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We consider some ‘truncated’ Gaussian rules based on the zeros of the orthonormal polynomials w.r.t.
the weight function w(x)= e−x−α−xβ with x ∈ (0, +∞), α > 0 and β > 1. We show that these formulas
are stable and converge with the order of the best polynomial approximation in suitable function spaces.
Moreover, we apply these results to the related Lagrange interpolation process in weighted L2 spaces.
Finally, some numerical tests are shown.
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1. Introduction

This paper deals with the weighted polynomial approximation of functions defined on the real semiaxis
(0, +∞) which can increase exponentially at the endpoint 0 and +∞. In particular, we consider
Gaussian rules for computing integrals of the form

∫ +∞

0
f (x)w(x) d x, w(x)= e−x−α−xβ , α > 0, β > 1.

This topic has received no attention in the literature, as far as we know. Since the weight function w is
nonclassical, from the numerical point of view, a recent progress in symbolic computation and variable–
precision arithmetic enables to overcome the numerical instability in the procedure for generating the
recursion coefficients of the corresponding orthogonal polynomials.

We study the behaviour of the Gaussian rule in several spaces of continuous functions with weighted
uniform metric, proving that the formula converges with the order of the best weighted polynomial
approximation, with proper assumptions (see Proposition 3.1) and with geometric rate for infinitely
differentiable functions (see Theorem 3.2). Nevertheless, in Theorem 3.3 we show that the error
of this formula does not converge with the optimal rate (i.e., with the order of the best weighted
polynomial approximation) in weighted L1-Sobolev spaces, in analogy with the case of different expo-
nential weights (see, for instance, Della Vecchia & Mastroianni, 2003; Mastroianni & Monegato, 2003;
Mastroianni & Notarangelo, 2010; De Bonis et al., 2012) and in contrast with the case of ‘doubling’
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GAUSSIAN RULES ON THE REAL SEMIAXIS 1655

weights on bounded intervals. This difficulty also implies that the sequence of the related Lagrange
operators {Lm(w)} cannot be uniformly bounded in weighted L2-Sobolev spaces.

To overcome this problem, we suggest a ‘truncated’ Gaussian rule (see Definition 3.8). This for-
mula converges with the same order of the ordinary Gaussian rule for continuous functions (see
Proposition 3.4 and Theorem 3.5). Moreover, it converges with the order of the best polynomial approx-
imation for functions belonging to weighted L1-Sobolev spaces, as shown in Theorem 3.6.

As an application of these results, we define a modified Lagrange operator and prove its uniform
boundedness in weighted L2-Sobolev spaces, under proper assumptions (see Theorems 4.3 and 4.4).

All results in this paper are new and the estimates cannot be improved for the considered classes of
functions.

The paper is structured as follows. In Section 2, we recall some basic facts about weighted poly-
nomial approximation with the weight w. Our main results concerning Gaussian rules and Lagrange
interpolation are stated in Sections 3 and 4, respectively, and proved in Section 5. Section 6 deals with
the computation of the Mhaskar–Rahmanov–Saff numbers (MRS numbers) related to w, and Section 7
with numerical construction of quadrature rules. Finally, in Section 8 we give some numerical example.

2. Basic facts and preliminary results

In the sequel c, C stands for positive constants that can assume different values in each formula and
we shall write C |= C(a, b, . . .) when C is independent of a, b, . . .. Furthermore, A ∼ B will mean that
if A and B are positive quantities depending on some parameters, then there exists a positive constant
C independent of these parameters such that (A/B)±1 � C. Finally, Pm denotes the set of all algebraic
polynomials of degree at most m.

Let us consider the weight function

w(x)= e−x−α−xβ , α > 0, β > 1, x ∈ R+ = (0, +∞) (2.1)

that can be seen as a combination of a Pollaczeck-type weight e−x−α
and a Laguerre-type weight e−xβ .

Since the weight w is nonsymmetric, in analogy with the Laguerre case, we have two MRS numbers,
namely εt = εt(w) and at = at(w), defined by

t = 1

π

∫ at

εt

xQ′(x)√
(at − x)(x − εt)

dx (2.2)

and

0 = 1

π

∫ at

εt

Q′(x)√
(at − x)(x − εt)

dx, (2.3)

where Q′(x)= −αx−α−1 + βxβ−1. From the definition it follows that εt is a decreasing function and at

is an increasing function of t, with

lim
t→+∞ εt = 0, lim

t→+∞ at = +∞.

By definition, we have

εt(w
λ)= εt/λ(w) and at(w

λ)= at/λ(w).
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1656 G. MASTROIANNI ET AL.

In Section 6, we will give a method to compute εt and at. For the moment, we recall the equivalences

εt = εt(w)∼
(√

at

t

)1/(α+1/2)

and at = at(w)∼ t1/β , (2.4)

where the constants in ‘∼’ are independent of t.
Associated with the MRS numbers are the following restricted range inequalities. Letting 0< p �

+∞, for any Pm ∈Pm, we have (see Levin & Lubinsky, 2001, pp. 95–96; Mastroianni et al., 2013)

‖Pmw‖∞ = max
x∈[εm,am]

|Pm(x)w(x)|, (2.5)

and ∫ +∞

0
|Pmw|p(x) d x � C

∫ am

εm

|Pmw|p(x) d x, (2.6)

where C is independent of m and Pm. On the other hand, we have

‖Pmw‖Lp(R+\[εsm,asm]) � C e−cmν‖Pmw‖p, s> 1, (2.7)

where

ν =
(

1 − 1

2β

)
2α

2α + 1
, (2.8)

and C and c are independent of m and Pm.

2.1 Orthonormal polynomials

Let us denote by {pm(w)}m∈N the sequence of the orthonormal polynomials defined by

pm(w, x)= γmxm + lower degree terms, γm = γm(w) > 0

and ∫ +∞

0
pm(w, x)pn(w, x)w(x) d x = δm,n.

The zeros of pm(w) lie in the MRS interval associated with
√

w. To be more precise, we have (see
Levin & Lubinsky, 2001, pp. 312–324)

ε̃m < x1 < x2 < · · ·< xm < ãm,

with ε̃m = εm(
√

w)= ε2m(w) and ãm = am(
√

w)= a2m(w).

x1 − ε̃m ∼ δm, δm ∼
(√

am

m

)(2/3)((2α+3)/(2α+1))

∼ m−(2/3)((2α+3)/(2α+1))(1−1/(2β)) (2.9)
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GAUSSIAN RULES ON THE REAL SEMIAXIS 1657

and

ãm − xm ∼ amm−2/3 ∼ m1/β−2/3, (2.10)

where the constants in ‘∼’ are independent of m.
The distance between two consecutive zeros Δxk = xk+1 − xk can be estimated by

Δxk ∼Ψm(xk), k = 1, . . . , m − 1, (2.11)

where

Ψm(xk)= ãmxk

m
√
(xk − ε̃m + δm)(ãm − xk + ãmm−2/3)

(2.12)

and the constants in ‘∼’ are independent of k and m.
The mth Christoffel function

λm(w, x)=
(

m−1∑
k=0

p2
m(w, x)

)−1

satisfies (see Levin & Lubinsky, 2001, p. 257)

λm(w, x)∼Ψm(x)w(x), x ∈ [ε̃m, ãm], (2.13)

where Ψm is given by (2.12) and the constants in ‘∼’ are independent of m. Then we define the
Christoffel numbers, setting

λk(w)= λm(w, xk), k = 1, . . . , m.

The weight w, introduced in this section, is a crucial tool for the polynomial approximation of
functions having domain R+ and exponential growth for x → 0 and x → +∞. To this aim we recall the
definition of some function spaces, in which the convergence of the best polynomial approximation has
been studied (see Mastroianni & Notarangelo, 2013b). In these function spaces we are going to study
the behaviour of the Gaussian rules.

2.2 Function spaces

We denote by Lp(A), A ⊂ R+ and 1 � p<+∞, the collection of all measurable functions f such that
‖f ‖p

Lp(A) =
∫

A |f (x)|p dx<+∞. For A = R+ we write ‖f ‖p = ‖f ‖p
Lp(R+).

Letting w be given by (2.1), x ∈ R+, we introduce the weight function

u(x)= (1 + x)δwa(x), 0< a � 1, δ � 0. (2.14)

From (2.5) to (2.7), we can easily deduce the analogous polynomial inequalities with the weight
w replaced by u. In fact, letting n = m/a + �δ, for any Pm ∈Pm, with 0< p � +∞, we have (see
Mastroianni et al., 2013)

‖Pmu‖p � C‖Pmu‖Lp[εn,an], (2.15)

where C |= C(m, Pm), εn and an = an(w) are the MRS numbers related to the weight w.
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1658 G. MASTROIANNI ET AL.

Analogously, from inequality (2.7) we can deduce

‖Pmu‖Lp(R+\[εsn,asn]) � C e−cmν‖Pmu‖p, s> 1, (2.16)

where n ∼ m, C |= C(m, Pm), c |= c(m, Pm) and ν is defined by (2.8).
Let us now introduce some function spaces. For 1 � p<+∞, we will write f ∈ Lp

u if fu ∈ Lp, with

‖f ‖Lp
u

:= ‖fu‖p =
(∫ +∞

0
|fu|p(x) dx

)1/p

<+∞.

Whereas, for p = +∞, we define

L∞
u = Cu =

{
f ∈ C0(R+) : lim

x→0+
f (x)u(x)= 0 = lim

x→+∞ f (x)u(x)

}
,

with the norm
‖f ‖L∞

u
:= ‖fu‖∞ = sup

x∈R+
|f (x)u(x)|.

