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Abstract

The understanding of biological systems like cells and tissues is increasingly taking
advantage of tools from quantitative sciences, which can provide powerful instruments
to unravel complex mechanisms. In this respect, the emerging field of mechanobiology,
that aims at analysing how mechanics affects the cellular and sub-cellular processes,
represents a prominent example in which a combination of efforts from several disciplines
is fundamental. The contribution of mathematical models to the description of biomedical
phenomena can provide a notable support to the research process: indeed, they can be
fruitfully employed to reproduce physiological and pathological conditions in silico, and
to perform simulations to support clinical observations. Stimulated by these facts, in this
Thesis we introduce some models to capture reorganisation, growth, and active processes
in cells and tissues, with particular emphasis on their mechanical behaviour. First of all, we
deal with the response of cells to external mechanical stimuli, motivated by experimental
evidence showing that cells are able to reorganise their cytoskeleton as a reaction to external
forces or deformations. Indeed, if cells are placed on a substrate that is cyclically stretched,
a reorientation of the cytoskeletal fibres is observed, until a stable configuration is reached.
To get insight into such a reorganisation process, which is relevant in tissue engineering
and in the understanding of some diseases, we propose different types of models grounded
on Continuum Mechanics. After a review of the experimental and modelling literature,
we employ tools from nonlinear elasticity, active remodelling, and linear viscoelasticity to
capture some relevant experimental observations. We find that strain energies belonging
to a very general class all give rise to the same preferential orientations of cells on two-
dimensional substrates, corresponding to the observed ones. Moreover, a remodelling
framework for an anisotropic material with two fibre families is introduced and applied to
the problem of cytoskeletal alignment. Viscoelastic effects are then considered to capture
the effect of the deformation frequency on the cell realignment process.

Then, we consider another problem related to the cellular response to mechanical
stimuli, which is the active contractility of axons. In fact, experimental evidence suggests
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that the axonal cortex, i.e., the external coating of axons, is able to actively contract
and to exert compression on the inner part. This capability seems related to the active
regulation of the axon diameter which is observed in some experiments. We describe
these phenomena by following an active strain approach, in which both the circumferential
and axial contractility of the axonal cortex are considered. A model is derived on a
thermodynamically consistent basis and used to simulate the stretching of axons and
drug-induced alterations of their cytoskeletal structure, showing a good agreement with
experiments.

Finally, at the tissue scale, we address the problem of providing a mechanical descrip-
tion of brain tumour growth inside the brain. In fact, the effect of solid stresses in addition
to fluid pressure has been proved to be harmful for patients. These negative repercussions
are also amplified in brain tissue, which is extremely soft and confined by the skull. To
study these issues, we propose a mathematical model of tumour growth based on mixture
theory, to account for solid and fluid components, and morphoelasticity, to describe growth-
related distortions. Both the healthy brain tissue and the tumour are treated as hyperelastic
solids, so as to quantify the displacement and stress induced by cancer growth. Moreover,
we perform simulations on a realistic brain geometry, reconstructed from patient-specific
data, to underline the importance of a detailed mechanical description of brain tumour
growth.
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Chapter 1

Introduction

1.1 Biological Background and Motivation

In the last sixty years, dramatic advances have been made in the fields of biology and
biomedical sciences. The development of modern imaging techniques, sophisticated
instruments, and effective drugs consistently improved our understanding of biological
systems both in physiological and pathological conditions at all scales, and especially at
the microscopic one.

Nevertheless, the study of biological organisms still faces a number of complex and
intriguing challenges, which require a combination of efforts from several disciplines to be
addressed. In this respect, the emerging field of mechanobiology, that aims at analysing
how mechanics affects cellular and sub-cellular processes, involves the interaction of
mathematics, physics, engineering, and chemistry [180, 186]. Furthermore, mathematical
models and their computational counterparts started to be increasingly more involved
into the understanding of biomedical issues, since they can provide tools to speed up
the research process. As life sciences become more quantitative, the support of models
can be of help to identify the most relevant mechanisms, to recreate physiological and
pathological conditions in silico, to perform realistic simulations, and possibly to tailor
effective therapies to patients.

In particular, within the modelling context, the importance of mechanics at all scales
has been underscored in recent years. At the cell level, we already mentioned the increasing
development of mechanobiology, which allowed to get a deeper insight into how a cell
reacts to external forces and mechanical stimuli. Indeed, the key role of electro-chemical
signals in cellular processes had been known for many years, but more recently the interplay



2 Introduction

Fig. 1.1 In physiological conditions, cells in different tissues and organs are tuned to the specific
mechanical properties of their environment. For instance, given that the brain is much softer than
bone tissue, neurons are found to grow and survive preferentially in very soft matrices. However,
pathological situations like the occurrence of tumours might alter the stiffness of the tissue, and in
turn affect the correct functioning of its cells. Figure taken from [56].

with mechanics has been put in evidence and attracted substantial research interest [56, 147].
The cell was shown to be able to react to imposed forces and to mechanical alterations
of its environment, through a process named mechanotransduction. For instance, the
cell can adapt its structure to changes in the substrate or matrix stiffness [56, 149] and
can in general respond to mechanical cues which may result in cellular differentiation
[271, 305, 382], proliferation [123, 366], and reorientation [226]. As shown in Fig. 1.1,
given that different tissues in the body exhibit different stiffnesses, each cell type is tuned to
the material properties of the tissue in which it is found. For instance, neurons and neural-
type cells show optimal growth and differentiation in very soft environments, coherently
with the extreme softness of the brain. Instead, differentiation and survival of osteoblasts
is favoured by a rigid matrix mimicking bone tissue. However, changes in rigidity may
happen as a consequence of pathologies like tumours, leading to alterations in the optimal
mechanical environment of a cell, that in turn provokes a change in its phenotype [56].
Moreover, in addition to cancer, several diseases like atrial fibrillation, intimal hyperplasia,
and liver fibrosis appear to be related to alterations in the mechanotransduction process
[180]. Therefore, it is fundamental to obtain insights into the cell behaviour following a
mechanical alteration, and mathematical models can provide important clues.

Mechanics is however crucial also at the tissue and organ scale, as highlighted in
Fig. 1.1. Indeed, the knowledge of their material properties turns out to be necessary in
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tissue engineering applications, where artificial constructs must be designed as realistically
as possible. In this respect, there exists a feedback between the properties of a tissue and the
orientation of the cells inside it, which can be altered thanks to mechanical cues, as we will
extensively discuss in this Thesis. Then, in the context of tumour growth, recent discoveries
suggest that a relevant role is played by solid stresses in the cancer micro-environment,
in addition to fluid pressure [269, 317]. Advances in Magnetic Resonance Elastography
techniques [262, 339] may allow to get detailed information on tissue stiffness, though
the field is currently under investigation. A realistic reproduction of tissue properties is
also mandatory to perform simulations which aim at building personalised therapeutic
strategies.

Motivated by these observations, in this Thesis we focus on the mathematical modelling
of cells and tissues, with particular emphasis on their mechanical behaviour in physio-
logical and pathological processes. Specifically, we firstly deal with the cell cytoskeletal
reorganisation that happens as a consequence of external forces or deformations, which
is a relevant issue in tissue engineering and in the understanding of some diseases, like
neurodegeneration. Then, we move to the macroscale and investigate tumour growth
happening in the brain from a mechanical perspective. The mathematical description of
such phenomena poses several modelling challenges, since biological materials exhibit
nonlinear and active behaviours that should be taken properly into account. We will
therefore deal with structural reorganisation and active responses of cells, as well as with
growth and remodelling subsequent to tumour proliferation.

1.2 Mechanical Framework and Notation

Before moving to the main body of the Thesis, we collect in this Section some basic
notions of Continuum Mechanics that will be widely used in the following, alongside with
the employed notation. Additional instruments will be introduced in subsequent Chapters,
whenever needed.

1.2.1 Kinematics and Balance Equations

We denote by Ω0 a region of the three-dimensional Euclidean space E which identifies the
reference configuration of a body. We refer to a point X ∈ Ω0 as a material point, and its
coordinates will be called material or Lagrangian coordinates. For an open time interval T ,
we consider the time-dependent smooth map χχχ : Ω0 ×T → E , called motion. Such a map
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assigns to each point X ∈ Ω0 and each time instant t ∈ T a point x = χχχ(X, t), determining
the current configuration Ω = χχχ(Ω0, t) of the body at time t. We will sometimes refer to x
as the spatial or Eulerian coordinate of the point X.

As a notational convention, we will distinguish between differential operators in
material and spatial coordinates. In particular, we will denote by Grad and Div the material
gradient and material divergence, respectively. Instead, ∇ and ∇· will be employed for the
spatial gradient and spatial divergence, respectively.

With this notation, we indicate by F=Grad χχχ the deformation gradient. Its determinant,
also called Jacobian, is denoted by J := detF > 0 and needs to be strictly positive for
physical consistence. The deformation of a continuum can be equivalently described
using the displacement field u : Ω0 ×T → V , with V the translation space of E , such that
x = X+u(X, t). Hence, the deformation gradient can be rewritten as

F= I+Gradu , (1.1)

where I denotes the second order identity tensor. By definition, the deformation gradient
maps material vectors to spatial vectors, that is, if dX is an infinitesimal vector in the tangent
space at X ∈ Ω0, the corresponding infinitesimal vector in the deformed configuration is

dx = FdX. (1.2)

Moreover, the Jacobian of the deformation is related to local volume changes in the body,
so that

dV = JdV0 , (1.3)

where dV and dV0 denote volume elements in the current and reference configurations,
respectively. Finally, the deformation of surface elements from the reference to the current
configuration is described by Nanson’s formula:

ndΣ= JF−Tn∗ dΣ0 , (1.4)

in which dΣ is an element of area in the current configuration, with outward normal n, and
dΣ0 is an element of area in the reference configuration, with outward normal n∗. We also
introduce the right Cauchy-Green tensor C := FTF, which represents the metric tensor of
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the embedding of Ω0 onto E , and the Green-Lagrange tensor

E :=
1
2
(C− I) . (1.5)

The invariants of C, which will be widely employed in the next Chapters, are defined as
[327]

I1 := trC , I2 :=
1
2
[
(trC)2 − trC2] , I3 := det C ,

I4 := C : N⊗N = N ·CN I5 := C2 : N⊗N = N ·C2N ,

I6 := C : M⊗M = M ·CM , I7 := C2 : M⊗M = M ·C2M ,

I8 := (N ·M)(M ·CN) ,

(1.6)

where N⊗N and M⊗M, with N,M unit vectors, are the line fields representing the
preferential directions of anisotropy in the reference configuration of the material, whereas
⊗ stands for the dyadic product, (·) for the standard scalar product between vectors, and
: for the double contraction between second-order tensors. We notice that two different
definitions of the invariant I8 are found in the literature. In particular, the definition
I8 := M ·CN is sometimes employed instead of the one reported in Eq. (1.6) [168, 276].
The definition of I8 in Eq. (1.6) turns out to be automatically invariant under change of
sign of either direction vector, which might be a desired property when working with fibres
that do not have a directional orientation. On the other hand, if the definition of Eq. (1.6)
is adopted, then I8 ≡ 0 if N and M are orthogonal, which might be a drawback. In Chapter
3 we will use both definitions, specifying which one we are dealing with whenever needed
and showing that the derived results do not change.

As regards the balance equations, we will consider continuum bodies whose mass is
described by a density field ρ in the current configuration. The conservation of mass in
local form can be written as

∂ρ

∂ t
+∇ · (ρv) = 0 , (1.7)

where v is the velocity of the body. The corresponding material law is

ρ̇0 = 0 , (1.8)

with ρ0 the density field in the reference configuration. As a consequence of mass con-
servation Eqs. (1.7)–(1.8) and the volume transformation Eq. (1.3), the following relation
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between densities holds:
ρ0 = ρJ . (1.9)

As regards the balance of linear momentum in the current configuration, let t(n) be the
surface force per unit area of normal vector n, including both contact forces between
different portions of the body and contact forces exerted on the boundary of the body
by the environment, while b denotes the external body forces per unit volume. Then,
according to Cauchy’s theorem [150, 151], the balance of linear momentum is satisfied if
and only if the contact force density is a linear function of n, that is,

t(n) = Tn , (1.10)

where T is the Cauchy stress tensor, and

∇ ·T+b = 0 , (1.11)

neglecting inertial effects. Therefore, the Cauchy stress provides a measure of the contact
force acting on an element of area in the current configuration. In addition, the balance of
angular momentum requires that T be symmetric, that is, T=TT. Another relevant measure
of stress, which unlike the Cauchy stress tensor is related to the reference configuration, is
the first Piola-Kirchhoff stress:

P := JTF−T . (1.12)

Thus, P is a tensor-valued flux representing a surface stress density per unit of referential
area, whereas Pn∗ is a material vector field such that, recalling Eq. (1.4) and omitting time,

P(X)n∗(X)dΣ0(X) = T(x)n(x)dΣ(x) , when x = χχχ(X) . (1.13)

The local form of the linear momentum balance in reference coordinates therefore reads

DivP+ Jb = 0 . (1.14)

We remark that the first Piola-Kirchhoff stress tensor is not symmetric in general. In
fact, the balance of angular momentum, expressed in the reference configuration, only
prescribes that

PFT = FPT . (1.15)
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Finally, we introduce the second Piola-Kirchhoff stress S, which is related to the other
stress measures by

S= F−1P= JF−1TF−T . (1.16)

1.2.2 Growth and Remodelling

The biological materials that we will consider in this Thesis, like cells and tissues, are
constantly subject to processes like growth and remodelling of their structure. The mechan-
ical description of such phenomena requires an appropriate extension of the kinematics,
since the reorganisation of the material structure following these processes might lead
to the development of residual stresses. In their seminal work, Skalak and collaborators
[323] were among the first to propose the idea that growth is accompanied by geometrical
incompatibilities in the body, which in turn generate residual stresses. A formalisation
of such an idea was provided by Rodriguez et al. [307], who suggested to employ a
multiplicative decomposition of the deformation gradient into an inelastic part, related to
growth and leading to the development of incompatibilities, and an elastic part, which re-
stores the compatibility and from which residual stresses arise. The use of a multiplicative
decomposition was inspired by the theory of plasticity, where it was introduced by Bilby
et al. [37], Kröner [208], and Lee [216] in the 1960s.

