),2 − 2µ(2,1),2 − µ(2,1),4 = 0, µ(1,2),1 + 2µ(1,2),3 − 2µ(2,1),3 = 0,

µ(1,2),2 + 2µ(1,2),4 − 2µ(2,1),4 = 0.

The reproduction of the constants is equivalent to the conditions ∥µα∥1 = 1, α ∈ {(3,0) , (2,1) , (1,2)}.
This system of equations has the unique solution given by

µ(3,0) = (
1

6
,0,

2

3
,0,

1

6
) , µ(2,1) = (0,0,

2

3
,0,

1

3
) , µ(1,2) = (

1

3
,0,

2

3
,0,0) .

It is straightforward to verify that these masks allow to reproduce also P1 but not P2. ◻

Note that, in fact, the QI associated with these masks only uses point values at the knots.
Therefore, to improve the exactness we consider now point values at five knots:

bα,i (f) =
4

∑
j=0

µα,jf (xi+j−2) , α ∈ {(3,0) , (2,1) , (1,2)} . (9)

Proposition 7. The unique QIO Qkn
3,2 whose masks have the structure in (9) is given by the masks

µ(3,0) = (−
1

36
,
1

9
,
5

6
,
1

9
,−

1

36
) , µ(2,1) = (0,−

1

9
,
5

6
,
1

3
,−

1

18
) , µ(1,2) = (0,−

1

18
,
1

3
,
5

6
,−

1

9
) .

Proof. The C2 continuity at xi of Qkn
3,2f is equivalent to the fulfillment of the following equations:

µ(1,2),4 = µ(2,1),0 = 0, µ(1,2),k − 2µ(3,0),k + µ(2,1),k = 0 for k = 0,1,2,3,4, and

2µ(1,2),0 − 2µ(2,1),0 − µ(2,1),1 = 0, µ(1,2),0 + 2µ(1,2),1 − 2µ(2,1),1 − µ(2,1),2 = 0,

µ(1,2),1 + 2µ(1,2),2 − 2µ(2,1),2 − µ(2,1),3 = 0, µ(1,2),3 + 2µ(1,2),4 − 2µ(2,1),4 = 0,

µ(1,2),2 + 2µ(1,2),3 − 2µ(2,1),3 − µ(2,1),4 = 0.

This system of equations has the unique solution given in the statement. ◻

The BB-coefficients in the interval Ii of Qkn
3,2f are

b(3,0),i (f) =
1

36
(−f (xi−2) + 4f (xi−1) + 30f (xi) + 4f (xi+1) − f (xi+2)) ,

b(2,1),i (f) =
1

18
(−2f (xi−1) + 15f (xi) + 6f (xi+1) − f (xi+2)) ,

b(1,2),i (f) =
1

18
(−f (xi−1) + 6f (xi) + 15f (xi+1) − 2f (xi+2)) ,

b(0,3),i (f) =
1

36
(−f (xi−1) + 4f (xi) + 30f (xi+1) + 4f (xi+2) − f (xi+3)) .

Remark 4. By dealing with the BB-coefficients of the C2 cubic B-spline M4 centered at the origin,
it is easy to prove that the QI we have obtained coincides with the classical QI (see [16])

Qf =∑
i∈Z

1

6
(−f (a + h (i − 1)) + 8f (a + hi) − f (a + h (i + 1)))M4 (

⋅ − a

h
− i) .
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xi− 1
4

xi xi+ 1
4

xi+ 1
2

D4
i

xi− 2
5

xi− 1
5

xi xi+ 1
5

xi+ 2
5
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i

Figure 12: The sets D4
i and D5

i providing suitable partitions of the set formed by the domain points in the quartic
and quintic cases.

