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We present a new effective-one-body (EOB) waveform for eccentric, nonspinning, binaries in the
extreme mass ratio limit, with initial eccentricities up to 0.95. The EOB analytical waveform,
that includes noncircular corrections up to second post-Newtonian order, is completed by a phe-
nomenological ringdown model that is informed by Regge-Wheeler-Zerilli (RWZ) type waveforms
generated by a point-particle source. This model notably includes the beating between positive
and negative frequency quasi-normal-modes (QNMs). We analyze various prescriptions to faithfully
complete the analytical EOB waveform in the transition from plunge to merger. In particular, we
systematically explore the effect of: (i) the generic Newtonian prefactor; (ii) next-to-quasi-circular
(NQC) corrections to amplitude and phase; (iii) the point where NQC corrections are determined;
(iv) the ringdown attachment point. This yields EOB/RWZ quadrupolar phase differences through
merger and ringdown ≲ 0.01 rad for the quasi-circular case and ≲ 0.05 rad for the eccentric case.
Higher modes are also modeled up to the ℓ = m = 5 multipole. We finally discuss the excitation
of the QNMs and present a heuristic model to motivate it in correlation with the presence of a
point-particle source.

I. INTRODUCTION

The gravitational waves (GWs) that have been
detected by the interferometers of the LIGO-Virgo-
KAGRA collaboration [1–4] were generated by the co-
alescence of comparable mass binaries, mainly black hole
binaries. Since accurate waveform models are required to
analyze these signals without biases, many efforts have
been devoted to build accurate and fast semi-analytical
models using different approaches. However, there are
no analytical solutions of the Einstein field equations for
the merger of the two objects, even if one considers only
vacuum-solutions. Therefore, all the currently available
semi-analytical models that are able to provide wave-
forms for the inspiral, plunge merger and ringdown of
the binaries are informed/calibrated using numerical re-
sults.

One of the semi-analytical approaches that has been
proved to be accurate and fast enough to perform param-
eter estimations [2–6] is the Effective-One-Body (EOB)
model [7–11]. While the pure analytical EOB approach
can be used to faithfully describe only the inspiral of
compact binaries, it is possible to use numerical data to
extend the model and describe also the merger and ring-
down of the system [12, 13]. Notably, EOB models can
be improved and completed using both numerical results
from comparable mass binaries and from the extreme-
mass-ratio regime. This is linked to the fact that, given
a system of two compact objects with masses m1 and
m2, the EOB metric is a ν-deformation of a black hole
solution, being ν = µ/M the symmetric mass ratio and

µ = m1m2/(m1+m2) andM = m1+m2 the reduced and
total mass of the binary, respectively. Consequently, the
test-mass limit is smoothly connected to the comparable
mass case. The dawn of what is nowadays the established
gravitational waveform modeling via the EOB approach
informed by numerical simulations can be traced back to
two seminal papers, one by Buonanno, Cook and Pre-
torius [12], and the other by Damour and Nagar [13].
The former used the pioneering Numerical Relativity
(NR) simulation of equal-mass, nonspinning black hole
binary [14], while the latter considered the quasi-circular
inspiral and plunge of a non-spinning test-particle in a
Schwarzschild black hole [15]. Since the test-mass limit
is a controlled theoretical laboratory to test prescriptions
to use also in the comparable mass case, it has been ex-
plored in many EOB works, see e.g. Refs. [13, 15–20]
Moreover, this limit is also interesting by itself, since
the space-based mission LISA [21] will be able to detect
Extreme-Mass-Ratio-Inspirals (EMRIs) [22, 23]. How-
ever, to model these astrophysical systems, an accurate
description of the dynamics is needed. The Gravitational
Self-Force (GSF) community has devoted many efforts
in tackling this problem [24–27], with techniques and re-
sults that are beyond the scope of this work. We just
mention that the EOB approach was recently shown to
accurately describe the dynamics of GSF-evolved EM-
RIs in the quasi-circular case [28, 29] once informed by
GSF-results [30–35]. In this work we focus instead on the
EOB prescription to compute the waveform at infinity for
a non-spinning test-particle plunging in a Schwarzschild
black hole after an eccentric inspiral. The numerical data
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used to build the ringdown model, and thus complete
the EOB waveform, are obtained solving numerically the
Regge-Wheeler and Zerilli (RWZ) equations [36–39] using
the time-domain code RWZhyp [16, 40, 41]. We argue that
a description based exclusively on Quasi-Normal-Modes
(QNMs) cannot be used to describe the ringdown wave-
form starting from the peak of the amplitude. We rather
use a modified version of the phenomenologically agnos-
tic ringdown model presented in Ref. [42]. We model the
(2,2) multipole and also all the m > 0 higher modes up
to ℓ = 4, plus the (5,5) mode. The complete waveform
obtained is, to our knowledge, the most accurate EOB
waveform for a nonspinning test particle on quasi-circular
inspirals in Schwarzschild spacetime, and also generalize
well to highly eccentric dynamics. To conclude, we also
discuss how the QNMs build-up during the last stages of
the evolution of the binary. Among other phenomenolog-
ical results, we find that the overtones are excited before
the fundamental QNM, confirming the qualitative argu-
ments presented in Ref. [13].

The paper is structured as follows. In Sec. II we dis-
cuss how we compute the approximate dynamics of the
particle, the numerical RWZ waveform and the model-
ing of the ringdown. In Sec. III we discuss the inspiral
waveform and how we match it to the ringdown model
using the NQC corrections. The complete EOB wave-
form obtained is then compared to the original numeri-
cal results in Sec. IV. In Sec. V we further analyze the
QNMs contributions in the postpeak waveform and we
revisit the matching of the ringdown model using an ex-
tended time interval. The build up of the QNMs exci-
tation is discussed in Sec. VI. The rescaled phase-space
variables that we use in this work are related to the phys-
ical ones by t = T/(GM), r = R/(GM), pr = PR/µ
and pφ = Pφ/(µGM). We will also use geometric units
G = c = 1.

II. FROM ECCENTRIC INSPIRAL TO
PLUNGE, MERGER AND RINGDOWN

The radiation-reaction-driven transition from eccentric
inspiral to plunge, merger and ringdown in the large mass
ratio limit and the emitted gravitational waveform (com-
puted using black-hole perturbation theory) were first
discussed in Ref. [43] and then more in extenso in Sec. VB
of Ref. [20] (notably also allowing the central black hole
to spin). In the same Sec. VB of Ref. [20] we also pre-
sented a (preliminary) complete effective-one-body-based
waveform model including merger and ringdown for the
ℓ = m = 2 mode. In this section we build upon Ref. [20]
and complement the description of the dynamics and
waveform phenomenology described there. In particu-
lar, we: (i) present a precise description of the transi-
tion from inspiral to plunge and its dependence on the
eccentricity; (ii) explicitly present an analytical descrip-
tion of the postpeak waveform, that improves the one
presented in Ref. [20] and that is crucial (as we will see)

TABLE I. Configurations considered and relevant quantities
at merger time, defined as the peak of the orbital frequency.
From left to right: initial semilatus rectum, initial eccentric-
ity, eccentricity at the separatrix-crossing time, time differ-
ence between the peak of the orbital frequency and the peak of
the quadrupolar amplitude, energy, angular momentum and
quadrupolar amplitude at the peak of the orbital frequency
(that corresponds to the light-ring crossing).

# p0 e0 esep tpeakΩorb
− tpeakA22

ÊLR pLR
φ ALR

22

1 7.0 0.00 0.000 2.559 0.9422 3.4574 0.2928
2 7.3 0.05 0.061 2.585 0.9424 3.4598 0.2932
3 7.0 0.10 0.113 2.657 0.9429 3.4668 0.2942
4 8.0 0.15 0.141 2.708 0.9433 3.4717 0.2950
5 7.5 0.20 0.201 2.856 0.9444 3.4855 0.2970
6 8.0 0.25 0.229 2.925 0.9450 3.4932 0.2981
7 8.0 0.30 0.276 3.080 0.9462 3.5081 0.3003
8 8.0 0.35 0.321 3.240 0.9476 3.5243 0.3027
9 7.5 0.40 0.393 3.538 0.9503 3.5544 0.3070
10 8.0 0.45 0.415 3.651 0.9513 3.5644 0.3085
11 7.7 0.50 0.482 4.004 0.9545 3.5984 0.3133
12 8.0 0.55 0.514 4.189 0.9563 3.6159 0.3158
13 8.0 0.60 0.563 4.479 0.9592 3.6447 0.3199
14 8.0 0.65 0.615 4.839 0.9625 3.6768 0.3245
15 8.0 0.70 0.670 5.298 0.9665 3.7142 0.3298
16 8.0 0.75 0.728 5.877 0.9710 3.7554 0.3359
17 8.0 0.80 0.778 6.284 0.9751 3.7912 0.3408
18 8.2 0.85 0.818 6.628 0.9784 3.8202 0.3451
19 8.3 0.90 0.869 7.497 0.9839 3.8684 0.3523
20 8.5 0.95 0.904 8.160 0.9878 3.9004 0.3566

to construct a complete EOB waveform, that is the main
goal of Sec. III below. Here we focus on the nonspinning
case only, while the spinning case will be discussed else-
where. The radiation-reaction-driven relative dynamics
is obtained solving Hamilton’s equations in the presence
of driving forces, that read

ṙ =
A

Ĥ
pr∗ , (1a)

φ̇ =
A

Ĥ

pφ
r2

≡ Ω, (1b)

ṗr∗ =AF̂r −
A

r2Ĥ

[
p2φ

(
3

r2
− 1

r

)
+ 1

]
, (1c)

ṗφ =F̂φ, (1d)

where A = 1− 2/r is the metric Schwarzschild potential,
pr∗ is the conjugate momentum of the tortoise coordi-

nate r∗ = r + 2 log (r/2− 1), and Ĥ is the µ-normalized
Hamiltonian of a test-particle on Schwarzschild,

Ĥ =

√√√√A(r)

(
1 +

p2φ
r2

)
+ p2r∗ . (2)

The explicit form of F̂φ and F̂r can be found in Ref. [20,
43].
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FIG. 1. Left panel: the evolution of radial effective potential W , Eq. (7), along the transition from quasi-circular inspiral up
to the Last Stable Orbit. The LSO potential is highlighted, while the minima (identified by visible markers) indicate the radius
and energy of the particle. Right panel: eccentric case with initial eccentricity e0 = 0.6 (esep = 0.563). We show a sequence of
potentials W (that change due to radiation reaction) and corresponding energies of the particle at the periastron (horizontal
line, gray) during the bound motion of the inspiral. The quantities at the separatrix crossing are shown in blue, while the red
lines correspond to the beginning of the plunge. Note that in this case one has Vmax ≲ E. The horizontal arrows mark the
radial location (and energy) of the particle along the orbit at t = tsep and at t = tr̈=0. Note that the arrows point toward the
corrisponding direction of the radial motion, outgoing for t = tsep and ingoing for t = tr̈=0. This latter point can be considered
a missed periastron and practically marks the beginning of the plunge.

Let us also remind that, as in Ref. [20], we define the
eccentricity e and the semilatus rectum p in terms of
the two radial turning points, the periastron r− and the
apastron r+,

e =
r+ − r−
r+ + r−

(3)

p =
2r+r−
r+ + r−

. (4)

Note that this definition yields r± = p/(1∓ e). The link
between (e, p) and the energy and angular momentum,

(Ê, pφ), is simply obtained by solving the energy condi-

tion Ê = Ĥ|pr∗=0 evaluated at the two radial turning
points. In order to have stable orbits, the semilatus rec-
tum must satisfy the condition p ≥ ps = 6+2e, where ps
is known as the separatrix and reduces to the Last-Stable-
Orbit (LSO) in the quasi-circular case. In this work we
will consider configurations with initial eccentricities up
to e0 = 0.95 and semilatera recta such that the particle
undergoes at least a few radial orbits before plunging in
the black hole. The simulations considered in this work
are listed in Table I. The dynamics is always started at
the apastron, so that the initial radial momentum is zero.
Note that we chose (e0, p0) in order to have a clear geo-
metrical intuition of the orbit, but we immediately con-
vert (e0, p0) in energy and angular momentum so that
we have all the needed initial values to compute the dy-
namics from Hamilton’s equations. Note that since the
dynamics is not conservative, e and p are not constants of

motion and are not defined through the whole evolution
of the binary. Indeed, after the separatrix-crossing time
tsep, i.e. the time at which the condition p(t) = ps(t) is
met, the periastron is no longer defined and thus neither
the eccentricity and the semilatus rectum. Since in the
next sections we will focus on the last part of the dynam-
ics, we will often use esep = e(tsep) to refer to a certain
simulation, rather than e0. Note however that this is only
for labeling purposes, the eccentricity e(t) is not actually
used anywhere during the evolution.
In our conventions, the strain waveform is decomposed

in multipoles as

h+ − ih× = D−1
L

∞∑
ℓ=2

ℓ∑
m=−ℓ

hℓm −2Yℓm(Θ,Φ), (5)

where DL is the luminosity distance and −2Yℓm(Θ,Φ)
are the spin-weighted spherical harmonics with weight
s = −2. The numerical waveform at linear order in ν is
obtained solving the Regge-Wheeler and Zerilli [36, 37]
equations

∂2
tΨ

(o/e)
ℓm − ∂2

r∗Ψ
(o/e)
ℓm + V

(o/e)
ℓ Ψ

(o/e)
ℓm = S

(o/e)
ℓm , (6)

where the superscripts (e) and (o) distinguish respec-
tively even parity (ℓ + m even) and odd parity (ℓ + m

odd) solutions and the corresponding potentials V
(o/e)
ℓ

and sources S
(o/e)
ℓm . The Ψ

(o/e)
ℓm (t), are related to

the waveform multipoles of Eq. (5) as Ψ
(o/e)
ℓm (t) =
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hℓm(t)/
√

(ℓ+ 2)(ℓ+ 1)ℓ(ℓ− 1). We solve the RWZ equa-
tions using the time-domain code RWZhyp [16, 40, 41].

