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Abstract: In recent years, the use of inertial-based systems has been applied to remote rehabilitation,
opening new perspectives for outpatient assessment. In this study, we assessed the accuracy and
the concurrent validity of the angular measurements provided by an inertial-based device for reha-
bilitation with respect to the state-of-the-art system for motion tracking. Data were simultaneously
collected with the two systems across a set of exercises for trunk and lower limbs, performed by
21 healthy participants. Additionally, the sensitivity of the inertial measurement unit (IMU)-based
system to its malpositioning was assessed. Root mean square error (RMSE) was used to explore the
differences in the outputs of the two systems in terms of range of motion (ROM), and their agreement
was assessed via Pearson’s correlation coefficient (PCC) and Lin’s concordance correlation coefficient
(CCC). The results showed that the IMU-based system was able to assess upper-body and lower-limb
kinematics with a mean error in general lower than 5◦ and that its measurements were moderately
biased by its mispositioning. Although the system does not seem to be suitable for analysis requiring
a high level of detail, the findings of this study support the application of the device in rehabilitation
programs in unsupervised settings, providing reliable data to remotely monitor the progress of the
rehabilitation pathway and change in patient’s motor function.

Keywords: rehabilitation; tele-rehabilitation; inertial sensors; motion analysis; functional assessment;
exercise therapy

1. Introduction

Rehabilitation interventions are often extended to home-based settings, and they are
crucial to reduce the impact of disability and to optimize the functional recovery of in-
dividuals with a broad range of health conditions, including acute or chronic diseases,
illnesses, or injuries [1,2]. Rehabilitation usually complements other interventions, such
as medical and surgical ones, and it can help to prevent, slow down or manage complica-
tions and disabling symptoms associated with many conditions, such as musculoskeletal
diseases (e.g., spinal cord injury, fractures, multiple sclerosis) [3–6]. Motor deficits can
introduce various degrees of impairment that need to be addressed separately with specific
rehabilitative paths. The ability to accurately measure human movement to assess the
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functional limitations associated with a pathological state is thus an essential part of clinical
evaluation, enabling the determination of the effectiveness of therapeutic interventions [7].

Complex laboratory set-ups based on 3D optoelectronic motion capture (MoCap)
systems are the gold standard for assessing body kinematics during several motor tasks,
providing a complete and accurate description of an individual’s movement and identifying
pathological patterns [8]. In order to reconstruct the movement of a bony segment, reflective
skin markers are attached over anatomical landmarks, and kinematics are calculated from
the position of the markers by fitting the detected marker location to a human body
model [8–10]. Despite their great accuracy and reliability, such systems are not easily
applied as large-scale screening tools because of their high costs and because their use is
restricted to a dedicated clinical laboratory set-up [11,12].

In the last decade, the development of new technologies for motion analysis based on
wearable inertial sensors has opened new perspectives in everyday clinical practice and in
the provision of patient-centric rehabilitative solutions [7,13].

In general, an inertial measurements unit (IMU) is a small stand-alone device that
integrates different multiaxial sensors (i.e., accelerometer, gyroscope, and magnetometer).
The raw data collected by each integrated sensor are complemented via on-board sensor-
fusion algorithms based on Kalman filters to achieve a complete description in terms of
motion, rotation, and heading with respect to the sensor’s own reference frame. IMUs can
address different body parts to enable direct determination of kinematics, providing data
of angular acceleration, velocity, and spatial orientation [14–17].

IMU-based systems are inexpensive, portable, easy to wear and to set up, and they
require neither the use of cameras nor complex laboratory settings, enabling motor assess-
ment in unconstrained environments, such as domestic ones [7,18]. Various systems using
body-worn IMUs have been used to estimate body kinematics across various motor tasks,
starting from standard gait analysis [19–22] to more complex motor tasks [23], such as
jumps [24], squats [25,26], and single-leg squats [27]. Despite generally concurrent validity
with traditional motion capture systems [28,29], the validity of IMU-based joint kinematics
still needs to be further investigated.

A drawback connected to IMU-based systems may be related to orientation estimation,
which may be prone to drift due to the integration of noisy gyroscope measurements [30].
Although the incorporation of magnetometer data providing a global heading reference can
be used to compensate for the error in the transverse plane [16], magnetometers themselves
can be susceptible to local disturbance in the magnetic field [16,17,23]. Different approaches
have been implemented to limit drift, either correcting magnetic disturbances or omitting
magnetometers at all, relying only on acceleration and gyroscope data to estimate joint
orientations [31].

