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Abstract
We study the nodal set of stationary solutions to equations of the form (−�)su =

λ+(u+)q−1 −λ−(u−)q−1 in B1, where λ+, λ− > 0, q ∈ [1, 2), and u+ and u− are respec-
tively the positive and negative part of u. This collection of nonlinearities includes the unstable
two-phase membrane problem q = 1 as well as sublinear equations for 1 < q < 2. We ini-
tially prove the validity of the strong unique continuation property and the finiteness of the
vanishing order, in order to implement a blow-up analysis of the nodal set. As in the local
case s = 1, we prove that the admissible vanishing orders can not exceed the critical value
kq = 2s/(2 − q). Moreover, we study the regularity of the nodal set and we prove a strat-
ification result. Ultimately, for those parameters such that kq < 1, we prove a remarkable
difference with the local case: solutions can only vanish with order kq and the problem
admits one dimensional solutions. Our approach is based on the validity of either a family
of Almgren-type or a 2-parameter family of Weiss-type monotonicity formulas, according
to the vanishing order of the solution.

Mathematics Subject Classification 35J70 · 35R11 · 35B40 · 35B44 · 35B05 · 35R35

Communicated by X. Ros-Oton.

Work partially supported by the ERC Advanced Grant 2013 n. 339958 COMPAT and by the GNAMPA
project “Esistenza e proprietà qualitative per soluzioni di EDP non lineari ellittiche e paraboliche”. We
would like to thank Chiara Ferrante for some fruitful discussions and suggestions.

B Giorgio Tortone
giorgio.tortone@dm.unipi.it

1 Dipartimento di Matematica, Università di Pisa, Largo Bruno Pontecorvo, 5, 56127 Pisa, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00526-022-02197-5&domain=pdf
http://orcid.org/0000-0002-2728-3050


82 Page 2 of 51 G. Tortone

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3 Strong unique continuation principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4 The transition exponent for the Weiss-type formula . . . . . . . . . . . . . . . . . . . . . . . . . . .
5 Blow-up analysis forO(u, X0) < kq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6 Blow-up analysis forO(u, X0) = kq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7 One-dimensional kq -homogeneous solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 Introduction

The analysis of the nodal set of solutions of elliptic equations has been the subject of an
intense study in the last decades, starting from the works [9, 19–21], with a special focus on
the measure theoretical features of its singular part.

These works provide a fairly complete picture of the geometric structure of the nodal set in
the case of solutions of linear equations and they easily extend to a wide class of superlinear
equations of type−�u = f (u), provided that the nonlinearity is locallyLipschitz continuous,
that f (0) = 0 and that u ∈ L∞

loc . From a geometric point of view, the nodal set of a weak
solution of class C1 splits into a regular part, which is locally a C1 graph, and a singular set
which is a countable union of subsets of sufficiently smooth (n − 2)-dimensional manifolds.
Moreover these equations satisfy the strong unique continuation principle and the solutions
vanish with finite integer order (see e.g. [15, 16, 21]). A similar structure also holds under
weaker assumptions, that is, for weak solutions of linear equations in divergence form with
Lipschitz coefficients and bounded first and zero order terms (see [19]).

Instead, the picture change drastically if we switch to semi-linear elliptic equations with
non-Lipschitz nonlinearities: given q ∈ [1, 2), let us consider for example the class of equa-
tions

− �u = λ+(u+)q−1 − λ−(u−)q−1 in B1, (1)

where λ+, λ− > 0, q ∈ [1, 2), B1 is the unit ball in R
n and u+ = max(u, 0) and

u− = max(−u, 0) are respectively the positive and negative part of u. Notice that the main
feature of these equations stays in the fact that the right hand side is not locally Lipschitz
continuous as function of u, and precisely has sublinear character for q ∈ (1, 2) and discon-
tinuous behaviour for q = 1. It is well known in the literature that in the case λ+, λ− ≤ 0,
the features of the nodal set of solutions are substantially different in comparison with the
linear case since dead cores appear and no unique continuation can be expected.

However, in the unstable setting the solutions resembles some features of the linear case.
Indeed, recently in [33] have been proved the validity of the unique continuation principle
for every q ∈ [1, 2) by controlling the oscillation of the Almgren-type frequency formula for
solutions with a dead core. On the other hand, in [25] has been shown that the strong unique
continuation principle holds for every q ∈ (1, 2), with an alternative approach based on
Carleman’s estimate: in both papers it has been emphasized that the standard approaches are
not applicable in the sublinear and discontinuous cases and have to be considerably adjusted.
Finally, in [31] the authors investigate the geometric properties of the nodal set and the local
behaviour of the solutions by proving the finiteness of the vanishing order at every point and
by studying the regularity of the nodal set of any solution. More precisely, they show that the
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nodal set is a locally finite collection of regular codimension one manifolds up to a residual
singular set having Hausdorff dimension at most (n − 2).

Ultimately, the main features of the nodal set are strictly related to those of the solutions
to linear (or superlinear) equations, with a remarkable difference: the admissible vanishing
orders can not exceed the critical value kq = 2/(2 − q). Moreover, at this threshold, they
proved the non-validity of any estimates of the (n− 1)-dimensional measure of the nodal set
of a solution in terms of the vanishing order.

The purpose of this paper is to study the structure of the nodal sets of nontrivial solutions
to

(−�)su = λ+(u+)q−1 − λ−(u−)q−1 in B1, (2)

where λ+, λ− > 0, q ∈ [1, 2), s ∈ (0, 1) and the fractional Laplacian is defined by

(−�)su(x) = C(n, s) P.V.
∫
Rn

u(x) − u(y)

|x − y|n+2s dy with C(n, s) = 22ss�( n2 + s)

πn/2�(1 − s)
.

This study is driven by the wish to extend the previous theory to the fractional set-
ting emphasizing the possible difference between the two type of operators due to the
nonlocal attitude of the equations. Starting from the problem of unique continuation,
many result have been achieved in the study of the nodal set of solution of nonlocal
elliptic equation, in particular by using local realisation of the fractional powers of the
Laplacian based on the extension technique popularized by the authors in [5]. Also in
this setting, the key tools in proving unique continuation in the linear case are based
on the validity of an Almgren-type monotonicity formula (see [11, 12, 17]), or Carle-
man estimates (see e.g. [23, 24]), which are not applicable in a standard way in our
case.

In a slightly different direction, researcher also analyzed the structure of the nodal sets
from the geometric point of view by classifying the possible local behaviour of solution near
their nodal set: recently in [28] the authors provided a stratification result for the nodal set
of linear equation by applying a geometric-theoretic analysis of the nodal set of solutions
to degenerate or singular equations associated to the extension operator of the fractional
Laplacian. In particular, they proved the existence of two stratified singular sets where the
solution either resembles a classical harmonic function or a generic polynomial: in the first
case, the stratification coincides with the one of the nodal set of solutions of local elliptic
equations; in the second one a stratification still occurs but the bigger stratum is contained
in a countable union of (n − 1)-dimensional C1,α manifolds, in contrast with the local case
s = 1 (see [28,Section 8] for more detail in this direction).

On the other hand, the picture changes considerably in the case of solution with either
sublinear q ∈ (1, 2) or discontinuous q = 1 nonlinearity, as in (2). Indeed, it is clear that in
the case λ+, λ− ≤ 0 (where the signs of the coefficients are opposite to ours), the features of
the nodal set of solutions are substantially different in comparison with the linear case: dead
cores appear and no unique continuation can be expected. In those scenarios one may try to
describe the structure and the regularity of the free boundary ∂{u = 0}. When q ∈ (1, 2) we
refer to [36, 37] where the authors consider an Alt-Phillips type functional in the fractional
setting for the case of non-negative solutions u ≥ 0; while for the case q = 1 the equation is
the so called two phase obstacle problem and we refer to [2, 3] and reference therein. Since
in the fractional case minimisers of the two-phase obstacle problem do not change sign, we
refer to [18, 26] for some general result in the one-phase setting.

In contrast, very little is known about the structure of the nodal sets in the case λ+, λ− > 0.
In [1] the authors considered the unstable two-phase obstacle problem q = 1 and they proved
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that separation of phases does not occur in the unstable setting. Moreover, they characterized
the local behaviour of minimisers near the free-boundary and they proved a bound on the
Hausdorff dimension of the singular set.

In this paper we deal with the two phases problem (2), treating simultaneously the case
q = 1, which we call unstable two phase membrane problem and the case q ∈ (1, 2), a
prototype of sublinear equation. Notice that our results slightly extend the classification of
blow-up limit obtained for local minimisers in [1] to weak solution of (2) satisfying (4).

Statements of the main results. Let u ∈ Hs(Rn) be a weak solution of (2) in the sense of
distributions. Exploiting the local realisation of the fractional Laplacian deeply explained in
[5], through the paper we will developed a local analysis of solution of the extended problem
in Rn+1+ (see Sect. 2 for more details). Hence, let us consider a weak solution u ∈ H1,a(B+

1 )

of {
Lau = 0 in B+

1

−∂ay u = λ+(u+)q−1 − λ−(u−)q−1 on ∂0B+
1 ,

(3)

where a = 1 − 2s ∈ (−1, 1),

Lau = div(ya∇u), ∂ay u(x, 0) = lim
y→0+ ya∂yu(x, y)

and

B+
r (X0) = Br (X0) ∩ {y > 0}, ∂0B+

r (X0) = Br (X0) ∩ {y = 0},
where Br (X0) denote the ball of center X0 and radius r in R

n+1 (through the paper we
will simply denote B+

r (0) with B+
r ). Moreover, if X0 ∈ �, we will denote as Sn−1

r (X0) the
boundary of ∂0B+

r (X0) in �, that is the (n − 1)-dimensional sphere of radius r centered at
X0. From now on, we simply write “solution” instead of “weak stationary solution”, for the
sake of brevity. Through the paper we will always denote with �(u) = {(x, 0) : u(x, 0) = 0}
the restriction of the nodal set of u on {y = 0}.

According to Definition 2.1, through the paper wewill consider solutions of (3) satisfying

1 − n − a

2

∫
B+
r (X0)

ya |∇u|2 dX + r

2

∫
∂+B+

r (X0)

ya |∇u|2 dσ =

= r
∫

∂+B+
r (X0)

ya(∂r u)2dσ +
∫

∂0B+
r (X0)

〈x − x0,∇xu〉(λ+(u+)q−1 − λ−(u−)q−1)dx

(4)

for every X0 ∈ ∂0B+
1 and r ∈ (0, dist(X0, ∂B1)) (see Sect. 2).

Remark 1.1 The validity of (4) plays a major role for the construction of monotonic-
ity formulas and it is a necessary assumption for those point X0 ∈ �(u) such that
V(u, X0) = 2s/(2 − q), in the case q < 2(1 − s) (see Remark 1.6). Nevertheless, it is
a reasonable assumption which relax the hypothesis of being a minimal solution. Indeed, if
u is a minimiser of

F(u) = 1

2

∫
B+
1

ya |∇u|2 dX − 1

q

∫
∂0B+

1

|u|qdx, (5)

it can be proved by taking inner variations along directions ξ ∈ C∞
c (B1;Rn+1) that u

satisfies a more general class of Pohozaev-type identities (see [1] for q = 1). Moreover,
since for q < 2(1 − s) there exist minimizers of (5) of type (12), one could only expect
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C1,α-regularity of solutions of (3) at most for those q ∈ [1, 2) such that q > 2(1 − s). For
the sake of completeness, we consider this notion of solutions in order to characterize the all
possible behaviours for q ∈ [1, 2).

Inspired by [31], we introduce two different notions of vanishing order, which will be
proved a posteriori to be equal. Therefore, consider the norm

‖u‖H1,a(B+
r (X0))

=
(

1

rn+a−1

∫
B+
r (X0)

ya |∇u|2 dX + 1

rn+a

∫
∂+B+

r (X0)

yau2dσ

)1/2
.

Through the paper,weoftenuse‖·‖X0,r to simplify the notationof the norm inH1,a(B+
r (X0)).

Definition 1.2 Let u ∈ H1,a(B+
1 ) be a solution of (3) satisfying (4) and X0 ∈ �(u). The

H1,a-vanishing order of u at X0 is defined as O(u, X0) ∈ R
+, with the property that

lim sup
r→0+

1

r2k
‖u‖2H1,a(Br (X0))

=
{
0, if 0 < k < O(u, X0)

+∞, if k > O(u, X0).
(6)

Moreover, if such number does not exist, i.e.

lim sup
r→0+

1

r2k
‖u‖2H1,a(Br (X0))

= 0 for any k > 0,

we set O(u, X0) = +∞.

The advantage of this formulation relays in the fact that we have better control of both the
behaviour of the trace of solutions on ∂0B+

1 and the character of the solution in the whole
extended space. Instead, we recall here the classical definition of vanishing order, which will
be used as well through the paper.

Definition 1.3 Let u ∈ H1,a(B+
1 ) be a solution of (3) satisfying (4) and X0 ∈ �(u). The

vanishing order of u at X0 is defined as V(u, X0) ∈ R
+, with the property that

lim sup
r→0+

1

rn+a+2k

∫
∂+B+

r (X0)

yau2 =
{
0, if 0 < k < V(u, X0)

+∞, if k > V(u, X0).
(7)

By (15) we will easily deduce that O(u, X0) ≤ V(u, X0). The following result establishes
the validity of the strong unique continuation principle for every q ∈ [1, 2), λ+ > 0, λ− ≥ 0
and s ∈ (0, 1)

Theorem 1.4 Let q ∈ [1, 2), λ+ > 0, λ− ≥ 0 and u ∈ H1,a(B+
1 ) a solution of (3) satisfying

(4) such that X0 ∈ �(u). If V(u, X0) = +∞, then necessarily u ≡ 0; in particular, if for
every β > 0 we have

lim
|X−X0|→0+

|u(x)|
|X − X0|β

= 0,

it follows that u ≡ 0.

This result implies the validity of the strong unique continuation principle also for the case
λ− = 0, which resembles the result in the local setting. Moreover, in the case λ+, λ− > 0,
we can improve the previous result by characterizing all the admissible vanishing orders.
Thus, let

kq = 2s

2 − q
(8)
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be the critical exponent associated to weak solutions of (3) and βq ∈ N be the larger positive
integer strictly smaller than kq , that is

βq :=
{⌊

2s
2−q

⌋
, if 2s

2−q /∈ N

2s
2−q − 1 if 2s

2−q ∈ N.
(9)

Then, the admissible vanishing orders are all the positive integers smaller or equal than βq

and the critical value kq itself.

Theorem 1.5 Let q ∈ [1, 2), λ+, λ− > 0 and u ∈ H1,a(B+
1 ) be a non-trivial solution of (3)

satisfying (4) with X0 ∈ �(u). Then

V(u, X0) ∈ {n ∈ N \ {0} : n ≤ βq} ∪ {kq} .

In particular, if kq ≤ 1 then V(u, X0) = kq .

Remark 1.6 In the case s = 1, our result recovers the case considered in [31]. Nevertheless,
Theorem 1.5 reveals a deep difference between the local and nonlocal equations for small
value of s ∈ (0, 1): while the vanishing orders of solution of (1) have a universal bound
kq = 2/(2 − q), which is always greater or equal than 1 for q ∈ (0, 2) (see [31] for the
sublinear case q ∈ [1, 2), [32] for the singular case q ∈ (0, 1)), in the fractional setting this
is not always true even in the sublinear case and it implies, for some values of s ∈ (0, 1) and
q ∈ [1, 2), the occurrence of solutions which vanish only with order kq < 1. As we will see,
this phenomena will also affect the structure and the regularity of the nodal set.

Now, using a blow-up argument inspired by the one of [31], we proved the validity of
a generalized Taylor expansion of the solutions near the nodal set: while in the linear (and
superlinear) case solutions behave like homogeneous La-harmonic polynomials of order
k ≥ 1 symmetric with respect to {y = 0} (see [28,Section 4] for a complete characterization
of the class of symmetric La-harmonic polynomials sBa

k ), in the sublinear setting this is not
necessary the case.

Theorem 1.7 Let q ∈ [1, 2), λ+, λ− > 0 and u ∈ H1,a(B+
1 ) be a solution of (3) satisfying

(4) with X0 ∈ �(u). Then, the following alternative holds:

(1) if V(u, X0) ∈ {n ∈ N \ {0} : n ≤ βq}, then there exists a V(u, X0)-homogeneous entire
La-harmonic function ϕX0 ∈ sBa

V(u,X0)
(Rn+1) symmetric with respect to {y = 0}, such

that

u(X) = ϕX0(X − X0) + O(|X − X0|V(u,X0)+1); (10)

(2) if V(u, X0) = kq , then for every sequence rk ↘ 0+ we have, up to a subsequence, that

u(X0 + rk X)

‖u‖X0,rk

→ u in C0,α
loc (Rn+1+ ),

for every α ∈ (0,min(1, 2s)), where u is a kq-homogeneous non-trivial solution to
{
Lau = 0 in R

n+1+
−∂ay u = μ

(
λ+(u+)q−1 − λ−(u−)q−1

)
on Rn × {0}, (11)

for some μ ≥ 0. Moreover, the case μ = 0 is possible if and only if kq ∈ N.
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Remark 1.8 in the case of local diffusion s = 1 it is known that a growth estimate of the
Laplacian of a function near its nodal set immediately implies the validity of a Taylor expan-
sion of the function itself in terms of harmonic polynomials (see [6,Lemma 3.1]), whereas
in the nonlocal setting the validity of a similar result is still unknown.