A. Transition from eccentric inspiral to plunge

Let us discuss the main qualitative features of the tran-
sition from an eccentric inspiral to plunge and merger. To
do so pedagogically, let us first remind the reader how
this transition occurs in the quasi-circular case. The
(quasi)-circular inspiral is approximately representable
as a sequence of circular orbits. The radius rc of each
circular orbit (with r > rLSO) corresponds to the local
minimum of the radial potential

W =

(
1− 2

r

)(
1 +

p2φ
r2

)
, (7)

i.e. defined by the condition ∂r(W )|r=rc = 0, and its

energy is Ê =
√
Wmin, where W (rc) = Wmin Since ra-

diation reaction eliminates angular momentum from the
system, the potential W is modified during the evolu-
tion, until the local maximum and minimum fuse to-
gether in an inflection point at the Las Stable Orbit
(LSO), r = rLSO = 6, where ∂rW = ∂2

rW = 0 and

pLSOφ = 2
√
3. The evolution of the potential and the en-

ergy for the quasi-circular case up to tLSO are shown in
the first panel of Fig. 1. We highlight in blue the po-
tential at tLSO, after which the particle plunges into the
black hole.

Eccentric orbits occur when
√
Wmin < Ê ≤

√
Wmax,

and the radial motion is confined between the two turn-
ing points, apastron and periastron. Since angular mo-
mentum is not conserved due to gravitational wave emis-
sion, the potential changes in time until a moment when
Ê =

√
Wmax. After this, the periastron no longer exists

(and thus e and p are no longer defined). As the energy
of the particle approaches the maximum of the potential,
the radial velocity eventually reaches a local minimum
|ṙ|min ̸= 0 and the radial acceleration r̈ changes sign,
forcing the particle to plunge into the black hole. We
identify this time, tr̈=0, as the beginning of the plunge.
The evolution of the potential for a configuration with
initial eccentricity e0 = 0.6 is shown in the right panel of
Fig. 1. In this example the particle undergoes many ec-
centric orbits, then it crosses the separatrix while moving
away from the central black hole (blue marker). The par-
ticle then reaches the apastron, inverts the motion and
eventually crosses the potential barrier at approximately
tr̈=0 (red marker), where the plunge starts. We also show
the corresponding trajectory, the radial evolution and the
corresponding waveform in Fig. 2. Looking at r(t), it is
clear that tr̈=0 can be though as a missed periastron.
In the same figure, we also show the quasi-circular con-
figuration and another eccentric case with higher initial
eccentricity, e0 = 0.9. Note that in this highly eccen-
tric case there is a long-lasting circular whirl around the
plunge, while in the previous case the whirl around tr̈=0

was much shorter. This phenomenology is linked to when
tsep occurs. In the e = 0.9 case, the particle crosses the
separatrix slightly before the plunge and thus the energy
at tr̈=0 is quite close to the maximum of the radial po-
tential . As a consequence, the particle undergoes a long-
lasting quasi-circular whirl1. In the case with e0 = 0.6,
the separatrix crossing occurs slightly after the last peri-
astron passage and thus the effect of the radiation reac-
tion during the last radial orbit increases the difference
between the energy and the maximum of the radial po-
tential at the beginning of the plunge (in this case we

have Ê−
√
Wmax ≃ 5×10−5, while in the more eccentric

one we had 2 × 10−6). Therefore, in our e0 = 0.6 case
the particle has a shorter quasi-circular whirl before the
plunge with respect to our e0 = 0.9 case. For similar rea-
sons, the configuration with e0 = 0.5 has a longer whirl
at tr̈=0 than the configuration with e0 = 0.8. We thus
confirm that the length of the quasi-circular behavior oc-
curring before the plunge does not simply depend on the
value of eccentricity.
Since the beginning of the plunge is a missed perias-

tron and the eccentricity is a slowly varying quantity,
the radius that marks the beginning of the plunge can be
approximated as rplunge ≃ (6 + 2esep)/(1 + esep) and it
is always smaller than r = 6. The net result of this, to-
gether with the considerations above, is that the plunge is
more adiabatic in the presence of eccentricity than in the
quasi-circular case. This is made quantitative in Fig. 3,
that depicts the adiabatic estimator Ω̇/Ω2 as function of
Ω for some relevant configurations. For each dataset, the
horizontal axis is restricted between Ωr̈=0 and Ωpk, that
corresponds respectively to the orbital frequency at the
start of the plunge and at the light-ring crossing.

B. Waveform phenomenology

The features of the dynamics that we have just dis-
cussed clearly reflect on the waveform phenomenology,
as shown by the Zerilli (2,2) waveforms reported in the
bottom row of Fig. 2; the amplitude is shown in black, the
frequency in blue. The latter is also compared with the
orbital frequency, Ω, shown in dashed orange. While in
the circular case 2Ω is a remarkably good approximation
of the waveform frequency ω22, in the two eccentric cases
the noncircular effects increase the differences between
these two quantities during the inspiral. However, note
that ω22 ≃ 2Ω holds also during the plunge for the two
eccentric cases, up to the time of the quadrupolar ampli-

tude peak, tpeakA22
(marked with a green circle), i.e. shortly

before the light-ring crossing tLR (marked with a purple
triangle). This can be easily understood considering that
the eccentric plunge is rather adiabatic.

1 We recall that if the energy is close to the peak of the radial po-
tential, the orbits show a zoom-whirl behavior, see e.g. Ref [44].
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FIG. 2. Top row: trajectories for the three configurations with initial eccentricity e0 = {0, 0.6, 0.9}. We highlight in orange
the portions that correspond to the parts shown in the lower panels. In all the cases we mark the separatrix crossing with
a blue diamond (LSO in the quasi-circular case), the peak of the quadrupolar amplitude tpeakA22

with a green circle, and the
light-ring crossing time tLR with a purple triangle. In the eccentric case we also highlight the inflection point of the radius that
marks the end of the last radial orbit, tr̈=0, with a red star. Middle row: radius versus time, same markers as above. Bottom
row: corresponding amplitude (black) and frequency (blue) of the quadrupolar waveforms. We also show the orbital frequency
(dashed orange).

In order to better highlight the properties of the wave-
form for different eccentricities, in Fig. 4 we plot the (2,2)
mode of the waveforms for e0 ∈ [0, 0.9]. As a conse-
quence of the fact that in highly eccentric configurations
the plunge starts at smaller radii, the amplitude grows
as the eccentricity increases and the peaks become wider.
Moreover, the peaks occur at earlier times with respect

to the light-ring crossing, as shown by the markers in
the left panel. In the right panel of Fig. 4 we show the
corresponding frequencies. After the light-ring crossing
all the frequencies reach the fundamental positive quasi-
normal frequency of the Schwarzschild black hole. No-
tably, also the beating between the positive and negative
fundamental quasi-normal frequencies is not influenced
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FIG. 3. Measure of adiabaticity, Ω̇/Ω2, for the quasi-circular
case and different eccentric configurations. The horizontal
axis is restricted between Ωr̈=0 and Ωpk.

by the nature of the perturbation. However, at later time
the oscillations in the frequencies tend to grow for high
eccentricity, but this is only an effect of the power-law
tail that begins to dominate on the quasi-normal-mode
(QNM) contribution. We postpone the discussion of the
tail to Sec. VD. We also highlight the inflection point
of the frequencies using diamond markers. The location
of this point is not strongly influenced by the eccentric-
ity, but it is only slightly delayed with respect to the
light-ring crossing. On the contrary, the location of the
amplitude peak is strongly influenced by the eccentricity.
This is a qualitative explanation of why the quasi-circular
ringdown model used in TEOBResumS is able to correctly
reproduce the frequency of highly eccentric comparable
mass configurations, but not their amplitudes (see the
supplemental material of Ref. [5]).

C. Ringdown (postpeak) modeling

During the ringdown, a relevant contribution to the
waveform is given by the QNMs. If this is the only con-
tribution, then each multipole can be written as

Ψ
(o/e)
ℓm =

∞∑
n=1

(
C+

ℓmne
−σ+

ℓnτ + C−
ℓmne

−σ−
ℓnτ
)
, (8)

where σ±
ℓn = αℓn ± iωℓn are the complex QNM frequen-

cies, and the C±
ℓmn are complex constant coefficients2.

2 Note that we denote the fundamental QNM mode with the index
n = 1 so that the first overtone has index n = 2, while in other
recent works the fundamental mode is denoted with 0.

While the latter depend on the type of the perturba-
tion, the frequencies depend only on the mass of the
Schwarzschild black hole. However, it has been shown
that for comparable mass binaries the pure QNM descrip-
tion can be used only at later times [45]. In Sec. V we
will argue that this is the case also for the postpeak wave-
form generated by a particle falling into a Schwarzschild
black hole. Therefore, we comply to the phenomeno-
logical ideas introduced in Ref. [42], based on the idea
of factorizing away the contribution of the fundamen-
tal quasi-normal mode. We thus introduce the QNM-
rescaled waveform

h̄ℓm(τ) = eσ
+
ℓ1τ+iϕpeak

ℓm hrng
ℓm (τ), (9)

where τ = t − tpeakAℓm
, ϕpeak

ℓm is the value of the phase

at the amplitude peak, and hrng
ℓm is the ringdown wave-

form. The QNM-rescaled waveform h̄ℓm(τ) is then writ-
ten using two templates for the amplitude and the phase,
h̄(τ) = Ah̄(τ)e

iϕh̄(τ). In Ref. [20], we pointed out that the
original waveform template for the amplitude can become
incorrect when the mass ratio is large. For this reason
we introduced a different fitting function. Our templates
thus read

Ah̄(τ) =

(
cA1

1 + e−cA2 τ+cA3
+ cA4

) 1

cA5

, (10)

ϕh̄(τ) = −cϕ1 ln

(
1 + cϕ3e

−cϕ2 τ + cϕ4e
−2cϕ2 τ

1 + cϕ3 + cϕ4

)
, (11)

where we have dropped the ℓm-indices for notation sim-
plicity. The sets of parameters cA and cϕ are constrained
by requiring the continuity of the waveform at τ = 0
with the inspiral waveform. Requiring the continuity of
the amplitude, its first two time derivatives, and the fre-
quency, we get

cA1 =
cA5 α1

cA2
(Apeak)

cA5 e−cA3 (1 + ec
A
3 )2, (12)

cA4 = (Apeak)
cA5 − cA1

1 + ec
A
3

, (13)

cA5 = − Äpeak

Apeakα2
1

+
cA2
α1

ec
A
3 − 1

1 + ec
A
3

, (14)

cϕ1 =
1 + cϕ3 + cϕ4

cϕ2 (c
ϕ
3 + 2cϕ4 )

∆ωpeak, (15)

where Äpeak is the second time-derivative of the ampli-
tude evaluated at the peak, and ∆ωpeak ≡ ω1 − ωpeak.

Note that in previous works also the condition cϕ2 =

∆α21 ≡ α2 − α1 was imposed, here instead we leave cϕ2
as a free parameter. The phase difference obtained with

the constrained cϕ2 using the damping times is shown in

blue in the bottom-right panels of Fig. 5. The free cϕ2
improves the phase, especially for ℓ = m modes.
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FIG. 4. Left panel: quadrupolar Zerilli amplitudes for different eccentricities, aligned with respect to the light-ring crossing.
The dots mark the maxima of the amplitudes. Right panel: Zerilli frequencies for different eccentricities, always aligned using
the light-ring crossing. The diamonds mark the inflection points of the frequencies.

With these templates we are able to fit the numerical
postpeak waveform for each multipole and every eccen-
tricity considered in this work. In the first row of Fig. 5
we show the primary fits for the (2,2), (2,1) and (3,3)
modes for the quasi-circular inspiral. The rescaled am-
plitude Ah̄ and the rescaled phase ϕh̄ reach a plateau
after ≃ 2τℓ1, where τℓ1 ≡ 1/αℓ1 is the QNM-damping
time of the fundamental mode. This means that, at this
stage of the evolution, the only relevant contribution to
the waveform is given by the fundamental QNMs. Note

that leaving cϕ2 as a free parameter strongly improves the
phase agreement for the (2,2) and (3,3) modes (cfr. red
and blue lines in the phase difference of each plot), while
it is not relevant for the (2,1) mode. Similar consider-
ations hold for the configuration with e0 = 0.9, that is
shown in the bottom row of Fig. 5, and all the other
eccentric configurations considered in this work.

D. Modeling the mode-mixing

The templates discussed above catch all the main fea-
tures of the numerical waveform, except the mode-mixing
generated by the negative-frequency QNMs. This effect
can be already seen in the (2,2) mode, but become par-
ticularly relevant in the m = 1 modes, as shown for the
(2,1) mode in Fig. 5. We will discuss this effect in more
detail in Sec. VB, here we just mention that it can be
simply included in the ringdown model doing the substi-
tution

hrng
ℓm (τ) → hrng

ℓm (τ)
(
1 + âℓm1e

2iωℓ,1τσ(τ ; τmm
0 )

)
, (16)

where âℓm1 = C−
ℓm1/C

+
ℓm1 ≡ Âℓm1e

iθℓm1 and σ(t; τmm
0 ) =

1/(1 + e−(τ−τmm
0 )) is a sigmoid that activates the mode-

mixing correction. The âℓm1 coefficients can be extracted
fitting the late ringdown frequency with a fundamental-
QNM ansatz as outlined in Ref. [16]; in this work we will
follow a more refined procedure that we will discuss in
Sec. VB. Note that, despite the fact that C±

ℓm1 depend on
the nature of the perturbation, the modulus of their ratio,
Âℓm1, does not seem to change with the eccentricity, as
shown for example for the (2,2) mode in Fig. 4. The

values of Âℓm1 can be found in Table III, while the value
of τmm

0 is chosen in order to introduce the oscillations in
the analytical waveform only when they are also present
in the numerical wave. For all the eccentricities, we use
τmm
0 = 25 for the (2,2) multipole, τmm

0 = 20 for the ℓ = m
higher modes, τmm

0 = 8 for (2,1), (3,2), (4,3), (4,2) and
t0 = 3 for (3,1) and (4,1).

