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Abstract 

The	advent	of	big	data	has	transformed	the	landscape	of	biomedical	research,	moving	from	

a	data-poor	 to	a	data-rich	environment.	The	use	of	high-throughput	 technologies	has	not	

only	 increased	 the	 amount	 of	 data	produced	 in	 single	 experiments,	 but	 also	 lowered	 the	

associated	costs,	making	it	accessible	to	small	laboratories.	This	proliferation	of	accessible	

technologies	has	allowed	for	the	investigation	of	multiple	features	spanning	across	different	

omics	levels.	However,	appropriate	methods	and	tools	to	extract	knowledge	from	this	vast	

and	diverse	resource	are	not	always	in	place,	creating	a	need	for	a	multi-omics	approach	to	

better	understand	disease	processes.	During	the	course	of	his	 three-year	PhD,	 the	author	

was	involved	in	various	projects,	focusing	on	the	development	of	computational	approaches	

in	 different	 research	 areas.	 The	 PhD	work	was	 divided	 into	 three	main	 topics.	 The	 first	

involved	the	creation	of	a	neural	network	solution	for	the	fast	screening	of	exon	14	skipping	

events	in	MET	from	RNA-seq	data,	which	is	a	common	alteration	in	different	cancer	types.	

The	second	focused	on	the	development	of	a	case	study	for	Laniakea@ReCaS	validation,	a	

service	 that	 provides	 cloud	 resources	 to	 be	 used	 for	 the	 implementation	 of	 on-demand	

instances	 of	 Galaxy,	 a	 platform	 for	 data	 integration	 and	 analysis.	 The	 third	 involved	 the	

bioinformatic	mining	of	high-throughput	data	generated	in	the	Experimental	Immunology	

group,	specifically	focused	on	T-cell	 immune-repertoires.	The	projects	discussed	highlight	

the	need	for	appropriate	methods	and	tools	to	extract	knowledge	from	the	vast	and	diverse	

data	available	in	a	data-rich	environment.	The	author’s	work	demonstrates	the	importance	

of	 a	 multi-omics	 approach	 in	 understanding	 disease	 processes	 and	 the	 development	 of	

computational	approaches	to	improve	data	analysis	and	integration.	
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Thesis Structure 

During	my	three	years	of	PhD	I	was	involved	in	various	projects.	The	decision	to	focus	on	

multiple	projects	came	from	the	need	of	a	mature	bioinformatician,	involved	in	data	mining,	

to	have	a	broad	knowledge	of	the	use	of	computation	approaches	in	different	research	areas.	

Specifically,	at	the	beginning	of	the	PhD,	I	was	involved	in	a	project	in	which	we	try	to	grab	

new	 knowledge	 by	 the	 integration	 of	 multi-omics	 data	 to	 understand	 the	 mechanisms	

underlying	the	resistance	to	crizotinib	in	ALK-driven	lymphomas.	Unfortunately,	after	few	

months	of	work,	we	realized	that	the	data	was	not	sufficient	to	fulfill	our	aim	and	sadly	we	

had	to	abandon	this	project	till	further	data	will	be	available.	Because	of	the	limited	results	I	

obtained	on	this	project,	it	is	not	inserted	in	the	thesis.	The	rest	of	my	PhD	work	was	divided	

on	three	main	topics:		

• Depicting	disease	linked	RNA	isoforms	by	means	of	deep	learning	

o in	Chapter	1	I	describe	the	work	conducted	during	the	first	year	and	a	half	of	

my	 PhD,	 as	 part	 of	 the	 development	 of	 the	 MET	 Observatory	 project.	 In	

particular,	my	work	was	focused	on	the	creation	of	a	neural	network	solution	

for	the	fast	screening	from	RNA-seq	data	of	exon	14	skipping	events	in	MET,	

which	is	a	common	alteration	in	different	cancer	types.		

• Development	of	a	case	study	for	Laniakea@ReCaS	validation.	

o In	Chapter	2	I	recap	my	contribution	to	the	Laniakea@ReCaS	project,	a	service	

that	provides	cloud	resources	to	be	used	for	the	implementation	of	on-demand	

instances	of	Galaxy,	a	platform	for	data	integration	and	analysis	with	the	aims	

to	 make	 computational	 biology	 approachable	 to	 scientists	 without	

computational	expertise.	

• Mining	T-cell	immune-repertoires.	

o At	the	conclusion	of	my	participation	in	the	MET	Observatory	project,	I	was	

given	 the	 opportunity	 to	 move	 to	 the	 University	 of	 Basel	 as	 part	 of	 a	

collaboration	with	the	Experimental	 Immunology	group	(EXPI),	 led	by	Prof.	

Gennaro	De	Libero.	This	period	was	specifically	devoted	to	the	application	of	
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available	 computational	methodologies	 to	 bioinformatically	mine	 the	 high-

throughput	 data	 generated	 in	 EXPI.	 In	 Chapter	 3,	 I	 present	 the	work	 done	

within	two	projects	in	which	I	was	involved	with	during	my	stay	at	EXPI.	

Thus,	 the	 thesis	 is	divided	 in	 three	chapters	and,	because	 the	application	 fields	are	quite	

different,	instead	of	providing	a	unique	introduction	there	is	a	topic	specific	introduction	in	

each	chapter.	
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Chapter 1 

metObservatory 

	

1. Introduction 

1.1. Alternative splicing 

1.1.1. Mechanisms of alternative splicing 

All	eukaryotes	carry	introns	in	at	least	some	of	their	genes.	These	introns	are	removed	from	

precursor	messenger	 RNAs	 (pre-mRNAs)	 in	 the	 process	 of	 splicing	 that	 leads	 to	mature	

mRNAs,	with	two	transesterification	steps	catalyzed	by	the	spliceosome,	a	ribonucleoprotein	

complex	with	a	highly	dynamic	composition	that	allows	for	accuracy	and	flexibility	[1].		

	

Figure	1.	Two	transesterifications	reaction	catalyzed	by	the	spliceosome	resulting	in	splicing	

of	an	intron	in	pre-mRNAs.	Boxes	represent	the	exons;	the	intron	is	represented	by	the	solid	line.	

The	phosphodiester	bonds	that	get	broken	and	established	during	the	reaction	are	represented	

by	the	letter	p.	Figure	from	[2].	
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Two	splice	sites	are	present	at	the	junctions	between	introns	and	exons,	the	5’	site	(donor	

site)	 presents	 a	 nearly	 invariant	 GU	 dinucleotide	 included	 in	 a	 longer	 less	 conserved	

consensus	region,	while	the	3’	side	of	the	intron	presents	a	branch	site	including	an	adenine,	

a	polypyrimidine	tract	and	a	highly	conserved	AG	dinucleotide	(acceptor	site)	(Figure	1).	In	

the	first	step	of	the	reaction	the	2’-hydroxyl	group	of	the	adenine	in	the	branch	site	performs	

a	nucleophilic	attack	on	the	phosphodiester	bond	at	the	5’	splice	site,	this	cleaves	the	exon	

from	 the	 intron	at	 the	5’	 end,	which	 then	 ligates	 to	 the	2’-hydroxyl	of	 the	adenine	 in	 the	

branch	site,	forming	a	lariat	attached	to	the	3’	exon.	In	the	second	step	of	the	reaction	the	3’-

hydroxyl	 of	 the	 detached	 5’	 exon	 carries	 a	 second	 nucleophilic	 attack	 towards	 the	

phosphodiester	bond	at	the	3’end	of	the	intron,	resulting	in	the	ligation	of	the	5’	exon	with	

the	3’	exon	and	the	detachment	of	the	intron	as	the	lariat	formed	in	the	previous	step	[2].		

	

Figure	2.	Different	forms	of	splicing.	(A)	Constitutive	splicing.	(B)	Exon	skipping.	(C)	Mutually	

exclusive	exons.	(D,	E)	Alternative	5’	and	3’	splicing	sites.	(F)	Retained	intron.	Figure	from	[3].	

This	form	of	splicing	in	which	the	spliceosome	removes	introns	from	a	pre-mRNA	molecule	

is	called	constitutive	splicing	(Figure	2A),	and	if	it	was	the	only	form	of	splicing,	only	one	

transcript	from	a	given	gene	would	be	produced,	containing	all	exons	in	order.	However,	the	

spliceosome	 is	 also	 involved	 in	 the	 process	 of	 alternative	 splicing,	 a	 post-transcriptional	

modification	that	from	a	single	gene	allows	multiple	different	transcripts	to	be	created	[4]	

together	with	events	that	are	often	discussed	in	the	same	context	as	alternative	splicing	but	
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are	not	splicing	dependent,	such	as	alternative	promoters	and	alternative	polyadenylation.	

Alternative	splicing	events	are	generally	divided	 into	5	main	categories	[3]	depending	on	

what	distinguishes	the	event	from	a	constitutive	splicing	event:	exon	skipping	events	have	a	

loss	of	an	exon,	called	cassette	exon,	in	the	final	transcript	(Figure	2B);	mutually	exclusive	

exons	events	are	cases	in	which	different	transcripts	can	only	include	one	of	the	exons	that	

are	mutually	exclusive	(Figure	2C);	alternative	5’	and	3’	splicing	sites	are	similar	events	in	

which	an	exon	is	shortened	or	lengthened	due	to	the	presence	of	an	additional	splicing	site	

in	 the	5’	or	3’	 ends	of	 an	 intron	 (Figure	2D-E);	 retained	 introns	are	 introns	 that	are	not	

removed	during	the	splicing	process	and	end	up	being	part	of	the	mature	mRNA	(Figure	2F).	

The	regulation	of	these	splicing	events,	both	constitutive	and	alternative,	is	dependent	on	

both	cis	and	trans	elements,	beyond	the	strength	of	the	splice	site	consensus	sequences	[5,	

6].	The	auxiliary	cis	elements	are	represented	by	enhancer	and	silencer	sequences	(Figure	

3)	located	on	introns	(intron	splicing	enhancers,	ISE;	intron	splicing	silencers,	ISS)	or	exons	

(exon	splicing	enhancers,	ESE;	exon	splicing	silencers,	ESS)	and	the	trans	elements	are	the	

splicing	factors	that	bind	these	sequences.	Splicing	factors	that	bind	enhancer	sequences,	like	

the	 Serine-Arginine	 (SR)	 proteins	 binding	 ESE	 regions,	 promote	 the	 assembly	 of	 the	

spliceosome	and	 facilitate	 exon	 inclusion,	while	 factors	 binding	 ISS	 and	ESS	 regions,	 like	

some	members	of	 the	heterogeneous	nuclear	ribonucleoproteins	(hnRNP)	 family,	repress	

splicing	by	blocking	the	assembly	of	the	spliceosome	and	recognition	of	splicing	sites	[5-8].		

	

Figure	3.	ESE,	ESS,	ISS	and	ISE	contribute	to	the	regulation	of	splicing.	Figure	from	[6].	

The	balance	between	the	elements	promoting	splicing	and	the	ones	repressing	it	influences	

the	likelihood	of	a	splice	site	being	activated.	Computational	predictions	suggest	that	around	

a	 third	 of	 alternative	 splicing	 events	 cause	 frame	 shifts	 that	 give	 rise	 to	 premature	

termination	 codons	 (PTCs)	which	 cause	 the	 transcripts	 to	 be	 targeted	 by	 the	 nonsense-

mediated	decay	(NMD)	pathway	for	degradation	[9],	in	a	process	called	alternative	splicing	
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coupled	to	NMD	(AS-NMD).	On	top	of	ensuring	that	the	PTC-containing	transcripts	don’t	give	

rise	to	truncated	proteins,	AS-NMD	has	been	shown	to	be	a	gene	regulation	strategy,	as	is	

observed	during	granulocytic	differentiation,	where	intron	retention	coupled	to	NMD	plays	

an	important	role	[10,	11].	Overall,	Next-Generation	Sequencing	(NGS)	studies	have	shown	

that	nearly	all	multi-exon	pre-mRNAs	in	humans	undergo	some	form	of	alternative	splicing	

[12,	 13],	 with	 an	 estimate	 of	 around	 100,000	 alternative	 splicing	 events	 present	 with	

significant	frequency	in	major	tissues	in	humans	[13].	While	it	is	not	clear	how	many	of	these	

events	give	rise	to	functional	transcripts	[14],	alternative	splicing	is	the	biggest	contributor	

in	clearing	the	gap	between	the	number	of	human	genes	and	the	number	of	observed	human	

proteins	[4],	often	operating	in	a	tissue-specific	manner	[12,	15,	16].	For	example,	alternative	

splicing	has	been	shown	to	be	heavily	involved	in	various	differentiation	processes	on	top	of	

the	 already	mentioned	granulocytic	differentiation	 through	AS-NMD	gene	 regulation	 [10,	

11],	like	the	determination	of	cell	fate	during	cerebral	cortex	development	[17]	through	the	

activity	of	the	splicing	factors	PTBP1	and	RBFOX,		the	differentiation	of	adipocytes	through	

the	action	of	 the	splicing	 factor	SRSF10	on	 lipin1	 [18]	and	 the	differentiation	of	 terminal	

erythropoietic	cells	through	different	mechanisms,	also	involving	AS-NMD	gene	regulation	

[19].	Different	isoforms	of	the	same	protein	can	actively	contribute	to	opposite	effects,	like	

in	 the	case	of	KLF6,	where	 the	SV2	variant	promotes	apoptosis	and	 inhibits	proliferation	

while	 the	 SV1	 variant	 leads	 to	 cell	 proliferation	 [20,	 21].	 In	 general,	 alternative	 splicing	

affects	many	different	biological	processes	[22]	across	human	tissues,	so	ensuring	its	correct	

function	is	crucial	for	the	health	of	the	organism.	

1.1.2. Alternative splicing in disease 

Due	to	 the	ubiquitous	nature	of	alternative	splicing	and	 its	 importance	 in	numerous	vital	

processes,	it’s	not	surprising	that	its	dysregulation	can	lead	to	severe	pathological	outcomes.	

Alterations	to	either	the	trans-acting	or	the	cis-acting	elements	of	splicing	can	lead	to	disease,	

with	alterations	to	the	trans-acting	ones	having	generally	larger	effects	due	to	the	ability	to	

impact	 multiple	 splicing	 events	 but	 also	 being	 rarer.	 This	 rarity	 is	 probably	 due	 to	 the	

importance	 of	 splicing	 limiting	 the	 possibility	 of	 widespread	 mutations	 to	 splicing	

machinery,	especially	loss-of-function	ones,	without	being	lethal	already	during	embryonic	

development	[23,	24].	However,	spliceosome	core	components	alterations	that	don’t	involve	
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complete	 loss-of-function	can	still	 take	place	and	are	 linked	to	some	genetic	diseases	 like	

Retinitis	Pigmentosa	and	Spinal	Muscular	Atrophy	[25,	26],	some	craniofacial	disorders	like	

Cerebro-Costo-Mandibular	 Syndrome	 and	Nager	 Syndrome	 [27]	 and	 are	 drivers	 in	 some	

cancers	 like	 the	 Myelodysplastic	 Syndromes	 [25,	 28],	 the	 most	 common	 forms	 of	 adult	

malignancies	of	 the	myeloid	 lineage	 [29].	The	 types	of	 cis-acting	element	alterations	 that	

have	been	found	in	disease	is	disparate,	covering	both	exonic	and	intronic	splice	regulation	

sequences,	but	most	involve	the	splice	sites	in	the	introns	[30].	In	Familial	Dysautonomia,	a	

hereditary	disease	of	the	sensory	and	autonomic	nervous	system,	a	point	mutation	in	the	5’	

splice	site	of	intron	20	combined	with	a	normally	weak	3’	splice	site	causes	the	skipping	on	

exon	20	of	the	IKBKAP	gene,	leading	to	abnormal	nervous	system	development	[23,	24],	and	

in	 β-thalassemias	 some	 of	 the	 possible	mutations	 to	 β-globin	 causing	 the	 disease	 can	 be	

found	in	either	the	invariant	dinucleotides	at	the	splice	sites,	in	the	surrounding	sequences	

or	 in	 cryptic	 sites	 both	 in	 introns	 and	 exons	 [31].	 Hutchinson-Gilford	 progeria	 is	 a	 rare	

genetic	disorder	that	confers	to	the	people	affected	by	it	premature	acquisition	of	some	of	

the	characteristics	of	aging	caused	in	most	cases	by	a	point	mutation	in	what	is	probably	an	

ESE	on	the	exon	11	of	the	LMNA,	the	gene	coding	for	lamin	A,	causing	a	cryptic	splice	site	

activation	that	leads	to	a	transcript	lacking	150bp	of	exon	11	and	a	truncated	protein	product	

called	progerin	[32].	Intron	retention	has	also	recently	been	shown	as	a	potential	pathogenic	

avenue.	For	example,	in	the	Autoimmune	Polyendocrine	Syndrome	type	1,	a	rare	inherited	

disorder	 characterized	 by	 multiple	 autoimmunities,	 the	 retention	 of	 intron	 3	 of	 the	

autoimmune	regulator	gene,	involved	in	the	negative	selection	of	self-immune	T	cells,	leads	

to	the	 introduction	of	a	premature	stop,	 truncating	the	protein	product	[33].	 In	a	class	of	

neurodegenerative	disorders	with	accumulation	of	MAPT	called	Tauopathies,	the	spatial	and	

temporal	 regulation	 of	 the	 6	 isoforms	 of	 the	 MAPT	 gene	 can	 be	 altered	 as	 a	 result	 of	

mutations	 on	 the	 exon	 10	 and	 the	 change	 in	 fraction	 of	 isoforms	 is	 causative	 in	 for	

frontotemporal	dementia	[34]	and	evidence	shows	that	relative	frequency	changes	between	

tau	isoforms	could	be	related	to	other	neurodegenerative	processes	[35-37].	Isoform	balance	

disruption	can	also	be	found	with	the	WT1	gene	in	Frasier	syndrome	[38].	We’ve	already	

seen	that	spliceosome	alterations	are	found	in	some	cases	of	myeloid	malignancies,	but	in	

general	aberrant	splicing	 is	a	 frequent	element	 in	 tumorigenic	processes.	 In	 the	previous	

sub-chapter	we’ve	seen	how	the	gene	KLF6	has	isoforms	with	opposite	effects	on	cell	growth,	
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with	the	KLF6-SV1	variant	losing	the	characteristic	zing	finger	DNA	binding	domain	due	to	

an	alternative	5’	splice	site	in	exon	2	and	acting	as	a	dominant-negative	against	the	inhibition	

of	cell	proliferation	and	migration	provided	by	the	tumor	suppressing	KLF6-SV2	isoform	[21,	

39].	This	kind	of	dynamic	plays	out	in	prostate	cancer,	where	a	point	mutation	that	leads	to	

the	creation	of	a	splicing	factor	binding	site	enhancing	KLF6-SV1	expression	represents	an	

increase	in	cancer	risk	[40]	and	increases	cancer	progression,	while	its	knockdown	reduces	

the	 growth	of	 the	 tumor	 [41].	BRCA1	 is	 causative	 in	most	hereditary	breast	 and	ovarian	

cancers	[42]	and	mutations	in	its	cis	and	trans-acting	splicing	actors	are	considered	to	be	

involved	in	cancer	risk	[23],	in	particular	a	nonsense	mutation	in	exon	18	that	affects	an	ESE	

and	leads	to	skipping	of	the	exon	and	a	single	mutation	that	can	activate	a	cryptic	3’	splice	

site	that	results	in	a	truncated	protein	product	were	found	in	families	affected	by	high	risk	

of	these	cancer	types	[43,	44].	Splicing	factors	are	common	dysregulation	targets	in	cancers	

[45],	with	many	SR	proteins	going	through	upregulation	[46,	47]	and	levels	of	SR	and	hnRNP	

splicing	 factors	 in	 colon	carcinomas	have	been	correlated	 to	 levels	of	alternative	 splicing	

events	 of	 CD44	 which	 are	 associated	 to	 tumor	 metastasis,	 among	 other	 processes	 [48].	

Intron	 retention	 is	 also	 abundant	 in	 the	 transcriptome	 of	many	 liquid	 and	 solid	 cancers	

compared	to	normal	tissues,	even	without	mutations	affecting	the	core	splicing	machinery	

[49].	 Strategies	 to	 target	 aberrant	 splicing	 events	 involve	 the	 usage	 of	 antisense	

oligonucleotides	and	of	small	molecules.	Antisense	oligonucleotides	are	designed	to	bind	to	

specific	cis-acting	regulatory	elements	on	RNAs	to	modulate	their	splicing	or	to	bind	nascent	

RNAs	to	promote	their	degradation.	Duchenne	muscular	dystrophy	is	a	progressive	disease	

of	 muscles	 caused	 by	mutations	 on	 the	 gene	 DMD	 coding	 for	 dystrophin,	 which	 lead	 to	

myofiber	 necrosis.	 The	 mutations	 are	 often	 frame	 shifting	 deletions,	 but	 antisense	

oligonucleotides	that	induce	skipping	of	exon	51,	44,	45	or	53	have	been	approved	in	the	USA	

as	ways	to	restore	partial	function,	although	without	the	ability	to	provide	full	recovery	[50,	

51].	 The	 small	molecules	 approach	 involves	 the	 targeting	 of	 splicing	 factors	 to	modulate	

them	or	of	RNA	sequences	 to	block	aberrant	splicing	 factor	recruitment.	Spinal	Muscular	

Atrophy	is	caused	by	the	loss	of	the	SMN1	gene	encoding	for	the	SMN	protein,	which	can’t	be	

properly	supplied	by	the	almost	identical	gene	SMN2	which	differs	by	a	single	nucleotide	in	

exon	 7	 leading	 to	 predominant	 exclusion	 of	 this	 exon	 from	 SMN2-derived	 transcripts,	

producing	a	truncated	and	unstable	form	of	SMN	[52].	Small	molecule	compounds	able	to	
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promote	 exon	 7	 inclusion	 in	 SMN2-derived	 transcripts	 have	 been	 considered	 for	 the	

treatment	of	this	disease	[52,	53],	with	one	achieving	in	the	USA	and	30	other	countries.	

1.2. MET 

1.2.1. MET 

The	MET	proto-oncogene	was	first	isolated	as	an	oncogene	in	MNNG-HOS	[54-56],	a	cell	line	

derived	 from	chemically	 transforming	the	human	osteosarcoma	cell	 line	HOS	(CRL-1543)	

with	a	carcinogenic	nitrosamine	(MNNG).	 In	 this	cell	 line	a	rearrangement	 fuses	the	MET	

locus	with	the	Translocated	Promoter	Region	(TPR)	locus,	leading	to	the	production	of	the	

fusion	protein	TPR-MET	which	has	kinase	capacity	and	is	constitutively	phosphorylated.	The	

MET	proto-oncogene	 is	 located	 on	 chromosome	7q31	 and	 spans	 126,182	bases,	with	 21	

exons	separated	by	20	introns.	The	protein	product	is	a	Tyrosine	kinase	receptor	[57]	with	

a	 variety	 of	 names:	Met,	 c-Met,	 	Hepatocyte	Growth	Factor	Receptor	 (HGFR)	 and	 Scatter	

Factor	 Receptor	 (SFR).	 The	 protein	 is	 produced	 as	 a	 single	 chain	 precursor	 that	 is	

proteolytically	cleaved	into	an	α	chain	and	a	β	chain,	which	then	get	linked	with	a	disulfide	

bond	[58-60].			