Therefore, our strategy is to take advantage of the bound on the vanishing order to ensure
the validity of an asymptotic limit of the Dirichlet-to-Neumann operator ∂ay near the nodal set.
Then, the expansion follows by a blow-up analysis based on an application of an Almgren
and Monneau-type monotonicity formulas. Finally, in order to improve the convergence
estimate of the remainder in the Taylor expansion (10), we apply a blow-up analysis on the
difference between the function and its tangent map: this result will be crucial to prove the
C1,α-regularity of the strata of the nodal set.

Thus, we think that this methodology could be use to extend the fundamental Lemma in
[6,Lemma 3.1] to the fractional setting.

This result leads to a partial stratification of the nodal set and, via the dimension reduction
principle due to Federer, to an estimate of the Hausdorff dimension of the nodal and singular
set.

In the light of the previous results, let us define with R(u) and S(u) the regular and
singular part of �(u) defined by

R(u) = {X ∈ �(u) : |∇u| (X) �= 0} and S(u) = {X ∈ �(u) : 1 < V(u, X) ≤ βq}.
and with T (u) the “purely sublinear” part of the nodal set

T (u) = {X ∈ �(u) : V(u, X) = kq
}
.

While in the local case s = 1 the sets S(u)∪T (u) coincides with those points with vanishing
gradient, in the fractional setting s ∈ (0, 1) this is not always the case since the critical value
is not necessary greater than 1. Indeed, this decomposition of �(u) seems more natural in
the fractional setting: by Theorem 1.5, we already know that if kq > 1 then

{X ∈ �(u) : |∇u| (X) = 0} = S(u) ∪ T (u),

while if kq ≤ 1 we get

�(u) = T (u).

Indeed we will see that, for those value of s ∈ (0, 1) and q ∈ [1, 2) such that kq > 1, near
the points of the nodal set where the function vanishes with order strictly less then kq , the
nodal set resembles the picture of the nodal set of s-harmonic functions (see [28] for a deeper
analysis of the singular set S(u)).

Theorem 1.9 Let q ∈ [1, 2), λ+, λ− > 0 and u ∈ H1,a(B+
1 ) be a solution of (3) satisfying

(4). The nodal set �(u) splits as

�(u) = R(u) ∪ S(u) ∩ T (u),

where

(1) the regular part R(u) is locally a C1,α-regular (n − 1)-hypersurface on R
n;

(2) the singular part S(u) is an (n−1)-dimensional countably rectifiable set. Moreover, the
decomposition

S(u) =
n−1⋃
j=0

S j (u)
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holds true, where each S j (u) is contained in a countable union of j-dimensional C1,α

manifolds;
(3) the sublinear part T (u) has Hausdorff dimension at most (n − 1). Moreover, for kq < 1

the nodal set coincides with the sublinear stratum and the Haudorff estimate is optimal
in the sense that there exists a collection of 2-dimensional kq-homogeneous solutions
such that

u1(x, 0) = A1

(
x
kq
+ − x

kq
−
)

or u2(x, 0) = A2 |x |kq for every x ∈ R. (12)

The result on T (u) is remarkably different to its local counterpart: while for s = 1 the
bound (n − 2) on the Hausdorff dimension is optimal, we believe that the result on the
(n − 1)-dimension of T (u) in the case kq < 1 can be easily generalized to all s ∈ (0, 1)
and q ∈ [1, 2), thanks to the characterization of La-harmonic function in [28]. Moreover, we
claim that a viscosity approach, based on an improvement of flatness, could give a regularity
result for those points where the blow-up limit behave like (12) (see Remark 7.1 for more
detail in this direction), in the case kq < 1. At the moment, we leave it as an open problem.

Structure of the paper The paper is organized as follows. In Sect. 2 we recall some
preliminary results on the functional setting and the regularity of solutions. Moreover, we
introduce the notions of vanishing order used through the paper. Next, in Sect. 3, we prove the
validity of the weak unique continuation principle and Theorem 1.4 by using a 2-parameter
Weiss-type monotonicity formula which allows, in Sect. 4, to introduce a characterisation of
the threshold kq .

Finally, in Sect. 5 we prove the first part of Theorem 1.7 and Theorem 1.9 by developing
a blow-up analysis based on the validity of two Almgren-type formulas for those points with
vanishing order smaller than kq and, in Sect. 6, we complete the proof of Theorem 1.7 by
applying a blow-up analysis on those points with vanishing order equal to kq . As byproduct,
we will recover Theorem 1.5.

Finally, in Sect. 7 we prove the existence of kq -homogeneous solutions of the form (12),
for those values of s and q so that kq < 1. This result will lead to the Hausdorff estimate of
T (u) in Theorem 1.9.

2 Preliminaries

In this Section we start by showing preliminary results related to the trace embedding of the
H1,a-space and the regularity of solutions to our problem.

For a ∈ (−1, 1), ⊆ R
n+1+ let us consider H1,a() = H1(, yadX) the weighted

Sobolev space associated to the Muckenhoupt A2 weights ω(X) = ya with X = (x, y) (see
[10] for more details). Now, given a weak solution u ∈ Hs(Rn) of (2), by the Caffarelli-
Silvestre extension there exists a unique function v ∈ H1,a(Rn+1) such that{

Lav = 0 in R
n+1+ ,

v(x, 0) = u(x) in R
n × {0} .

with a = 1 − 2s ∈ (−1, 1) and Lav = div(ya∇v). By a trace result of Nekvinda [22], it is
known that the space Hs(Rn) coincides with the trace onRn ×{0} of H1,a(Rn+1). Thus, we
obtain that, up to a normalization constant, the problem{

Lav = 0 in B+
1

−∂ay v = λ+(v+)q−1 − λ−(v−)q−1 on ∂0B+
1 ,

(13)
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is a localized version of (2) with u(x) = v(x, 0) (see also [4,Theorem 3.1]). Instead
of consider general weak solution in H1,a(B+

1 ) we need to assume the validity of some
Pohozaev-type identities, which are usually associated to the concept of stationary solution
with respect to domain variations.

Definition 2.1 We say that u ∈ H1,a(B+
1 )∩L∞(B+

1 ) is a nontrivial weak stationary solution
of (13) if for every ϕ ∈ C∞

c (B1) we have∫
B+
1

ya〈∇u,∇ϕ〉dX =
∫

∂0B+
1

(λ+(u+)q−1 − λ−(u−)q−1)ϕdx

and

1 − n − a

2

∫
B+
r (X0)

ya |∇u|2 dX + r

2

∫
∂+B+

r (X0)

ya |∇u|2 dσ =

= r
∫

∂+B+
r (X0)

ya(∂r u)2dσ +
∫

∂0B+
r (X0)

〈x − x0,∇xu〉(λ+(u+)q−1 − λ−(u−)q−1)dx

(14)

for every X0 ∈ ∂0B+
1 and r ∈ (0, dist(X0, ∂B1)).

We remark that the existence of solutions follows by standard methods of the calculus of
variations and a straightforward application of the following trace embedding.

Through the paper, for X0 ∈ ∂0B+
1 and r ∈ (0, 1 − |X0|), we will always consider the

space H1,a(B+
r (X0)) as the completion of C∞(B+

r (X0)) with respect to the norm

‖u‖H1,a(B+
r (X0))

=
(

1

rn+a−1

∫
B+
r (X0)

ya |∇u|2 dX + 1

rn+a

∫
∂+B+

r (X0)

yau2dσ

)1/2
.

By the trace embedding on ∂+B+
r (X0) and the Poincaré inequality, this norm is equivalent

to the classical one of [10]. From now on, we often use the notation ‖·‖X0,r to simplify the
notation of the norm in H1,a(B+

r (X0)). The equivalence of this norm with the classic one is
a consequence of the trace theory and the Poincaré inequality.

Lemma 2.2 Let u ∈ H1,a(B+) and q ∈ [1, 2�], where 2� = 2n/(n − 2s) = 2n/(n + a − 1)
is Sobolev’s exponent for the fractional Laplacian. There exists a constant C1 = C1(n, p, a)

such that
(

1

rn

∫
∂0B+

r

|u|q dx
) 1

q ≤ C1 ‖u‖H1,a(B+
r ) , (15)

for every 0 < r < 1. Namely, the space H1,a(B+
r (X0)) is continuously embedded in

Lq(∂0B+
r (X0)), for every r ∈ (0, 1).

Proof This result is a direct consequence of the characterization of the class of traces of
H1,a(B+

r ) with r ∈ (0, 1) (see [22,Theorem 2.11] for the complete theory), and the Sobolev
embedding in the context of fractional Sobolev-Slobodeckij spaces Hs(∂0B+

r ). ��
Since ∂0B+

r is a Lipschitz domain with bounded boundary inRn , the compact embedding
in the fractional Sobolev spaces implies the following remark (see [8] for further details).

Lemma 2.3 Let q ∈ [1, 2�), where 2� = 2n/(n−2s) = 2n/(n+a−1). Then H1,a(B+
r (X0))

is compactly embedded in Lq(∂0B+
r (X0)), for every r ∈ (0, 1).
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We conclude the Section by recalling a regularity result for solutions of (3) in the sense
of Definition 2.1. As we will see through the paper, in order to develop a blow-up analysis
near nodal points it is enough to prove a α-Hölder regularity for small α ∈ (0, 1), since the
classification of the admissible vanishing order is obtained by monotonicity-type formulas.
Therefore, by [29,Theorem 1.5] (see also [29, 30] for more regularity results), we easily
deduce the following result.

Proposition 2.4 Let u ∈ H1,a(B+
1 ) be a weak solution of (3) in the sense of Definition 2.1.

Then, for any compact set K ⊂ B1 we get u ∈ C0,α(K ∩ B+
1 ), for every α ∈ (0,min{1, 2s}).

3 Strong unique continuation principle

This Section is devoted to the proof Theorem 1.4, that is the strong unique continuation
principle for solution of (3). In order to achieve themain resultwe start our analysis by proving
the weak unique continuation principle: if a solution u is identically zero in a neighborhood in
R
n ×{0} of a point X0 ∈ ∂0B+

1 , then necessary u ≡ 0 on ∂0B+
1 . Moreover, since q ∈ [1, 2),

it implies that u ≡ 0 on B+
1 (see [28,Proposition 5.9]).

Our proof of the unique continuation is deeply based on the validity of an Almgren-type
monotonicity formula. Indeed, let

Fλ+,λ−(u) = λ+(u+)q + λ−(u−)q ,

then for X0 ∈ �(u) and r ∈ (0, dist(X0, ∂
+B+

1 )), we introduce the functionals

E(X0, u, r) = 1

rn−1+a

[∫
B+
r (X0)

ya |∇w|2 dX +
∫

∂0B+
r (X0)

w∂aywdx

]

= 1

rn+a−1

[∫
B+
r (X0)

ya |∇u|2 dX −
∫

∂0B+
r (X0)

Fλ+,λ−(u)dx

]

H(X0, u, r) = 1

rn+a

∫
∂+B+

r (X0)

yau2dσ,

(16)

and the associated Almgren-type formula

N (X0, u, r) = E(X0, u, r)

H(X0, u, r)
. (17)

Through the paper we will often abuse the notation E(u, r), H(u, r) and N (u, r) when it is
not restrictive to assume that X0 = 0. By the Gauss-Green formula we immediately obtain

E(X0, u, r) = 1

rn+a−1

∫
∂+B+

r (X0)

yau∂r udσ,

while, by differentiating the functions r �→ H(X0, u, r), we get

d

dr
H(X0, u, r) = d

dr

(∫
∂+B+

1

yau2(X0 + r x)dσ

)

= 2

rn+a

∫
∂+B+

r

yau∂r udσ = 2

r
E(X0, u, r). (18)

In the following Proposition we compute the derivative of the denominator of the Almgren-
type quotient by taking care of the sublinear term on the boundary ∂0B+

r .
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Proposition 3.1 Let X0 ∈ �(u) and r ∈ (0, dist(X0, ∂B1)). Then, it holds

d

dr
E(X0, u, r) = 2

rn+a−1

∫
∂+B+

r (X0)

ya(∂r u)2dσ+

+ 1

rn+a−1

[
2 − q

q

∫
Sn−1
r (X0)

Fλ+,λ−(u)dσ − Cs
n,q

qr

∫
∂0B+

r (X0)

Fλ+,λ−(u)dx

]
,

where Cs
n,q = 2n − q(n − 2s) > 0.

Proof Up to translation, let us assume that X0 = 0. Thus

d

dr
E(u, r) = 1 − n − a

rn+a

[∫
B+
r

ya |∇u|2 dX −
∫

∂0B+
r

Fλ+,λ−(u)dx

]
+

+ 1

rn+a−1

[∫
∂+B+

r

ya |∇v|2 dσ −
∫
Sn−1
r

Fλ+,λ−(u)dσ

]
.

By Definition 2.1, we need to integrate by parts only the last term in (14). More precisely,
since ∇x Fλ+,λ−(u) = q(−∂ay u)∇xu in ∂0B+

1 , we get∫
∂0B+

r

〈x,∇xu〉(−∂ay u)dx = 1

q

∫
∂0B+

r

〈x,∇x Fλ+,λ−(u)〉dx

= r

q

∫
Sn−1
r

Fλ+,λ−(u)dσ − n

q

∫
∂0B+

r

Fλ+,λ−(u)dx .
(19)

Summing together the previous equalities, we finally get the claimed result. We remark that
the previous computations are also valid in the case q = 1, but require some justification.
More precisely, as observed in [33,Proposition 2.7], the Gauss-Green formula holds for all
vector fields Y ∈ C(Br ,Rn+1) with divY ∈ L1(Br ). In particular in (19), the Gauss-Green
formula is applied to the vector field

Y1 = Fλ+,λ−(u)(x, 0) = (λ+u+ + λ−u−)(x, 0),

where

divY1 = sign(λ+u+ − λ−u−)〈x,∇xu〉 + n(λ+u+ + λ−u−) a.e. in ∂0B+
1 .

The previous quantity is absolutely integrable in ∂0B+
r as a direct consequence of the char-

acterization of the class of trace of H1,a(B+
r ) with r ∈ (0, 1) (see [22,Theorem 2.11]).

��
Combining the previous estimate, we finally get a lower bound for the derivative of the

Almgren-type frequency formula.

Corollary 3.2 Let X0 ∈ �(u) and r1, r2 ∈ (0, dist(X0, ∂
+B+

1 )) such that H(X0, u, r) �= 0
for a.e. r ∈ (r1, r2). Then

d

dr
N (X0, u, r) ≥

r

(
2 − q

q

)∫
Sn−1
r (X0)

Fλ+,λ−(u)dσ − Cs
n,q

q

∫
∂0B+

r (X0)

Fλ+,λ−(u)dx
∫

∂+B+
r (X0)

yau2dσ

for a.e. r ∈ (r1, r2).
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Proof The proof follows essentially the ideas of the similar results in literature and it is based
on a straightforward combination of (18), Proposition 3.1 and the validity of the Cauchy-
Schwarz inequality on ∂+B+

r (X0). ��

Now, we are ready to show the validity of the classical weak unique continuation principle
for solution of the sub-linear nonlocal equation.

Theorem 3.3 Let q ∈ [1, 2), λ+ > 0, λ− ≥ 0 and u ∈ H1,a(B+
1 ) be a weak solution of (3)

which vanishes in a neighbourhood in Rn × {0} of a point on �(u). Then u ≡ 0 in ∂0B+
1 .

Proof Let us define the vanishing set on Rn × {0} as
U = {x ∈ ∂0B+

1 : u ≡ 0 in a neighborhood of x} ⊂ R
n .

Since u �≡ 0 and ∂0B+
1 is connected, we already know that U is open, non-empty and

∂U ∩ ∂0B+
1 �= ∅, where ∂U is the topological boundary ofU as a subset of Rn . Let X∗ ∈ U

and r > 0 be such that Br (X∗) ⊂ U , then by (3) the function u satisfies
⎧⎪⎨
⎪⎩
Lau = 0 in B+

r (X∗)
∂ay u = 0 on ∂0B+

r (X∗)
u = 0 on ∂0B+

r (X∗).
(20)

By [28,Proposition 5.9], it follows that necessary u ≡ 0 in B+
r (X∗) and then, by the weak

unique continuation principle for the La-operator (see [16,Theorem 1.4]) we get that u ≡ 0
in B+

1 . Since we already know that u is Hölder continuous, we get u ≡ 0 in ∂0B+
1 . ��

In order to prove the strong unique continuation principle, we now introduce a 2-parameter
family ofWeiss-typemonotonicity formulas, that will be the fundamental tool of our analysis.
Indeed, inspired by [31], for X0 ∈ �(u) and r ∈ (0, dist(X0, ∂

+B+
1 )) we consider the

functional

Et (X0, u, r) = 1

rn+a−1

[∫
B+
r (X0)

ya |∇u|2 dX − t

q

∫
∂0B+

r (X0)

Fλ+,λ−(u)dx

]
, (21)

and similarly we introduce the two-parameters families of functionals

Nt (X0, u, r) = Et (X0, u, r)

H(X0, u, r)
, Wk,t (X0, u, r) = Et (X0, u, r)

r2k
− k

H(X0, u, r)

r2k
. (22)

Notice that for t = q , we recover the functionals in (16) and their associated Almgren-type
formula.