5. C1 and C2 quartic and quintic quasi-interpolation

We complete the results on low-degree QI by providing the BB-coefficients of the QIs corre-
sponding to the masks associated with specific subsets Di, as more symmetrical with respect to xi
as possible. As there are five (resp. six) domain points in Ii in the quartic (resp. quintic) case, we
choose the subsets D4

i and D5
i shown in Figure 12 to define C1 and C2 quartic and quintic QIs by

setting their BB-coefficients relative to the interval Ii.

5.1. The C1 quartic case

If the point values are known at the knots and midpoints, then again the BB-coefficients asso-

ciated with the points in D4
i will be calculated from f (xi+ j

2
), j = −2,−1,0,1,2.

Proposition 8. Under the above conditions, the only operator Q4,1 which is exact on P4 and
produces C1 QIs is defined from the masks µ(4,0) = (0,0,1,0,0), µ(3,1) = ( 1

24
,− 1

3
,1, 1

3
,− 1

24
), µ(2,2) =

( 1
18
,− 2

9
, 1
6
, 10

9
,− 1

9
) and µ(1,3) = (− 1

24
, 1
3
,1,− 1

3
, 1
24

).

Proof. C1 continuity at xi is achieved if and only if

b(4,0),i (f) =
1

2
(b(1,3),i−1 (f) + b(3,1),i (f)) ,

which is equivalent to the equations µ(1,3),k − 2µ(4,0),k + µ(3,1),k = 0, 0 ≤ k ≤ 4. Imposing that the

BB-coefficients of the monomials m` (x) = x
`, 0 ≤ ` ≤ 4, as polynomials of degree four, are equal

to those of Q4,1m`, the exactness of Q4,1 on P4 is obtained if and only if the equalities ∥µα∥1 = 1,
α ∈ {(4,0) , (3,1) , (2,2) , (1,2)} hold, as well as

16µ(4,0),0 + µ(4,0),1 + µ(4,0),3 + 16µ(4,0),4 = 0, −8µ(4,0),0 − µ(4,0),1 + µ(4,0),3 + 8µ(4,0),4 = 0,

4µ(4,0),0 + µ(4,0),1 + µ(4,0),3 + 4µ(4,0),4 = 0, −2µ(4,0),0 − µ(4,0),1 + µ(4,0),3 + 2µ(4,0),4 = 0,

µ(4,0),1 + 2µ(4,0),2 + 3µ(4,0),3 + 4µ(4,0),4 = 2, µ(4,0),1 + 4µ(4,0),2 + 9µ(4,0),3 + 16µ(4,0),4 = 4,

µ(4,0),1 + 8µ(4,0),2 + 27µ(4,0),3 + 64µ(4,0),4 = 8, µ(4,0),1 + 16µ(4,0),2 + 81µ(4,0),3 + 256µ(4,0),4 = 16,

16µ(3,1),0 + µ(3,1),1 + µ(3,1),3 + 16µ(3,1),4 = 0, −8µ(3,1),0 − µ(3,1),1 + µ(3,1),3 + 8µ(3,1),4 = 0,

4µ(3,1),0 + µ(3,1),1 + µ(3,1),3 + 4µ(3,1),4 = 0, −2µ(3,1),0 − µ(3,1),1 + µ(3,1),3 + 2µ3,1,4 = 1/2,

16µ(2,2),0 + µ(2,2),1 + µ(2,2),3 + 16µ(2,2),4 = 0, −8µ(2,2),0 − µ(2,2),1 + µ(2,2),3 + 8µ(2,2),4 = 0,

4µ(2,2),0 + µ(2,2),1 + µ(2,2),3 + 4µ(2,2),4 = 2/3, −2µ(2,2),0 − µ(2,2),1 + µ(2,2),3 + 2µ(2,2),4 = 1,

µ(1,3),1 + 2µ(1,3),2 + 3µ(1,3),3 + 4µ(1,3),4 = 3/2, µ(1,3),1 + 4µ(1,3),2 + 9µ(1,3),3 + 16µ(1,3),4 = 2,

µ(1,3),1 + 8µ(1,3),2 + 27µ(1,3),3 + 64µ(1,3),4 = 2, µ(1,3),1 + 16µ(1,3),2 + 81µ(1,3),3 + 256µ(1,3),4 = 0.