	

Figure	4.	Structure	of	Met	and	its	 ligand.	(A)	Structure	of	the	Met	Tyrosine	kinase	receptor	

protein.	(B)	Structure	of	the	HGF,	ligand	of	the	Met	protein	with	the	site	of	cleaving	represented	

by	the	Arginine	(R)	and	the	valine	(V)	between	the	two	chains.	Figure	from	[58].	
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The	resulting	protein	(Figure	4A)	 is	composed	of	an	extracellular	portion	containing	 the	

Sema	domain,	which	includes	the	binding	site	for	the	ligand	and	encompasses	the	entirety	of	

the	 α	 chain	 and	 part	 of	 the	 β	 chain	 and	 shares	 sequence	 homology	 with	 semaphorins,	

followed	by	a	cysteine	rich	domain	found	also	in	plexins,	semaphorins	and	integrins	(thus	

called	PSI)	and	4	domains	related	to	 immunoglobulin-like	domains	that	are	also	 found	 in	

immunoglobulins,	 plexins	 and	 transcription	 factors	 (thus	 called	 IPT)	 connecting	 to	 the	

transmembrane	 helix.	 The	 intracellular	 portion	 includes	 a	 juxtamembrane	 domain	 that	

contains	a	Tyrosine	in	position	1003	that	if	phosphorylated	can	bind	to	ubiquitin	ligase	Cbl	

leading	 to	 ubiquitination	 of	 Met,	 the	 catalytically	 active	 Tyrosine	 kinase	 domain	 with	

Tyrosines	1234	and	1235	that	are	phosphorylated	during	receptor	activation	and	finally	a	

docking	site	that	contains	Tyrosines	1349	and	1356,	crucial	to	recruit	several	downstream	

adaptors	carrying	Src	homology-2	(SH2)	domains	[58-60].	The	entirety	of	the	first	exon	is	

not	translated,	exon	2	contains	the	cleaving	site	for	the	α	chain	and	the	β	chain,	between	exon	

2	and	12	is	the	extracellular	domain,	exon	13	encompasses	the	transmembrane	domain	and	

the	intracellular	domain	is	encoded	by	the	exons	from	14	to	the	last	exon	21,	with	exon	14	

encoding	for	the	juxtamembrane	domain,	exons	15	to	20	covering	the	catalytic	domain	and	

exon	21	the	docking	site	[60].	The	ligand	of	Met	was	first	discovered	by	two	different	groups	

as	 two	 different	 factors,	 the	 hepatocyte	 growth	 factor	 (HGF)	 and	 the	 scatter	 factor	 (SF),	

which	were	later	determined	to	be	the	same	molecule	[61-63].	HGF	is	secreted	as	a	precursor	

(pro-HGF)	that	undergoes	cleaving	by	extracellular	proteases	into	an	α	chain	and	a	β	chain,	

which	 are	 linked	 together	 through	 a	 disulfide	 bond.	 The	α	 chain	presents	 a	 hairpin	 loop	

(Figure	4B)	and	4	doubled	looped	structures	composed	of	internal	disulfide	bridges	called	

kringle	domains	and	the	β	chain	carries	a	domain	with	homology	to	Serine	proteases	but	

without	enzymatic	activity	[58,	59].	HGF	binds	to	the	Sema	domain	of	Met	resulting	in	the	

homodimerization	of	the	receptor	and	phosphorylation	of	Tyrosines	1234	and	1235	in	the	

kinase	domain,	then	Tyrosines	1349	and	1356	in	the	docking	site	are	phosphorylated	and	

form	an	SH2	recognition	motif	that	can	recruit	a	number	of	signaling	effectors	[58-60,	64,	

65],	either	directly	or	through	the	scaffolding	protein	GAB1.	These	interactions	result	into	

the	activation	of	multiple	signal	transduction	pathways	(Figure	5),	among	the	major	ones	

the	MAPK	cascade,	the	PI3K-Akt	pathway	and	the	STAT	pathway.	The	MAPK	cascade	(Figure	

5A)	 is	 composed	 of	 3	 pathways	 that	 sequentially	 activate	 [66]	 following	 two	 possible	
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mechanisms.	In	one	the	docking	site	of	MET	interacts	with	a	complex	of	GRB2	and	SOS	either	

directly	or	through	an	adaptor	protein	(SHC),	GRB2-SOS	then	activates	Ras	[67,	68],	in	the	

other	the	recruitment	of	p120	is	stopped	through	the	dephosphorylation	of	the	p120	binding	

site	on	GAB1	by	the	action	of	SHP2	[69].	In	both	methods,	Ras	activation	has	multiple	results,	

one	is	achieved	through	the	Ras-Raf-MEK-ERK	pathway	which	leads	to	phosphorylation	of	

ERK1	and	ERK2	which	then	translocate	to	the	nucleus	and	promote	the	progression	of	the	

cell	cycle,	proliferation	and	cell	motility	[70,	71].		

	

Figure	5.	Some	of	the	major	signalling	pathways	tied	to	the	Met	Tyrosine	kinase	receptor.	(A)	

MAPK	cascade.	(B)	PI3K-Akt	pathway.	(C)	STAT	pathway.	Figure	from	[65].	

Another	result	of	the	Ras	activation	is	the	activation	of	Rac	through	a	Ras-PI3K-mediated	

pathway,	causing	in	turn	the	activation	of	JNK1,	JNK2,	JNK3	by	MEK4	and	MEK7	and	of	p38α,	

p38β,	 p38γ	 and	 p38δ	 by	 MEK3	 and	 MEK	 6,	 leading	 to	 the	 control	 of	 different	 cellular	

processes,	 among	 which	 proliferation,	 apoptosis,	 cell	 motility	 and	 cytoskeletal	

rearrangement	[72-75].	The	PI3K-Atk	pathway	(Figure	5B)	can	be	activated	either	by	direct	

interaction	of	PI3K	with	the	docking	domain	of	MET,	by	indirect	interaction	with	MET	via	

GAB1	or	as	part	of	the	MAPK	cascade	and	it	leads	to	the	activation	of	Akt	which	promotes	

proliferation	by	blocking	GSK3β,	cell	growth	and	protein	synthesis	by	stimulating	the	activity	
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of	mTOR	and	cell	 survival	by	 inhibiting	 the	activity	of	both	P53	and	BAD	[76].	The	STAT	

pathway	 sees	 the	 homodimerization	 of	 STAT3	 after	 MET-dependent	 phosphorylation,	

allowing	it	to	operate	as	a	transcription	factor	controlling	proliferation	and	tubulogenesis	

[65,	 77].	 The	 activation	 of	 these	 pathways	 by	 MET	 elucidates	 some	 of	 the	 mechanisms	

through	 which	 epithelial	 cells	 develop	 an	 invasive	 growth	 phenotype	 following	 MET	

stimulation	 [65],	 leveraging	 the	 increased	 motility	 and	 the	 improved	 cell	 survival	 and	

proliferation	 to	 expand	 into	 new	 environments,	 also	 contributing	 to	 the	 stimulation	 of	

angiogenesis	[78].	This	invasive	phenotype	is	crucial	during	development	[79]	but	also	in	

mature	individuals	in	cases	of	tissue	damage	in	a	variety	of	organs,	where	MET	signalling	

plays	crucial	roles	[80-83].		

1.2.2. MET signalling alterations in cancer 

Dysregulation	of	the	HGF-MET	pathway	is	a	common	element	found	in	tumor	cells	[59,	65,	

84],	 with	 many	 of	 the	 resulting	 cell	 responses	 favoring	 tumor	 growth,	 survival	 and	

metastatic	spread.	The	mechanisms	through	which	tumors	achieve	high	MET	activation	can	

generally	be	divided	into	three	categories:	a)	MET	overexpression	without	amplification,	b)	

ligand	dependent	and	c)	MET	gene	alternation	dependent.	The	first	case	is	the	most	common	

mechanism	of	aberrant	MET	activation	and	involves	an	increase	in	MET	signalling	as	a	result	

of	transcriptional	overexpression	of	the	protein	[85-90].	This	happens	frequently	in	tumors	

due	to	the	ability	of	the	hypoxic	microenvironment	to	induce	MET	expression	[91],	but	it	can	

also	be	due	to	the	activity	of	other	oncogenes	like	Ras	and	Ret	[92]	and	it	results	in	higher	

sensitivity	to	HGF,	which	is	ubiquitously	expressed,	and	to	poor	prognosis	for	the	affected	

patients	[59,	93].		The	ligand	dependent	mechanisms	are	the	second	most	common	route	for	

aberrant	MET	activation	and	 involve	activation	 through	 increased	exposure	 to	 the	 ligand	

HGF,	which	 is	 physiologically	 secreted	 by	mesenchymal	 cells	while	MET	 is	 expressed	 by	

epithelial	cells.	This	increased	exposure	can	be	due	to	the	establishment	of	an	autocrine	loop,	

which	 is	 observed	 in	 some	mesenchymal	 cell	 derived	 tumors	 that	 acquire	 the	 ability	 to	

produce	MET	[89,	94,	95]	and	 in	ectodermal	derived	 tumors	which	acquire	 the	ability	 to	

produce	HGF	[96,	97].	However,	more	frequently	the	stimulation	is	paracrine	and	it’s	a	result	

of	increase	secretion	of	HGF	by	tumor	stromal	cells	[98,	99].	The	MET	gene	alteration	cases	

involve	multiple	different	mechanisms	due	 to	 the	different	 alterations	 that	 can	affect	 the	
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gene.	MET	amplification	 is	a	rarer	route	to	achieve	MET	overexpression	compared	to	 the	

transcriptional	route	described	before	and	it	has	been	detected	in	various	cancers	[87,	100-

104].	The	gene	rearrangement	event	leading	to	the	formation	of	the	TPR-MET	fusion	protein	

that	was	involved	in	the	first	isolation	of	the	MET	gene	was	for	a	long	time	the	only	known	

human	tumors	gene	rearrangement,	being	found	in	gastric	carcinomas	[105,	106],	however	

more	 recently	more	 instances	 have	 been	discovered.	 Some	 very	 rare	 fusion	 events	were	

found	involving	a	dimerization	motif	fusing	to	the	N-terminal	of	the	MET	gene	in	a	few	cases	

of	 some	 carcinomas	 [107]	 while	 pediatric	 glioblastoma	 presents	 a	 high	 frequency	 of	

occurrence	of	MET	rearrangement	events	[108].	Both	somatic	or	inherited	mutations	can	be	

found	 is	 inherited	 and	 sporadic	 renal	 papillary	 carcinomas	 [109-111],	 impacting	 the	

Tyrosine	 kinase	 domain	 and	 leading	 to	 autophosphorylation.	 As	 we’ve	 seen	 previously,	

Tyrosine	 1003	 in	 the	 juxtamembrane	 domain	 is	 involved	 in	 MET	 degradation	 through	

ubiquitination,	 so	 mutations	 in	 this	 position	 lead	 to	 tumorigenesis	 [112,	 113].	 Somatic	

mutations	were	also	found	in	glioma,	mucinous	ovarian	carcinoma,	head	and	neck	squamous	

cell	carcinoma	and	childhood	hepatocellular	carcinoma	[114-117]	and	collections	of	such	

mutations	are	 listed	 in	 somatic	mutation	databases	 like	COSMIC	 [118].	 In	head	and	neck	

squamous	cell	carcinomas,	somatic	MET	mutations	leading	to	constitutive	MET	activation	

have	been	found	in	metastases,	pointing	to	a	selection	of	these	mutations	during	progression	

[114].	The	most	frequent	of	these	MET	activation	mechanisms	are	secondary,	usually	related	

to	environmental	factors	leading	to	higher	MET	activity	due	to	high	availability	of	HGF	or	

overexpression	 due	 to	 hypoxia	 or	 the	 activity	 of	 other	 oncogenes,	 making	 the	 MET	

involvement	a	late	tumor	development	event	that	enhances	tumor	survival	and	confers	to	it	

the	 invasive	growth	phenotype	 facilitating	 tumor	dissemination.	The	 interaction	between	

tumor	 microenvironment	 hypoxia	 and	 MET	 overexpression	 and	 function	 is	 a	 possible	

explanation	 for	 some	 preclinical	 models	 showing	 promotion	 of	 invasion	 and	 metastatic	

spread	 of	 tumors	 subjected	 to	 anti-angiogenic	 therapies,	 which	 can	 be	 blocked	with	 the	

addition	of	MET	inhibitors	to	the	treatment	[119-121].	MET	is	also	involved	in	the	radiation	

resistance	 displayed	 by	 glioblastoma	 stem	 cells,	 which	 can	 be	 avoided	 through	 MET	

inhibition	[122]	and	in	the	resistance	to	treatment	of	breast	cancer	with	PARP	inhibitors,	

which	can	also	be	overcome	through	combination	therapy	with	MET	inhibitors	[123].	While	

useful	in	combinatorial	approaches	like	the	ones	just	presented,	pre-clinical	studies	suggest	
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that	 MET	 blockade	 is	 in	 itself	 ineffective	 in	 the	 limitation	 of	 tumor	 growth	 in	 tumors	

characterized	by	MET	activity	without	MET	genetic	alterations	[124],	although	 it	can	still	

affect	metastatic	spread	[125].	On	the	other	hand,	there’s	indications	that	some	tumors	with	

MET	genetic	 lesions,	 especially	 amplifications,	 could	be	more	affected	by	MET	 inhibitors,	

showing	MET	oncogene	addiction	[126,	127]	and	offering	a	possible	therapeutic	target,	with	

responsiveness	being	achieved	in	some	case	studies	[128,	129].	

1.2.2.1. MET exon 14 skipping 

A	relevant	MET	alteration	that	we’ve	not	discussed	until	now	is	the	skipping	of	exon	14	of	

the	MET	gene.	As	detailed	previously,	exon	14	encodes	for	the	juxtamembrane	domain	of	the	

receptor,	which	contains	residues	crucial	 for	the	regulation	of	MET	activity,	 like	Tyrosine	

1003	which	 promotes	 the	 degradation	 of	 the	 protein	 via	 ubiquitination.	 Deletion	 of	 this	

domain	 leads	 to	 accumulation	 of	 MET	 receptors	 [130].	 More	 than	 500	 genetic	 lesions	

resulting	in	MET	exon	14	skipping	have	been	found,	including	point	mutations,	insertions	

and	deletions	in	regions	pivotal	for	splicing,	most	commonly	point	mutations	at	donor	sites	

[131,	132].	MET	exon	14	skipping	is	found	in	around	3%	of	non-small	cell	lung	cancers,	which	

is	where	it	was	also	detected	for	the	first	time	in	human	tissues	[133],	with	particularly	high	

frequency	 in	 the	 adenosquamous	 cell	 carcinoma	 and	 pleomorphic	 carcinoma	 subtypes	

[134].	Compared	to	other	driver	mutations,	patients	carrying	exon	14	skipping	tend	to	be	

older	and	more	of	them	had	a	history	of	smoking	[135,	136].	MET	exon	14	skipping	has	also	

been	found	in	other	tumors,	such	as	neuroblastomas	and	gastric	cancer	[137-139].	In	2020	

capmatinib,	the	first	MET-targeted	therapy	drug,	was	approved,	targeting	non-small	cell	lung	

cancers	presenting	MET	exon	14	skipping	and	in	2021	a	second	one,	tepotinib,	was	approved	

as	well.	Both	are	Tyrosine	kinase	inhibitors	that	interact	with	the	Tyrosine	1230	residue	in	

the	kinase	domain	of	activated	MET	[140-143]	but	resistance	is	found	in	around	33%	to	50%	

of	patients	initially	and	the	rise	of	acquired	resistance	is	a	near	certainty	[144-146],	as	it’s	

the	 case	 with	 other	 Tyrosine	 kinase	 inhibitors	 therapies.	 Therapies	 involving	 MET	

antibodies	 or	 immune	 checkpoint	 inhibitors,	 possibly	 in	 combination	 therapy	 with	 the	

currently	available	MET	Tyrosine	kinase	inhibitors,	offer	possible	future	perspectives	for	the	

treatment	of	non-small	cell	 lung	cancers	carrying	MET	exon	14	skipping	alterations	[134,	

147].	
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1.3. Neural Networks 

1.3.1. Feed forward artificial neural networks  

Feed	 forward	 artificial	 neural	 networks	 (ANN)	 are	 composed	 of	 simple	 connected	

processors	called	neurons	that	form	the	nodes	of	an	acyclic	graph	[148].	These	neurons	are	

organized	in	sequential	layers	formed	each	of	a	variable	number	of	neurons,	and	the	simplest	

layout,	a	shallow	neural	network,	involves	3	layers,	a	first	input	layer,	a	hidden	layer	in	the	

middle	 and	 a	 final	 output	 layer.	 Neurons	 in	 one	 layer	 are	 connected	 to	 neurons	 in	 the	

following	layer	by	a	weighted	edge.	The	unidirectionality	of	this	connection	is	what	qualifies	

these	types	of	neural	networks	as	feed	forward	as	opposed	to	recurrent	neural	networks,	

which	won’t	be	part	of	this	work.		

	

Figure	6.	Simple	Feed	Forward	Artificial	Neural	Networks.	 In	red	the	nodes	and	in	blue	the	

edges.	(A)	Fully	connected	or	dense	ANN.	(B)	Sparsely	connected	ANN.	

The	connections	between	two	sequential	layers	can	be	from	each	neuron	of	the	first	to	all	

the	neurons	of	the	second,	in	which	case	we	are	dealing	with	a	fully	connected	or	dense	layer	

(Figure	6A),	or	only	connect	each	neuron	on	the	starting	layer	to	some	of	the	ones	in	the	

second	 layer,	giving	rise	 to	a	sparsely	connected	 layer	(Figure	6B).	Neurons	 in	 the	 input	

layer	receive	the	raw	data	and	don’t	perform	any	operations	on	it,	their	only	job	is	to	feed	it	
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forward	to	the	first	hidden	layer.	Each	neuron	in	the	hidden	layer	calculates	the	values	 it	

receives	from	the	previous	layer	as	follows:	

	 𝑧 = 	$𝑥!𝑤! 	+ 	𝑏
"

!#$

	 Eq.	1	

where	n	 is	 the	number	of	 connections	of	 the	current	neurons	 to	neurons	of	 the	previous	

layer,	x	is	the	value	passed	by	each	of	the	previous	layer	neurons	to	the	current	neuron,	w	is	

the	weight	of	the	edge	connecting	each	previous	layer	neuron	to	the	current	neuron	and	b	is	

the	bias	of	the	current	neuron.	An	activation	function	f	is	applied	to	the	resulting	value	z	to	

obtain	a	resulting	neuron	output	y	that	represents	the	value	that	the	current	neuron	will	pass	

to	the	later	layers	(Figure	7).	If	y	is	equal	to	0,	the	neuron	is	not	activated	and	no	value	is	

passed.	

	

Figure	7.	Computations	performed	by	each	neuron	in	layers	other	than	the	input.	Inputs	x	are	

multiplied	by	the	weights	w	of	the	edges	connecting	them	to	the	neuron,	the	bias	b	is	added	and	

the	result	is	used	in	the	activating	function	f	to	obtain	the	final	output	y.	Figure	from	[149].	

Activation	functions	come	in	a	variety	of	forms,	depending	on	the	purpose	they	cover.	The	

two	simplest	activations	functions	are	a	linear	or	identity	function	and	binary	step	function	

which	are	shown	in	Eq.	3	and	Eq.	2	respectively.	

	 𝑦 = 	𝑓(𝑧) = 𝑧	 Eq.	2	
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	 𝑦 = 𝑓(𝑧) = -0, 𝑧 < 0
1, 𝑧 ≥ 0	 Eq.	3	

The	 linear	 function	 simply	 uses	 the	 value	 of	 z	 passes	 it	 directly	 to	 the	 next	 layer,	 this	 is	

equivalent	to	a	linear	regression.	The	binary	step	function	is	used	in	perceptrons,	single	layer	

neural	network	that	execute	binary	classifications	that	are	sufficient	for	linearly	separable	

sets	of	data,	meaning	that	the	elements	can	be	completely	separated	by	an	n-1	dimensional	

hyperplane,	where	n	is	the	dimensionality	of	the	dataset.	These	activation	functions	are	not	

appropriate	 for	 tackling	 more	 complex	 problems,	 however,	 which	 is	 why	 non-linear	

activation	functions	are	widely	used.	The	two	most	common	non-linear	activation	functions	

are	 the	 logistic	 or	 sigmoid	 or	 softstep	 activation	 function	 and	 the	 Rectified	 Linear	 Unit	

(ReLU)	activation	function	(Eq.	4	and	Eq.	5).		

	 𝑦 = 	𝑓(𝑧) =
1

1	 +	𝑒%&	
Eq.	4	

	 𝑦 = 𝑓(𝑧) = 𝑚𝑎𝑥(0, 𝑧)	 Eq.	5	

The	sigmoid	function	takes	the	input	value	z	and	transforms	it	into	a	value	in	range	(0,	1),	so	

no	neuron	will	ever	be	deactivated	and	is	generally	used	when	predicting	probabilities.	The	

ReLU	function	output	y	 is	equal	to	the	value	of	z	 if	 it’s	above	0,	otherwise	it	defaults	to	0,	

making	 the	 neuron	 inactive,	 contributing	 to	 its	 computational	 efficiency.	 In	 deep	 neural	

networks	with	multiple	hidden	layers,	the	output	y	of	each	active	neuron	in	the	first	hidden	

layer	would	be	then	passed	to	the	second	hidden	layer	in	the	same	way	the	input	layer	passed	

the	 raw	values,	 and	 the	 second	hidden	 layer	would	 execute	 the	 same	process	we’ve	 just	

described.	In	the	simple	3	layers	structure	we	saw	in	Figure	6	all	the	hidden	layer	active	

neurons	pass	their	output	y	to	the	output	layer	neuron,	which	also	computes	the	same	steps	

as	a	hidden	layer	neuron	and	then	returns	its	output	y	to	the	user.	Usually	in	deep	neural	

networks	the	activation	function	used	in	hidden	layer	neurons	is	the	ReLU	function	while	the	

activation	 function	 for	 the	output	neurons	depends	on	the	purpose	of	 the	network.	For	a	

binary	classifier	between	two	classes,	for	example	cat	and	dog,	we	can	utilize	a	single	output	

neuron	in	which	cat	corresponds	to	the	neuron	not	activating	while	dog	corresponds	to	the	

neuron	activating,	and	with	the	sigmoid	activation	function	we	will	be	provided	with	a	value	
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in	 the	 range	 of	 (0,	 1)	 representing	 the	 probability	 of	 the	 neuron	 activating	 for	 a	 given	

element,	meaning	the	probability	of	that	element	being	part	of	the	dog	class.	Multiple	class	

classifiers	would	need	the	softmax	activation	function,	which	is	an	extension	of	the	sigmoid	

function.	Weights	and	biases	are	the	learnable	parameters	of	the	neural	network,	the	weights	

can	be	viewed	as	an	evaluation	of	 the	 importance	of	a	given	starting	neuron	 input	 to	 the	

output	of	a	neuron,	while	bias	works	as	a	threshold	modulator	for	the	neuron	by	acting	as	a	

flat	contribution	(or	detraction)	to	the	weighted	sum	of	all	inputs	to	the	neuron	(Figure	8).	

	

Figure	8.	Effect	of	the	value	of	the	bias	b	on	the	required	result	of	the	weighted	sum	of	all	inputs	

∑𝑥!𝑤! 	to	lead	to	activation	with	a	ReLU	activation	function.	

The	initial	values	of	weights	and	biases	are	assigned	usually	through	random	sampling	from	

small	number	distributions.	These	starting	weights	and	biases	then	get	altered	during	the	

training	 of	 the	 neural	 network	 on	 a	 labeled	 training	 dataset	 through	 a	 process	 called	

backpropagation.	Backpropagation	 in	the	case	of	 traditional	 feed	forward	artificial	neural	

networks	is	a	supervised	learning	method	that	evaluates	the	output	of	the	entire	network	

(the	output	of	the	output	layer	neurons)	run	on	the	training	dataset	samples	and	compares	

it	to	the	expected	results	from	the	labels	provided	with	the	same	dataset.	This	is	done	either	

after	the	entire	dataset	has	gone	through	the	network	or	after	a	number	of	samples	equal	to	

the	 batch	 number	which	 is	 set	 on	 creation	 of	 the	 network.	 The	 comparison	 is	 executed	

through	a	loss	or	cost	function	that	calculates	how	well	our	network	performed	the	intended	

task.	An	example	of	a	widely	used	loss	function	is	the	Mean	Square	Error	(Eq.	6):	
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	 𝐽(𝑤) = 	
1
𝑛$9𝑦!' 	− 	𝑦!

(;)
"

!#$

	 Eq.	6	

where	 J(w)	 is	 the	 cost	 function	 associated	with	 the	 set	 of	weights	 and	 biases	w,	 n	 is	 the	

number	of	elements	in	the	dataset	(or	the	batch),	y*+	represents	the	real	values	of	each	of	

these	 elements	 and	 y*
,	 represents	 the	 predicted	 values.	 Based	 on	 the	 resulting	 cost,	 the	

network	updates	the	value	of	weights	and	biases	based	on	the	gradient	descent	method	to	

minimize	the	cost	function.	The	gradient	descent	method	calculates	the	change	to	apply	to	

the	weights	and	biases	as	follows:	

	 𝑤- =	𝑤. − 	𝜂𝛻𝐽(𝑤.)	 Eq.	7	

where	w/	is	the	updated	set	of	weights,	w0	is	the	starting	set	of	weights	and	biases,	η	is	the	

learning	rate	and	∇J(w0)	is	the	gradient	of	the	loss	function	when	the	set	of	weights	is	w0.	

The	learning	rate	is	a	value	that	is	selected	on	creation	and	defines	how	big	of	a	step	we	want	

the	change	of	weights	to	take	at	each	update	and	the	gradient	of	the	loss	function	is	a	vector	

that	points	in	the	direction	of	steepest	ascent,	so	to	minimize	the	loss	function	we	head	in	

the	direction	opposite	of	the	gradient.	After	all	the	samples	have	gone	through	the	network,	

the	process	starts	again,	and	each	of	these	iterations	running	through	the	entire	dataset	is	

called	an	epoch,	with	the	number	of	epochs	being	also	a	parameter	set	on	network	setup.	

Getting	 too	 close	 to	 the	 real	 values	 has	 its	 own	 drawbacks,	 because	 in	 training	 a	 neural	

network	our	objective	 is	to	extract	some	broader	features	that	allow	us	to	generalize	our	

model	and	run	it	on	data	not	included	in	our	training	dataset.	If	we	run	the	network	on	a	

training	 dataset	 for	 too	 many	 epochs	 we	 risk	 incurring	 in	 overfitting,	 achieving	 great	

accuracy	for	our	training	dataset	at	the	cost	of	accuracy	when	we	use	the	same	model	on	new	

data,	due	to	our	model	learning	the	statistical	noise	present	in	our	training	set.	Dropout	is	a	

strategy	 to	reduce	 the	risk	of	overfitting	by	dropping	out	random	nodes	 in	 the	 input	and	

hidden	neurons	layers.	Another	strategy	is	early	stopping,	in	which	a	number	of	samples	are	

kept	as	a	validation	set	and	the	network	isn’t	trained	on	them,	however	the	performance	on	

the	network	is	routinely	evaluated	for	the	validation	set	as	well,	and	if	the	performance	of	



	 29	

the	model	stops	improving	on	the	validation	set,	training	is	stopped	even	if	the	set	number	

of	epochs	hasn’t	been	reached	and	the	training	dataset	loss	is	still	decreasing.	