Afterwards, several theoretical extensions and improvements for the mathematical
modelling of growth and reorganisation have been proposed. The work by DiCarlo and
Quiligotti [107] introduced the concept of accretive forces, which have to satisfy additional
balance equations. Then, Ambrosi et al. [9, 10, 15] applied these concepts to the growth
of biological tissues, deriving evolution laws for growth related with the stress state of
the body. Several other groups in subsequent years contributed to the refinement of
the mathematical description of growth, reorganisation, and instabilities in active and
biological matter (see, for instance, [35, 74, 136, 140, 232, 241, 265, 301]).

Nowadays, the theory of morphoelasticity [140], which aims at understanding how a
body changes dynamically as a consequence of growth and remodelling, has become an
established tool for the investigation of these processes.

In mathematical terms, the theory of morphoelasticity assumes that residual stresses are
due to local growth or remodelling processes, described by a specific deformation tensor
G. Then, the elastic deformation Fe, which is the one determining the stress response of
the body, is defined as the difference between the visible deformation F and the distortion
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G in the sense of multiplicative decomposition [9, 10, 140, 265]:

Fe = FG−1 =⇒ F= FeG , (1.17)

where the tensor G describes the local change of shape and/or volume due to remodelling
or growth. In particular, remodelling is often characterised by isochoric processes, for
which detG= 1, while growth is accompanied by volume changes, so that detG> 1.

Hence, the multiplicative decomposition allows to separate the inelastic distortions
related to growth or remodelling from the purely elastic contribution. The state defined by
G, often called natural state, is not in general compatible, or in other words G need not be
the gradient of any deformation. In such natural state, which by definition is stress-free,
each material particle is allowed to grow or remodel freely and independently of all the
others. The subsequent elastic accommodation in the material, described by the tensor Fe,
restores the compatibility of the body and leads therefore to the development of residual
stresses. The time evolution of tensor G has to be prescribed according to the phenomenon
at hand, as we will do in Chapters 4 and 5.

1.2.3 Elastic Constitutive Equations

The balance equations hold for any type of continuum body, but are not sufficient to
determine its motion following a prescribed loading. It is therefore necessary to comple-
ment the balance laws with appropriate constitutive equations, which describe the relation
between deformation and stress for a specific class of bodies accounting for the mechanical
characteristics of the material which composes such bodies.

Since in Chapters 3–5 we will mostly deal with elasticity, we recall here some basic
definitions. An elastic body is characterised by a stress which depends on the deformation
only through the deformation gradient, i.e.,

T= T(X,Fe(X)) . (1.18)

Thus, coherently with Eq. (1.17), the stress state of an elastic body is determined by the
elastic deformation Fe, which accounts for both local length changes due to external loads
and for the deformation required to restore compatibility. If G= I we have T=T(X,F(X))

and all the classical results of finite elasticity without distortions are recovered. In addition,
a continuum is said to be hyperelastic if there exists a function W(Fe), called strain energy
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density function, such that

Pe(Fe) =
∂W

∂Fe
and T(Fe) = J−1

e
∂W

∂Fe
FT

e . (1.19)

where Pe is the first Piola-Kirchhoff stress in the natural state.

In order to satisfy the frame indifference principle, which states that a constitutive
equation must not depend on the adopted reference frame, it can be shown [151] that the
strain energy density function has to depend on the deformation through Ce:

W(Fe) = Ŵ(Ce) . (1.20)

Moreover, if the material is isotropic, as in Chapters 4 and 5, then the energy density can
be written as a function of the first three invariants in Eq. (1.6), namely,

Ŵ= Ŵ(I1, I2, I3) . (1.21)

Instead, for anisotropic materials which exhibit preferential directions due for instance to
reinforcements, additional invariants have to be included in the strain energy to describe
the mechanical behaviour. In particular, if a material is transversely isotropic, i.e., there
exists a preferential direction identified by a vector N in the reference configuration, the
energy becomes a function of five invariants [327]:

Ŵ= Ŵ(I1, I2, I3, I4, I5) . (1.22)

Finally, if there are two preferential directions denoted by two unit vectors N and M, as in
Chapter 3, the energy can be written as a function of all the eight invariants in Eq. (1.6), so
that [225, 327]:

Ŵ= Ŵ(I1, I2, I3, I4, I5, I6, I7, I8) . (1.23)

1.3 Outline of the Thesis

In detail, the structure of the Thesis is as follows. We begin in Chapter 2 with a thorough
review of the literature concerning cell reorientation under mechanical stimuli. In fact,
numerous experiments showed that, if cells are seeded on a substrate which is periodically
deformed, they will realign their cytoskeleton along a certain direction, in order to relieve
the sensed stress. The understanding of this phenomenon is important in applications rang-
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ing from mechanotransduction to tissue engineering, as we mentioned above. Therefore,
we firstly provide a summary of the available experimental results, so as to capture the
fundamental mechanical and biological features involved in the cell reorientation process,
and present an overview about previous mathematical models on this topic.

In Chapter 3 we propose three types of mechanical models to address different issues
about cell reorientation under periodic stretching. First of all, by using a strain energy
minimisation approach that was shown to be effective in the literature, in Section 3.1
we analyse the impact of nonlinear elasticity. In fact, previous models mainly relied
upon linear theories, which however might be inadequate to describe some experiments
performed with considerable deformations. Afterwards, in Section 3.2 we address the
problem of cytoskeletal remodelling within a fibre reorientation framework for anisotropic
materials, to investigate the dynamics of cell alignment in more detail. We derive a
thermodynamically consistent model for the reorganisation of two fibre families and we
analyse its stationary solutions, that exhibit interesting properties of coaxiality between
stress and strain, before applying it to cell reorientation experiments. Finally, in Section 3.3
we introduce linear viscoelasticity to model the effect of the cyclic deformation frequency
in cellular realignment.

Then, in Chapter 4 we consider another problem related to cell reorganisation and
active response, that is, the contractility of axons. Indeed, experiments have demonstrated
that these neural components own the ability of actively regulating their diameter as
a consequence of external stretching or drug-induced alterations. We propose a model,
grounded on Continuum Mechanics, to investigate the interplay between active contractility
in the circumferential and axial directions, as suggested by recent experimental evidence.

In Chapter 5, we study the problem of brain tumour growth in a mechanical and
computational framework. Specifically, we consider brain tissue as a biphasic mixture, in
order to distinguish between solid and fluid components, and we describe the proliferation
of a tumour mass thanks to the theory of morphoelasticity. Since we are mostly interested
in the impact of solid stresses subsequent to cancer growth, we describe both the healthy
and diseased tissues as nonlinearly elastic soft materials: this allows to evaluate the
deformations and stress induced by the growth of the solid mass. We test the behaviour of
the model by performing simulations on a realistic brain geometry which includes a set of
patient-specific data.

Finally, Chapter 6 summarises the main results of the Thesis and provides some
concluding remarks, along with open problems on the considered topics.



Chapter 2

Experimental Observations and
Mathematical Models of Cell
Orientation

After having outlined both the biological and the mathematical framework, in this Chapter
we provide a detailed review on the experimental and theoretical findings concerning
cell orientation under stretch. Indeed, starting with the very first observations about the
mechano-response of cells in the 1980s, a consistent amount of empirical results have been
highlighted and the problem attracted increasing research attention in the last years. Given
the variety of experiments, performed under very different conditions, it is fundamental to
summarise their results, as we do in Section 2.1, in order to capture the relevant aspects to
be included in the mathematical modelling process. Afterwards, in Section 2.2 we present
and discuss the theoretical works on this topic available in the literature, upon which we
will build our models.

The content of this Chapter has been included in a literature review article:

C. Giverso, N. Loy, G. Lucci, and L. Preziosi. Cell orientation under stretch: A review
of experimental findings and mathematical modelling, Submitted.

2.1 Review of Experimental Findings

The aim of this Section is to provide a thorough review of the experimental literature
concerning the reorientation response of cells under periodic mechanical stimuli. Indeed,
in the last forty years, a huge amount of experiments have been performed using different
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Fig. 2.1 Schematic representation of the inner structure of typical arteries. The innermost layer,
whose cells are in direct contact with blood flow, is called tunica intima. An internal elastic
lamina separates the intima from the tunica media, in which the cells appear oriented obliquely or
perpendicularly with respect to the flow. Finally, we have an external elastic lamina that divides the
media from the adventitia, or tunica externa. Adapted from [318].

assays. It is therefore important to summarise all the findings and to identify some
common biological mechanisms. In detail, we start with some historical perspective about
the first preliminary experiments in Section 2.1.1, which motivated all the subsequent
studies. Then, the experimental results are classified in three macro-groups according
to the type of substrate employed. Two-dimensional isotropic substrates, that represent
the most important group, are discussed in Section 2.1.2. 2D micro-grooved membranes
are examined in Section 2.1.3, whereas three-dimensional experiments are considered in
Section 2.1.4.

2.1.1 Early Investigations and Experiments

The response of cells to mechanical cues started to attract attention in the 1980s, following
the study of cardiovascular patophysiology. In particular, by observing the cellular arrange-
ment in blood vessels, it was found that cells forming the walls of arteries were oriented
along specific directions depending on their location, as pictured in Fig. 2.1. Endothelial
cells in the innermost layer, in direct contact with blood flow, tended to be aligned in the
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Fig. 2.2 Illustration of the experimental apparatus used for the first investigations about cell
reorientation under stretch by Buck, taken from its original article [52]. The substrate a is connected
to an external device which applies a cyclic stretching, whereas substrate b is left as a control.

axial direction of the vessel [50, 387, 390, 403], while smooth muscle cells in deeper layers,
e.g., in the intima and in the internal elastic lamina, exhibited an oblique or perpendicular
orientation, forming helical-like structures, with cells sometimes disposed at an angle of
20◦−40◦ with respect to the vascular axial direction [168, 300]. The pulsatile behaviour
of the heart and the arteries, whose cells are constantly exposed to periodic deformations,
stimulated the first investigations in vitro, with the aim of gaining a deeper understanding
of cell mechanosensitivity and orientation in the circulatory system.

Motivated by his own studies on the orientation of cells in aortic walls [50], Buck was
the first to examine the response of cells to mechanical cues in vitro [51]. He seeded a cell
population on a rubber plastic substrate which was then cyclically stretched, to mimic the
periodic vessel inflation during pulsatile flow: an illustration of the original experimental
apparatus can be found in Fig. 2.2. Similarly to cells in vivo, he found that nearly 81% of
fibroblasts tended to reorient between 45◦ and 90◦ with respect to the stretching direction.
The results attracted some interest since they firstly put in evidence such an alignment
behaviour of stimulated cells in vitro from the experimental point of view, paving the way
for successive investigations.

Later, White and coworkers [387] were among the first to identify the presence of
actomyosin fibres in vascular endothelial cells (EC) of mice, even if the function of such
filaments was not fully clear at the beginning. In particular, they found that, in the thoracic
aorta, cells were mostly oriented along the vessel axis and exhibited the presence of fibres
(approximately 0.7µm wide and 4µm− 25µm long) aligned parallel to the blood flow.
Interestingly, in their experimental assays, it is also shown that hypertensive rats displayed
a higher proportion of EC containing aligned actin fibres with respect to normal rats.
A possible explanation of this result relied upon the sensitivity of the endothelial cell
cytoskeleton to external mechanical forces, such as blood pressure and fluid shear stress
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on the walls. Indeed, hypertensive rats were characterized by higher arterial pressure,
heart rate and flow velocity, leading to stronger hemodynamic forces acting on their
vessels. Overall, such findings pointed towards the responsiveness of EC cytoskeleton to
environmental mechanical stimuli, caused by anatomical, regional or structural factors,
even if the reorientation mechanism following a stimulus was not fully elucidated.