The accuracy of IMU-based joint kinematics has been explored in several studies. For
instance, Seel et al. [22] assessed the performance of two different IMU-based systems
with respect to a MoCap system on transfemoral amputees. With respect to MoCap, both
inertial systems achieved a root-mean-square deviation lower than 0.6◦ on the prosthesis
side and more than 3◦ on the contralateral side for the knee joint flexion/extension angle,
thus supporting the concurrent validity of IMU-based kinematics. However, it should be
noted that walking remains a fairly simple task as no large range of motion is achieved and
many joints are solicited mostly across a preferential degree of freedom as in the case of
knee flexion [23].

Functional assessment movements used in rehabilitation and in sports medicine differ
from common gait as they incorporate almost no global translation, usually demanding
higher ROM and higher global accelerations [31]. In this context, IMUs seem to be a
suitable tool in the detection of relevant parameters in in-field-based diagnostics, for
instance in jumping skills, even though the validity of IMUs to assess slow and dynamic
functional movements needs to be further explored. In fact, research comparing IMUs and
MoCap reported that comparability in joint angles may be task-related, thus limiting the
generalization of the results [23].
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IMU-based systems have been successfully used in the rehabilitation field for inpatient
assessment [32–35] and to support the administration of remote home-based rehabilitation
programs [36–38]. The technologies designed for tele-rehabilitation usually integrate body-
worn inertial sensors into exergame- and biofeedback-based systems [39–41], allowing for
the provision of real-time visual or audio feedback to the user regarding their movement
and its correctness [18,42].

In unsupervised rehabilitation programs in home settings, a risk of bias on intervention
effectiveness is usually related to incorrect or poor performance of assigned motor tasks [18],
as well as to the tendency to over-report the number of times patients carried out home-
based exercises [36]. Wearable technologies can enable the automated, unsupervised, and
objective evaluation of home-based exercise programs, together with patients’ compliance
with the prescribed treatment plan [36]. Additionally, the biofeedback encourages the
patient to pay more attention to the execution of exercises [42], also through a gamification
mechanism based on scores, badges, and prizes that may increase their motivation and the
engagement in the program [43–45].

Together with appropriate back-end infrastructures, the integration of such technolo-
gies enables the development of innovative solutions for real-time monitoring and for
continuous remote supervision by clinicians [13]. Although the use of various systems
using body-worn sensors to objectively measure body kinematics has been validated with
respect to the gold standard, their accuracy and reliability need to be further evaluated
for successful adoption in the rehabilitation field to define best practices and standardized
protocols [13].

The aim of this study was two-fold. First, the accuracy of kinematic measurements, in
terms of body segment orientation, provided by the inertial system, was assessed during
the execution of a set of motor tasks for trunk and lower limbs using an optoelectronic-
based system as the gold standard. Second, the sensitivity in tracking kinematic parameters
was assessed with respect to IMU’s malposition, as incorrect positioning could affect the
performance of the system [42].

2. Materials and Methods

The study took place from November 2022 to February 2023, and it involved the
simultaneous data collection with an IMU-based system (Euleria home, Euleria Health,
Rovereto, Italy) and an optoelectronic marker-based motion capture system (SMART DX
400 system, BTS Bioengineering SPA, Milan, Italy).

Twenty-one healthy subjects (M: 10/F: 11; age: 23.5 ± 1.3 years; height 175.3 ± 8.7 cm;
weight 68.5 ± 11.6 kg; BMI 22.1 ± 2.1 kg/m2) were recruited on a voluntary basis.

The inclusion criteria were healthy weight (BMI: 18.5–24.9 kg/m2) and the absence of
participant’s self-reported neurological or musculoskeletal conditions. The study, which
was carried out in accordance with the ethical standards of the institution and the 1964
Helsinki declaration and its latest amendments, was approved by the ethical committees
of Politecnico di Milano (22/2021, 14 June 2021). Written informed consent was signed by
all participants.