	

Figure	9.	Scheme	illustrating	gradient	descent.	Blue	line:	cost	function	J(w);	red	dotted	line:	

gradient	𝛻𝐽(𝑤.);	black	arrows:	subsequent	updates	of	the	set	of	weights;	𝑤.:	starting	weights	

set.	𝑤-:	first	updated	weights	set.	

1.3.1.1. Convolutional neural networks 

Convolutional	neural	networks	(CNNs)	are	a	type	of	feed	forward	artificial	neural	network	

that	 employ	 a	 convolution	 operation	 (Eq.	 9)	 in	 at	 least	 one	 of	 their	 layers	 [150].	

Convolutional	networks	are	often	used	on	inputs	organized	in	at	least	2-dimensional	grids,	

like	 black	 and	 white	 images	 (colored	 images	 have	 3	 channels,	 which	 act	 as	 a	 third	

dimension).	The	convolutional	layer	is	a	hidden	layer	in	which	a	neuron	only	sees	a	limited	

local	 receptive	 field,	 a	 small	 localized	 region	 of	 the	 input	 (Figure	 10A).	 Visually,	 in	 the	

example	of	a	square	2-dimensional	input	like	an	image	this	would	be	represented	by	a	small	

l	×	l	area	starting	on	the	top	left	of	the	larger	n	×	n	whole	image	for	the	first	neuron	of	the	

convolutional	layer.	This	small	l	×	l	then	slides	across	the	n	×	n	image	by	shifting	right	in	the	

image	by	a	number	of	input	neurons	equal	to	the	stride	parameter	s	defined	during	network	

design,	capturing	a	new	l	×	l	region	associated	to	the	second	convolutional	layer	neuron	and	
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keeps	 shifting	 for	 subsequent	 convolutional	 layer	 neurons	 until	 the	 right	 border	 of	 the	

window	reaches	the	right	edge	of	the	map,	at	which	point	 it	shifts	downwards	by	s	 input	

neurons	 and	 starts	moving	 leftwards	 until	 the	 edge	 of	 the	 image	 and	 continuing	 in	 this	

manner.	This	produces	a	convolutional	layer	that	can	also	be	organized	as	an	m	×	m	grid	with	

	 𝑚 =
𝑛 − 𝑙 + 2𝑝

𝑠 + 1	 Eq.	8	

where	p	is	the	amount	of	optional	padding	rows	or	columns	that	can	be	added	to	the	input	

image	grid	to	resolve	some	issues,	like	the	decreased	coverage	of	corner	areas	due	to	being	

touched	 by	 only	 one	 local	 receptive	 field	 compared	 to	 central	 areas	 that	 are	 involved	 in	

multiple	local	receptive	fields.	The	connections	between	the	local	receptive	field	neurons	and	

the	convolutional	layer	neuron	they	are	related	to	are	learnable	weights	that	can	be	arranged	

in	a	grid	of	the	same	size	of	the	local	receptive	field	(l	×	l),	called	kernel	or	filter.	For	each	

convolutional	layer	neuron,	the	output	y	is	calculated	through	convolution	which	is	executed	

as	follows:	

	 𝑦 = 𝑓 G$$𝑤!,2𝑥!,2 + 𝑏
3

2#$

3

!#$

H	 Eq.	9	

where	x*,4	 is	the	value	associated	to	the	input	neuron	in	position	 i,j	in	the	grid	of	the	local	

receptive	field	associated	to	the	convolutional	layer	neuron,	w*,4	is	the	weight	in	position	i,j	

in	the	grid	of	the	kernel,	b	is	the	bias	of	the	convolutional	layer	neuron	and	𝑓	is	the	activation	

function.	Both	the	kernel	with	its	weights	and	the	bias	are	shared	for	all	convolutional	layer	

neurons.	The	result	is	that	the	same	feature	that	is	encoded	in	the	kernel	weights	is	searched	

across	 the	entirety	of	 input	 image,	 and	when	detected	 the	associated	convolutional	 layer	

neuron	 will	 activate.	 Due	 to	 this	 mechanism,	 the	 resulting	 grid	 of	 convolutional	 layer	

neurons	is	called	a	feature	map.	However,	being	able	to	detect	a	single	feature	is	not	enough	

for	most	applications,	so	convolutional	layers	in	CNNs	usually	deploy	multiple	feature	maps,	

each	characterized	by	its	own	kernel	weights	and	biases	shared	among	all	neurons	of	the	

feature	map	and	keeping	the	same	kernel	size	and	stride,	resulting	in	the	same	size	of	grid	
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neurons.	The	complete	output	of	the	convolutional	layer	ends	up	being	a	3D	grid	of	neurons	

and	dimensions	m	×	m	×	Fn	with	m	as	in	Eq.	8	and	Fn	being	the	number	of	feature	maps.		

		

Figure	10.	Representation	of	the	computations	in	a	CNN.	(A)	Convolutional	layer	operations	

on	a	9	×	9	input	image	using	a	3	×	3	kernel	and	a	stride	s	equal	to	2	with	no	padding.	Green:	

local	receptive	field	1	operations;	red:	local	receptive	field	2	operations;	blue	arrow:	stride	s;	

black	arrow:	path	of	 shifting	of	 the	 local	 receptive	 field	with	a	 stride	 s	 equal	 to	2.	 (B)	Max	

pooling	on	a	4	×	4	 feature	map	with	a	non-overlapping	2	×	2	 filter.	Each	colored	box	 in	the	

feature	map	represents	the	input	neurons	for	the	condensed	map	neurons	of	the	same	color.	(C)	

Average	pooling	on	a	4	×	4	feature	map	with	a	non-overlapping	2	×	2	filter.	Each	colored	box	in	

the	feature	map	represents	the	input	neurons	for	the	condensed	map	neurons	of	the	same	color.	

Often	convolutional	layers	are	followed	by	pooling	to	simplify	the	outputs	of	the	neurons	in	

feature	maps	by	computing	a	condensed	version	of	the	feature	map.	This	pooling	step	also	

involves	a	sliding	window,	usually	of	size	2	×	2	with	a	stride	of	2	to	avoid	overlap,	although	

overlapped	pooling	strategies	exist,	for	example	with	sliding	windows	of	size	3	×	2	and	stride	
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2.	Each	step	of	the	sliding	window	is	condensed	into	a	single	condensed	map	neuron	through	

different	 types	 of	 pooling	 algorithms,	 for	 example	max	pooling	which	 selects	 the	highest	

value	among	the	ones	in	the	window	and	average	pooling	which	averages	all	the	values	of	

the	window	(Figure	10B-C).	This	operation	is	conducted	separately	for	each	feature	map	

produced	 by	 the	 convolutional	 layer	 and	 in	 the	 case	 of	 a	 2	 ×	 2	 non-overlapping	 pooling	

strategy	it	reduces	the	dimensions	of	the	data	from	m	×	m	×	Fn	to	m/2	×	m/2	×	Fn.	More	

convolutional	layers	followed	by	pooling	can	be	added	to	the	network	and	the	output	of	the	

last	pooling	is	then	flattened	by	concatenating	all	of	the	outputs	of	the	neurons	in	all	features	

as	a	1-dimensional	array	which	is	then	used	as	input	for	a	fully	connected	neural	network.	

The	convolution	and	pooling	steps	act	as	automated	extraction	of	features	to	provide	to	the	

dense	neural	network	that	fulfills	the	task	of	classification	based	on	the	extracted	features.	

Like	 traditional	 artificial	 neural	 networks,	 CNNs	 utilize	 backpropagation	 in	 a	 supervised	

manner	 to	 update	 the	 shared	weights	 and	 biases	 associated	 to	 each	 feature	map	 in	 the	

convolutional	 layers.	 CNNs	 are	 widely	 used	 on	 image	 data	 in	 object	 recognition,	 image	

classification	and	object	detection	tasks	like	face	recognition	and	have	also	been	applied	in	

speech	recognition	[151].	

1.3.1.2. Shallow sparsely connected autoencoders 

Autoencoders	are	a	type	of	feed	forward	artificial	neural	network	that	is	composed	of	two	

parts,	 an	encoder	which	maps	 the	 input	 to	 a	 latent	 space	and	a	decoder	 that	produces	 a	

reconstruction	 based	 on	 the	mapping	 in	 the	 latent	 space	 [148,	 152].	 The	 autoencoder	 is	

trained	to	replicate	the	input	in	the	output,	seeking	to	optimize	through	backpropagation	a	

loss	 function	 that	 evaluates	 the	 difference	 between	 the	 two.	 Because	 the	 target	 that	 the	

output	is	compared	to	is	the	input	data	itself	and	there’s	no	need	for	labeling,	autoencoders	

are	an	example	of	unsupervised	backpropagated	learning.	Autoencoders	are	designed	to	not	

be	able	to	reproduce	the	data	perfectly,	but	they	are	intended	to	be	restricted	in	ways	that	

force	 them	 to	 learn	 the	most	 important	 features	 of	 the	 data	 instead.	 The	 reconstructed	

output	 is	only	used	 for	 the	 training	of	model,	 the	 target	 is	an	encoding	 function	with	 the	

ability	to	extract	those	important	features.	In	undercomplete	autoencoders,	the	restriction	

imposed	is	that	the	latent	space,	also	called	bottleneck,	is	of	smaller	dimensionality	than	the	

input,	 forcing	 the	model	 to	 identify	 the	 features	 that	must	 be	 conserved	 for	 an	 accurate	
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reconstruction	 of	 the	 input,	 leading	 to	 linear	 or	 non-linear	 dimensionality	 reduction	 or	

feature	extraction	applications.	Another	approach	to	limiting	the	ability	of	the	model	to	reach	

the	identity	function	is	found	in	regularized	autoencoders,	which	change	the	loss	function	to	

push	 the	 model	 to	 have	 additional	 properties.	 These	 regularizations	 can	 be	 applied	 to	

undercomplete	autoencoders	or	allow	autoencoders	with	latent	spaces	of	the	same	number	

of	 dimensions	 or	 even	more	 dimensions	 than	 the	 input	 (overcomplete	 autoencoders)	 to	

learn	something	other	than	the	identity	function.	Sparse	autoencoders	introduce	in	the	loss	

function	a	penalty	dependent	on	the	number	of	activations	in	the	hidden	layers,	trying	to	

build	a	model	that	relies	only	on	a	small	quantity	of	active	neurons,	also	creating	a	bottleneck	

like	 in	 the	case	of	undercomplete	autoencoders.	Denoising	autoencoders	are	trained	on	a	

version	of	the	input	that	has	gone	through	an	addition	of	noise	[153].	The	loss	function	is	

modified	because	instead	of	the	loss	function	comparing	the	output	of	the	autoencoder	to	

the	input	of	the	autoencoder,	meaning	the	noisy	dataset,	we	compare	the	output	to	the	data	

before	the	noise	addition.	This	allows	the	autoencoder	to	 learn	how	to	remove	the	noise,	

maintaining	the	elements	relevant	to	the	original	data.	Contractive	autoencoders,	like	sparse	

autoencoders,	 apply	 a	 penalty	 to	 the	 loss	 function,	 however	 in	 the	 case	 of	 contractive	

autoencoder	what	is	penalized	is	the	derivative	of	the	activations	in	the	hidden	layers.	The	

effect	 is	 that	 small	 changes	 of	 the	 input	 will	 result	 in	 the	 same	 encoded	 result	 [154].	

Variational	autoencoders	[155]	are	a	class	of	generative	autoencoders	in	which	the	encoder	

returns	a	latent	space	that	is	a	distribution	instead	of	a	vector	of	values,	making	it	continuous.	

Autoencoders	 have	 been	 employed	 in	 the	 field	 of	 RNAseq	 analysis	 for	 tasks	 such	 as	

dimensionality	reduction	before	clustering	single	cell	data	[156]	and	batch	correction	[157].	

Usually	 these	 are	 deep	 autoencoders,	 however	 shallow	 sparsely-connected	 autoencoders	

(SSCA)	have	been	used	recently	for	the	modeling	of	gene	set	analysis	[158]	and	to	derive	

functional	features	from	cell	clusters	in	single	cell	RNAseq	datasets	[159].	These	SSCAs	are	

built	with	a	single	sparsely-connected	hidden	layer	in	which	the	connections	to	the	input	are	

hardcoded	 and	 represent	 pre-existing	 biological	 knowledge,	 compared	 to	 sparse	

autoencoders	 in	 which	 the	 sparsity	 is	 a	 regularization	 method	 enforced	 through	 a	 loss	

function	penalization.	
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1.3.2. Machine learning in MET exon 14 skipping detection 

The	 susceptibility	 of	 non-small	 cell	 lung	 cancer	 patients	 carrying	MET	 exon	 14	 skipping	

mutations	 to	 targeted	 therapy	 opens	 up	 a	 need	 for	 accurate	 and	 fast	 detection	 of	 these	

events.	Detection	of	exon	skipping	events	can	be	performed	in	a	single-gene	manner	through	

techniques	like	RT-PCR	starting	from	RNA	or	Sanger	sequencing	using	DNA	[160].	However,	

these	present	serious	issues	in	the	investigation	of	diseases	like	non-small	cell	lung	cancer,	

where	we	want	to	screen	for	multiple	biomarkers	at	the	same	time	and	in	which	the	amount	

of	material	retrieved	from	biopsies	is	usually	too	small	to	perform	multiple	single-gene	tests	

[161].	As	a	tool	to	solve	these	issues,	next-generation	sequencing	technologies	can	allow	for	

the	screening	of	multiple	regions	of	 interest	at	the	same	time	on	the	same	sample,	with	a	

model	built	on	metastatic	non-small	cell	lung	cancer	patients	showing	a	decrease	in	both	the	

time	 required	 to	 perform	 the	 tests	 and	 the	 cost	 associated	 to	 testing	 [162].	 Sequencing	

strategies	in	the	field	of	clinical	oncology	mostly	focus	on	clinically	relevant	regions	using	

library	 prep	 strategies	 like	 amplicons	 [163],	 however	 DNA-based	 amplicon-mediated	

targeted	sequencing	techniques	have	shown	to	perform	inadequately	in	the	detection	of	MET	

exon	14	skipping	events	[164],	suffering	from	high	false	negatives	due	to	the	high	variety	

and	diversity	in	size	of	the	alterations	leading	to	the	exon	skipping	event.	RNA	sequencing	

can	take	into	consideration	a	more	consistent	marker,	looking	only	at	the	exclusion	of	exon	

14,	regardless	of	the	which	genetic	alteration	is	causing	it.	As	a	result,	targeted	RNA-based	

technologies	 have	 shown	 to	 perform	 better	 than	DNA-based	 ones	 [165],	 although	 in	 the	

clinical	setting	RNA	poses	some	technical	issues,	as	it	degrades	much	more	easily	than	DNA.	

The	 efficient	 detection	 of	 these	 events	 is	 not	 just	 a	 matter	 of	 finding	 the	 right	 wet	 lab	

methods,	but	also	devising	the	right	algorithms	to	parse	the	data	and	identify	cases	in	which	

the	events	are	taking	place.	In	particular	deep	learning	and	machine	learning	could	provide	

a	big	contribution	for	fast	screening	of	large	cohorts.	At	the	time	of	writing	of	the	work	that	

is	 the	 subject	 of	 this	 Chapter	 (https://pubmed.ncbi.nlm.nih.gov/,	 accessed	 on	 01	 March	

2021),	 our	 inspection	 of	 the	 available	 literature	 regarding	MET	 exon	 14	 skipping	 didn’t	

return	 any	 articles	 using	 deep	 learning	 or	 machine	 learning	 for	 MET	 exon	 14	 skipping	

detection.	We	found	some	generalist	exon	skipping	event	prediction	algorithms:	Zhang	et	al.	

used	CNNs	to	classify	splice	junctions	derived	from	primary	RNA-seq	data	[166];	Du	et	al.	
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integrated	RNAseq	data	and	genome	sequence	information	in	a	Rotation	Forest	algorithm	

[167];	Jaganathan	et	al.	developed	the	tool	SpliceAI	which	uses	CNNs	to	predict	splicing	from	

pre-mRNA	sequences	[168];	Zuallaert	et	al.	developed	SpliceRover	based	on	CNNs	to	predict	

splice	sites	[169].	Owing	to	the	higher	potential	for	accuracy	for	a	tailor-made	tool	in	calling	

for	 the	 exon	 skipping	 events,	 we	 decided	 to	 investigate	 the	 potential	 of	 different	 neural	

network	 architectures	 in	 providing	 sensitive	 and	 rapid	MET	 exon	 14	 skipping	 detection	

starting	from	RNAseq	data,	as	it	offers	the	best	results.	In	our	investigation	we	compared	3	

different	architectures:	traditional	feed	forward	neural	network	(NN),	convolutional	neural	

network	(CNN)	and	shallow	sparsely-connected	autoencoder	(SSCA).	

2. Results 

2.1. Neural Network for the Detection of MET Exon 14 Skipping (METΔ14). 

To	detect	MET	exon	14	skipping	events,	an	NN	made	of	six	layers	was	built	[170];	Figure	

11A.		

 

Figure	11.	Neural	networks	used	for	the	analysis	of	MET	variants.	(A)	NN	for	the	detection	of	

exon	14	skipping	events.	(B)	Shallow	sparsely-connected	autoencoders	for	the	detection	of	MET	

transcription	variants.	(C)	Convolutional	neural	network	(CNN).	

As	a	training	set	for	the	NN,	we	used	data	from	amplified	WT	MET	and	exon	14	skipping	MET	

(Table	1).	
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Cell	Line		 Tumor	type	 Status		
RNAseq	

(Million	Reads)		

MET	

(Thousand	Reads)		

EBC-1	 Lung	cancer	 Amplified	MET	 113	 1447	

Hs746T	 Gastric	cancer	 Amplified	METΔ14	 95	 846	

A549	 Lung	cancer	 MET	 115	 109	

NCI-H596	 Lung	cancer	 METΔ14	 118	 114	

Table	1.	MET	cell	line	RNAseq	data.	

Specifically,	we	split	the	MET	reads	in	random	non-overlapping	subgroups	of	1000	reads.	

Although	at	1000	reads,	coverage	of	the	detection	of	METΔ14	becomes	a	bit	blurry—Figure	

12D;	 this	 threshold	allows	 for	a	generation	of	 large	number	of	MET	(1447)	and	METΔ14	

(846)	 to	 not	 overlapping	 subsamples,	 thus	 providing	 a	 high	numerosity	 of	 training	 data,	

which	is	an	important	element	for	an	efficient	training	of	the	NN.	

 

Figure	12.	Expected	coverage	for	exons	13,	14	and	15.	(A)	WT	MET	from	A549	RNAseq	sample	

(33	million	reads),	27,152	reads	mapping	on	MET	locus,	(B)	MET∆14	from	NCI-H596	RNAseq	
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sample	 (27	million	 reads),	 24,850	 reads	mapping	 on	MET	 locus,	 (C)	 5000	 reads	 randomly	

selected	from	(B),	(D)	1000	reads	randomly	selected	from	(B),	(E)	500	reads	randomly	selected	

from	(B),	(F)	250	reads	randomly	selected	from	(B).	

Each	of	the	above-mentioned	subgroups	was	converted	in	31	and	16	k-mers.	MET	expression	

was	represented	by	the	amount	of	each	k-mers	spanning	over	MET	exons,	and	these	data	

were	used	to	train	the	NN.	We	observed	that	the	learning	curve	at	16	k-mers	was	slightly	

better	than	the	one	at	31	k-mers	(not	shown),	and	thus	we	ran	the	following	analyses	using	

the	16	k-mers	representation	of	MET.	As	training	sets,	we	also	used	k-mer	count	frequency	

[171]	 for	 full	 MET	 locus,	 k-mer	 count	 frequency	 for	 MET	 exons	 13	 ÷	 15	 and	 coverage	

frequency	for	MET	exons	13	÷	15.	

As	test	sets,	we	used	subsets	of	WT	and	exon	14	skipping	MET	from	cell	lines	characterized	

by	a	physiological	MET	expression	(Table	1).	NN	performance	was	investigated	using	as	test	

set:	(i)	subsets	made	of	random	not	overlapping	subgroups	of	500,	1000	and	5000	reads,	

converted	in	16	k-mer	counts,	(ii)	k-mer	count	frequency	on	full	MET	locus,	(iii)	k-mer	count	

frequency	on	MET	exons	13	÷	15	and	(iv)	coverage	frequency	for	MET	exons	13	÷	15.	

The	 detection	 efficiency	 of	 METΔ14	 using	 16	 k-mers	 frequency	 counts	 showed	 best	

performances	 at	 500	 and	1000	 reads	 coverage,	Figure	13A,	B,	 as	 instead	 at	 5000	 reads	

coverage	of	all	the	different	test	sets	performed	in	the	same	way,	Figure	13C.	

 

Figure	13.	ROC	curve	for	NN	prediction.	(A)	Training	based	on	1000	reads	coverage	for	MET	

locus	and	test	with	a	coverage	of	500	reads.	(B)	Training	based	on	1000	reads	coverage	for	
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MET	locus	and	test	with	a	coverage	of	1000	reads.	(C)	Training	based	on	1000	reads	coverage	

for	MET	locus	and	test	with	a	coverage	of	5000	reads.	Grey	line	training	and	test	using	k-mer	

counts,	green	line	training	and	test	using	k-mer	counts	frequency,	blue	line	training	and	test	

using	k-mer	counts	frequency	only	for	exons	13	÷	15,	violet	line	training	and	test	using	coverage	

counts	frequency	only	for	exons	13	÷	15.	

2.1.1. Neural Network Validation and Discovery on TCGA Samples 

To	validate	the	METΔ14	discovery	potential	of	the	above-described	NN,	we	used	a	set	of	690	

RNAseq	samples	from	the	TCGA	bronchus	and	lung	dataset.	The	690	samples	were	manually	

inspected	using	 the	Broad’s	 integrative	genomics	viewer	(IGV)	 [172]	and	we	detected	17	

exon	14	skipping	events	(2.4%),	which	is	in	line	with	the	frequency	of	the	exon	14	skipping	

events	 observed	 in	 published	 literature	 [139,	 173].	We	 tested	 on	 this	 tumor	 set	 the	 NN	

trained	with	k-mer	counts	frequency,	which	predicted	4	samples	out	of	17	as	METΔ14,	but	

only	 one	 was	 a	 real	 exon	 skipping	 event	 (sensitivity	 5.88%,	 specificity	 99.5%).	 The	 NN	

trained	with	exons	13	÷	15	MET	k-mer	counts	frequency	improved	the	detection	of	METΔ14	

events,	9	out	of	17	(sensitivity	52.9%),	but	this	prediction	included	a	massive	 increase	of	

false	positives,	129	samples,	(specificity	81.3%).	The	best	results	were	obtained	using	the	

NN	trained	using	only	the	coverage	frequency	for	MET	exons	13	÷	15,	which	predicted	18	

skipping	 events,	 including	 all	 17	 true	 skipping	 events	 (sensitivity	 100%)	 and	 one	 false	

positive	(specificity	99.8%).	

Using	the	NN	trained	with	the	coverage	frequency	for	MET	exons	13	÷	15,	we	extended	the	

METΔ14	discovery	to	2605	TCGA	tumor	tissues;	Table	2.	

TCGA	Tissue	
#	Inspected	

Tissue	

#	Detected	

METΔ14	

#	Detected	False	

METΔ14	

Adrenal	gland	 10	 0	 0	

Bladder	 280	 1	 0	

Brain	 28	 0	 0	

Breast	 162	 0	 0	
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TCGA	Tissue	
#	Inspected	

Tissue	

#	Detected	

METΔ14	

#	Detected	False	

METΔ14	

Bronchus	and	lung	 690	 17	 1	

Cervix	(uterus)	 236	 0	 6	

Corpus	uteri	 109	 0	 4	

Esophagus	 165	 0	 0	

Hearth/mediastinum/pleura	 78	 0	 1	

Kidney	 435	 0	 3	

Pancreas	 89	 0	 0	

Skin	 288	 0	 1	

Soft	tissues	 35	 0	 0	

Table	2.	TCGA	samples	inspected	for	the	presence	of	METΔ14.	

We	 could	 detect	 only	 one	METΔ14	 in	 280	 bladder	 samples.	 Then,	we	 detected	 few	 false	

METΔ14	in	cervix,	corpus	uteri,	heart/mediastinum/pleura,	kidney	and	skin	samples,	Table	

2.	The	six	transcripts	detected	 in	cervix,	Table	2,	were	erroneously	detected	as	METΔ14,	

because	they	have	a	blurry	coverage	on	exons	13	÷	15,	Figure	14C.	However,	when	the	full	

MET	locus	is	observed,	it	is	clear	that	these	METΔ14	false	positives	are	completely	different	

type	of	transcripts.	A	shared	characteristic	of	these	transcripts	is	the	high	accumulation	of	

reads	in	the	second	intron	(approx.	chr7:116,715,690–116,717,329),	Figure	14A,	in	the	6th	

exon,	Figure	14B,	and	in	the	last	non-coding	MET	exon,	Figure	14D.		
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Figure	14.	METΔ14	false	positive	detected	in	cervix.	(a)	WT	MET	from	A549	RNAseq	sample	

(33	million	reads),	27,152	reads	mapping	on	MET	locus,	(b)	METΔ14	from	NCI-H596	RNAseq	

sample	(27	million	reads),	24,850	reads	mapping	on	MET	locus,	(c–h)	False	METΔ14.	(A)	Zoom	

in	the	2–3	exons	region.	(B)	Zoom	in	6th	exon	region.	(C)	Zoom	in	13–15t	exons	region.	(D)	

zoom	in	last	exon	region.	