E. Global fits

In Sec. II C and Sec. IID we have discussed a phe-
nomenological model that can be used to faithfully de-
scribe the postpeak waveform. This model depends on
different free parameters that are found fitting RWZ post-
peak waveforms. However, in order to describe any ec-
centric case, we need to provide global fits of these param-
eters as function of some system-characterizing quantity.
While the eccentricity would be an intuitive choice3, it

3 The eccentricity at the separatrix-crossing was used in the global
fits performed in Ref. [20].
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FIG. 5. Numerical waveform (black) and postpeak primary fits (red) for the (2,2), (2,1) and (3,3) modes for the quasi-circular
configuration (top row) and the configuration with e0 = 0.9 (bottom row). We show the waveform hℓm and its amplitude
together with the QNM-rescaled amplitude Ah̄ and phase ϕh̄. In the two small bottom panels we show the fit/numerical
relative difference for the rescaled amplitude and the difference for the rescaled phase (red). Here ϕ0

h̄ is the phase of h̄ at
τ = 0, and τℓ1 = 1/αℓ1 is the QNM-damping time of the fundamental mode. We also show the RWZ/primary phase difference

obtained imposing the condition cϕ2 = ∆α21 in the primary fit (dashed blue).

is not a gauge invariant quantity and it is not defined
through the whole evolution of the system. We thus use
the quantity b ≡ pφ/Ê evaluated at the peak of the or-
bital frequency (i.e. at the light-ring crossing) and shifted
with the corresponding quasi-circular value,

b̂Ωpk
= bΩpk

− bQC
Ωpk

, (17)

where bQC
Ωpk

= 3.6693. Note that this parameter is gauge

invariant since it is a combination of energy and angular
momentum, and it vanishes in the quasi-circular case.
The latter feature is useful because we impose that the
fits reduces to the exact values in the quasi-circular case.

We thus proceed to perform the global fits for each
multipole. Note that in our global fits we only use the
simulations in Table I with odd identification number
(#) (i.e. the simulations with ”round” initial eccentric-
ity), so that the eccentric simulations with even identi-
fication number can be though as a test-set for the an-
alytical model. We need to fit the free parameters of

amplitude and phase templates,
{
cA2 , c

A
3 , c

ϕ
2 , c

ϕ
3 , c

ϕ
4

}
, the

quantities
{
Apeak, Äpeak, ωpeak

}
that are needed to com-

pute the constrained parameters, and the phase θ1 of the
mode-mixing complex factor âℓm1 (the modulus does not
depends on the eccentricity). The primary fits are re-
ported in Appendix C, and in particular in Tables V, VI.
The fits for the mode-mixing are instead reported in Ta-
ble IV.

III. EFFECTIVE-ONE-BODY WAVEFORM

A. Inspiral EOB waveform

The quasi-circular EOB inspiral waveform for is ob-
tained factorizing and resumming the post-Newtonian
(PN) expanded multipoles [46],

hℓm = h
(N,ϵ)c
ℓm ĥ

(ϵ)c
ℓm = h

(N,ϵ)c
ℓm Ŝ(ϵ)ĥtail

ℓm (ρℓm)ℓ, (18)

where ϵ denotes the parity of the multipole, h
(N,ϵ)c
ℓm is the

Newtonian circular contribution and ĥ
(ϵ)c
ℓm is the circu-
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lar PN correction. The term Ŝ(ϵ) is the effective-source
term, i.e. the energy if ϵ = 0 or the Newtonian-normalized

angular momentum if ϵ = 1, ĥtail
ℓm = Tℓmeiδℓm is the tail

factor and the ρℓm are the residual amplitude corrections.
The waveform (18) can be generalized to non-circular

dynamics including corrections that are known up to
2PN [43, 47–49]. In particular, Ref. [43] proposed to gen-
eralize the waveform of Eq. (18) generic orbits by simply
replacing the Newtonian quasi-circular prefactor with its
general expression, i.e.

h
(N,ϵ)c
ℓm → ĥ

(N,ϵ)c
ℓm ĥ

(N,ϵ)nc

ℓm . (19)

For the (2,2) mode, the non-circular correction reads

ĥ
(N,0)nc

22 = 1− r̈

2rΩ2
− ṙ2

2r2Ω2
+

2iṙ

rΩ
+

iΩ̇

2Ω2
, (20)

where r is the radius and Ω is the orbital frequency. The
time-derivatives in the generic Newtonian prefactor are
computed using a 4th order centred stencil scheme, i.e.
no PN-expanded equations of motion are used to com-
pute them. While this correction is clearly crucial for ec-
centric inspirals, we will see that it is needed to improve
the analytical/numerical agreement during the plunge
also in the quasi-circular case. The 2PN non-circular cor-
rections to the Newtonian-factorized waveform provide a
better analytical/numerical agreement for the phase dur-
ing the inspiral [48, 49], even if the main correction is
given by the Newtonian term (19). In this work we will

consider the noncircular hereditary term ĥtailnc
22 written

in terms of ṗr∗ (see Eq. C1 of Ref. [48]) and the instanta-

neous corrections ĥinstnc
22 introduced in Ref. [49], so that

the quadrupolar waveform reads

h22 = ĥ
(N,ϵ)c
22 ĥ

(N,ϵ)nc

22 ĥ
(ϵ)c
22 ĥinstnc

22 ĥtailnc
22 . (21)

The 2PN non-circular corrections are switched-off at the
beginning of the plunge using a sigmoid function, σ(t) =
1/[1 + e−α(t−tplunge)] with α = 0.2, both for the eccentric
and quasi-circular cases. We do not consider 2PN non-
circular corrections for the higher-modes. The relevance
of these corrections in the quasi-circular inspiral will be
discussed in Sec. IV.

B. Next-to-Quasi-Circular corrections

Even if the generic Newtonian prefactor of Eq. (20)
is useful to improve the waveform during the plunge, we
still need to correct the plunge waveform using numerical-
informed correction known as Next-to-Quasi-Circular
(NQC) corrections [13], especially for the higher modes.
The complete EOB waveform is thus given by

hℓm = θ(tmatch
ℓm − t)hinspl

ℓm ĥNQC
ℓm + θ(t− tmatch

ℓm )hrng
ℓm , (22)

where hinspl
ℓm is the inspiral EOB waveform discussed in

Sec. III A, hrng
ℓm is the ringdown discussed in Sec. II C,

ĥNQC
ℓm is the NQC waveform correction, θ(x) is the Heav-

iside step function, and tmatch
ℓm is the matching time. The

NQC correction is written as

ĥNQC
ℓm =

1 +

3∑
i=1

aℓmi ni

 exp

i

3∑
j=1

bℓmj nj+3

, (23)

where ni are functions that are combinations of quanti-
ties negligible during the quasi-circular inspiral but rele-
vant during the plunge. To satisfy this requirement, it is
natural to write them in terms of time-derivatives of the
radius or in terms of pr∗ . For all the higher modes we
use the basis

n1 =
p2r∗
r2Ω2

, (24a)

n2 =
r̈

rΩ2
, (24b)

n3 = n1 p
2
r∗ , (24c)

n4 =
pr∗
rΩ

, (24d)

n5 = n4 Ω, (24e)

n6 = n5 p
2
r∗ . (24f)

For the (2,2) mode, we use use the same ni with i ≤ 4,
but we change n5 = n4 r

2Ω2 and, consequently, n6 =
n5 p

2
r∗ . Note that in TEOBResumS only the first derivatives

of A and ω are considered, so that n3 and n6 are not
used. Moreover, in TEOBResumS the n5 function for the
higher modes is different than the one considered here.
The coefficients ai and bi are determined at a specific

time tNQC
ℓm . If we consider tNQC

ℓm > tpeakAℓm
, then they are

determined solving the linear system

AEOB
ℓm (tNQC

ℓm ) = Arng
ℓm (tNQC

ℓm ), (25a)

ȦEOB
ℓm (tNQC

ℓm ) = Ȧrng
ℓm (tNQC

ℓm ), (25b)

ÄEOB
ℓm (tNQC

ℓm ) = Ärng
ℓm (tNQC

ℓm ), (25c)

ωEOB
ℓm (tNQC

ℓm ) = ωrng
ℓm (tNQC

ℓm ), (25d)

ω̇EOB
ℓm (tNQC

ℓm ) = ω̇rng
ℓm (tNQC

ℓm ), (25e)

ω̈EOB
ℓm (tNQC

ℓm ) = ω̈rng
ℓm (tNQC

ℓm ), (25f)

where on the left-hand side (lhs) the amplitude, fre-
quency and corresponding time-derivatives are computed

from hinspl
ℓm ĥNQC

ℓm , while on the right-hand side (rhs) they
are computed from the ringdown model. If we want to

use tNQC
ℓm < tpeakAℓm

, on the rhs we have to consider quanti-

ties extracted from numerical data at tNQC
ℓm . Due to this

reason, the choice tNQC
ℓm > tpeakAℓm

is, in principle, prefer-
able since it reduces the number of numerical-informed
parameters in the model. However, as we will see in more

detail later, choosing tNQC
ℓm < tpeakAℓm

works better for the
higher modes.

While the NQC correction is negligible during the
quasi-circular inspiral by construction, they are not neg-
ligible in eccentric inspirals since pr∗ is not small. For
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this reason we switch-off the NQC corrections during the
eccentric inspiral using a sigmoid,

ĥNQC
ℓm → ĥNQC

ℓm

1

1 + e−αs(t−tr̈=0)
. (26)

Given the discussion in Sec. II B, it is natural to cen-
ter the sigmoid in tr̈=0 so that the NQC corrections are
switched-on in a region where the motion is indeed quasi-
circular. Due to this choice, the relevance of the pre-
cise value of αs is not crucial; in this work we will use
αs = 0.2.
Finally, consider that to correctly evaluate the lhs

of Eqs. (25), an interpolation on a refined time grid is
needed, see Appendix A for more details.

C. Matching point

The match of the plunge and ringdown waveform is

performed at tNQC
ℓm if tNQC

ℓm > tpeakAℓm
, while it is performed

at tpeakAℓm
if tNQC

ℓm ≤ tpeakAℓm
. The former prescription will

be used for the (2,2) mode, while the latter will be used
for the higher modes. In any case, in order to know the

locations of tpeakAℓm
, we need to link them to dynamical

quantities. In the TEOBResumS model [50, 51] and also
in Ref. [20], the heuristic used to find the peak of the
quadrupolar amplitude was

tpeakA22
= tpeakΩorb

−∆tNQC − 2, (27)

where tpeakΩorb
is the peak of the orbital frequency4 and

∆tNQC = 1. We keep ∆tNQC in the notation for con-
tinuity with previous works. The heuristic (27) gives
satisfactory results in the quasi-circular, since the ex-

act value of tpeakA22
extracted from the Zerilli waveform

is ∆texactNQC ≃ 0.559. Most importably, Eq. (27) has been
shown to be reliable also for quasi-circular binaries of
comparable mass. However, when dealing with highly
eccentric binaries, the approximation ∆tNQC = 1 is no
longer valid and we thus perform a global fit as discussed
in Sec. II E, finding

tpeakA22
= tpeakΩorb

−
2.559 + 7.574 b̂Ωpk

− 18.830 b̂2Ωpk

1− 2.160 b̂Ωpk

. (28)

The peak amplitude of the other multipoles are delayed
with respect to the quadrupolar one as

tpeakAℓm
= tpeakA22

+∆tℓm, (29)

with ∆tℓm > 0 for all the higher modes. The values of
∆tℓm the quasi-circular case, together with their global

4 Consider that for spinning binaries, tpeakΩorb
is the peak of the pure

orbital frequency, that is computed without considering the spin-
orbit terms.

TABLE II. Time delays of the amplitude peaks ∆tℓm for
the higher modes with respect to the peak of the (2,2) ampli-
tude, see definition in Eq. (29). The global fitting template

is ∆tℓm =
(
Cℓm

QC + Cℓm
1 b̂Ωpk + Cℓm

2 b̂2Ωpk

)
/
(
1 +Dℓm

1 b̂Ωpk

)
,

where Cℓm
QC is the quasi-circular value; see also discussion in

Sec. II E.

(ℓ,m) Cℓm
QC Cℓm

1 Cℓm
2 Dℓm

1

(2,1) 11.960 51.831 . . . 2.704
(3,3) 3.563 5.507 21.215 . . .
(3,2) 9.396 11.549 28.933 . . .
(3,1) 13.100 15.132 28.765 . . .
(4,4) 5.384 7.032 23.973 . . .
(4,3) 9.766 11.101 27.870 . . .
(4,2) 12.090 13.150 28.396 . . .
(4,1) 13.280 15.033 28.667 . . .
(5,5) 6.679 7.803 24.818 . . .

fits, are listed in Table II. The fact that ∆tℓm increases
with m at fixed ℓ can be understood heuristically con-
sidering that all the m-modes have to reach the same
final QNM frequency ωℓ,1 (modulo mode-mixing), but
the waveform frequency during the inspiral is given by

ωinspl
ℓm = mΩ at leading order. Therefore, the modes with

small m will need more time to reach the final frequency
ωℓ,1.
We also point out that the mode-mixing becomes more

relevant in low-m higher modes (see e.g. Sec. VB), so
that the position of the amplitude peak for the higher
modes can be contaminated by the mode-mixing. Once
that the location of the amplitude peak is known, we can
proceed to match, mode by mode, the inspiral waveform
to the ringdown model. From a computational point of
view, the matching is performed on a time grid that is
finer than the one used to solve the dynamics, see Ap-
pendix A for details.