Wong et al. [390] also revealed the presence of actin fibres in endothelial cells of
several mammals, all oriented parallel to the blood flow and more prominent in regions
where the latter had a higher velocity. It was however unclear which kind of mechanical
force was the most relevant in driving the formation and orientation of cellular actin
fibres. In this respect, experiments performed under confluent conditions [403] disclosed
that a synergistic role was played by both fluid shear stress and circumferential strain in
endothelial cells. Specifically, cells in physiological conditions elongated and oriented
along the direction of flow and perpendicular to the direction of stretch, showing in all
cases the formation of fibres aligned with their long axes. Then, in [403], the authors
studied the response of cells to a combination of mechanical stimuli, proving that there is
actually an interplay between different forces. In fact, the hoop deformation induced by
the pulsatile flow in arteries increased EC sensitivity to shear stresses.

Almost perpendicular orientation of cells and cytoskeletal fibres with respect to the
periodic forces was found also by Shirinsky et al. [320] for several types of human
endothelial cells, coming both from vein and arterial tissues. The involvement of the
cytoskeleton in the orientation process and response of EC was stressed once more and
actin fibres were shown to be essential for cell orientation.

Other pioneering works about cell reorientation in vitro date back to 1986 and are due to
Dartsch and collaborators [88, 89]. Their experiments on confluent monolayers of arterial
smooth muscle cells evidenced the reorientation towards an oblique or approximately
perpendicular angle, precisely quantified and varying with the amplitude of the cyclic
deformation. Moreover, it was already evident that stretches as low as 2% did not succeed
in stimulating the alignment of cells. An increase in the amplitude led to an extended
degree of alignment and to a faster reorientation. Further studies by the same authors [87]
confirmed such findings for vascular smooth muscle cells, which were found to align along
two symmetric angles with respect to the perpendicular direction.

Additional investigations dating back to 1986 and 1988 [182, 336, 358] showed a
similar behaviour, with cells reorienting towards an almost perpendicular alignment with
respect to the direction of the applied cyclic stretch.
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To complete the overview upon the preliminary experimental results on cell orienta-
tion under mechanical stimuli, it is worth to mention that, differently from the findings
discussed so far, a report by Sottiurai et al. [326] claimed that an alignment parallel to the
stretching direction was achieved by applying cyclic stretch with 10% amplitude and 0.87
Hz frequency to smooth muscle cells.

2.1.2 Cell over a Two-Dimensional Substratum

Overall, the results found in the experimental settings almost forty years ago were in
agreement about some relevant facts, which stimulated subsequent investigations from
other groups:

1. In addition to chemical substances, cells appeared to be prone to a response to
mechanical cues coming from the environment.

2. The cytoskeleton, and especially the actin fibres, were thought to be involved in the
cellular response to an externally applied mechanical force.

3. A reorientation towards a certain preferential direction, still not precisely identified,
took place if cells on a substrate were subjected to a cyclic deformation.

Starting from these cornerstones, in the last three decades several attempts to unveil the
mechanisms underlying cell alignment and reorientation were performed. Advances in
imaging techniques and atomic force microscopy consistently improved the experimental
precision, allowing to obtain detailed and high-resolution pictures of cellular and sub-
cellular structures. These improvements in experimental instruments shed light on some
relevant common features about the cellular response to external stimuli.

Before reviewing the phenomenological findings obtained in more recent years, we
discuss some general features of typical experimental set-ups, so as to facilitate a compre-
hensive understanding of biological experiments and their outcomes.

The two-dimensional settings that are typically used to test the behaviour of cells under
stretch consist of a silicon [159, 171, 215, 258, 268, 377] and/or polydimetylsiloxane
(PDMS) substrate [137, 144, 239, 256, 308], very often coated with collagen or fibronectin
to favour cell attachment. Cells are then seeded on the membrane at a certain density and,
after attachment, the substrate is pulled along one or two perpendicular directions, either
statically or periodically with different waveforms. In most of the experiments, a cyclic
stretch in only one direction is applied, as this is the case that probably attracted more
interest in clinical applications. Indeed, a uniaxial periodic deformation physiologically
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Fig. 2.3 Sketch of typical experimental set-ups for testing cell reorientation on planar substrates.
(a): in uniaxial stretching experiments, the substrate is pulled on two sides, while the other two are
free to move inwards following the elasticity of the material. In order to observe a homogeneous
deformation applied to cells, only a small central region is examined. The angle between the
cell major axis and the main stretching direction is denoted by θ . (b): pure uniaxial stretching
experiment, in which two sides of the specimen are clamped to avoid deformation in the vertical
direction. (c): biaxial experiments, where the strains are controlled in two directions.

happens in several situations: aside from the already cited blood vessels, a number of
different tissues and organs undergo periodic strains in physiological conditions, such as
the lungs, muscles and tendons, the bladder, and the intestine, to cite but a few.

In general, since the substrate is elastic, a simple pulling of its two lateral sides would
naturally lead to a narrowing in the central region, as shown in Fig. 2.3(a). In these cases,
experimental data are usually reported for those cells in the central portion of the specimen,
highlighted in the Figure, where it can be reasonably assumed that stress and strain are
homogeneous, with principal directions along the axis of deformation and its orthogonal.
Nevertheless, as we will discuss shortly, the compression of lateral sides relevantly affects
the cellular orientation and is one of the main factors that determines the final placement
of a mechanically stimulated cell.
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In describing the deformation, we will denote by x the direction characterized by the
maximum applied stretch. This direction will be also referred to as the main stretching

direction in what follows. We will then denote by εxx(t)> 0 and εyy(t) the strains along x

and y, respectively, and by ε0 := maxt∈T εxx(t) the maximum applied strain over the time
interval T of the experiment. Another important quantity that is introduced in the literature
and that will be relevant in the mathematical modelling is the so-called biaxiality ratio,
defined as

r :=−
maxt∈T εyy(t)
maxt∈T εxx(t)

=−max
t∈T

εyy(t)
ε0

. (2.1)

In static conditions, the parameter r represents the percentage of contraction in the y-
direction with respect to the extension applied in the x-direction. If the deformation is
uniaxial, as in Fig. 2.3(a), then r can be identified with the Poisson ratio of the elastic
material constituting the substrate.

To avoid the central narrowing of the substrate due to the Poisson effect, some counter-
measures have been adopted in experimental works, like thickening the borders parallel
to the main stretching direction (as done, for instance, in [89]) or attaching the horizontal
sides to a more rigid structure or substratum. When these borders are fixed as in Fig. 2.3(b),
then εyy = r = 0 and it is said that the specimen undergoes a pure uniaxial stretching.

The uniaxial settings described so far do not allow to have a full control on the
deformation along the vertical axis, which instead may be relevant in determining the
cellular orientation, as we will discuss later in more detail. To perform broader and more
complete experiments, biaxial tests – represented in Fig. 2.3(c) – that allow to control
both strains in the monolayer plane are sometimes performed [201, 222, 226]. In fact, for
biaxial experimental settings, r becomes an externally controlled parameter. However,
most of the results presented in the literature do not rely on this kind of mechanical
stimulus. The only biaxial case which is investigated in several papers is the equi-biaxial

deformation, where the tensile strains along the x and y directions are equal to each other
[171, 172, 199, 360, 376, 377]. However, such a situation is less interesting from the
experimental viewpoint, since it does not trigger the reorientation of cells on a substrate,
as put in evidence in all the mentioned references.

Whichever type of deformation is considered, most of the experiments are performed
with values of r ∈ [0,1]. We remark however that a negative value of r can be obtained
if the substrate is pulled in both directions, as in [201, 222]. In particular, equi-biaxial
extension corresponds to r =−1. At the other extremum, a value larger than 1 corresponds
to a compression along y larger than the pulling along x, which, to our knowledge, has
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(a) (b) (c)

Fig. 2.4 Typical periodic deformations employed in experimental assays for cell reorientation
under cyclic stretching. (a): sinusoidal deformation, with amplitude ε0 and angular frequency
ω , or period T = 2π/ω . (b): triangular waveform, with same amplitude and frequency. (c):
trapezoidal waveform, which includes a holding period once the maximum and minimum amplitude
are reached.

not been done in experiments yet, though it could be interestingly included in the math-
ematical descriptions discussed later. In addition to the already mentioned case r = 0,
representing pure uniaxial stretching, other values of interest for the biaxiality ratio are
r = 0.5, corresponding to εyy =−εxx/2, and r = 1 which is equivalent to a deformation
such that εyy =−εxx.

As done in the preliminary investigations discussed above, the majority of experiments
focus on periodic deformations applied to the substrate, to represent the physiological
pulsations in vivo. In particular, sinusoidal waveforms defined as

ε(t) =
1
2

ε0 [1− cos(ωt)] =
1
2

ε0 [1− cos(2π f t)] (2.2)

are often adopted (see for instance [190, 239]), as in Fig. 2.4a, in which ε0 is the maximum
amplitude, ω is the angular frequency in rad/s and f = ω

2π
is the frequency in Hz, related

to the period by T = 1/ f = 2π/ω . Alternatively, triangular [268, 362, 388] or trapezoidal
[246, 264, 305, 362] waveforms might be employed, like the ones in Figs. 2.4b and 2.4c.

Statistical Description of Experimental Results

Since most of the experimental papers refer to the orientation angle θ of the cell, which is
the most natural variable to work with, it is appropriate to firstly comment on the type of
data that is usually reported. In particular, almost all investigators define θ as the angle
between the cellular stress fibres (or body) and the main stretching direction, as sketched
in Fig. 2.3(a). This appears to be the simplest way of defining the orientation of a cell, as
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(a) (b)

Fig. 2.5 (a): Symmetric von Mises distribution with 4 symmetric maxima in [0,2π]. (b): Distribution
function of cell orientation from data by Livne et al. [226] when plotted in

[
−π

2 ,
π

2

]
in blue and

when merged in
[
0, π

2

]
in orange. Notice the break of the orientation axis between −30 degrees

and 30 degrees.

well as the most effective. However, it is worth to remark that cell orientation experiments
present some natural and intrinsic symmetries concerning the angle of alignment. In
fact, there is no reason why the cell should prefer the orientation π − θ instead of the
one characterised by the angle θ . In addition, as cells do not own a polarisation in the
context of reorientation, the angles θ and π + θ , as well as −θ and π − θ , turn out to
be all equivalent to each other as preferential orientations, as depicted schematically in
Fig. 2.3(a). Such symmetries are evident in a wide number of experimental reports
[87, 192, 220, 226, 351, 375, 379, 400]. For these reasons, most articles report data about
the angle in the interval

[
0, π

2

]
, or sometimes in [0,π], especially if cells are mostly aligned

in the perpendicular direction.

In addition, as all biological phenomena, experiments are affected by the random
behaviour of cells. For this reason, data are usually given in terms of histograms like
those reported in Figs. 2.5b and 2.6, where the angle range of interest is subdivided into a
certain number of smaller intervals, and the amount of cells whose orientation falls inside
each interval is counted. In conclusion, if we work in [0,2π] the distribution function of
orientations exhibits four symmetric peaks as in Figure 2.5a, possibly collapsing in two
peaks either in 0 and π , so that most cells are oriented along the main stretching direction,
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or in − π

2 and π

2 , so that most cells are oriented perpendicularly to the main stretching
direction.

In this context, let us explicitly discuss some issues that occur when dealing with
circular statistics, as the ones regarding cell orientation. Some experimental papers
summarise the data about the angle by computing the mean of the alignment distribution
over the all sample of cells. However, such a parameter may be misleading and does
not convey much information about the preferential orientation of a cell on a stretched
substrate. As an example, if we take the distribution in blue in Fig. 2.5b that has two
distinct and almost symmetric peaks, the mean of that distribution is close to 0, which
is far from precise on describing the preferential arrangement of the cells. On the other
hand, if orientations with negative and positive angles are merged as in the distribution
in orange, then the mean will probably be nearby the maximum of the distribution. This
is closer to the expected value of the favoured direction of cells, which should intuitively
fall between 40 and 50 degrees in the Figure. However, such a situation seems particularly
lucky, because in Fig. 2.5b the orange distribution is highly peaked in the interior of the
interval of orientation angles. This is not the case, for instance, in Fig. 2.6b, which is
not rarely observed. In this situation, the mean of the distribution computed in

[
0, π

2

]
is

68◦ [120], but from the histogram it is clear that the distribution function is peaked in the
interval [80◦,85◦]. Going to another extreme case, in control situations where orientations
are uniformly distributed, then the mean is trivially π/4 and several articles refer to this
mean (see for instance [1, 100, 192, 217, 246, 330, 396]), which may be misunderstood
if not contextualised properly. Indeed, a mean orientation angle of π/4 does not imply
that cells are preferentially oriented along the direction of 45◦ with respect to the main
stretching axis, but rather that the sample exhibits an overall random orientation.

For all these reasons, when considering the preferential orientation of cells, in the
following we will refer to the peak of the distribution function (or the mode, in statistical
terms) rather than the mean, whenever possible or having the experimental data available.