The	 above	 observation	 also	 applies	 to	 the	 other	 false	METΔ14	 detected	 in	 corpus	 uteri,	

heart/mediastinum/pleura,	kidney	and	skin	samples	(Figure	15).		
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Figure	15.	METΔ14	false	positive	detected	in	corpus	uteri.	(a)	WT	MET	from	A549	RNAseq	

sample	(33	million	reads),	27152	reads	mapping	on	MET	locus.	(b)	METΔ14	from	NCI-H596	

RNAseq	sample	(27	million	reads),	24850	reads	mapping	on	MET	locus.	(c-f)	False	METΔ14	in	

corpus	uteri	samples.	(g)	False	METΔ14	in	heart/mediastinum/pleura	samples.	(h-	l)	False	

METΔ14	in	kidney	samples.	(m)	False	METΔ14	in	skin	samples. 

A	possible	explanation	could	be	that	we	are	observing	the	transcriptional	effect	of	a	LINE1-

MET	fusion,	which	was	 firstly	described	a	 few	years	ago	 in	triple	negative	breast	cancers	

[174].	We	further	investigated	this	point	searching	for	LINE1	alignment,	in	the	subset	of	MET	

reads,	where	 only	 one	 of	 the	 two	 pair-end	 reads	maps	 on	MET.	 Indeed,	 in	 10	 out	 of	 15	

samples,	 detected	 as	 characterized	 by	 a	 transcription	 peak	 in	 MET	 second	 intron,	 we	

detected	LINE1	mapping	read.	From	these	we	extracted	the	paired	reads	associated	with	

MET	reads,	i.e.,	only	one	read	of	the	pair	is	mapping	in	MET	locus.	We	blasted	[175]	these	

reads	on	a	LINE1	sequence	(chr1:62194249–62212928,	hg38)	and	 indeed,	some	of	 these	

reads	map	to	LINE1	sequence.	On	the	basis	of	the	MET	read	position	we	could	identify	the	
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putative	fusion	point	with	MET,	which	is	mainly	located	in	MET	intronic	regions	and	in	the	

last	non-coding	exon.	Unfortunately,	we	cannot	pair	the	TCGA	RNAseq	samples	to	genomics	

data	to	further	validate	the	presence	of	a	LINE1	insertion	on	the	basis	of	genome	sequencing	

data.	

2.2. Convolutional Neural Network (CNN) for the Detection of METΔ14 

To	detect	MET	exon	14	skipping	events,	we	constructed	a	CNN	made	by	a	1D	convolutional	

layer,	1D	Max	pooling	layer,	a	flat	fully	connected	dense	layer	with	50	nodes	and	an	output	

layer	with	one	node	(Figure	11C).	The	CNN	was	challenged	with	the	same	training	and	test	

set	used	for	the	previously	described	feed	forward	neural	network.	In	this	implementation,	

the	convolutional	layer	included	10	kernels,	for	more	information	see	Material	and	Method	

section.	 In	 Figure	 16,	 the	 METΔ14	 detection	 ability	 of	 CNN	 on	 the	 basis	 of	 different	

representation	of	the	MET	expression	data	are	reported.	

 

Figure	16.	ROC	curve	for	CNN	prediction.	(A)	16	k-mer	counts	frequency	for	whole	MET	exons.	

(B)	16	k-mer	counts	frequency	for	MET	13	÷	15	exons.	(C)	Coverage	frequency	for	MET	13	÷	15	

exons.	

The	results	are	organized	(Figure	16)	on	the	basis	of	the	type	of	input	data,	i.e.,	whole	MET	

exons	k-mer	counts	(Figure	16A),	MET	exons	13	÷	15	k-mer	count	frequency	(Figure	16B)	

and	 MET	 exons	 13–15	 coverage	 frequency	 (Figure	 16C).	 The	 best	 ratio	 between	 true	
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positive	and	false	positive	is	shown	for	all	kernels	using	test	samples	characterized	by	5000	

reads	 coverage.	 As	 also	 seen	 for	NN	 (Figure	13),	 the	 specificity	 progressively	 decreases	

when	the	coverage	is	reduced.	

2.2.1. Convolutional Neural Network Validation on Bronchus and Lung Samples 

We	 validated	 the	 CNN	model	 using	 the	 kernel	 100,	which	 is	 one	 of	 the	 best	 performing	

kernels	independently	by	the	coverage	of	the	test	set	(Figure	16).	The	validation	was	done	

on	the	690	TCGA	bronchus	and	lung	sample	manually	inspected	for	the	presence	of	METΔ14.	

We	tested	on	this	tumor	set	the	CNN	trained	with	k-mer	counts,	which	predicted	10	samples	

as	METΔ14,	 but	 only	 one	was	 a	 real	 exon	 skipping	 events	 (sensitivity	 5.88%,	 specificity	

97.6%).	The	best	results	were	obtained	using	the	CNN	trained	with	exons	13	÷	15	MET	k-

mer	 counts	 frequency.	All	 of	 the	16	 samples	predicted	as	METΔ14	belong	 to	 the	17	 true	

METΔ14	 present	 in	 the	 data	 set	 (sensitivity	 94.11%,	 specificity	 100%).	 Finally,	 the	 CNN	

trained	 using	 only	 the	 coverage	 frequency	 for	MET	 exons	 13	 ÷	 15,	 predicted	 8	 skipping	

events	 and	all	 of	 them	belong	 to	 the	 true	 skipping	events	 (sensitivity	47.05%,	 specificity	

100).	Since	we	observed	that	NN	was	detecting	some	false	positives	in	cervix	tumor	tissues	

(Figure	14),	we	evaluated	if	CNN	was	more	specific	than	NN.	CNN	trained	with	exons	13	÷	

15	MET	k-mer	counts	frequency	detects	the	same	false	positives	detected	by	NN	(Figure	14).	

2.3. Shallow sparsely Connected Autoencoders (SSCA) to Detect MET Non-Canonical 

Isoforms 

Our	group	have	recently	published	a	paper	on	the	use	of	SSCA	for	the	identification	of	hidden	

functional	regulatory	elements	in	single	cell	RNAseq	data	[159,	176,	177].	We	tested	this	type	

of	 autoencoder	 to	 see	 if	we	 could	depict	non-canonical	 isoforms	 from	 the	analysis	of	 the	

TCGA	samples	used	in	the	previous	paragraph.	The	SSCA	was	designed	to	take	as	input	k-

mer	count	frequency	or	coverage	frequency	of	MET	exons.	The	SSCA	hidden	layer,	i.e.,	latent	

space,	is	representing	MET	exons.	Input	nodes	are	only	connected	to	the	exon	nodes	they	are	

associated	(Figure	11B).	We	trained	the	SCA	with	the	2605	TCGA	samples	and	clustered	the	

latent	space	data	using	gridFLOW	[178].	To	estimate	the	stability	of	clusters	generated	using	

the	SSCA	latent	space,	we	compared	thousands	of	pairs	of	clusters	generated	by	SSCA	latent	
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space	clustering,	as	previously	described	by	us	[159].	The	rationale	of	this	approach	is	that,	

if	a	cluster’s	organization	is	conserved,	it	should	be	depicted	by	the	multiple	comparisons	of	

randomly	paired	latent	space	cluster	representations	[159].	The	best	results	were	obtained	

using	 normalized	 [179]	 MET	 coverage	 frequency	 data	 (Figure	 16A).	 Unfortunately,	 the	

stability	 of	 the	 clusters	 was	 very	 poor	 (Figure	 17A).	 Inspection	 of	 a	 randomly	 selected	

subset	of	 samples	associated	with	cluster	2	 (Figure	17B)	 suggests	 that	at	 least	 cluster	2	

seems	 to	 be	made	mainly	 of	 transcripts	 recalling	 the	 organization	 of	MET-LINE1	 fusion,	

which	we	have	described	in	previous	paragraphs.	

 

Figure	17.	Autoencoder	on	saver	normalized	data.	(A)	Clustering	results	of	the	latent	space	

trained	 with	 2605	 TCGA	 samples.	 (B)	 A	 limited	 number	 of	 samples	 (green	 group	 in	 A)	 is	
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characterized	the	presence	of	a	transcription	patter,	i.e.,	the	coverage	peak	in	intron	2,	which	

resembles	 the	presence	of	 a	LINE1-MET	 fusion.	 In	B,	 it	 is	 shown	a	 set	 of	 samples	 randomly	

picked	from	cluster	2.		

3. Conclusions 

We	used	MET	exon	14	skipping	as	a	case	study	for	the	detection	of	genetic	variants	in	cancer	

driver	genes	through	deep	learning.	In	recent	years,	a	lot	of	evidence	has	indicated	that	MET	

inhibitors	have	a	good	anti-tumor	effect	in	patients	with	MET	exon	14	skipping	mutation,	

suggesting	that	MET	exon	14	skipping	can	be	a	interesting	target	for	NSCLC	patients	[147,	

180].	Thus,	the	availability	of	effective	tools	for	the	detection	of	MET	exon	14	skipping	are	

needed	for	a	fast	identification	of	patients	suitable	for	MET	targeted	therapy.		

It	is	notable	that,	digging	into	the	published	literature,	all	the	found	exon	skipping	tools	use	

nucleotide	 sequence	 analysis	 to	 infer	 skipping	 events,	 and	 they	 are	 only	 able	 to	 predict	

skipping	events	in	a	generalist	way.	Since	we	could	not	find	any	tool	providing	the	detection	

of	a	unique	skipping	event	in	a	gene	over	a	large	cohort	of	specimens,	we	designed	specific	

neural	networks	for	the	identification	of	MET	exon	14	skipping,	using	transcript	expression	

information.		

We	designed	a	conventional	feed	forward	neural	network	(NN)	made	of	four	fully	connected	

hidden	layers	and	a	convolutional	neural	network	(CNN)	made	of	one	1D	convolutional	layer,	

one	1D	max	pooling	 layer	 and	 a	 fully	 connected	dense	 layer.	Although	we	performed	 an	

automated	optimization	of	the	hyperparameters,	the	prediction	efficacy	of	our	CNN	and	NN	

comes	from	the	special	attention	we	put	on	defining	the	optimal	representation	of	the	data	

for	each	architecture,	i.e	k-mer	counts	for	CNN	and	coverage	from	NN.	

The	NN	and	 the	CNN	 training	was	done	using	 the	RNAseq	data	of	 a	 lung	 cancer	 cell	 line	

expressing	amplified	form	of	the	wild	type	MET	(WT,	EBC-1),	and	a	gastric	cancer	cell	line	

expressing	exon	14	skipped	MET	(HS746T).	HS746T	cell	line	was	selected	because,	to	the	

best	 of	 our	 knowledge,	 it	 is	 the	 only	 cell	 line	 displaying	 amplification	 of	 MET	 exon	 14	

skipping	 isoform.	 MET	 gene	 amplification	 has	 been	 observed	 in	 about	 2–5%	 of	
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gastroesophageal	cancers	and	represents	an	oncogenic	driver	and	therapeutic	target	[181,	

182].	MET	exon	14	skipping	was	initially	described	in	NSCLCs	(caused	by	a	mutation	in	the	

splice	donor	 site	 in	 intron	14)	 and	afterwards	 reported	 in	 a	 variety	of	 tumors,	 including	

gastrointestinal	cancers,	suggesting	it	as	a	potential	mechanism	leading	to	MET	activation	

[183].	Therefore,	HS746T,	together	with	EBC-1,	were	invaluable	instruments	to	provide	a	

large	amount	of	data	for	the	NN/CNN	training.	Validation	was	done	instead	using	RNAseq	

data	from	lung	cancer	cell	lines	expressing	at	physiological	level	MET	(A549	expressing	WT	

MET	and	NCI-H596	expressing	exon	14	skipped	MET).	

Since	we	could	not	compare	our	models	with	respect	to	pre-existing	methods	for	MET	exon	

14	skipping,	we	manually	curated	a	set	of	TCGA	data	to	provide	an	objective	evaluation	of	

the	performance	of	our	tool.	Specifically,	we	manually	curated	a	cohort	of	WT	and	exon	14	

skipped	 samples	 made	 of	 the	 690	 RNAseq	 samples	 belonging	 to	 the	 TCGA	

(https://www.cancer.gov/tcga,	 accessed	 on	 1	March	 2020)	 bronchus	 and	 lung	 collection	

(1310	samples)	showing	a	MET	coverage	of	at	least	5000	reads.	Given	the	manual	curation	

of	this	dataset,	i.e.,	each	single	sample	was	inspected	on	IGV	browser	for	the	presence	of	MET	

exon	14	skipping,	it	represents	a	robust	instrument	to	quantify	the	predictive	performance	

of	our	neural	network	models.	

Skewed	datasets	are	not	uncommon	and	 the	MET	exon	14	skipping	detection	 is	a	 typical	

example.	Although	skewed	datasets	are	tough	to	handle,	our	models,	i.e.,	CNN	and	NN,	seem	

to	handle	this	issue	efficiently,	since	sensitivity	greater	than	94%	and	specificity	greater	than	

99%	are	reached	on	an	extremely	skewed	data	set	such	as	TCGA	bronchus	and	 lung	690	

samples	with	only	17	MET	exon	skipping	events	 (2.46%).	Notably,	 the	high	 sensitivity	 is	

obtained	by	CNN	with	a	training	based	on	k-mer	counts	spanning	among	MET	exon	13	and	

exon	15.	Instead,	in	the	case	of	the	NN	the	optimal	sensitivity	was	obtained	with	a	training	

based	on	coverage	data	encompassing	the	region	among	MET	exon	13	and	exon	15.	

Our	analysis,	using	both	CNN	and	NN,	on	2605	TCGA	tumors	(13	primary	sites,	Table	2)	

highlights	that	MET	exon	14	skipping	is	a	peculiar	event	of	lung	specimens.	Then,	mainly	in	

uterine	cancers,	we	detected	a	set	of	MET	exon	14	skipping	false	positives,	sharing	a	common	

feature:	an	unexpected	peak	of	coverage	in	the	MET	intron	2.	This	observation	brought	us	to	



	 47	

speculate	that	we	were	observing	a	transcriptional	signature	for	a	LINE1-MET	fusion	event	

[174].	This	hypothesis	has	been	supported	by	the	identification	of	MET	paired-end	reads,	

having	one	read	mapping	on	MET	and	the	other	on	LINE1	sequence.	Notably,	transcription	

of	 the	LINE1-MET	fusion	was	observed	 in	advanced	stages	of	cancer	 [174,	184],	but	very	

little	is	still	known	about	the	effect	of	the	LINE1-MET	chimera	in	cancer.		

At	 the	 present	 time,	 we	 cannot	 manage	 to	 eliminate	 LINE1-MET	 false	 positives,	 mainly	

because	we	do	not	have	enough	data	 to	 train	a	model	 to	detect	LINE1-MET	 fusion,	 to	be	

implemented	in	parallel	with	the	MET	exon	14	skipping	models.	However,	we	are	generating	

large	RNAseq	data	from	MCF7,	a	breast	cancer	cell	line	harboring	LINE1-MET	fusion	[174],	

to	build	a	specific	CNN	to	be	integrated	with	our	MET	exon	14	skipping	models,	to	improve	

their	specificity.	

Having	identified	more	than	one	artefactual	event	in	MET,	we	investigated	the	possibility	to	

discover	those	anomalous	events	by	the	integration	of	a	particular	type	of	deep	learning	tool,	

shallow	 sparsely	 connected	 autoencoders	 [159],	 with	 clustering	 techniques	 used	 in	

multicolor	cytometry.	Although	the	actual	implementation	of	the	SSCA	tool	could	be	further	

improved	 in	 terms	of	 its	precision	and	sensitivity,	 currently	we	were	able	 to	detect	 from	

TCGA	specimens	a	set	of	tumors	sharing	the	putative	LINE1-MET	fusion.	

Taken	together,	our	results	indicate	that	neural	networks	can	be	an	effective	tool	to	provide	

a	quick	classification	of	pathological	transcription	events.	However,	from	the	discovery	point	

of	view	there	is	still	some	work	to	be	done	to	obtain	an	effective	discovery	tool	using	sparsely	

connected	autoencoders. 

4. Materials and Methods 

4.1. Cell Lines 

A549	 (lung	 adenocarcinoma);	 NCI-H596	 (lung	 adenocarcinoma);	 Hs746T	 (gastric	

adenocarcinoma)	cell	 lines	were	purchased	from	ATCC	(Rockville,	MD,	USA);	EBC-1	(non-

small	cell	lung	cancer)	were	acquired	from	HSRRB	cell	bank	(Osaka,	Japan).	All	cells	were	
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kept	in	culture	for	less	than	4	weeks	and	used	between	passage	2	and	10.	Cells	were	grown	

in	recommended	media	(Sigma	Aldrich,	St.	Louis,	MO,	USA)	supplemented	with	50	units/mL	

penicillin	(Sigma	Aldrich,	St.	Louis,	MO,	USA),	50	mg/mL	streptomycin	(Sigma	Aldrich,	St.	

Louis,	MO,	USA),	2	mM	glutamine	(Sigma	Aldrich,	St.	Louis,	MO,	USA)	and	10%	Foetal	Bovine	

Serum	(Lonza	Sales	Ltd.,	Basel,	Switzerland)	as	indicated.	Cells	were	maintained	at	37	°C	in	

a	5%	CO2	atmosphere.	

4.2. Generating the Data for the Neural Network Training and Test Set 

We	generated	RNAseq	data	from	EBC-1	[101],	a	non-small	cell	lung	cancer	(NSCLC)	cell	line,	

harboring	MET	amplification	and	from	Hs746T,	a	gastric	cancer	cell	line,	harboring	amplified	

MET	exon	14	skipped	isoform	(METΔ14)	[138].	Furthermore,	we	have	performed	RNAseq	

on	human	 lung	adenocarcinoma	cell	 line	A549,	expressing	c-Met	 [185]	and	on	NCI-H596,	

derived	 from	 an	 NSCLC,	 expressing	 exon	 14	 skipped	MET	 [130].	 Both	 cell	 lines	 express	

physiological	levels	of	MET.	

Total	RNA	was	extracted	from	cell	lines	using	Trizol	reagent	(Invitrogen,	Carlsbad,	CA,	USA),	

following	 the	 manufacturer	 indication.	 Total	 RNA	 was	 quantified	 using	 the	 Qubit	 2.0	

fluorimetric	Assay	(Thermo	Fisher	Scientific,	Waltham,	MA,	USA)	and	sample	integrity,	based	

on	 the	 RIN	 (RNA	 integrity	 number),	 was	 assessed	 using	 an	 RNA	 ScreenTape	 assay	 on	

TapeStation	4200	(Agilent	Technologies,	Santa	Clara,	CA,	USA).	

Libraries	were	prepared	from	400	ng	of	total	RNA	using	the	RNAseq	(total	RNA	Full	length)	

sequencing	service	(Next	Generation	Diagnostics	srl)	which	included	rRNA-Globin	depletion,	

library	 preparation,	 quality	 assessment	 and	 sequencing	 on	 a	 NovaSeq	 6000	 sequencing	

system	using	a	paired-end,	300	cycle	strategy	(2	×	150)	(Illumina	Inc.,	San	Diego,	CA,	USA).	

Read	 were	 trimmed	 to	 remove	 adapters	 sequences	 using	 skewer	

(https://github.com/relipmoc/skewer	accessed	on	1	March	2021)	Read	were	mapped	using	

STAR	on	ENSEMBL	HG38	human	genome	assembly. 
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4.2.1. 16/31. k-mer Training Set 

The	training	set	for	the	neural	networks	(NN/CNN)	was	generated	using	the	cell	lines	with	

MET	 amplification:	 EBC-1	 and	 Hs746T.	 EBC-1	 and	 Hs746T	 reads	 were	 organized	 in	

subgroups	of	1000	reads,	randomly	selected	and	not	overlapping.	This	approach	generated	

a	large	set	of	samples	for	the	training	the	NN,	i.e.,	1447	subsets	for	EBC-1	and	846	for	Hs746T.	

Subsampled	 reads	were	 associated	 to	MET	 exons	 and	 converted	 in	 16/31	 k-mers	 using	

BFcounter.	

4.2.2. 16/31. k-mer Test Set 

The	 test	 set	 for	 the	 neural	 networks	 (NN/CNN)	was	 generated	 using	 the	 cell	 lines	with	

physiological	 MET	 expression:	 A549	 and	 NCI-H596.	 A549	 and	 NCI-H596	 reads	 were	

organized	 in	 subgroups	 of	 500,	 1000	 and	 5000	 reads,	 randomly	 selected	 and	 not	

overlapping.	Subsampled	reads	were	associated	with	MET	exons	and	converted	in	16/31	k-

mers	using	BFcounter	[186].	

4.2.3. Coverage Training and Test Set 

The	training	and	test	set	for	the	neural	networks	(NN/CNN)	was	generated	using	the	RNAseq	

data	used	for	the	16/31	k-mers	training	and	test	sets.	For	the	training,	reads	were	organized	

in	subgroups	of	1000	reads,	randomly	selected	and	not	overlapping,	for	the	test	set,	reads	

were	organized	in	subgroups	of	500,	1000	and	5000	reads.	Subsampled	reads	were	used	to	

calculate	coverage	associated	with	MET	exons	13,	14	and	15.	

4.3. TCGA RNAseq Datasets 

We	registered	a	TCGA	project	for	the	study	of	MET	exon	14	skipping	events,	to	obtain	access	

to	TCGA	raw	sequencing	data,	i.e.,	RNAseq	BAM	files.	Since	the	size	of	the	TCGA	transcription	

data	exceeds	200	TB,	we	progressively	downloaded	the	BAM	files	on	the	basis	of	the	cancer	

tissue	 locus.	 Then,	 from	 each	BAM	 file,	we	 extracted	 the	 reads	 encompassing	MET	 locus	

(chr7:116672196–116798377,	 hg38	 human	 genome	 assembly).	 We	 kept	 only	 samples	

where	 the	MET	 locus	 was	 covered	 by	 at	 least	 5000	 reads.	 To	 define	 5000	 reads	 as	 the	
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minimal	coverage	for	MET,	we	inspected	the	expected	coverage	for	exons	13,	14	and	15	in	

A549	(WT	MET	cell	line),	in	NCI-H596	(METΔ14	cell	line)	and	in	random	subsets	of	5000,	

1000,	500	and	250	reads	from	NCI-H596.	We	observed	that	the	detection	of	exon	14	skipping	

become	blurry	below	5000	 reads	 coverage.	Together	with	 the	MET	 linked	 reads	we	also	

extracted	the	MET	paired	reads,	where	only	one	of	the	two	reads	maps	on	MET	locus.	

4.4. Model Coding and Hyperparameter Selection for NN 

We	constructed	a	NN	made	of	6	layers.	The	input	layer	has	variable	size	depending	on	the	

type	of	input	(k-mers	or	coverage).	1st	and	2nd	hidden	layers	are	made	of	256	nodes,	3rd	

and	4th	are	made	of	128	nodes,	all	using	RELU	(rectified	linear	unit)	as	activation	function	

and	 0.1	 as	 dropout	 rate.	 The	 output	 layer	 is	made	 by	 1	 node,	 associated	with	 a	 sigmoid	

activation	function.	We	implemented	the	models	in	python	(version	3.7)	using	TensorFlow	

package	 (version	 2.0.0),	 Keras	 (version	 2.3.1),	 pandas	 (version	 0.25.3),	 numpy	 (version	

1.17.4),	matplotlib	(version	3.1.2),	sklearn	(version	0.22),	scipy	(version	1.3.3).	Optimization	

was	done	using	Adam	(Adaptive	moment	estimation),	with	 the	 following	parameters	 lr	=	

0.01,	beta_1	=	0.9,	beta_2	=	0.999,	epsilon	=	1e−08,	decay	=	0.0,	loss	=	‘mean_squared_error’.	

Hyperparameter	optimization	was	done	using	Talos	(https://github.com/autonomio/talos,	

accessed	on	01	January	2021),	which	is	an	automated	tool	to	define	the	optimal	combination	

of	the	hyperparameters.	Specifically,	Talos	takes	as	input	the	hyperparameter	space	to	be	

investigated.	 Then,	 Talos	 performs	 all	 possible	 combinations	 and	 selects	 the	 optimal	

configuration	of	the	hyperparameters.	

The	 trained	 NN	 is	 implemented	 in	 a	 docker	 container	 together	 with	 all	 tools	 needed	 to	

extract	MET	reads	from	fastq	data.	The	NN	can	be	used	for	the	discovery	of	METΔ14	using	

conventional	 RNAseq	 or	 MET	 targeted	 RNAseq.	 The	 tool	 can	 be	 requested	 for	 the	

corresponding	 author.	 It	 is	 provided	 free	 of	 charge	 to	 Accademia	 and	 non-profit	

organizations	for	research	use	only.	