IV. PROBING THE EFFECTIVE ONE BODY
ANALYTICAL WAVEFORM

A. Quasi-circular case

We start by analyzing in detail the quasi-circular case,
testing the different prescriptions for the implementation
of the NQC correction and discussing the accuracy of
each waveform mode. Focusing first on the ℓ = m = 2
mode, we have to discuss three aspects:

(i) the impact of the precise location of the amplitude

peak on the EOB temporal axis, tpeakA22
, as described

by Eq. (28);

(ii) the impact of the NQC correction determined im-
posing also continuity between the EOB and RWZ

second-time derivatives ẌNQC =
{
ÄNQC

22 , ω̈NQC
22

}
;
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FIG. 6. Analytical/numerical differences for the amplitude and the phase (in radians) of the quadrupolar waveform for the
quasi-circular inspiral-plunge in Schwarzschild. We consider different inspiral-plunge and ringdown matching procedures. The
differences are shown from the LSO crossing to tpeakAnum

22
+ 70. In the upper panels we consider the matching time according to

Eq. (27), while in the lower panels we use Eq. (28). Then, from left to right, we progressively improve the model considering the

second time derivatives in the NQC base, Ä22 and ω̈22, and then the Newtonian noncircular correction, ĥ
(N,0)nc
ℓm . The rightmost

lower panel shows the differences for the state-of-the-art model.

FIG. 7. Quasi-circular case, ℓ = m = 2 mode: RWZ waveform
(black) compared to the complete EOB one (red, dashed).
The vertical lines mark the LSO crossing and the peak of
A22. The bottom panel shows the relative amplitude differ-
ence (dashed orange) and the phase difference in radians (solid
light blue). Non-circular corrections to the waveform up to
2PN are included.

(iii) the impact due to the generic Newtonian prefactor,
Eq. (20).

Note that here we are analyzing the plunge, therefore at
this stage we do not consider the 2PN non-circular correc-
tions introduced in Eq. (21) . Figure 6 illustrates the an-

alytical/numerical relative amplitude difference (dashed
orange) and phase differences in radians (light blue) for
all possible combinations. In the top row of the fig-
ure, the amplitude peak location is obtained according to
Eq. (27), i.e. the prescription that is adopted, for simplic-
ity, in the comparable mass case within the TEOBResumS
model5. In the bottom row of the figure we consider
instead its exact location according to Eq. (28). Then,
moving from left to right, we add the second-time deriva-
tives of amplitude and frequency in the NQC-corrections,
the analytical generic Newtonian prefactor, and finally
both effects together. In all the cases, the NQC correc-
tions are obtained solving the system given by Eqs. (25)

using tNQC
22 = tpeakA22

+ 2.
For the ∆tNQC = 1 case, we see that, as expected, the

inclusion of both the improved NQC corrections and of
the generic Newtonian prefactor brings a considerable re-
duction of the phase difference up to merger. Moreover,
the phase difference now grows monotonically, to satu-
rate at ∆ϕEOBRWZ

22 ≃ 0.08. As recently pointed out in
Ref. [51], if such a behavior is reproduced for comparable-
mass waveforms, generally indicates that one will end up
with excellent mismatches using actual detector power

spectral density. This suggests that the use of ĥ
(N,0)nc
22

and of ẌNQC also for compable mass binaries may re-
sult in a further reduction of the current EOB/NR dis-
agreement (∼ 0.2 rad) through merger and ringdown. By

5 See however Ref. [52] for an early attempt to go beyond this
simplifying choice.
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FIG. 8. EOB/RWZ phase differences (radians) and relative
amplitude differences for the (2,2) mode of a quasi-circular
inspiral starting from r0 = 9. In the upper panel we show
the differences obtained with the waveform with non-circular
corrections up to 2PN (solid, light blue for the phase and
orange for the amplitude), and the ones obtained considering
only the generic Newtonian prefactor (dashed, blue for the
phase and red for the amplitude). In the bottom panel we
show the ratios of these differences.

contrast, it is interesting to note that the amplitude dif-
ference during the ringdown is nonegligible and remains
substantially unchanged whatever choice is made. When
∆texactNQC is used we are thus not surprised to find a con-
sistent reduction of the amplitude difference during the
ringdown (though evidently it remains unchanged up to
merger). By contrast, the progressive inclusion of addi-

tional physical elements (i.e. ĥ
(N,0)nc

22 and ẌNQC) brings
phase differences below 0.01 rad through the full inspiral,
merger and ringdown. The complete EOB/RWZ com-
parison for the final quadrupolar waveform, that incor-
porates also 2PN non-circular corrections, is shown in
Fig. 7 and complements the rightmost bottom panel of
Fig. 6 also showing the EOB frequency. One appreci-
ates that the phase difference reaches the ∼ 4 · 10−4 rad
at LSO crossing, and remains always below the 0.01 rad
even at merger time. The relative amplitude difference is
∼ 1× 10−3 at LSO crossing to reach at most ∼ 7× 10−3

around merger time. Finally, we quantify the contribu-
tion of the 2PN non-circular corrections of Eq. (21) in
Fig. 8, where we show the EOB/RWZ phase differences of
the (2,2) mode for a quasi-circular inspiral starting from
r0 = 9. The waveforms have been computed (i) consider-
ing the complete waveform, as discussed above and shown
in Fig. 7, (ii) considering only Newtonian non-circular
corrections. As can be seen, the 2PN non-circular cor-
rections improve the phase agreement through the whole
inspiral of the binary, but they are not relevant for the

amplitude.
Modeling higher modes correctly using NQC correc-

tions determined using the standard paradigm imple-
mented in TEOBResumS might be tricky. The main issue
is that the amplitude peak of each mode is always de-
layed than the (2, 2) one [16], as reminded in Table II.
In the discussion above we have seen that the inclusion
of the generic noncircular prefactor of Eq. (19) improves
the EOB/RWZ agreement for the (2, 2) mode. We now
proceed to evaluate the relevance of this term also for
the other multipoles considering an illustrative higher
mode, like the (4, 4). Figure 9 shows that the wave-
form with only the simple quasi-circular factor (dash-
dotted blue line) underestimates the waveform ampli-
tude toward merger. Starting from this, it is not pos-
sible for the waveform NQC correction to improve the
waveform behavior and assure a reliable matching to the
ringdown, especially for the amplitude, as shown by the
NQC-corrected quasi-circular waveform (dotted purple)
in Fig. 9. By contrast, one sees that when the noncircular
factor of Eq. (19) is used, the waveform visibly overes-
timates the waveform amplitude toward merger. This
situation is preferable and can be easily corrected by
the NQC correction, as shown by the waveform obtained

computing the NQC correction at tNQC
44 = tpeakA44

+ 2 (yel-
low solid line). We also find that, in order to considerably
improve the NQC corrections, the system of Eqs. (25) has

to be evaluated at tNQC
ℓm < tpeakAℓm

. For all higher modes,
we chose

tNQC
ℓm = tpeakAℓm

− 2. (30)

Therefore, to compute the rhs of Eqs. (25), we need

to fit
{
ANQC

ℓm , ȦNQC
ℓm , ÄNQC

ℓm , ωNQC
ℓm , ω̇NQC

ℓm , ω̈NQC
ℓm

}
from

RWZ data. The global fits are discussed in Appendix C
and reported in Table VII and VIII. The (4,4) multi-
pole with the generic Newtonian prefactor and the NQC
evaluated according to Eq. (30) is shown with a red
dashed line in Fig. 9. As can be seen, both the am-
plitude and the frequency improves near the matching
time with respect to the waveforms with NQC computed

at tNQC
44 = tpeakA44

+ 2.
For ℓ = m modes, we use the same prescriptions of the

(2,2) mode, except for the fact that the NQC corrections
are computed before the peak amplitude, according to
Eq. (30). The results for the (3,3), (4,4), and (5,5) modes
are shown in the top row of Fig. 10, where we use the
color black for the numerical waveform and frequency
and red dashed lines for the complete EOB waveform.
The absolute value of phase difference, is always below
0.07, 0.035 and 0.05 radians for the (3,3), (4,4), and (5,5)
modes, respectively. The relative amplitude difference,
instead, is around at most of the 1% before the matching
point for all the three cases. However, the amplitude
difference in the late ringdown is around the 10−3 for the
(3,3) and (4,4) modes and even smaller (8 · 10−4) for the
(5,5) mode.
The m < ℓ modes are shown in the middle and bot-
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FIG. 9. Quasi-circular case, mode ℓ = m = 4: comparing various choices of analytical EOB waveform and different ways
of determining the NQC corrections. Amplitude (left panel) and frequency (right panel) The best EOB/RWZ agreement is
obtained by: (i) using the general, noncircular, Newtonian prefactor and (ii) when the NQC corrections are computed at

tNQC
44 = tpeakA44

− 2. We also show, as gray line, 4 times the orbital frequency. From left to right, the two vertical line mark tpeakA22

and tpeakA44
.

tom rows of Fig. 10. In this case we do not consider the
second-time derivative of the frequency in the NQC cor-
rections. As for the higher modes with ℓ = m, the NQC

are computed at tNQC
ℓm = tpeakAℓm

− 2. However, for the
m < ℓ we also apply a downsampling and spline proce-

dure in the interval t ∈ [tNQC
ℓm , tpeakAℓm

] to improve the conti-
nuity of the waveform. Indeed, since the NQC corrections

are determined at tNQC
ℓm , the waveform could be discon-

tinuous at tpeakAℓm
, where the NQC-corrected plunge wave-

form is matched to the ringdown. The downsampling
and subsequent spline-patching solves this issue. While
these higher modes are less accurate than the ℓ = m
ones, the phase agreement is still good and generally
below the 0.2 rad, with the exception of the (4,2) and
(4,1) modes that are more de-phased. The degradation
of the accuracy is strictly linked to the higher delay of

the matching point (i.e. tpeakAℓm
); see Table II. However,

these modes are not relevant as the others in the com-
plete strain, that can be computed using Eq. (5). In the
first panel of Fig. 13 we show the strain for the observa-
tional direction (Θ,Φ) = (π/4, 0) computed considering
all the modes shown so far, both in the numerical and
analytical strain. During the inspiral, the relative am-
plitude difference reaches at most the 2 · 10−3, while the
absolute value of the phase difference never exceeds the
2·10−3 radians. The differences oscillate more in the ring-
down; the amplitude difference reaches at most the 8%
in the early ringdown, while the phase difference reaches
at most 0.06 radians. Note however that, on average,
during the ringdown both the amplitude and the phase
difference are much smaller.

B. The eccentric case

Let us move now to discussing the eccentric case. The
same procedures considered optimal in the quasi-circular
case are retained also in the presence of eccentricity so
to provide comparisons with the eccentric configurations
listed in Table I. As an explicit example that efficiently
summarizes the performance of the model all over the pa-
rameter space, Fig. 11 shows the EOB/RWZ performance
for configuration #20 of Table I, that corresponds to ini-
tial eccentricity e0 = 0.95. Note that this configuration is
not used in the global fits, as discussed in Sec. II E. The
figure includes modes (2, 2), (2, 1) and (3, 3). The per-
formance of the model all over the RWZ-covered points
of the parameter space is assessed, for the same wave-
form multipoles, in Fig. 12, that only reports relative am-
plitude differences (top row plots) and phase differences
(bottom row plots). Note that three specific configura-
tions are highlighted in color, so to point out that the
performance of the model degrades (slightly) as eccen-
tricity is increased. The simplest route to have a handle
on the accuracy of all multipoles is simply to compare the
strain for EOB and RWZ. This is done in Fig. 13 for the
quasi-circular case, for e0 = 0.55 and for e0 = 0.95. It
is interesting to note that, despite the EOB performance
during the (eccentric) inspiral degrades with eccentricity,
as expected, due to the lack of high-order corrections (see
Refs. [48, 49]), the behavior during merger and ringdown
is practically comparable among the three cases.
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FIG. 10. Quasi-circular configuration, higher modes, EOB/RWZ comparisons. The vertical solid black lines mark tpeakA22
, while

the dash-dotted ones mark tpeakAℓm
. Bottom panels: relative amplitude difference (orange, dashed) and phase difference (light

blue). For each mode, the NQC corrections are determined according to the best prescription selected in Fig. 9.

C. Improved description of ringdown for m ̸= ℓ
modes

So far, we have seen that the EOB waveform model
gives more than satisfactory results also for the higher
modes. However, if one carefully inspects the m = 1
EOB modes in the quasi-circular case (see Fig. 10), one
sees the ubiquitous presence of a bump before the actual
amplitude peak. Interestingly, this feature occurs in all
modes and it is related to the NQC amplitude correc-
tion. In general, this is also true for other modes with
m ̸= ℓ, though the effect is less visible. To overcome
this difficulty, we decided to explore a different way to
model the ringdown for higher modes. The procedure is
substantially the same used in the EOB models of the
SEOBNR-family, in particular SEOBNRv4PHM [53, 54] and
SEOBNRv5PHM [55, 56], although the fitting template is dif-
ferent from the one used there. This approach is crucial

to obtain very reliable waveforms when tpeakAℓm
is far from

tpeakA22
, i.e. situations where the NQC corrections cannot

guarantee a reliable match of the plunge waveform to the

merger ringdown one modeled after tpeakAℓm
. The main idea

is to have the RWZ-informed part of the waveform start-

ing directly from tpeakA22
(and not from tpeakAℓm

) for all modes
with ℓ ̸= m. To do so, we consider the QNM-rescaled
waveform similar to the one of Eq. (9), but where the

time is shifted using tpeakA22
for each (ℓ,m) mode. It thus

reads

h̄ℓm(τ̄) = eσ
+
ℓm1τ̄+iϕ0

ℓmhrng
ℓm (τ̄) , (31)

where τ̄ ≡ t − tpeakA22
and ϕ0

ℓm is the phase of the (ℓ,m)

multipole at tpeakA22
. This rescaled waveform is then writ-

ten as h̄mod
ℓm (τ̄) = Ah̄e

iϕh̄ , where the templates for Ah̄ and
ϕh̄ are given in Eqs. (10) and (11). We impose continuity
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FIG. 11. Analytical/numerical comparisons for the (2,2), (2,1) and (3,3) multipoles for the configuration with initial eccentricity
e0 = 0.95. We show the real part and the frequency of the RWZ waveform (black) and the complete EOB waveform (red,
dashed). In the bottom panels we show the relative amplitude difference (orange dashed) and the phase difference in radians

(light blue). The vertical solid lines mark the peak of A22, while the dash-dotted ones mark tpeakAℓm
.