Here, C0(R+) denotes the set of all continuous functions on R+ = (0, +∞),
The Sobolev-type spaces are given by

W p
r (u)= {f ∈ Lp

u : f (r−1) ∈ AC(R+), ‖f (r)ϕru‖p <+∞}, 1 � r ∈ Z
+,

where 1 � p � +∞, ϕ(x) := √
x and AC(R+) denotes the set of all functions which are absolutely con-

tinuous on every closed subset of (0, +∞). We equip these spaces with the norm

‖f ‖W p
r (u) = ‖fu‖p + ‖f (r)ϕru‖p.

The following main part of the rth modulus of smoothness has been introduced in Mastroianni &
Notarangelo (2013b). For f ∈ Lp

u, 1 � p � ∞, r � 1 and t> 0 sufficiently small, we set

Ωr
ϕ(f , t)u, p = sup

0<h�t
‖Δr

hϕ(f )u‖Lp(Ih(c)), Ih(c)=
[
h1/(α+1/2),

c

h1/(β−1/2)

]
,

where c> 1 is a fixed constant, and

Δr
hϕ f (x)=

r∑
i=0

(−1)i
(

r
i

)
f (x + (r − i)hϕ(x)), ϕ(x)= √

x.

Then we define the complete rth modulus of smoothness by

ωr
ϕ(f , t)u, p =Ωr

ϕ(f , t)u, p + inf
q∈Pr−1

‖(f − q)u‖Lp(0,t1/(α+1/2)] + inf
q∈Pr−1

‖(f − q)u‖Lp[ct−1/(β−1/2),+∞),

with c> 1 a fixed constant. This modulus is equivalent to the following K-functional:

K(f , tr)u, p = inf
g∈W p

r (u)
{‖(f − g)u‖p + tr‖g(r)ϕru‖p},

namely, for any f ∈ Lp
u, 1 � p � ∞, we have ωr

ϕ(f , t)u, p ∼ K(f , tr)u, p, where the constants in ‘∼’ are
independent of f and t.
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GAUSSIAN RULES ON THE REAL SEMIAXIS 1659

By means of the rth modulus of smoothness, for 1 � p � +∞, we can define the Zygmund-type
spaces

Zp
s (u) := Zp

s,r(u)=
{

f ∈ Lp
u : sup

t>0

Ωr
ϕ(f , t)u, p

ts
<+∞, r> s

}
, s ∈ R+,

with the norm

‖f ‖Zp
s (u) = ‖f ‖Lp

u
+ sup

t>0

Ωr
ϕ(f , t)u, p

ts
.

In the sequel, we will denote these subspaces briefly by Zp
s (u). Moreover, we remark that ωr

ϕ(f , t)u, p ∼
Ωr
ϕ(f , t)u, p for any Zp

s (u) (see Mastroianni & Notarangelo, 2013b).
Let us denote by Em(f )u, p = infP∈Pm ‖(f − P)u‖p the error of best polynomial approximation of a

function f ∈ Lp
u, 1 � p � +∞.

The order of convergence of Em(f )u, p can be estimated using the previous modulus of smoothness.
In fact, for any f ∈ Lp

u, 1 � p � +∞, and m> r � 1, the following Jackson, weak Jackson and Stechkin
inequalities

Em(f )u, p � Cωr
ϕ

(
f ,

√
am

m

)
u, p

, (2.17)

Em(f )u, p � C
∫ √

am/m

0

Ωr
ϕ(f , t)u, p

t
dt, r<m (2.18)

and

ωr
ϕ

(
f ,

√
am

m

)
u, p

� C
(√

am

m

)r m∑
i=0

(
i√
ai

)r Ei(f )u, p

i
,

hold with am ∼ m1/β and C |= C(f , m) (see Mastroianni & Notarangelo, 2013b). From the previous
inequalities, for any f ∈ W p

r (u), 1 � p � +∞, we obtain

Em(f )u, p � C
(√

am

m

)r

‖f (r)ϕru‖p, C |= C(m, f ). (2.19)

Whereas, for any f ∈ Zp
s (u), 1 � p � +∞, we obtain

Em(f )u, p � C
(√

am

m

)s

sup
t>0

Ωr
ϕ(f , t)u, p

ts
, r> s, C |= C(m, f ). (2.20)

3. Gaussian formulas

The Gaussian rule related to the weight w(x)= e−x−α−xβ can be defined by the equality

∫ +∞

0
P2m−1(x)w(x) dx =

m∑
k=1

λk(w)P2m−1(xk), (3.1)

where xk are the zeros of pm(w), λk(w) are the Christoffel numbers, which holds for any polynomial
P2m−1 ∈P2m−1.
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1660 G. MASTROIANNI ET AL.

Thus, the error of the Gaussian rule for any continuous function f is given by

em(f )=
∫ +∞

0
f (x)w(x) dx −

m∑
k=1

λk(w)f (xk).

If we assume f ∈ Cu, then we can write

∣∣∣∣∣
m∑

k=1

λk(w)f (xk)

∣∣∣∣∣� ‖fu‖∞
m∑

k=1

λk(w)

u(xk)
� C‖fu‖∞

∫ +∞

0

w(x)

u(x)
dx

and the next proposition easily follows.

Proposition 3.1 If w/u ∈ L1, then, for any f ∈ Cu, we have

|em(f )| � CE2m−1(f )u,∞, (3.2)

where C |= C(m, f ).

This proposition generalizes a result due to Uspensky (1928), who first proved the convergence of
Gaussian rules on unbounded intervals related to Laguerre and Hermite weights (see also Mastroianni
& Milovanović, 2008, pp. 341–345; Mastroianni & Notarangelo, 2010).

Note that the assumption w/u ∈ L1 in Proposition 3.1 is fulfilled if a = 1 and δ > 1, or if a< 1 and
δ is arbitrary. The error estimate (3.2) implies the convergence of the Gaussian rule for any f ∈ Cu. For
smoother function, for instance f ∈ W∞

r (u), by (3.2) and (2.19), we obtain

|em(f )� C
(√

am

m

)r

‖f (r)ϕru‖∞,

where C |= C(m, f ) and am ∼ m1/β .
Thus, a natural question is to establish the degree of convergence of em(f ) if the function f is

infinitely differentiable, i.e., f ∈ C∞(R+). We recall that Aljarrah (1980, 1983) proved estimates of
em(f ) related to Hermite or Freud weights for analytic functions in some domains of the complex plane
containing the quadrature nodes. For precise estimates, considering the same class of functions and
different weights, we refer to Lubinsky (1983). Here, we consider the case of infinitely differentiable
functions on R+, with the condition that (f (m)u)(x) is uniformly bounded w.r.t. m and x. We note that
the derivatives of the function can increase exponentially for x → 0 and x → +∞.

Theorem 3.2 Let u(x)= (1 + x)δwa(x), with 0< a< 1 and δ arbitrary. For any infinitely differentiable
function f , if K(f ) := supm ‖f (m)u‖∞ <+∞, we have

lim
m

m

√
|em(f )|
K(f )

= 0. (3.3)

In Section 5, we will give a simple proof of inequality (3.3) that can be applied in different contexts.
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GAUSSIAN RULES ON THE REAL SEMIAXIS 1661

Now, in order to study the behaviour of the Gaussian rule in Sobolev spaces W 1
r (w), it is natural to

investigate whether estimates of the form

|em(f )| � C
√

am

m
‖f ′ϕw‖1, C |= C(m, f ), f ∈ W 1

1 (w), (3.4)

hold true.
We recall that, as shown in Mastroianni & Notarangelo (2013b), for the error of best approximation

we have

Em(f )w,1 � C
√

am

m
‖f ′ϕw‖1, C |= C(m, f ), f ∈ W 1

1 (w).

On the other hand, inequality (3.4) holds, mutatis mutandis, for Gaussian rules on bounded intervals
related to Jacobi weights. But, as for many exponential weights (see Della Vecchia & Mastroianni,
2003; Mastroianni & Monegato, 2003; De Bonis et al., 2012), inequality (3.4) is false in the sense of
the following theorem.

Theorem 3.3 Let w(x)= e−x−α−xβ , α > 0 and β > 1. Then, for any f ∈ W 1
1 (w), we have

|em(f )| � Cm1/3
√

am

m
‖f ′ϕw‖1, (3.5)

where C is independent of m and f . Moreover, for a sufficiently large m (say m � m0), there exists a
function fm, with 0< ‖f ′

mϕw‖1 <+∞, and a constant C |= C(m, fm) such that

|em(fm)| � Cm1/3
√

am

m
‖f ′

mϕw‖1. (3.6)

Nevertheless, estimates of the form (3.4) are required in different contexts. So, in order to obtain
this kind of error estimates, using also an idea from Mastroianni & Monegato (2003), we are going to
modify the Gaussian rule.

With θ ∈ (0, 1) fixed, we define two indexes j1 = j1(m) and j2 = j2(m) as

xj1 = max
1�k�m

{xk : xk � ε̃θm} and xj2 = min
1�k�m

{xk : xk � ãθm}, (3.7)

respectively, and set

Zθ ,m = {xk = xm,k(w) : xj1 � xk � xj2}.

For the sake of completeness, if {xk : xk � ε̃θm} or {xk : xk � ãθm} are empty, we set xj1 = x1 or xj2 = xm,
respectively.