Proceeding exactly as in Proposition 3.1 and Corollary 3.2, we get

d

dr
Et (X0, u, r) = 2

rn+a−1

∫
∂+B+

r (X0)

ya(∂r u)2dσ + Rt (X0, u, r) (23)

where

Rt (X0, u, r) = 1

rn+a−1

[
2 − t

q

∫
Sn−1
r (X0)

Fλ+,λ−(u)dσ − Cs
n,t

qr

∫
∂0B+

r (X0)

Fλ+,λ−(u)dx

]

(24)

and Cs
n,t = 2n − t(n − 2s).
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Proposition 3.4 Let X0 ∈ �(u) and r ∈ (0, dist(X0, ∂
+B+

1 )). Then we have

d

dr
Wk,t (X0, u, r) = 2

rn+a−1+2k

∫
∂+B+

r (X0)

ya
(

∂r u − k

r
u

)2
dσ+

+ 1

rn+a−1+2k

[
2 − t

q

∫
Sn−1
r (X0)

Fλ+,λ−(u)dσ

−Cs
n,t − 2k(t − q)

qr

∫
∂0B+

r (X0)

Fλ+,λ−(u)dx

]
.

(25)

In particular, for t = 2 and k ≥ kq the function r �→ Wk,2(X0, u, r) is monotone non-
decreasing.

Proof Up to translation, let us suppose X0 = 0 and r ∈ (0, 1). A direct computation gives

d

dr
Wk,t (u, r) = − 2k

(
Et (u, r)

r2k+1 − k
H(u, r)

r2k+1

)
+ 1

r2k

(
d

dr
Et (u, r) − k

d

dr
H(u, r)

)

= 1

r2k
d

dr
Et (u, r) − 4k

Et (u, r)

r2k+1 + 2k2
H(u, r)

r2k+1 ,

(26)

where in the second inequality we used the estimate (18). By the Gauss-Green formula in
(21) we get

Et (u, r) = 1

rn+a−1

[∫
∂+B+

r

yau∂r udX − t − q

q

∫
∂0B+

r

Fλ+,λ−(u)dx

]

and by taking care of the estimate (23), we finally obtain

d

dr
Wk,t (u, r) = 2

rn+a−1+2k

∫
∂+B+

r

ya
(

∂r u − k

r
u

)2
dσ+

+ 1

rn+a−1+2k

[
2 − t

q

∫
Sn−1
r

Fλ+,λ−(u)dσ

−Cs
n,t − 2k(t − q)

qr

∫
∂0B+

r

Fλ+,λ−(u)dx

]
.

Now, for t = 2 and k ≥ kq (see (8) for the definition of the critical exponent kq ) the
monotonicity follows straightforwardly by the previous computations. Indeed, we have

d

dr
Wk,t (u, r) ≥ −Cs

n,t − 2k(t − q)

qrn+a+2k

∫
∂0B+

r

Fλ+,λ−(u)dx, (27)

where Cs
n,2 − 2k(2 − q) ≤ 0 if and only if k ≥ kq . ��

Thus, as simple corollaries of the monotonicity result, we deduce the following results for
k ≥ kq .

Corollary 3.5 Let X0 ∈ �(u) and k ≥ kq . Then, there exists the limit

Wk,2(X0, u, 0+) = lim
r→0+ Wk,2(X0, u, r).

Moreover, the map r �→ Wkq ,2(X0, u, r) is constant if and only if u is kq-homogeneous in

R
n+1+ with respect to X0.
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Corollary 3.6 For X0 ∈ �(u), there exists k ≥ kq such that

Wk,2(X0, u, 0+) < 0.

Moreover, if Wk1,2(X0, u, 0+) < 0 then Wk2,2(X0, u, 0+) = −∞ for every k2 > k1.

Proof Up to translation, let us consider X0 = 0 and r ∈ (0, 1). By Theorem 3.3, since u �≡ 0
there exists r1 ∈ (0, 1) such that H(u, r1) �= 0. Now, there exists k ≥ kq sufficiently large,
such that

Wk,2(u, r1) = E2(u, r1)

r2k1
− k

H(u, r1)

r2k1
< 0,

and by the monotonicity result in Proposition 3.4 we obtainWk,2(u, 0+) ≤ Wk,2(u, r1) < 0,
for k sufficiently large.

Now, fixed k1 > 0 such thatWk1,2(u, 0+) < 0, let us consider k2 > k1. Thus, for r ∈ (0, 1)

Wk2,2(u, r) = E2(u, r)

r2k2
− k2

H(u, r)

r2k2

= 1

r2(k2−k1)

[
E2(u, r)

r2k1
− k1

H(u, r)

r2k1

]
− k2 − k1

r2k2
H(u, r)

≤ 1

r2(k2−k1)
Wk1,2(u, r),

which implies the claimed conclusion. ��
Finally, by Corollary 3.6 we are able to prove the existence of a transition exponent k

for the frequency Wk,2(X0, u, 0+) which characterize the possible behaviours of the Weiss
frequency for every k ≥ 0.

Corollary 3.7 For every X0 ∈ �(u) such that O(u, X0) ≥ kq , there exists finite

k = inf{k > 0 : Wk,2(X0, u, 0+) = −∞} ∈ [kq ,+∞) .
Moreover, the limit Wk,2(X0, u, 0+) exists for every k ≥ 0 and it satisfies⎧⎪⎨

⎪⎩
Wk,2(X0, u, 0+) = 0 if 0 < k < kq
Wk,2(X0, u, 0+) ≥ 0 if kq ≤ k < k

Wk,2(X0, u, 0+) = −∞ if k > k.

Proof The existence of k ≥ 0 follows by Corollary 3.6. Now, let us consider separately the
cases k < kq and k ≥ kq . In the first one, since O(u, X0) ≥ kq , by (6) there exists ε > 0
such that

k < kq − ε < O(u, X0),

and two constant C > 0, r0 > 0, depending on ε, such that

‖u‖2
H1,a(B+

r (X0))
≤ Cr2(kq−ε),

for every r ∈ (0, r0). By definition of the Weiss-type formula, we get

∣∣Wk,2(X0, u, r)
∣∣ ≤ C

1

r2k

(
(1 + k) ‖u‖2H1,a(Br (X0))

+ 2

q
r1−a ‖u‖q

H1,a(Br (X0))

)

≤ C
1

r2k
(
r2α + r2s+qα

)
,
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with α = kq − ε. Finally, since q ∈ [1, 2), we get
∣∣Wk,2(X0, u, r)

∣∣ ≤ Cr2(kq−k−ε) + Cr2(kq−k− qε
2 )

which leads to the claimed result ad r → 0+. In particular, this estimate suggests that k ≥ kq .
Instead, in the case k > kq the existence of a non-negative limit for k < k follows by the

monotonicity result in Proposition 3.4 and by Corollary 3.6. ��
The previous result emphasizes an hidden relation between the notion of H1,a-vanishing

order and the transition exponent k defined in Corollary 3.7, which will be deeply examined
in Sect. 4. Finally, we can prove the main result of the Section.

Proof of Theorem 1.4 By contradiction, suppose that u �≡ 0 on ∂0B+
1 and O(u, X0) = +∞,

i.e.

lim sup
r→0+

1

r2β
‖u‖2H1,a(Br (X0))

= 0, for any β > 0.

In particular, given k > 0 as in Corollary 3.7, let us fix k > k and β = 2k/q . Thus, there
exists r0 > 0 and C > 0 such that

1

rn+a−1

∫
B+
r (X0)

ya |∇u|2 dX + 1

rn+a

∫
∂+B+

r (X0)

yau2dσ ≤ Cr
4
q k for every r ∈ (0, r0).

(28)

On one side, since 2k/q > k for q ∈ [1, 2), by the previous inequality we easily have

H(X0, u, r) ≤ Cr2k for every r ∈ (0, r0)

while, by an integration by parts, fixed � = max{λ+, λ−} we get
1

rn+a−1

∫
∂0B+

r (X0)

Fλ+,λ−(u)dx ≤ �

rn+a−1

∫
∂0B+

r (X0)

|u|q dx

≤ Cr1−a ‖u‖q
H1,a(Br (X0))

≤ Cr2k,

where in the second inequality we use Lemma 2.2 and in the last one (28). Finally, collecting
the previous estimate, for every r ∈ (0, r0) we have

Wk,2(X0, u, r) ≥ − 1

rn+a−1+2k

2

q

∫
∂0B+

r (X0)

Fλ+,λ−(u)dx − k

r2k
H(X0, u, r)

≥ −
(
2

q
+ k

)
C,

and in particular Wk,2(X0, u, 0+) > −∞, in contradiction with the fact that, being k > k,
by Corollary 3.7 we must have Wk,2(X0, u, 0+) = −∞ for any k > k. ��

4 The transition exponent for theWeiss-type formula

In this Section we develop a finer analysis of the transition exponent k for the Weiss-type
monotonicity formula Wk,2 in the case O(u, X0) ≥ kq . The main result of the Section is a
characterization of k in terms of the critical exponent kq and the H1,a-vanishing order, which
allows to prove an upper bound for the admissible vanishing ordersO(u, X0) of u at X0 (see
Proposition 4.7).
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First, we start by proving the following partial characterization of the transition exponent
k of Wk,2 (see (3.7)) in terms of kq .

Proposition 4.1 For every X0 ∈ �(u) such that O(u, X0) ≥ kq , we have

k = inf
{
k > 0 : Wk,2(X0, u, 0+) = −∞} = kq .

Moreover, combining theprevious estimatewithCorollary 3.7wededuce thatWk,2(X0, u, 0+)

exists for every k ≥ 0 and
{
Wk,2(X0, u, 0+) = 0 if 0 < k < kq
Wk,2(X0, u, 0+) = −∞ if k > kq .

(29)

Following the strategy presented in [31], this result will be a consequence of the following
Lemmata in which we assume that k > kq .

Remark 4.2 Since we never use the assumption O(u, X0) ≥ kq , we highlight that the fol-
lowing results are still true near nodal point with O(u, X0) < kq .

Lemma 4.3 Let X0 ∈ �(u) and assume that k ≥ kq . Then

E2(X0, u, r) ≥ 0 and H(X0, u, r) > 0,

for every r ∈ (0, dist(X0, ∂
+B+

1 )). Moreover, if k > k, we deduce

lim sup
r→0+

N2(X0, u, r) ≤ k and lim inf
r→0+

H(X0, u, r)

r2k
= +∞.

Proof Fixed k ∈ (kq , k], we already know by Proposition 3.4 that r �→ Wk,2(X0, u, r) is
monotone non-decreasing and, by Corollary 3.7, thatWk,2(X0, u, 0+) ≥ 0. Hence, for every
r ∈ (0, dist(X0, ∂B+)) we get

0 ≤ Wk,2(X0, u, r) ≤ 1

r2k
E2(X0, u, r).

Moreover, since Wk,q(X0, u, r) ≥ Wk,2(X0, u, r) ≥ 0 for every r ∈ (0, dist(X0, ∂B+)), by
(18) we deduce

d

dr

H(X0, u, r)

r2k
= 2

r
Wk,q(X0, u, r) ≥ 0. (30)

Finally, if H(X0, u, r1) = 0 for some r1 > 0, by the monotonicity of (30), we deduce that
u ≡ 0 in B+

r1 (X0), in contradiction with Theorem 3.3.
Hence, collecting the previous inequality, we get N2(X0, u, r) ≥ 0 and in particular, since

k > k we get

−∞ = Wk,2(X0, u, 0+) = lim
r→0+

H(X0, u, r)

r2k
(N2(X0, u, r) − k).

Also, since H(X0, u, r)/r2k ≥ 0, we finally deduce

−k ≤ lim inf
r→0+ (N2(X0, u, r) − k) ≤ lim sup

r→0+
(N2(X0, u, r) − k) ≤ 0,

which implies the desired claim. ��

123



The nodal set of solutions to some nonlocal sublinear problems Page 17 of 51 82

As a consequence, for every t ∈ (0, 2) the associated Almgren-type formula Nt (X0, u, r)
is non-negative for every r ∈ (0, dist(X0, ∂

+B+)).
Since in this Sectionwe are proceeding by assuming by contradiction that k > kq , consider

t the medium point between kq and k.

Lemma 4.4 Let X0 ∈ �(u) and assume that k > kq . Given

k̃ = 1

2

(
kq + k

)
and t̃ = 2n + 2kq

2k + n − 2s
∈ (q, 2),

then the map r �→ Wk,t̃ (X0, u, r) is monotone non-decreasing in (0, dist(X0, ∂
+B+)), for

every k ≥ k̃.

Proof The proof is a direct corollary of Proposition 3.4. More precisely, since q ∈ [1, 2) and
k ≥ k̃ > kq we get that

t̃ = 2n + 2kq

2k + n − 2s
←→ Cs

n,t − 2k(t̃ − q) = 0,

which implies, by (27), the claimed result. ��

Therefore, under the absurd assumption k > kq , we can prove that the transition exponent
k associated to Wk,2(X0, u, 0+) coincides with the transition exponent associated to the
frequency Wk,t̃ (X0, u, 0+).

Lemma 4.5 Assume that k > kq , then

k = inf{k ≥ k̃ : Wk,t̃ (X0, u, 0+) = −∞}. (31)

In particular, for every k > k we get

lim sup
r→0+

Nt̃ (X0, u, r) ≤ k.

Proof Following the reasoning in Corollary 3.6, we can immediately deduce the existence
of k ≥ k̃ such that Wk,t̃ (X0, u, 0+) < 0. Hence, we can reasonably define the quantity

k = inf{k ≥ k̃ : Wk,t̃ (X0, u, 0+) = −∞},
for which {

Wk,t̃ (X0, u, 0+) ≥ 0 if k ≤ k < k

Wk,t̃ (X0, u, 0+) = −∞ if k > k.

Since t̃ < 2, we fist have Wk,t̃ (X0, u, r) ≥ Wk,2(X0, u, r) for every 0 < r < R and k > 0.

Now, on one sideWk,t̃ (X0, u, 0+) = −∞ impliesWk,2(X0, u, 0+) = −∞ and hence k ≥ k.

So, let us suppose by contradiction that k > k, hence there exists k ∈ (k, k) such that
Wk,t̃ (X0, u, 0+) ≥ 0.

By the monotonicity result in Lemma 4.4 we get Wk,t̃ (X0, u, r) ≥ 0 for r > 0 and, since
t̃ ∈ (q, 2), we deduce

Wk,q(X0, u, r) ≥ Wk,t̃ (X0, u, r) ≥ 0, (32)
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for every r ∈ (0, dist(X0, ∂
+B+)). Finally, recalling the relation in (30), by (32) it follows

that r �→ r−2k H(X0, u, r) is monotone non-decreasing and in particular there exists finite

lim
r→0+

H(X0, u, r)

r2k
∈ (0,+∞),

which contradicts Lemma 4.3. ��
Lemma 4.6 Let X0 ∈ �(u) and k ≥ kq . There exists a sequence (rn)n such that ri → 0+
and

1

rn+a−1+2k
n

∫
∂0B+

rn (X0)

Fλ+,λ−(u)dx → 0.

Proof Let k ∈ [kq , k), by Corollary 3.4 and Corollary 3.7 we have Wk,2(X0, u, r) ≥ 0
for every r ∈ (0, dist(X0, ∂

+B+)). Since for any fixed radius r > 0 the function k �→
Wk,2(X0, u, r) is continuous, we infer as k → k

−
that Wk,2(X0, u, r) ≥ 0, which implies

by continuity that Wk,2(X0, u, 0+) ≥ 0.
Thus, for any r ∈ (0, dist(X0, ∂

+B+)) we get

0 ≤
∫ r

0

d

dr
Wk,2(X0, u, s)ds = Wk,2(X0, u, r) − Wk,2(X0, u, 0+) < +∞.

On the other side, by (27) we deduce
∫ r

0

1

s

(
1

sn+a−1+2k

∫
∂0B+

s (X0)

Fλ+,λ−(u)dx

)
ds < +∞, (33)

which implies, combined with the non-integrability of s �→ s−1 in 0, that if

lim inf
r �→0+

1

rn+a−1+2k

∫
∂0B+

r (X0)

Fλ+,λ−(u)dx > 0,

then (33) would not be true. Thus, this implication suggests that the previous liminf has to
be null. ��
Proof of Proposition 4.1 The proof is based on a blow-up argument: given X0 ∈ �(u) assume
that k > kq and let (rn)n be the sequence introduced in Lemma 4.6. Therefore, consider the
blow-up sequence

un(X) = u(X0 + rn X)√
H(X0, u, rn)

for X ∈ B+
R/rn

where R = dist(X0, ∂
+B+). Thanks to Lemma 4.3, we have H(X0, u, rn) > 0 and

E2(X0, u, rn) ≥ 0, which lead to

∫
∂+B+

1

yau2ndσ = 1 and
∫
B+
1

ya |∇un |2 dX =
1

rn+a−1
n

∫
B+
rn (X0)

ya |∇u|2 dX
1

rn+a
n

∫
∂+B+

rn (X0)

yau2dσ
.