2.1. Experimental Set-Up
2.1.1. MoCap and Marker Set

The MoCap system used for optical data collection was the 8-cameras (sampling
frequency: 100 Hz) SMART DX 400 system (BTSBioengineering SPA, Milan, Italy).

Participants’ anthropometric data, i.e., (i) height, (ii) weight, (iii) distance between
the femoral condyles or diameter of the knee, (iv) distance between the malleoli or di-
ameter of the ankle, (v) distance between the anterior iliac spines, and (vi) thickness of
the pelvis, were measured. A set of 22 passive markers was placed over the anatomical
landmarks of each subject according to the marker set-up proposed by Davis et al. [46]. The
location of the landmarks was determined manually by palpation, identifying regions of
reduced tissue thickness interposed between bone and skin. During the test campaign, an
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additional optical marker was placed on the IMU to use its signal as a reference for data
synchronization.

2.1.2. IMU-Based System

The Euleria home (Euleria Health, Rovereto (TN), Italy) is a medical device for home
rehabilitation. It is composed of an IMU connected wirelessly with technology BLE to a
tablet with a dedicated application installed, guiding the patient through the execution of
an exercise-therapy program ad hoc configured by the clinician. The patient is instructed
to wear the IMU on a specific body segment through a dedicated elastic band. The elastic
band is embedded with a magnet, limiting its movements during the execution of the
exercises. These are performed while an audio–video guide guides the user to perform
the right movements. Moreover, real-time feedback is provided by the system in order to
inform the patient on the quality of the movement with respect to the target, thanks to the
IMU’s output and the processed kinematic parameters.

The IMU (IMUs, Xsens DOT, Movella Technologies—NL, size: 36.3 × 30.4 × 10.8 mm,
weight: 11.2 g) integrates different tri-axial sensors, i.e., accelerometer, gyroscope, and
magnetometer, allowing for a complete description of motion in its own three-dimensional
local coordinate system [14,22]. The sampling rate was set at 30 Hz. The orientation
gathered through the IMU allows the algorithm to compute the Eulerian angles as roll
(rotation around the body), pitch (vertical incline), and yaw (heading direction), expressed
in degrees, with a measurement error below 5% as reported in the data sheet. Considering
the IMU’s size and the elastic bands, it can be easily worn on body segments following the
guidelines of the app before starting the task. Once the IMU is worn, the user just needs to
start the app from the tablet and follow the audio–video guide and biofeedback trace on
the tablet screen to perform the tasks.

2.2. Study Design

A set of seven motor tasks for trunk and lower limbs was selected from the device’s
exercise library via the cloud-based web management system and performed by each
participant simultaneously equipped with the IMU and the marker set (Figure 1). In
particular, the following motor gestures were performed:

• Anterior trunk flexion (Figure 1a);
• Trunk bending towards right/left (Figure 1b);
• Right/left hip abduction (Figure 1c);
• Right/left hip extension (Figure 1d);
• Right/left hip flexion (Figure 1e);
• semi-squat (Figure 1f);
• Right/left knee extension from a seated position (Figure 1g).

To evaluate the sensitivity of the outcome measurements of the IMU-based system,
considering the two conditions of IMU’s placement, i.e., (i) correct and (ii) incorrect, bilateral
hip flexion and extension tasks were performed with incorrect placement. In particular,
the incorrect condition has two sub-conditions; thus, the IMU can be positioned medially
or laterally with respect to its neutral, or correct, position along the thigh as displayed in
the device (Figure 2). The positions with the displaced IMU were calculated as 10% of
the subject’s thigh diameter to move the sensor laterally or medially along the thigh with
respect to the correct position.



Sensors 2023, 23, 6156 5 of 17
Sensors 2023, 23, x FOR PEER REVIEW 5 of 18 
 

 

 
Figure 1. A volunteer equipped with the IMU and the marker set during data collection of the
experimental protocol: anterior trunk flexion (a); trunk bending (b); hip abduction (c); hip extension
(d); hip flexion (e); semi-squat (f); and knee extension from a seated position (g).
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Figure 2. Visual representation of the IMU worn on the thigh via elastic band. The correct placement
of the IMU is along the dotted blue line, whilst the two incorrect configurations are achieved by
moving the IMU medially (blue arrow) and laterally (red arrow) along the diameter of the thigh.