FIG. 12. Analytical/numerical relative difference for the amplitude (upper panels) and phase difference (bottom panels)
for the plunge-ringdown of all the configurations considered in this work. Modes (2,2), (2,1), and (3,3). We highlight the
quasi-circular configuration (blue) and the ones with e0 = {0.55, 0.95} (green and orange, respectively).

conditions constraining cA1 , c
A
2 , c

A
4 and cϕ1 :

cA1 =e−cA3

(
e2c

A
3 − 1

)
cA5 (Atpeak

A22

)c
A
5 (α1Atpeak

A22

+

Ȧtpeak
A22

)2
[
α2
1(Atpeak

A22

)2cA5 +Atpeak
A22

(2α1c
A
5 Ȧtpeak

A22

+

Ätpeak
A22

) + (cA5 − 1)(Ȧtpeak
A22

)2
]−1

, (32)

cA2 =
cA5
cA1

e−cA3

(
ec

A
3 + 1

)2(
Atpeak

A22

)cA5 −1

×

[
α1Atpeak

A22

+ Ȧtpeak
A22

]
,

(33)

cA4 =(Atpeak
A22

)c
A
5 − cA1

ec
A
3 + 1

, (34)

cϕ1 =
1 + cϕ3 + cϕ4

cϕ2 (c
ϕ
3 + 2cϕ4 )

(
ω1 − ωtpeak

A22

)
, (35)

where Atpeak
A22

, Ȧtpeak
A22

, Ätpeak
A22

and ωtpeak
A22

are, respec-

tively, the amplitude of hℓm, its first and second time-

derivative and the frequency evaluated at tpeakA22
; α1 + iω1
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FIG. 13. EOB (red dashed) versus RWZ (black, solid) strain comparison for e0 = {0, 0.55, 0.95}. The direction is (Θ,Φ) =
(π/4, 0) and all modes with m > 0 are summed up to ℓ = 4, plus the (5,5) one. Bottom panels: relative amplitude difference
and phase difference (in radians). The vertical lines mark the peak of the quadrupolar amplitude.

is the ℓ-fundamental QNM frequency. The coefficients{
cA3 , c

A
5 , c

ϕ
2 , c

ϕ
3 , c

ϕ
4

}
are determined performing the pri-

mary fits of Ah̄ and ϕh̄ starting from tpeakA22
. Finally, this

fitted waveform is used to determine the NQC corrections

at tpeakA22
and then is matched to the inspiral wave, always

at tpeakA22
. Concerning the structure of the NQC correction

to amplitude and phase, there is an additional subtlety.
We realized that the standard NQC basis we used so far
is not efficient when the NQC corrections are determined

at tpeakA22
for m ̸= ℓ, and it is thus better to resort to the

NQC basis used by SEOBNRv5PHM that reads

n1 =
p2r∗

(rΩ)2
, (36)

n2 =
n1

r
, (37)

n3 = n1r
−3/2, (38)

n4 =
pr∗
rΩ

, (39)

n5 = n4p
2
r∗ . (40)

The real part, amplitude and frequency of the final result
for the (2, 1) and (4, 1) modes are shown in Fig. 14. It
is remarkable how the different NQC approach can vis-
ibly improve the EOB/RWZ agreement. The only visi-
ble remaining differences between the two curves (mostly
around the waveform peak) are related to the fact that
the mode mixing only includes the fundamental mode
and not the overtones.

Although the improvement discussed in the nonspin-
ning case may be considered relatively marginal, it be-
comes absolutely essential when the central black hole
is spinning and the spin is large and anti-aligned with

the orbital angular momentum. In this case, the orbital
frequency has a zero and thus the NQC basis becomes
meaningless. This is clarified in Fig. 15, that refers to the
(2, 1) mode for a particle inspiralling and plunging on a
Kerr black hole with dimensionless spin â = −0.9, where
the numerical waveform (black) has been obtained with
the time-domain code Teukode [57]. As the orbital fre-
quency (gray online) passes through zero, the NQC cor-
rected waveform determined using the standard approach
oscillates unphysically. By contrast, the NQC correction

determined at tpeakA22
, using the basis of Eqs. (36)-(40) al-

lows one to smoothly and reliably connect the inspiral
waveform to the ringdown one. In this preliminary study,
we are evidently not considering the mode mixing dur-
ing the Kerr ringdown [58], so the EOB frequency and
amplitude do not present any modulation.

V. PHENOMENOLOGY OF
QUASI-NORMAL-MODES EXCITATION

In the previous section we have provided an accurate
and complete EOB waveform where the ringdown model
was based on a phenomenological description. In doing
so, we assumed that the fundamental QNM was excited,
but we did not attempt any qualitative (nor quantitative)
investigation to understand the origin of this excitation.
In this section we attempt to do this, still in a somehow
phenomenological and heuristic way. Our main aim is
to correlate the QNMs excitation with the behavior of
the source of the RWZ equations that is driven by the
dynamics. The material presented here is inspired by
and extends the (qualitative) discussion of Sec. IIIB of
Ref. [13] (see also Fig. 4 therein).
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FIG. 14. Nonspinning case. New ringdown (red dashed) contrasted with the standard one discussed above (orange, dashed)

for the (2, 1) and (4, 1) modes. The RWZ ringdown waveform is fitted from tpeakA22
(solid vertical lines) rather than from tpeakAℓm

(dash-dotted vertical lines). This ensures a more accurate waveform description around tpeakAℓm
.

FIG. 15. Spinning case with Kerr parameter â = −0.9. The
NQC and ringdown determined from tpeakA22

instead of tpeakAℓm

allow for an excellent EOB/Teukode agreement. Note that
the mode mixing in this case is not implemented in the EOB
waveform.

A. The RWZ source term during ringdown

We start by analyzing the source terms of the RWZ
equations, Eq. (6). Their functional form is [15]

S
(o/e)
ℓm =Ḡ

(o/e)
ℓm (r̃, t)δ(r̃∗ − r∗(t))+

F̄
(o/e)
ℓm (r̃, t)∂r̃∗δ(r̃∗ − r∗(t)) , (41)

where the tilde denotes the field tortoise coordinate,
while r∗(t) is the tortoise coordinate of the particle. In
order to understand the relevance of the source terms
during the ringdown, we evaluate it on the particle dy-
namics. More precisely, we neglect the term proportional

to ∂r̃∗δ(r̃∗ − r∗(t)) in Eq. (41) and just evaluate Ḡ
(o/e)
ℓm .

This yields the expressions

F
(e)
ℓm (t) ≡ 16πµY ∗

ℓm

r Ĥ λ[r(λ− 2) + 6]

{
2imApr∗pφ

−A

[
3

(
1 +

4Ĥ2r

r(λ− 2) + 6

)
− r λ

2

+
p2φ

r2(λ− 2)

(
r(λ− 2)(m2 − λ− 1)

+ 2(3m2 − λ− 5)

)
+

2

r2

(
p2φ + r2

)]}
, (42a)
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FIG. 16. Upper panel: Zerilli source term evaluated along
dynamics with different eccentricities for the (2,2) mode.

Logarithmic vertical scale. Bottom panel: plot of F̂
(e)
22 =

|F (e)
22 |/max(|F (e)

22 |). The retarded time is shifted using the

peak time of the quadrupolar amplitude, tpeakA22
. In both pan-

els, the dots mark the light-ring crossing, tLR.

F
(o)
ℓm (t) ≡ 16πµ∂ΘY

∗
ℓm

r λ(λ− 2)

[
d

dt

(
pr∗pφ

Ĥ

)

− 2
pφ A

r
− im

Apr∗p
2
φ

r2Ĥ2

]
, (42b)

where λ ≡ ℓ(ℓ + 1). After having set Θ = π/2, we show

|F (o/e)
ℓm (t)| for the (2,2) mode in Fig. 16. Interestingly,

|F (e)
22 (t)| reaches its maximum after the peak of A22 and

remains quite relevant also later on. For example, at

t = tpeakA22
+ 10 we have F̂

(e)
22 ≡ |F (e)

22 |/max(|F (e)
22 |) ≃ 0.38,

and F̂
(e)
22 < 10−2 only from t = tpeakA22

+ 18.2. For the
odd modes we have that the maximum of the source is
delayed with respect to the even ones. Since the source
term is quite relevant during the ringdown, we do not
expect a priori that a pure QNMs description (i.e. part
of the solution of the homogeneous RWZ equations) can
be used for the whole postpeak waveform. However, from

a sufficient late time t > tpeakAℓm
, the (ℓ,m)-mode can be

fully described in terms of QNMs using the ansatz of
Eq. (8) since the source term becomes negligible.

B. Iterative time-domain fit of the postpeak
frequency

We thus proceed to fit the late ringdown waveform
assuming that is given by a linear superposition of QNMs

with constant coefficients, see Eq. (8), using τ = t−tpeakAℓm
.

FIG. 17. Iterative QNM-fit of the frequency considering the
first 4 QNMs. In the upper panel we show the RWZ frequency
(black) and the results obtained with the fits. Each color
represents an iteration (and thus a QNM) of the fit. In the
bottom panel we show the relative difference between the fit
and the corresponding n-fit. See Sec. VB for more detail on
the fitting procedure.

The total QNM frequency of each multipole is obtained
as

ω
(o/e)
ℓm = −ℑ

(
Ψ̇

(o/e)
ℓm

Ψ
(o/e)
ℓm

)
=

−ℑ


∞∑

n=1
b̄ℓmn

σ+
ℓn

σ+
ℓ1

e(σ
+
ℓ1−σ+

ℓn)τ

(
1 + âℓmn

σ−
ℓn

σ+
ℓn

e2iωℓnτ

)
∞∑

n=1
b̄ℓmne(σ

+
ℓ1−σ+

ℓn)τ
(
1 + âℓmne2iωℓnτ

)
 ,

(43)

where âℓmn = C−
ℓmn/C

+
ℓmn and b̄ℓmn = C+

ℓmn/C
+
ℓm1.

Since these are complex quantities, we define âℓmn ≡
Âℓmne

iθ̂ℓmn and b̄ℓmn ≡ B̄ℓmne
iϕ̄ℓmn . Recalling the hier-

archy of the inverse damping times αℓn, the contributions
in the frequency of the n ≥ 1 overtones are exponentially
damped with exponents α+

ℓ1 − α+
ℓn. However, the contri-

bution of the isolated fundamental frequencies is never
damped and reads

ω
(o/e)
ℓm1 =

(1− Â2
ℓm1)ωℓ1

1 + Â2
ℓm1 + 2Â2

ℓm1 cos(2ωℓ1τ + θ̂ℓm1)
. (44)

The coefficients Âℓm1 and θℓm1 were already extracted
from the late ringdown frequency in previous works [16,
58]. Here we extend this procedure to earlier times us-
ing Eq. (43). Since the overtones have higher damping
coefficients, we proceed to iteratively fit the late ring-
down frequency on different time intervals considering
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TABLE III. Coefficients Âℓm1 = |âℓm1| describing the beating
between positive and negative frequencies fundamental QNMs
for all multipoles up to ℓ = 6. See Table IV for the eccentric
fits of the âℓm1 phase.

m = 1 m = 2 m = 3 m = 4 m = 5 m = 6

Âℓm1 [×10−2] [×10−3] [×10−4] [×10−5] [×10−6] [×10−7]
ℓ = 2 7.30 4.89
ℓ = 3 9.34 7.96 5.53
ℓ = 4 9.14 9.11 8.90 6.28
ℓ = 5 9.41 8.97 9.27 9.96 7.02
ℓ = 6 9.46 9.12 9.11 9.67 11.15 8.33

TABLE IV. Global fits for the beating coefficients âℓm1 =
Âℓm1e

iθℓm1 . The template used for the phase is θℓm1 =(
Cθ

QC + Cθ
1 b̂Ωpk + Cθ

2 b̂
2
Ωpk

)
/
(
1 +Dθ

1 b̂Ωpk

)
, while the modu-

lus does not depend on the nature of the perturbation.