Furthermore, for a sufficiently large N , let P∗
N denote the collection of all polynomials of degree at

most N , vanishing at the zeros of pm(w) which are smaller than xj1 or larger than xj2 , i.e.,

P∗
N = {P ∈PN : P(xi)= 0, xi /∈ Zθ ,m}.

Naturally, pm(w) ∈P∗
N , for N � m and θ ∈ (0, 1) arbitrary.
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1662 G. MASTROIANNI ET AL.

Now, in analogy with (3.1), we define the new Gaussian rule, by means of the equality

∫ +∞

0
Q2m−1(x)w(x) dx =

m∑
k=1

λk(w)Q2m−1(xk)=
j2∑

k=j1

λk(w)Q2m−1(xk),

which holds for every Q2m−1 ∈P∗
2m−1.

Then, for any continuous function f , the ‘truncated’ Gaussian rule is defined as

∫ +∞

0
f (x)w(x) dx =

j2∑
k=j1

λk(w)f (xk)+ e∗
m(f ), (3.8)

whose error e∗
m(f ) is the difference between the integral and the quadrature sum.

Compared with the Gaussian rule (3.1), in the formula (3.8) the terms of the quadrature sum cor-
responding to the zeros which are ‘close’ to the MRS numbers are dropped. From the numerical point
of view, this fact has two consequences. First, it avoids overflow phenomena (taking into account that,
in general, the function f is exponentially increasing at the endpoints of R+). Moreover, it produces a
computational saving, which is evident in the numerical treatment of linear functional equations.

We are now going to study the behaviour e∗
m(f ) in Cu and W 1

r (w). We will see that the errors em(f )
and e∗

m(f ) have essentially the same behaviour in Cu, but not in W 1
r (w), since e∗

m(f ) satisfies (3.4), while
em(f ) does not.

The behaviour of e∗
m(f ) in Cu is given by the following proposition.

Proposition 3.4 Assume that w/u ∈ L1. Then, for any f ∈ Cu, we obtain

|e∗
m(f )| � C{EM (f )u,∞ + e−cmν‖fu‖∞}, (3.9)

where M = �(θ/(θ + 1))m�, θ ∈ (0, 1), ν is given by (2.8), C |= C(m, f ) and c |= c(m, f ).
In particular, if f ∈ W∞

r (u), inequality (3.9) becomes

|e∗
m(f )| � C

(√
am

m

)r

‖f ‖W∞
r (u). (3.10)

For smoother functions, the analogue of Theorem 3.2 is given by the following statement.

Theorem 3.5 If the weight u and the function f satisfy the assumption of Theorem 3.2, then, for any
0<μ<α(1 − 1/(2β))/(α + 1/2) fixed, we obtain

lim
m

( |e∗
m(f )|

‖fu‖∞ + ‖f (m)u‖∞

)1/mμ

= 0, (3.11)

where C |= C(m, f ).

For functions f ∈ W 1
1 (w) or f ∈ Z1

s (w), 1< s ∈ R+, the following theorem states the required
estimates.

Theorem 3.6 For any f ∈ W 1
1 (w), we have

|e∗
m(f )| � C

√
am

m
‖f ′ϕw‖1 + C e−cmν‖fw‖1. (3.12)
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Moreover, for any f ∈ Z1
s (w), with s> 1, we obtain

|e∗
m(f )| � C

√
am

m

∫ √
am/m

0

Ωr
ϕ(f , t)w,1

t2
dt + C e−cmν‖fw‖1, (3.13)

where r> s> 1. In both cases, C and c do not depend on m and f , and ν is given by (2.8).

In conclusion, inequality (3.12) is the required estimate and, by (3.13), it can be generalized as

|e∗
m(f )| � C

(√
am

m

)s

‖f ‖Z1
s (w)

, C |= C(m, f ),

for f ∈ Z1
s (w), s> 1. In particular, if s is an integer number, recalling (3.12), the Zygmund norm can be

replaced by the Sobolev norm.
Finally, we emphasize that the previous estimate cannot be improved, since, in these function spaces,

e∗
m(f ) converges to 0 with the order of the best polynomial approximation.

4. Lagrange interpolation in L2√
w

Here, we want to apply the results in Section 3 to estimate the error of the Lagrange interpolation process
based on the zeros of pm(w), with w(x)= e−x−α−xβ , α > 0 and β > 1. If f ∈ C0(R+), then the Lagrange
polynomial interpolating f at the zeros of pm(w) is defined by

Lm(w, f , x)=
m∑

k=1

lk(w, x)f (xk), lk(w, x)= pm(w, x)

p′
m(w, xk)(x − xk)

,

and we are going to study the error ‖Lm(w, f )
√

w‖2 for different function classes.
Since

‖Lm(w, f )
√

w‖2
2 =

m∑
k=1

λk(w)

w(xk)
(f

√
w)2(xk) (4.1)

and we are dealing with an unbounded interval, we cannot expect an analogue of the theorem by Erdős
& Turán (1937). On the other hand, if f ∈ Cu, with u(x)= (1 + x)δ

√
w(x)), δ > 1/2, it is easily seen that

‖[f − Lm(w, f )]
√

w‖2 � CEm−1(f )u,∞, C |= C(m, f ).

Nevertheless, as for the Gaussian formula, if f ∈ W 2
1 (

√
w), then Lm(w, f ) does not have an optimal

behaviour, i.e., an estimate of the form

‖[f − Lm(w, f )]
√

w‖2 � C
√

am

m
‖f ′ϕ

√
w‖2, C |= C(m, f ),

does not hold. To this aim, for any f ∈ C0(R+), we introduce the following ‘truncated’ Lagrange poly-
nomial

L∗
m(w, f , x)=

j2∑
k=j1

lk(w, x)f (xk),

where j1, j2 are given by (3.7).
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Naturally, in general, L∗
m(w, P) |= P for arbitrary polynomials P ∈Pm−1 (e.g., Lm(w, 1) |= 1). But

L∗
m(w, Q)= Q for any Q ∈P∗

m−1 and L∗
m(w, f ) ∈P∗

m−1 for any f ∈ C0(R+). So, the operator L∗
m(w) is

a projector from C0(R+) into P∗
m−1.

Moreover, considering the weight

σ(x)= (1 + x)δ
√

w(x), δ > 0, (4.2)

we can show that every function f ∈ Lp
σ can be approximated by polynomials of P∗

m. To this aim, we
define

Ẽm(f )σ ,p = inf
P∈P∗

m

‖(f − P)σ‖p, 1 � p � +∞.

Lemma 4.1 For any f ∈ Lp
σ , where σ is given by (4.2) and 1 � p � +∞, we have

Ẽm(f )σ ,p � C{EM (f )σ ,p + e−cmν‖f σ‖p},

where M = �(θ/(θ + 1))m�, θ ∈ (0, 1), ν is given by (2.8), C |= C(m, f ) and c |= c(m, f ).

As an immediate consequence of the previous lemma and equality (4.1), we get the following
proposition.

Proposition 4.2 For any f ∈ Cσ , with σ as (4.2), δ > 1/2, we have

‖[f − L∗
m(w, f )]

√
w‖2 � C{EM (f )σ ,∞ + e−cmν‖f σ‖∞},

where M = �(θ/(θ + 1))m�, θ ∈ (0, 1), ν is given by (2.8), C |= C(m, f ) and c |= c(m, f ).

We are going to study the behaviour of the sequence {L∗
m(w)}m in the Sobolev spaces W 2

r (
√

w),
which is interesting in different contexts.

To this regard, we observe that, since no results concerning the sequence of the Fourier sum
{Sm(w)}m are known, we cannot deduce the behaviour of {L∗

m(w)}m from that of {Sm(w)}m. Therefore,
we need a different approach.

The following theorem describes the behaviour of the operator L∗
m(w) in different function spaces.

Theorem 4.3 Assume that f ∈ L2√
w and

∫ 1

0

Ωr
ϕ(f , t)√w,2

t3/2
dt<+∞, r � 1, (4.3)

then we have

‖[f − L∗
m(w, f )]

√
w‖2 � C

{(√
am

m

)1/2 ∫ √
am/m

0

Ωr
ϕ(f , t)√w,2

t3/2
dt + e−cmν‖f

√
w‖2

}
, (4.4)

where ν is given by (2.8) and the constants C, c are independent of m and f .

Note that the assumption (4.3) implies f ∈ C0(R+) (see Mastroianni & Notarangelo, 2013c).
The error estimate (4.4) has interesting consequences.
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Firstly, if

sup
t>0

Ωr
ϕ(f , t)√w,2

ts
dt<+∞, r> s> 1/2,

i.e., f ∈ Z2
s (

√
w), then the order of convergence of the process is O((√am/m)s). If f ∈ W 2

r (
√

w), r � 1
is integer, we have

‖[f − L∗
m(w, f )]

√
w‖2 � C

(√
am

m

)r

‖f ‖W 2
r (

√
w). (4.5)

This means that the process converges with the error of the best approximation for the considered classes
of functions.

Secondly, we are now able to show the uniform boundedness of the sequence {L∗
m(w)} in the Sobolev

spaces.