The number of repetitions was set to 10 and all the motor tasks were performed
according to the audio and visual feedback provided by the IMU-based device. As for the
synchronization between the IMU-based device and the gold standard, a motor artifact
was used as a trigger. According to a previously reported method, the artifact was created
by asking the subject to quickly step on the floor in order to obtain a few spikes visible
from both systems, which was useful for signal post-processing [47].

2.3. Data Analysis and Processing

The angles measured by the IMU were automatically computed throughout the execu-
tion of each task and stored in the cloud associated with the mobile app in a .csv file, which
also contained the raw acceleration and raw gyroscope data. The body segment angles
were computed extracting the Euler angle from quaternions output with the ZYX-axis
rotation sequence in terms of flexion/extension, internal/external rotation, and adduc-
tion/abduction, respectively. In particular, they were expressed as absolute body segment
angles in IMU’s coordinate system.

Raw optical data were processed with SmartTracker and SmartClinic (BTS Bioengi-
neering, Milan, Italy). Data were tracked and interpolated to obtain the 3D reconstruction
of the coordinates of each marker. According to the algorithm embedded in the software,
instantaneous orientation of an orthogonal marked-based, embedded coordinate system
was determined for the trunk and pelvis, as well as for the thigh, shank, and foot seg-
ments. The embedded coordinate systems of the lower body segment were then realigned
with the instantaneous, joint-center-based, body-fixed coordinate system, as described by
Davis et al. [46]. Finally, 3D segment rotation angles were computed from the embedded
coordinate system information, and rotation matrices defined for each joint were used to
compute body segment angles, relying on Euler angles [48]. In particular, a YXZ-axis rota-
tion sequence in terms of flexion/extension, adduction/abduction, and internal/external
rotation, respectively, was used.

According to Davis’ protocol, hip, knee, and ankle joint rotation angles are computed
as relative angles (for example, hip angles correspond to the orientation of the thigh with
respect to the pelvis), while trunk and the pelvic angles are absolute angles computed with
respect to the inertially fixed laboratory reference frame [46]. Since the IMU-based system
computes thigh angles as absolute thigh segment angles, optical-based hip kinematics were
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computed as absolute angles to adopt the same convention as the IMU and to compare the
output of the two systems.

2.4. Data Synchronization and ROM Computation

The comparison of the outcomes of the two systems benefited from a synchronization
method that used movement artifacts, as described above. The time synchronization of the
kinematic measurements was performed according to Cerfoglio et al. [47]. Firstly, the raw
trajectory of the marker placed on the IMU along the y-axis of the global reference system
of the laboratory, acquired at 100 Hz, was down-sampled to 30 Hz, i.e., the IMU’s sample
frequency. The raw acceleration data along the x-axis of its own reference system was
filtered using a standard third-order low-pass Butterworth filter with a 5 Hz cut frequency.
The parts of the signals containing the spikes, representative of the movement artifacts,
to be matched were isolated, and cross-correlation between them was computed. The
resultant delay was used to align the angular measurements of both systems.

The offset between the measurements gathered through the reference system and the
IMU-based system was removed, and each repetition of each task was isolated by using a
custom-made Matlab script using the position of local minima to locate each repetition in
the signal. Repetitions were then resampled to standardize the number of frames.

Considering the orientation of the body segment engaged in the task, the range of
motion (ROM) was computed as the difference between the final position during the
working phase and the mean value of the angle relative to the working phase. Specifically,
in the IMU-based system used in this study, the execution of the task concerns the rest
and working phase to let the patient control their motion, handling and stabilizing the
ROM thanks to the biofeedback and the visual guide throughout the session. Therefore, the
amplitude of each repetition was normalized with respect to its maximum value to isolate
the working phase and compute its mean value. Thus, the algorithm records how well
the patient maintains their maximum ROM during the exercise, so to calculate the ROM
just as the difference between the maximum and minimum value of the measured angle is
not effective.

Since no significant difference (p > 0.05) was found in the motion pattern between
right and left side in the tasks performed bilaterally, data were pooled and the ROMs were
computed over the total number of repetitions (i.e., 20 repetitions, 10 per side) instead of
considering them separately for each side.

Regarding the body segment angle measured through the IMU placed in the incorrect
position, the ROM was calculated with the same method and the comparison was made
considering the ROM obtained during the exercise executed with the sensor placed in the
incorrect position and the ROM of the correct position.