(ℓ,m) Âℓm1 Cθ
QC Cθ

1 Cθ
2 Dθ

1

(2,2) 4.89 · 10−3 5.369 −9.444 −37.992 . . .
(2,1) 7.30 · 10−2 2.893 −6.074 −15.134 −2.105
(3,3) 5.53 · 10−4 2.636 −11.635 −9.555 . . .
(3,2) 7.96 · 10−3 4.649 −3.890 −0.1176 . . .
(3,1) 9.34 · 10−2 3.810 0.3296 −0.03943 . . .
(4,4) 6.28 · 10−5 6.503 −13.096 −8.815 . . .
(4,3) 8.90 · 10−4 2.453 −6.041 −1.309 . . .
(4,2) 9.11 · 10−3 1.186 −2.772 −0.4334 . . .
(4,1) 9.14 · 10−2 3.714 0.3582 0.1166 . . .
(5,5) 7.02 · 10−6 4.509 −15.344 −4.330 . . .

only the relevant QNMs. To establish where a certain
n mode becomes negligible, we set a small threshold,
typically ϵ = 10−5, and we say that the nth-mode can

be neglected if the condition e(α
+
ℓ1−α+

ℓn)τ < ϵ is satis-
fied. Applying this method to the (2,2) mode we can

find
{
Â22n, θ̂22n, B̄22n, ϕ̄22n

}
up to n = 4. The results

are shown in Fig. 17. It is interesting to note that for
the (2,2) mode we are not able to go beyond n = 4 and
thus at earlier times. This can be justified by the dis-
cussion on the source term above. Indeed, with n = 4
and ϵ = 10−5 we are able to fit from t = 13.43, but at

that time we still have |F (e)
22 |/max(|F (e)

22 |) ≃ 0.097 and
thus the source term is not completely negligible. Also
for this reason, the values of â22n and b̄22n found for the
overtones are not robust and are in disagreement with
the results found using different fitting procedures (see
Appendix B). The procedure can be applied also to the
higher modes, where the number of overtones that we are
able to fit depends on the specific multipole considered.
Generally, we have that for the modes with higher ∆tℓm
(i.e. the for the ones that are more delayed), we are able
to fit more overtones, consistently with the fact that at
later times the source terms become negligible. For ex-

ample, for the (4,1) multipole we can fit up to n = 7

overtones (and thus from t ≃ tpeak41 + 5.94) keeping the
relative error of the frequency fit around 10−4.
From a practical point of view, we are particularly

interested in the values related to the fundamental fre-
quencies, âℓm1, since we can use them to improve the
phenomenological ringdown description as discussed in
Sec. III, see in particular Eq. (16). The values found in
this work are in agreement with previous work [16] and
their modulus is reported in Table III. Note that the or-
der of magnitude of Âℓm1 is strictly linked to the number
m and does not strongly depended on the eccentricity
(see e.g. the right panel of Fig. 4). Therefore, we need
to perform the global fits only on the phases θℓm1, that
we report in Table IV for all the multipoles considered in
this work. The relevance of these fits can be particularly
appreciated looking at the analytical/numerical compar-
isons of the late-ringdown waveform frequencies shown in
Figs. 7, 11 and 14.
Finally, we mention that since the iterative fit of

the frequency did not provide satisfactory results for
the whole quadrupolar postpeak waveform, we also at-
tempted the same fit without the iterative procedure, fo-
cusing only on the (2,2) multipole. However, also this
procedure did not lead to robust results for the whole
postpeak waveform, as detailed in Appendix B.

C. EOB ringdown as superposition of QNMs

In the previous sections we have accumulated results
which indicate that the ringdown description as linear su-
perposition of QNMs with constants coefficients, Eq. (8)
cannot be consistently used for the whole postpeak wave-
form. However, in seminal EOB works [13, 59] the ring-
down was modeled precisely in this way, although it was
matched with the inspiral part of the waveform on an
extended interval centered around the peak of the or-
bital frequency. We will now revisit this procedure, of-
ten referred to as “matching comb” [13]. The basic
idea of this procedure is that the match is performed
on a set of points rather than at only one point. To
determine the complex coefficients C±

ℓmn, we solve the

linear system hℓm(ti) =
∑

C±
ℓmne

−σ±
ℓnti , where ti are

the points of the time array used for the match, and

hℓm = hinsplĥNQC
ℓm is the NQC-corrected inspiral wave-

form. If we consider N QNMs (distinguished between
positive and negative frequency), we then need N points.
Note that this ringdown model does not require any
tuned numerical parameters, it only needs the QNMs fre-
quencies since the coefficients of the ringdown are deter-
mined using the analytical waveform. Similarly to what
discussed in Sec. IV for the (2,2) waveform multipole, we

use
{
ANQC

22 , ȦNQC
22 , ÄNQC

22 , ωNQC
22 , ω̇NQC

22 , ω̈NQC
22

}
, but here

we directly extract them from the Zerilli waveform at

tNQC
22 = tpeakA22

+2. We chose as matching points the adja-

cent points to tpeakA22
in the time grid used to solve numer-
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FIG. 18. EOB waveform where the ringdown has been mod-
eled with the matching comb procedure. In the bigger panels
above we show the real part of the waveform and its frequency,
black for the RWZ results and online colors for the analytical
results. In the two small bottom panels we show the relative
amplitude difference and the phase difference with the same
color scheme of the upper panels. We also show the relative
amplitude difference and the phase difference obtained with
the waveform model discussed in Sec. IV (dashed gray).

ically the Hamilton’s equations (1). The results of this
procedure are shown from n = 2 up to n = 8 in Fig. 18.
The configuration that reproduces the numerical wave-
form with the highest accuracy is the one with n = 8
positive-frequency modes. For this configuration, in the
late ringdown we have a 18% relative amplitude differ-
ence and a phase difference that oscillates around the 0.04
radians. We also show the relative amplitude difference
and the phase difference obtained with the state-of-the-
art waveform discussed in Sec. IV (dashed gray). While
the waveform obtained with the latter model is clearly
more accurate (see also Fig. 7 for comparison), the re-
sults obtained in this section are still qualitatively good
for the amplitude and quite accurate for the phase.

D. Tail contribution

Having considered only the first part of the waveform,
we have so far neglected the power-tail effects in the
waveform [60, 61]. However, since the QNMs are ex-
ponentially damped, there is a time where the tail effects
become dominant. As can be seen from the frequency of
the Zerilli (2,2) quasi-circular waveform shown in black in
the left panel of Fig. 19, the effect of the tail starts to be

visible at t ∼ tpeakA22
+170, and becomes dominant shortly

afterward. In order to reproduce the numerical wave-
form, we have to include a term of the form Ctail

22 τ−2−ℓ,
where the complex coefficient Ctail

22 is determined with
a fit and −2 − ℓ is the asymptotic behavior of the tail
term at future null infinity [62]. Using the (fundamen-
tal) QNMs and the power-law tail we can fully catch
the behavior of the numerical amplitude and frequency,
as shown in the left panel of Fig. 19. When eccentric-
ity is taken into account, the tail contribution becomes
more significant and starts to dominate over the QNM
decay earlier, as shown in the middle and right panels of
Fig. 19. Moreover, the tail cannot be described as before
using the ansatz Ctail

22 τ−2−ℓ since the tail has not reached
yet the asymptotic behavior. For example, for the con-
figuration with e0 = 0.5 the decay-rate is roughly −1.3
instead of −2 − ℓ. Similar numbers are obtained for the
other eccentric configurations with e ≳ 0.3.

VI. HEURISTIC MODELING OF QNMS
EXCITATION

Let us now introduce a toy model to grasp some in-
sights on how the excitation of QNMs is driven by the
dynamics and the related presence of a source term in
the right hand side of the RWZ equations. Following
Ref. [13], and in particular Sec. III B, we base our analy-
sis on the understanding that a Schwarzschild black hole
can be seen as a resonating object. We start by generaliz-
ing Eq. (8), assuming that the constant coefficients C±

ℓmn

are instead time-dependent functions, C±
ℓmn(t). The ring-

down waveform reads then

Ψ
(o/e)
ℓm =

∑
n

Ψ
(o/e)
ℓmn , (45)

Ψ
(o/e)
ℓmn (t) ≡ C+

ℓmn(t)e
−σ+

ℓnt + C−
ℓmn(t)e

−σ−
ℓnt. (46)

Here the origin of time, t = 0, is assumed to be the light-
ring crossing, tLR. The final goal of our investigation is
to determine an approximate semi-analytical expression
for the coefficients C±

ℓmn(t) so to understand when the
associated QNMs are excited. Since we know that the
solution of the homogeneous RWZ equations is a super-
position of QNMs with constant coefficients C±

ℓmn, each
spherical mode is thought as as the solution of the ho-
mogeneous second order differential equation

Ψ̈
(o/e)
ℓmn + 2αℓn Ψ̇

(o/e)
ℓmn + (α2

ℓn + ω2
ℓn)Ψ

(o/e)
ℓmn = 0, (47)

under the ansatz Ψℓmn(t) ∝ e−σ±
ℓnt, with σ±

ℓn = αℓn ±
iωℓn. This is indeed the equation of an underdamped
oscillator with damping coefficient αℓn and undamped
angular frequency ±ωℓn. An external force F (t) in the
right-hand side of Eq. (47) yields an inhomogeneous dif-
ferential equation corresponding to a driven harmonic os-
cillator. Our model is thus defined by assuming that the

forcing term is given by Eq. (42), that is F (t) ≡ F
(e/o)
ℓm (t).
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FIG. 19. Leftmost panel: Amplitude and frequency of the Zerilli (2,2) of the quasi-circular waveform (black) compared
with the results obtained considering only the QNMs contribution (gray) and the QNMs plus tail (dashed red). Middle and
rightmost: RWZ amplitudes and frequencies for different eccentricities, aligned with respect to the light-ring crossing.

The solution of this inhomogeneous equation can be ob-
tained starting from the one of the homogeneous problem
by promoting the numerical coefficients therein to time-
dependent functions. This is referred to as the method
of variation of parameters (or method of osculating el-
ements) [63–65]. With this approach we know a priori
that the differential equation

Ψ̈
(o/e)
ℓmn +2αℓn Ψ̇

(o/e)
ℓmn +(α2

ℓn+ω2
ℓn)Ψ

(o/e)
ℓmn = F

(e/o)
ℓm (t) (48)

admits a solution with the precise QNM structure of
Eq. (46). We start by writing the time derivative of our
particular solution as if the coefficients C±

ℓmn(t) were not
time-dependent. This is equivalent to impose

Ψ̇
(o/e)
ℓmn (t) = −σ+

ℓnC
+
ℓmn(t)e

−σ+
ℓnt − σ−

ℓnC
−
ℓmn(t)e

−σ−
ℓnt,
(49)

which is true only if the time dependence of C±
ℓmn(t) gives

no contribution to the time derivative, namely if the con-
dition

Ċ+
ℓmn(t)e

−σ+
ℓnt + Ċ−

ℓmn(t)e
−σ−

ℓnt = 0 (50)

is satisfied. We can then take another time derivative on
Eq. (49) in order to obtain Ψ̈

(o/e)
ℓm . We then insert Ψ̇

(o/e)
ℓm

and Ψ̈
(o/e)
ℓm in Eq. (48) and, considering that the sum of

all the terms without the time derivatives Ċ±
ℓmn(t) sepa-

rately solves the associated homogeneous equation (47),
we get the second condition

−σ+
ℓnĊ

+
ℓmn(t)e

−σ+
ℓnt − σ−

ℓnĊ
−
ℓmn(t)e

−σ−
ℓnt = F

(e/o)
ℓm (t),

(51)
which together with Eq. (50) builds up a system of two

equations that can be solved for Ċ±
ℓmn(t). A straightfor-

ward computation yields

Ċ±
ℓmn(t) = ±i

eσ
±
ℓntF

(e/o)
ℓm (t)

2ωℓn
, (52)

and an ensuing time integral gives us the final expressions

C±
ℓmn(t) = C±

ℓmn(t0)±
i

2ωℓn

∫ t

t0

dt′ F
(e/o)
ℓm (t′)eσ

±
ℓnt

′
, (53)

where t0 is an arbitrary initial time. Considering that

F
(e/o)
ℓm (t′) does not diverge during the inspiral and that

in the integrand we have eσ
±
ℓnt

′
, we have that the compu-

tation of C±
ℓmn(t) is not influenced by the choice of t0 as

long as t0 is not too close to tLR. In practice, we start to
integrate from the beginning of our simulation.

A. Results

Some results for the (2,2) and (2,1) multipoles are
shown in Fig. 20. In the leftmost panel we show the
absolute value of the positive and negative parts of the

solution, |C±
ℓmn(t)e

−σ±
ℓn(t−tLR)|, for n ≤ 4. We see that

the negative-frequency contributions are smaller than the
corresponding positive ones. The model thus predicts the
negative-frequency modes to be less excited than the pos-
itive ones. The same feature can be seen in the third plot
of the same figure, where we show the absolute value of
the ratios of negative and positive solutions. In addi-
tion (see the rightmost panel of the figure) the negative-
frequency modes become more and more relevant as n
grows. This behavior is consistent with the qualitative
discussion of Ref. [13], see in particular Fig. 4. In that
case, the authors argued that the positive QNMs are ex-
cited during the plunge since the Newtonian frequency
of the waveform mΩ gets “closer” to the positive QNM
frequencies. Note in addition that what is found here
is consistent with the structure of the actual solution of
the RWZ equation. The second interesting finding, illus-
trated by the middle panel of Fig. 20, is that |C±

ℓm1(t)| is
reminiscent of an activation function and becomes con-
stant after t ∼ tLR + 15, showing that from that time
onward the n = 1 solution can be written as a super-
position of QNMs with constant coefficients. For the
first overtone, we have that C±

ℓm2(t) has a similar be-
havior. However, for the n ≥ 3 overtones, the behav-
ior of C±

ℓmn(t) is less reminiscent of an activation func-
tion. In particular, for n = 3 we see some oscillations in
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FIG. 20. Time-dependent QNM-excitation coefficients C±
ℓmn(t) for the quasi-circular case, see Eq. (53). The positive-frequency

modes are more relevant and are excited later than the negative ones, as shown by the location of the amplitude maxima (vertical
lines in the leftmost plot). In the middle panel we plot the activation-like excitation coefficients for the fundamental frequency.
The rightmost panel highlights the hierarchy of the ratios |C−

ℓmn/C
+
ℓmn| for the overtones of the (2,2) and (2,1) multipoles.