Given the possible shortcomings of a quantitative description based only on the mean
orientation angle, different parameters have been sometimes employed in the experimental
literature, which we briefly summarise below. A useful concept that is often used to measure
cell orientation in experimental papers is the order parameter [143, 144, 190, 362, 363]

S :=
∫

π

0
g(θ)cos2θ dθ = ⟨cos2θ⟩ , (2.3)
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(a) (b)

(c) (d)

Fig. 2.6 (a): Temporal evolution of orientation angles for the cell body in experiments by Hayakawa
et al. [159]. (b): Distribution of final cell orientation for a maximum strain of 11.8% (in red)
compared with the control case (in blue). Data taken from Faust et al. [120]. (c): Distribution of
final cell orientation for a maximum strain of 5% at different frequencies, specifically, 0.001 Hz in
blue, 0.1 Hz in orange, 1 Hz in yellow (data from Mao et al. [239]). (d): Distribution of final cell
orientation for a fixed frequency of 1 Hz and maximum strain of 2% (in blue), 4% (in orange), and
10% (in yellow). Data taken from Mao et al. [239].

where g(θ) is the empirical distribution function of cell angles. Hence, a random orienta-
tion of the sample corresponds to S = 0, whereas a fully coherent parallel orientation gives
S = 1 and a fully perpendicular one amounts at S =−1. However, unless the distribution
function is a deterministic Dirac delta, it is not straightforward to relate this parameter with
the mode. In other words, although the order parameter S provides a more meaningful
measure of the orientation, it does not give a detailed overview of the preferential direction,
unless it corresponds to the parallel or perpendicular one. An oblique orientation, which is
found quite often in experimental assays, would not be caught if evaluated using such a
parameter.
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Another measure of cell alignment that is employed to characterise the dispersion in
cell orientation is the circular variance [171, 198, 199, 246, 258, 362]:

CV := 1− 1
N

√√√√( N

∑
i=1

sin2θi

)2

+

(
N

∑
i=1

cos2θi

)2

, (2.4)

ranging from 0 to 1. The meaning of such parameter can be easily understood if each cell
is associated with a unit vector Ni of coordinates Ni = (cosθi,sinθi), i = 1, . . . ,N. The
angles are doubled to account for the symmetry in the direction of the vectors, leading to
the same cellular orientation as described previously. Then, the square root in Eq. (2.4)
represents the norm of the vector obtained by summing all the orientations Ni of the
cells in the experiment. It follows that, if the distribution is uniform and totally random,
then ∑i Ni ≈ 0 and CV = 1, i.e. the circular variance is maximized. On the other hand,
a perfectly aligned cell population will be characterized by the same orientation vector
Ni = N for all i = 1, . . . ,N, leading to CV = 0. In some works, the parameter R := 1−CV
is instead employed, following the same ideas but with an opposite meaning for the extreme
values.

Before presenting the experimental results in isotropic planar conditions, we sum-
marise below the main in vitro findings concerning the response of cells to mechanical
deformations of their substrate. In particular, we have that:

Summary of experimental findings on 2D planar substrates

• Cells respond to cyclic strain of the substrate by reorienting their stress fibres
and bodies towards a preferential orientation. The actin cytoskeletal structure is
fundamental for this reorientation process.

• The response of the cytoskeleton can be observed within some minutes and
precedes the one of the cell body, which may take some hours to be completed.

• The preferential orientation is perpendicular or oblique with respect to the main
stretching direction. The biaxiality ratio r, related to the amount of tension and
compression transmitted to the substrate and therefore to the cells, seems to play
an important role in the precise quantification of the orientation angle.

• The results concerning the preferential equilibrium angle of cells appear to be
robust with respect to the frequency and the amplitude of the applied cyclic
deformation, as well as with respect to the stiffness of the substrate and its coating.
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This is true provided that all these mechanical factors are greater than a certain
lower threshold, below which no response is triggered. In addition, an increase in
frequency and amplitude leads to a more rapid and more pronounced orientation
of stress fibres and cells.

• A wide variety of cell types turn out to be mechanically responsive: fibroblasts,
endothelial cells, vascular smooth muscle cells, neurons, mesenchymal stem cells,
intestinal cells, as evident from Tables 2.1–2.3.

• In the confluent case, the effect of cell-cell contact comes into play and may
lead to differences in the preferential orientation. Moreover, if experiments are
performed under confluence, reorientation is found to be faster [190].

We now discuss in detail the two-dimensional experiments, both in sub-confluent and
confluent conditions. A summary of the main experiments can be found in Tables 2.1–2.3.

Sub-Confluent Cells on 2D Isotropic Substrates

In the majority of experiments on two-dimensional substrates, cells are seeded on the
membranes at a sub-confluent density, so that the effect of cell-cell contact and interaction
is minimized. Generally speaking, it is found that, under certain conditions that will
be discussed in more detail in the following Sections, when the specimen is subject to
oscillatory deformations there is a reorganisation of the structure of the cytoskeleton that
leads to alignment in a precise direction. In addition, the cell acquires an elongated and
clearly oriented morphology [308]. Such a behaviour is evident in Fig. 2.7, which shows
some examples of reoriented cells that visibly align along a preferential direction.

In Tables 2.1 and 2.2 we summarise the experimental contributions investigating cell
reorientation on flat isotropic substrates in sub-confluent conditions. For each experimen-
tal test, we report the relevant parameters (or ranges of parameters in square brackets)
characterising the assay, as well as the preferential orientation, whenever available. With
regard to the latter, we remark that, in some works, the final configuration of cells is
simply referred to as "perpendicular" or "nearly perpendicular", though the observed angle
might be oblique. In the Tables we put in evidence this qualitative description by using
the symbol ⊥ (or ≈⊥), at variance with those cases where angles can be more precisely
specified thanks to the presence of plots and histograms.
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Fig. 2.7 Microscopic representative examples of reoriented cells under stretch. (a): rat fibroblasts
oriented in symmetric directions after 6 hours of cyclic stretching at 1.2 Hz and 10% amplitude,
with stretching direction highlighted by the double-headed arrows (taken from [226]). (b): rat
fibroblasts after 6 hours of cyclic stretching at 1 Hz and 10% amplitude, taken from [63]. Notice
the main cell and cytoskeletal components: actin stress fibres (in red), microtubules (in green),
and nucleus (in blue). (c): neural-like cells after 72 hours of cyclic stretching at 0.25 Hz and 10%
amplitude (taken from [220]). (d): human fibroblasts after 24 hours of cyclic stretching at 0.17 Hz
and 20% amplitude. Notice that, in this case, cells are almost in confluence and there might be
some cell-cell contacts (taken from [175]).

As a first important remark, we observe that, in addition to the robustness of the
experimental results with respect to cell type, the reorientation behaviour appears to some
extent almost independent of the applied frequency, amplitude, and of the mechanical
characteristics of the substrate. However, in the Tables, we also highlight the values
of stretching frequency and amplitude that did not lead to a clear alignment of cells.
In what follows, the role of biological components – like the cytoskeleton – and of
mechanical parameters – like frequency and amplitude of the deformation, as well as
substrate stiffness – will be discussed in more detail, with reference to the Tables that
summarise the experimental results.
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Fig. 2.8 Main components of the cell cytoskeleton. (a): Microtubules, which are shown in green
in the microscope image. (b): Actin filaments, which appear red in the cell. (c): Intermediate
filaments. Adapted from [195].

Role of the Cytoskeleton

As mentioned previously, the cell cytoskeleton, i.e., the network of protein filaments and
structures that is found in the cytoplasm, fulfils a fundamental role in sensing the external
mechanical stimuli and in driving the subsequent reorientation towards the preferential
direction. The relevance was already noticed in the first experimental investigations,
though modern imaging techniques allowed to get more insight into its function. We briefly
describe here the main components of the cytoskeleton and we discuss their role in the
alignment process.

The primary function of the cytoskeleton is to give structural stability to the cell and to
maintain its shape [6]. The cytoskeletal network provides a scaffold which keeps all the
cytoplasmic components in place. Moreover, the cytoskeleton is able to sustain mechanical
deformation as well as to actively contract. These characteristics make it a very relevant
part of the cellular mechanical response. In particular, three main types of filaments
constitute the typical cytoskeleton of a cell: actin filaments, which may form stress fibres

(SFs), microtubules (MTs), and intermediate filaments (IFs), as shown in Fig. 2.8.

The stress fibres are probably the most important structure as far as contractility and
reorientation are concerned. They are composed by actin filaments cross-linked together
with myosin and other proteins, which form slender rods crossing the cell [6, 361]. These
fibres are also able to actively contract and to develop forces as a response to environmental
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changes or during cell migration. At the ends of SFs, protein complexes called focal

adhesions (FAs) connect the cytoskeleton to the external environment, so that the cell is
able to sense mechanical changes and to react accordingly. Thus, the interplay of SFs and
FAs is crucial in mechanotransduction, i.e., the chemical response to mechanical stimuli.

Then, microtubules are hollow cylindrical components that contribute to the mainte-
nance of the cell structure, to the formation of protrusions, and to the building of spindles
during cell division. MTs have a typical diameter of about 25nm and a length ranging
from 200nm to 25µm.

Finally, intermediate filaments are also involved in the organisation of the spatial
structure of the cell, anchoring components in their respective places. IFs have a high tensile
strength, which makes them the most stable component of the cytoskeletal architecture.

The role of the cytoskeleton is fundamental in cell reorientation under cyclic stretching.
In this respect, a very important work is the one by Hayakawa et al. [160], who studied
the relationship between cytoskeletal rearrangement and cytoplasm reorientation. They
put in evidence a significant time difference between the reorientation of SFs and the one
of the cell body. The former started after 5 minutes of stretching and completed within
15 minutes. Instead, the latter – whose temporal evolution is reported in Fig. 2.6a – was
more gradual and took up to 3 hours. These results about the dynamics of reorientation,
with a significant delay between stress fibre and cell body alignment, are supported by
several other authors (see, for instance, [171, 226, 256, 258, 266, 377]). Moreover, in
another work [159], the same group discovered that MTs were not aligned clearly, unlike
stress fibres, and did not seem essential for reorientation. Their presence appears to affect
mainly the shape of the cell, which was less spindled when MTs were depleted. Instead,
if SFs were disrupted, cell reorientation was almost blocked and significantly inhibited,
confirming their critical role in the realignment of cells under periodic deformations.

Several other works show similar results about microtubules [63, 137, 144, 377]. The
only observation in contrast is put forward by Morioka et al. [258], who demonstrate that
a relevant interplay between MTs and actin SFs exists and affects the reorientation of the
cytoskeleton. Specifically, their findings show that MTs also aligned along the cell axis
under a cyclic stretch. Then, if microtubules are disrupted or stabilized with appropriate
drugs, the cells do not seem to orient effectively.

Neidlinger-Wilke et al. [266, 267] provide further evidence supporting the role of the
cytoskeleton in that fibroblasts appeared more mechanically responsive in reorientation
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than osteoblasts. The former indeed have a stronger cytoskeleton than the latter, given that
they exert large traction forces on the extracellular matrix (ECM).

Actually, there appears to be a complex interplay between cytoskeletal deformation
and biochemical signalling, as discussed by Kaunas et al. [199]. In particular, the actin cy-
toskeletal deformation stimulates the production of a molecular signal, whose concentration
gradually reduces when SFs reorient to accommodate the sensed strain.

Then, a very relevant and detailed analysis of the role of cytoskeletal components on
the reorientation kinetics was performed more recently by Goldyn et al. [137] and by
Zielinski et al. [410]. As confirmed by several other investigators, in [137] it was found
that actin-disrupting drugs inhibit cellular reorientation, while MTs are not necessary to
achieve cell alignment under cyclic stretching. Surprisingly, however, their experiments
demonstrate that depletion of MTs reduced the reorientation time, while stabilization of
them provoked a 4-fold increase of such time. Hence, even if they are not necessary,
MTs might somehow regulate the dynamics of orientation. A possible explanation to this
fact could be the sterical hindrance caused by MTs that affects the actin reorganisation:
stabilized and fixed tubules might represent a physical obstacle to the reorientation of actin
fibres. Alternatively, such influence of MTs on the characteristic time may be due to the
cross-linking with actin: if the acto-myosin network needs to drag MTs, the process of
reorganisation might overall be slowed down.

In addition to actin SFs and MTs, the dynamics of IFs was studied in [410]. These
structures were all found to reorient obliquely or perpendicularly to the strain direction,
though their kinetics was different. SFs were in fact the fastest, whereas MTs and IFs
reorientation was considerably slower. All the cytoskeletal structures, however, preceded
cell body realignment.

Having assessed the importance of the cytoskeletal actin architecture in the reorientation
process, a very recent work by Roshanzadeh et al. [308] focused on the mechanoadaptive
role of stress fibre subtypes. Indeed, previous experimental analyses concerning the various
components of the cytoskeleton were mainly directed to a single type of SFs or MTs, even
if, within the cell supporting structure, different types of SFs actually exist, performing
different roles. In this regard, the most relevant result of this work lies in the study of
the interdependence of different SFs structures. The cytoplasm, whose reorientation was
driven by the peripheral SFs, oriented at 76◦ regardless of the strain magnitude, while
the nucleus, guided by perinuclear cap fibres, showed a lagged dynamics, especially at
small strains. The possibly different responsiveness of SFs types to mechanical stimuli
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was suggested before by Tamiello et al. [353] in experiments including contact guidance,
which will be discussed in Section 2.1.3.