Theorem 4.4 With the previous notation, for any f ∈ W 2
r (

√
w), r � 1, we have

sup
m

‖L∗
m(w, f )‖W 2

r (
√

w) � C‖f ‖W 2
r (

√
w), C |= C(f ). (4.6)

Moreover, for any f ∈ W 2
s (

√
w), s> r, we have

‖f − L∗
m(w, f )‖W 2

r (
√

w) � C
(√

am

m

)s−r

‖f ‖W 2
s (

√
w), C |= C(m, f ). (4.7)

Remark 4.5 In all the estimates for e∗
m(f ) and (f − L∗

m(w, f )), a constant C |= C(m, f ) appears. We have
not pointed out the dependence on the parameter θ ∈ (0, 1), since θ is fixed. Nevertheless, it is useful to
observe that C = C(θ)=O((θ/(1 − θ))2). So, it is clear that the parameter θ cannot assume the value 0
or 1 and the ‘truncation’ is necessary in this sense (see Proposition 5.1 for more details).

5. Proofs

First of all, we recall some polynomial inequalities, proved in Mastroianni et al. (2013) (see also Levin
& Lubinsky, 2001). Let u be the weight in (2.14) and 1 � p � +∞. Then, for any Pm ∈Pm, we have

‖P(r)m ϕu‖p � C
(

m√
am

)r

‖Pmu‖p, r � 1, (5.1)

‖Pmu‖q � C
(

m√
am

)(1/p−1/q)((2α+2)/(2α+1))

‖Pmu‖p, p< q, (5.2)

where am = am(w)∼ m1/β and C |= C(m, Pm).
Let us now prove Theorem 3.2, since Proposition 3.1 easily follows using the arguments in Section 3.

Proof of Theorem 3.2. If f is an infinitely differentiable function, then it is well known that

em(f )= 1

(2m)!γ 2
m

∫ +∞

0
f (2m)(ξx)p

2
m(w, x)w(x) d x,
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where γm is the leading coefficient of pm(w) and ξx belongs to the smaller interval containing
x, x1, . . . , xm. It follows that

em(f )�
‖f (2m)u‖∞
(2m)!γ 2

m

∫ +∞

0
p2

m(w, x)w(x)u−1(ξx) d x. (5.3)

In order to estimate the integral at the right-hand side, we recall that the zeros of pm(w) are located as
follows:

ε̃m < x1 < x2 < · · ·< xm < ãm,

with ε̃m = ε2m = ε2m(w) and ãm = a2m = a2m(w). Hence, if x ∈ (0, ε2m), we get ξx � x and since u−1 is
decreasing, we have u−1(ξx)� u−1(x). Using the restricted range inequality (2.15) related to the weight
w/u, with n = 2m/(1 − a)+ �|δ|, we obtain∫ ε2m

0
p2

m(w, x)w(x)u−1(ξx) d x �
∫ ε2m

0
p2

m(w, x)w(x)u−1(x) d x

� C
∫ an

εn

p2
m(w, x)w(x)u−1(x) d x

� Cu−1(an). (5.4)

Analogously, one can show that∫ +∞

a2m

p2
m(w, x)w(x)u−1(ξx) d x � Cu−1(an). (5.5)

Finally, it is easily seen that∫ a2m

ε2m

p2
m(w, x)w(x)u−1(ξx) d x � u−1(a2m)� u−1(an). (5.6)

Combining (5.3) with (5.6), we obtain

2m

√
|em(f )|
K(f )

� C
[

u−1(an)

(2m)!γ 2
m

]1/2m

, (5.7)

where K(f )= supm ‖f mu‖∞. Since (see Levin & Lubinsky, 2001, p. 25)

γm(w)= 1√
2π

(
4

ãm + ε̃m

)m+1/2

exp

(
1

π

∫ ãm

ε̃m

Q(x)√
(ãm − x)(x − ε̃m)

dx

)
(1 + o(1)),

where Q(x)= 1
2 (1/x

α + xβ), we have

(
1

γ 2
m

)1/2m

=O(am), (u−1(an))
1/2m =O(eaβn /(2m))=O(1),

(
1

(2m)!

)1/2m

=O(1/m).

Hence, the term at the right-hand side of (5.7) is O(am/m) as m → +∞ and our claim follows. �
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Proposition 5.1 Let w be the weight in (2.1), ε̃m and ãm the MRS numbers related to
√

w, and θ ∈ (0, 1)
be fixed. For any x ∈ [ε̃θm, ãθm] the function

Ψm(x)= ãmx

m
√
(x − ε̃m + δm)(ãm − x + ãmm−2/3)

satisfies

C
√

am

m

√
x �Ψm(x)� C

(
θ

1 − θ

)2 √
am

m

√
x,

where the constants C are independent of θ and m.

Proof. From Levin & Lubinsky (2001, p. 73), we can easily deduce

1 − ãθm

ãm
� C
(

1

θ
− 1

)2

and
ε̃θm

ε̃m
− 1 � Cε̃θm

(
1

θ
− 1

)2

,

whence the proposition follows. �

Proof of Theorem 3.3. Let us first prove inequality (3.5). By the Peano theorem, we have

em(f )=
∫ +∞

0
em(Γt)f

′(t) dt, Γt(x)= (x − t)0+ =
{

1, x> t,

0, x � t,
(5.8)

with

em(Γt)=
∫ +∞

0
Γt(x)w(x) dx −

m∑
k=1

λk(w)Γt(xk).

It is easily seen that (see Freud, 1971, p. 105)

em(Γt)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

= −
∫ t

0
w(x) dx, 0< t � x1,

� λm(w, t), x1 � t � xm,

=
∫ +∞

t
w(x) dx, t � xm.

For 0< t � x1, since x1 ∼ ε̃m and by (2.4), we have

∫ t

0
w(x) dx � C

∫ t

0
e−x−α

dx � Ctα+1
∫ t

0
d(e−x−α

)� Cε̃α+1/2
m

√
t e−t−α � C

√
am

m
ϕ(t)w(t). (5.9)

Analogously, for t � xm, since xm ∼ ãm and again by (2.4), we obtain

∫ t

0
w(x) dx � C

∫ +∞

t
e−xβ dx � Ct1−β

∫ +∞

t
d(e−xβ )� Cã1/2−β

m

√
t e−tβ � C

√
am

m
ϕ(t)w(t). (5.10)
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Now, let x1 � t � xm and θ ∈ (0, 1) be fixed. From (2.13) and Proposition 5.1 we deduce

λm(w, t)∼

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
am

m

√
t

t − ε̃m
ϕ(t)w(t), t ∈ [x1, ε̃θm],

√
am

m
ϕ(t)w(t), t ∈ [ε̃θm, ãθm],

√
am

m

√
ãm

ãm − t
ϕ(t)w(t), t ∈ [ãθm, xm],

where, for t ∈ [x1, ε̃θm], √
t

t − ε̃m
�

√
ε̃θm

x1 − ε̃m
∼ m

1
3 (1−1/2β)(2α/(2α+1))

and, for t ∈ [ãθm, xm], √
ãm

ãm − t
�

√
ãm

ãm − xm
∼ m1/3

by (2.9), (2.10) and (2.4). Whence, by (5.8–5.10), we obtain inequality (3.5).
In order to prove (3.6), we consider the function

fm(x)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, 0 � x � ym,

x − ym, ym � x � xm,
√

am

m
√

xm, x � xm,

where ym := xm − (
√

am/m)
√

xm. Of course, fm ∈ W 1
1 (w) and

0< ‖f ′
mϕw‖1 =

∫ xm

ym

ϕ(x)w(x) dx<+∞.

Using the expression of the Peano remainder, we obtain

em(fm)=
∫ xm

ym

[∫ +∞

t
w(x) dx − λm(w)

]
f ′
m(t) dt.

By (2.13) and (2.10), we have

λm(w)∼Δxm−1w(xm)∼Δxm−1w(xm)� Cm1/3
√

am

m
ϕ(t)w(t), t ∈ (ym, xm),

since w(t)∼ w(xm) and ϕ(t)∼ ϕ(xm) for |xm − t| � (
√

am/m)
√

xm (see Mastroianni & Notarangelo,
2013b). On the other hand, we have already proved that∫ +∞

t
w(x) dx � C

√
am

m
ϕ(t)w(t).
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Hence, for a sufficiently large m, we obtain

|em(fm)| =
∫ xm

ym

[
λm(x)−

∫ +∞

t
w(x) dx

]
|f ′

m(t)| dt � Cm1/3
√

am

m
‖f ′

mϕw‖1,

i.e., (3.6). �

From the proof, it seems to be clear that the extra factor m1/3 in (3.5) is due to the formula (2.10),
i.e., the distance between two consecutive zeros of pm(w) close to ãm. So, taking also into account (2.9),
in order to obtain estimates of the form (3.4), the ‘truncation’ of the terms related to the zeros closest to
ãm and ε̃m seems to be necessary.

Proof of Proposition 3.4. In order to prove inequality (3.9), let P ∈PM , M = �(2θ/(θ + 1))m� be the
polynomial of best approximation of f ∈ Cu, where w/u ∈ L1. So, we can write

e∗
m(f )= e∗

m(f − P)+ e∗
m(P).