2.5. Statistical Analysis

Statistical analysis was performed with Matlab, Minitab Statistical Software (2023 Minitab,
LLC, State College, PA, USA), and MedCalc (2023 MedCalc Software Ltd., Ostend, Belgium).

Data were checked for normality via the Anderson–Darling test. As data were nor-
mally distributed, variables were computed in terms of mean and standard deviation.
The accuracy of the parameters evaluated through the IMU-based device was computed
according to the following equation (Equation (1)):

Accuracy = 1−
∣∣ROMIMU − ROMMoCap

∣∣
ROMMoCap

× 100 (1)

Pearson’s correlation coefficient (PCC) was calculated to describe the agreement
between the kinematic measurements obtained from the two systems. For each task, PCC
was computed considering the mean ROM values of each participant. PCC represents the
degree to which a straight line fits the data. To assess agreement between two systems,
all matched data points should fall on the equality line. However, PCC searches for the
best fitting line for the data, which is not per se the equality line, potentially leading
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to a systematic bias [49,50]. For this reason, an additional correlation coefficient (Lin’s
concordance correlation coefficient CCC) was calculated. CCC expresses the concordance
between bivariate pairs of observations between new technology (i.e., IMU) and gold
standard technology (i.e., MoCap), ranging from −1 to 1, with perfect agreement at 1 [51].

Bland–Altman plots were also generated and used to support and describe the agree-
ment between the two systems. Bland–Altman analysis is also useful to highlight if a
method overestimates high values and underestimates low values.

Additionally, the root mean square error (RMSE) was computed according to the
following equation (Equation (2)):

RMSE =

√√√√ n

∑
i=1

(ŷi − yi)
2

n
=

√√√√ n

∑
i=1

e2
i

n
(2)

where ŷi . . . ŷn are the ROMs computed from the MoCap, yi . . . yn are the ROMs computed
from the IMU (thus, ei . . . en are the errors), and n is the number of observations, i.e., the
number of participants.

Finally, the standard error of measurement (SEM) was computed for each task accord-
ing to Equation (3):

SEM = SD
√

1− R = SD

√√√√1−
σ2

MoCap

σ2
IMU

(3)

where SD is the standard deviation associated with the measurements of both systems, and
R is the reliability coefficient, computed as the ratio between the variance of MoCap and
IMU’s measurements on the overall sessions performed by the participants. SEM can be
directly related to both system reliability and to the clinical significance of a measurement.
With respect to the latter, one SEM was proposed as a reference threshold to identify the
minimal clinically important difference (MCID), defined as the minimal change that can
be detected and that is relevant to the patient [52]. When comparing the outputs of two
different systems, the differences between the gold standard and a concurrent system
should not exceed the MCID to make sure the that the alternative system is able to detect
meaningful changes in the outcome measurements, reflecting the progress of rehabilitation
treatment, and therefore important in interpreting the clinical relevance of the observed
change [53].

With respect to sensitivity analysis of the kinematic parameters obtained in the IMU’s
misplacement conditions, the RMSE was computed according to Equation (2), where ŷ1 . . .
ŷn are the ROMs of the measurements obtained from misplaced IMU and y1 . . . yn are the
ROMs of the measurement obtained from the IMU in its correct position. The RMSE was
computed for each malposition case, i.e., medial or lateral displacement.

3. Results
3.1. MoCap and IMU Data Comparison

Table 1 reports the mean and the standard deviation values, together with the accuracy
and the RMSE for the joint angles in terms of ROM and the MCID associated with each
motor task. The ROM values appear to be coherent between the two systems, although
the difference varies across motor tasks. For hip extension and anterior trunk flexion, the
corresponding ROM values report a discrepancy of up to 10 degrees, higher than in the
other tasks, as confirmed by the corresponding values of accuracy and RMSE.
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Table 1. Mean and standard deviation values, average difference, accuracy, RMSE, and SEM (i.e.,
MCID) for the body segment angle estimated with the two systems during each motor task. † |MoCap
− IMU| > MCID.