To complete the discussion about the cytoskeletal response and consequent reorien-
tation, an interesting result concerns the only negative example that is reported. Indeed,
a cell type that does not appear to respond following a stretch-avoidance mechanism are
immune cells, like macrophages, neutrophils, or monocytes. The reduced mechanical
response of neutrophils on a 2D substrate with anisotropy prescribed by collagen fibres
was reported by Haston et al. [155] in 1983. Coherently with a previous work [153], it
was suggested that neutrophils are unable to generate sufficient traction forces through
their cytoskeleton. This behaviour is probably due to the fact that immune cells do not
possess a strong cytoskeleton and they do not adhere firmly to the substrate. Indeed,
they have to squeeze while patrolling the body for potential pathogens, which requires an
ameboid motion, unlike other types of cells. Following these first experimental suggestions
about immune cells, Matsumoto and coworkers [247] carefully analysed their reorientation
following a mechanical cue. The results suggest that rat macrophages do not appear to be
strongly responsive to the mechanical stimulus, while an alignment slightly parallel to the
direction of stretch is reported for human monocytes [247]. This is in contrast with the
common behaviour for other cell types, which exhibit an avoidance of cyclic strain and
reorient obliquely or perpendicularly to the main stretching direction, as discussed before
and summarised in the Tables. Subsequent studies confirmed this behaviour of immune
cells [24, 25, 244] for cyclic strain at different amplitudes (10% and 20%) and frequencies
(0.25Hz and 1Hz), both low and high.

In the following Subsections, we discuss thoroughly the role of mechanical parameters,
like the stretching frequency, the stretching amplitude and the substrate stiffness, in the
process of cell and stress fibre alignment.

Frequency Effect

The natural frequency to test cell behaviour is a physiological value of 1Hz, correspond-
ing to normal heart beats [243], or alternatively a value in the range 0.25Hz− 0.3Hz,
corresponding to breathing frequency [350]. The first work to explore the possibility of
differences in cell orientation due to the stretching frequency is the one by Kanda and Mat-
suda [192]. Although they employed only the mean orientation angle of the cell population
to quantify the frequency effects, an increase from 0.25Hz to 1Hz and to 2Hz provoked
an increase in such an angle, meaning that the alignment of cells was more pronounced
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(a) (b)

Fig. 2.9 (a): characteristic time τc of reorientation as a function of the applied frequency f , in
log-log scale, with data from [190]. In the sub-confluent case, two regimes can be distinguished: a
first one in which the characteristic time follows a power law decrease and a second one where, for
frequencies above 1 Hz, τc remains almost constant. This is not the case for confluent cells, for
which the time always decreases with no saturation. (b): characteristic time as a function of the
amplitude ε0.

towards the perpendicular orientation. However, as discussed above, providing the mean
angle as a measure is not the most effective way to convey the results.

One of the most detailed works concerning the effects of amplitude and frequency is
due to Jungbauer and collaborators [190]. In their work, a wide range of frequencies is
tested on rat embryonic fibroblasts (REF) and human dermal fibroblasts (HDF). The results
suggest that there is a cell-type-dependent minimal threshold frequency needed to induce a
significant cellular reorientation: such a threshold amounts at about 0.01 Hz for REF and
0.1 Hz for HDF. Moreover, a linear log-log relationship between the reorientation time and
the frequency is observed, with higher frequencies associated with a faster process and
a greater alignment in the cellular population, as in Fig. 2.9a. The most relevant finding
however is the existence of an upper threshold frequency of approximately 1 Hz, above
which the reorientation time saturates and the process cannot be accelerated anymore in
sub-confluent populations. More specifically, above a threshold value of 0.5 Hz for REF
and 1 Hz for HDF, the reorientation time becomes nearly constant and equal to 80 minutes
for the former and 120 minutes for the latter (see yellow and red curves in Fig. 2.9a).
Below the threshold value, instead, the characteristic time increases and is equal to nearly
3 hours in the case of REF for a frequency f = 0.05 Hz and about 5 hours in the case of
HDF for f = 0.25 Hz. According to the authors, such a result, which was also confirmed
later by another group [144], might be due to the saturation of some molecular mechanism
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driving the reaction to the stimulus that cannot react faster for periods above 1 second.
The hypothesis is corroborated by the results in confluent conditions, where no saturation
is observed and the characteristic time is a strictly decreasing function of the applied
frequency, as clearly evident from the blue curve in Fig. 2.9a. Indeed, for high cellular
densities, the cell-cell contacts through cadherins become relevant and may provide an
additional sensing machinery that prevents saturation and speeds up the reorientation. It
is also worth to observe that, in general, confluent cells reorient faster than sub-confluent
layers, as we will describe later in more detail.

The presence of a lower frequency threshold, pointed out in [190], appears to be a
crucial issue to trigger cell response and is confirmed by several experimental reports. In
addition, such a threshold seems to be cell-type dependent. For instance, the frequency
must be larger than 0.01 Hz for rat embryonic fibroblasts [144, 190], osteoblasts [215, 362],
and bovine aortic endothelial cells [171, 215]. Instead, the frequency should be above
0.1 Hz for human dermal fibroblasts [190], human coronary artery endothelial cells [143]
and at least 1 Hz for human coronary artery smooth muscle cells [143]. Interestingly, a
frequency of 0.05 Hz seems to be enough to induce neuronal alignment away from the
stretching direction [220]. However, these differences with the cell type do not affect the
cytoskeletal structures, i.e. stress fibres and focal adhesions, which instead are found to
be oriented at 0.1 Hz independently of the cell line [143]. Such data support previous
findings about the delayed and less sensitive response of the cell body, compared with the
mechano-reception of the stimulus by the cytoskeleton.

Very low frequencies in the range of 9–52 mHz applied to human umbilical fibroblasts
appeared however to stimulate a cellular reorientation response, though the time span
required to observe a steady state was considerably increased [120]. Nevertheless, in the
work by Faust and collaborators [120], it is difficult to decouple the effects of frequencies
and amplitudes, given that the authors choose to keep a constant strain rate.

Another work pointing out the relevance of the deformation frequency, while providing
a possible explanation, is the one by Hsu et al. [171]. Based on a mathematical model of
SFs self-adjustment, the authors suggest that if the frequency is too low, then the stress
fibres are able to accommodate the changes due to the strain and to maintain an optimal
level of extension. Consequently, there is no reorientation if the frequency is below a certain
threshold of approximately 0.01 Hz, which is coherent with the experimental findings for
some cell types. Then, if the frequency is increased, SFs become less able to compensate
the stretch, and therefore reorient away from the deformation until a second threshold
is reached, above which the maximal alignment is observed. The same authors also put
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in evidence that an increase in the frequency leads to a decrease in the circular variance
until a constant value is reached, meaning that the degree of alignment of the cells on the
substrate has become more peaked. This is often found in experiments as a frequency
increase consequence [144, 171, 190, 239]: for greater frequencies, the distribution of
cells becomes more peaked towards the preferential orientation, as shown in Fig. 2.6c.

The effect of cyclic strain frequency was investigated among others by Liu et al.
[222]. In particular, an increase in the frequency does not seem to affect the final average
orientation of the cells, but the amount of cells falling in the range [75◦,90◦] decreases
with the frequency. These results are somehow counter-intuitive and contrast with other
experimental observations [171, 239], where a frequency increase was associated with a
greater perpendicular alignment.

A very relevant work that it is worth to mention is the one by Mao and collaborators
[239], whose results are reported in Fig. 2.6c. They studied the frequency effect and
observed that, for a 10% strain at 1 Hz, the fraction of orientation angles between 80◦

and 100◦ was over 75%, while this value decreased to less than 11% for a frequency of
0.001 Hz, corresponding to that of a uniform distribution. In the same work, it is also
found that the critical frequency necessary to observe a reorientation of cells appeared
to be amplitude-dependent, namely 0.034 Hz for 2% strain, 0.013 Hz for 5% strain, and
0.004 Hz for 10% strain. Thus, higher frequencies are required for the onset of cellular
realignment at low amplitudes, and the combination of these two mechanical parameters is
not fully decoupled. Mao and coworkers are the first to observe such an interplay, so they
propose a single parameter to summarise the frequency-amplitude threshold, which they
call critical stretching rate and is defined by π f ε0, or equivalently 1

2ωε0. The reciprocal
of such value, amounting at 8.3 minutes, correlates well with the turnover time of actin
filaments reported in the literature [207, 239].

Other studies analyse variations of the strain rate, which is related to the product be-
tween the frequency and the maximum amplitude of the applied strain. For instance, Wille
et al. [388] do not find a statistically significant effect of varying the strain rate, whereas,
when it is kept constant, higher frequencies appear associated with faster reorientation.
It is also found that the median orientation angle does not depend on the strain rate nor
on the frequency. However, it is worth to remark that some experiments by Wille et al.
[388] are performed varying both the amplitude and the strain rate, which is somehow
misleading since it corresponds to variations in both the maximum applied strain and in
the frequency. The latter is in fact different from the strain rate and this should be taken
into account when interpreting the results.
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An evaluation of the strain rate effect is also provided by Nagayama et al. [264], thanks
to a detailed analysis of different strain waveforms on reorientation. In particular, it was
suggested that alignment was mainly promoted by compressive forces and coherently the
trapezoidal waveform, which exhibits the highest such force, led to the most efficient
reorientation. However, Tondon et al. [362, 363] proposed an opposite mechanism
compared with the results by Nagayama and coworkers [264]. Indeed, in the former work,
it emerges that SFs are much more sensitive to the rate of lengthening rather than to the
rate of shortening. This is confirmed by a thorough comparison between triangular, square,
and asymmetric waveforms: cell subjected to higher strain rates in elongation display a
more pronounced oblique orientation. Nevertheless, it is also worth to remark that, for
frequencies greater than or equal to 1 Hz, these differences appear less relevant.

To summarise the results about the role of the frequency, the main experimental findings
are the following:

• There exists a lower frequency threshold ωl , below which no reorientation happens.

• There exists an upper frequency threshold ωu, above which – in sub-confluent condi-
tions – cell alignment cannot become faster. These thresholds might be dependent
on the cell type.

• If the frequency falls between ωl and ωu, the effect of increasing it is twofold. First
of all, the number of cells oriented in the preferential direction increases. Indeed, if
ω is low, fewer cells are found to be aligned, while most of the population remains
randomly oriented. Conversely, for high frequencies, the probability distribution of
oriented cells becomes highly peaked around the preferred orientation angle. Second,
higher frequencies are associated with a faster reorientation, and therefore with a
lower characteristic time [190]. These effects emerge visibly in Figs. 2.6c and 2.9a.

• The preferential angle at steady state, at least according to some experimental works,
does not seem to be affected by a change in the frequency, provided that the latter is
above the minimal threshold [120, 239, 270, 362].

• There might be a combined action of frequency and amplitude in determining
the thresholds ωl and ωu and therefore the onset of cell alignment, with higher
amplitudes required at low frequencies and vice versa.

To conclude the discussion about the frequency, a possibly relevant case is the one
in which the specimen is subjected to a step stretch, which is then sustained without
oscillations, corresponding to a null applied frequency. In this situation, however, the
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behaviour of cells is not well clarified. Indeed, if the static stretch is regarded as a limit case
of low frequency, one would expect that the sample keeps having a uniform distribution of
orientation angles. This is observed in some experimental settings [139, 159, 222]. On the
contrary, a step deformation provoked an alignment parallel with the stretching direction in
other works [68, 362, 363]. Interestingly, Tondon and Kaunas [363] also put in evidence
that a static step stretch promoted parallel alignment on soft gels, but not on stiff silicone
substrates. Nevertheless, this situation appears more complicated to analyse, due to the
interplay between the mechanical stimulus on the cell and the anisotropic changes in the
gel stiffness caused by the stretch itself. Indeed, stretching a collagen gel may increase its
stiffness along the direction of the deformation, which may consequently affect the cellular
orientation. Therefore, the response to a sustained step stretch still needs to be investigated
in the two-dimensional case. In 3D matrices, instead, parallel alignment seems to be the
preferred response in almost all studies (see Section 2.1.4).

Amplitude Effect

As for the frequency, a minimal strain amplitude needs to be applied in order to induce cell
reorientation. Such threshold is generally in the range of few percent of substrate strain.
For instance, an amplitude of at least 1% was needed for fibroblasts [40, 190], 3% for
bovine aortic ECs [198] , 4.4% for human bone mesenchymal stem cells [259], and 5% for
neurons [220]. A similar behaviour is also seen in confluent conditions where, for instance,
a strain of at least 2% was needed [89] to reorient rabbit arterial smooth muscle cells. As
discussed before, Mao et al. [239] recently observed that the minimum amplitude value
decreases for increasing frequencies. This is not surprising, as both of them have the effect
of promoting reorientation and lead to more peaked distribution functions, as shown in
Figs. 2.6d–2.6c.