For the second term at the right-hand side, by (2.13) and (2.16), we have

e∗
m(P)=

∫ +∞

0
P(x)w(x) dx −

j2∑
k=j1

λk(w)P(xk)=
j1∑

k=1

λk(w)P(xk)+
m∑

k=j2

λk(w)P(xk)

� C max
x∈R+\[ε̃θm,ãθm]

|P(x)u(x)|
∫ +∞

0

w(x)

u(x)
d x � C e−cmν‖Pu‖∞ � C e−cmν‖fu‖∞,

where ν is given by (2.8).
While, for the first term we obtain

|e∗
m(f − P)| �

∫ +∞

0
|f − P|(x)w(x) dx +

j2∑
k=j1

λk(w)|f − P|(xk)

� C‖(f − P)u‖∞
∫ +∞

0

w(x)

u(x)
d x

� CEM (f )u,∞,

and inequality (3.9) follows.
Finally, to prove inequality (3.10), it suffices to apply (3.9) and (2.19). �

Proof of Theorem 3.5. We can write the error of the truncated Gaussian rule as

e∗
m(f )= em(f )+

j1∑
k=1

λk(w)f (xk)+
m∑

k=j2

λk(w)f (xk), (5.11)
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where the error of the complete Gaussian rule

em(f )=
∫ +∞

0
f (x)w(x) d x −

m∑
k=1

λk(w)f (xk)= 1

(2m)!γ 2
m

∫ +∞

0
f (2m)(ξx)p

2
m(w, x)w(x) d x

has been estimated in the proof of Theorem 3.2.
For the first sum at the right-hand side of (5.11), we have

j1∑
k=1

λk(w)|f (xk)| � C‖fu‖∞
j1∑

k=1

Δxk(w)
w(xk)

u(xk)
� C‖fu‖∞

∫ ε̃θ̄m

ε̃m

w(x)

u(x)
d x

� C‖fu‖∞
∫ ε̃θ̄m

ε̃m

e−(1−a)x−α
d x,

where 0< θ < θ̄ < 1. Now, the integrand function in the last integral is decreasing and it is bounded by

e−(1−a)/ε̃αm � C e−c(1−a)m(1−1/2β)(α/(α+1/2))
.

Then, for any μ ∈ (0, 1), we obtain

lim
m

(
j1∑

k=1

λk(w)f (xk)

)1/mμ

= 0.

We can proceed in an analogous way to show that

lim
m

⎛
⎝ m∑

k=j2

λk(w)f (xk)

⎞
⎠

1/mμ

= 0.

Hence, taking also into account the proof of Theorem 3.2, we get (3.11). �

In order to prove Theorem 3.6, we need the following proposition.

Proposition 5.2 Let u be the weight in (2.14) and Pm ∈Pm be a polynomial of quasi best approximation
for f ∈ Lp

u, 1 � p � +∞, i.e.,
‖(f − Pm)u‖p � CEm(f )u, p.

Then, if f ∈ W p
r (u), r � 1, we have

‖(f − Pm)
(r)ϕru‖p � C‖f (r)ϕru‖p. (5.12)

Moreover, for any f ∈ Zp
s (u), s> 1, we have

‖(f − Pm)
′ϕu‖p � C

∫ √
am/m

0

Ωr
ϕ(f , t)u, p

t2
dt, r � 2. (5.13)

In both cases C |= C(m, f ).
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Proof. For any f ∈ W p
r (u), we can write

‖(f − Pm)
(r)ϕru‖p � ‖f (r)ϕru‖p + ‖P(r)m ϕ

ru‖p.

Recalling also that (see Mastroianni & Notarangelo, 2013b)

‖P(r)m ϕ
ru‖p � C

(
m√
am

)r

ωr
ϕ

(
f ,

√
am

m

)
u, p

� C‖f (r)ϕru‖p,

inequality (5.12) follows.
Now, let f ∈ Zp

s (u) and {Pm}m be polynomials of quasi best approximation for f ∈ Lp
u. Then the

equality

f − Pm =
+∞∑
k=0

(P2k+1m − P2km)

holds a.e. in R+.
Moreover, using the Bernstein inequality (5.1) and the Jackson inequality (2.17), we obtain

‖(P2k+1m − P2km)
′ϕu‖p � C 2k+1m√

a2k+1m
ωr
ϕ

(
f ,

√
a2km

2km

)
u, p

� Cωr
ϕ

(
f ,

√
a2km

2km

)
u, p

∫ √
a2k m/(2

km)

√
a2k+1m/(2

k+1m)

dt

t2

� C
∫ √

a2k m/(2
km)

√
a2k+1m/(2

k+1m)

ωr
ϕ(f , t)u, p

t2
dt.

Whence, summing on k � 0, we obtain

‖(f − Pm)
′ϕu‖p �

+∞∑
k=0

‖(P2k+1m − P2km)
′ϕu‖p,

where the series at the right-hand side converges, and then

‖(f − Pm)
′ϕu‖p � C

∫ √
am/m

0

ωr
ϕ(f , t)u, p

t2
dt, r> s> 1,

and then (5.13), taking also into account that ωr
ϕ(f , t)u, p ∼Ωr

ϕ(f , t)u, p for f ∈ Zp
s (u). �

Proof of Theorem 3.6. In order to prove inequality (3.12), we first note that∣∣∣∣∣∣
j2∑

k=j1

λk(w)f (xk)

∣∣∣∣∣∣� C‖fw‖L1[xj1 ,xj2 ] + C
√

am

m
‖f ′ϕw‖L1[xj1 ,xj2 ], (5.14)

for any f ∈ W 1
1 (w). In fact, for j1 � k � j2 − 1, we obtain

Δxk|f (xk)|w(xk)�
∫ xk+1

xk

|f (x)|w(x) d x + C
√

am

m

∫ xk+1

xk

|f ′(x)|ϕ(x)w(x) d x
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and

Δxj2 |f (xj2)|w(xj2)�
∫ xj2

xj2−1

|f (x)|w(x) dx + C
√

am

m

∫ xj2

xj2−1

|f ′(x)|ϕ(x)w(x) dx,

since w(x)∼ w(y) and ϕ(x)∼ ϕ(y) for x, y ∈ [xk , xk+1], j1 � k � j2 − 1, i.e., by (2.11), |x − y| �
C√

amxk/m (see Mastroianni & Notarangelo, 2013b). Summing up, on j1 � k � j2 − 1, by (2.13),
inequality (5.14) follows.

Let us now prove (3.12), with f ∈ W 1
1 (w). Letting P ∈PM be the polynomial of best approximation

of f ∈ L1
w, we can write

e∗
m(f )= e∗

m(f − P)+ e∗
m(P). (5.15)

For the second term at the right-hand side, using arguments similar to those in the proof of Proposi-
tion 3.4 and the Nikolskii inequality (5.2), we obtain

|e∗
m(P)| � C e−cmν‖Pw‖∞ � C e−cmν‖Pw‖1 � C e−cmν‖fw‖1.

For the first term in (5.15), using (5.14), we obtain

|e∗
m(f − P)| � C‖(f − P)w‖1 + C

√
am

m
‖(f − P)′ϕw‖1

� CEM (f )w,1 + C
√

am

m
‖(f − P)′ϕw‖1.

Now, for the first term at the right-hand side by the Favard theorem (see Mastroianni & Notarangelo,
2013b), we have

EM (f )w,1 � C
√

am

m
EM (f

′)ϕw,1 � C
√

am

m
‖f ′ϕw‖1.

For the second term at the right-hand side, we use (5.12) and inequality (3.12) follows.
Let us consider the case f ∈ Z1

s (w) and prove inequality (3.13). We can proceed in analogy with the
first part of this proof, taking into account that, by the weak Jackson inequality (2.18), we obtain

EM (f )w,1 � C
√

am

m

∫ √
am/m

0

Ωr
ϕ(f , t)w,1

t2
dt.

For the second term we can use (5.13) and the proof is complete. �

Proof of Lemma 4.1. Let us consider the Lagrange polynomial Lm(w, F), interpolating a continuous
function F at the zeros x1, . . . , xm. By using the relations (see Levin & Lubinsky, 2001, pp. 22–23)

sup
x∈R+

|pm(w, x)
√

w(x) 4
√

|(x − ε̃m)(ãm − x)|| ∼ 1,

sup
x∈R+

|pm(w, x)
√

w(x)| ∼ m
1
6 (1−1/2β)((2α+3)/(2α+1)),

1

|p′
m(w, xk)|

√
w(xk)

∼Δxk
4
√
(xk − ε̃m)(ãm − xk),
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we can easily deduce

‖Lm(w, F)σ‖∞ � Cmτ‖Fσ‖∞, F ∈ Cσ , (5.16)

for some τ > 0, where C |= C(m, f ).
Now, let PM , M = �(θ/(θ + 1))m�, be the polynomial of best approximation for f ∈ Lp

σ and Qm−1 =
L∗

m(w, PM ) ∈P∗
m−1. Hence, we obtain

‖(f − Qm−1)σ‖p � ‖(f − PM )σ‖p + ‖(PM − Qm−1)σ‖p

= ‖(f − PM )σ‖p + ‖[Lm(σ , PM )− L∗
m(σ , PM )]σ‖p

= EM (f )σ ,p +
∥∥∥∥∥∥
∑

xk /∈Zθ ,m

�k(w)PM (xk)σ

∥∥∥∥∥∥
p

,

where �k(w) are the fundamental Lagrange polynomials based on the zeros x1, . . . , xm.
For the second summand at the right-hand side, by using inequalities (5.16) and (2.16), we have

∥∥∥∥∥∥
∑

xk /∈Zθ ,m

�k(w)PM (xk)σ

∥∥∥∥∥∥
p

� Cmτ‖PMσ‖L∞{x/∈[ε̃θm,ãθm]} � C e−cM ν‖PMσ‖∞.

Hence, using the Nikolskii inequality (5.2), the proof is complete. �

In order to prove Theorem 4.3, we will need the following lemma.

Lemma 5.3 For any f ∈ C(R+) ∩ L2√
w, we have

⎛
⎝ j2∑

k=j1

λk(w)f
2(xk)

⎞
⎠

1/2

� C
[
‖f

√
w‖2 +

(√
am

m

)1/2 ∫ √
am/m

0

Ωϕ(f , t)√w,2

t3/2
dt

]
,

where C |= C(m, f ).