On the other hand by Lemma 4.3 we deduce∫
B+
rn (X0)

ya |∇u|2 dX ≥ 2

q

∫
∂0B+

rn (X0)

Fλ+,λ−(u)dx,
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which implies, since t̃ < 2 that

1

rn+a−1
n

∫
B+
rn (X0)

ya |∇u|2 dX

≤ 2

2 − t̃

1

rn+a−1
n

(∫
B+
rn (X0)

ya |∇u|2 dX − t̃

q

∫
∂0B+

rn (X0)

Fλ+,λ−(u)dx

)

≤ 2

2 − t̃
Et̃ (X0, u, rn).

As a consequence of the previous estimates and Lemma 4.5, we get∫
B+
1

ya |∇un |2 dX ≤ 2

2 − t̃
Nt̃ (X0, u, rn) ≤ C .

Since the sequence (un)n is uniformly bounded in H1,a(B+
1 ), the compactness of the Sobolev

embedding implies that (un)n converges weakly in H1,a(B1+) and strongly in L2,a(∂+B+
1 )

to a function u ∈ H1,a(B1+).
Moreover, since by [22,Theorem 2.11] the space of the trace of functions in H1,a(B+)

on the set ∂0B+ coincides with the Sobolev-Slobodeckij space Hs(∂0B+), by the Riesz–
Frechet–Kolmogorov Theorem, the trace operator

H1,a(B+
1 ) ↪→↪→ L p(∂0B+

1 )

is well defined an compact for every p ∈ [1, 2] (see Lemma 2.3). Hence, since q ∈ [1, 2),
we get∫

∂+B+
1

yau2dσ = 1 and lim
n→∞

∫
∂0B+

1

Fλ+,λ−(un)dx =
∫

∂0B+
1

Fλ+,λ−(u)dx . (34)

Since the first equality implies that u �≡ 0 on ∂+B+
1 , we deduce by the trace embedding that

u �≡ 0 on the whole B+
1 . On the other side, we get

∫
∂0B+

1

Fλ+,λ−(un)dx =
(

r (a−1+2k)/q

√
H(X0, u, rn)

)q
1

rn+a−1+2k
n

∫
∂0B+

rn (X0)

Fλ+,λ−(u)dx .

By direct computation, since we are assuming k > kq , we have 2(2k + a − 1)/q > 2k and,
for n sufficiently large, it implies

∫
∂0B+

1

Fλ+,λ−(un)dx ≤
(
H(X0, u, rn)

r2kn

)−q/2
1

rn+a−1+2k
n

∫
∂0B+

rn (X0)

Fλ+,λ−(u)dx

where, by Lemma 4.3 and Lemma 4.6, the right hand side goes to 0 as n �→ +∞. By (34)
we infer that ∫

∂0B+
1

Fλ+,λ−(u)dx = 0 ←→ u ≡ 0 on ∂0B+
1 .

On the other hand, since (un)n is uniformly bounded in H1,a(B+
1 ) and un⇀u weakly in

H1,a , from

−∂ay un =
(

r2kn
H(X0, u, rn)

) 2−q
2 (

λ+(un)
q−1
+ − λ−(un)

q−1
−
)

on
∂0B+

R − X0

rn
,
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we deduce that the limit function u ∈ H1,a
loc (Rn+1+ ) is a weak solution of

⎧⎪⎨
⎪⎩
Lau = 0 in R

n+1+
∂ay u = 0 on R

n × {0}
u = 0 on R

n × {0},
(35)

such that u �≡ 0 on Rn+1+ . The contradiction follows immediately by the unique continuation
principle for the traces of La-harmonic functions (see [28, Proposition 5.9]). ��

The following result completes the previous characterization in the case O(u, X0) ≥ kq
by relating the critical exponent kq and the transition exponent k to the H1,a-vanishing order
of u at X0. More precisely, it implies that the solutions of (3) can vanish with order less or
equal than kq .

Proposition 4.7 Let u be a solution of (3) and X0 ∈ �(u) such that O(u, X0) ≥ kq . Then,
the vanishing order O(u, X0) is characterized by

O(u, X0) = inf
{
k > 0 : Wk,2(X0, u, 0+) = −∞} = kq .

Furthermore, we get{
Wk,2(X0, u, 0+) = 0 if 0 < k < O(u, X0)

Wk,2(X0, u, 0+) = −∞ if k > O(u, X0).

Proof The proof of this result follows the one of its local counterpart in [31]. For the sake of
simplicity, let us denote with ‖·‖H1,a(B+

r (X0))
= ‖·‖X0,r . Now, fixed X0 ∈ �(u), let us prove

that

lim inf
r→0+

‖u‖2X0,rn

r2k
> 0, (36)

where k = kq . After that, the result will follow by Proposition 4.1 and (29). By contradiction,
let us suppose there exists a sequence rn → 0+ such that

lim
n→∞

‖u‖2X0,rn

r2kn
= 0. (37)

Then, consider the blow-up sequence associated to the H1,a-norm, defined as

ur (X) = u(X0 + r X)

‖u‖X0,r
, such that ‖un‖0,1 = 1. (38)

As we deduce in the proof of Proposition 4.1, since the blow-up sequence (un)n is uni-
formly bounded in H1,a(B+

1 ), the compactness of the Sobolev embedding implies that (un)n
converges weakly in H1,a(B+

1 ) and strongly in L2,a(∂+B+
1 ) to a function u ∈ H1,a(B+

1 ).
Similarly, the traces on ∂0B+

1 converge strongly in Lq(∂0B+
1 ) to the trace of u, for every

q ∈ [1, 2). In particular,

lim
n→∞ Wk,2(X0, u, rn) = lim

n→∞

[‖u‖2X0,rn

r2kn

(∫
B+
1

ya |∇un |2 dX − k
∫

∂+B+
1

yau2ndσ

)
+

− 2

q

(‖u‖2X0,rn

r2kn

)q/2 ∫
∂0B+

1

Fλ+,λ−(un)dx

⎤
⎦ = 0.
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Thus, since the limit Wk,2(X0, u, 0+) exists, by the monotonicity result in Proposition 3.4,

we get that Wk,2(X0, u, r) ≥ 0 and Wk,q(X0, u, r) ≥ 0 for every r ∈ (0, dist(X0, ∂
+B+

1 ))

and q < 2.
First, by Lemma 4.3, we know that E2(X0, u, r) ≥ 0 and H(X0, u, r) > 0 for every

r ∈ (0, dist(X0, ∂
+B+

1 )) and, for every k > k we get

lim inf
r→0+

H(X0, u, r)

r2k
= +∞. (39)

Now, let us compute the same limit in the case k. Since the function r �→ H(X0, u, r)/r2k

is monotone non-decreasing, there exists the limit as r → 0+ and, by (37), we get

0 ≤ H(X0, u, rn)

r2kn
≤ ‖u‖2X0,rn

r2kn
→ 0

which implies

lim
r→0+

H(X0, u, r)

r2k
= 0. (40)

In order to reach a contradiction, we need to prove that the blow-up limit satisfies u ≡ 0, in
contradiction with the normalization (38) (see the conclusion of the Section). ��
Lemma 4.8 Fixed X0 ∈ �(u) and k = kq let us suppose that (40) holds true. Then, we get

lim inf
r→0+

Wk,q(X0, u, r)r2k

H(X0, u, r)
= 0 and lim

r→0+
Wk,2(X0, u, r)r2k

H(X0, u, r)
= 0. (41)

Proof Let us consider first the limit associated to the case t = q and, by contradiction, assume
that ε > 0 and r0 ∈ (0, dist(X0, ∂

+B+
1 )) such that

Wk,q(X0, u, r)r2k

H(X0, u, r)
≥ ε for every r ∈ (0, r0).

By (18), we deduce that

d

dr
log

(
H(X0, u, r)

r2k

)
= 2

r

Wk,q(X0, u, r)r2k

H(X0, u, r)
≥ 2ε

r
,

and integrating by parts the previous inequality between r ∈ (0, r0) and r0 we get

H(X0, u, r)

r2k+2ε
≤ H(X0, u, r0)

r2k+2ε
0

< ∞ for every r ∈ (0, r0).

In particular

lim sup
r→0+

H(X0, u, r)

r2k+2ε
< +∞,

in contradiction with (39) with k = k + ε.
Now, for t = 2 and k = kq we already know by Proposition 3.4 that

d

dr
Wk,2(X0, u, r) = 2

rn+a−1+2k

∫
∂+B+

r (X0)

ya
(

∂r u − k

r
u

)2

dσ .
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In the remaining part of the proof, for the sake of simplicity we omit the dependence with
respect to u and X0. Hence, combining the previous derivative with (30) we get

(
H(r)

r2k

)2 d

dr

(
r2kWk,2(r)

H(r)

)
= H(r)

r2k
d

dr
Wk,2(r) − 2

r
Wk,2(r)Wk,q(r),

and since 0 ≤ Wk,2(r) ≤ Wk,q(r) we infer that

(
H(r)

r2k

)2 d

dr

(
r2kWk,2(r)

H(r)

)
≥

≥ 2

r2n+2a−1+4k

∫
∂+B+

r

yau2dσ
∫

∂+B+
r

ya
(

∂r u − k

r
u

)2

dσ − 2

r

(
Wk,q(r)

)2

≥ 2

r2n+2a−1+4k

[∫
∂+B+

r

yau2dσ
∫

∂+B+
r

ya(∂r u)2dσ −
(∫

∂+B+
r

yau∂r udσ

)2]
,

which is non-negative by theCauchy-Schwarz inequality. SinceH(r) > 0 and0 ≤ Wk,2(r) ≤
Wk,q(r), the previous part of the proof yields that the second limit in (41) exists and is equal
to zero. ��

Conclusion of the proof of Proposition 4.7 Since‖u‖2X0,r
≥ H(X0, u, r), byLemma4.8, there

exists a sequence rm → 0+ such that

lim
m→∞

r2km Wk,q(X0, u, rm)

‖u‖2X0,rm

= lim
m→∞

r2km Wk,2(X0, u, rm)

‖u‖2X0,rm

= 0. (42)

Now, let um be the blow-up subsequence of (38) associated to the sequence (rm)m which
converges to a limit function u. First, by (41) we infer

0 ≤
(

r2km
H(rm)

) 2−q
2 ∫

∂0B+
1

Fλ+,λ−(um)dx ≤ r2sm ‖u‖qX0,rm

H(rm)

∫
∂0B+

1

Fλ+,λ−(um)dx

= 1

rn+a−1
m H(rm)

∫
∂0B+

rm (X0)

Fλ+,λ−(u)dx

= q

2 − q

r2km
(
Wk,q(rm) − Wk,2(rm)

)
H(rm)

→ 0+,

which implies, combined with the strong convergence in Lq(∂0B+
1 ) and (40), that u ≡ 0 on

∂0B+
1 . On the other side, by (42) we deduce that

0 ≤ r2sm
‖u‖2−q

X0,rm

∫
∂0B+

1

Fλ+,λ−(um)dx

= 1

rn+a−1
m ‖u‖2X0,rm

∫
∂0B+

rm (X0)

Fλ+,λ−(u)dx

= q

2 − q

r2km
(
Wk,q(X0, u, rm) − Wk,2(X0, u, rm)

)
‖u‖2X0,rm

→ 0+,
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as m → +∞. Therefore, collecting the previous results we get

0 = lim
m→∞

r2km Wk,2(X0, u, rm)

‖u‖2X0,rm

= lim
m→∞

(∫
B+
1

ya |∇um |2 dX − 2r1−a
m

q ‖u‖2−q
X0,rm

∫
∂0B+

1

Fλ+,λ−(um)dx − k
∫

∂+B+
1

yau2mdσ

)

= lim
m→∞

(∫
B+
1

ya |∇um |2 dX − k
∫

∂+B+
1

yau2mdσ

)
,

which implies that ‖um‖20,1 → (k+1) ‖u‖2
L2,a(∂+B+

1 )
. Since by (38) the normalization implies

‖um‖0,1 = 1 for everym, we immediately deduce that u �≡ 0 in B+
1 . Therefore, the conclusion

follows as in the proof of Proposition 4.1. ��

5 Blow-up analysis forO(u,X0) < kq

In this Section we initiate the blow-up analysis of the nodal set starting from those points
with vanishing order smaller than the critical value kq = 2s/(2 − q). The main strategy
is to develop a blow-up argument based on the validity of Almgren-type and Weiss-type
monotonicity formulas, which provide a Taylor expansion of the solutions near the nodal set
in terms of La-harmonic polynomials symmetric with respect to {y = 0}.

We initiate the analysis by introducing an Almgren-type monotonicity formula. More
precisely, by using the upper bound on the H1,a-vanishing order of u, we prove the validity
of a monotonicity result for functional N (X0, u, r) = Nq(X0, u, r) introduced in (17).

Proposition 5.1 Let K ⊂⊂ ∂0B+
1 and suppose there exists δ > 0 such that

O(u, X0) ≤ kq − δ for every X0 ∈ �(u) ∩ K . (43)

Then there exists r0 > 0 such that for every X0 ∈ �(u) ∩ K

r �→ eC̃r
α

(N (X0, u, r) + 1)

is monotone non-decreasing for r ∈ (0,min(r0, dist(K , ∂0B+))), for some constant α =
α(δ, n, s, q) and C̃ = C̃(δ, n, s, q). Moreover, for every X0 ∈ �(u) such thatO(u, X0) < kq
there exits the limit

N (X0, u, 0+) = lim
r→0+ eC̃r

α

(N (X0, u, r) + 1) − 1

and the map X0 �→ N (X0, u, 0+) is upper semi-continuous on �(u).

Proof Let K ⊂⊂ ∂0B+
1 and α > 0 to be made precise later. Let X0 ∈ K and, for the

sake of simplicity, we omit the dependence of the functionals with respect to u and X0. By
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Corollary 3.2, we easily get

d

dr
log(N (r) + 1) ≥ 1

E(r) + H(r)

1

rn+a−1

[
2 − q

q

∫
Sn−1
r (X0)

Fλ+,λ−(u)dσ

−Cs
n,q

qr

∫
∂0B+

r (X0)

Fλ+,λ−(u)dx

]

≥ − Cs
n,q

q(E(r) + H(r))

1

rn+a

∫
∂0B+

r (X0)

Fλ+,λ−(u)dx

(44)

with Cs
n,q = 2n − q(n − 2s). On the other hand, by Lemma 2.2

E(r) + H(r) ≥ ‖u‖qX0,r

(
‖u‖2−q

X0,r
− C1r

2s
)

≥ C

rn

(
‖u‖2−q

X0,r
− C1r

2s
) ∫

∂0B+
r (X0)

|u|q dx .
(45)

Now, we want to show that there exists α, r0,C2 > 0 such that

‖u‖2−q
X0,r

r2s
− C1 > C2

1

rα
, (46)

for every r ∈ (0, r0). Then, combining the previous inequality with (44) and (45), we will
get

d

dr
log(N (r) + 1) ≥ − C̃

r

(‖u‖2−q
X0,r

r2s
− C1

) ≥ −C̃rα−1,

as we claimed. First, by (43), let us choose α = δ/2 and consider

k2 = kq − α ≥ O(u, X0),

for every X0 ∈ �(u) ∩ K . Indeed, by the definition of H1,a-vanishing order, there exists
r2 > 0 and C2 > 0 such that, for every r ∈ (0, r2)

‖u‖X0,r ≥ C2r
k2 ←→ ‖u‖2−q

X0,r

r2s
≥ C2r

(2−q)k2−2s = C2r
−α. (47)

Since δ = δ(K ), the constant C2, α and r2 depend only on the choice of the compact K .
Finally, the upper semi-continuity follows by a standard argument. ��

Using this monotonicity result we can prove the equivalence between the notion of H1,a-
vanishing order O(u, X0) and the one introduced in Definition 1.3.

Corollary 5.2 Let X0 ∈ �(u) be such that O(u, X0) < kq . Then

O(u, X0) = V(u, X0).

Proof Suppose by contradiction that O(u, X0) < V(u, X0) and consider k ∈ (O(u, X0),

V(u, X0)). Let us write

k = 2s − α

2 − q
,
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for some α > 0. Now, let r ∈ (0, dist(X0, ∂
0B+

1 )), by (45) we get

‖u‖qX0,r

(
‖u‖2−q

X0,r
− C1r

2s
)

≤ E(X0, u, r) + H(X0, u, r)

= H(X0, u, r)(N (X0, u, r) + 1) (48)

which implies

‖u‖2X0,r

r2k
≤
[
N (X0, u, r) + 1

‖u‖2−q
X0,r

− C1r
2s
rk(2−q)

]2/q (
H(X0, u, r)

r2k

)2/q
. (49)

As in (47), in the proof of Proposition 5.1, there exists r0 > 0 and C0 > 0 such that

‖u‖2−q
X0,r

− C1r
2s ≥ C0r

2s−α = C0r
k(2−q),

for every r ∈ (0, r0). With a slight abuse of notations, it is not restrictive to assume that r0
corresponds to the radius introduced in Proposition 5.1.