This system of 29 equations has only one solution, which gives the masks of the statement. ◻

Remark 5. Note that Q4,1f interpolates f at the knots.

If it is assumed that only the point values at the knots are known, then f (xi+j), j = −2,−1,0,1,2,
will be used to calculate the masks with which the BB-coeffcients are formed. We have the following
result, which is proved in a completely analogous way.

Proposition 9. Under the above conditions, the only operator Qkn
4,1 which is exact on P4 and

which produces C1 QIs is defined from the masks µ(4,0) = (0,0,1,0,0), µ(3,1) = ( 1
48
,− 1

6
,1, 1

6
,− 1

48
),

µ(2,2) = ( 5
144

,− 2
9
, 19
24
, 4
9
,− 7

144
) and µ(1,3) = (− 1

48
, 1
6
,1,− 1

6
, 1
48

).
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f1 f2 f3
n error NCO error NCO error NCO
16 4.74 × 10−3 5.94 × 10−3 7.03 × 10−6

32 1.67 × 10−4 4.826 3.07 × 10−4 4.276 2.24 × 10−7 4.972
64 4.90 × 10−6 5.093 9.20 × 10−6 5.060 6.98 × 10−9 5.005
128 1.52 × 10−7 5.012 2.72 × 10−7 5.079 2.18 × 10−10 5.000
256 4.83 × 10−9 4.977 8.81 × 10−9 4.949 7.10 × 10−12 4.940
n error NCO error NCO error NCO
16 3.59 × 10−2 3.66 × 10−2 7.70 × 10−5

32 1.69 × 10−3 4.406 3.01 × 10−3 3.603 2.56 × 10−6 4.911
64 5.68 × 10−5 4.897 9.67 × 10−5 4.960 8.16 × 10−8 4.971
128 1.77 × 10−6 5.007 3.04 × 10−6 4.992 2.44 × 10−9 5.063
256 5.46 × 10−8 5.017 1.01 × 10−7 4.910 7.87 × 10−11 4.954

Table 6: Errors and NCOs for f1, f2 and f3 when the QIs in Propositions 8 and 9 are used.

This result shows that, in fact, also Qkn
4,1f interpolates f at the knots.

Table 6 illustrates the performance of the QIs given in Propositions 8 and 9. The fist part
corresponds to BB-coefficients defined from point values at five knots and midpoints. In the second
one seven point values at knots are used. The results are in good agreement with the theoretical
ones.

5.2. The C2 quartic case

As far as class C2 is concerned, when the values at knots and midpoints are assumed to be
known, it is not possible to reproduce P4 but P3 using masks in R5. They are

µ(4,0) = (κ,−4κ,1 + 6κ,−4κ,κ) , µ(3,1) = (
1

24
+ κ,−

1

3
− 4κ,1 + 6κ,

1

3
− 4κ,−

1

24
+ κ) ,

µ(2,2) = (0,0,−
1

6
,
4

3
,−

1

6
) , µ(1,3) = (−

1

24
+ κ,

1

3
− 4κ,1 + 6κ,−

1

3
− 4κ,

1

24
+ κ) .

They yield a family of operators Q4,2,3. The value κ = 0 produces quasi-interpolating splines
interpolatory at the knots. Any value κ ∈ [− 1

6
,− 1

72
] gives rise to masks providing an operator such

that the upper bound of its infinity norm (defined as above) is minimal (and equal to 5/3).
To achieve exactness on P4 it is necessary to define the BB-coefficients from at least seven eval-

uations at knots and midpoints, which we will choose as close as possible to xi and symmetrically
distributed around it. In this case we obtain the following family of masks satisfying the required
conditions:

µ(4,0) = (κ,−3κ −
λ

5
λ,λ,1 + 10κ − 2λ,−15κ + 2κ,−9κ − λ,−2κ +

λ

5
) ,

µ(3,1) = (−
1

72
+ κ,

7

72
− 3κ −

λ

5
,−

29

72
+ λ,1 + 10κ − 2λ,

29

72
− 15κ + 2λ,−

7

72
+ 9κ − λ,

1

72
− 2κ +

λ

5
) ,

µ(2,2) = (0,0,
1

18
,−

7

18
,
5

3
,−

7

18
,

1

18
) ,

µ(1,3) = (
1

72
+ κ,−

7

72
− 3κ −

λ

5
,
29

72
+ λ,1 + 10κ − 2λ,−

29

72
− 15κ + 2λ,

7

72
+ 9κ − λ,−

1

72
− 2κ +

λ

5
) .

If the parameters are zero, then the QI interpolates at the knots and, moreover, is supercon-
vergent at the midpoints, i.e.,

∣
1

16
(b(4,0),i (f) + 4b(3,1),i (f) + 6b(2,2),i (f) + 4b(1,3),i (f) + b(0,4),i (f)) − f (xi+ 1

2
)∣ = O (h6) .

In this case, the masks are

µ(4,0) = (0,0,0,1,0,0,0) , µ(3,1) = (−
1

72
,

7

72
,−

29

72
,1,

29

72
,−

7

72
,

1

72
) ,

µ(2,2) = (0,0,
1

18
,−

7

18
,
5

3
,−

7

18
,

1

18
) , µ(1,3) = (

1

72
,−

7

72
,
29

72
,1,−

29

72
,

7

72
,−

1

72
) .
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f1 f2 f3
n error NCO error NCO error NCO
16 4.75 × 10−3 5.94 × 10−3 7.03 × 10−6

32 1.67 × 10−4 4.826 3.07 × 10−4 4.276 2.24 × 10−7 4.972
64 4.90 × 10−6 5.093 9.20 × 10−6 5.060 6.98 × 10−9 5.005
128 1.52 × 10−7 5.012 2.72 × 10−7 5.080 2.18 × 10−10 5.000
256 4,83 × 10−9 4.977 8.81 × 10−9 4.950 7.10 × 10−12 4.940

Table 7: Errors and NCOs provided by the superconvergent at midpoints and interpolatory at knots C2 quartic QI
exact on P4 when it is applied to f1, f2 and f3.

Table 7 shows the errors and NCOs when the previous C2 quartic QI is applied to the test
functions. Also in this case, the results are satisfactory.

When it is assumed that only the values at the nodes are known, and the BB-coefficients are
defined from the values f (xi+j), j = −2,−1,0,1,2, exactness can only be achieved on P3, and the
following uniparametric family of masks is found:

µ(4,0) = (κ,−4κ,1 + 6κ,−4κ,κ) , µ(3,1) = (
1

48
+ κ,−

1

6
− 4κ,1 + 6κ,

1

6
− 4κ,−

1

48
+ κ) ,

µ(2,2) = (0,−
1

12
,

7

12
,

7

12
,−

1

12
) , µ(1,3) = (−

1

48
+ κ,

1

6
− 4κ,1 + 6κ,−

1

6
− 4κ,

1

48
+ κ) .

Again, the value κ = 0 gives rise to approximants that interpolate at the nodes. Any value κ ∈

[− 1
12
,− 1

144
] leads to masks that provide an operator such that the upper bound of its infinity norm

is minimal, found to be equal to 4/3, so it has been reduced relative to that obtained using values
at nodes and midpoints.