Proof. Inequalities analogous to the previous one have been proved in several contexts with different
weight function (see, e.g., Mastroianni & Russo, 1999; Mastroianni & Vértesi, 2006; Mastroianni &
Notarangelo, 2013a). For the reader’s convenience, we will show the main steps of the proof.

Let A = [a, a + δ]. For any continuous function on A, the inequality

δ1/2 max
x∈A

|f (x)| � C
[
‖f ‖L2(A) + δ1/2

∫ δ

0

ω(f , t)L2(A)

t1+1/2
dt

]
,

holds (Ivanov, 1986), where ω denotes the ordinary modulus of smoothness.
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So, with j1 � k � j2, A = Ik = [xk , xk+1] and δ =Δxk ∼ (
√

am/m)
√

xk , we obtain

(Δxk)
1/2|f (xk)| � C

[
‖f ‖L2(Ik) + (Δxk)

1/2
∫ (

√
am/m)

√
xk

0

ω(f , t)L2(Ik)

t1+1/2
dt

]
.

Taking into account that w(x)∼ w(xk) if x ∈ Ik (see Mastroianni & Notarangelo, 2013b), making some
simple computation, for j1 � k � j2, we obtain

Δxk|f (xk)
√

w(xk)|2 � C
[
‖f

√
w‖2

L2(Ik)
+
(√

am

m

)∫ (
√

am/m)
√

xk

0

ω(f , t
√

xk)
√

w,Ik

t3/2
dt

]
,

where
ω(f , t

√
xk)

√
w,Ik

= sup
0<h�t

√
xk

‖Δh(f )
√

w‖L2(Ik).

Moreover, for any g ∈ W 2
1 (

√
w), we have

ω(f , t
√

xk)
√

w,Ik
� C[‖(f − g)

√
w‖L2(Ik) + t

√
xk‖g′√w‖L2(Ik)]

� C[‖(f − g)
√

w‖L2(Ik) + t‖g′ϕ
√

w‖L2(Ik)]

=: Ak(t)

and then

Δxk|f (xk)
√

w(xk)|2 � C
[
‖f

√
w‖2

L2(Ik)
+
(√

am

m

)∫ (
√

am/m)
√

xk

0

Ak(t)

t3/2
dt

]
.

Summing up, on j1 � k � j2 and using the Buniakovski inequality (see Hardy et al., 1952, Theorem 201,
p. 148) (∑

k

(∫
fk(x) d x

)p
)1/p

�
∫ (∑

k

f p
k (x)

)1/p

d x, 1< p<+∞,

we obtain⎛
⎝ j2∑

k=j1

Δxk|f (xk)
√

w(xk)|2
⎞
⎠

1/2

� C
{

‖f
√

w‖L2[xj1 ,xj2+1] +
(√

am

m

)1/2 ∫ √
am/m

0

(
∑j2

k=j1 Ak(t)2)1/2

t3/2
dt

}
.

Since ⎛
⎝ j2∑

k=j1

Ak(t)
2

⎞
⎠

1/2

� C[‖(f − g)
√

w‖L2[xj1 ,xj2+1] + t‖g′ϕ
√

w‖L2[xj1 ,xj2+1]]

and, for 0< h � t � √
am/m, we have [xj1 , xj2+1] ⊂ [h1/(α+1/2), ch−1/(β−1/2)], taking the infimum on g,

we obtain ⎛
⎝ j2∑

k=j1

Ak(t)
2

⎞
⎠

1/2

� CK(f , t)√w,2 ∼Ωϕ(f , t)√w,2.

Hence, our claim follows, taking also into account that λk(w)∼Δxkw(xk), j1 � k � j2. �
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Proof of Theorem 4.3. Let P ∈P∗
m−1 be the polynomial of best approximation for f ∈ L2√

w. We can
write

‖[f − L∗
m(w, f )]

√
w‖2 � ‖(f − P)

√
w‖2 + ‖L∗

m(w, f − P)
√

w‖2.

For the first term at the right-hand side, by Lemma 4.1 and inequality (2.18), we have

‖(f − P)
√

w‖2 � C{EM (f )√w,2 + e−cmν‖f
√

w‖2}

� C
{(√

am

m

)1/2 ∫ √
am/m

0

Ωr
ϕ(f , t)√w,2

t3/2
dt + e−cmν‖f

√
w‖2

}
.

For the second term, we obtain

‖L∗
m(w, f − P)

√
w‖2 =

⎛
⎝ j2∑

k=j1

λk(w)(f − P)2(xk)

⎞
⎠

1/2

� C
[
‖(f − P)

√
w‖2 +

(√
am

m

)1/2 ∫ √
am/m

0

Ωϕ(f − P, t)√w,2

t3/2
dt

]
.

Hence, it remains to estimate the last term. Since, using arguments similar to those in Mastroianni &
Russo (1999, p. 280), one can show that∫ √

am/m

0

Ωϕ(f − P, t)√w,2

t3/2
dt � C

∫ √
am/m

0

Ωr
ϕ(f , t)√w,2

t3/2
dt,

we obtain

‖L∗
m(w, f − P)

√
w‖2 � C

{(√
am

m

)1/2 ∫ √
am/m

0

Ωr
ϕ(f , t)√w,2

t3/2
dt + e−cmν‖f

√
w‖2

}
,

and inequality (4.4) follows. �

Proof of Theorem 4.4. Let us first prove (4.6). We can write

‖L∗
m(w, f )‖W 2

r (
√

w) � ‖f ‖W 2
r (

√
w) + ‖f − L∗

m(w, f )‖W 2
r (

√
w).

Hence, we have to estimate the last term at the right-hand side. By definition, we have

‖f − L∗
m(w, f )‖W 2

r (
√

w) = ‖[f − L∗
m(w, f )]

√
w‖2 + ‖[f − L∗

m(w, f )](r)ϕr√w‖2.

The first summand at the right-hand side can be estimated by (4.5). For the second term, letting Pm be
the polynomial of best approximation of f , we obtain

‖[f − L∗
m(w, f )](r)ϕr√w‖2 � ‖[f − Pm](r)ϕr√w‖2 + ‖[Pm − L∗

m(w, f )](r)ϕr√w‖2

� C‖f (r)ϕr√w‖2 + C
(

m√
am

)r

{‖[Pm − f ]
√

w‖2 + ‖[f − L∗
m(w, f )]

√
w‖2}

� C‖f ‖W 2
r (

√
w),
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using Proposition 5.2, the Bernstein inequality (5.1) the Jackson inequality (2.17) and the error
bound (4.5).

In order to prove (4.7), we can proceed in a similar way. We omit the details. �

6. Computation of the Mhaskar–Rahmanov–Saff numbers

In this section, we discuss a method for computing the MRS numbers εt = εt(w) and at = at(w) for the
weight function (2.1). These numbers are defined by (2.2) and (2.3), where Q′(x)= −αx−α−1 + βxβ−1.

After the linear transformation

x = εt + at

2
+ at − εt

2
ξ , −1< ξ < 1,

i.e., x = s(1 + Aξ), where

at − εt

at + εt
= A,

at + εt

2
= s,

we obtain (at − x)(x − εt)= A2s2(1 − ξ 2), and then (2.2) and (2.3) reduce to

t = βsβψ(A;β)− αs−αψ(A; −α) (6.1)

and

0 = βsβ−1ψ(A;β − 1)− αs−α−1ψ(A; −α − 1), (6.2)

respectively, where we introduced the function ψ : (−1, 1)→ R by

ψ(A; γ )= 1

π

∫ 1

−1

(1 + Aξ)γ√
1 − ξ 2

dξ ,

with an arbitrary parameter γ ∈ R. This function can be expressed in terms of the hypergeometric
function

2F1(a, b; c; z)=
+∞∑
k=0

(a)k(b)k
(c)k

zk

k!

as follows:

ψ(A; γ )= 2F1

(
1 − γ

2
, −γ

2
; 1; A2

)
.

Here, (a)k denotes Pochhammer’s symbol that is defined by

(a)k = a(a + 1) · · · (a + k − 1)= Γ (a + k)

Γ (a)
, (a)0 = 1,

where Γ is the Euler gamma function.
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For given α and β, from (6.2) we obtain

s =
(
α

β
· ψ(A; −α − 1)

ψ(A;β − 1)

)1/(α+β)
, (6.3)

and then, using (6.1) we obtain the following equation for finding A for a given t,

G(A;α,β)+ G(A; −β, −α)= t, (6.4)

where

G(A;α,β)= β

(
α

β
· ψ(A; −α − 1)

ψ(A;β − 1)

)β/(α+β)
ψ(A;β).

Finally, the MRS numbers are given by at = s(1 + a) and εt = s(1 − a), where A = a is the unique
solution of the nonlinear equation (6.4) in the interval (0, 1) and s is given by (6.3). The corresponding
Mathematica code can be given in the following form:

MRSNumbers[t_,alpha_,beta_]:= Module[{psi,funG,al,be,ga,A,a,s},
psi[A_,ga_]:= Hypergeometric2F1[(1-ga)/2,-ga/2,1,A^2];
funG[A_,al_,be_]:=be(al/be psi[A,-al-1]/psi[A,be-1])^(be/(al+be))
psi[A,be];
a=A/. FindRoot[funG[A,alpha,beta]+funG[A,-beta,-alpha]==t,
{A,1-10^(-6)}];
s=(alpha/beta psi[a,-alpha-1]/psi[a,beta-1])^(1/(alpha+beta));
Return[{s(1+a),s(1-a),a,s}]];

As a starting value for solving the nonlinear equation (6.4) we can take some value very close to 1,
for example, 1 − 10−6.