Motor Task
ROM (◦) Accuracy (%) RMSE (◦)

MCID = 1 SEM (◦)
IMU MoCap |MoCap − IMU| IMU vs. MoCap IMU vs. MoCap

semi-squat 33.92 (7.34) 34.80 (9.33) 0.88 97.5% 3.71 5

Hip abduction 30.93 (6.09) 35.12 (5.90) 4.19 † 88.1% 6.38 1.74

Hip flexion 30.28 (5.24) 31.32 (5.17) 1.04 96.7% 3.68 1.85

Hip extension 17.08 (3.75) 23.40 (4.26) 6.32 † 73% 8.47 3.78

Knee extension 71.05 (10.28) 66.15 (9.95) 4.9 † 92.6% 5.90 1.57

Anterior trunk flexion 40.15 (8.36) 30.15 (5.50) 10 † 66.8% 14.55 8.07

Trunk bending 26.53 (5.33) 30.10 (6.06) 3.57 † 88.1% 4.49 3.24

Regarding the MCID, the average difference between the two systems is below the
threshold (one SEM), just for semi-squat and hip flexion tasks, whilst it variably exceeds
the MCID in the remaining tasks.

The mean values of the body segment angles measured through the MoCap and
IMU-based system across the different motor tasks in a representative subject is displayed
in Figure 3. The curves yield qualitative assessment of how the output of two systems
follow the same pattern. In fact, slight-to-moderate differences can be observed during the
working phase for almost all tasks of the experimental protocol.

3.2. Agreement Analysis between MoCap and IMU Measurements

Concerning the agreement analysis between the sets of data retrieved from the two
systems, the corresponding values of PCC and CCC are reported in Table 2. As it can be
observed, the PCC values between the measurements gathered through the two systems
are all statistically significant (p < 0.05) and higher than 0.75, with the exception of anterior
trunk flexion (PCC = 0.68, p < 0.05), highlighting the validity of the IMU-based system to
measure the body segment angles during the selected motor tasks. The same considerations
are confirmed by the corresponding CCC values, where a value higher than 0.7 indicates
strong agreement between the measurements.

Table 2. Correlation values of body segment angles estimated through the IMU-based system and
the MoCap: results for Pearson’s correlation (PCC) and concordance correlation coefficient (CCC).
* = p < 0.05.

Motor Task Pearson Correlation Coefficient (PCC) Concordance Correlation Coefficient (CCC)

semi-squat (hip flexion) 0.95 * 0.94 *

Hip abduction 0.82 * 0.76 *

Hip flexion 0.86 * 0.90 *

Hip extension 0.75 * 0.43

Knee extension 0.95 * 0.92 *

Anterior trunk flexion 0.68 0.52

Trunk bending 0.95 * 0.83 *
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Figure 3. Average value of MoCap system output (blue solid line) and IMU-based device output
(orange solid line) with respect to the task duration of a representative subject performing each task
of the experimental protocol. The shaded areas represent the standard deviation.

Figure 4 reports the correlation and the Bland–Altman plots for all the estimated body
segment angles. Bland–Altman analysis is a graphical method that enables the evaluation
of the agreement between two different measurements and the verification of where 95% of
the difference falls [54]. The horizontal lines indicate the mean difference and the LoA (limit
of agreement), defined as the mean difference ±1.96 * standard deviation. The differences
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between the two paired values are displayed as y-values, whilst their mean is reported
as x-values. In the current analysis, 95% of the differences fall inside the LoA, indicating
a globally good association between the gold standard and the IMU-based device. The
Bland–Altman outputs are coherent with the values of accuracy between the two systems
reported in Table 1.
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3.3. Sensitivity Analysis of IMU’s Measurements to Malposition

With respect to the sensitivity analysis of IMU measurements to lateral and medial
IMU displacement, the mean and the standard deviation for hip flexion and extension in
terms or ROM are reported in Table 3, together with the values computed with the IMU in
a correct position and the RMSE computed as described in Section 2.5. As can be observed,
the ROM values for lateral and medial misplacement show a difference to the order of 1 to
7 degrees with respect to the reference values of the correct configuration of the IMU.

Table 3. Mean and standard deviation values and RMSE for the IMU-based measurements for hip
flexion and extension tasks.