Finally, to construct C2 quartic QIs exact on P4, we define the BB-coefficients from masks in
R7. In this case, a 3-parametric family of masks is obtained, namely

µ(4,0) = (κ,λ,−5 (3κ + λ) ,1 + 40κ + 10λ,−5 (9κ + 2λ) ,24κ + 5λ,−5κ − λ) ,

µ(3,1) = (−θ + 2κ,
7

576
+ 6θ − 6κ + λ,−

71

576
− 15θ − 5λ,

263

288
+ 20θ + 20κ + 10λ,

73

288
− 15θ − 30κ − 10λ,−

37

576
+ 6θ + 18κ + 5λ,

5

576
− θ − 4κ − λ) ,

µ(2,2) = (0,4 (θ − κ) . −
7

144
− 20θ + 20κ,

4

9
+ 40θ − 40κ,

19

24
− 40θ + 40κ,−

2

9
+ 20θ − 20κ,

5

144
− 4θ + 4κ) ,

µ(1,3) = (−θ + 2κ,
7

576
+ 6θ − 6κ,−

71

576
− 15θ − 15λ,

263

288
+ 20θ + 20κ + 10λ,

73

288
− 15θ − 30κ − 10λ,

−
37

576
+ 6θ + 18κ + 5λ,

5

576
− θ − 4κ − λ) .

Taking into account the structure of the resulting masks in the cases analysed so far, we
determine specific parameter values by imposing the following conditions:

1. µ(4,0) is symmetric, i.e. µ(4,0),k = µ(4,0),7−k, 0 ≤ k ≤ 3. It will be satisfied if λ = −6κ.
2. Applying the above condition, it will be required that µ(2,2),2 and µ(2,2),7 be equal. It will

be fulfilled if κ = θ − 5
1152

.
3. Under the above conditions, it will be requested that µ(1,3),1 = −µ(1,2),7. It will be achieved

if θ = 5
1152

.

Successive application of these conditions produces the values θ0 =
5

1152
, κ0 = 0 and λ0 = −

5
192

,
and the following masks:

µθ0,κ0,λ0

(4,0)
= (0,0,0,1,0,0,0) ,

µθ0,κ0,λ0

(3,1)
= µθ0,κ0,λ0

(1,3)
= (−

5

1152
,

11

288
,−

217

1152
,1,

217

1152
,−

11

288
,

5

1152
) ,

µθ0,κ0,λ0

(2,2)
= (0,

5

288
,−

13

96
,

89

144
,

89

144
,−

13

96
,

5

288
) .
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f1 f2 f3
n error NCO error NCO error NCO
16 3.59 × 10−2 3.66 × 10−2 7.70 × 10−5

32 1.69 × 10−3 4.406 3.01 × 10−3 3.603 2.56 × 10−6 4.912
64 5.68 × 10−5 4.897 9.66 × 10−5 4.960 8.16 × 10−8 4.971
128 1.77 × 10−6 5.007 3.04 × 10−6 4.992 2.44 × 10−9 5.063
256 5.46 × 10−8 5.017 1.01 × 10−7 4.910 7.87 × 10−11 4.954

Table 8: Errors and NCOs obtained when the QIO associated with the masks µθ0,κ0,λ0
α , ∣a∣ = 4, is applied to the

test functions.

Once again, the quasi-interpolating spline interpolates at the knots. The results in Table 8
illustrate the performance of the operator defined from masks µθ0,κ0,λ0

α , ∣a∣ = 4.

5.3. The quintic case

The construction of quintic QIs exact on P5 is carried out in the same way. As indicated
above, it is sufficient to define the BB-coefficients associated with the domain points in D5

i . As far
as the C1 regularity is concerned, point evaluations at seven knots and midpoints symmetrically
distributed around xi are considered. The following result is obtained.