	 51	

4.5. Model Coding and Hyperparameter Selection for CNN 

We	constructed	a	CNN	made	of	one	Convolutional	1D	layer,	characterized	by	64	filters	and	

the	following	kernel	sizes:	2,	5,	7,	10,	15,	50,	75,	100,	150,	200.	One	MaxPooling	1D	layer	with	

pool	size	of	2,	for	dimensionality	reduction.	One	dense	layer	with	activation	RELU	and	50	

nodes	and	one	dense	layer	with	activation	sigmoid	and	1	node.	We	implemented	the	models	

in	 python	 (version	 3.7)	 using	 TensorFlow	package	 (version	 2.0.0),	 Keras	 (version	 2.3.1),	

pandas	(version	0.25.3),	numpy	(version	1.17.4),	matplotlib	(version	3.1.2),	sklearn	(version	

0.22),	 scipy	 (version	 1.3.3).	 Optimization	 was	 done	 using	 Adam	 (Adaptive	 moment	

estimation)	using	the	following	parameters	lr	=	0.01,	beta_1	=	0.9,	beta_2	=	0.999,	epsilon	=	

1e−08,	decay	=	0.0,	 loss	=	 ‘mean_squared_error’.	Hyperparameter	optimization	was	done	

using	Talos	as	done	for	NN.	

4.6. Model Coding and Hyperparameter Selection for Shallow Sparsely Connected 

Autoencoders (SSCA) 

Autoencoders	learning	is	based	on	an	encoder	function	that	projects	input	data	onto	a	lower	

dimensional	 space.	 Then,	 autodecoder	 function	 recovers	 the	 input	 data	 from	 the	 low-

dimensional	 projections	 minimizing	 the	 reconstruction.	 We	 implemented	 the	 models	 in	

python	 (version	 3.7)	 using	 TensorFlow	 package	 (version	 2.0.0),	 Keras	 (version	 2.3.1),	

pandas	(version	0.25.3),	numpy	(version	1.17.4),	matplotlib	(version	3.1.2),	sklearn	(version	

0.22),	 scipy	 (version	 1.3.3).	 Optimization	 was	 done	 using	 Adam	 (Adaptive	 moment	

estimation)	with	the	following	parameters	lr	=	0.01,	beta_1	=	0.9,	beta_2	=	0.999,	epsilon	=	

1e−08,	decay	=	0.0,	 loss	=	 ‘mean_squared_error’.	RELU	(rectified	 linear	unit)	was	used	as	

activation	function	for	the	dense	layer.	
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Chapter 2 

Laniakea@ReCaS contribution 

	

1. Introduction 

1.1. Cloud computing for bioinformatics 

The	explosion	in	the	amount	and	types	of	data	produced	because	of	the	development	of	next	

generation	 sequencing	 is	 still	 ongoing.	 The	 increase	 in	 the	 quantity	 of	 data	 produced	 is	

constant	 and	 it	 is	 outpacing	 the	 progress	 of	 the	 hardware	 necessary	 to	 handle	 it,	 in	

particularly	the	progress	of	data	storage	solutions	[187,	188].	The	hardware	requirements	

to	store	and	analyze	very	 large	datasets	may	become	 increasingly	prohibitive	 for	smaller	

entities,	as	the	costs	to	produce	data	keep	diminishing.	This	shows	the	inefficiencies	of	the	

field	of	analysis	of	big	genomics	datasets,	where	sequencing	laboratories	upload	their	data	

to	sequencing	archives	from	which	bioinformaticians	download	them	and	analyze	them	on	

their	own	machine	[188].	Another	issue	that	can	limit	the	exploration	of	the	available	data	is	

the	fact	that	bioinformatics	workflows	are	complex,	dependent	on	the	specifics	of	the	dataset	

or	datasets	being	analyzed.	These	workflows	are	composed	of	various	different	tools,	some	

of	which	overlapping	in	functionality,	most	of	which	are	not	trivial	to	setup,	maintain	and	

employ	for	users	without	a	computational	background	[189].	This	complexity	both	 in	the	

tools	to	use	and	how	to	set	them	up	also	translates	into	bioinformatics	workflows	being	often	

difficult	 to	 reproduce	 [190].	 Cloud	 computing	 applied	 to	 bioinformatics	 offers	 a	 route	 to	

solve	these	issues	[188].	In	cloud	computing,	computing	services	are	rendered	available	on-

demand	over	the	Internet.	Three	basic	service	models	define	different	levels	of	control	that	

the	user	can	have	on	the	environment	of	the	remote	machines:	infrastructure	as	a	service	

(IaaS)	or	hardware	as	a	service	offers	full	control	over	the	amount	of	virtualized	resources	

being	provided	 and	over	what	 runs	 on	 the	machines	 even	 at	 the	 operating	 system	 level,	

allowing	for	great	customizability	in	the	to	the	user,	however	at	the	cost	of	ease	of	use,	as	the	

issues	related	to	setting	up	the	system	and	the	elements	of	the	workflow	would	still	remain;	
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platform	as	a	service	(PaaS)	removes	some	of	this	complexity	by	allocating	resources	to	the	

user	 according	 to	 what	 is	 needed	 automatically	 and	 dynamically,	 the	 control	 over	 the	

software	running	on	the	machine	is	also	more	limited,	not	extending	to	the	operating	system	

level	but	still	allows	modulation	of	what	software	is	installed	and	its	configuration;	software	

as	a	service	(SaaS)	is	the	most	simplified	model,	in	which	specific	tools	are	accessible	through	

specified	interfaces	like	web	clients	or	program	interfaces	with	usually	limited	configuration	

settings	 available.	 Examples	 of	 these	 models	 are	 all	 available	 to	 various	 extents	 for	

bioinformatics	 purposes	 [191]	 both	 in	 a	 specialized	manner	 and	 in	 the	 form	 of	 general	

services	like	cloud	storage	services,	but	one	particularly	promising	candidate	for	solving	the	

obstacles	 detailed	 previously	 is	 represented	 by	 cloud	 implementations	 of	 the	 Galaxy	

platform	[192].	

1.1.1. Galaxy 

Galaxy	is	a	browser-based	workflow	management	system	first	introduced	in	2005	with	the	

objective	of	allowing	experimental	biologists	with	no	programming	knowledge	to	explore	

genomic	data	by	facilitating	the	access	to	sequencing	data	integration,	annotation,	alignment	

and	querying	tools	in	a	user-friendly	interface	and	relying	on	genome	browsers	like	the	UCSC	

Genome	 Browser	 [193]	 for	 the	 visualization	 of	 the	 results	 on	 a	 genome	 track.	 Since	 its	

inception	the	platform	has	expanded	outside	of	genomics,	including	workflows	and	related	

tools	for	single-cell	omics,	metagenomics	and	metabolomics,	but	also	the	integration	with	

outside	 services,	 including	 cloud	 storage	 and	 even	 sees	 application	 in	works	 beyond	 the	

bioinformatics	domain	[194].	Galaxy	allows	the	user	to	setup	the	environment	they	need	for	

their	analysis,	installing	the	appropriate	tools	by	selecting	them	from	the	list	of	supported	

ones.	Using	the	tools	involves	selection	through	the	graphical	user	interface	in	the	browser	

with	selection	of	 the	parameters	that	the	tool	needs,	avoiding	the	usage	of	command	line	

interfaces.	 The	 built	 in	 history	 function	 keeps	 track	 of	 the	 operations	 and	 of	 the	 various	

intermediate	stages	of	the	analysis.	These	histories	can	be	saved	as	a	generalized	workflow	

represented	as	a	flowchart	connecting	each	step	of	the	analysis	to	the	next	one	with	arrows	

representing	the	piping	of	the	output	of	one	tool	as	input	for	the	next,	while	also	saving	the	

specific	version	of	each	tool	used,	allowing	for	better	reproducibility	of	an	analysis	on	other	

data.	These	workflows	can	be	exported	and	imported	by	other	users	that	can	then	reproduce	
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the	same	environment	required	to	run	them	by	installing	the	needed	tools	with	the	correct	

versions.	Galaxy	is	available	as	a	public	server	managed	directly	by	the	Galaxy	community	

but	can	also	be	ran	as	an	instance	on	private	servers,	with	hundreds	of	tools	compatible	with	

Galaxy	available	through	the	Galaxy	ToolShed.	The	public	server	has	limitations	both	in	the	

resources	available	to	the	user	and	in	the	possible	concerns	related	to	data	privacy,	which	

can	be	 very	 important	when	dealing	with	 clinical	 data.	 Setting	up	 a	private	 instance	 is	 a	

complicated	task,	so	Laniakea	was	developed	to	provide	Galaxy	on-demand	as	a	cloud-based	

PaaS	 [195].	 Laniakea@ReCaS	 is	 the	 first	 Laniakea-based	 instance	 and	 was	 launched	 in	

February	2020	by	the	Italian	node	of	the	ELIXIR	initiative	[196].		

2. Results 

I	was	involved	in	2	of	the	8	case	studies	for	the	Laniakea@ReCaS	service	[197],	Table	3.	

	

Table	 3.	 Summary	 of	 the	 allocated	 resources	 and	 some	 usage	 statistics	 for	 the	

Laniakea@ReCaS	use	cases.	(*This	instance	will	be	soon	updated	to	increase	compute	

and	storage	requirements).	
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2.1. Learning platform for undergraduate bioinformatics students (use case 6) 

Teaching	bioinformatics	to	a	broad	audience	requires	huge	computation	infrastructure	

and	a	massive	teaching	effort.	With	little	setup	effort	by	teachers,	the	Laniakea@ReCaS	

service	 provides	 to	 students	 the	 Galaxy	 web-based	 interface,	 allowing	 students	 to	

practice	with	bioinformatics	concepts	and	algorithms,	avoiding	the	steep	learning	curve	

needed	 to	use	UNIX	shell,	R	or	Python	environments.	The	platform	enabled	biology-

oriented	 students	 (without	 a	 specific	 computer	 science	background)	 to	 run	 complex	

workflows,	analyze	real	data	and	 learn	how	to	 interpret	 the	results	 in	a	 learning-by-

doing	environment.	

The	cloud-based	infrastructure	of	Laniakea@ReCaS	proved	to	be	an	invaluable	tool	for	

teaching	that,	due	to	the	COVID-19	pandemic.	Starting	from	publicly	available	databases	

or	custom	files	shared	with	students	through	the	Galaxy	file-sharing	system,	students	

were	able	to	follow	laboratory	lessons	in	teams	from	home,	as	well	as	practice	alone	

when	they	preferred	without	the	need	to	book	computer	rooms	at	the	University.	

Assessment	 tests	were	 performed	 in	 the	 same	 environment,	 providing	 the	 students	

with	 real-world	 data	 to	 analyses,	 evaluating	 the	 knowledge	 acquired,	 and	 the	

competence	developed	and	the	skills	mastered	by	students	at	the	end	of	the	course.	

The	analysis	history	logbook	provided	by	Galaxy	is	particularly	interesting;	indeed,	it	

allowed	us	to	evaluate	the	progress	of	each	student	step	by	step,	promptly	identifying	

points	that	showed	specific	difficulties	during	lectures	and	exercises,	and	to	check	for	

cheating	during	exams.	

To	 allow	 concurrent	 practical	 exams	 for	 more	 than	 30	 students	 effortlessly,	 we	

developed	a	custom	procedure	to	replicate	Galaxy	virtual	machine	 images	(including	

user	authentication	data	and	shared	files).	The	course	contributed	to	the	realization	of	

the	 objectives	 of	 the	 Biological	 Sciences	 Course,	 providing	 the	 students	 with	 basic	

knowledge	 in	 the	 field	 of	 bioinformatics.	 The	 Laniakea@ReCaS	 service	was	 used	 by	

students	and	teachers	to	perform	simple	tasks	(like	aligning	two	protein	sequences)	as	

well	 as	 entire	 NGS	 pipelines	 as	 RNA-seq,	 ChIP-seq,	 variant-calling,	 including	 some	

downstream	analysis	like	GO	enrichment	and	KEGG	pathway	analysis.	
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2.2. Porting rCASC (reproducible classification analysis for single cells) to Galaxy: a 

complete analysis workflow facilitating single-cell RNAseq data analysis (use case 7) 

Single-cell	 RNA-seq	 (scRNAseq)	 is	 a	 very	 powerful	 instrument	 to	 depict	 the	 overall	 cell	

complexity	of	healthy	and	disease	tissues	[198].	scRNAseq	has	today	many	different	facets,	

spanning	from	full	transcripts	single-cell	sequencing	[199]	to	spatial	transcriptomics	[200]	

via	droplet-based	technology	[201].	Different	types	of	scRNAseq	methods	require	dedicated	

data	 analysis	workflows,	which	 often	 are	 not	 user-friendly	 enough	 to	 be	 handled	 by	 life	

scientists	with	limited	coding	skills.	rCASC	[159,	202,	203]	was	developed	at	the	University	

of	Turin	to	provide	a	friendly	environment	to	life	scientists	for	the	analysis	of	multiplatform	

scRNAseq,	granting	 functional	and	computational	reproducibility	[204].	rCASC	provides	a	

complete	set	of	analysis	tools	and	pipelines	allowing:	i)	conversion	of	raw	data	in	count	table,	

ii)	 cells’	 quality	 control,	 iii)	 preprocessing,	 iv)	 normalization,	 v)	 clustering,	 vi)	 cluster-

specific	 markers	 detection,	 vii)	 biological	 knowledge	 extraction	 [159].	 One	 of	 the	

peculiarities	of	rCASC	is	the	possibility	to	evaluate	clusters’	robustness	via	the	cell	stability	

score	(CSS)	[203].	The	88	tools	and	functions	of	the	rCASC	workflow	are	currently	packaged	

as	Docker	containers,	while	input,	output	and	tools	are	managed	through	R	scripts.	In	this	

use	case,	we	are	at	work	making	the	whole	workflow	compatible	with	Galaxy	leveraging	the	

Laniakea@ReCaS	service	and	are	currently	at	one-third	of	the	effort.	For	example,	we	have	

recently	finished	the	porting	in	Galaxy	of	the	new	rCASC	data	mining	instrument	based	on	

Sparsely	Connected	Autoencoders	(SCA)	[159].	This	mining	tool	allows	the	identification	of	

elusive	players	of	cell	clusters	formation,	such	as	transcription	factors	and	miRNAs.	CSS	and	

SCA	 require	 the	execution	of	multiple	 clustering	 jobs,	making	 it	difficult	 to	perform	such	

tasks	 onto	 conventional	 laptops.	 The	 Galaxy	 implementation	 of	 rCASC,	 which	 we	 are	

developing	at	Laniakea@ReCaS,	offers	at	the	same	time	a	user-friendly	environment	and	the	

possibility	to	customize	Galaxy	instances	optimized	for	this	specific	analytical	task	and	the	

dataset	under	analysis.		
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3. Conclusions 

Laniakea@ReCaS	provides	researchers	with	a	ready-to-use	Galaxy	environment	backed	by	

suitable	computational	and	storage	resources	to	handle	their	data	analysis	needs.	As	such,	

the	service	represents	an	example	of	a	straightforward	access	channel	to	the	computational	

resources	 provided	 by	 scientific	 cloud	 facilities	 and	 infrastructures,	 a	 channel	 that	

conveniently	hides	the	complexity	of	the	underlying	software	and	hardware	layers.		

One	of	the	defining	features	of	the	service,	as	it	emerges	from	most	of	the	reported	use	cases,	

appears	 to	 be	 its	 customizability,	 that	 is	 the	 possibility	 for	 the	 user	 to	 freely	 and	 easily	

configure,	modify,	and	manage	the	Galaxy	environment.	As	such,	this	feature	represents	one	

of	the	most	notable	differences	between	a	Galaxy	on-demand	service	like	Laniakea@ReCaS	

and	a	classic	Galaxy	public	instance.	Perhaps,	the	most	interesting	outcome	made	possible	

by	this	feature,	one	that	we	did	not	fully	anticipate	when	Laniakea@ReCaS	was	launched,	is	

that	the	service	is	being	actively	used	as	a	platform	to	quickly	develop	and	make	available	or	

more	accessible	to	the	community	novel	Galaxy	based	services	as	rCASC	(use	case	7).		
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Chapter 3 

Experimental Immunology collaboration 

These	analyses	are	part	of	two	papers	in	which	I	am	coauthor	(Devan	et	al.	and	Chancellor	et	

al.),	which	are	currently	under	review.	

1. Introduction 

1.1. Innate and Adaptive Immune Systems 

The	immune	system	represents	the	defense	of	the	body	against	pathogens,	toxins	and	altered	

cells	 like	cancer	cells	 [205].	The	 immune	system	 is	 split	between	 two	aspects,	 the	 innate	

immune	system	and	the	adaptive	immune	system,	which	interact	with	each	other	heavily.	

The	 innate	 immune	 system	 is	 the	 first	 layer	 of	 defense	 against	 pathogens,	 providing	 a	

response	during	 the	 first	hours	and	days	after	exposure,	 and	 it	 includes	 constitutive	and	

inducible	 mechanisms.	 Constitutive	 mechanisms	 are	 always	 active	 without	 requiring	 a	

stimulus,	 like	 the	physical	 and	chemical	barriers	provided	by	 the	 skin,	mucus,	 saliva	and	

stomach	 acids.	 Inducible	 innate	 immunity	 on	 the	 other	 hand	 is	 a	 host	 of	 cell-mediated	

responses	that	activate	when	the	constitutive	mechanisms	aren’t	enough.	These	mechanisms	

involve	cells	like	macrophages,	neutrophils,	eosinophils,	basophils,	mast	cells	and	dendritic	

cells,	that	carry	conserved	germline-encoded	pattern-recognition	receptors	(PRRs)	such	as	

Toll-like	 receptors,	 which	 are	 able	 to	 recognize	 highly	 conserved	 regions	 in	 microbial	

components	called	pathogen-associated	molecular	patterns	 (PAMPs),	with	different	PRRs	

being	specific	for	different	PAMPs	[206].	The	binding	of	the	PRRs	to	their	target	PAMPs	leads	

to	the	production	of	cytokines	and	chemokines	that	enable	the	attraction	of	other	immune	

cells	to	the	site	of	infection	and	contribute	to	the	activation	of	the	adaptive	immune	system	

[207].	The	adaptive	system	provides	a	slower	line	of	defense	than	the	innate	immune	system,	

requiring	weeks	 to	be	engaged	 [205],	however	 it	offers	high	specificity	and	 the	ability	 to	

conserve	 a	 memory	 of	 the	 immunological	 response.	 It	 is	 mediated	 by	 two	 cell	 types,	 B	

lymphocytes	or	B	cells	and	T	lymphocytes	or	T	cells.	Molecules	that	are	recognized	by	these	

cells	are	called	antigens	and	both	B	cells	and	T	cells	are	able	to	recognize	a	wide	range	of	
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antigens	while	also	retaining	high	specificity	in	their	response	thanks	to	their	receptors,	the	

BCR	and	the	TCR	respectively,	which	are	formed	through	the	somatic	recombination	of	the	

DNA	segments	composing	them,	allowing	the	antigen-binding	site	to	be	unique	[205].	B	cells	

generate	their	unique	BCRs	during	development	in	the	bone	marrow,	from	which	derives	the	

B	of	B	 cells,	 through	 recombination	of	 the	 immunoglobulin	heavy	and	 light	 chains	which	

compose	antibodies,	of	which	the	BCR	is	a	membrane	bound	form	of.	Each	cell	produces	only	

antibodies	with	the	same	antigen-binding	site,	in	accordance	with	Burnet’s	theory	of	clonal	

selection,	with	only	one	of	the	alleles	being	expressed	and	the	other	silenced	through	the	

process	known	as	allelic	exclusion	[208-210].	In	the	bone	marrow	B	cells	that	present	BCRs	

with	specificity	for	self-antigens	are	removed	from	the	repertoire	of	B	cells	through	negative	

selection.	 The	 B	 cells	 surviving	 negative	 selection	 migrate	 through	 the	 bloodstream	 to	

secondary	and	tertiary	lymphoid	organs	in	which	they	can	encounter	their	antigens.	After	

experiencing	 their	 antigens	 B	 cells	 undergo	 activation,	 proliferate	 and	 differentiate	 into	

either	effector	cells	and	eventually	plasma	cells	or	memory	cells.	Effector	cells	can	secrete	

soluble	antibodies	and	their	maturation	endpoint	is	plasma	cells,	which	are	large	cells	that	

continuously	secrete	antibodies	and	lose	the	ability	to	proliferate	further	[208].	The	secreted	

antibodies	 are	 able	 to	 inactivate	 viruses	 and	 toxins	 but	 are	 also	 the	 classical	 pathway	of	

activation	for	the	complement	cascade,	which	can	lead	to	results	like	inflammation,	lysis	of	

the	target	or	opsonization,	tagging	the	target	for	phagocytosis	[211,	212].	Memory	B	cells	

persist	after	the	elimination	of	the	antigen	and	are	able	to	be	activated	by	their	antigen	much	

faster	than	other	B	cells,	leading	to	a	more	rapid	and	effective	response	to	a	second	infection.	

1.1.1. T cells 

T	 cells	 derive	 from	multipotent	 hematopoietic	 stem	 cells	 in	 the	 bone	marrow,	 however	

instead	of	maturating	in	the	bone	marrow,	T	cell	precursors	migrate	through	circulation	to	

the	thymus	where	they	mature,	which	is	the	reason	for	the	name	T	cell.	During	maturation	

in	the	thymus,	T	cells	are	known	as	thymocytes.	The	T	cell	receptor	(TCR)	is	the	mediator	of	

T	cell	activation	and	it’s	a	heterodimer	either	of	one	a	and	one	b	chain	in	ab	T	cells	or	of	one	

g	and	one	d	chain	in	gd	T	cells	and	recognizes	antigens	in	complex	with	an	antigen-presenting	

cell,	 which	 is	 able	 to	 present	 to	 the	 surface	 immunogenic	 molecules	 that	 are	 normally	

localized	intracellularly,	allowing	T	cells	to	detect	antigens	that	are	within	cells	instead	of	



	 60	

only	on	the	surface	like	B	cells	[208].	Like	with	the	antibodies	in	B	cells,	T	cells	generally	only	

produce	TCRs	with	one	type	of	antigen-binding	site.	The	TCR	is	rearranged	in	the	thymus	

and	the	cells	undergo	a	positive	selection	step	based	on	the	ability	of	their	TCRs	to	recognize	

self-antigens	in	complex	with	the	antigen-presenting	molecules,	however	if	the	reaction	is	

too	strong	they	undergo	apoptosis,	providing	also	a	negative	selection	step.	Mature	Naïve	T	

cells	 migrate	 to	 secondary	 or	 tertiary	 lymphoid	 organs	 where	 they	 can	 encounter	 their	

antigens	 associated	 to	 the	 appropriate	 antigen-presenting	 molecules	 on	 the	 surface	 of	

antigen	presenting	cells	 like	dendritic	cells	 [213],	which	starts	their	activation,	 leading	to	

clonal	expansion	and	differentiation	into	effector	and	memory	T	cells,	in	some	cases	causing	

the	T	cell	to	move	to	the	site	of	infection	to	help	eliminating	the	target	either	through	direct	

killing	in	the	case	of	cytotoxic	T	cells	or	by	activating	macrophages	or	B	cells	in	the	case	of	

helper	T	cells	[205,	214].	

1.1.1.1. T cell receptor 

As	described	before,	 the	T	 cell	 receptor	 is	 a	heterodimer	 formed	of	 two	different	 chains,	

either	one	a	and	one	b	chain	in	ab	T	cells	or	one	g	and	one	d	chain	in	gd	T	cells,	linked	by	a	

disulfide	 bond.	 These	 chains	 all	 share	 a	 similar	 structure,	 being	 composed	 of	 a	 constant	

region	C,	a	variable	region	V	and	a	joining	region	J,	with	the	addition	in	the	case	of	the	b	and	

d	chains	of	a	diversity	region	D	(Figure	18).	In	the	germline	DNA	the	genes	encoding	for	all	

the	 chains	 carry	 multiple	 possible	 segments	 for	 these	 regions	 and	 during	 somatic	

recombination	a	single	segment	is	selected	for	each	region	in	each	chain	in	every	developing	

T	cell,	except	in	the	case	of	the	D	region	of	d	chains	in	gd	T	cells,	where	multiple	D	segments	

can	be	selected.	The	V	segments	for	each	chain	are	separated	in	superfamilies	that	are	highly	

similar	within	 their	members,	 with	 variability	 between	 them	 being	 concentrated	 in	 two	

regions	called	CDR1	and	CDR2,	which	form	loops	that	mainly	make	contact	with	the	antigen-

presenting	molecule	in	the	antigen-antigen-presenting	molecule	complex	[215-217].		

Specificity V segments J segments D segments 

a	chain	 ~70	 61	 0	

b	chain	 52	 13	 2	
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Specificity V segments J segments D segments 

g	chain	 14	 5	 0	

δ	chain	 8	 4	 3	

Table	4.	Number	of	TCR	chain	gene	segments	contributing	to	combinatorial	TCR	loop	diversity	

for	each	chain.	

	

Figure	18.	Rearrangement	of	the	a	and	b	chains	into	an	ab	TCR.	Figure	from	[205].	