Finally, by the monotonicity result, fixed R = min{r0, dist(X0, ∂
0B+)} we deduce, for

every r ∈ (0, R), that

‖u‖2X0,r

r2k
≤ C [(N (X0, u, r) + 1)]2/q

(
H(X0, u, r)

r2k

)2/q

≤ C
[
eC̃ R(N (X0, u, R) + 1)

]2/q (H(X0, u, r)

r2k

)2/q

where C > 0 depends only on C0. Thus, by Definition 1.3 we get thatO(u, X0) ≥ V(u, X0)

that, in combination with the opposite inequality, implies the desired result. ��
Similarly, we show that in the case O(u, X0) = V(u, X0) < kq , the possible vanishing

orders correspond to the possible limits of the Almgren-type frequency formula. For the sake
of completeness, we report the proof of this result which is deeply based on the validity of
the Almgren-type monotonicity result.

Corollary 5.3 Let X0 ∈ �(u) be such that V(u, X0) < kq . Then V(u, X0) = N (X0, u, 0+).

Proof By (16) and Definition 1.3, we claim that

lim sup
r→0+

H(X0, u, r)

r2k
=
{
0, if 0 < k < N (X0, u, 0+)

+∞, if k > N (X0, u, 0+).

It is not restrictive to assume that X0 = 0 and r ∈ (0, R), for some R > 0 that will be choose
later. By definition of r �→ H(0, u, r) = H(u, r) we immediately get for every r ∈ (0, R)

that

d

dr
log H(u, r) = 2

r
N (u, r) (50)

and in particular for every k > 0, by Proposition 5.1, there exists α, C̃ > 0 such that(
H(u, R)

R2N

)
r2(N−k) ≤ H(u, r)

r2k
≤
(
H(u, R)

R2N

)
r2(N−k), (51)

with

N = e−C̃ Rα

(N (u, 0+) + 1) − 1 and N = eC̃ Rα

(N (u, R) + 1) − 1.
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Suppose first V(u, 0) < N (u, 0+), so there exists ε > 0 such that k := N (u, 0+) − ε >

V(u, 0). Let R > 0 be such that

(1 − e−C̃ Rα

)(N (u, 0+) + 1) <
ε

2
,

where C̃, α > 0 are introduced inProposition5.1.Thus,weget N−k > ε/2 and consequently
by (51)

H(u, r)

r2k
≤
(
H(u, R)

R2N

)
r2(N−k) < C2r

ε,

for some constant C2 > 0 depending only on R > 0. The absurd follows immediately since
k > V(u, 0), namely

+∞ = lim sup
r→0+

H(u, r)

r2k
≤
(
H(u, R)

R2N

)
r2(N−k) < C2 lim

r→0+ r
ε = 0.

Similarly, if V(u, 0) > N (u, 0+) consider k = N (u, 0+) + ε, with ε > 0 sufficiency small
so that V(u, 0) > k. By the monotonicity result Proposition 5.1, let R > 0 be such that

eC̃ Rα

(N (u, R) + 1) − (N (u, 0+) + 1) <
ε

2
.

Hence, since N − k < −ε/2, we get by (51)

H(u, r)

r2k
≥
(
H(u, R)

R2N

)
r2(N−k) ≥ C2r

−ε

for some constant C2 > 0 depending only on R > 0. The contradiction follows by Defini-
tion 1.3. ��

In particular, from the previous equivalences, for those points satisfying O(u, X0) < kq ,
it holds

O(u, X0) = V(u, X0) = N (X0, u, 0+).

Moreover, for every k1 < N (X0, u, 0+) < k2 there exist C1,C2 > 0 such that

C2r
2k2 ≤ ‖u‖2X0,r ≤ C1r

2k1 , (52)

for r ∈ (0, R), for some R > 0 sufficiently small.
Finally, we can introduce the following notion of stratum of the nodal set.

Definition 5.4 Let k < kq we define

�k(u) := {X0 ∈ �(u) : O(u, X0) = k}.
While in the local case, in [31, 33] the authors proved the existence of a generalized Taylor

expansion of the solution near the nodal set by applying an iteration argument based on the
results of [6], we apply a blow-up analysis in order to understand how the solutions behave
near the nodal set �(u).

Hence, given X0 ∈ �(u), for any rk ↓ 0+, we define as normalized blow-up sequence

uk(X) = u(X0 + rk X)√
H(X0, u, rk)

for X ∈ B+
X0,rk

= B+
1 − X0

rk
,
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such that⎧⎪⎪⎨
⎪⎪⎩

−Lauk = 0 in B+
X0,rk

−∂ay uk =
(

r
kq
k√

H(X0, u, rk)

)2−q [
λ+(uk)

q−1
+ − λ−(uk)

q−1
−
]

on ∂0B+
X0,rk

.
(53)

Let us introduce the notation

0 < αk =
(

r
kq
k√

H(X0, u, rk)

)2−q

< +∞,

Since we are assumingO(u, X0) < kq , the sequence (αk)k is bounded and converges to 0 as
k → ∞.

Theorem 5.5 Let X0 ∈ �(u) be such that O(u, X0) < kq and uk be a normalized blow-
up sequence centered in X0 and associated with some rk ↓ 0+. Then, there exists p ∈
H1,a

loc (Rn+1+ ) such that, up to a subsequence, uk → p in C0,α
loc (Rn+1+ ) for every α ∈ (0, 1) and

strongly in H1,a
loc (Rn+1+ ). In particular, the blow-up limit satisfy{

−La p = 0 in R
n+1+

−∂ay p = 0 on Rn × {0}. (54)

The proof will be presented in a series of lemmata.

Lemma 5.6 Let X0 ∈ �(u) such that O(u, X0) < kq . For any given R > 0, we have

‖uk‖0,R ≤ C

where C > 0 is a constant independent on k > 0. Moreover uk → p strongly in H1,a(B+
R )

for every R > 0, for some p ∈ H1,a
loc (Rn+1+ ) such that ‖p‖L2,a(∂+B+) = 1.

Proof Set ρ2
k = H(X0, u, rk), then by the definition of uk , (50) and Proposition 5.1 we obtain∫

∂+B+
R

yau2kdσ = 1

ρ2
k r

n+a
k

∫
∂BRrk (X0)

yau2dσ

= Rn+a H(X0, u, Rrk)

H(X0, u, rk)

≤ Rn+a
(
Rrk
rk

)2C̃

which gives us ‖uk‖2L2,a(∂+B+
R )

≤ C(R)Rn+a . Instead, inspired by Corollary 5.2, let

k = 2s − α

2 − q
,

for some α > 0, then

‖uk‖q0,R = 1

ρ
q
k

‖u‖qX0,rk R

≤ C
[
eC̃ R(N (X0, u, R) + 1)

]2/q H(X0, u, Rrk)

H(X0, u, R)
ρ
2−q
k (Rrk)

α−2s

≤ C(R)ρ
2−q
k (Rrk)

α−2s
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and by Lemma 2.2 and Proposition 5.1, we infer

1

Rn+a−1

∫
B+
R

ya |∇uk |2 dX

= E(X0, u, Rrk) +
(

r
kq
k√

H(X0, u, rk)

)2−q
1

Rn+a−1

∫
∂0B+

R

Fλ+,λ−(uk)dx

≤ CN (X0, u, Rrk)
1

Rn+a

∫
∂+B+

R

yau2kdσ + R1−a r2sk
ρ
2−q
k

‖uk‖qR

≤ C(R)N (X0, u, Rrk) + C(R)R1−a r2sk
ρ
2−q
k

ρ
2−q
k (Rrk)

α−2s

≤ C(R)(1 + Rα),

which finally implies the uniform bound.
Thus, up to a subsequence, we have proved the existence of a non trivial function p ∈

H1,a
loc (Rn+1+ ) such that ‖p‖L2,a(∂B+

1 ) = 1 and uk⇀p in H1,a(B+
R ) for every R > 0.Moreover,

since uk is uniformly bounded in H1,a(B+
R ), we get that, up to a subsequence, uk → p

strongly in L2(B+
R ) and in L p(∂0B+

R ), for every p ∈ [1, 2∗).
On the other hand, we omit the details of the strong convergence in H1,a(B+

R ) since it
simply follows by testing (53) with (uk − p)η, where η ∈ C∞

c (BR) is an arbitrary cut-off
function, and passing then to the limit. ��

So far we have proved the existence of a nontrivial solution p ∈ H1,a
loc (Rn+1+ ) ∩ L∞

loc (R
n+1+ )

of (54) such that, up to a subsequence, we have uk → p strongly in H1,a
loc (Rn+1+ ). With the

following result we complete the compactness result by showing the uniform convergence

in C0,α
loc (Rn+1+ ) for α ∈ (0, 1).

Lemma 5.7 For every R > 0 there exists C > 0, independent of k, such that

[uk]C0,α(B+
R )

= sup
X1,X2∈B+

R

|u(X1) − u(X2)|
|X1 − X2|α ≤ C

for every α ∈ (0, 1).

Proof The proof follows essentially the ideas of the similar results in [28, 34, 35]: the critical
exponent α = 1 is related to a Liouville type theorem for La-harmonic function in R

n+1

symmetric with respect to the characteristic manifold {y = 0}, as given in [29]. ��
As a first Corollary we deduce that the possible vanishing orders of u in the case

O(u, X0) < kq are completely classified as the possible vanishing orders of La-harmonic
function even with respect to {y = 0} (see [28] for a complete analysis of the nodal set of
La-harmonic functions).

Corollary 5.8 Let X0 ∈ �(u) be such that k = O(u, X0) < kq . Then k ∈ 1 + N and every
blow-up limit centered at X0 is a k-homogeneous solution of (54).

Proof Let k = O(u, X0) < kq . By Theorem 5.5 we already know that given (u j ) j a normal-
ized blow-up sequence centered in X0 and associated to some r j → 0+, it converges strongly
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in H1,a
loc (Rn+1+ ) and uniformly on every compact set of Rn+1+ to some p ∈ H1,a

loc (Rn+1+ ) such
that {

−La p = 0 in R
n+1+

−∂ay p = 0 on Rn × {0}.
On the other hand, by Corollary 5.2 and Corollary 5.3 we get N (X0, u, 0+) = k. Moreover,
by the strong convergence of (u j ) j , we have

N (0, p, r) = lim
j→∞ N (0, u j , r) = lim

j→∞ N (X0, u, rr j ) = N (X0, u, 0+) for every r > 0,

where

N (0, p, r) =
r
∫
B+
r

ya |∇ p|2 dX
∫

∂+B+
r

ya p2dσ
.

Since p is a global La-harmonic function even with respect to {y = 0}, by [28,Lemma 4.7]
we deduce that p is k-homogeneous in Rn+1+ with k = 1 + N. ��

Inspired by the notations introduced by [28], we denote with sBa
k (R

n+1) the class of
La-harmonic polynomial symmetric with respect to {y = 0} and homogeneous of order k.

In order to conclude the local analysis near the points of the nodal set such thatO(u, X0) <

kq we need to better understand the Taylor expansion of the function u near nodal points.
Inspired by quite standard techniques (see [17, 18] for similar results in the context of obstacle
type problems with weights) we start by introducing the following Weiss-type monotonicity
formula.

Proposition 5.9 Let X0 ∈ �(u) be such that k = O(u, X0) < kq . Given δ = 2s−(2−q)k >

0, there exist R1 > 0 and C2 > 0 such that

r �→ Wk(X0, u, r) + C2(n, s, q,�, k)r δ−ε

is monotone non-decreasing, for every r ∈ (0,min{R1, dist(X0, ∂
+B+

1 )}) and ε < δ. In
particular, we get

Wk(X0, u, 0+) = lim
r→0+ Wk(X0, u, r) = 0. (55)

Proof For k > 0, by Proposition 3.4 and Lemma 2.2, we get

d

dr
Wk(X0, u, r) ≥ − Cs

n,2�

qrn+a+2k

∫
∂0B+

r

|u|q dx ≥ −Cr2s−1
‖u‖qX0,r

r2k

where C = C(n, q, s,�). By definition of H1,a-vanishing order, for every k1 < O(u, X0)

there exists R1,C1 > 0 such that

‖u‖2X0,r ≤ Cr2k −→ d

dr
Wk(X0, u, r) ≥ −C1r

2s−1−2k+qk1 ,

for every r < R1. Since k < kq , there exist δ > 0 such that

k = 2s − δ

2 − q
.
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Thus, for every ε < δ, if we take k1 = k − ε/q we get that r �→ Wk(X0, u, r) + C2r δ−ε is
monotone non-decreasing, where C2 does not depend on ε > 0.

Finally, since by Corollary 5.2 and Corollary 5.3 we have k = O(u, X0) = N (X0, u, 0+),
we get

Wk(X0, u, 0+) = lim
r→0+

H(X0, u, r)

r2k
(N (X0, u, r) − k) = 0.

��
The next monotonicity formulas is a Monneau-type formula, which will allow to prove

uniqueness of the blow-up near nodal points satisfying O(u, X0) < kq .

Proposition 5.10 Let X0 ∈ �(u) such that k = O(u, X0) < kq . Given δ = 2s−(2−q)k > 0,
there exist R1 > 0 and C2 > 0 such that, for every homogenous La-harmonic polynomial
p ∈ sBa

k (R
n+1), the map

r �→ H(X0, u − pX0 , r)

r2k
= 1

rn+a+2k

∫
∂+B+

r (X0)

ya
(
u − pX0

)2 dσ
satisfies

d

dr

H(X0, u − pX0 , r)

r2k
≥ −C(1 + ∥∥pX0

∥∥
L∞(B+

1 )
)r−1+δ−ε,

for every r ∈ (0,min{R1, dist(X0, ∂
+B+

1 )} and ε < δ, with pX0(X) = p(X − X0).

Proof The strategy is inspired by known result for the thin-obstacle problem (see [17]) and
for the study of the nodal set of La-harmonic functions (see [28]). First, since k = O(u, X0)

we already know Wk(X0, u, 0+) = 0. Now, let w = u − pX0 , then on one hand we have

d

dr

(
1

rn+a+2k

∫
∂+B+

r (X0)

yaw2dσ

)
= 2

rn+a+1+2k

∫
∂+B+

r (X0)

yaw(〈X − X0,∇w〉 − kw)dσ

= 2

r
Wk(X0, w, r).

On the other hand, looking at the expression of the k-Weiss functional, we have

Wk(X0, u, r) =Wk(X0, w + pX0 , r)

= 1

rn+a−1+2k

(∫
B+
r (X0)

ya(|∇w|2 + 2〈∇w,∇ p〉)dX

−k

r

∫
∂+B+

r (X0)

ya(w2 + 2wp)dσ

)

+ 1

rn+a−1+2k

∫
∂+B+

r (X0)

(w + pX0)∂
a
y (w + pX0)dx

=Wk(X0, w, r) + 1

rn+a−1+2k

∫
∂0B+

r (X0)

pX0∂
a
ywdx+

+ 2

rn+a+2k

∫
∂+B+

r (X0)

yaw(〈∇ pX0 , X − X0〉 − kp)dσ

=Wk(X0, u − pX0 , r) + 1

rn+a−1+2k

∫
∂0B+

r (X0)

pX0∂
a
y udx,
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where C = C(λ+, λ−) and in the second equality we used the k-homogeneity of pX0 ∈
sBa

k (R
n+1). Hence we finally infer

d

dr

H(X0, u − pX0 , r)

r2k
= 2

r
Wk(X0, u − pX0 , r)

≥ 2

r
Wk(X0, u, r) + 2C

rn+a+2k

∫
∂0B+

r (X0)

pX0 |u|q−2 udx .

On one side by Proposition 5.9 we have

Wk(X0, u, r) = Wk(X0, u, r) − Wk(X0, u, 0+) ≥ −C2(n, s, q,�, k)r δ−ε,

with δ = 2s − (2− q)k > 0 and ε < δ. On the other, under the notations of Proposition 5.9,
for every ε ∈ (0, δ) let us introduce

k1 = k − ε

q − 1
< k = 2s − δ

2 − q
.