Proposition 10. The following 4-parametric family of masks provides operators exact on P5 pro-
ducing C1 quintic QIs:

µ(5,0) = (κ,−6κ,15κ,1 − 20κ,15κ,−6κ,κ) ,

µ(4,1) = (2κ − λ,−12κ + 6λ +
1

50
,30κ − 15λ −

1

5
,−40κ + 20λ +

13

15
,

30κ − 15λ +
2

5
,−12κ + 6λ −

1

10
,2κ − λ +

1

75
) ,

µ(3,2) = (ν,−6ν +
7

300
,15ν −

2

15
,−20ν +

7

30
,15ν +

16

15
,−6ν −

13

60
, ν +

2

75
) ,

µ(2,3) = (ξ,−6ξ −
17

300
,15ξ +

2

3
,−20ξ +

23

20
,15ξ −

8

15
,−6ξ +

11

60
, ξ −

2

75
) ,

µ(1,4) = (λ,−6λ −
1

50
,15λ +

1

5
,−20λ +

17

15
,15λ −

2

5
,−6λ +

1

10
, λ −

1

75
) ,

κ, λ, ν, ξ ∈ R.

Again, we have parameters that can be chosen so that the QIs satisfy specific properties. The
following conditions are imposed consecutively.

1. Interpolation at knots, i.e., κ = 0.

2. µ(3,2),k = µ(2,3),6−k, 0 ≤ k ≤ 6. It will be fulfilled if ν = ξ − 2
75

.

3. Under the above conditions, it will be required that µ(1,4),k = µ(4,1),6−k, 0 ≤ k ≤ 3. It will be

satisfied if λ = 1
150

.

This procedure leads to constant masks µξ
(5,0)

= (0,0,0,1,0,0,0),

µξ
(4,1)

= (−
1

150
,

3

50
,−

3

10
,1,

3

10
,−

3

50
,

1

150
) and µξ

(1,4)
= (

1

150
,−

3

50
,

3

10
,1,−

3

10
,

3

50
,−

1

50
) ,

and two remaining ones depending on ξ, namely,

µξ
(3,2)

= (−
2

57
+ ξ,

11

60
− 6ξ. −

8

15
+ 15ξ,

23

30
− 20ξ,

2

3
+ 15ξ,−

17

300
− 6ξ, ξ)

and

µξ
(2,3)

= (ξ,−
17

300
− 6ξ,

2

3
+ 15ξ,

23

30
− 20ξ,−

8

15
+ 15ξ,

11

60
− 6ξ, ξ −

2

75
) .
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f1 f2 f3
n error NCO error NCO error NCO
16 1.67 × 10−2 9.76 × 10−4 7.98 × 10−8

32 1.13 × 10−5 7.210 2.10 × 10−5 5.539 6.77 × 10−10 6.881
64 6.97 × 10−8 7.340 1.03 × 10−7 7.312 7.18 × 10−12 6.558
128 5.83 × 10−10 6.901 1.03 × 10−9 7.007 9.33 × 10−14 6.267
256 5.72 × 10−12 6.671 1.42 × 10−11 6.490 1.34 × 10−15 6.120

Table 9: Errors and NCOs obtained when the QIO associated with the masks µ
1
75
α , ∣a∣ = 5, is applied to the test

functions.

The parameter ξ can be chosen by requiring an additional condition. A first option is to impose
that the upper bound

max{
26

15
, ∣

23

30
− 20ξ∣ + ∣

17

300
+ 6ξ∣ + ∣

11

60
− 6ξ∣ + ∣

2

75
− ξ∣ + ∣ξ∣ + ∣

8

15
− 15ξ∣ + ∣

2

3
+ 15ξ∣}

of the infinity norm of the operator Qξ5,1,5 provided by those masks be minimal. Calculations
similar to those carried out in the quadratic case allow to conclude that the minimum of this
objective function, which is equal to 26

15
, is reached for all values of the parameter ξ in the small

interval [ 1
40
, 63
1600

]. There is no privileged choice of the parameter in this interval.