Note that the beating is more relevant for the (2,1) mode (dotted line) than for the quadrupole (solid lines).

the solution, as can be seen e.g. from the third panel of
Fig. 20. We are prone to exclude that these are physi-
cal features that can be found also in the full-RWZ case,
and we rather interpret them as expressions of the limi-
tation of our toy model. The third consideration regards
the values of the |C−

ℓmn(t)/C
+
ℓmn(t)| ratios for different

multipoles. We show these ratios for the (2,2) and (2,1)
multipoles in the third panel of Fig. 20 with solid and
dotted lines, respectively. As can be seen, the ratios of
the (2,1) multipole are higher than the ones of the (2,2)
multipole for the same n. This means that, according to
our toy model, the mode mixing in the (2,1) multipole
should be more evident than in the (2,2). This is precisely
what happens in the numerical solutions of the full RWZ
equations, as shown in Table III. The driven harmonic
oscillator correctly predict also the qualitative relevance
of the mode-mixing in the (3, 3) multipole, since the pre-
dicted ratio |C−

331(t)/C
+
331(t)| is smaller than the one of

the (2,2) mode and, as can be seen from the numeri-
cal data, the mode-mixing is more relevant in the (2,2)
multipole rather than in the (3,3). The final interesting
feature that we discuss is that the positive and negative
solutions reach their peaks at different times. This is
shown for the (2,2) multipole in the first plot, where we
mark the peak-times with vertical lines (solid for positive-
frequency modes and dashed for negative ones). As can
be seen, the negative modes with same n are excited be-
fore the corresponding positive modes, and the overtones
are excited before the fundamental QNMs.

To conclude, with this toy model we have reproduced
some features that are observed when solving the ac-
tual RWZ equations and we have also argued that the
overtones are excited before the fundamental frequency.
However, since these results are only qualitative, we can-
not exploit them to improve the description of the post-
peak waveform.

VII. CONCLUSIONS

The results of this paper are twofold: (i) on the one
hand, it is studied the transition from eccentric inspi-
ral to plunge, merger and ringdown of a binary black
hole coalescence in the large mass ratio limit (or parti-
cle limit) and its gravitational wave emission; (ii) on the
other hand, it is introduced and tested an EOB waveform
valid in this limit. This improves previous results [13] and
generalizes them to the eccentric case, that was not stud-
ied systematically so far. Since the large mass ratio limit
can be seen as a well controlled theoretical laboratory to
learn and explore new ideas, this work should be seen as
part of the currently ongoing effort of building accurate
waveform templates for eccentric (comparable-mass) bi-
naries within the EOB formalism [6, 43, 66–70]. More in
detail, our results can be summarized as follows:

(i) We performed a systematic survey of eccentric non-
spinning binaries in the test-particle limit, focus-
ing in particular on the transition from inspiral
to plunge and on the phenomenology of the cor-
responding waveform, computed solving numeri-
cally the RWZ equations, Eqs. (6), with the RWZhyp
code [16, 40, 41].

(ii) We discussed a new ringdown model for eccen-
tric binaries in the test-particle limit, modifying
the primary fitting templates used in previous
works [20, 42]. Notably, the ringdown model in-
cludes the mode-mixing between positive and neg-
ative frequency fundamental QNMs. The global
fits on the parameter space are performed using as

fitting parameter the gauge-invariant quantity b̂Ωpk

(Eq. (17)), that is defined as the ratio between the
angular momentum and energy at the peak of the
orbital frequency (i.e., at the light-ring crossing).
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This moment can be considered a good definition
of the merger time within our context.

(iii) We then built a complete test-mass EOB model
for eccentric nonspinning binaries, including also
higher modes and 2PN non-circular corrections in
the ℓ = m = 2 waveform mode. We analyzed
in details the impact of several analytical building
blocks, in particular we tested: (i) the relevance of
the generic Newtonian prefactor, also in the quasi-
circular case, (ii) the contribution of the 2PN non-
circular corrections introduced in Refs. [47–49], (iii)
different prescriptions for the NQC corrections, and
in particular the point at which they are computed;
(iv) the ringdown attachment point. All these in-
gredients together provide an accurate complete
EOB waveform, yielding ∆ϕ22 ≲ 0.01 rad in the
quasi-circular case, and ∆ϕ22 ≲ 0.05 rad during
the merger-ringdown for all the eccentric configu-
rations considered. Building upon methods intro-
duced in the SEOBNR-family [53, 55, 56], we also
explored the performance of a different ringdown

model for the higher modes that starts from tpeakA22

rather than from tpeakAℓm
.

(iv) We analyzed the build-up of QNMs excitation, re-
visiting also the matching comb procedure that was
used in former EOB models [13, 52, 59, 71, 72].
Within this context, we also introduced a heuris-
tic model to compute the excitation coefficients of
the QNMs in the presence of a driving source. The
results of this model are in qualitatively and semi-
quantitative agreement with the actual structure of
the waveform. We also discussed how the power-
law tail contribution presents at the end of the ring-
down changes in the presence of eccentricity.
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FIG. 21. Analytical/numerical comparison for the (2,2)
waveform multipole considering different regridding configu-
rations. In the top panel we show the RWZ numerical wave-
form (black, almost indistinguishable) and the analytical ones
using different colors. See legend and text for more details.
Note that the red analytical (2,2) waveform is the standard
one, i.e. the one shown in Fig. 7. In the middle and bot-
tom panels we show the relative amplitude difference and the
phase difference in radians, with same color scheme. The ver-
tical black line marks the peak of A22.

Appendix A: Regridding used for NQC corrections
determination and matching

As anticipated in Sec. III B and Sec. III C, the fact that
the dynamics is obtained solving the Hamilton’s equa-
tions (1) numerically with an ODE solver implies that
we have a discrete time array. All the dynamical quanti-
ties and the waveform are thus computed on this array.
This discretization can lead to issues when matching the
inspiral waveform to the ringdown.

The first issue of this kind is related to the NQC cor-
rections determination. Indeed, in order to determine
the coefficients ai and bi of Eq. (23), we have to solve
the linear system (25). However, the rhs is computed ex-

actly at tNQC
ℓm (since if tNQC

ℓm > tpeakAℓm
we compute it from

the analytical ringdown waveform discussed in Sec. II C,

while if tNQC
ℓm < tpeakAℓm

we extract it at tNQC
ℓm using a cu-

bic spline procedure on the numerical data), but the lhs.
is not. The latter is indeed evaluated using the inspiral

waveform hinspl
ℓm , that is in turn computed from the EOB

dynamics, which is found solving the Hamilton’s equation

with a discrete-step ODE-solver. Therefore, tNQC
ℓm is not

guaranteed to be a point of the time array on which the
inspiral waveform is computed. This implies that the lhs
and the rhs might be computed at slightly different times
and this can introduce a systematic error in the compu-



24

tation of the NQC coefficients ai and bi, and thus in the
complete EOB waveform. The second issue is related
to the matching procedure. Indeed, in order to match
the NQC-corrected inspiral-plunge waveform to the ring-

down model we need to compute ϕpeak
ℓm , i.e. the phase of

the inspiral-plunge waveform at the matching-point, see
Eq. (9). However, it is not guaranteed that the matching

time tpeakAℓm
is an element of the time array used to com-

pute the dynamics. If we operate without performing a

regrid, the phase ϕpeak
ℓm found can be flawed.

In order to solve the aforementioned issues, we apply
for each multipole a regridding procedure in the vicin-

ity of tNQC
ℓm and tpeakAℓm

, so that these two points are en-
forced to be elements of the time grid. We then in-
terpolate the chunks of the waveform that we need on
the refined time arrays using a cubic spline algorithm.
We then compute the NQC coefficients, ai and bi, and
we perform the match between the inspiral-plunge wave-
form and the ringdown model on the refined time grid

where tpeakAℓm
is a grid-point. We prefer to reinterpolate

the obtained waveform back on the original time array
used to solve the Hamilton’s equations in order to have
a uniform time-step, but note that this step is not neces-
sary. The results for different regridding configurations
are shown in Fig. 21 We consider the analytical waveform
without regridding (solid yellow), the one with regrid-
ding only for the NQC corrections (dash-dotted blue),
the one with regridding only for the matching procedure
(dashed green) and the one with regridding in both the
NQC corrections and matching (dotted red). The lat-
ter is the default option and it is also the one shown in
Fig. 7. As can be seen from the middle panel, for the
amplitude the most relevant regridding is the one asso-
ciated to the matching, while the one associated to the
NQC does not seem important. The regridding in the
matching zone drives the relative amplitude difference in
the late ringdown from the 2.3% to be below the 0.1%.
For the phase, which analytical/numerical difference is
shown in the third panel, we have that both regriddings
are important. Indeed, if we do not consider any re-
gridding, the analytical/numerical phase difference dur-
ing the ringdown is about −0.05 radians, while with the
full regridding procedure the phase difference drops of
one order of magnitude, reaching −0.006 radians.

Appendix B: Time-domain fits of the postpeak
waveform using QNMs

In this appendix we attempt to fit the complete post-
peak waveform using the pure QNMs ansatz of Eq. (8)

on a time interval τ ≡ t − tpeakA22
∈ [tQNM

0 , 100]. We start
by performing the fit of the real and imaginary parts of
the waveform using the fundamental QNMs and 7 over-
tones starting from the peak of the amplitude, i.e. con-

sidering n = 8 and tQNM
0 = 0; the results of this proce-

dure are shown in Fig. 22 (dash-dotted green lines). The

FIG. 22. Upper panels: RWZ waveform and frequency
(black) compared with the results from the waveform fits per-
formed (1) considering all the QNMs together (dash-dotted
green), and (2) prefitting the fundamental QNMs (dashed
red) and then fitting all the overtones. In the bottom panel
we show the residuals with same color scheme. See discussion
in Appendix B.

QNMs waveform overlaps quite well with the numerical
RWZ waveform (black), and the corresponding residual is
around 10−3 shortly after the amplitude peak. However,
it is easy to see that i) the beating between positive and
negative frequency QNMs in the late ringdown is not well
reproduced, as shown by the waveform frequency in the
second panel, ii) the frequency of the fitted wave shows
spurious oscillations in the early ringdown. In order to
ensure the correct late-ringdown behavior, we refine this
procedure by prefitting only the fundamental QNMs on
τ ∈ [62, 100], so that we can easily find C±

221 since the
overtones are negligible in the late ringdown, and then
performing the fit of Eq. (8) on the whole time inter-
val τ ∈ [0, 100], so that we can find the remaining C±

ℓmn
coefficients. The result of this procedure is shown with
dashed red lines in Fig. 22. While the beating in the late
ringdown frequency is now well reproduced, the spuri-
ous oscillations in the early ringdown frequency are still
present. Note that in this case the residual is a little bit
higher in the early ringdown, but way lower in the late
evolution. We thus concluded that, while the residual
of the waveforms in quite low in both fits, the waveform
frequency shows that there are some inaccuracies in the
early ringdown.

In an attempt to solve the issue of the spurious fre-
quency oscillations, we also explore the possibility to find
the C±

ℓmn coefficients fitting directly the frequency using
Eq. (43). Note that if we proceed this way, we cannot find
C+

221 since the frequency is invariant under global nor-
malizations and phase shifts of the waveform. We thus
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FIG. 23. Upper panels: RWZ waveform and frequency (black) compared with the results from the wave-fit (red) and frequency-
fit (blue). In the bottom panels we show the relative differences of the amplitude and frequency (hot colors for the waveform-fit,
cold colors for the frequency-fit). On the left, we fit the whole postpeak waveform using 8 QNMs, while on the right we fit

from t ≥ 15 + tpeakA22
using 4 QNMs. See discussion in Appendix B.

find C+
221 as done before, i.e. fitting Eq (8) with n = 1

in the late time interval τ ∈ [62, 100]. In the left panel
of Fig. 23 we show this frequency-fit compared with the
waveform-fit discussed above. To evaluate the goodness
of the fits, we show in this case the relative differences
of amplitude and frequency, that we consider more in-
formative than the residual. As can be seen, while the
frequency-fit solves the issue of the early spurious oscilla-
tions, produce a waveform that is way less accurate than
the one found with the waveform-fit.

Finally, in the right panels of Fig. 23 we show the com-
parison between the frequency and waveform fits per-

formed considering n = 4 and tQNM
0 = 15. In this case

the waveform fit is accurate and the recovered frequency
is consistent with the numerical result, leading to rela-
tive amplitude and frequency errors around 10−4. How-
ever, the amplitude of the waveform recovered from the
frequency-fit reaches a 10% error at τ ∼ 15, and thus
the frequency-fit seems less robust than the waveform-
fit, even if we do not fit the early ringdown.

We thus conclude that i) it is a good practice to check
the waveform frequency in order to evaluate the goodness
of the QNMs fits of the ringdown waveform, ii) within
our methods the waveform can be consistently fitted only
starting from later times. This is again consistent with
the discussion of Sec. VA on the RWZ source terms and
with the iterative frequency-fit of Sec. VB.

Appendix C: Global fits

In this appendix we report all the global fits that we
use in our model, see Sec. II E for a general discussion
on how we perform the global fits. We start by reporting
the global fits of the quantities needed to reconstruct the
postpeak waveform for all the modes in Table V and VI,
see definitions in Sec. II C. We then proceed to show the

global fits for
{
ANQC

22 , ȦNQC
22 , ÄNQC

22 , ωNQC
22 , ω̇NQC

22 , ω̈NQC
22

}
evaluated at tNQC

ℓm = tpeakAℓm
−2 in Table VII and VIII. Note

that we report the fits also for ℓ = m = 2, but for the
quadrupolar waveform we do not use them since we use

tNQC
22 = tpeakA22

+2, see Sec. III B for discussion. Note that
in all the cases we use a parabolic global template.
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TABLE V. Global fits of the coefficients entering the ring-
down template. For each quantity y, the fitting function is:
y = CQC + C1b̂Ωpk + C2b̂

2
Ωpk

, where QC indicates the quasi-
circular value. The amplitude considered in this table is the
amplitude of the strain, Aℓm = |hℓm|, rather than the ampli-
tude of the RWZ-normalized waveform.