In general, an increase in amplitude above the lower threshold leads to a more pro-
nounced orientation towards the preferential direction [120, 171, 192, 330] and to a
decrease in the characteristic reorientation time [190]. For instance, as shown in Fig. 2.9b,
Jungbauer and coworkers [190] report data showing a linear negative correlation between
the reorientation time and the magnitude of applied strain. The fitting suggests an almost
linear decrease τc ≈ 3.21− 0.17ε0 hours for human fibroblasts and τc ≈ 3.42− 0.21ε0

hours for rat embryonic fibroblasts. Then, unlike the frequency case, no saturation is
observed for increasing amplitudes, at least in the tested range.
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Of course, a maximum strain bearable by cells also exists, because cell injuries,
detachments, and even death may occur if the deformation is too large. For instance,
amplitudes greater than 25% might be harmful for the cell population on the substrate [40].
However, some of the most detailed results in terms of cell orientation obtained by Livne
et al. [226] and Faust et al. [120] go up to 24% and 32%, respectively. The maximum
applied stretch in the experiments by Standley et al. [330] reaches 25% with no reported
damage, while Takemasa and coworkers [352] even employed a 110% strain. Hence, the
maximum deformation that can be sustained by a cell might be dependent on its type and
also on the mechanical properties of the substrate.

Although the amplitude of the cyclic stretch does not seem to alter the preferential
orientation of the stress fibres [308, 351, 352], it determines the degree of alignment of
the cellular population, with higher amplitudes causing a decrease in the circular variance
[171, 198] and therefore a more coherent orientation towards the preferred direction [192].

An anomalous behaviour concerning the amplitude of applied strain is reported for
confluent esophageal cells by Ritchie and coworkers [305]. The authors state that an
amplitude of 2% favours parallel alignment of cells, while amplitudes of 5% and 10%
induce a perpendicular reorientation.

In summary, the effects of the cyclic strain amplitude on the reorientation of cells and
SFs are as follows:

• There exists a minimum amplitude necessary to induce a reorientation response.
Such a lower threshold appears to be cell-type dependent and probably also frequency-
dependent according to recent results [239].

• An increase in amplitude leads to a faster reorientation of cells away from the
stretching direction [190], as in Fig. 2.9a.

• Greater amplitudes are associated with a more peaked orientation of the cell popula-
tion along the preferential direction, as in Fig. 2.6d.

Substrate Stiffness Effect

As mentioned in Table 2.1, most of the experiments do not characterize the substrate from
the mechanical point of view. In the majority of cases, silicon or polydimetylsiloxane
(PDMS) are used, usually coated with collagen or fibronectin to favour cell attachment and
mimic the ECM composition. However, as shown by Moretti et al. [256], reorientation
happens also on engineered silicone substrates without precoating, meaning that the cell
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response might be independent of any external adhesion promoter. The elastic modulus of
the materials employed as substrates is often close to 1 MPa, making them quite stiff and
almost impossible to be deformed by cellular traction forces.

On the other hand, the experiments cited in Table 2.2 report the mechanical character-
istics of the substratum and some of them focus on what happens when softer materials
are used. In particular, as a consequence of substrate softening, the externally applied
strain is not completely transferred to the cells attached to its surface. Differently, for
stiff environments it is sometimes stated that all the strain is also transferred to the cell
[266, 267]. However, Tondon et al. [363] report a difference of 4% between the two. In
the experiments performed by Wille et al. [388] and Wang et al. [377], instead, only 77%
of the strain of the substrate was actually transmitted to the cell.

Changes in substrate stiffness are also investigated in the work by Faust et al. [120].
Specifically, cells seeded on very soft substrates, with Young moduli of 1-3 kPa, did
not respond to cyclic stretches at all. A first, significant reorientation of actin bundles
is observed for 11 kPa of substrate rigidity, meaning that a possible stiffness threshold
between 3 and 11 kPa exists to induce cell reorientation. According to the authors, for low
values of substrate Young modulus, the mechanosensitive apparatus of human umbilical
cord fibroblasts was not well established, and so cells were not able to effectively respond
to the applied strain.

Conversely, Tondon et al. [362] showed that osteosarcoma epithelial cells and mes-
enchymal stem cells tend to orient preferentially along the stretching direction, i.e. θeq = 0◦,
on softer thick collagen gels, while the prependicular alignment is still found on stiffer
collagen-coated silicone substrates (values of Young modulus not explicited, but probably
of the order of 1 MPa). Interestingly, such results are consistent with a previous study
[198] where SFs in cells with reduced contractility due to treatment with specific inhibitors
were found to align parallel to the stretching direction as well. Attenuated contractility
may also be a relevant factor in cells adhering to soft substrates, which display a reduced
number of SFs [362]. Following the line of thought put forward by the same authors and
using a theoretical model [362], it is speculated that, on soft substrates, SFs tension is
lower than a certain homeostatic value. Therefore, the stretching increases such tension
towards the optimal value, which causes a parallel alignment.

Livne et al. [226] instead did not find significant differences in cell preferential
orientations when the substrate stiffness is changed from 1 MPa down to 20 kPa. The
parameters they estimate appear rather robust with respect to changes in the mechanical
properties of the substrate.
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(a) (b)

Fig. 2.10 (a): Sketch of possible stress fibre orientation in confluent cells (redrawn from [352]).
(b): Experimental microscopic view of confluent aligned cells, taken from [183]. The stretching
direction is horizontal.

The combination of effects due to cyclic stretch and substrate stiffness was investigated
by Quinlan and coworkers [360]. Concerning orientation, cells on very soft substrates
(E ≈ 0.9 kPa) showed significantly less alignment than those on stiff substrates (E ≈ 150
kPa), in accordance with other works.

We also mention that Takemasa and coworkers [351, 352] ruled out the influence of
substrate coating (fibronectin, collagen, laminin, vitronectin) on the cell preferential angle.

Confluent Cells on 2D Isotropic Substrates

So far, we have reviewed experimental results performed under sub-confluent conditions,
in which the cell density is kept to a lower value in order to reduce the possible effect of
cell-cell interaction. However, to more closely reproduce a tissue structure in vitro, in some
experiments cells are grown until a confluent configuration is achieved. A first consequence
of these experimental conditions is that, as depicted in Fig. 2.10a, it may happen that cells
and their stress fibres cannot orient at the same time along the directions θ and −θ , because
of cell-cell contact and hindrance [89, 383]. Thus, a choice between the two equivalent
symmetric orientations has to be made, leading to an advantage from a statistical viewpoint.
The distribution of orientations shows therefore only one peak in the interval [0,π], so that
the problems in statistically describing the outcome of the experiments – discussed before –
are often eliminated. In Takemasa et al. [351, 352], instead, cells acquire a romboidal-like
shape and so the confluent structure has two symmetric directions, as sketched in the right
panel of Fig. 2.10a.
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We summarise the results about confluent cells in Table 2.3. As in the sub-confluent
case, some authors report an oblique angle [89, 246, 351] and others a perpendicular
alignment [182, 199, 337, 396]. However, it is worth to advise that the word perpendicular
is sometimes used improperly. For instance, Iwaki et al. [183] described the arrangement
they observed in this manner, but from their images, reported in Fig. 2.10b, it rather seems
that θeq ≈ 60◦ is a more appropriate descriptor of the orientation. Similarly, in [383] the
term "perpendicular" is used to denote an orientation of nearly 75◦. Hence, if a precise
estimate of the alignment angle is to be obtained, one should be careful since several
experimental reports describe any shift toward 90◦ as perpendicular.

Differently from sub-confluent conditions, the preferential orientation angle is some-
times found to depend on the imposed stretching amplitude. For instance, Takemasa et
al. [351, 352] span from ε0 = 10% to ε0 = 110%, measuring a mean inclination θ̄ ≈ 61◦

up to θ̄ ≈ 69◦. A regression line θ̄ = 30.193− 0.081ε0 is fitted in [351], whereas the
linear relation between the angle and the amplitude becomes θ̄ = 31.0−0.09ε0 in [352].
They also give the biaxiality ratio ranging from r = 0.7 when ε0 = 10% to r = 0.32 when
ε0 = 70% which is known to strongly affect the equilibrium orientation. Moreover, in [352]
several other factors possibly influencing the preferential angle are ruled out, including
the duration of the stretching, the holding time of the deformation, the frequency, the
ECM coating of the substrate (fibronectin, collagen, laminin, vitronectin), and the cell type
(human ECs and rat SMCs).

A similar dependence is also found by Dartsch et al. [89] who measured a mean
(computed in [0,π]) of θ̄ = 61◦ when ε0 = 5% and of θ̄ = 76◦ when ε0 = 10%, and the
angle ranges with highest probability are respectively [50◦,60◦] and [70◦,80◦].

Very recently, Gérémie and collaborators [152] studied the reorientation in a confluent
monolayer of intestinal cells undergoing a periodic strain, with parameters mimicking the
peristaltic movement in vivo. They found a preferential perpendicular alignment, with
about 20% of cells aligned orthogonally to the main stretching direction.

It is important to remark that confluent configurations bring into play the relevant and
non-negligible role played by cell-cell interactions. As a consequence, both the biological
phenomena and the mathematical modelling become more complex. In fact, as mentioned
above, most models tend to work in a sub-confluent framework so that each cell can react
independently and the dynamics is simplified.

Regarding the speed of reorientation, as before it is found to increase with ε0. However,
compared to the sub-confluent case, Jungbauer et al. [190] report that fibroblasts in
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Fig. 2.11 Sketch of a typical experimental setting for cell orientation on micro-patterned substrates.
The main parameters that regulate cell adhesion and alignment are the depth of the groove, its
width, and the pitch.

confluence take a shorter time to reorient (e.g., 60 minutes at f = 1 Hz compared to
the 80 and 120 minutes of the sub-confluent cells). Actually, for larger frequencies, the
characteristic reorientation time τc does not reach a plateau, but continues to decrease
following a power law as clearly evidenced in Fig. 2.9a. This suggests an important
effect of cell-cell contact, that may avoid the saturation of molecular mechanisms seen in
sub-confluent experiments. At variance, Ives et al. [182] state that human umbilical vein
endothelial cells in less confluent portions of the membrane aligned more rapidly than the
ones in zones with higher cell density.

For the sake of completeness, we have to mention that, differently from all previous
experiments, Yamane et al. [394] observed that more than 90% of cardiomyocytes in
confluence aligned preferentially along the stretching direction, forming an angle smaller
than 30◦. A slight tendency to align parallel to the stretch direction is also reported by
Collinsworth et al. [81].

2.1.3 Cells on Micro-Patterned Substrates

Summary of experimental findings on 2D micro-patterned substrates

• On micro-grooved substrates, in absence of additional stimuli, cells orient parallel
to the grooves due to contact guidance mechanisms.

• If a cyclic stretch is applied to the grooved substrates, parallel to the grooves, a
competition between contact guidance and stretch avoidance is observed. In fact,
the former pushes the cell to align parallel to the patterns, whereas the latter would
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induce a perpendicular or oblique alignment. Contact guidance is often found to
prevail, but the interplay is not trivial and in some cases stretch avoidance is still
observed [283, 294].

• The geometry and topography of the patterned substrate, and in particular the
groove width and depth, are important to determine the alignment behaviour of
cells.

In addition to the effect of an externally applied mechanical stimulus, attention has
been paid to the influence of topographic and morphological cues on cells. As a matter of
fact, if the substrate is not entirely smooth and planar, the sensing mechanism of a cell is
able to feel the changes and to accommodate the cytoskeleton accordingly.

As a prominent example, a series of experiments is performed using 2D substrates
suitably coated with stripes or microgrooves, whose presence generates an anisotropy that
may drive the orientation of cells following the phenomenon of contact guidance. A sketch
of the experimental setting with grooved substrates is shown in Fig. 2.11.

In absence of any additional stimulus, the cell tends to align along the grooves, by
sensing the anisotropic topographical features of the substrate. Then, if the patterned
membrane is stretched, a competing effect between directional adhesion promoted by
the grooves and stretch avoidance emerges. Indeed, contact guidance pushes cells to
orient along the direction of the grooves, whereas a cyclic strain promotes their alignment
away from the stretching direction, as discussed in Section 2.1.2. These two forces
might be in competition if the grooves are not directed orthogonally or obliquely with
respect to the main stretch direction. In most cases, contact guidance is shown to prevail
[170, 210, 227, 380–382], but in general the outcome strongly depends on the geometric
characteristics of the grooves, in term of width, depth, and spacing (see Fig. 2.11). A
role is also played by the adhesion properties of possible stripe coatings, as well as by the
stretching amplitude and frequency.

In absence of any external cyclic stimulus, the first detailed investigation of topograph-
ical cues on cell alignment was performed by Clark et al. [76–78], both for a single step
and for multiply grooved substrates. The major findings of their studies are that, while
most cells can overcome a single topographical obstacle, the presence of a pattern of
grooves and ridges produces a strong alignment. Specifically, increasing the width of
the grooves reduces cell alignment along the texture. Instead, increasing the depth from
0.2µm to 1.9µm strongly enhances alignment and ultimately overrules the effect of the
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width. Interestingly, the authors also found a similar response for chick neurons, whose
growth appears to be aligned along the patterns of a substrate textured with 2µm deep
grooves. Moreover, as a negative example which recalls the one for cyclically stretched
isotropic substrates, it is claimed that neutrophil leukocytes, whose cytoskeleton is less
responsive, did not react neither to single topographical cues [76] nor to multiple grooves
[77]. Later, the same authors analysed the effect of ultrafine topographies [78], reducing
the spacing and the depth by an order of magnitude (130nm of groove spacing, 100-400
nm of depths). This choice was motivated by the will of reproducing the typical length
scales of aligned fibrils of ECM, where collagen fibres have a diameter ranging between
20-100 nm. Results were similar to the ones for coarser patterns and showed a parallel
alignment to the topographical cues, which was stronger with increasing depth. Only chick
embryo neurons appeared unaffected by such fine microgroove textures, suggesting that
fibrillar ECM does not have much influence on neural cells [78].