A second option is to require that the QIO Qξ be superconvergent at the midpoints, i.e. such

∣Q
ξ
5,1,5f (xi+ 1

2
) − f (xi+ 1

2
)∣ = ∣

1

32

5

∑
`=0

(
5

`
)bξ
(5−`,`)

(f) − f (xi+ 1
2
)∣ = O (hr)

with r > 6. After some computations it is obtained this result with r = 7 for ξ = 1
75

. The

corresponding masks of the resulting operator Q
1
75

5,1,5 are

µ
1
75

(5,0)
= (0,0,0,1,0,0,0) , µ

1
75

(4,1)
= (−

1

150
,

3

50
,−

3

10
,1,

3

10
,−
−3

50
,

1

150
) ,

µ
1
75

(3,2)
= (−

1

75
,

31

300
,−

1

3
,
1

2
,
13

15
,−

41

300
,

1

75
) , µ

1
75

(2,3)
= (

1

75
,−

41

300
,
13

15
,
1

2
,−

1

3
,−

31

300
,−

1

75
)

and µ
1
75

(1,4)
= ( 1

150
,− 3

50
, 3
10
,1,− 3

10
, −3
50
,− 1

150
). The errors and NCOs resulting when Q

1
75

5,1,5 is applied

to the three test functions are shown in Table 9.
Working as before, the following result can be proved.

Proposition 11. If only point values at five symmetrically distributed knots and midpoints around
a knot are used, then exactness can only be achieved on P4, existing only a unique set of masks
that produce C1 regularity:

µ(5,0) = (0,0,1,0,0) , µ(4,1) = (
1

30
,−

4

15
,1,

4

15
,−

1

30
) , µ(3,2) = (

1

20
,−

4

15
,1,

4

15
,−

1

12
) ,

µ(2,3) = (−
1

12
,
4

5
,
1

2
,−

4

15
,

1

20
) , µ(1,4) = (−

1

30
,

4

15
,1,−

4

15
,

1

30
) .

Note that the resulting quasi-interpolating spline is interpolatory at knots.

Remark 6. The masks µξα, ξ ∈ R, give rise to C2 quintic QIs.

To study the C2 quintic cases we will follow the same procedure. When the BB-coefficients are
defined from values at knots and midpoints or only at knots, the general family of masks ensuring
exactness on P5 and C2 regularity depends on two parameters. They are
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Figure 13: Projections of the graphs of the objective functions in neighbourhoods of the points where they reach
their absolute minimum values. They are determined as intersection of four planes.

µ(5,0) = (κ,−6κ,15κ,1 − 20κ,15κ,−6κ,κ) ,

µ(4,1) = (−κ + 2λ, p1 + 6κ − 12λ, p2 − 15κ + 30λ, p3 + 20κ − 40λ, p4 − 15κ + 30λ,

p5 + 6κ − 12λ, p6 − κ + 2λ) ,

µ(3,2) = (−4κ + 4λ + ξ, p7 + 24κ − 24λ − 6ξ, p8 − 60κ + 60λ + 15ξ, p9 + 80κ − 80λ − 20ξ,

p10 − 60κ + 60λ + 15ξ, p11 + 24κ − 24λ − 6ξ, p12 − 4κ + 4λ + ξ) ,

µ(2,3) = (ξ, p13 − 6ξ, p14 + 15ξ, p15 − 20ξ, p16 + 15ξ, p17 − 6ξ, p18 + ξ) ,

µ(1,4) = (κ, p19 − 6κ, p20 + 15κ, p21 − 20κ, p22 + 15κ, p23 − 6κ, p24 + κ) ,

where the entries of the p ∶= (pi)1≤`≤24 depend on the type of data used to define the BB-coefficients.
When using point values at knots and midpoints, then

p = ( 1
50
,− 1

5
, 13
15
, 2
5
,− 1

10
, 1
75
, 7
300

,− 2
15
, 7
30
, 16
15
,− 13

60
, 2
75
,− 17

300
, 2
3
, 23
30
,− 8

15
, 11
60
,− 2

75
, 1
50
, 1
5
, 17
15
,− 2

5
, 1
10
,− 1

75
)