A	third	CDR	region,	the	CDR3,	is	hypervariable	and	the	main	source	of	variability	of	the	TCR	

and	is	 found	in	the	 junction	between	the	V	and	J	regions,	 including	the	D	region	between	

them	in	the	case	of	b	and	d	chains.	The	CDR3	forms	another	loop	in	the	protein	that	makes	

contact	with	the	antigen	bound	in	the	antigen-antigen-presenting	molecule	complex	and	is	a	

major	driver	of	antigen	specificity	[217].	The	role	of	the	CDR3	loops	in	recognizing	antigens	

requires	them	to	be	highly	variable	to	be	able	to	target	a	wide	variety	of	antigens	with	high	

specificity.	 The	 variety	 afforded	 by	 the	 selection	 of	 single	 segments	 out	 of	 the	 various	

possibilities	for	the	two	or	three	regions	contributing	to	the	CDR3	is	defined	combinatorial	

diversity	 (Table	4),	 however	 another	 CDR3	 variability	 component	 is	 found	 in	 junctional	
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diversity.	Junctional	diversity	is	diversity	that	arises	due	to	the	loss	and	addition	of	random	

nucleotides	at	the	interfaces	between	the	V,	 J	and,	when	present,	D	regions.	Exonucleases	

may	 remove	 some	 nucleotides	 during	 the	 joining	 process,	 while	 deoxyribo-nucleotidyl	

transferases	 (TdT)	 can	 add	 random	 nucleotides	 called	 N	 nucleotides	 and	 in	 some	

rearrangement	cases	some	nucleotides	may	shift	from	one	DNA	strand	to	the	other	in	the	

location	of	the	cut	between	the	two	DNA	strands,	causing	palindromic	sequences	called	P	

nucleotides	[205,	218].	The	rearranged	TCRs	are	tested	for	their	ability	to	recognize	self-

peptide-antigen-presenting	 molecule	 complexes	 in	 the	 thymus	 and	 eliminated	 if	 their	

reaction	is	too	weak	or	too	strong	and	due	to	allelic	exclusion	usually	only	one	of	the	alleles	

for	the	chains	is	expressed,	however	cases	of	double	expression	for	a	chains	are	relatively	

frequent,	estimated	at	~30%	at	the	transcript	level	and	~10%	at	the	surface	expression	of	

the	protein	level	[219].	

1.1.1.2. MHC-restricted T cells 

The	vast	majority	of	T	cells	are	ab	TCR	T	cells	that	recognize	antigens	in	complex	with	Major	

Histocompatibility	Complex	(MHC)	class	I	or	class	II,	which	are	highly	polymorphic	antigen-

presenting	molecules	[205].	These	T	cells	are	defined	as	conventional	T	cells,	compared	to	

the	 unconventional	 T	 cell	 subsets	 which	 recognize	 antigens	 bound	 to	 other	 antigen-

presenting	 molecules.	 Two	 main	 populations	 of	 MHC-restricted	 cells	 can	 be	 defined	 by	

considering	the	expression	of	the	co-receptors	CD4	and	CD8.	The	expression	of	these	two	co-

receptors	can	be	tracked	during	maturation	of	the	T	cells	in	the	thymus,	where	they	start	as	

double-negative	 thymocytes	 before	 TCR	 rearrangement,	 and	 convert	 in	 double-positive	

thymocytes	 during	 the	 rearrangement	 process	 and	 undergo	 rapid	 proliferation	 [205].	

During	positive	selection	these	cells	lose	the	expression	of	one	of	the	co-receptors,	remaining	

as	single-positive	thymocytes	which	will	mature	into	single-positive	Naïve	T	cells.	CD8+	T	

cells	recognize	short	peptide	antigens	 in	complex	with	MHC	class	 I,	which	 is	 found	on	all	

nucleated	cells.	These	cells	are	also	called	cytotoxic	T	cells	because	after	stimulation	they	

undergo	rapid	proliferation	and	start	producing	cytotoxic	granules	containing	granzymes	

and	perforins,	resulting	in	the	death	of	the	targeted	cell.	CD4+	T	cells	recognize	antigens	in	

complex	with	MHC	class	II,	which	is	only	found	on	the	surface	of	cells	specialized	in	antigen	

presentation,	like	dendritic	cells.	The	main	role	of	CD4+	T	cells	is	of	helper	T	cells,	supporting	
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other	immune	cell	subsets	in	their	duties	by	releasing	cytokines	and	different	subtypes	(Th1,	

Th2,	Th9,	Th17,	Th22	and	Treg)	of	CD4+	T	cells	can	be	defined	depending	on	what	cytokines	

they	release	[220].		

1.1.1.2.1. Memory T cells functional maturation 

During	functional	maturation	the	long-lived	memory	cells	of	the	classical	T	cell	subsets,	both	

CD8+	and	CD4+,	can	be	split	into	four	main	populations:	Naïve,	Central	Memory	(CM),	Effector	

Memory	 (EM)	 and	 Terminally	 Differentiated	 Effector	 Memory	 re-expressing	 CD45RA	

(TEMRA)	[214,	221,	222].	Naïve	T	cells	are	antigen-inexperienced	cells	located	in	secondary	

lymphoid	organs	like	lymph	nodes	and	after	antigen	encounter,	they	can	transition	to	either	

Central	 Memory	 or	 Effector	 Memory	 depending	 on	 cytokine	 stimulation	 and	 evidence	

suggests	that	TCR	signaling	strength	also	plays	a	factor,	with	weaker	TCR	signaling	leading	

to	CM	rather	 than	EM	and	CM	being	 cells	 that	were	arrested	 in	 an	 intermediate	 stage	of	

differentiation	due	to	suboptimal	stimulation	[221,	223].	CM	cells	home	preferentially	to	the	

lymph	nodes	and	they	show	very	low	effector	capabilities,	but	compared	to	Naïve	cells	they	

have	higher	sensitivity	 to	antigen	restimulation,	after	which	 they	show	high	proliferative	

capacity	and	are	able	to	differentiate	efficiently	to	effector	cells	[221].	EM	cells	on	the	other	

hand	migrate	 to	 peripheral	 tissues	 and,	 as	 the	 name	 suggests,	 show	 immediate	 effector	

function,	but	they	are	equipped	with	reduced	proliferative	capacity	[221].	This	suggests	a	

model	in	which	EM	cells	manage	the	first	response	to	a	pathogen	while	CM	cells	proliferate	

and	 differentiate	 into	 a	 second	 wave	 of	 effector	 cells	 [214].	 TEMRA	 cells	 are	 a	 highly	

differentiated	 subset	 of	 EM	 cells	 that	 have	 very	 high	 effector	 potential	 but	 very	 low	

proliferative	capabilities	due	to	having	short	telomeres	and	approaching	a	senescent	state,	

suggesting	 that	 the	 EM	 cells	 have	 to	 undergo	 repetitive	 proliferation	 to	 reach	 this	 stage	

[224].	These	different	populations	can	be	tracked	by	following	the	surface	expression	of	the	

marker	 CC	 motif	 chemokine	 receptor	 7	 (CCR7),	 which	 facilitates	 homing	 to	 secondary	

lymphoid	organs,	and	of	two	isoforms	of	CD45,	CD45RA	and	CD45R0	(or	CD45RO).	Naïve	

and	CM	T	cells	reside	in	lymph	nodes	and	are	CCR7+,	however	Naïve	cells	are	CD45RA+,	while	

CM	cells	are	CD45R0+.	EM	cells	are	more	likely	to	be	found	in	tissues	than	in	lymphoid	organs,	

so	it’s	not	surprising	that	they	are	CCR7-	but	like	CM	cells	they	are	CD45R0+.	TEMRA	cells	are	

CCR7-	like	EM	cells	but	they	switch	back	to	CD45RA+	(Figure	19)	[222].	Other	markers	like	
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KLRG1,	PD1,	CD57,	CD31,	CD27	and	CD28	can	provide	additional	insight	in	the	proliferative	

history	and	potential	of	the	cells	due	to	the	relationship	between	their	expression	and	the	

length	of	the	telomeres	(Figure	19)	[222].	

	

Figure	19.	 Expression	of	 surface	markers	during	memory	T	 cell	 functional	maturation	and	

telomeres	length.		Figure	from	[222].	

1.1.1.3. CD1-restricted T cells 

CD1-restricted	T	cells	recognize	lipid	antigens	in	complex	with	the	CD1	family	of	MHC	class-

I-like	molecules.	CD1	is	a	family	of	molecules	composed	of	5	members	which	are	invariant	

or	 display	 limited	 polymorphism	 [225].	 Of	 the	 5	members	 of	 this	 family,	 4	 are	 antigen-

presenting	molecules	divided	in	two	groups	based	on	sequence	homology:	group	1	is	made	

of	CD1a,	CD1	and	CD1c	and	group	2	is	made	of	only	CD1d	[226].	The	fifth	member	of	this	

family,	 CD1e,	 is	 also	 part	 of	 group	 1	 but	 it	 is	 not	 expressed	 on	 the	 cell	 surface	 and	 it’s	

considered	to	be	involved	in	the	processing	of	the	lipid	antigens	and	in	the	loading	of	the	

antigens	on	the	antigen-presenting	members	of	the	family	[227,	228].	Members	of	the	group	

1	 of	 CD1	 molecules	 are	 expressed	 only	 on	 thymocytes	 and	 cells	 specialized	 in	 antigen	

presentation	 like	 dendritic	 cells,	 while	 CD1d	 is	 more	 widely	 expressed,	 even	 on	 non-
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hematopoietic	cells	[229].	Group	1-restricted	T	can	be	CD4+,	CD8+	or	double-negative	and	

are	 known	 mainly	 for	 binding	 microbial	 lipid	 antigens	 derived	 from	 mycobacteria	 like	

Mycobacterium	 tuberculosis	and	Mycobacterium	 leprae,	 but	 can	 also	 commonly	 recognize	

self-lipids	 and	 have	 been	 implicated	 in	 autoimmune	 disorders	 [230,	 231].	 After	 antigen	

stimulation,	group	1-restricted	cells	undergo	clonal	expansion	and	show	cytotoxic	effector	

functions	 [226].	 CD1d-restricted	 cells	 are	 also	 CD4+,	 CD8+	 or	 double-negative,	 they	 are	

known	as	Natural	Killer	T	(NKT)	cells	due	to	being	often	CD161+	and	are	classified	into	two	

types.	 Type	 I	 NKT	 cells	 are	 called	 invariant	 NKT	 (iNKT)	 cells	 due	 to	 always	 having	 an	

invariant	TCR	a	chain	made	of	TRAV24	and	TRAJ18	paired	to	only	a	few	possible	b	chain	

combinations	[226].	These	cells	are	considered	innate-like	T	cells	as	they	represent	a	hybrid	

between	adaptive	and	innate	 immunity	due	to	their	 limited	TCR	repertoire	pushing	them	

closer	to	the	germline-encoded	innate	PRRs,	due	to	presenting	immediate	effector	capacity	

without	establishment	of	immunological	memory	and	due	to	the	ability	to	respond	to	innate	

signals	independently	of	TCR	stimulation	[227,	232].	The	first	antigen	known	for	iNKT	cells	

was	αGalCer,	produced	by	Agelas	mauritianus,	a	marine	sponge	[233].	The	involvement	of	

iNKTs	in	the	immune	response	shows	both	protective	and	detrimental	effects,	for	example	

in	autoimmune	diseases	and	numerical	or	 functional	deficiencies	of	 iNKT	cells	have	been	

reported	in	some	tumors	[234].	Type	II	NKT	cells	are	much	more	heterogeneous	in	their	TCR	

composition	than	type	I	and	less	is	known	about	them,	including	specific	antigens	capable	of	

leading	to	their	identification.	Type	II	NKT	cells	are	not	stimulated	by	αGalCer	and	in	tumor	

models	 they	 have	 been	 suggested	 to	 be	 implicated	 in	 the	 suppression	 of	 tumor	

immunosurveillance	[235,	236].	

1.1.1.4. γδ TCR+ T cells 

T	 cells	 carrying	 a	 gd	 TCR	 compose	 between	 0.2	 and	 20%	 of	 adult	 T	 cells	 and	 are	 a	

heterogenous	 group	 that	 displays	 reactivity	 to	 a	 diverse	 set	 of	 antigens	 associated	with	

various	antigen-presenting	molecules	[237,	238].	They	are	considered	by	some	to	be	a	cross	

between	innate	and	adaptive	immune	systems	or	outright	part	of	the	innate	immune	system	

because	of	 the	rapidity	and	strength	of	 their	 response	 to	stimulation	and	of	 their	 limited	

combinatorial	TCR	diversity	due	to	the	low	number	of	possible	chain	segments	(Table	4),	
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with	 only	 some	 of	 the	 V	 segments	 of	 the	 g	 chain	 encoding	 for	 functional	 TCRs	 and	 the	

presence	of	preferential	pairings	[239-241].	The	TCR	V	gene	selection	on	the	d	chain	and	the	

pairing	between	the	V	genes	expressed	in	the	g	and	the	d	chains	can	provide	a	method	to	

differentiate	 between	 different	 subsets.	 Cells	 carrying	 the	 pairing	 of	 TRGV9	 and	 TRDV2	

(Vg9Vδ2)	 represent	 the	 main	 subset	 of	 gd	 T	 cells	 in	 peripheral	 blood,	 recognize	

phosphorylated	metabolites	bound	to	butyrophilin	3A	proteins	[238,	240]	and	have	been	

shown	to	possess	anti-tumor	activity	[242,	243].	Cells	expressing	TRDV3	(Vδ3)	represent	a	

smaller	subset	found	in	liver	and	gut	epithelium	that	are	expanded	in	cases	of	B	cell	chronic	

lymphocytic	 leukemia	 and	 include	 some	 cells	 that	 are	 CD1d-restricted	 or	 MHC	 class	 I-

restricted	[244,	245].	The	subset	of	cells	expressing	TRDV1	(Vδ1)	is	the	most	prominent	in	

tissues,	especially	the	mucosa	[239,	246].	Vδ1	cells	have	a	broad	range	of	antigens	they	show	

reactivity	to,	presented	by	different	antigen-presenting	molecules	like	CD1d,	CD1c	and	other	

MHC-like	 molecules	 [238].	 They	 are	 also	 a	 prominent	 population	 within	 the	 gd	 T	 cells	

infiltrating	 solid	 tumors,	 however	 their	 influence	 on	 tumors	 is	 controversial,	 as	 they’ve	

showed	both	tumor-suppressing	capacity	and	pro-tumor	effects,	for	example	through	IL-17	

production	leading	to	a	tumor-promoting	microenvironment	[241,	247-249].	

1.1.1.5. MR1-restricted T cells 

MHC	class	I-related	protein	1	(MR1)	is	a	monomorphic	antigen-presenting	molecule	similar	

to	 MHC	 class	 I	 that	 is	 transcribed	 ubiquitously	 but	 with	 low	 surface	 expression	 due	 to	

needing	 a	 ligand	 to	 refold	 to	 a	 stable	 form	 [250,	 251].	 Ligands	 of	MR1	 include	 bacterial	

metabolites,	 in	particular	vitamin	B-related	antigens	 like	6-formylpterin	 (6-FP)	and	5-(2-

oxopropylideneamino)-6-D-ribitylaminouracil	 (5-OP-RU)	 [252,	 253],	 but	 also	 tumor-

associated	 antigens	 [254].	 There	 are	 two	 populations	 of	MR1-restricted	 T	 cells:	Mucosal	

Associated	Invariant	T	(MAIT)	cells	and	MR1T	cells.	MAIT	cells	are	semi-invariant	T	cells	

similarly	 to	 iNKT	 cells,	with	 an	a	 chain	with	 a	 fixed	V	 segment	 (TRAV1-2)	 and	 limited	 J	

segments	 (TRAJ12,	TRAJ20	or	TRAJ33)	coupled	with	 limited	b	 chain	combinations	 [254].	

They	represent	around	1-10%	of	circulating	T	cells	in	healthy	individuals	and	are	enriched	

in	tissues	like	mucosa,	gut	lamina	propria,	liver,	lungs	and	skin	and	the	majority	are	single-

positive	CD8+	(~80%),	with	double-negative	as	the	second	most	frequent	(~15%)	and	few	
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single-positive	CD4+	and	double-positive	cells	[254].	They	are	considered	innate-like	T	cells	

due	to	sharing	characteristics	with	innate	cells	in	the	same	way	iNKT	cells	do,	carrying	semi-

invariant	TCRs,	displaying	high	levels	of	CD161	and	being	characterized	in	adults	by	an	EM	

phenotype,	responding	to	antigen	restimulation	quickly	with	production	of	granzyme	and	

perforins	 that	 endow	 them	with	 cytotoxic	 capacity	 [227,	255,	256].	MAIT	 cells	 recognize	

some	 of	 the	 bacterial	 vitamin	 B-related	 antigens	 presented	 by	 MR1,	 5-OP-RU	 being	 a	

canonical	 potent	 stimulator,	 which,	 coupled	 with	 the	 potent	 effector	 response	 after	

stimulation,	suggests	a	role	in	combating	microbial	infections.	Of	particular	importance	in	

maintain	activity	of	MAIT	cells	in	the	recognition	of	5-OP-RU	is	the	conservation	of	the	length	

of	the	a	chain	CDR3	and	of	a	Tyrosine	in	position	95	of	the	a	chain	[254].	The	amount	of	

MAIT	cells	in	circulation	is	lowered	in	individuals	affected	by	infections,	both	bacterial	and	

viral,	by	autoimmune	and	metabolic	disorders	and	by	a	number	of	cancers,	indicating	their	

migration	 towards	 the	 sites	 of	 inflammation	 in	 peripheral	 tissues	 [254].	MR1T	 cells,	 the	

second	type	of	MR1-restricted	T	cells,	are	a	heterogenous	population	occurring	with	a	much	

lower	frequency	than	MAIT	cells	in	circulation	(~0.04%)	and	are	stimulated	by	self-antigens	

bound	to	MR1	presented	on	the	surface	of	multiple	cancer	cell	lines	in	vitro	and	in	vivo	and	

not	by	bacterial	antigens	or	healthy	cells	[254,	257,	258].	Currently	a	lot	is	unknown	about	

MR1T,	 including	 the	specific	self-antigens	 involved	 in	 the	activation	and	 the	 frequency	of	

these	cells	in	cancer	patients,	but	they	represent	a	great	potential	avenue	for	T	cell	therapy	

to	combat	cancer	[259].	

1.2. Crohn’s disease 

Crohn’s	disease	is	one	of	the	two	categories	of	inflammatory	bowel	disease	(IBD),	together	

with	ulcerative	colitis	(UC).	It	manifests	as	transmural	chronic	inflammation	that	can	affect	

any	 part	 of	 the	 gastrointestinal	 tract.	 Endoscopic	 hallmarks	 of	 CD	 are	 represented	 by	

longitudinal	ulcers,	cobblestone	appearance	of	 the	mucosa,	 fissures	and	thickening	of	 the	

wall	 with	 narrowing	 of	 the	 lumen	 and	 presence	 of	 abscesses	 (Figure	 20)	 [260-262].	

Symptoms	involve	abdominal	pain,	diarrhea,	blockage,	perianal	 lesions	and	can	extend	to	

extraintestinal	effects	in	~20-50%	of	cases	that	can	involve	joints,	eyes	and	skin	[260,	262].	

Prevalence	of	the	disease	has	been	increasing	since	the	2000	and	the	incidence	is	affected	by	
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variables	such	as	geographic	location.	Genetic,	epigenetic	and	environmental	elements	are	

all	involved,	but	the	specifics	of	the	etiology	have	yet	to	be	fully	elucidated	[262].	

	

Figure	20.	Endoscopic	hallmarks	of	CD.	Figure	from	[260].	

Risk	factors	include	alterations	that	affect	the	function	of	the	intestinal	barrier	and	of	the	

microbiome,	in	particular	defects	in	the	barrier	can	allow	bacteria	to	penetrate	into	the	tissue	

and	 trigger	 a	 strong	 immune	 response,	 which	 can	 further	 permeabilize	 the	 barrier	 and	

perpetuate	the	inflammatory	state	further	as	it	happens	with	neutrophils	[263].	CD4+	T	cells	

accumulate	in	lesions	of	CD	patients,	with	CD	being	considered	for	a	long	time	a	Th1-driven	

condition	while	UC	was	characterized	by	Th2	cells,	but	the	discovery	of	Th17	cells	changed	

that	view	to	include	both	Th1	and	Th17	as	important	cells	mediating	the	inflammation	[263-

265].	While	most	of	the	attention	was	focused	on	CD4+	T	cells,	some	studies	have	started	

exploring	the	heterogeneity	of	CD8+	cells	in	CD	patients,	with	a	study	showing	a	population	

of	CD103+	CD8+	T	cells	with	a	strongly	modified	gene	expression	profile	closer	to	Th17	CD4+		

cells	and	a	study	demonstrating	the	possibility	of	predicting	CD	patient	prognosis	based	on	

the	gene	expression	profile	of	CD8+	cells,	implying	their	importance	in	the	disease	[266-268].	

Also	in	need	of	further	investigation,	the	participation	of	gd	T	cells	in	the	progression	of	CD	

is	 currently	providing	mixed	 results,	with	 studies	 concerning	 their	quantification	 in	both	

circulation	and	in	the	mucosa	of	the	intestine	providing	contradicting	results	[269].	
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2. Crohn’s Disease (CD) clustering analysis 

2.1. Results 

2.1.1. Biopsies characterization and selection 

We	were	interested	to	evaluate	the	differences	in	T-cell	composition	among	CD	patients	in	

active	disease	 condition	 and	 remission	 condition	with	 respect	 to	healthy	 individuals.	We	

performed	our	analysis	by	Flow	Cytometry	using	a	panel	of	markers	for	T	cells	(Table	5)	

(see	 below	 for	 a	more	 detailed	 description	 of	 the	markers	 used	 for	 clustering	 analysis).	

Biopsies	of	both	inflamed	and	adjacent	not	inflamed	tissue	from	the	gut	were	collected	from	

24	CD	patients,	17	gut	biopsies	were	collected	 from	CD	patients	 in	 remission	and	13	gut	

biopsies	 were	 collected	 from	 individuals	 not	 affected	 by	 CD.	 Clustering	 analysis	 was	

performed	to	define	cell	 type	distribution	 in	biopsies	of	 inflamed	tissue	 from	CD	patients	

compared	 to	healthy	biopsies	primarily	and	secondarily	compared	 to	not	 inflamed	tissue	

from	CD	patients	and	to	biopsies	of	individuals	in	remission.	The	enalysis	was	performed	on	

CD4+	 T	 cells	 and	 Vd1	 TCR+	 T	 cells	 separately.	 The	 number	 of	 cells	 per	 biopsy	 was	

characterised	by	very	high	variability,	with	the	Vd1	TCR+	T	cell	counts	being	overall	much	

lower	 in	 active	 CD	 biopsies	 compared	 to	 healthy	 individuals	 (Figure	 21A),	 while	 the	

distribution	was	more	even	for	CD4+	T	cell	counts	(Figure	21B).		

In	the	CD4+	T	cells	case,	we	selected	the	10	biopsies	with	the	higher	number	of	cells	for	each	

condition	and	we	used	1000	cells	for	each	biopsy.	In	the	Vd1	TCR+	T	cells	case	the	number	of	

cells	was	much	lower,	but	this	wasn’t	always	tied	to	the	biopsies	of	origin	being	smaller,	since	

often	the	Vd1	TCR+	T	cell	counts	represented	a	much	smaller	fraction	of	total	cells	for	CD	

patient	 biopsies.	 Due	 to	 the	 possibility	 that	 these	 biopsies	 with	 lower	 Vd1	 TCR+	 T	 cell	

fractions	held	relevant	information,	we	decided	to	use	total	cell	counts	for	the	selection	of	

patients	instead	of	the	Vd1	TCR+	T	cell	counts	directly.	We	selected	61	biopsies	encompassing	

at	least	4000	cells,	and	we	used	at	most	500	cells	for	each	biopsy.	

Specificity Clone Fluorochrome Ref.no Manufacturer 

CCR7	 GO43H7	 AF647	 353218	 Biolegend	



	 70	

Specificity Clone Fluorochrome Ref.no Manufacturer 

CD127	 eBioRDR5	 PE-CY5.5	 35-1278-42	 TermoFisher	

CD14	 63D3	 PE-Fire640	 367154	 Biolegend	

CD155	 SKII.4	 PE-	Dazzle	594	 337616	 Biolegend	

CD161	 DX1	 BUV661	 750382	 BD	Biosciences	

CD162	 KPL-1	 PE-CY7	 328816	 Biolegend	

CD19	 HIB19	 PE-CY5	 302218	 Biolegend	

CD226	 11A8	 BV510	 338330	 Biolegend	

CD25	 CD25-3G10	 PE-AF700	 MHCD2524	 TermoFisher	

CD27	 M-T271	 PE	 356406	 Biolegend	

CD3	 UCHT1	 AF700	 300424	 Biolegend	

CD357	 108-17	 BV421	 371208	 Biolegend	

CD38	 HIT2	 APC-Fire	810	 303550	 Biolegend	

CD39	 A1	 BV711	 328228	 Biolegend	

CD4	 SK3	 Spark	Blue	 344656	 Biolegend	

CD45RA	 HI-100	 Spark	NIR	685	 304168	 Biolegend	

CD45R0	 UCHL1	 BV750	 304262	 Biolegend	

CD49d	 9F10	 BV785	 304344	 Biolegend	

CD49e	 11A1	 BUV737	 741849	 BD	Biosciences	

CD56	 NCAM16.2	 BUV563	 612928	 BD	Biosciences	

CD57	 HNK-1	 PerCP-Cy5.5	 359622	 Biolegend	

CD71	 CY164	 BV650	 334116	 Biolegend	

CD73	 AD2	 BUV805	 748584	 BD	Biosciences	

CD8	 RPA-T8	 BUV495	 612943	 BD	Biosciences	

KLRG1	 13F12F2	 PerCP-eFluor	710	46-9488-42	 TermoFisher	

live/dead	 	 Zombie	NIR	 423106	 Biolegend	
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Specificity Clone Fluorochrome Ref.no Manufacturer 

PD1	 MIH4	 BUV395	 745619	 BD	Biosciences	

TIGIT	 A15153G	 BV605	 372712	 Biolegend	

Vα7.2	TCR	 OF-5A12	 BV480	 749493	 BD	Biosciences	

Vδ1TCR	 TS-1	 FITC	 TCR2055	 TermoFisher	

Vδ2	TCR	 B6	 Pacific	Blue	 331414	 Biolegend	

γδ	TCR	 11F2	 BUV395	 745681	 BD	Biosciences	

Table	5.	Monoclonal	antibodies	for	the	analysis	of	T	cell	populations	of	biopsies	of	CD	patients	

inflamed	and	not	inflamed	tissue,	CD	patients	in	remission	and	healthy	individuals.	