The MRS numbers at and εt, for α = 1 and β = 1.2, 1.4 and 1.9 are displayed in Fig. 1. The cases
when β = 1.5 and α= 0.8, 1 and 1.5 are presented in Fig. 2. Note that the graphs of at then almost
coincide.

20 40 60 80 100 120 140
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Fig. 1. The MRS numbers at (left) and εt (right) for α = 1 and β = 1.2 (red line), β = 1.4 (blue line) and β = 1.9 (black line).
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Fig. 2. The MRS numbers at (left) and εt (right) for β = 1.5 and α = 0.8 (red line), α = 1 (blue line) and α = 1.5 (black line).

7. Numerical construction of quadrature rules

In this section, we consider numerical construction of the Gaussian quadrature formulae with respect to
the weight function w(x)= w(α,β)(x)= e−x−α−xβ on R+. Thus, we want to construct the parameters of
m-point Gaussian quadrature,

∫ +∞

0
f (x)w(x) dx =

m∑
k=1

λkf (xk)+ em(f ), (7.1)

the nodes xk = xm,k(w) and Christoffel numbers λk = λm,k(w), for an arbitrary m � n. In such a proce-
dure, we need the moments

μk =μ
(α,β)
k =

∫ +∞

0
xkw(α,β)(x) dx, k = 0, 1, . . . , 2n − 1, (7.2)

in order to construct the recursive coefficients αk = αk(w(α,β)) and βk = βk(w(α,β)), k � n − 1, in
the three-term recurrence relation for the corresponding (monic) orthogonal polynomials πk(x)=
πk(w(α,β); x),

πk+1(x)= (x − αk)πk(x)− βkπk−1(x), k = 0, 1, . . . , n − 1, (7.3)

with π0(x)= 1 and π−1(x)= 0. In that way, we have access to all polynomials πk(w(α,β); x) of degree at
most n and a possibility for constructing Gaussian rules for every m � n points. Usually, the Chebyshev
method of moments (or modified moments) is not applicable in a standard machine arithmetic for a
sufficiently large m, since the process is ill-conditioned, especially for the weights on the infinite
intervals as in our case. Then, a construction of recursive coefficients must be carefully realized by an
application of the discretized Stieltjes–Gautschi procedure (Gautschi, 1982). However, recent progress
in symbolic computation and variable–precision arithmetic now makes it possible to generate the coef-
ficients αk and βk in the three-term recurrence relation (7.3) directly by using the standard method of
moments in sufficiently high precision. Respectively, symbolic/variable–precision software for orthog-
onal polynomials is available (Gautschi’s package SOPQ in Matlab (see Gautschi, 2004, 2006) and the
Mathematica package OrthogonalPolynomials (see Cvetković & Milovanović, 2004;
Milovanović & Cvetković, 2011)). Thus, all that is required is a procedure for (symbolic) calcu-
lation of the moments in variable–precision arithmetic.
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Thus, in order to overcome the numerical instability in the procedure for generating the recursion
coefficients αk and βk in the Mathematica package OrthogonalPolynomials,

{alpha,beta}=aChebyshevAlgorithm[moments,WorkingPrecision-> WP], (7.4)

we must put WP to be sufficiently large, so that the relative errors in these coefficients satisfy∣∣∣∣Δαk

αk

∣∣∣∣< ε,
∣∣∣∣Δβk

βk

∣∣∣∣< ε, k = 0, 1, . . . , n − 1, (7.5)

where ε is the required accuracy. The list of moments (moments) contains 2n elements and it can be
given in a symbolic form.

In the case α = β, i.e., w(x)= w(α,α) = e−x−α−xα on R+, we can calculate the moments (7.2) in the
form

μk =μ
(α,α)
k =

∫ +∞

0
xkw(x) dx = 2

α
K(k+1)/α(2), k = 0, 1, 2, . . . , (7.6)

where Kr(z) is the modified Bessel function of the second kind. In the Mathematica Package this
function is implemented as BesselK[r,z], and its value can be evaluated with an arbitrary precision.

The case α |=β is more complicated, especially for symbolic computations, but in some cases
for integer (or rational) values of parameters, the moments can be expressed in terms of the Meijer
G-function. In a standard case, the Meijer G-function is defined as (see Bateman & Erdélyi, 1981, p.
207)

Gm,n
p,q

(
z

∣∣∣∣ a1, . . . , ap

b1, . . . , bq

)
≡ Gm,n

p,q

(
z

∣∣∣∣ a1, . . . , an; an+1, . . . , ap

b1, . . . , bm; bm+1, . . . , bq

)

= 1

2π i

∫
L

∏m
ν=1 Γ (bν − s)

∏n
ν=1 Γ (1 − aν + s)∏q

ν=m+1 Γ (1 − bν + s)
∏p
ν=n+1 Γ (aν − s)

zsds,

where an empty product is interpreted as 1, 1 � m � q, 1 � n � p, and parameters aν and bν are such that
no pole of Γ (bν − s), ν = 1, . . . , m, coincides with any pole of Γ (1 − bμ + s), μ= 1, . . . , n. Roughly
speaking, the contour L separates the poles of functions Γ (b1 − s), . . . , Γ (bm − s) from the poles of
Γ (1 − a1 + s), . . . , Γ (1 − an + s). A discussion on three different paths of integration is given in
Bateman & Erdélyi (1981, p. 207). An alternative equivalent definition of the Meijer G-function can
be done in terms of inverse Mellin transform (see Prudnikov et al., 1990, p. 793). The Meijer G-
function is a very general function which reduces to simpler special functions in many common cases. In
Mathematica, the Meijer G-function is implemented as

MeijerG[{{a1,...,an},{an1,,...,ap}},{{b1,...,bm},{bm1,...,bq}},z]

and it is suitable for both symbolic and numerical manipulation and its value can be evaluated with an
arbitrary precision. In many special cases, MeijerG is automatically converted to other functions.

For only some specific values of α and β, we mention here the corresponding moments μ(α,β)
k

expressed in terms of the Meijer G-function. For example,

μ
(1,2)
k = 1

2k+2
√
π

G3,1
2,4

⎛
⎝1

4

∣∣∣∣∣∣
−; −

−k + 1

2
, −k

2
, 0; −

⎞
⎠ , k � 0 (7.7)
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and

μ
(2,1)
k = 2k

√
π

G3,1
2,4

⎛
⎝1

4

∣∣∣∣∣∣
−; −

0,
k + 1

2
,

k + 2

2
; −

⎞
⎠ , k � 0.

For α = 1 and β = 3, we have

μ
(1,3)
k = 1

2 · 3k+3/2π
G4,1

2,5

⎛
⎝ 1

27

∣∣∣∣∣∣
−; −

−k + 1

3
, −k

3
, −k − 1

3
, 0; −

⎞
⎠ , k � 0,

while for α = 3 and β = 1,

μ
(3,1)
k = 3k+1/2

2π
G4,1

2,5

⎛
⎝ 1

27

∣∣∣∣∣∣
−; −

0,
k + 1

3
,

k + 2

3
,

k + 3

3
; −

⎞
⎠ , k � 0.

In the case of rational parameters, α = 1/2 and β = 3/2, the moments are

μ
(1/2,3/2)
k = 1

32k+5/2π
G4,1

2,5

⎛
⎝ 1

27

∣∣∣∣∣∣
−; −

−2k + 2

3
, −2k + 1

3
, −2k

3
, 0; −

⎞
⎠ , k � 0,

and for α= 1/3 and β = 3/2, we have z = 1/1549681956 = 1/(4 · 99) and bν = b(k)ν = −(3k + 4 −
ν)/9, ν = 1, . . . , 9, b10 = 0, b11 = 1

2 , so that

μ
(1/3,3/2)
k = 1

16 · 36k+6π9/2
G11,1

2,12

(
1

4 · 99

∣∣∣∣∣ −; −
b1, b2, b3, b4, b5, b6, b7, b8, b9, 0, 1

2 ; −

)
.

8. Numerical examples

In this section, we first consider the numerical construction of Gaussian quadratures with respect to the
weight function w(x)= w(2,2)(x)= e−x−2−x2

on R+, and then apply them to calculating some integrals.
In order to generate quadratures for m � n = 300, we need the first 600 moments μk =μ

(2,2)
k , given

by (7.6) or in the Mathematica package OrthogonalPolynomials (see Cvetković & Milovanović,
2004; Milovanović & Cvetković, 2011) with the command

moments=Table[BesselK[(k+1)/2,2], {k,0,600}].