(ℓ,m) coeff CQC C1 C2

(2,2) cϕ2 1.561 · 10−1 −5.067 · 10−2 −5.493 · 10−2

cϕ3 3.272 5.021 6.554

cϕ4 2.592 8.305 1.108 · 102
cA2 2.161 · 10−1 −1.999 · 10−2 7.199 · 10−3

cA3 2.334 3.030 5.583
Apeak 1.444 9.914 · 10−1 9.177 · 10−1

Äpeak −2.359 · 10−3 6.830 · 10−3 −3.238 · 10−3

∆ωpeak 1.015 · 10−1 −1.061 · 10−2 4.131 · 10−3

(2,1) cϕ2 1.539 · 10−1 4.563 · 10−2 1.250 · 10−1

cϕ3 1.185 1.721 10.167

cϕ4 3.866 7.989 80.460
cA2 3.656 · 10−1 2.191 · 10−1 -2.017
cA3 −1.535 · 10−1 -3.204 31.896

Apeak 5.238 · 10−1 2.332 · 10−1 2.119 · 10−1

Äpeak −2.624 · 10−3 5.624 · 10−3 2.423 · 10−2

∆ωpeak 8.302 · 10−2 −8.936 · 10−2 5.023 · 10−1

(3,3) cϕ2 1.783 · 10−1 −1.361 · 10−2 −1.330 · 10−3

cϕ3 2.818 4.107 9.523

cϕ4 1.536 4.592 28.099
cA2 2.192 · 10−1 −1.750 · 10−2 3.036 · 10−2

cA3 1.585 1.715 2.634
Apeak 5.635 · 10−1 4.299 · 10−1 3.883 · 10−1

Äpeak −1.823 · 10−3 2.287 · 10−3 1.026 · 10−3

∆ωpeak 1.462 · 10−1 −1.916 · 10−2 1.800 · 10−2

(3,2) cϕ2 1.851 · 10−1 −8.128 · 10−3 9.774 · 10−3

cϕ3 1.308 3.395 · 10−1 7.985 · 10−1

cϕ4 2.172 · 10−1 1.135 · 10−1 2.334 · 10−1

cA2 2.425 · 10−1 6.597 · 10−4 −7.605 · 10−3

cA3 9.188 · 10−1 8.761 · 10−1 −4.018 · 10−1

Apeak 1.991 · 10−1 1.289 · 10−1 1.017 · 10−1

Äpeak −1.561 · 10−3 −5.955 · 10−4 6.250 · 10−4

∆ωpeak 1.476 · 10−1 1.704 · 10−4 9.627 · 10−3

(3,1) cϕ2 1.483 · 10−1 −7.316 · 10−3 2.289 · 10−2

cϕ3 1.406 · 10−4 −2.424 · 10−4 6.491 · 10−4

cϕ4 6.005 · 10−5 −4.839 · 10−5 1.522 · 10−4

cA2 2.917 · 10−1 −1.330 · 10−1 2.315 · 10−1

cA3 2.068 -1.589 2.079
Apeak 6.230 · 10−2 2.460 · 10−2 1.575 · 10−2

Äpeak −2.678 · 10−3 −1.660 · 10−3 5.739 · 10−4

∆ωpeak 1.881 · 10−1 −3.904 · 10−2 1.385 · 10−2

TABLE VI. Global fits of the coefficients entering the ring-
down template. For each quantity y, the fitting function is:
y = CQC + C1b̂Ωpk + C2b̂

2
Ωpk

, where QC indicates the quasi-
circular value. The amplitude considered in this table is the
amplitude of the strain, Aℓm = |hℓm|, rather than the ampli-
tude of the RWZ-normalized waveform.

(ℓ,m) coeff CQC C1 C2

(4,4) cϕ2 1.845 · 10−1 −6.271 · 10−3 −2.849 · 10−3

cϕ3 2.249 2.991 5.909

cϕ4 1.025 2.617 12.471
cA2 2.178 · 10−1 −1.276 · 10−2 2.823 · 10−2

cA3 1.145 1.476 2.040
Apeak 2.754 · 10−1 2.374 · 10−1 2.296 · 10−1

Äpeak −1.258 · 10−3 8.999 · 10−4 8.471 · 10−4

∆ωpeak 1.751 · 10−1 −1.720 · 10−2 1.743 · 10−2

(4,3) cϕ2 1.876 · 10−1 −2.091 · 10−3 2.781 · 10−4

cϕ3 1.320 1.129 −7.914 · 10−4

cϕ4 3.513 · 10−1 6.880 · 10−1 3.418 · 10−1

cA2 2.252 · 10−1 4.376 · 10−3 −6.836 · 10−2

cA3 3.600 · 10−1 1.192 -3.611
Apeak 9.418 · 10−2 7.365 · 10−2 6.538 · 10−2

Äpeak −7.851 · 10−4 −4.334 · 10−5 −1.645 · 10−4

∆ωpeak 1.722 · 10−1 8.015 · 10−3 −2.205 · 10−2

(4,2) cϕ2 1.848 · 10−1 −1.045 · 10−2 2.014 · 10−2

cϕ3 1.316 4.910 · 10−1 −3.244 · 10−1

cϕ4 8.103 · 10−1 1.244 -1.645
cA2 2.589 · 10−1 4.823 · 10−2 −1.436 · 10−1

cA3 −7.454 · 10−1 1.157 -1.954
Apeak 3.138 · 10−2 1.544 · 10−2 1.181 · 10−2

Äpeak −2.743 · 10−4 1.623 · 10−4 −3.799 · 10−4

∆ωpeak 1.836 · 10−1 −2.595 · 10−2 2.780 · 10−2

(4,1) cϕ2 1.428 · 10−1 −1.797 · 10−2 3.577 · 10−2

cϕ3 −7.583 · 10−1 −3.777 · 10−1 6.408 · 10−1

cϕ4 1.155 · 10−1 1.294 · 10−1 −2.141 · 10−1

cA2 1.067 −4.888 · 10−1 8.161 · 10−1

cA3 10.890 -4.684 8.425
Apeak 9.263 · 10−3 3.514 · 10−3 2.333 · 10−3

Äpeak −7.568 · 10−4 −4.506 · 10−4 −3.366 · 10−5

∆ωpeak 2.572 · 10−1 −5.064 · 10−2 6.728 · 10−2

(5,5) cϕ2 1.872 · 10−1 −3.773 · 10−3 −1.675 · 10−3

cϕ3 1.844 2.360 3.290

cϕ4 7.272 · 10−1 1.786 5.737
cA2 2.157 · 10−1 −6.055 · 10−3 −7.261 · 10−3

cA3 8.165 · 10−1 1.536 3.433 · 10−1

Apeak 1.509 · 10−1 1.458 · 10−1 1.537 · 10−1

Äpeak −8.648 · 10−4 3.099 · 10−4 4.012 · 10−4

∆ωpeak 1.954 · 10−1 −1.188 · 10−2 −5.822 · 10−3
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TABLE VII. Global fits of the coefficients for the quanti-
ties used to determine NQC corrections for tNQC

ℓm = tpeakAℓm
− 2.

The fitting template is a quadratic function: y = CQC +

C1b̂Ωpk + C2b̂
2
Ωpk

. The amplitude considered in this ta-

ble is RWZ-normalized as usual, i.e. Aℓm = |Ψℓm| =

|hℓm|/
√

(ℓ+ 2)(ℓ+ 1)ℓ(ℓ− 1).

(ℓ,m) XNQC
ℓm CQC C1 C2

(2,2) A 2.938 · 10−1 2.049 · 10−1 1.860 · 10−1

Ȧ 7.898 · 10−4 −2.420 · 10−3 1.338 · 10−3

Ä −3.160 · 10−4 1.042 · 10−3 −7.056 · 10−4

ω 2.609 · 10−1 3.121 · 10−2 −2.361 · 10−3

ω̇ 5.367 · 10−3 −1.031 · 10−2 −5.196 · 10−4

ω̈ 2.649 · 10−4 1.256 · 10−4 −1.332 · 10−3

(2,1) A 1.063 · 10−1 5.236 · 10−2 2.594 · 10−2

Ȧ 4.784 · 10−4 −1.940 · 10−3 1.196 · 10−3

Ä −1.140 · 10−4 4.152 · 10−4 −3.622 · 10−3

ω 2.809 · 10−1 2.037 · 10−2 −1.893 · 10−1

ω̇ 9.270 · 10−3 7.587 · 10−3 3.664 · 10−2

ω̈ −3.868 · 10−3 9.083 · 10−4 3.541 · 10−2

(3,3) A 5.115 · 10−2 3.967 · 10−2 3.547 · 10−2

Ȧ 2.767 · 10−4 −4.255 · 10−4 1.457 · 10−5

Ä −1.109 · 10−4 1.999 · 10−4 −5.411 · 10−5

ω 4.322 · 10−1 4.023 · 10−2 −2.155 · 10−3

ω̇ 1.026 · 10−2 −1.279 · 10−2 3.809 · 10−4

ω̈ 3.777 · 10−4 5.998 · 10−4 −1.296 · 10−3

(3,2) A 1.790 · 10−2 1.174 · 10−2 9.344 · 10−3

Ȧ 2.582 · 10−4 −3.442 · 10−7 −3.865 · 10−5

Ä −1.076 · 10−4 4.345 · 10−5 −2.468 · 10−5

ω 4.205 · 10−1 1.124 · 10−2 2.154 · 10−3

ω̇ 1.534 · 10−2 −6.496 · 10−3 2.843 · 10−3

ω̈ 2.792 · 10−4 −3.190 · 10−4 −8.332 · 10−5

(3,1) A 5.358 · 10−3 2.113 · 10−3 1.367 · 10−3

Ȧ 2.413 · 10−4 5.772 · 10−5 5.734 · 10−5

Ä 4.851 · 10−6 7.180 · 10−5 6.059 · 10−6

ω 4.189 · 10−1 7.247 · 10−2 −2.821 · 10−2

ω̇ −2.106 · 10−3 −1.196 · 10−2 7.362 · 10−3

ω̈ −1.256 · 10−2 −1.138 · 10−2 1.408 · 10−3

TABLE VIII. Global fits of the coefficients for the quanti-
ties used to determine NQC corrections for tNQC

ℓm = tpeakAℓm
− 2.

The fitting template is a quadratic function: y = CQC +

C1b̂Ωpk + C2b̂
2
Ωpk

. The amplitude considered in this ta-

ble is RWZ-normalized as usual, i.e. Aℓm = |Ψℓm| =

|hℓm|/
√

(ℓ+ 2)(ℓ+ 1)ℓ(ℓ− 1).

(ℓ,m) XNQC
ℓm CQC C1 C2

(4,4) A 1.440 · 10−2 1.261 · 10−2 1.215 · 10−2

Ȧ 1.124 · 10−4 −1.072 · 10−4 −3.334 · 10−5

Ä −4.584 · 10−5 5.504 · 10−5 1.442 · 10−6

ω 6.041 · 10−1 4.204 · 10−2 1.016 · 10−3

ω̇ 1.476 · 10−2 −1.500 · 10−2 −1.774 · 10−4

ω̈ 3.536 · 10−4 1.146 · 10−3 −1.417 · 10−3

(4,3) A 4.887 · 10−3 3.881 · 10−3 3.445 · 10−3

Ȧ 7.313 · 10−5 −3.014 · 10−6 5.836 · 10−6

Ä −3.104 · 10−5 5.333 · 10−6 −3.956 · 10−6

ω 5.980 · 10−1 1.029 · 10−2 −1.114 · 10−2

ω̇ 1.979 · 10−2 −7.181 · 10−3 −3.824 · 10−4

ω̈ −1.791 · 10−4 1.279 · 10−3 3.702 · 10−4

(4,2) A 1.627 · 10−3 8.138 · 10−4 5.752 · 10−4

Ȧ 2.687 · 10−5 7.489 · 10−6 4.104 · 10−5

Ä −1.470 · 10−5 −1.090 · 10−5 −7.254 · 10−6

ω 5.784 · 10−1 2.331 · 10−2 −2.894 · 10−2

ω̇ 2.622 · 10−2 −4.593 · 10−3 −3.936 · 10−3

ω̈ −4.671 · 10−4 6.784 · 10−3 −4.209 · 10−3

(4,1) A 4.311 · 10−4 1.636 · 10−4 1.081 · 10−4

Ȧ 4.004 · 10−5 7.867 · 10−6 1.042 · 10−5

Ä 5.997 · 10−6 1.533 · 10−5 9.482 · 10−8

ω 5.673 · 10−1 9.191 · 10−2 −3.606 · 10−2

ω̇ −1.560 · 10−2 −1.071 · 10−2 8.617 · 10−3

ω̈ −3.018 · 10−2 −3.355 · 10−2 5.444 · 10−3

(5,5) A 5.151 · 10−3 5.057 · 10−3 5.331 · 10−3

Ȧ 5.170 · 10−5 −2.949 · 10−5 −2.260 · 10−5

Ä −2.150 · 10−5 1.723 · 10−5 6.342 · 10−6

ω 7.789 · 10−1 4.215 · 10−2 6.786 · 10−4

ω̇ 1.894 · 10−2 −1.663 · 10−2 −1.112 · 10−3

ω̈ 2.169 · 10−4 1.746 · 10−3 −1.577 · 10−3
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