and

p = ( 1
100

, −1
10
, 14
15
, 1
5
, −1
20
, 1
150

, 19
1200

, −2
15
, 89
120

, 7
15
, −5
48
, 1
75
, −29
1200

, 4
15
, 121
120

, −1
3
, 23
240

, −1
75
, −1
100

, 1
10
, 16
15
, −1

5
, 1
20
, −1
150

)

if only point values at knots are involved.
As in some previous cases, the mask relative to the vertices depends only on the parameter κ,

whether values are used at the knots and at the midpoints or only at the knots. If this parameter
is set to zero, it leads to QIs that interpolate at the knots, in whose masks only the parameters
λ and ξ are involved. The infinity norm of each of the corresponding operators is bounded by a
convex function defined from the 1–norms of the masks, and depends only those parameters. They
attain their minimum values at unique points. Figure 13 shows the very similar structures of both
functions.

Using point values at knots and midpoints, the minimum value (equal to 159
80

) is reached at

λ1 =
1

150
and ξ1 =

59
4800

. The masks of the resulting operator Q0,λ1,ξ1
5,2,5 are

µ0,λ1,ξ1
(5,0)

= (0,0,0,1,0,0,0) ,

µ0,λ1,ξ1
(4,1)

= (− 1
150

, 3
50
,− 3

10
,1, 3

10
,− 3

50
, 1
150

) , µ0,λ1,ξ1
(1,3)

= ( 1
150

,− 3
50
, 3
10
,1,− 3

10
, 3
50
,− 1

150
) ,

µ0,λ1,ξ1
(3,2)

= (− 23
1600

, 263
2400

,− 67
192

, 25
48
, 817
960

,− 313
2400

, 59
4800

) , µ0,λ1,ξ1
(2,3)

= ( 59
4800

,− 313
2400

, 817
960

, 25
48
,− 67

192
, 263
2400

. − 23
1600

) .

When only point values at knots are used, the minimum value (equal to 679
480

) is attained at
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λ2 =
1

300
and ξ2 =

29
1600

. The masks of Qkn,0,λ2,ξ2
5,2,5 are

µkn,0,λ2,ξ2
(5,0)

= (0,0,0,1,0,0,0) ,

µkn
(4,1),0, λ2, ξ2 = (− 1

300
, 3
100

,− 3
20
,1, 3

20
,− 3

100
, 1
300

) , µkn,0,λ2,ξ2
(1,3)

= ( 1
300

,− 3
100

, 3
20
,1,− 3

20
, 3
100

,− 1
300

) ,

µkn,0,λ2,ξ2
(3,2)

= ( 23
4800

,− 31
2400

,− 59
960

, 31
48
, 517
960

,− 319
2400

, 29
1600

) , µkn,0,λ2,ξ2
(2,3)

= ( 29
1600

,− 319
2400

, 517
960

, 31
48
,− 59

960
,− 31

2400
, 23
4800

) .

Also the following result holds.

Proposition 12. The use of values at five knots symmetrically distributed around a knot allows
only to reproduce P4, and this is done with the following masks:

µ(5,0) = (0,0,1,0,0) , µ(4,1) = ( 1
60
,− 2

15
,1, 2

15
,− 1

60
) , µ(3,2) = ( 7

240
,− 1

5
, 7
8
, 1
3
,− 3

80
) ,

µ(2,3) = (− 3
80
, 1
3
, 7
8
,− 1

5
, 7
240

) , µ(1,4) = (− 1
60
, 2
15
,1,− 2

15
, 1
60

) .

6. Conclusion

In this paper we have proposed the construction of low-degree quasi-interpolating splines in the
Bernstein basis, considering C1 and C2 smoothness, specific polynomial reproduction properties
and different sets of evaluation points. The splines have been determined by means of masks, by
setting their Bernstein-Bézier coefficients to appropriate combinations of the given data values and,
in case of free parameter in the mask definition, we have imposed particular requirements, getting
quasi-interpolating splines with special properties. Moreover, we have provided numerical tests
showing the performances of the proposed methods.
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