ROM (◦) RMSE (◦)

IMU IMUMEDIAL IMULATERAL IMU vs. IMUMEDIAL IMU vs. IMULATERAL

Hip flexion 30.28 (5.24) 28.90 (4.88) 27.70 (5.79) 5.12 5.13

Hip extension 17.08 (3.75) 19.98 (3.36) 11.90 (3.61) 4.86 7.09

4. Discussion

The Euleria home is an IMU-based medical device for home therapy. Following a
game-based approach, biofeedback technology, and integration with a body-worn IMU, it
guides the user in the execution of rehabilitative motor tasks.

The gold standard to quantitatively assess the effects of rehabilitative treatment on
motor performance is represented by complex laboratory set-ups based on optoelectronic
motion capture systems. In the last decade, the development of new technologies based on
wearable IMUs has opened new perspectives in both functional inpatient and outpatient
assessment. However, prior to their use in everyday clinical practice, new systems to track
human movement should be validated against the gold standard. In the present study, the
concurrent validity and the accuracy of IMU-based joint kinematics was assessed across the
execution of a set of motor tasks for trunk and lower limbs with respect to a gold standard
system for motion analysis.

The aggregated results highlight and support the dependability of the IMU-based
body segment angle measurements from either a qualitative or quantitative point of view,
although the concordance between the systems varies across the selected motor tasks. From
the results, it can be observed that the overall trend in measured angular traces retrieved
from the IMU are coherent with those obtained from the MoCap for each motor task, with a
slight-to-moderate difference at the peak of the working phase.

With respect to the motor tasks involving trunk bending and anterior flexion, differ-
ences in ROM and accuracy values can be found in the estimation of the angles between
the two motor tasks. In fact, whilst the systems seem to compare well in the computation of
the lateral bending angle and the achieved ROM and RMSE are in line with those reported
in the literature [42,55], the IMU appears to overestimate about 10◦ the anterior flexion
angle, with a 66% accuracy value. Although such a value seems to be in contrast with
previous studies reporting a mean difference lower than 3◦ between the measurements
of an inertial-based system and the gold standard, it should be noticed that other studies
used complex systems based on multiple IMUs instead of a single IMU [42,56]. In fact,
data fusion of multiple IMUs usually yields a more accurate estimation of the kinematics
of the specified segment with respect to a single IMU [22]. From this perspective, the
IMU-based system tested in the present study reached interesting results considering the
set-up differences.

The reported difference between the two systems in the estimation of the trunk anterior
flexion angle can be also due to the adopted protocol for marker placement and trunk
segment definition. According to Davis’ protocol [46], the trunk is defined as a single
segment by the markers placed on the seventh cervical vertebrae and the shoulders, and
the markers on the pelvis and the anterior flexion angle are computed accordingly. As the
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body-worn IMU was placed on the thorax, it can be hypothesized that a single IMU may
not be able to capture the full movement of a wide body segment as the trunk defined
according to Davis et al. [46]. Instead, the application of other markers, which allow for
the division of the trunk in different areas [57], could better estimate the considered angle.
Further investigations are required on this specific aspect, e.g., compensating the difference
by introducing a correction factor improving the body segment orientation estimation.

Concerning the motor tasks for lower limbs, the mean difference between the systems
in the estimation of thigh and shank body segment angles during knee extension, hip
abduction, and flexion/extension tasks is in line with the literature [42,56]. As for thigh
body segment angles, the two systems seem to compare very well in the estimation of the
body segment angle corresponding to hip flexion, whilst the difference between the two
systems is more of a marker for hip abduction and extension tasks. The difference in the
accuracy of the computation across the hip tasks can be both due to the placement of the
IMU itself and to participants’ own motor patterns.

Hip joint mobility depends on different factors, and it can vary also among healthy
individuals [58,59]. In case of limitation of hip joint ROM, the individual may adopt
compensatory strategies, such as hip external rotation, to achieve full extension. These
compensatory strategies could be appreciated in more than one anatomical plane; thus, a
single IMU is not effective to assess joint changes. Nevertheless, the measured orientation
or body segment angle may not be effective in discriminating the pattern change, especially
for joints with a high range of motion. Assessing joint mobility is necessary to increase the
number of sensors that are computing relative angles, but this means losing the advantages
relative to the adoption of one IMU to monitor and assess the quality of movements.