	

Figure	21.	Number	of	cells	per	donor	in	13	gut	biopsies	from	individuals	not	affected	by	CD	

(Healthy),	24	biopsies	of	inflamed	gut	tissue	of	CD	patients	(I),	24	biopsies	of	non-inflamed	gut	

tissue	of	CD	patients	 (NI)	and	17	gut	biopsies	were	collected	 from	CD	patients	 in	 remission	

(Remission).	(A)	Number	of	Vd1	TCR+	cells	per	donor.	(B)	Number	of	CD4+	cells	per	donor.		
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2.1.2. CD4+ T cells clustering 

The	 clustering	 for	 the	 subset	 of	 CD4+	 cells	was	 executed	 using	 the	 R	 implementation	 of	

Phenograph	 [270]	 based	 on	 9	markers,	 among	which	markers	 relevant	 for	 CD4+	 T	 cells	

functional	maturation	(CD45RA,	CD45R0,	CCR7),	activation	(CD38,	CD25)	or	markers	that	

were	 evaluated	 as	 having	 potential	 for	 relevant	 information	 in	 analyses	 preceding	 the	

clustering	(CD161,	CD73,	CD39,	CD71).	We	defined	10	clusters	that	were	enriched	in	healthy	

donors	compared	to	every	other	condition	(Figure	22A).	The	maturation	markers	CD45RA,	

CD45R0	and	CCR7	place	most	of	these	clusters	(6	out	of	10)	between	the	EM	and	the	TEMRA	

stages	identified	by	co-expression	of	CD45RA	and	CD45R0,	with	2	clusters	showing	an	EM	

pattern	with	only	CD45R0	being	expressed	and	the	final	cluster	having	a	Naïve	phenotype	

co-expressing	CD45RA	and	CCR7	but	not	CD45R0.	For	inflamed	enriched	clusters,	we	found	

8	 clusters	 enriched	 only	 compared	 to	 healthy,	 1	 enriched	 compared	 to	 healthy	 and	

remission,	2	enriched	compared	to	healthy	and	not	inflamed	tissue	and	3	enriched	compared	

to	all	3	conditions	other	than	inflamed.	Among	these	clusters	the	main	maturation	marker	

pattern	that	was	represented	in	the	healthy	clusters	with	CD45RA	and	CD45R0	and	no	CCR7	

was	 completely	 absent,	 and	 aside	 from	 2	 clusters	 showing	 the	 pattern	 of	 Naïve	 T	 cells	

however	lacking	in	CD73	compared	to	the	Naïve	cluster	found	in	the	healthy-enriched	subset	

of	cells,	the	majority	of	clusters	was	CD45R0+.	Of	these,	6	clusters	showed	the	hallmark	of	

CM	T	 cells	 (CD45R0	and	CCR7)	and	6	 clusters	 shared	 the	EM	pattern	already	 found	 in	2	

clusters	in	the	healthy-enriched	category,	however	they	differed	from	the	healthy-enriched	

cases	by	being	all	CD73-	and	mostly	CD71+	while	both	healthy-enriched	clusters	presented	

the	opposite	pattern.	Focusing	on	the	6	clusters	enriched	in	inflamed	compared	to	more	than	

just	healthy,	one	of	them	belonged	to	the	CM	group	of	clusters,	in	particular	presenting	the	

lack	of	other	positive	markers	outside	of	the	ones	defining	it	as	CM,	while	all	the	remaining	

ones	were	EM	clusters	and	were	CD71+	(Figure	22B).	
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Figure	22.	Representative	iteration	of	CD4+	T	cells	clustering	based	on	the	hyperbolic	arcsine	

transformed	expression	of	9	markers:	CD45RA,	CCR7,	CD45R0,	CD161,	CD73,	CD38,	CD39,	CD71,	

CD25	(I	–	Inflamed,	NI	–	Not	inflamed,	R	–	Remission,	H	–	Healthy).	(A)	Heatmap	of	the	median	

expression	of	the	9	clustering	markers	for	each	cluster	categorized	as	enriched	in	healthy	(left,	
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cluster	numbers	 in	 light	blue)	or	 inflamed	(right,	cluster	numbers	 in	red)	 in	all	5	clustering	

iterations.	On	top	of	the	heatmap	are	reported	the	size	of	clusters	as	percentage	of	all	CD4+	cells	

and	against	which	 conditions	 the	 cluster	 is	 significantly	 enriched	 in	healthy	 for	 the	healthy	

enriched	cluster	and	 in	 inflamed	for	the	 inflamed	enriched	clusters.	 (B)	Histograms	of	 the	9	

clustering	 markers	 hyperbolic	 arcsine	 transformed	 expression	 and	 boxplots	 showing	 the	

fraction	 of	 each	 condition	 for	 each	 cluster	 enriched	 in	 inflamed	 compared	 to	 every	 other	

condition.	Figure	from	Devan	et	al.,	under	review.	

2.1.3. Vd1 TCR+ T cells clustering 

The	clustering	for	the	subset	of	Vd1	TCR+	cells	was	built	using	6	markers	relevant	for	Vd1	

TCR+	T	cells	functional	maturation	(CD45RA,	CD45R0,	CCR7,	CD27,	KLRG1,	CD57)	(Figure	

23).	We	defined	2	clusters	enriched	in	healthy	individuals	compared	to	the	inflamed	tissue	

individuals	with	active	CD,	with	one	cluster	being	also	different	in	the	not	inflamed	tissue	of	

CD	patients.	The	cluster	that	was	different	in	both	inflamed	and	not	inflamed	tissue	of	CD	

patients	showed	a	maturation	marker	pattern	placing	it	into	the	EM	stage	and	representing	

45.1%	 of	 all	 Vd1	 TCR+	 T	 cells,	 while	 the	 other	 cluster	 covers	 approximately	 4%	 of	 cells	

sharing	 a	 CM	 phenotype.	 Both	 clusters	 showed	 high	 levels	 of	 both	 CD38	 and	 CD39	 in	

combination	with	CD45R0	and	absence	of	CD45RA.	In	the	7	clusters,	enriched	in	inflamed	

tissue,	this	pattern	was	never	present.	Of	these	7	clusters,	5	were	significantly	different	in	

inflamed	compared	not	only	to	healthy	individual	tissues,	but	also	compared	to	not	inflamed	

tissue	of	CD	patients	and	to	patients	in	remission	tissue.	Most	of	these	clusters	(6	out	of	7)	

were	CD45RA+	and	(5	out	of	7)	KLRG1+,	which	was	absent	in	the	healthy	enriched	clusters,	

leaning	towards	the	more	terminally	differentiated	stage	of	TEMRA	cells.	
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Figure	23.	 Representative	 iteration	of	Vd1	TCR	 +	 T	 cells	 clustering	based	on	 the	hyperbolic	

arcsine	 transformed	 expression	 of	 6	markers:	 CD45RA,	 CCR7,	 CD45R0,	 CD27,	KLRG1,	 CD57,	

CD45RA CCR7 CD45RO CD27 KLRG1 CD57 CD38 CD39 CD73
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CD38,	CD39,	CD73	(I	–	Inflamed,	NI	–	Not	inflamed,	R	–	Remission,	H	–	Healthy).	(A)	Heatmap	

of	the	median	expression	of	the	6	clustering	markers	and	3	more	markers	of	interest	for	each	

cluster	 categorized	 as	 enriched	 in	 healthy	 (left,	 cluster	 numbers	 in	 light	 blue)	 or	 inflamed	

(right,	cluster	numbers	in	red)	in	all	5	clustering	iterations.	On	top	of	the	heatmap	are	reported	

the	size	of	clusters	as	percentage	of	all	Vd1	TCR+	cells	and	against	which	conditions	then	cluster	

is	 significantly	 enriched	 in	 healthy	 for	 the	 healthy	 enriched	 cluster	 and	 in	 inflamed	 for	 the	

inflamed	enriched	clusters.	(B)	Boxplots	showing	the	fraction	of	each	condition	for	each	cluster	

enriched	in	either	healthy	or	inflamed.	(C)	Histograms	of	the	9	clustering	markers	hyperbolic	

arcsine	transformed	expression	for	each	cluster	enriched	in	either	healthy	or	inflamed.	Figure	

from	Devan	et	al.,	under	review.	

2.1.4. PBMC characterization and selection 

We	also	 checked	 if	 the	gut	homing	potential	 of	 circulating	CD4+	 or	Vd1	TCR+	 T	 cells	was	

different	 between	 individuals	 affected	 by	 CD	 and	 healthy	 individuals.	 As	 we	 did	 for	 the	

biopsies,	we	performed	our	analysis	by	Flow	Cytometry	using	a	panel	of	markers	for	T	cells	

(Table	6)	 (see	 below	 for	 a	more	detailed	description	 of	 the	markers	 used	 for	 clustering	

analysis).	We	utilized	PBMCs	from	15	healthy	 individuals	(H)	and	20	CD	patients	(I).	The	

cells	amount	was,	as	expected,	on	average	much	larger	than	the	that	obtained	in	biopsies	

(Figure	24).	Thus,	we	decided	to	use	1200	cells	per	donor	in	the	Vd1	TCR+	T	cells	clustering	

and	5000	 cells	 per	donor	 in	 the	 CD4+	 T	 cells	 clustering.	We	also	decided	 to	 increase	 the	

number	of	iterations	to	50	for	the	Vd1	TCR+	T	cells	and	30	for	the	CD4+	T	cells	to	better	cover	

the	large	number	of	available	cells.	

Specificity Clone Fluorochrome Ref.no Manufacturer 

CCR7	 G043H7	 Spark	NIR	685	 353258	 Biolegend	

CCR9	 L053E8	 APC	 358908	 Biolegend	

CD103	 Ber-ACT8	 APC-Cy7	 350228	 Biolegend	

CD127	 eBioRDR5	 PE-CY5.5	 35-1278-42	 TermoFisher	

CD14	 63D3	 PE-Fire640	 367154	 Biolegend	

CD155	 SKII.4	 PE-	Dazzle	594	 337616	 Biolegend	
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Specificity Clone Fluorochrome Ref.no Manufacturer 

CD161	 DX12	 BUV661	 750382	 BD	Biosciences	

CD162	 KPL-1	 PE-CY7	 328816	 Biolegend	

CD19	 HIB19	 Pe-Fire	640	 302274	 Biolegend	

CD226	 11A8	 BV510	 338330	 Biolegend	

CD25	 CD25-3G10	 PE-AF700	 MHCD2524	 TermoFisher	

CD3	 UCHT1	 AF700	 300424	 Biolegend	

CD357	 108-17	 BV421	 371208	 Biolegend	

CD38	 HIT2	 APC-Fire810	 303550	 Biolegend	

CD39	 A1	 BV711	 328228	 Biolegend	

CD4	 SK3	 Spark	blue	 344656	 Biolegend	

CD45RA	 HI-100	 Spark	NIR	685	 304168	 Biolegend	

CD45R0	 UCHL1	 BV750	 304262	 Biolegend	

CD49d	 9F10	 BV785	 304344	 Biolegend	

CD49e	 11A1	 BUV737	 741849	 BD	Biosciences	

CD56	 NCAM16.2	 BUV563	 612928	 BD	Biosciences	

CD57	 HNK-1	 PerCP-Cy5.5	 359622	 Biolegend	

CD71	 CY164	 BV650	 334116	 Biolegend	

CD73	 AD2	 BUV805	 748584	 BD	Biosciences	

CD8	 RPA-T8	 BUV495	 612943	 BD	Biosciences	

Integrin	β7	
FIB504	

FIB27	
PE	 321204	 Biolegend	

KLRG1	 13F12F2	 PerCP-eFluor710	46-9488-42	 TermoFisher	

live/dead	 	 Zombie	NIR	 423106	 Biolegend	

TIGIT	 A15153G	 BV605	 372712	 Biolegend	

Vα7.2	TCR	 OF-5A12	 BV480	 749493	 BD	Biosciences	
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Specificity Clone Fluorochrome Ref.no Manufacturer 

Vδ1TCR	 TS-1	 FITC	 TCR2055	 TermoFisher	

Vδ2	TCR	 B6	 Pacific	Blue	 331414	 Biolegend	

γδ	TCR	 11F2	 BUV395	 745681	 BD	Biosciences	

Table	6.	Monoclonal	antibodies	for	the	analysis	of	T	cell	populations	of	PBMCs	of	CD	patients	

and	healthy	individuals.	

	

Figure	24.	Number	of	cells	per	donor	in	PBMCs	of	15	healthy	donors	(H)	and	20	CD	patients	

(I).	(A)	Number	of	Vd1	TCR+	cells	per	donor.	(B)	Number	of	CD4+	cells	per	donor.	

2.1.5. PBMC CD4+ and Vd1 TCR+ T cells clustering 

For	both	clustering	instances	for	the	PBMCs,	the	same	panel	of	gut	homing	markers	was	used	

as	starting	point:	CD71,	CD49e,	CD49d,	b7	integrin,	CCR9,	CD103.	In	the	CD4+	subset	only	

one	cluster	was	enriched	in	inflamed	compared	to	healthy	and	it	showed	expression	of	CD71,	

CD49e,	CD49d	and	b7	integrin	(Figure	25A-B,	D),	suggesting	gut	homing	potential.	Looking	

at	other	markers	expressed	not	used	for	the	clustering	process	(Figure	25C),	these	cells	are	

mainly	 CD45R0+	 and	 KLRG1-,	 with	 some	 of	 the	 cells	 presenting	 CCR7	 and	 some	 not	

presenting	 it,	 placing	 them	between	CM	and	EM.	 In	 the	Vd1	TCR+	 subset	we	 identified	3	

clusters,	all	showing	expression	of	CD49e	and	CD49d,	with	only	cluster	1	showing	the	same	
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pattern	of	gut	homing	markers	as	the	one	found	in	CD4+	(Figure	25E-F,	H),	leading	to	the	

consideration	that	they	are	also	gut	homing.	For	the	other	2	clusters	the	marker	expression	

doesn’t	give	the	same	amount	of	certainty	about	their	gut	homing	capabilities.	Differently	

from	 the	 identified	 cluster	 in	 the	 CD4+	 subset,	 all	 these	 clusters	 present	 higher	 levels	 of	

KLRG1	and	low	levels	of	CD45R0,	suggesting	a	TEMRA	maturation	stage	for	most	of	them	

(Figure	25G).	

	

Figure	25.	Representative	iterations	of	CD4+	T	cells	and	Vd1	TCR	+	T	cells	separated	clusterings	

based	on	hyperbolic	arcsine	 transformed	expression	of	6	markers	 (CD71,	CD49e,	CD49d,	b7	
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integrin,	CCR9,	CD103)	in	5000	CD4+	cells	from	each	of	15	Healthy	and	20	Inflamed	donors	and	

1200	Vd1	TCR	 +	 cells	 from	each	of	15	Healthy	and	18	 Inflamed	donors.	 (A)	Heatmap	of	 the	

median	expression	of	the	6	clustering	markers	in	the	cluster	categorized	as	enriched	in	inflamed	

in	at	least	95%	of	the	30	clustering	iterations	for	the	CD4+	cells.	(B)	Histograms	of	the	6	markers	

used	 for	 clustering	 hyperbolic	 arcsine	 transformed	 expression	 for	 the	 cluster	 enriched	 in	

inflamed	 in	 the	CD4+	 cells.	 (C)	Histograms	of	16	additional	markers	not	used	 for	 clustering	

hyperbolic	arcsine	transformed	expression	for	the	cluster	enriched	in	inflamed	in	the	CD4+	cells.	

(D)	Boxplots	showing	the	fraction	of	each	condition	for	the	cluster	enriched	in	inflamed	in	the	

CD4+	 cells.	 (E)	Heatmap	of	 the	median	expression	of	 the	6	clustering	markers	 in	 the	cluster	

categorized	as	enriched	in	inflamed	in	at	least	95%	of	the	50	clustering	iterations	for	the	Vd1	

TCR	+	cells.	(F)	Histograms	of	the	6	markers	used	for	clustering	hyperbolic	arcsine	transformed	

expression	 for	the	clusters	enriched	 in	 inflamed	in	the	Vd1	TCR	+	cells.	 (G)	Histograms	of	16	

additional	markers	not	used	for	clustering	hyperbolic	arcsine	transformed	expression	for	the	

clusters	enriched	in	inflamed	in	the	Vd1	TCR	+	cells.	(H)	Boxplots	showing	the	fraction	of	each	

condition	for	the	clusters	enriched	in	inflamed	in	the	Vd1	TCR+	cells.	Figure	from	Devan	et	al.,	

under	review.	

2.2. Conclusion 

The	purpose	of	the	above-described	work	was	to	explore	the	differences	between	the	gut	T	

cell	populations	in	individuals	affected	by	Crohn’s	Disease	compared	to	healthy	individuals	

and	 individuals	 in	remission.	This	analysis	represents	only	a	portion	of	 the	work	done	to	

identify	 markers	 of	 importance	 and	 populations	 of	 importance.	 In	 particular,	 the	

implemented	workflow	was	aimed	to	manage	cases	in	which	few	cells	and	high	variability	

are	 characterizing	 the	 samples	 under	 analysis.	 Through	 the	 above-described	workflow	 I	

identified	differences	 in	 two	subsets	of	T	 cells	within	 the	gut	of	Crohn’s	Disease	patients	

compared	to	healthy.	Thus,	providing	to	the	immunologists	specific	marker	combinations	to	

select	cell	 subsets	 for	additional	experiments.	The	 investigation	of	circulating	T	cells	also	

showed	populations	of	cells	enriched	in	Crohn’s	Disease	patients	with	gut	homing	potential	

in	both	CD4+	and	Vd1	TCR	+	T	cells.		
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2.3. Materials and Methods 

2.3.1. Patient samples (from Devan et al., under review) 

Patient	 samples	 were	 collected	 during	 regular	 colonoscopies	 at	 the	 Division	 of	

Gastroenterology	 and	 Hepatology	 at	 the	 University	 Hospital	 Basel	 (Basel,	 Switzerland).	

Crohn’s	 disease	 patient	 samples	 and	 samples	 from	 non-CD	 donors,	 isolated	 from	 people	

suffering	from	diarrhoea	predominant	irritable	bowel	syndrome	were	collected.	8	biopsies	

were	 obtained	 from	 each	 patient	 from	 inflamed	 or	 not	 inflamed	 segments,	 kept	 in	

physiological	solution	for	transfer	to	laboratory	and	immediately	processed.	The	project	was	

approved	by	ethical	committee	of	the	north-western	part	of	Switzerland	(EKNZ	PB	2016-

02242).	All	patients	involved	provided	written	informed	consent.	

2.3.2. Intestinal tissue processing (from Devan et al., under review) 

Intestinal	tissue	biopsies	were	cut	into	pieces	of	±	0.5	mm	in	diameter	using	sterile	scalpel	

and	 incubated	 in	 4	ml	 Gibco	 Roswell	 Park	Memorial	 Institute	 1640	media	 (Bioconcept)	

supplemented	 with	 25mM	 HEPES	 (Cambrex),	 200U	 collagenase	 IV	 (Sigma	 Aldrich),	 0.5	

mg/ml	 of	 DNAse	 I	 (Roche),	 2,5	 µg/ml	 of	 Amphotericin	 B	 (Life	 technologies),	 5	 µg/ml	 of	

Vancomycin	 (Teva	 Pharma	 Ag),	 30	 µg/ml	 of	 Piperacillin/Tazobactam	 (mass	 ratio	 8:1;	

Sandoz)	 and	 10	 µg/ml	 of	 Ciprofloxacin	 (Bayer)	 at	 37°C	 for	 2	 hours.	 Digested	 tissue	was	

disrupted	by	pipetting,	filtered	through	40	µm	nylon	strainer,	washed	2x	in	PBS	(Bioconcept)	

and	viably	cryopreserved	in	solution	containing	90%	of	heat	inactivated	foetal	calf	serum	

(FCS)	and	10%	of	dimethyl	sulfoxide	(DMSO).	Samples	were	stored	at	-70°C	for	up	to	3	days	

and	then	transferred	to	liquid	nitrogen	for	long	term	storage.	

2.3.3. Blood samples processing (from Devan et al., under review) 

Peripheral	 blood	 mononuclear	 cells	 (PBMCs)	 were	 isolated	 by	 density	 gradient	

centrifugation	using	Lymphoprep	(Stemcell).	Isolated	PBMCs	were	washed	2x	in	phosphate	

buffer	 saline	 (PBS)	 (Bioconcept)	 and	 immediately	 used	 for	 experiments	 or	 viably	

cryopreserved	in	solution	containing	90%	of	heat	inactivated	fetal	calf	serum	(FCS)	and	10%	

of	 dimethyl	 sulfoxide	 (DMSO).	 PBMCs	 were	 stored	 at	 -70°C	 for	 up	 to	 3	 days	 and	 then	

transferred	to	liquid	nitrogen	for	long	term	storage.	
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2.3.4. Flow cytometry analysis of surface markers (from Devan et al., under review) 

Cryopreserved	 cells	 were	 thawed	 and	 cultivated	 in	 RPMI	 media	 supplemented	 with	 10	

µg/ml	of	DNAse	I,	10%	heat	inactivated	FCS,	100U/ml	Kanamycin,	2mM	stable	glutamine,	

1%	 of	 minimal	 essential	 medium	 (MEM)	 nonessential	 amino	 acids	 and	 1mM	 sodium	

pyruvate	(all	from	Bioconcept)	for	2	hours.		

2.3.5. Biopsy data clustering 

The	 initial	 analysis	 of	 flow	 cytometry	 data	 was	 performed	 using	 the	 FlowJo	 software	

(TreeStar).	 Positive	 cells	 for	 each	 marker	 were	 defined	 based	 on	 the	 combination	 of	

fluorescence	minus	 one	 controls	 and	 isotype	 controls	 performed	 on	 cells	 pooled	 from	 5	

intestinal	 biopsies,	 except	 markers	 with	 bimodal	 expression	 and	 clearly	 separated	

populations	(CD3,	CD19,	CD14,	Vd1	TCR,	Vd2	TCR,	Va7.2	TCR)	in	which	case	a	threshold	was	

defined	by	an	expert.	Data	pre-gated	as	CD4+	and	Vd1	TCR+	was	imported	in	R,	the	expression	

was	centered	for	each	marker	around	the	threshold	values	previously	defined	by	subtracting	

the	 threshold	 value	 from	 all	 data	 points,	 and	 we	 performed	 hyperbolic	 arcsine	

transformation.	Clustering	was	performed	on	the	hyperbolic	arcsine	transformed	data	for	

the	 CD4+	 and	 Vd1	 TCR	 cell	 populations	 separately,	 using	 the	 R	 implementation	 of	

Phenograph	 [270]	using	9	markers	 for	 the	CD4+	subset	 (CD45RA,	CCR7,	CD45R0,	CD161,	

CD73,	CD38,	CD39,	CD71,	CD25)	and	6	markers	 for	 the	Vd1	TCR+	subset	 (CD45RA,	CCR7,	

CD45R0,	CD27,	KLRG1,	CD57).	The	clustering	was	performed	5	times	for	each	subset	and	

clusters	 were	 classified	 as	 significantly	 enriched	 by	 comparing	 the	 distributions	 of	 the	

fractions	of	cells	for	each	donor	in	each	condition	through	a	one	sided	Mann–Whitney	U	test	

[271],	 performing	 multiple	 testing	 correction	 through	 the	 Benjamini-Hochberg	 method	

[272].	

2.3.6. PBMC data clustering 

The	analysis	process	followed	the	same	steps	as	the	biopsy	data	clustering,	however	in	both	

CD4+	and	Vd1	TCR+	T	cell	clustering	processes	we	used	the	same	6	markers	(CD71,	CD49e,	

CD49d,	b7	integrin,	CCR9,	CD103)	and	the	number	of	iterations	was	increased	to	50	for	Vd1	

TCR+	T	cells	and	30	for	CD4+	T	cells.	The	clusters	of	interest	definition	was	also	relaxed	by	
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taking	as	enriched	all	clusters	that	after	multiple	testing	correction	showed	an	adjusted	p-

value	lower	than	0.1	in	at	least	95%	of	iterations.	