Among the first to investigate the competitive role of cyclic stretch and contact guidance
were Wang and Grood [379]. In their setting, fibroblasts grown on a microgrooved substrate
without stretching strongly aligned along the direction of microgrooves. Then, after 8%
cyclic stretching, cells did not reorient and remained preferentially aligned along the
microgrooves. However, the use of smaller microgrooves with a larger strain (12%)
managed to change the cellular orientation.

The same group [380–382] grooved a silicon substrate with 1.6µm−2µm deep grooves
and width ranging from 1 to 10µm, separated by 2 to 10µm wide ridges. Cells then aligned
along the grooves when ε0 = 4%,8% and f = 0.5,1 Hz. In most of the experiments,
contact guidance prevailed over strain avoidance due to cyclic stretching [380–382], since
no changes in alignment were observed after the application of the periodic stimulus. The
same results were observed when the microgrooves where aligned at 45 or 90 degrees with
respect to the stretching direction [381].

Loesberg et al. [227] similarly explored the combined effects of contact guidance
by microgrooves and concurrent cyclic stretching on fibroblasts. Regardless of strain
magnitude, cells were found to align along the textures in the substrate, with a secondary
role played by mechanical loading. In particular, an enhanced orientation response parallel
to the grooves was observed when the latter were positioned perpendicular to the uniaxial
strain, coherently with the avoidance reaction observed in smooth membranes. Such an
effect is also clearly evidenced by Tamiello et al. [353]. By using a substrate with circular
or elliptic micropillars, they observed the typical contact guidance response on the latter,
where cells aligned with the major axis of the ellipses in absence of any strain. If the cyclic
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deformation was applied perpendicularly to the elliptic micropillars, then the two effects
were coherent and cells oriented orthogonally with respect to the stretching direction –
which is equivalent to a parallel alignment with the contact guidance cue. Instead, if
the applied strain was parallel to the micropillar long axis, no preferential direction was
observed: some cells were found to be reoriented, but some were not.

Kurpinski et al. [210] showed as well that the application of a periodic stretch to cells
on a patterned substrate did not alter the parallel alignment to the microgrooves promoted
by contact guidance. Instead, if the same confluent monolayer was subjected to a cyclic
strain on a smooth surface, cells reoriented perpendicularly to the stretching direction, as
expected.

Therefore, the results discussed so far point towards a prevalence of adhesion to the
grooves over reorientation provoked by cyclic strain, which might also be totally abolished
in some cases. However, different observations are sometimes reported, underscoring the
non-trivial competitive effects of contact guidance and periodic stretching. For instance,
Ahmed et al. [5] found that if cyclic strain is applied to micro-patterns aligned with the
stretch direction, the competition between the effects makes cells to align at an average
angle of 47.5◦ with a large standard deviation. These results are in contrast with [210,
227] and point instead towards a combination of effects, though contact guidance still
appears to be very relevant. Instead, in coherence with previous works, a combination
of periodic deformations with patterns of fibronectin oriented at 45◦ or 90◦ with respect
to the stretching direction promotes oblique and perpendicular alignment, respectively.
It was also noticed that nuclear orientation seems prominently affected by geometric
constraints rather than by cyclic stretches, probably because the link between nucleus and
outer environment is indirect.

Further support to the competition between microgrooves topographical cues and cyclic
stretching is provided by Park and collaborators [283]. In their work, fibroblasts that were
aligned with the microgrooves underwent a change in orientation when submitted to cyclic
strain, reaching a final oblique alignment. However, their result may be affected by the
large groove spacing, up to 50µm, which can more easily accommodate cell reorientation
after initiation of stretching.

Indeed, the dimensions of the grooves might have a role in deciding whether the cell
prefers to follow the contact guidance stimulus or to reorient away from the strain. In this
respect, the contribution by Prodanov et al. [294] is particularly interesting. Differently
from all previous works, which pointed towards a complete dominance of contact guidance
or at most to an intermediate response, they observed that strain avoidance can overrule the
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Fig. 2.12 Median angle of cells on a nano-grooved surface (300 nm wide grooves, 600 nm pitch,
150 nm depth) with grooves oriented along the main stretching direction (θ = 0◦) as a function of
the stretch amplitude (in blue) and on a flat surface (in red). For small strains, cells on a smooth
substrate are oriented randomly, as confirmed by a median angle close to 45◦. On the contrary,
on a nano-grooved surface a parallel alignment is observed. Then, an increase in strain is able
to induce a reorientation also on the grooved substrate, and strains greater than 8% overrule the
contact guidance effect. Data taken from Prodanov et al. [294].

contact effects when the size of the grooves was reduced to the nanoscale (300 nm wide,
600 nm pitch, 150 nm deep). In particular, a cyclic stretch parallel to the nano-textures
above 3% in magnitude is able to reorient the cells toward an oblique or even perpendicular
direction. This can be clearly seen in Fig. 2.12, where the median angle as a function
of the amplitude is reported. For small strains, below 3%, cells are randomly distributed
on smooth surfaces, while they align with the grooves on patterned substrates. However,
increasing strains manage to induce a reorientation also on the nano-grooved substrates,
which for strains greater than 8% is comparable with the one on smooth surfaces. On
the other hand, for a pitch size of 2µm and a groove size of 1µm, cells did not respond
to mechanical stimuli as high as 8% and persisted in aligning along the grooves. To
interpret the results in Fig. 2.12, we advise that in [294] median values of distributions
in [0◦,90◦] are available and not peak values. So, it should be taken into account that a
uniform distribution corresponds to a median value of 45◦. Above it, the distribution is
skewed towards the perpendicular configuration and below it towards the direction of the
nano-grooves.

When analysing the concurrent effects of micropatterns and cyclic strain, groove width
appears also to be important, as pointed out by Houtchens et al. [170]. Indeed, they found
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that shallow patterns of 15µm width as well as very large groove widths of 70µm facilitate
a slight cell reorientation away from the stretching direction when both topographical and
mechanical stimuli are simultaneously present. Instead, on intermediate groove widths,
the influence of the texturing guidance is most effective. This is probably due to the fact
that, on the one hand, large spacing allows the cells to better accommodate inside the
grooves and therefore to facilitate their stretch avoidance reorientation; on the other hand,
for reduced width, the cell is also able to protrude and attaches to the nearby ridges, which
may be an helpful support in trying to reorient.

An interesting observation related to the just described behaviours was done by Abbott
et al. [1]. They coated a silicon substrate with 40µm wide stripes of collagen oriented
parallel to the main stretching direction, so that they restricted cell reorientation. In this
case, many cells became apoptotic (nearly 80% at 20% strain). It was then argued that
limitations in the capacity of cells to reorient in response to high strains, due for instance
to ageing or degeneration, might lead to apoptosis.

We also mention in this Section two experiments not performed on patterned substrates,
which however display results due to some topographical cues. In detail, the experimental
outcomes by Liu et al. [223] are probably be due to a mechanical anisotropy induced by
stretching. In their work, a coated PDMS membrane is pre-stretched at a constant 10%,
20%, and 30% strain. Then, cells are seeded and it is observed that they reorient along
the main stretching direction. The elastic modulus of the material at rest is equal to 268
kPa and is isotropic, but stretching induces an anisotropy. In fact, the ratio of the elastic
moduli in the two principal directions becomes 1.33, 1.73, and 2.20, respectively, for
the three strains mentioned above. Hence, the reason for parallel alignment is suggested
to be the resistance to active cellular pulling. This result is in contrast with the one by
Goli-Malekabadi et al. [139], but the differences are likely due to changes in experimental
conditions and to the pre-seeding of cells on the substrate.

Finally, another interesting example of topographical orientation is discussed in a
recent work by Jin et al. [189], who seeded airway smooth muscle cells on tubular surfaces,
either concave or convex. Cells on the concave surface reoriented perpendicular to the
cylinder axis, while on the convex one they aligned at a certain oblique angle that appears
to be dependent on the radius of curvature.

To conclude this Section, we observe that the use of patterned surfaces in tissue
engineering is receiving a lot of attention. Thus, this field appears in rapid development
and we here chose to mention only some examples that are closer to the interests of this
Thesis, even if the mathematical models will be mainly focused on cells on 2D isotropic
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Cells in 3D gels

Cell type fff (Hz) εεε000 (%) θθθ eq (max) Refs.

(h) bronchial SMCs 0.5 12 0◦ [20]

(h) foreskin fibroblasts 0 ≈ 40 0◦ [217]

(h) dermal fibroblasts 0, 1 10 ∥ [130]

(r) cardiac fibroblasts [0.5,4] 10
{

0◦ (free)
90◦ for r = 0 [67]

(h) vein myofibroblasts 0.5 10
{

0◦ (core)
90◦ (surface) [124]

(h) vein myofibroblasts 1 5 ⊥ (cyclic); ∥ (static) [96]

(h) cardiomyocytes 1 10 ↔ 20 strain aligned [299]

(h, r) cardiomyocytes 0, 1 5 ∥ [366]

(b) aortic SMCs 0, 1 5 ∥ [193]

(r) bone marrow progenitor cells 0, 1 10 ∥ [271]
Table 2.4 Summary of the main experiments performed in three-dimensional matrices or gels. For
each experiment, in addition to the cell type, we report the tested frequencies, amplitudes and
preferential orientation. In particular, we use square brackets to denote a range of values. Moreover,
in [299] the strain oscillates between 10% and 20%. Abbreviations: SMCs = smooth muscle cells;
(b) = bovine; (h) = human; (r) = rat. We denote by ⊥ a perpendicular orientation and by ∥ an overall
parallel orientation, though the precise angle is not specified.

substrates. We refer the interested reader to [354] for a review of other experimental
set-ups and further details on topographical contact guidance.

2.1.4 Cells in Three-Dimensional Matrices

Summary of experimental findings in 3D matrices and scaffolds

• Cell alignment in 3D fibrous matrices is not primarily guided by stretch avoid-
ance, as for planar substrates undergoing cyclic strain. An orientation parallel
to the deformation is frequently observed, especially in the core of the samples.
Instead, at the surface, where contact guidance is less effective, the cells align
perpendicularly or obliquely as in 2D substrates.
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• Contact guidance due to collagen fibres, which may also be remodelled by cells,
competes with cyclic strain avoidance.

• If soft matrices are used, like those composed of collagen, compaction of the tissue
sample by the cells due to boundary constraints as well as cellular contractility
[299] are suggested to be important in determining cell alignment.

• The interplay of all these factors is not trivial, even if the 3D situation is the one
which most faithfully represents the in vivo conditions.

The two-dimensional setting with cells adhering on a planar substrate has several
advantages, but in some cases might result in a simplification of the real environment
experienced by cells in vivo. Therefore, experiments culturing cells in three-dimensional
matrices and fibre networks (usually made of collagen or fibrin) or in tissue engineered
constructs have been performed by numerous groups. In particular, cells in a three-
dimensional ECM are surrounded by fibres, and adhesive sites are active all around them.
On the one hand, this leads to the fact that cells tend to elongate together with the ECM, due
to the phenomenon of contact guidance. On the other hand, the imposed stretch induces
both a topological and a mechanical anisotropy. Indeed, cells embedded in a 3D gel
may compact the surrounding matrix and also alter its anisotropy by realigning the fibres,
thanks to the protrusion of pseudopodia and to exerted traction forces [122]. For instance,
collagen gel compaction and contraction by fibroblasts, with development of tension,
was already observed in 1982 by Bellows et al. [34]. Then, more recent experiments
demonstrate that cells embedded in a matrix, possibly constrained at its boundaries, and
left in static conditions tend to compact the sample and to develop stresses [67, 124]. The
interplay between contact guidance cues by collagen fibres and mechanical stimuli coming
from periodic deformations becomes therefore more complex. Moreover, very soft gels
or matrices do not transmit all the applied stretch to the cells [67, 367], and it is more
difficult in such cases to precisely quantify the strain sensed by the cells with respect to the
externally controlled deformation [96, 303]. Indeed, soft gels mimicking the ECM may
undergo alterations in their mechanical properties due to the applied stretches and to cell
traction forces.

Overall, as reported in Table 2.4, the result is that cells in 3D structures are more prone
to orient along the main stretching direction [20, 67, 96, 124, 130, 217, 271, 299, 305, 366].
In this respect, an interesting comparative study between the 2D and 3D cases for vascular
smooth muscle cells undergoing periodic deformations was performed by Bono et al. [43].
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In accordance with previous works, the experiments confirmed that in two-dimensional
monolayers there was a preference for the perpendicular orientation (80-90 degrees), while
in three-dimensional collagen gels parallel alignment (0-10 degrees) was predominant.