Then, by (52) we infer the existence of R > 0 sufficiently small such that
∣∣∣∣ C

rn+a+2k

∫
∂0B+

r (X0)

pX0 |u|q−2 udx

∣∣∣∣

≤ ∥∥pX0

∥∥
L∞(B+

r )

C

rn+a+2k

(∫
∂0B+

r (X0)

|u|q dx
)(q−1)/q

|Br |1/q

≤ ∥∥pX0

∥∥
L∞(B+)

C

ra+k
‖u‖q−1

H1,a(B+
r )

≤ C
∥∥pX0

∥∥
L∞(B+)

r2s−1−k+(q−1)k1

≤ C
∥∥pX0

∥∥
L∞(B+)

r−1+δ−ε,

(56)

for r ∈ (0, R). Hence, there exist R1 > 0 and C = C(n, s, q,�, k) such that

r �→ H(X0, u − pX0 , r)

r2k
+ C(1 + ∥∥pX0

∥∥
L∞(B+)

)r δ−ε,

is monotone nondecreasing r ∈ (0,min{R1, dist(X0, ∂
+B+

1 )}) and ε < δ. ��

For the sake of simplicity, we will use through the paper the following notation for the
previous monotonicity formula

M(X0, u, pX0 , r) = H(X0, u − pX0 , r)

r2k
.

Starting from these results, we will improve our knowledge of the blow-up convergence by
proving the existence of a unique non trivial blow-up limit at every point of the nodal set
�(u), which will be called the tangent map ϕX0 of u at X0.

Lemma 5.11 Let X0 ∈ �(u) be such that k = O(u, X0) < kq . Then, there exists r0 > 0 and
C > 0 such that

H(X0, u, r) ≤ Cr2k for r ∈ (0, r0).
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Proof Let k = O(u, X0) and δ = kq − k. By (50) and Proposition 5.1, there exist r0 >

0, α = α(δ, n, s, q) and C̃ = C̃(δ, n, s, q) such that

d

dρ
log

(
H(X0, u, ρ)

ρ2k

)
= 2

ρ
(N (X0, u, ρ) − k)

= 2

ρ

(
e−C̃ρα

eC̃ρα

(N (X0, u, ρ) + 1) − 1 − k
)

≥ 2(k + 1)
e−C̃ρα − 1

ρ
,

for every ρ ∈ (0, r0). Thus, given r < r0 and integrating between r and r0 we get

H(X0, u, r)

r2k
≤ H(X0, u, r0)

r2k0
exp

(
2(k + 1)

∫ r0

0

e−C̃ρα − 1

ρ
dρ

)
≤ C,

as we claimed. ��

Lemma 5.12 Let X0 ∈ �(u) be such that k = O(u, X0) < kq . Then, there exists C > 0 such
that

sup
∂Br (X0)

|u(X)| ≥ Crk for 0 < r < R

where R = 1 − dist(X0, ∂
0B1).

Proof Since the proof is an adaptation of a similar result for the thin-obstacle problem (see
[17,Lemma 2.8.1]), we briefly sketch the main ideas.

Fix X0 ∈ �(u) and suppose by contradiction that given a decreasing sequence r j ↓ 0 we
have

lim
j→∞

H(X0, u, r j )1/2

rkj
= lim

j→∞

(
1

rn+a+2k
j

∫
∂+B+

r j (X0)

yau2 dσ

)1/2
= 0.

Thus, for r j ≤ R = min(r0, dist(X0, ∂
0B+)), consider the blow-up sequence

u j (X) = u(X0 + r j X)

ρ j
where ρ j = H(X0, u, r j )

1/2,

centered in X0 ∈ �(u). By Theorem 5.5 and Corollary 5.8 the sequence (u j ) j converges, up

to a subsequence, strongly in H1,a
loc (Rn+1+ ) and uniformly on every compact set of Rn+1+ to

some La-harmonic homogenous polynomial p of degree k symmetric with respect to {y = 0}
such that H(0, p, 1) = 1.
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Therefore, under the notations in Proposition 5.10, by taking pX0 as above we get

M(X0, u, pX0 , 0
+)

= lim
r→0

1

rn+a+2k

∫
∂+B+

r (X0)

ya(u − pX0)
2 dσ + C(1 + ∥∥pX0

∥∥
L∞(B+)

)r δ−ε

= lim
r→0

∫
∂+B+

1

ya
(u(X0 + r X)

rk
− p(X)

)2
dσ + C(1 + ∥∥pX0

∥∥
L∞(B+)

)r δ−ε

=
∫

∂+B+
1

ya p2 dσ

= 1

rn+a+2k

∫
∂+B+

r (X0)

ya p2X0
dσ ,

where in the third equality we used the assumption on the growth of u. By the monotonicity
result of Proposition 5.10, we obtain

1

rn+a+2k

∫
∂+B+

r (X0)

ya(u − pX0)
2 dσ + C(1 + ∥∥pX0

∥∥
L∞(B+)

)r δ−ε

≥ 1

rn+a+2k

∫
∂+B+

r (X0)

ya p2X0
dσ

and similarly

1

rn+a+2k

∫
∂+B+

r (X0)

ya(u2 − 2upX0) dσ + C(1 + ∥∥pX0

∥∥
L∞(B+)

)r δ−ε ≥ 0.

On the other hand, rescaling the previous inequality and using the notion of blow-up sequence
uk defined as above, we obtain

∫
∂+B+

1

ya
(
H(X0, u, r j )1/2

rkj
u2j − 2u j p

)
dσ ≥ −C(1 + ∥∥pX0

∥∥
L∞(B+)

)
rk+δ−ε
j

H(X0, u, r j )1/2
.

Since V(u, X0) = O(u, X0) = k, by Definition 1.3 we get

lim sup
j→∞

H(X0, u, r j )

r2(k+δ−ε)
j

= +∞,

and consequently, passing to the limit as j → ∞ in the previous inequality, we obtain
∫

∂+B+
1

ya p2 dσ ≤ 0

in contradiction with p �≡ 0. ��

Theorem 5.13 Let X0 ∈ �(u) be such that k = O(u, X0) < kq . Then there exists a unique
nonzero ϕX0 ∈ sBa

k (R
n+1) blow-up limit such that

uX0,r (X) = u(X0 + r X)

rk
−→ p(X). (57)

Moreover, we define as tangent map of u at X0 the unique ϕX0 ∈ sBa
k (R

n+1) that satisfies
(57).
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Proof The proof is a straightforward consequence of the Weiss and Monneau monotonicity
formulas. Indeed, up to a subsequence r j → 0+, we have that uX0,r j → p in C0,αloc for
every α ∈ (0, 1). The existence of such limit follows directly from the growth estimate of
Lemma 5.11 and, by Lemma 5.12, we have p is not identically zero. Now, by Proposition 5.9,
for any r > 0 we have

Wk(0, p, r) = lim
j→∞ Wk(0, uX0,r j , r) = lim

j→∞ Wk(X0, u, rr j ) = Wk(X0, u, 0+) = 0,

where

Wk(0, p, r) = 1

r2k

[
1

rn+a−1

∫
B+
r

ya |∇ p|2 dX − k
1

rn+a−1

∫
∂+B+

r

ya p2dσ

]
.

In particular, by [28,Proposition 5.2] it implies that the p is k-homogeneous La-harmonic
function even with respect to {y = 0}, that is p ∈ sBa

k (R
n+1). Now, by Proposition 5.10,

the limit of the Monneau-type formula exists and can be computed by

M(X0, u, pX0 , 0
+) = lim

j→∞ M(X0, u, pX0 , r j )

= lim
j→∞ M(0, uX0,r j , p, 1)

= lim
j→∞

∫
∂+B+

1

ya(uX0,r j − p)2 dσ = 0.

Now, suppose by contradiction that for any other subsequence ri → 0+ we have that (uX0,ri )i
converges to another blow-up limit q ∈ sBa

k (R
n+1) with q �≡ p, then

M(X0, u, pX0 , 0
+)

= lim
i→∞ M(X0, u, pX0 , ri ) = lim

i→∞

∫
∂+B+

1

ya(uri − p)2 dσ =
∫

∂+B+
1

ya(q − p)2 dσ,

which contradicts M(X0, u, pX0 , 0
+) = 0. ��

Thanks to the uniqueness and the non-degeneracy of the blow-up limit, we can also
construct the generalized Taylor expansion of the solution on the nodal set.

Theorem 5.14 Let X0 ∈ �(u) be such that k = O(u, X0) < kq and ϕX0 be the tangent map
of u at X0. Then

u(X) = ϕX0(X − X0) + o(|X − X0|k). (58)

Moreover, the map X0 �→ ϕX0 from �k(u) to sBa
k (R

n+1) is continuous.

Proof The proof is inspired by a similar result for the thin-obstacle problem (see [17,Lemma
2.8.1] for more details) based on the validity of the Monneau monotonicity formula. Indeed,
fixed X0 ∈ �(u) let ϕX0 be the unique tangent map of u at X0 defined by Theorem 5.13.
Therefore, given ε > 0, Proposition 5.10 implies the existence of rε = rε(X0), δε = δε(X0)

such that

M(X1, u, ϕX0 , r) < 2ε + Cr δ/2
ε for r ∈ (0, rε)
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and for X1 ∈ �k(u) ∩ � ∩ Bδε (X0). Thus, by rescaling the monotonicity formula in X1, we
can conclude

M(X1, u, ϕX0 , 0+) = lim
r→0

M(X1, u, ϕX0 , r)

= lim
r→0

∫
∂+B+

1

ya
(
u(X1 + r X)

rk
− ϕX0(X)

)2
dσ

=
∫

∂+B+
1

ya
(
ϕX1 − ϕX0

)2
dσ ≤ 2ε + Cr δ/2

ε .

��
Finally, we improve the convergence rate o(|X − X0|k) of the previous generalized Tay-

lor’s expansion into a quantitative bound of the form O(|X − X0|k+δ) for some δ > 0.
This result is obtained by proving the validity of an Almgren-type monotonicity result for

the difference between the solution u and its tangent map ϕX0 at X0. Since O(u, x0) < kq ,
this analysis resembles the starting point of the iteration argument already used in the case
of La-harmonic function in [28] to obtain higher order Taylor expansion near nodal points.
Notice that this methodology has been used in the last years to study the stratification of
obstacle type problems (see [14] for a finer analysis of higher order iterations in the context
of thin-obstacle problems).

Theorem 5.15 Let X0 ∈ �(u) be such that O(u, X0) < kq and set

w(X) = u(X) − ϕX0(X − X0),

where ϕX0 is the tangent map of u at X0. Then, there exist r0 and an absolutely continuous
map �(r) satisfying

0 ≤ �(r) ≤ Crα, for r ∈ (0, r0)

and some α > 0, such that

r �→ eC̃�(r)(N (X0, w, r) + 1)

is monotone non-decreasing for r ∈ (0, r0). Consequently, there exists the limit

N (X0, w, r) = lim
r→0+ N (X0, w, r).

Proof For the sake of simplicity, it is not restrictive to assume that X0 = 0. Set k = O(u, 0) <

kq , then by Lemma 5.11, Lemma 5.12 and Theorem 5.13 there exists C1,C2 > 0 such that

C1r
k ≤ ‖u‖0,r ≤ C2r

k for r ∈ (0, r). (59)

Now, given ϕ ∈ sBa
k (R

n+1) the unique tangent map of u at 0 ∈ �(u), let us consider the
difference w = u − ϕ ∈ H1,a(B+

r ) which solves{
Law = 0 in B+

r

−∂ayw = λ+(w + ϕ)
q−1
+ − λ−(w + ϕ)

q−1
− on ∂0B+

r .
(60)

Thus, following the same computation of the last Section, we easily deduce by an integration
by parts (see the proof of Proposition 3.1) that

d

dr
E(w, r) = 2

rn−1+a

∫
∂+B+

r

ya(∂rw)2dσ + R(w, r),
d

dr
H(w, r) = 2

r
E(w, r),
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where E, H are defined by (16) and

R(w, r) = 1 − n − a

rn+a

∫
∂0B+

r

w∂aywdx + 1

rn−1+a

∫
Sn−1
r

w∂aywdσ

− 2

rn+a

∫
∂0B+

r

∂ayw〈∇w, x〉dx .

Therefore, by the Cauchy-Schwarz inequality on ∂+B+
r , the associated Almgren-type for-

mula (17) satisfies

d

dr
log(N (w, r) + 1) ≥ R(w, r)

E(w, r) + H(w, r)
.

On one hand, we have

R(w, r) = 2 − q

q

1

rn+a−1

∫
Sn−1
r

Fλ+,λ−(w + ϕ)dσ − Cs
n,q

qrn+a

∫
∂0B+

r

Fλ+,λ−(w + ϕ)dx+

+ 2s − n − 2

rn+a

∫
∂0B+

r

ϕ f (w + ϕ)dx + 1

rn+a−1

∫
Sn−1
r

ϕ f (w + ϕ)dσ

where f (t) = λ+tq−1
+ − λ−tq−1

− . On the other hand, by Lemma 2.2 and (56) we get

E(w, r) + H(w, r) ≥ ‖u‖20,r − Cr2s ‖u‖q0,r + 1

rn−1+a

∫
∂0B+

r

ϕ∂ay udx

≥ ‖u‖20,r − Cr2s
(
‖u‖q0,r + ‖ϕ‖L∞(B1) r

k ‖u‖q−1
0,r

)

In order to estimate the last remainder R(w, r) we need the introduce the auxiliary function

ψ(r) = r

(
1

rn

∫
∂0B+

r

|u|q dx
)h

for h ∈ (0, 1) to be chosen later. A direct computation yields the identity

ψ ′(r) = ψ(r)

r

(
hn + 1 + hr

∫
Sn−1
r

|u|q dσ∫
∂0B+

r
|u|q dx

)

which implies, by Lemma 2.2, that

1

rn−1

∫
Sn−1
r

|u|q dσ ≤ ψ ′(r)
h

‖u‖q(1−h)
0,r .

Finally, we get
∣∣∣∣ 1

rn+a−1

∫
Sn−1
r

ϕ f (w + ϕ)dσ

∣∣∣∣ ≤ r2s−1

h
‖ϕ‖L∞(B1) r

kψ ′(r) ‖u‖(q−1)(1−h)
0,r

and consequently

R(w, r) ≥ −Cr2s−1
(
‖u‖q0,r + ‖ϕ‖L∞(B1) r

k ‖u‖q−1
0,r

+‖ϕ‖L∞(B1) r
kψ ′(r) ‖u‖(q−1)(1−h)

0,r

)
(61)
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for some h ∈ (0, 1). By (59) and (46), there exists α > 0 such that

d

dr
log(N (w, r) + 1) ≥ −C

r

r2s+kq
(
1 + ψ ′(r)rkh(1−q)

)
r2s−α ‖u‖q0,r

≥ −C

r
rα
(
1 + ψ ′(r)rkh(1−q)

)
.

(62)

Hence, let

�(r) =
∫ r

0
rα−1(1 + ψ ′(t)tkh(1−q))dt .

Then, by Lemma 2.2 we first deduce 0 ≤ ψ(r) ≤ Cr1+kqh and then

0 ≤ �(r) =
∫ r

0
tα−1

(
1 + ψ ′(t)tkh(1−q)

)
dt

= rα

α
+
[
ψ(r)rkh(1−q)+α−1

]r
0
−
∫ r

0
ψ(t)

tkh(1−q)+α−2

kh(1 − q) + α − 1
dt

≤ rα

α
+ rα+kh + C

∫ r

0
tkh+α−1dt

≤ Crα,

for r sufficiently small. Therefore, we deduce that the function

r �→ eC�(r)(N (w, r) + 1) (63)

is absolutely continuous and increasing for r ∈ (r1, r2), for some 0 < r1 < r2. Following a
standard argument, themodifiedAlmgren-type formula (63) can be defined for all r ∈ (0, r2),
and it can be extended for r = 0 by taking its limit for r → 0+. ��

Remark 5.16 Notice that, under the notations of Theorem 6.1, all the computations up to (62)
still hold in the critical case O(u, 0) = kq with kq ∈ N (that is μ = 0 with μ defined by
(68)). Indeed, in Sect. 6 we will prove that if kq ∈ N the blow-up limit p is an homogeneous
La-harmonic function symmetric with respect to {y = 0}, and the function w = u − p still
satisfies (60). However, in that context the computations will lead to

d

dr
log(N (w, rk) + 1) ≥ −C

rk

αk

(
1 + α

1/(2−q)
k (1 + ψ ′rkh(q−1))

)

1 − Cαk

(
1 + α

1/(2−q)
k

) with αk =
(

r
kq
k

‖u‖H1,a (Brk )

)2−q

.

By the dichotomy (67), even if μ = 0 yields to αk → 0+, this is not enough to ensure
the integrability of the right hand side of the previous inequality. As remarked in [31], is
possible that a sophisticated Fourier expansion finally lead to uniqueness: indeed it will
imply that rk �→ αk(rk) is Dini-continuous, which will be enough to ensure the validity of
an Almgren-type monotonicity result.

As a simple corollary of the monotonicity result in Proposition 5.10 for theMonneau-type
formula, we easily deduce a lower bound for the Almgren-type formula evaluated on w.