Suppose that we need a very high precision in quadrature parameters, e.g., 70 decimal digits. Then,
in order to overcome the numerical instability in the procedure for generating the recursion coefficients
αk and βk , we must put WP=400 in (7.4). It gives all recursive coefficients for k < n = 300, with
relative errors ε < 10−72 (see (7.5)), which is easy to check by taking some bigger WorkingPrecision,
for example, WP=500. As we can see, the calculation of the recursive coefficients is a very sensitive
process, which here, in the worst case, causes a loss of about 328 decimal digits! Note that in the
case WP=500, the all recursive coefficients are determined with ε < 10−172. But, when we need, for
example, only the first 100 coefficients, with ε < 10−52, then it is enough to put WP=150. In that case,
the loss is about 98 decimal digits.
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Table 1 Relative errors in Gaussian sums for m = 5(5)60

m rm(f1) rm(f2)

5 2.36(−6) 1.18(−10)
10 1.96(−10) 5.77(−19)
15 4.68(−14) 9.58(−24)
20 2.14(−17) 8.39(−30)
25 1.55(−20) 1.05(−34)
30 1.58(−23) 4.45(−40)
35 2.11(−26) 4.52(−45)
40 3.56(−29) 2.71(−49)
45 7.26(−32) 1.09(−53)
50 1.75(−34) 4.92(−58)
55 4.89(−37) 2.74(−62)
60 1.55(−39) 1.95(−66)

Example 8.1 We apply Gaussian quadratures to calculating the integrals I(f )= ∫ +∞
0 f (x) e−1/x2−x2

d x
for

f (x)= f1(x)= cosh

(
1

x + 1

)
cosh(x − 1) and f (x)= f2(x)= arctan

(
1 + x

4

)
.

The values of these integrals can be evaluated with a high precision using Mathematica function
NIntegrate,

I(f1)= 0.145675081234175234662385034933527957846278353 . . . ,

I(f2)= 0.059190601605211612059097576887285181920420759787912939501099229334394 . . . .

Relative errors in the corresponding Gaussian sums Qm(f ), given by rm(f )= |(Qm(f )− I)/I(f )|, are
presented in Table 1 for m = 5(5)60. Numbers in parentheses indicate decimal exponents, for example
2.36(−6)= 2.36 × 10−6. The convergence for both smooth functions is very fast.

Example 8.2 We apply now the same quadratures to calculating the corresponding integral for the
function f (x)= | cos x|5/4, with w(x)= e−x−2−x2

. In the second column of Table 2, we present the
relative errors of the Gaussian rule for m = 10(10)50 and m = 100(50)300. We note that f ∈ Z∞

5/4(
√

w).
So, by Proposition 3.1 and (2.20), the results in Table 2 are concordant with the theoretical order of
convergence, that is m−15/16.

In the third and fourth column of Table 2, we show the indices j1 and j2 (see definition (3.7)) and
relative errors obtained for the ‘truncated’ Gaussian rule with θ = 1/10 and θ = 1/20, respectively.
Finally, we compare these results with a different kind of truncation: in the Gaussian rule, we omit the
terms with index k such that λk(w)|f (xk)|< ε, being ε the precision to be achieved in the computations.
In the last column, we show the indices and the relative errors for this kind of truncated rule, choosing
ε= 10−5.

For calculating the relative errors, we used as exact value

I =
∫ +∞

0
| cos x|5/4e−x−2−x2

d x = 0.04552779434634736 . . .
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Table 2 Relative errors in quadrature sums for m = 10(10)50 and m = 100(50)300

θ = 1/10 θ = 1/20 ε= 10−5
Gaussian rule

m rm(f ) (j1, j2) rm(j1, j2) (j1, j2) rm(j1, j2) (j1, j2) rm(j1, j2)

10 3.70(−3) (1, 7) 4.54(−3) (1, 6) 1.65(−2) (1, 8) 3.71(−3)
20 1.74(−3) (2, 12) 2.58(−3) (2, 10) 1.34(−2) (1, 13) 1.76(−3)
30 2.07(−3) (2, 17) 2.01(−3) (3, 15) 4.37(−4) (2, 17) 2.01(−3)
40 1.89(−3) (3, 23) 1.97(−3) (4, 19) 4.08(−3) (3, 20) 2.14(−3)
50 1.29(−4) (3, 28) 1.21(−4) (5, 23) 2.11(−3) (4, 24) 1.45(−4)
100 3.51(−4) (5, 55) 3.51(−4) (7, 45) 2.86(−4) (7, 38) 1.37(−5)
150 1.92(−4) (7, 82) 1.92(−4) (9, 68) 1.83(−4) (11, 51) 3.10(−4)
200 3.21(−6) (8, 109) 3.21(−6) (11, 90) 7.58(−7) (14, 62) 6.45(−4)
250 8.04(−5) (10, 136) 8.04(−5) (13, 112) 7.94(−5) (18, 73) 7.79(−4)
300 1.03(−4) (11, 163) 1.03(−4) (15, 134) 1.04(−4) (21, 83) 1.04(−3)

obtained by using Mathematica function NIntegrate and the following decomposition

I = I0 +
+∞∑
k=0

Ik

=
∫ π/2

0
(cos x)5/4w(x) d x +

+∞∑
k=0

∫ π

0
(−1)k

(
cos
(

t + (2k − 1)
π

2

))5/4
w
(

t + (2k − 1)
π

2

)
dt,

i.e.,

I =
∫ π/2

0
(cos x)5/4w(x) d x +

+∞∑
k=0

∫ π

0
(sin t)5/4w

(
t + (2k − 1)

π

2

)
dt,

where

I0 = 0.042224454817570724303 . . . ,

I1 = 0.003303339527329462572 . . . ,

I2 = 1.447179253891697823900 . . .× 10−12,

I3 = 3.561804871271085508749 . . .× 10−30, etc.

Example 8.3 Finally, we consider the integral I(γ )= ∫ +∞
0 e−1/x−x2

cos(γ x) dx, with an oscillatory
function f (x)= cos(γ x). For γ = 20, 40 and 50, the values of I(γ ) (with 50 decimal digits in man-
tissa) are

I(20)= 1.3434119769068606998768292975416538163974512371710 . . . × 10−4,

I(40)= −1.1557245733888179431855415988485607276183305580618 . . . × 10−5,

I(50)= 7.6826375869578254631463184451896978291202126322514 . . . × 10−7.
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Fig. 3. Graphs of the weight function w(1,2)(x), with parameters α = 1 and β = 2 (dashed line), and the integrand w(1,2)(x) cos 50x
(solid violet line).

Table 3 Maximal relative errors in recursion coefficients αk and βk , k � 150, obtained by
(7.4), with the WorkingPrecision → WP, and the corresponding running time

WP maxk |Δαk/αk| maxk |Δβk/βk| Running time

50 2.08(3) 1.74(7) 1′ 19′′
100 5.72(2) 1.31(6) 1′ 24′′
150 2.10(1) 1.58(3) 1′ 35′′
200 3.83(−40) 2.02(−40) 1′ 49′′
250 1.33(−89) 6.52(−90) 2′ 10′′
300 2.33(−139) 1.25(−139) 2′ 43′′
350 1.01(−189) 5.65(−190) 3′ 17′′
400 1.55(−239) 8.63(−240) 3′ 58′′
450 4.88(−289) 2.66(−289) 4′ 58′′
500 6′ 07′′

In Fig. 3, we present the graphs of the weight function w(1,2)(x)= e−1/x−x2
and the integrand

w(1,2)(x) cos 50x.
In order to construct the m-point Gaussian quadrature rule (7.1) for calculating oscillatory

integrals I(γ ), with respect to the weight function w(1,2), for each m � n = 150, we need the moments
μ
(1,2)
k , k � 300, which are given in terms of Meijer G-function in symbolic form (7.7). This function

can be evaluated with an arbitrary precision in Mathematica. Taking the Working Precision in
(7.4), as WP = 50(50)500, the maximal relative errors in recursion coefficients, as well as the corres-
ponding running times, are given in Table 3. The running time is done in the fourth column, and
it is expressed in minutes and seconds. The running time is evaluated by the function Timing in
Mathematica and it includes only CPU time spent in the Mathematica kernel. Such a way may
give different results on different occasions within a session, because of the use of internal system
caches. In order to generate worst-case timing results independent of previous computations, we used
the command ClearSystemCache[]. All computations were performed in Mathematica, Ver. 8.0.4,
on MacBook Pro Retina, OS X 10.8.2.
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Table 4 Relative errors in Gaussian approximations for integrals I(γ ) for γ = 20, 40, 50, 60

m γ = 20 γ = 40 γ = 50 γ = 60

40 6.07(−4)
50 1.88(−8)
60 1.15(−13) 1.10(3)
70 5.46(−20) 1.42(2)
80 9.72(−27) 1.49(0)
90 1.55(−33) 1.16(−1)
100 7.41(−41) 1.06(−3) 1.08(3)
110 7.18(−49) 4.50(−6) 9.73(1)
120 5.63(−59) 2.86(−8) 1.82(0)
130 5.29(−66) 1.83(−11) 2.74(−1) 5.60(2)
140 9.57(−76) 2.91(−15) 6.88(−3) 5.41(1)
150 1.70(−84) 2.61(−18) 8.76(−5) 7.44(0)

Thus, if we want to construct Gaussian quadratures (7.1), for m � n = 150 with a high precision,
for example Precision->85, in order to use them for oscillatory integrals, we use the recursion coef-
ficients obtained for WP= 250. In that case, we obtain the Gaussian parameters by the procedure of
Golub & Welsch (1969), realized in the Mathematica Package OrthogonalPolynomials as

aGaussianNodesWeights[m,alpha,beta,WorkingPrecision->90,Precision->85].

It means that we can compute the parameters (nodes and weights) in all m-point Gaussian formulae for
m � n = 150 with the same precision, because the Golub–Welsch algorithm is well conditioned. The
running time for constructing 15 Gaussian formulas for m = 10(10)150 is about 7 s. An application
of such formulas to the oscillatory integrals I(γ ), for γ = 20, 40, 50, 60, gives approximations, with
relative errors presented in Table 4. As we can see, these formulas (for m � 150) practically cannot be
applied for calculating integrals I(γ ) for γ > 50.
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