3. Self-Reactive MAITs 

3.1. Results 

3.1.1. Donor sequence numbers 

Researchers	 from	 the	 Basel	 University	 group,	 where	 I	 spent	 the	 last	 part	 of	 my	 PhD,	

discovered	 that	 some	 MAIT	 cells	 present	 sterile	 reactivity	 to	 MR1	 tetramers,	 meaning	

reactivity	 to	MR1	without	 the	presence	of	 the	 bacterial	 antigen.	We	 conducted	bulk	TCR	

sequencing	 of	 MAIT	 cells	 selected	 from	 PBMCs	 of	 4	 blood	 bank	 donors.	 Specifically,	 we	

analyzed	MAIT	cells	lacking	(CTV+)	or	presenting	(CTV-)	sterile	reactivity	to	MR1	tetramers	

to	define	what	differentiated	them	at	the	TCR	level.	Due	to	the	semi-invariant	nature	of	MAIT	

a	chains	and	the	impossibility	to	grab	information	of	paired	a	and	b	chain,	we	decide	to	focus	

our	 analysis	 on	b	 chain	 CDR3	 sequences.	 After	 the	 alignment	 and	 clonotype	 calling	with	

MiXCR	 and	 the	 filtering	 of	 the	 raw	 reads,	 the	 extracted	 TCR	 sequences	 for	 all	 4	 donors	

showed	 that	 only	 donor	 1	 (Table	 7)	 had	 a	 sufficient	 number	 of	 unique	 b	 chain	 CDR3	

sequences	 for	 further	analysis.	Thus,	all	 subsequent	steps	were	carried	out	on	 this	single	

donor.	

Donor b chain CTV- b chain CTV+ a chain CTV- a chains CTV+ 

1 566 2862 209	 640	

2 69 2090 50	 509	

3 75 1612 40	 413	

4 9		 215 20	 53	

Table	7.	Number	of	unique	TCR	sequences	for	each	donor	in	the	two	different	conditions	after	

all	the	filtering	steps	for	both	a	chains	and	b	chains.	
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3.1.2. Broad differential analysis between CTV- and CTV+ b chain TCRs 

To	identify	the	elements	differentiating	CTV-	b	chains	from	CTV+	b	chains,	we	compared	the	

counts	of	TCR	sequences	carrying	each	TRBV	gene	by	family	and	single	genes.	We	discovered	

that	 CTV-	 b	 chains	 presented	 a	 significantly	 higher	 amount	 of	 TCRs	 with	 TRBV	 genes	

belonging	to	the	TRBV6	family	(Figure	26A),	with	the	difference	being	driven	by	the	TRBV6-

3	and	TRBV6-6	(Figure	26B)	genes.	We	also	compared	the	counts	of	sequences	carrying	

each	TRBJ	and	TRBD	genes	between	the	two	conditions,	but	no	differences	were	found	for	

these	 two	 features	 (Figure	 26C,	D).	 Furthermore,	 we	 determined	 that	 there	wasn’t	 any	

significant	difference	in	the	CDR3	lengths	(Figure	26E).	

	

Figure	26.	Differential	evaluation	between	CTV-	and	CTV+.	(A)	TRBV	gene	usage	of	CTV+	or	

CTV-	MAIT	cells.	 (B)	TRBV6	gene	usage	of	CTV+	or	CTV-	MAIT	cells.	 (C)	TRBJ	gene	usage	of	

CTV+	and	CTV-	MAIT	cells.	(D)	TRBD	gene	usage	of	CTV+	and	CTV-	MAIT	cells.	(E)	Distribution	

of	CDR3	lengths	within	either	CTV+	or	CTV-	populations.	Figure	from	Chancellor	et	al.,	under	

review.	

Unfortunately,	bulk	sequencing	did	not	allow	to	estimate	the	clonality	of	the	two	populations.	
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3.1.3. E8 TCR and the E8-like motif 

Motifs	identification	was	difficult	to	execute,	since	basic	TCR	features	provided	us	with	only	

one	 significantly	 different	 feature	 between	 CTV-	 and	 CTV+	 and	 the	 overall	 number	 of	

sequences	was	quite	small.	Thus,	we	decided	to	perform	an	analysis	derived	by	the	work	

performed	by	a	group	of	collaborators	at	Immunocore	Ltd.	They	managed	to	isolate	a	sterile-

reacting	TCR	called	E8	through	a	phage	library	generated	using	one	canonical	MAIT	TCR	a	

chain	coupled	with	random	TCR	b	chains.	E8	is	a	canonical	MAIT	TCR	expressing	TRAV1-2	

and	TRAJ33,	coupled	with	a	chimera	of	the	genes	TRBV6-1	and	TRBV6-5.	To	understand	the	

molecular	basis	for	this	reactivity,	the	crystal	structure	of	E8	in	complex	with	MR1	loaded	

with	 5-OP-RU	was	 solved	 and	 aligned	with	 the	 crystal	 structure	 of	 a	 classical	MAIT	TCR	

lacking	sterile	reactivity	called	AF-7	(Figure	27A).	The	two	TCRs	positioned	similarly,	with	

very	few	differences	in	the	CDR	loops.	In	particular,	in	both	cases	the	Tyrosine	in	position	95	

of	the	a	chain	made	contact	with	the	antigen	directly	(Figure	27B),	as	expected	in	classical	

MAIT	a	 chains.	 However,	 one	 crucial	 difference	was	 found	 between	 the	 two	 interaction	

networks,	with	an	Arginine	in	position	96	of	the	E8	b	chain	making	salt	bridges	with	two	

MR1	residues,	E76	and	E149	(Figure	27C).	Crystal	structures	of	E8	in	complex	with	empty	

MR1	and	with	MR1	carrying	other	ligands	maintained	a	very	similar	network	of	interactions.	

Molecular	 dynamics	 simulations	 and	 binding	 free	 energy	 simulations	 confirmed	 the	

importance	of	the	CDR3	b	chain	loop	in	acting	as	an	anchor	locking	the	positioning	of	the	E8	

TCR	independent	of	being	bound	to	a	ligand.	By	looking	at	the	features	of	the	E8	b	chain	and	

at	 the	 crystal	 structure	 and	 the	network	of	 interactions,	we	determined	 an	E8-like	motif	

composed	of	a	TRBV	gene	belonging	to	the	TRBV6	family,	an	Arginine	in	position	96	of	the	b	
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chain	 and	 a	 CDR3b	 of	 length	 13,	 to	 ensure	 the	 correct	 positioning	 of	 the	 Arginine,	 as	

differences	in	CDR3	length	would	impact	the	conformation	of	the	loop.		

	

Figure	27.	Comparison	between	the	sterile	reacting	TCR	E8	and	a	classical	MAIT	TCR	AF-7.	(A)	

Crystal	structure	comparison	between	E8	and	AF-7	when	bound	to	MR1-5-OP-RU.	(B)	Y95a	in	

the	CDR3	of	the	a	chain	interacting	with	the	antigen	in	both	E8	and	AF-7.	(C)	R96b		in	the	b	

chain	 of	 E8	 being	 pinched	 between	 two	MR1	 residues.	 Image	 from	Chancellor	 et	 al.,	 under	

review.	

3.1.4. E8-like motif detection in CTV- versus CTV+ 

After	 identifying	 the	 crucial	 features	 for	 the	 E8	 TCR	 sterile	 reactivity,	we	 checked	 if	 the	

features	 were	 significantly	 different	 in	 the	 CTV-	 population	 compared	 to	 the	 CTV+	

population.	 To	 conduct	 this	 analysis,	we	 first	 looked	 at	 the	 features	 singularly,	 therefore	

looking	if	an	Arginine	was	present	in	position	96	of	the	CDR3	more	often	in	CTV-	compared	

to	CTV+,	and	this	was	not	the	case	(Figure	28A).	The	other	two	singular	features	we	had	

already	checked	in	the	broad	analysis	showed	that	the	frequency	of	the	TRBV6	gene	resulted	

to	be	significantly	different	between	the	two	populations	(Figure	28B)	as	instead	the	CDR3	

of	length	13	was	not	(Figure	28C).	We	then	looked	if	the	combination	of	two	of	the	features	

together	was	different	in	the	two	populations	(Arginine	in	position	6	combined	with	CDR3	

of	length	13,	Figure	28D;	Arginine	in	position	6	combined	with	a	TRBV6	gene,	Figure	28E;	

TRBV6	gene	combined	with	CDR3	of	length	13,	Figure	28F),	but	none	of	them	resulted	to	be	
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differentially	 abundant.	 Overall,	 most	 of	 the	 singular	 features	 and	 all	 the	 paired	

combinations	 didn’t	 result	 different	 between	 the	 two	 conditions,	 however	 when	 we	

examined	all	the	three	features	being	present	at	the	same	time	in	the	full	E8-like	motif,	we	

found	that	the	frequency	was	higher	in	CTV-	compared	to	CTV+	(Figure	28G).	

	

Figure	28.	Differential	evaluation	between	CTV-	and	CTV+	for	the	E8-like	motif	features.	(A)	

Arginine	in	position	96.	(B)	TRBV6	gene.	(C)	CDR3	of	length	13.	(D)	Arginine	in	position	96	and	

CDR3	of	length	13.	(E)	Arginine	in	position	96	and	TRBV6	gene.	(F)	TRBV6	gene	and	CDR3	of	

length	13.	(G)	Full	E8-like	motif.	

3.1.5. Functional validation 

From	the	E8-like	motif	search,	we	found	13	TCRs	carrying	it	in	the	CTV-	population	(Table	

8).	TCRdist	[273]	was	used	to	select	the	CDR3b	with	the	highest	similarity	to	the	E8	CDR3b	

(b	 chain	9	 in	Table	8).	Functional	validation	was	conducted	by	co-expressing	 this	TCR	b	

chain	with	 a	 canonical	MAIT	a	 chain	 in	 J.RT3-T3.5	 cells,	with	 this	 TCR	being	 called	 393.	

Expression	 of	 this	 TCR	 produced	 both	 canonical	 reactivity	 to	 5-OP-RU	 loaded	 MR1	 and	

sterile	reactivity	to	empty	wild-type	MR1	and	K43A	MR1	expressed	in	A375b	cells	(Figure	

29).	This	reactivity	was	blocked	by	anti-MR1mAb.	
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b	chain CDR3 TRBV	gene TRBD	gene TRBJ	gene 

1 CASSNRAQSGQYF TRBV6-3 TRBD2 TRBJ2-7 

2 CASNDRESYEQYF TRBV6-1 
 

TRBJ2-7 

3 CASIDRENSPLHF TRBV6-2 TRBD1 TRBJ1-6 

4 CASSDRGTGELFF TRBV6-4 TRBD2 TRBJ2-2 

5 CASSERGTDTQYF TRBV6-4 TRBD2 TRBJ2-3 

6 CASTKRDTDTQYF TRBV6-2 TRBD2 TRBJ2-3 

7 CASSDRATDTQYF TRBV6-4 TRBD2 TRBJ2-3 

8 CATRDRDTGELFF TRBV6-4 
 

TRBJ2-2 

9 CASSDREADTQYF TRBV6-4 
 

TRBJ2-3 

10 CASSDRETGEQFF TRBV6-4 TRBD2 TRBJ2-1 

11 CASSPREVETQYF TRBV6-6 
 

TRBJ2-5 

12 CASSPRETDTQYF TRBV6-5 TRBD1 TRBJ2-3 

13 CASSDRDTGELFF TRBV6-4 
 

TRBJ2-2 

Table	8.	List	of	the	13	sterile	reacting	TCR	b	chains	carrying	the	E8-like	motif.	

	

Figure	29.	Functional	validation	of	the	ability	of	the	393	TCR	to	confer	J.RT3-T3.5	cells	sterile	

reactivity	 to	 A375b-wtMR1	 and	 A375b-K43A,	 blocked	 by	 anti-MR1	 mAb.	 Activation	 was	

evaluated	as	percentage	of	cells	positive	for	CD69	and	compared	to	the	control	MRC25	b	chain	

being	used	instead	of	the	393	b	chain	carrying	the	E8-like	motif.	THP-1	cells	pulsed	with	5-OP-
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RU	 were	 used	 as	 positive	 control.	 Data	 representative	 of	 3	 individual	 experiments	 each	

performed	in	triplicate.	Figure	adapted	from	Chancellor	et	al.,	under	review.	

3.1.6. Motif search in MAIT dataset 

For	an	indication	of	the	frequency	of	the	motif	in	circulating	MAIT	cells,	we	explored	a	dataset	

of	TCR	b	chains	from	PBMCs	of	7	healthy	donors	containing	TRAV1-2+/TRBV6+	both	MAIT	

(CD161+)	 and	non-MAIT	 (CD161-).	We	 found	 that	 the	motif	was	expressed	with	a	higher	

frequency	in	MAIT	cells	compared	to	non-MAIT	TRAV1-2+/TRBV6+	cells	(Figure	30).		

	

Figure	 30.	 Frequency	 of	 the	 E8-like	 motif	 in	 b	 chains	 within	 ex	 vivo	 MAIT	 cells	 (TRAV1-

2+/TRBV6+	and	CD161+)	compared	to	non-MAIT	(TRAV1-2+/TRBV6+	and	CD161-)	in	PBMCs	of	

7	healthy	donors.	Figure	adapted	from	Chancellor	et	al.,	pre-print.	

3.2. Conclusions 

The	work	presented	in	this	section	is	just	a	portion	of	a	larger	project	investigating	a	rare	

subset	of	MAIT	cells	presenting	sterile	recognition	of	MR1.	The	aim	of	my	participation	in	

the	project	was	to	analyze	the	TCR	sequencing	data,	searching	for	elements	differentiating	

the	sterile	reacting	subset	of	MAIT	cells	to	the	subset	of	MAIT	cells	not	presenting	this	sterile	

reactivity	to	MR1.	The	broad	characterization	of	the	sterile	reacting	TCRs	didn’t	lead	us	to	
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find	specific	strong	markers	for	explaining	this	sterile	reacting	capability	and	the	number	of	

events	 at	 our	 disposal	 was	 too	 low	 for	 machine	 learning-driven	 motif	 detection,	 so	 we	

decided	 to	 proceed	 in	 a	 more	 supervised	 manner,	 utilizing	 a	 crystal	 produced	 by	

collaborators	of	our	 laboratory	at	 Immunocore	Ltd.	Through	 this	 crystal	we	could	define	

some	structural	requirements	for	one	method	of	sterile	recognition	that	were	enriched	in	

our	sterile	reacting	population,	however	this	was	only	a	small	number,	leading	to	think	that	

this	is	only	one	possible	mechanism	for	this	sterile	reactivity.	Furthermore,	we	were	able	to	

detect	the	motif	in	circulating	MAIT	cells	of	healthy	individuals,	which	opens	new	questions	

about	what	their	role	could	be	in	homeostasis,	cancer	surveillance	or	in	inflammatory	and	

autoimmune	diseases.	

3.3. Materials and Methods 

3.3.1. Primary T cells preparation for TCR sequencing (from Chancellor et al., under 

review) 

Primary	cell	 lines	and	clones	used	in	the	study	were	isolated	from	PBMCs	obtained	using	

Lymphoprep	 (Stemcell	 Technologies)	 from	 blood	 of	 4	 blood	 bank	 donors	 and	 were	

maintained	in	culture	as	described	in	[274].	MAIT	cell	lines	were	generated	by	magnetic	bead	

enrichment	using	biotinylated	anti-Vα7.2	mAb	(Clone	3C10,	Biolegend)	or	specific	expansion	

using	5-OP-RU.	Enriched	MAIT	 cells	were	prelabelled	with	Cell	Trace	Violet	 according	 to	

manufacturer	 instructions	 and	 then	 cultured	with	 irradiated	 A375b-wtMR1	 cells	 for	 the	

indicated	number	of	days	in	a	1:1	ratio.	Human	rIL-2	(5	IU/ml,	Peprotech)	was	added	at	5	

days	and	thereafter	every	two	days.	Cells	were	washed	and	rechallenged	as	indicated	(ratio	

2:1)	in	the	presence	or	absence	of	purified	anti-MR1	mAb	(20	μg/ml,	Ultra-LEAFä	Purified	

Clone	26.5,	Biolegend).	From	these	lines,	self-reactive	MAIT	clones	were	derived	by	limiting	

dilution	in	the	presence	of	PHA	(1	μg/ml),	human	rIL-2	(100	μg/ml)	and	irradiate	PBMC	(5	

´	105	cells/ml),	and	screened	for	reactivity	toward	A375b-wtMR1.		

3.3.2. Flow cytometry (from Chancellor et al., under review) 

When	staining	with	MR1	tetramers	(20	μg/ml)	or	anti-human	Vα7.2	(2.5μg/ml	Clone	3C10,	

Biolegend),	the	cells	were	pre-treated	for	30	min	at	37°C	with	50	nM	dasatinib	(Sigma)	in	
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PBS.	 All	mAb	 for	 staining	were	 titrated	 on	 appropriate	 cells	 before	 use.	 Tetramers	were	

added	first	for	20	min	at	RT	and	anti-human	mAb	were	added	for	a	further	20	min	in	PBS	

with	dasatinib:	mAb	specific	for	CD3	(Clone	UCHT1),	CD4	(Clone	OKT4),	CD8	(Clone	RPA-

T8),	CD161	(Clone	HP-3G19)	and	for	activation	markers	CD137	(Clone	4B4-1),	CD69	(Clone	

FN50),	CD25	(Clone	BC96),	ICOS	(Clone	DX29),	all	from	Biolegend.	DAPI	was	used	to	exclude	

dead	cells.	Doublets	were	excluded	by	FSC-A,	FSC-W,	SSC-A	and	SSC-H.	

3.3.3. TCR sequencing (from Chancellor et al., under review) 

MAIT	T	cells	(CD3+	CD161+	TRAV1-2+	Vδ2-)	were	sorted	by	flow	cytometry	(BD	FACS	Aria)	

and	expanded	on	PHA,	IL-2	and	irradiated	allogenic	PBMCs	to	establish	a	T	cell	 line	from	

which	 clones	 were	 subsequently	 generated	 by	 limiting	 dilution.	 Individual	 clones	 were	

assessed	for	CD161,	TRAV1-2	and	CD137	expression	by	flow	cytometry	following	overnight	

co-culture	with	5-OP-RU	 loaded	THP-1	cells.	Positive	clones	were	selected	 for	TCR	genes	

sequencing.	Briefly,	this	involves	first-strand	cDNA	generation	and	universal	amplification	

using	 SmartSeq2	 chemistry	 [199],	 followed	 by	 targeted	 amplification	 of	 TCR	 chains	 and	

MiSeq	Next	Generation	Sequencing.	Sequencing	was	paired-end	and	performed	in	bulk	with	

no	Unique	Molecular	Identifiers	(UMIs).	For	all	reads	3	random	nucleotides	and	barcodes	

composed	 of	 5	 nucleotides	 unique	 for	 each	 donor	 and	 CTV	 positivity	 or	 negativity	

combination	were	added	on	both	paired-end	reads.	Two	different	sets	of	4	nucleotides	were	

added	after	the	5	nucleotide	barcodes	on	reads	starting	in	the	constant	region	of	the	TCR	to	

represent	the	alpha	and	beta	chains.	The	data	was	provided	in	one	R1	and	one	R2	FASTQ	file	

containing	 the	 information	 for	all	donors,	both	conditions	and	both	chains,	without	 fixed	

forward	and	reverse	read	between	R1	and	R2.	

3.3.4. Raw data pre-processing 

We	used	FASTX-Toolkit	(version	0.0.14)	[275]	to	remove	the	3	random	nucleotides	at	the	

start	of	the	reads,	then	we	employed	Cutadapt	(version	3.5)	[276]	to	demultiplex	the	reads	

according	to	their	5	+	4	nucleotides	barcodes	with	no	allowed	mismatches	or	indels.	Because	

the	reads	were	not	orientated	so	that	the	forward	reads	would	all	be	in	either	the	R1	or	the	

R2	file,	we	applied	Cutadapt	looking	for	the	barcodes	only	in	the	R1	file,	extracting	from	it	all	
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reads	starting	from	the	constant	region	of	the	TCR	and	the	associated	mate	reads	from	the	

R2	file.	Then	we	ran	Cutadapt	again	looking	only	at	the	R2	file	and	inverted	the	read	order,	

so	that	all	reads	would	have	the	same	orientation.	

3.3.5. TCR alignment and data filtering 

Alignment	of	the	TCR	alpha	and	beta	chain	data	was	performed	utilizing	the	MiXCR	(version	

3.0.13)	 [277].	 We	 selected	 MiXCR	 due	 to	 its	 ability	 to	 perform	 correction	 for	 both	

amplification	and	sequencing	errors	in	the	clonotype	assignment.	The	resulting	MiXCR	tables	

were	imported	in	R	and	processed	through	custom	scripts.	Because	of	the	lack	of	UMIs	and	

with	 the	 sequencing	 methodology	 being	 bulk,	 all	 sequences	 carrying	 the	 same	 CDR3	

sequence	were	merged	into	single	clonotypes	to	diminish	the	possibility	of	false	sequences	

being	added	to	the	data.	CDR3	sequences	below	7	amino	acids	or	above	20	amino	acids	in	

length	were	 excluded	 from	our	dataset.	 Sequences	 that	 had	only	 one	 read	 corroborating	

them	were	 removed	 from	 the	 dataset,	 unless	 they	were	 shared	 between	CTV+	 and	CTV-	

population	of	a	given	donor,	 in	which	case	 they	were	kept	 in	 the	dataset	 if	 the	 sequence	

presented	at	least	two	corroborating	reads	in	one	of	the	two	conditions.	Then	all	sequences	

that	 were	 shared	 between	 CTV+	 and	 CTV-	 populations	 were	 removed	 from	 the	 CTV+	

population	and	kept	only	in	the	negative	one	as	they	were	capable	of	proliferation	in	sterile	

conditions.	

3.3.6. Differential analysis between CTV- and CTV+ 

Differences	between	CTV+	and	CTV-	populations	were	evaluated	through	custom	R	scripts	

by	 comparing	 the	 counts	 of	 clonotypes	with	 or	without	 given	 features	 between	 the	 two	

conditions	through	Fisher	Exact	Tests	[278],	performing	multiple	testing	correction	through	

the	Benjamini-Hochberg	method	[272].		

3.3.7. Motif search in independent PBMCs dataset 

The	search	for	the	E8-like	motif	in	PBMCs	was	performed	through	R	scripts.	The	comparison	

between	distributions	was	performed	using	the	Wilcoxon	Signed-Rank	Test	[279].	
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3.3.8. Construct design, protein expression and purification (from Chancellor et al., under 

review) 

Wild	type	MR1,	MR1-K43A,	B2M	and	TCR	chains	were	cloned	into	the	pGMT7	vector.	TCR	

constructs	were	 designed	 to	 include	 the	 variable	 and	 constant	 domains	 of	 both	 α	 and	 β	

chains	with	 an	 engineered	 inter-chain	 disulfide	 bond	 as	 previously	 described	 [280].	 The	

proteins	were	expressed	in	the	BL21	(DE3)	Rosetta	pLysS	strain	(Novagen),	refolded	from	

inclusion	bodies	and	purified	as	previously	described	[280,	281].	For	SPR	measurements	a	

C-terminal	AVI-tag	was	added	to	the	wtMR1	and	MR1-K43A	constructs	and	biotinylated	after	

purification	 using	 the	 Avidity	 Bir	 A	 Biotinylation	 kit,	 then	 purified	 again	 using	 a	 size	

exclusion	column	to	remove	the	biotin	and	Bir	A.	

3.3.9. TCR gene transfer (from Chancellor et al., under review) 

Total RNA was extracted from snap-frozen cell pellets from each clone. SMARTer RACE 5'/3' kit 

(Takara) was used for cDNA synthesis and generation of TCR transcripts. Functional TCRα and 

β chains were identified by sequencing and analysis using the ImMunoGeneTics information 

system (http://www.imgt.org). The TCRα and β sequences were either synthesized at Integrated 

DNA Technologies (TCR 393) or amplified from cDNA with gene specific primers (TCRs 

BC75B31, BC75B38, MRC25) containing cloning adaptors. In both cases the insert was cloned 

by In-Fusion HD (Takara) to a lentiviral vector for co-transfection of HEK 293 T LX cells. The 

endotoxin-free vectors were co-transfected together with the lentivirus packaging plasmids 

pMD2.G, pMDLg/pRRE and pRSV-REV (all from Addgene) to HEK 293 T LX cells with 

Metafectene PRO reagent from Biontex. Lentiviral supernatants of the corresponding TCRα and 

β sequences were combined and used to transduce J.RT3-T3.5 cells overnight. TCR-expressing 

J.RT3-T3.5 cells were sorted for CD3 expression before functional analysis.  

3.3.10. Activation assay validation (from Chancellor et al., under review) 

T	 cell	 clones	 (5	 ×	 104	 cells/well	 unless	 otherwise	 indicated)	 were	 co-cultured	 with	

indicated	target	cells	(5	×	104	cells	/well)	in	130	μl	total	volume	in	triplicates	for	18	h.	In	

some	experiments,	anti-MR1	mAb	(20	μg/ml,	Ultra-LEAFTM	Purified	Clone	26.5,	Biolegend)	
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was	added	and	incubated	for	30	min	prior	to	the	addition	of	T	cells.	In	other	experiments,	

APCs	were	pulsed	for	2	h	at	37°C	with	indicated	concentrations	of	Ags	or	freshly-prepared	

5-OP-RU	as	described	in	[282].	J.RT3-T3.5	activation	assays	were	performed	in	a	1:1	ratio	

with	the	 indicated	APC	for	18	h.	Cells	were	then	either	harvested	and	stained	for	surface	

CD69	upregulation	or	luciferase	was	measured	using	Bio-Glo	(Promega).		
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