Corollary 5.17 Let X0 ∈ �(u) be such that O(u, X0) < kq . Then N (X0, u − ϕX0 , 0+) ≥
O(u, X0).
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In order to improve the growth order of the remainder in (58),we start by proving a blow-up
argument based on the validity of the previous Almgren-type monotonicity formula. Hence,
given X0 ∈ �(u) and w ∈ H1,a(B+

r ) as in Theorem 5.15, we consider the normalized blow-
up sequence (wk)k centered in X0 associated to some rk ↓ 0+ (see (5) for the definition of
normalized blow-up sequence), such that

{−Lawk = 0 in B+
X0,rk

−∂aywk = αk

[
λ+
(
βkwk + ϕX0

)q−1
+ − λ−

(
βkwk + βkϕ

X0
)q−1
−
]

on ∂0B+
X0,rk

.

with

αk = r2s+O(u,X0)(q−1)
k√
H(X0, w, rk)

and βk =
√
H(X0, w, rk)

rO(u,X0)
k

.

Lemma 5.18 Under the previous notations, let 0 < k1 ≤ k2 be such that O(u, X0) ≤ k1 <

k2. Then, if k1 ≤ N (X0, u − ϕX0 , 0+) ≤ k2 we infer

βk → 0+ and 0 ≤ αk ≤ Cr (2−q)(kq−O(u,X0)),

for some C > 0 and k sufficiently large.

Proof First, by Proposition 5.10 we already know that βk → 0+. Now, let k1, k2 > 0 be such
that O(u, X0) ≤ k1 < k2 and k1 ≤ N (X0, u − ϕX0 , 0+) ≤ k2. By (18) and Theorem 5.15
we have that if k1 ≤ N (X0, u − ϕX0 , 0+) ≤ k2 then there exits C1,C2, r > 0 such that

C1r
k1 ≤

√
H(X0, u − ϕX0 , r) ≤ C2r

k2 ,

for every r ∈ (0, r). Thus

αk ≤ Cr2s−k1+O(u,X0)(q−1)
k ,

for k sufficiently large such that rk ≤ r . Finally, by Corollary 5.17, if k1 = O(u, X0) < kq
we get

αk ≤ Cr (2−q)(kq−O(u,X0)),

as we claimed. ��
In the following Proposition we finally compute the vanishing order of u − ϕX0 in terms

of O(u, X0).

Proposition 5.19 Let X0 ∈ �(u) be such that O(u, X0) < kq . Then

N (X0, u − ϕX0 , 0+) = O(u, X0) + δ, for some δ ∈ N, δ ≥ 1.

Proof Let w = u − ϕX0 and (wk)k be the normalized blow-up sequence centered at X0

and associated to some rk → 0+. As we did in Lemma 5.6, exploiting the normalization
with respect to the L2,a(∂+B+

1 )-norm and the validity of the Almgren-type monotonicity

formula, it is easy to see that (wk)k is uniformly bounded in H1,a
loc (Rn+1+ ) and it converges,

up to subsequence, to some p ∈ H1,a
loc (Rn+1+ ) ∩ L∞

loc (R
n+1+ ) such that ‖p‖L2,a(∂+B+

1 ) = 1.
On the other hand, sinceO(u, X0) < kq , by Lemma 5.18 we get that both (αk)k and (βk)k

approach zero, as k goes to infinity. Therefore, following the same contradiction argument

123



The nodal set of solutions to some nonlocal sublinear problems Page 39 of 51 82

of Lemma 5.7, the sequence (wk)k is uniformly bounded in C0,α
loc (Rn+1+ ) for every α ∈ (0, 1)

and it converges uniformly on every compact set to some p ∈ sBa
k (R

n+1). Indeed, by the
strong convergence of (wk)k , we get

N (0, p, r) = lim
k→∞ N (0, wk, r) = lim

k→∞ N (X0, w, rrk) = N (X0, w, 0+) for every r > 0,

where

N (0, p, r) =
r
∫
B+
r

ya |∇ p|2 dX
∫

∂+B+
r

ya p2dσ
.

Therefore, p is an homogeneous La-harmonic function even with respect to {y = 0} of order
N (0, p, 1). By [28,Lemma 4.7] we first get that N (0, p, 1) ∈ N while by Theorem 5.13 we
deduce that N (0, p, 1) > O(u, X0). Since N (0, p, 1) = N (X0, w, 0+) we finally get the
claimed result. ��

Thanks to this classification, we can improve the growth order of the remainder in (58).

Corollary 5.20 Let X0 ∈ �(u) be such that k = O(u, X0) < kq and ϕX0 be the tangent map
of u at X0. Then

u(X) = ϕX0(X − X0) + O(|X − X0|k+1),

Moreover, the map X0 �→ ϕX0 from �k(u) to sBa
k (R

n+1) is Hölder continuous.

Having established Theorem 5.14 and Proposition 5.19, we can finally show the validity
of the first part of Theorem 1.7 and Theorem 1.9.

Proof of Theorem 1.7 Let us consider the case V(u, X0) < kq . By Corollary 5.2 and Corol-
lary 5.3 we already know that

O(u, X0) = V(u, X0) = N (X0, u, 0+).

Therefore the results of this Section hold true also for the case V(u, X0) < kq . In particular,
by Corollary 5.8, we know that V(u, X0) must be a positive integer and, by Theorem 5.14
and Proposition 5.19, it follows the validity of expansion (10). ��

Finally, by applying a variant of the classical Federer’s dimension reduction principle
[7,Theorem 8.5] (for the classical result we refer to [27,Appendix A]), and the Whitney’s
extension theorem (we refer to [13] and the reference therein) we can easily estimate the
Hausdorff dimension of the singular strata.

Proof of Theorem 1.9 First, since �(u) = T (u) for those values of s ∈ (0, 1) and q ∈ [1, 2)
such that kq ≤ 1, let us concentrate on the opposite case. Seeing that onR(u) ∪ S(u) all the
notions of vanishing order coincide, that is

O(u, X0) = V(u, X0) = N (X0, u, 0+) < kq ,

we can easily adapt the general approach of [28] by using the validity of the Almgren-type
monotonicity formula. More precisely, by a straightforward application of Corollary 5.20
and the implicit function theorem, we already deduce that

R(u) = {X ∈ �(u) : N (X0, u, 0+) = 1
}
,

123



82 Page 40 of 51 G. Tortone

which is relatively open in �(u) and it is a (n − 1)-dimensional regular set of class C1,α .
Moreover, by the upper semi-continuity of X0 �→ N (X0, u, 0+), the proof of the Hausdorff
estimate

dimHS(u) ≤ n − 1

follows the one of [28,Theorem 6.3]).
On the other hand, it is possible to apply step by step the proof of [28,Theorem 7.7] and

[28,Theorem 7.8] (using Corollary 5.20 instead of [28,Theorem 5.12] and the generalized
formulation of the Whitney’s extension theorem in [13] for Cm,ω-functions), obtaining the
desired result for the stratification of the singular set. The crucial idea is that the Whitney’s
extension allows to study the structure of the nodal set just by using the generalized Taylor
expansion (10) without the high-order differentiability of the function itself. ��

6 Blow-up analysis forO(u,X0) = kq

The previous analysis terminates the study of the nodal set in those points where the local
behaviour of the solutions resemble the one of the s-harmonic functions. In this Section we
will complete our study by considering the threshold case O(u, X0) = kq . The following
result is the second part of Theorem 1.7.

Theorem 6.1 Let q ∈ [1, 2), λ+, λ− > 0 and u ∈ H1,a(B1), u �= 0 be a solution of (3).
If X0 ∈ �(u) satisfiesO(u, X0) = kq , then for every sequence rk → 0+ we have, up to a

subsequence, that

u(X0 + rk X)

‖u‖X0,rk

→ u in C0,α
loc (Rn+1+ ),

for every α ∈ (0,min(1, 2s)), where u is a kq-homogeneous non-trivial solution to
{
Lau = 0 in R

n+1+
−∂ay u = μ

(
λ+(u+)q−1 − λ−(u−)q−1

)
on R

n × {0}, (64)

for some μ ≥ 0. Moreover, the case μ = 0 is possible if and only if kq ∈ N.

The proofwill be presented in a series of lemmata. Given X0 ∈ �(u) such thatO(u, X0) =
kq and rk → 0+, we consider normalized blow-up sequence

uk(X) = u(X0 + rk X)

‖u‖X0,rk

with X ∈ B+
X0,rk

= B+
1 − X0

rk
, (65)

for 0 < rk < R < dist(X0, ∂B1). Thus ‖uk‖0,1 = 1 and
⎧⎪⎪⎨
⎪⎪⎩

−Lauk = 0 in B+
X0,rk

−∂ay uk =
(

r
kq
k‖u‖X0,rk

)2−q [
λ+(uk)

q−1
+ − λ−(uk)

q−1
−
]

on ∂0B+
X0,rk

.

By Proposition 4.7 (in particular by (36)), there exists C > 0 such that

0 < αk =
(

r
kq
k

‖u‖X0,rk

)2−q

≤ C,
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for every rk < R. As we pointed out in the previous Sections, the H1,a-normalization
seems to be more suitable for the critical case O(u, X0) = kq and it overcomes the lack of
monotonicity of the Almgren-type formula. The following is a compactness result for the
blow-up sequence.

Lemma 6.2 For every R > 0, there exists kR > 0 such that, for every k > kR, the sequence
(uk)k is uniformly bounded in H1,a(B+

R ) and, up to a subsequence, it converges strongly in
L2,a(B+

R ) and H1,a(B+
R ).

Proof The convergence of the sequence (uk)k with respect to the strong topology in H1,a(B+
R )

is a straightforward consequence of the uniform bound in H1,a(B+
R ). Indeed, suppose there

exists kR > 0 such that, for every k > kR the sequence is uniformly bounded in H1,a(B+
R ),

then it implies that up to a subsequence (uk)k weakly converges in H1,a(B+
R ) and strongly

in L2,a(B+
R ). Moreover, by trace embedding, the traces of (uk)k on � strongly converge in

L p(∂0B+
R ), for every p ∈ [1, 2�).

Finally, by testing the equation against (uk − u)η, where η ∈ C∞
c (BR), we easily deduce

the validity of the strong convergence by passing to the limit as k → +∞. More precisely,∫
B+
R

yaη〈∇uk,∇(uk − u)〉dX = −
∫
B+
R

ya(uk − u)〈∇uk,∇η〉dX+

+ αk

∫
∂0B+

R

η(uk − u)(λ+(uk)
q−1
+ − λ−(uk)

q−1
− )dx .

Since (uk)k is uniformly bounded in H1,a(BR) and it converges strongly in L2,a(B+
R ), the first

term in the right hand side tends to 0 as k → ∞. Similarly, since αk is bounded and uk → u
strongly in L p(∂0B+

R ) for p ∈ [1, 2�), the second term vanishes too. Finally, regarding the
left hand side, by the weak convergence we get∫

B+
R

yaη〈∇uk,∇(uk − u)〉dX =
∫
B+
R

yaη
(|∇uk |2 − |∇u|2) dX + o(1)

as k goes to +∞, which leads to the claimed result.
Hence, it remains to prove the validity of a uniform bounds in H1,a . By definition of

(uk)k , since

‖uk‖0,R = ‖u‖X0,rk R

‖u‖X0,rk

the first part of the result follows if there exists kR,CR > 0 such that

‖u‖X0,rk R ≤ CR ‖u‖X0,rk , for every k ≥ kR .

Thus, suppose by contradiction that, up to a subsequence, for rk ↘ 0 it results

‖u‖X0,rk R

‖u‖X0,rk

→ +∞.

We claim, in such case, that

‖u‖X0,rk R

(rk R)kq
→ +∞ (66)

as k → ∞. If not, by (36), we would have that

‖u‖X0,rk R ≤ C(rk R)kq ≤ CRkq ‖u‖X0,rk ,
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against the absurd hypothesis. Thus, by Lemma 2.2, we get for every r > 0 that

1

rn+a−1

∫
∂0B+

r (X0)

Fλ+,λ−(u)dx ≤ C�r2s ‖u‖qX0,r
= C�

(
rkq

‖u‖X0,r

)2−q

‖u‖2X0,r ,

where � = max{λ+, λ−}, which implies

0 ≤ 1

(rk R)n+a−1 ‖u‖2X0,rk R

∫
∂0B+

rk R
(X0)

Fλ+,λ−(u)dx ≤ C�

(
(rk R)kq

‖u‖X0,rk R

)2−q

−→ 0,

as k → ∞. On the other hand, by combining

Wk,t (X0, u, r) = ‖u‖2X0,r

r2k

[
1 − (k + 1)

H(X0, u, r)

‖u‖2X0,r

− t

q

1

rn+a−1 ‖u‖2X0,r

∫
∂0B+

r (X0)

Fλ+,λ−(u)dx

]
,

with the monotonicity of r �→ Wkq ,2(X0, u, r), we deduce that

C ≥ Wkq ,2(X0, u, rk R)

≥ ‖u‖2X0,(rk R)

(rk R)2kq

[
1 − (kq + 1)

H(X0, u, rk R)

‖u‖2X0,rk R

− 2

q

1

(rk R)n+a−1 ‖u‖2X0,rk R

∫
∂0B+

rk R
(X0)

Fλ+,λ−(u)dx

]

≥ ‖u‖2X0,(rk R)

(rk R)2kq

[
3

4
− (kq + 1)

H(X0, u, rk R)

‖u‖2X0,rk R

]

for k sufficiently large. Together with (66), it implies

H(X0, u, rk R)

‖u‖2X0,rk R

≥ 1

2(kq + 1)

as k sufficiently large. Therefore, if we consider the new sequence

vk(X) = u(X0 + rk RX)

‖u‖X0,rk R
,

since it is uniformly bounded in H1,a(B1) and it satisfies⎧⎪⎨
⎪⎩

−Lavk = 0 in B+
X0,rk R

−∂ay vk =
(

(rk R)kq

‖u‖X0,rk R

)2−q [
λ+(vk)

q−1
+ − λ−(vk)

q−1
−
]

on ∂0B+
X0,rk R

,

we deduce from the first part of the proof that, up to a subsequence, it converges strongly
in L2,a(B1), L2,a(∂B1) and in H1,a(B1) to a function v ∈ H1,a(B1). Moreover, by (66), it
solves {

−Lav = 0 in R
n+1+

−∂ay v = 0 on R
n × {0}.
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Now, the strong convergence in L2,a(∂B1) implies

H(0, v, 1) = lim
k→∞ H(0, vk, 1) = lim

k→∞
H(X0, u, rk R)

‖u‖2X0,rk R

≥ 1

2(kq + 1)
,

that is v �≡ 0 on ∂0B+
1 . On the other hand, by the absurd assumption, we have

‖v‖0,1/R = lim
k→∞ ‖vk‖0,1/R = lim

k→∞
‖u‖X0,rk

‖u‖X0,rk R
= 0,

which implies that v ≡ 0 on ∂0B+
1/R . The contradiction follows by the unique continuation

property for La-harmonic function even with respect to {y = 0} (see [11] for the classic
unique continuation theorem of La-harmonic functions). ��
Lemma 6.3 Under the previous notations, the sequence (uk)k is uniformly bounded in

C0,α
loc (Rn+1+ ) for every α ∈ (0,min(1, kq)). Moreover, up to a subsequence, it converges

uniformly on every compact set of Rn+1+ .

Proof The proof follows essentially the ideas of the similar results in [28, 34, 35] and the
result of Proposition 2.4. ��

So far we have proved the strong convergence of the blow-up sequence (uk)k in

H1,a
loc (Rn+1+ ) and uniformly on every compact set, to a function u ∈ H1,a

loc (Rn+1+ )∩L∞
loc (R

n+1+ ).
The next step is to prove the homogeneity of the blow-up limit and the complete characteri-
zation of the possible limits.

Conclusion of the proof of Theorem 6.1 Since by Proposition 4.7 there exists C > 0 such that
αk ∈ (0,C), up to a subsequence, we have either

‖u‖X0,rk

r
kq
k

→ l ∈ (0,+∞) or
‖u‖X0,rk

r
kq
k

→ +∞. (67)

First, suppose that the limit l is finite. By Lemma 6.2, together with a diagonal argument, we

get that uk → u strongly in H1,a
loc (Rn+1+ ) and uniformly on every compact set. It is also clear

that the limit u solves (64) with

μ = l−2/kq (68)

and u �≡ 0 since, by strong H1,a(B+
1 )-convergence, we have ‖u‖0,1 = 1. Now, since it

remains to prove that u is homogeneous, we start by considering the Weiss type formula
Wkq ,2(0, uk, R), that is

Wkq ,2(0, uk, R) = r
2kq
k

‖u‖2X0,rk

Wkq ,2(X0, u, rk R). (69)

Indeed, passing to the limit as k → ∞, we deduce by the uniform convergence that

Wkq ,2(0, u, R) = lim
k→∞

r
2kq
k

‖u‖2X0,rk

Wkq ,2(X0, u, rk R) = 1

l2
Wkq ,2(X0, u, 0+),

for any R > 0, namely themap R �→ Wkq ,2(0, u, R) is constant. Therefore, by Corollary 3.5,
it follows that u is kq -homogeneous.
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Let us deal with the second case in (67). By following the same arguments of the case
l ∈ (0,+∞) up to the validity of a Weiss-type monotonicity result, we already know that,
up to a subsequence, (uk)k converges uniformly on every compact set, to a function u ∈
H1,a

loc (Rn+1+ ) ∩ L∞
loc (R

n+1+ ) which satisfies
{

−Lau = 0 in R
n+1+

−∂ay u = 0 on R
n × {0}. (70)

Now, even if (69) still holds true, we can not conclude that u is kq -homogeneous as before.
Instead, by (69) and the monotonicity of R �→ Wkq ,2(X0, u, R), we get

Wkq ,2(0, uk, R) ≤ r
2kq
k

‖u‖2X0,rk

Wkq ,2(X0, u, R0)

with R0 ∈ (0, dist(X0, ∂B1)) arbitrarily chosen and k sufficiently large. By the previous
estimate, we have

1

Rn+a−1

∫
B+
R

ya |∇uk |2 dX ≤ kq
Rn+a

∫
B+
R

yau2kdX + (rk R)2kq

‖u‖2X0,rk

Wkq ,2(X0, u, R0)+

+ αk

Rn+a−1

∫
∂0B+

R

Fλ+,λ−(uk)dx,

where the terms in the right hand side go to zero since αk → 0+ and ‖u‖X0,rk /r
kq
k → +∞.