Concerning the MCID and thus the ability of the IMU-based system to detect meaning-
ful changes in a patient’s condition, the results are in line with previously discussed aspects.
Although there is generally good agreement from either a qualitative or quantitative point
of view, the IMU-based system does not appear to be suitable for analysis requiring a high
level of detail since it does not seem to be able to detect change in the ROM lower than 2◦

across the explored tasks. However, further investigations on these aspects are needed. In
the literature, several methods have been proposed to compute MCID, but there is no clear
consensus regarding which methods are the most suitable [53]. In addition, since this work
focused on healthy subjects, it could be interesting to evaluate the performance of patients
following a tele-rehabilitation program with the proposed IMU-based system and compare
their pre/post-sessions to check if relevant changes in their motion pattern are detected by
both the gold standard and the IMU-based system.

However, despite the discussed limitations and differences, the results indicate gener-
ally good agreement, accuracy, and correlation between the kinematics estimated by the
two systems across the tasks of the experimental protocol. The IMU-based system generally
allows for an adequate estimation of trunk and lower-limb kinematics, as demonstrated
through the comparison with the gold standard. It is important to note the IMU-based
system was not designed as a replacement for the MoCap system, but as an intermediate
tool for motion analysis in those environments where gold standard systems are imprac-
tical, such as the home and ecological settings in real-life contexts [54]. However, the
interesting results of this study highlight the potential design of an IMU-based system
that is easily integrated in home environment settings for rehabilitation demands for both
patients and clinicians.

The IMU-based system tested in this study was designed as a self-practice rehabili-
tation tool and it was not intended for specific diagnostic purposes, but it may provide
reliable information on joint kinematics, integrating clinical evaluation in different reha-
bilitation settings. In tele-rehabilitation contexts, a portable system providing reliable
kinematic estimation allows the professional to monitor and keep track of the progress
of the rehabilitation pathway and changes in patients’ motor function in unsupervised
settings and to tune and modulate the rehabilitation program accordingly. Even though the
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reported differences between the two systems in terms of accuracy may affect finer analysis
and diagnostic purposes, they cannot be determinant in this context.

Considering the second aim of the study, the sensitivity of the device in tracking
kinematics through the body segment angle was assessed with respect to either a medial or
lateral displacement of the IMU during hip flexion and extension tasks.

The IMU’s angular measurements are slightly to moderately biased by its malposition.
With respect to hip flexion, the ROMs corresponding to medial and lateral displacement
display a difference of less than −3◦ with respect to the ROM computed with the IMU
in the correct place. In hip extension, the discrepancy between the ROM values rises up
to +6◦ degrees when the IMU is laterally displaced. Such results are in line with those
of a previous study assessing IMU sensitivity to mispositioning [42]. Although just a
couple of erroneous configurations were explored, it is reasonable to think that for larger
displacements, the system would not be able to detect movement along a precise direction
and would display an error message to warn the user. However, it is important to underline
that the sensitivity of the IMU-based system to location errors in tracking movement could
be considered tolerable with a self-worn system used for a domestic rehabilitation program.

Rehabilitation settings are generally less demanding in terms of required accuracy,
especially in domestic environments. However, the possibility to track meaningful kine-
matic parameters that are of the same order of those retrieved from a gold standard system
with a portable, automated, affordable, and user-friendly technological solution opens
new perspectives in outpatient assessment [54]. In outpatient settings, the use of the pro-
posed IMU-based system may also be effective in improving patient’s health and family
care, either by reducing the need for hospital evaluations or by guaranteeing continuous
assistance and provision of patient-centric rehabilitative solutions.

5. Conclusions

The present study aimed to investigate the validity and the accuracy of an IMU-based
device, designed for rehabilitation, with respect to a gold standard system, as well as its
sensitivity to the IMU’s misplacement, to compute the body segment’s angle measurements.
The overall results confirmed that the IMU-based system was able to track body segment’s
angles accurately with a mean error generally lower than 5◦ in terms of ROM, and it is
slightly affected by errors in positioning the IMU itself. The system seems to be suitable to
be applied in rehabilitation programs in unsupervised settings, such as domestic ones.

In this study, the participants were all young and healthy and easily performed the
selected tasks. In the case of individuals with disabilities or compromised motor function,
their motion patterns may significantly deviate from the healthy ones. In order to better
generalize the results of this study, it could be interesting to evaluate the performance of the
IMU-based device in the detection of aberrant motion patterns and to expand its validation
to other tasks, also involving upper limbs.
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