Finally, passing to the limit as k → ∞, we get

1

Rn+a−1

∫
B+
R

ya |∇u|2 dX ≤ kq
1

Rn+a

∫
B+
R

yau2dX , (71)

for every R > 0. On the other hand, since O(u, X0) = kq , we get

lim sup
r→0+

1

r2α
‖u‖2H1,a(Br (X0))

=
{
0, if 0 < α < kq
+∞, if α > kq .

By Lemma 6.2 and (71), for every α > 0 we have

1

R2α
‖u‖2H1,a(BR)

≤ 1 + kq
R2α

1

Rn+a

∫
B+
R

yau2dX

= lim
k→∞

1 + kq
R2α

1

(Rrk)n+a

∫
B+
Rrk

(X0)

yau2dX

= (1 + kq) lim
k→∞

H(X0, u, Rrk)

(Rrk)2α
r2αk

≤ (1 + kq)r
2α
0 lim sup

k→∞
1

(Rrk)2α
‖u‖2X0,rk R ,

which yields that O(u, 0) ≥ kq . Since we already know that u is a weak solution of (70), by
[28,Lemma 4.7] we get that

1

Rn+a−1

∫
B+
R

ya |∇u|2dX ≥ kq
1

Rn+a

∫
B+
R

yau2dX ,

which implies with (71) that kq ∈ 1 + N and that u is kq -homogeneous in Rn+1+ . ��
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By having established the compactness of the blow-up sequence for those point satisfying
O(u, X0) = kq , we can finally prove the equivalence between the two notion of vanishing
order.

Corollary 6.4 For every X0 ∈ �(u), we have O(u, X0) = V(u, X0).

Proof Since we already proved in Corollary 5.2 the previous equivalence for the case
O(u, X0) < kq , let us focus on the case O(u, X0) = kq and let us prove that

0 < lim inf
r→0+

H(X0, u, r)

‖u‖2X0,r

≤ 1.

Since the upper estimate follows by the definition of the norm in H1,a(Br (X0)), suppose by
contradiction that there exists rk → 0+ such that

H(X0, u, r)

‖u‖2X0,r

→ 0+. (72)

Since O(u, X0) = kq , the normalized blow-up sequence

uk(X) = u(X0 + rk X)

‖u‖X0,rk

converges, up to a subsequence, to an homogenous non-trivial solution u of (64) in R
n+1.

On the other hand, by (72) we get∫
∂+B+

1

yau2 = lim
k→∞

∫
∂+B+

1

yau2k = lim
k→∞

H(X0, u, rk)

‖u‖2X0,rk

→ 0.

By homogeneity, it implies that u ≡ 0 on R
n+1, a contradiction. ��

Up to the previous Corollary, we knew that Theorem 1.5 was valid for the H1,a-vanishing
order. Finally, we can complete the proof in terms of the classic vanishing order V(u, X0).

Proof of Theorem 1.5 By Proposition 4.7 we already know that the maximum admissible
H1,a-vanishing order is equal to kq = kq . If O(u, X0) < kq , by Corollary 5.2 and Corol-
lary 5.3 we already know that

O(u, X0) = V(u, X0) = N (X0, u, 0+).

Therefore by Corollary 5.8 we know that V(u, X0) must be a positive integer.
If instead O(u, X0) = kq , by Corollary 6.4 we finally deduce that V(u, X0) = kq , as we

claimed. ��

7 One-dimensional kq-homogeneous solution

By Theorem 1.5 we already know that for those values of s ∈ (0, 1), q ∈ [1, 2) such that
kq ≤ 1 it holds �(u) = T (u) with

T (u) = {X ∈ �(u) : V(u, X) = kq
}
.

In this Section, we prove the existence of kq -homogeneous solutions of (64) whose traces on
R
n × {0} are one-dimensional, for those values of the parameters s and q such that kq < 1.
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Thanks to the Federer’s reduction principle, this result allows to control the Hausdorff
dimension of T (u) and to prove that the nodal set is a collection of point with vanishing
order kq and Hausdorff dimension less or equal than (n− 1), in contrast with the case s = 1.

Remark 7.1 The classificationof kq -homogeneous solutions dependingonly on two-variables
(x1, y) is the starting point for a complete understanding of the regularity of the sublinear
set T (u). Indeed, we claim that a possible improvement of flatness approach, via a viscosity
formulation of the sublinear set T (u), could give a complete picture of the biggest stratum of
T (u). Moreover, we think that this strategy can be easily extended to the case kq > 1, kq /∈ N

by taking care of the classification of La-harmonic polynomial in [28].

Theorem 7.2 For every s ∈ (0, 1), q ∈ [1, 2) and λ+, λ− > 0 such that kq < 1, there exists
a kq-homogeneous function u such that u(0, 0) = 0 and

{
−Lau = 0 in R

2+
−∂ay u = λ+(u+)q−1 − λ−(u−)q−1 on R × {0}. (73)

In particular, by exploiting the homogeneity of u, the previous problem is equivalent to
consider ⎧⎪⎨

⎪⎩
−(sina(θ)ϕ′)′ = μ sina(θ)ϕ in (0, π)

−∂aθ ϕ(0) = λ+(ϕ+(0))q−1 − λ−(ϕ−(0))q−1

−∂aθ ϕ(π) = λ+(ϕ+(π))q−1 − λ−(ϕ−(π))q−1,

(74)

with μ = kq
(
kq + 1 − 2s

)
and u(X) = |X |k ϕ(X |X |−1).

In order to simplify the proofs, wewill first address the case λ+ = λ− by proving existence
of solutions of (73) whose traces on R × {0} are either of the form

u(x, 0) = A1

(
x
kq
+ − x

kq
−
)

or u(x, 0) = A2 |x |kq ,

for some positive constants A1, A2 depending only on s, q and λ+. Indeed, since these pro-
totypes of solution are either symmetric of antisymmetric with respect to x , the construction
of Theorem 7.4 will imply the existence of solution of (73) for every λ+, λ− > 0.

In the following Lemma we prove a sufficient condition for the existence of non-trivial
solutions to (74) in (0, T ) for some T ∈ (0, π), in the case λ+ = λ−.

Lemma 7.3 Given T ∈ (0, π) and

X = {u ∈ H1,a ((0, T )) : u(T ) = 0
}
,

let us consider the mixed Dirichlet-Neumann eigenvalue associated to (0, T )

λM (T ) = min

{∫ T
0 sina(θ)(u′)2∫ T
0 sina(θ)u2

: u ∈ X \ {0}, ∂aθ u(0) = 0

}
.

Then, ifμ = kq
(
kq + 1 − 2s

)
< λM (T ) there exists an unique positive function ϕ ∈ X such

that {
−(sina(θ)ϕ′)′ = μ sina(θ)ϕ in (0, T )

−∂aθ ϕ(0) = λ+(ϕ+(0))q−1.
(75)
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Proof Under the previous notations, let us consider the minimization problem minϕ∈X J (ϕ)

with

J (u) = 1

2

∫ T

0
sina(θ)

(
(u′)2 − kq

(
kq + 1 − 2s

)
u2
)
dθ − Fλ+,0(u)(0)

q
.

Since q ∈ [1, 2), for every u ∈ X there exists t > 0 small enough such that J (tu) < 0 for
every t ∈ (0, t).

Notice that critical point of J in X are solution of (75), i.e. for every φ ∈ X we get

dJ (u)[φ] =
∫ T

0
sina(θ)

(
u′φ′ − kq

(
kq + 1 − 2s

)
uφ
)
dθ − (λ+(u+(0))q−1φ+(0)

)

= −
∫ T

0

(
(sina(θ)u′)′ + kq

(
kq + 1 − 2s

)
u
)
φdθ − ∂aθ u(0)φ(0)

− (λ+(u+(0))q−1φ+(0)
)
.

By the Sobolev embedding, for every n > 2s, q ∈ [1, 2) it holds
∫
Sn−1

gqdσx ≤ C̃
∣∣∂0B+∣∣ 2n−(n−2s)q

2n

(∫
Sn+

sina(θ) |∇Sg|2 dσX

+(k2q + n + 2kq − 2s)
∫
Sn+

sina(θ)g2dσX

)q/2

with

C̃ = (n + kqq)(Cn,s Ns)
q/2

(n + 2kq − 2s)q/2 , Ns = 22s−1 �(s)

�(1 − s)
,

Cn,s = 2−2s

π s

(
�( n−2s

2 )

�( n+2s
2 )

)(
�(n)

�(n/2)

) 2s
n

.

Thus, for n = 1 and μ = kq
(
kq + 1 − 2s

)
we get

J (u) ≥ 1

2

∫ T

0
sina(θ)

(
(u′)2 − μu2

)
dθ+

− λ+
q

C

(∫ T

0
sina(θ)(u′)2dθ + (k2q + 1 + 2kq − 2s)

∫ T

0
sina(θ)u2dθ

)q/2

with

C =
(

�(s)

�(1 − s)

)q/2 1

πqs

(
�( 1−2s

2 )

�( 1+2s
2 )

)q/2
1 + kqq

(1 + 2kq − 2s)q/2 2
1−(1−s)q .

Moreover, since by the Poincaré inequality in X we have

∫ T

0
sina(θ)u2dθ ≤ Cp

∫ T

0
sina(θ)(u′)2dθ,
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for some positive constant Cp , we get

J (u) ≥1

2

(
1 − Cpμ

) ∫ T

0
sina(θ)(u′)2dθ+

− �((k2q + 1 + 2kq − 2s)Cp + 1)q/2

q
C

(∫ T

0
sina(θ)(u′)2dθ

)q/2

.

Finally, since

1

Cp
= min

u∈X

∫ T

0
sina(θ)(u′)2dθ

∫ T

0
sina(θ)u2dθ

= λM (T ),

it follows that Cpμ < 1, which implies that J is bounded from below and coercive. Since
X is weakly closed, the direct method of the calculus of variations implies the existence of
a minimizer u which solves (75). Moreover, we can prove that u is positive: indeed, since if
u is a minimizer the same holds also for |u|, we can already suppose that u ≥ 0. Now the
strong maximum principle implies that either u > 0 or u ≡ 0, but the latter options can be
easily ruled out observing that J (u) < 0.

Finally, if we suppose there exists two different solutions ϕ1, ϕ2 of (75), it is straightfor-
ward to see that there exists a linear combination w = ϕ1 − Cϕ2, with C > 0 such that
ϕ
q−1
1 (0) = Cϕ

q−1
2 (0) and

− ∂aθ w(0) = −∂aθ ϕ1(0) + C∂aθ ϕ2(0) = λ+(ϕ1(0)
q−1 − Cϕ2(0)

q−1) = 0. (76)

Moreover {
−(sina(θ)w′)′ = μ sina(θ)w in (0, T )

w(T ) = 0, ∂aθ w(0) = 0.

Necessary w must vanishes identically in (0, T ): indeed, if not either the function is strictly
positive in (0, T ) or it changes sign in (0, T ), both in contradiction with the assumption
μ < λM (T ). Hence, ϕ1 ≡ Cϕ2 in [0, T ], which contradicts the definition of C . ��
Theorem 7.4 Let kq < 1, then for every λ+ > 0 there exist only two kq-homogeneous
solutions u1, u2 ∈ H1,a(R2+) of

{
−Lau = 0 in R

2+
−∂ay u = λ+ |u|q−2 u on R × {0},

such that

u1(x, 0) = A1

(
x
kq
+ − x

kq
−
)

or u2(x, 0) = A2 |x |kq , (77)

for some positive constants A1, A2 depending only on s, q and λ+.

Proof Notice first that the condition kq < 1 immediately implies s ∈ (0, 1/2). Since we plan
to prove the existence of a kq -homogeneous function, it is obvious that its trace must be of
the form (77). Moreover, if we suppose by contradiction that there exist two solutions u and
v with the same type of traces (either like u1(·, 0) or u2(·, 0)) then, it must exist a constant
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C > 0 such that uq−1
± (x, 0) = Cv

q−1
± (x, 0) in R. Consequently, the function w = u − Cv

is a kq -homogeneous solution of
{
Law = 0 in R

2+
−∂ayw = 0 on R × {0}.

By the classification of [28,Lemma 4.7] we already know that either kq ∈ 1 + N or w ≡ 0.
Since kq < 1, necessary w ≡ 0, in contradiction with the choice of C > 0.

In order to construct two functions with these features, let us consider the symmetric and
antisymmetric solution of the eigenvalue problem associated the traces on S1 of u.

Hence, for the antisymmetric case, fixed T = π/2, by Lemma 7.3 there exists ϕ ∈
H1,a(0, π/2) such that ϕ(π/2) = 0 and{

−(sina(θ)ϕ′)′ = μ sina(θ)ϕ in (0, π/2)

−∂aθ ϕ(0) = λ+(ϕ+(0))q−1.

Hence, we define

ϕ1(θ) =
{

ϕ(θ) if θ ∈ (0, π/2)

−ϕ(π − θ) if θ ∈ (π/2, π)
,

an antisymmetric solution of (74) with λ+ = λ−. On the other hand, let us consider the
symmetric eigenfunction φ defined as⎧⎪⎨

⎪⎩
−(sina(θ)φ′)′ = λ1(T ) sina(θ)φ in (T , π − T )

φ > 0 in (T , π − T )

φ(T ) = 0 = φ(π − T ),

(78)

forT ∈ (0, π/2),whereλ1(T ) is thefist eigenvalue associated to (T , π−T ). Bymonotonicity
of the eigenvalue with respect to the set inclusion, we already know that T �→ λ1(T ) is
increasing and it satisfies

lim
T→0+ λ1(T ) = 2s and λ1(arctan(

√
2(1 − s))) = 2.

Thus, since s < 1/2, there exists T ∗ ∈ (0, arctan(
√
2(1 − s))) such that λ1(T ∗) = kq .

Furthermore, by applying Lemma 7.3 with T = T ∗, there exists a functionψ ∈ H1,a(0, T ∗)
such that ψ(T ∗) = 0 and{

−(sina(θ)ψ ′)′ = μ sina(θ)ψ in (0, T ∗)
−∂aθ ψ(0) = λ+(ψ+(0))q−1.

Finally, let C > 0 be such that −Cφ′(T ∗) = ψ ′(T ∗), then if we define

ϕ2(θ) =

⎧⎪⎨
⎪⎩

ψ(θ) if θ ∈ (0, T )

−Cφ(θ) if θ ∈ (T , π − T )

ψ(π − θ) if θ ∈ (π − T , π)

,

we get a symmetric solution of (74) with Thus, the solutions ui are defined as the homoge-

neous extension of ϕi in R
n+1+

ui (X) = |X |kq ϕi

(
X

|X |
)

,
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which gives the claimed result. ��
Finally, by applying the Federer’s reduction principle in the form of [7,Theorem 8.5], we

can conclude the proof of Theorem 1.9 as a byproduct of the results of this Section.

Proof (Conclusion of the proof of Theorem 1.9) Let us consider the class of functions F
defined as

F =
{
u ∈ L∞

loc (R
n+1+ ) \ {0}

∣∣∣∣
u solves (73) in Br (X0), for some r ∈ R, X0 ∈ R

n × {0}
for some λ+, λ−, μ > 0

}
.

endowed with the topology associated to the uniform convergence and

S : u �→ T (u).

We already know that F is close under rescaling, translation and normalization. Moreover,
by Theorem 6.1 the hypothesis of the existence of a blow-up limit in F is satisfied, as well
as the singular set assumption. Thus, the Federer’s reduction principle [7,Theorem 8.5] is
applicable and it implies the existence of an integer d ∈ [0, n] such that

dimHT (u) ≤ d,

for every function u ∈ F . Suppose by contradiction that d = n, this would implies the
existence of ϕ ∈ F such that S(ϕ) = R

n , that is ϕ ≡ 0 on R
n . Thus ϕ ≡ 0 on the

whole Rn+1, which contradicts the fact the 0 /∈ F . Actually, since Theorem 7.2 ensures the
existence of a (n − 1)-linear subspace E ⊂ R

n and a kq -homogeneous function ϕ ∈ F such
that S(ϕ) = E , we get d = n − 1. ��
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