In static conditions, cells tend to align with the direction of sustained stretch or with
the direction of boundary constraints (see [20, 67, 96, 130, 173, 193, 217, 248, 271, 366,
373]). Specifically, the role of mechanical constraints in 3D tissue constructs was firstly
underscored by Nieponice et al. [271], who used two different control groups. The first
one, named unconstrained control, was made by a scaffold with cells without any clamp
and therefore allowed to compact freely. Instead, a second one had two fixed ends and
was therefore called constrained control: due to cell traction forces and subsequent gel
compaction, a stress developed along the axial direction. It was observed that cells in
cyclically stretched matrices belonging to the constrained control group reoriented parallel
to the direction of stress, while no alignment emerged in the unconstrained control.

Then, the subtle balance between contact guidance, constraints, and stretch avoidance
in 3D cultures is vividly highlighted by Foolen et al. [124]. In particular, they performed
extensive experimental analyses on myofibroblasts cultured in collagen/matrigel gels.
In detail, cells were firstly left free to compact the gel for a few days in pure uniaxial
conditions, i.e., with deformation restrained in one direction. In this case, a cell-generated
compaction strain emerged in the direction perpendicular to the constraint: cells and SFs
orientated towards the direction of the applied constraint. Instead, in static conditions with
deformation constrained in two directions, the cells did not show a preferential alignment
and oriented in both the constrained directions equally. When cyclic stretch was applied
after static culture, to study the combined effect, the results unveiled interesting differences
across the gel depth. Cells in the core of the specimen exhibited alignment along the
constraint directions, while those at the top and bottom surfaces of the gel strongly aligned
perpendicularly to the main stretch direction, as happened for planar membranes. In fact,
in the core, the effect of collagen fibres is sterically restrictive, while on the boundary the
strain-avoiding mechanism overwhelms the anisotropy induced by ECM fibres. Further
confirmation of the prevailing of contact guidance over stretch avoidance is provided by
experiments with reduced density of collagen inside the core as well as with perturbed
collagen integrity. In these cases, reorientation towards the perpendicular direction is
observed throughout the whole tissue sample, since the stretch avoidance response is not
inhibited by a restrictive environment and consequent contact guidance mechanism. Later,
the same group [125] showed that, even at high collagen densities, activation of protein
Rho may result in SFs reorientation away from stretch, as already put in evidence for 2D
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settings [198, 215]. Overall, the interplay between matrix density, deformation, and Rho
signalling pathway appears therefore important in 3D cell alignment.

Other studies that highlight variations of collagen and cell alignment throughout the
depth of 3D tissue constructs are those by Boerboom et al. [41] and by Rubbens et al.
[311]. In both of them, when samples were intermittently strained, collagen fibres and
cells were found to align perpendicularly or obliquely to the stretch direction at the surface,
whereas parallel alignment to the deformation emerged deeper into the 3D matrix.

Chen et al. [67] found slightly different results from Foolen and coworkers [124].
More in detail, they firstly pre-cultured the cells for 24 hours in a 3D gel with deformation
restrained in two directions. After that, the gel was subjected to a simple cyclic elongation
at 0.5 Hz in one direction, and parallel alignment to the strain was achieved. Instead, if the
specimen underwent pure uniaxial stretching (with εyy = r = 0) no alignment was observed
at 0.5 Hz. Increasing the frequency to 2-4 Hz led however to a perpendicular alignment in
the latter case, as for 2D cultures. The last condition that the authors tested is the one in
which the collagen gel is pre-cultured without any constraint, and then a cyclic deformation
is applied. Also in this case cells are found to align parallel to the strain direction. Unlike
Foolen et al. [124], no difference was evident in orientations between the surface and the
core of the gel.

Additional relevant results about the mechanical stimulation of 3D matrices are due to
Lee et al. [217], who stretched a fibroblast-populated 3D collagen gel firstly in one direction
for a time t∗, with t∗ ∈ {5,24,48,72} hours, and then in the orthogonal direction. It was
observed that, when the stretching direction is switched, the cells reorient themselves
towards the direction of the newly applied load. The time required for reorientation
was longer in specimen with larger values of pre-stretching time t∗, indicating that the
remodelling of strongly aligned tissue constructs may be slower. However, even though the
authors declare that their experimental conditions uncouple the effects of contact guidance
and applied stretch, the surrounding collagen fibres are found to orient as well in the same
direction as cells. Therefore, the impact of stretch compared with ECM guidance by such
fibres is not fully clear.

Parallel alignment of cells to strain in 3D was also found by Gauvin et al. [130],
Wakatsuki and Elson [373], and Asano et al. [20], both for step deformations and for
cyclic stretching. Moreover, in [130, 373], it was highlighted that the application of a
mechanical stimulus induced changes in the mechanical properties of the tissue engineered
samples, with increased anisotropy and stiffness along the preferential direction. This is
due do the compaction of the collagen gel by the cells, which can exert pulling forces up to
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8mN [373]. External mechanical fields can therefore be useful to modulate the mechanical
properties in the design of engineered tissues.

In addition to gels, cellular alignment is also analysed in artificial tissue samples, like
scaffolds and grafts. For instance, to reproduce the heart environment as realistically as
possible, Tulloch et al. [366] assembled engineered 3D constructs of cardiomyocytes and
collagen, both for rodent and human cells. The artificial grafts were then analysed from a
mechanical viewpoint. In all cases, static and cyclic stretch promoted alignment parallel to
the stress with no significant differences between the two loading conditions. However,
the authors themselves warn that spontaneous contractions are observed in cells for both
situations, and this may influence the results.

In contrast with almost all the experiments on three-dimensional matrices, Cha et al.
[59] found that smooth muscle cells in a 3D porous scaffold oriented perpendicularly to the
cyclic stretching direction; however, even if cells were firstly seeded onto the surface of the
polymeric matrix, they observed a consistent number of stretched cells to penetrate deeper
in the scaffold, which makes it difficult to discriminate the effects of contact guidance and
cyclic strain.

2.2 Review of Mathematical Models

The consistent amount of experimental data reviewed in Section 2.1 shed some light into
how a cell responds to mechanical stimulations. However, there are still a lot of unanswered
questions, and the precise biological and physical mechanisms that underlie cellular
reorientation are not fully clear. In this respect, starting from the early 2000s, mathematical
models were proposed in order to provide a better understanding of experimental findings,
as well as to develop meaningful theories to describe the cell alignment process. Since in
Chapter 3 we will present our mechanical models for cytoskeletal reorientation, it is useful
to provide here a review of the mathematical frameworks proposed in the literature, to
couple them with the experimental review discussed above and at the same time establish
a background for our work.

Several approaches have been adopted so far to target the modelling of cellular reorien-
tation and alignment in response to mechanical cues. A sharp classification is difficult to
perform, since several models deal with multiple tools and often with multiple scales. Here,
we aim at providing a categorisation by highlighting the main mechanical structures and
instruments upon which the models are grounded. Specifically, in Section 2.2.1 we present
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Fig. 2.13 Top panel: Sarcomeric-like structure of cellular stress fibres for modelling purposes,
discussed in Section 2.2.1. The fibres are considered as composed by sequences of active contractile
structures: the reciprocal sliding of actin and myosin filaments, as well as the elasticity of titin
filaments, determine the development of internal tension. Bottom panel: strain-tension relation and
velocity-tension relation used in some models [274, 369]. The velocity-tension curve is derived
from the classical Hill dynamics for muscles. Instead, the strain-tension function is the sum of an
active and a passive component.

the models that treat the stress fibres as active structures able to contract. Then, in Sections
2.2.2 and 2.2.3 we respectively discuss the strain and stress avoidance approaches. In the
framework of Continuum Mechanics, Section 2.2.4 reviews some very relevant results
about the use of elastic energies to find the cell preferred orientation, which will be widely
employed in the remainder of the Thesis. Finally, we discuss some models that take into
account viscoelasticity in Section 2.2.5, while Section 2.2.6 briefly provides an overview
of articles in the Statistical Mechanics framework. Such a subdivision is not meant to be
mutually exclusive, and some works will be discussed in more than one Section. However,
we chose to put in evidence the features that are most strictly related to our subsequent
work.

2.2.1 Modelling Stress Fibres as Active Contractile Structures

Most of the experimental works agree upon the highly mechanosensitive structure of actin
stress fibres, which appear to have a fundamental role in cell reorientation. Moreover, they
are able to develop contractile forces thanks to the bundling of actin filaments and myosin
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heads: such a structure somehow reminds of the one of sarcomeres, i.e. the elementary
contractile units composing muscles, as in Fig. 2.13. Even though there are several
differences between SFs and sarcomeres [197], the similarities motivated some studies
to tackle the problem of cell and cytoskeletal realignment by using an active contractility
approach.

In this respect, a starting point for several modelling attempts of cell stress fibres
orientation is the framework proposed by Deshpande and coworkers [103, 104]. In a series
of papers, the authors developed a model for cell cytoskeletal contraction as an active
phenomenon following an external chemical stimulus. The stress fibres are considered
as active filaments capable of developing an internal tension, which resembles a Hill-like
model for cross-bridge dynamics in muscles [162]. Moreover, the activation level of the
fibres η ∈ [0,1] is another key variable of their model that evolves according to

dη

dt
(t;θ) =

k+
τ f

[1−η(t;θ)]C− k−
τ f

(
1− σ(θ)

η(t;θ)σmax

)
η(t;θ) , (2.5)

where k+,k− are dimensionless constants that govern the rate of stress fibres formation and
dissociation, respectively; τ f is a decay time constant; C = exp(−ti/τ f ) is the intensity
of the chemical signal that triggers SF activation from time ti; σ(θ) is an active stress
related to the fibre tension along the orientation θ and σmax is its value at full activation,
i.e. with η = 1. In addition to the active stress, linear elasticity is employed to model
the passive cell response. Although such a model does not deal with fibres preferential
reorientation following mechanical stimuli, it predicts a number of interesting experimental
features about the active contraction of the cytoskeleton. For instance, simulations show a
decrease of the force exerted by the SFs with decreasing substrate stiffness, as well as a
concentration of SFs activation near sites of localized tension, coherently with experimental
observations for cells on an array of microposts. We remark that, in this model, stress
within the SFs inhibits their disassembly. This is motivated by the will to have more SFs
on stiffer substrates and is justified on the basis that tension is related to the amount of
cross-bridging between actin and myosin, which stabilizes the fibres. Such an assumption
is modified in other papers, as explained in the following.

Successive works by the same group [385] introduced the cyclic deformation and
studied the subsequent remodelling of the cytoskeleton. Results in the periodic case capture
the perpendicular preferential orientation if a pure uniaxial stretch (r = 0) is applied to the
substrate, which is in line with several experimental settings described in Section 2.1.2.
Furthermore, the degree of alignment is found to increase with the maximum amplitude of
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the oscillation ε0 and with the frequency ω . Instead, in the simple elongation or biaxial
cases (see Fig. 2.3), the model suggests that two symmetric preferential orientations are
found, which are given by the directions where the strain rate is null, namely,

θa =±arctan
(

1√
r

)
. (2.6)

However, as we will discuss in the following, such a prediction coincides with the one
obtained with the strain avoidance approach, suggesting that the cell aligns along the
direction of minimal stretch. An interesting prediction found in [385] is instead that
changes in the stress fibre sensitivity to the strain rate are as effective as the stretch
magnitude in enhancing the alignment. This might be coherent with experimental findings
[198] which suggest that a reinforcement in the expression of a certain chemical pathway
is equivalent to an additional 3% stretch.

A different framework, though still based on SFs activation and cross-bridge contraction
dynamics, is developed by Vernerey and Farsad [369]. In detail, the authors propose a
model grounded on constrained mixture theory, accounting for both passive elasticity
and active contraction of the fibres that is driven by length-tension and velocity-tension
relations, shown in Fig. 2.13. A relevant difference with previous approaches consists in
how the contractile stress affects SF formation. While in [103] it is assumed that stress
reduces fibre dissociation, in [369] such a stress increases fibre formation, thanks to a
rate of actin monomer association k f given by k f (σθ ) = k f

0 + k f
1 σθ , being σθ the tension

along θ . The model furnishes interesting predictions and provides detailed insights into
cell contractility mechanisms by using the well-established mixture theory. However,
as pointed out in [274], it is not completely accurate in the description of cyclic strain
reorientation, since at high amplitudes it would predict that a large amount of fibres is
aligned to the strain direction. A similar constrained mixture approach had been used
previously by Na et al. [263] who developed a theoretical model to describe the nonlinear
elasticity of actin in equi-biaxial mechanical tests. Their model however does not account
for SF realignment.

Later, in [274], the advantages of the models by Deshpande et al. [103] and Vernerey
and Farasad [369] are combined, in an attempt to overcome the limitations of both. More in
detail, the following equation for the stress fibre density Φ(t;θ) in direction θ is proposed,
which mimics and extends the one firstly introduced in [369]:

dΦ

dt
(t;θ) = [k0 + k1σmax f a

ε (t;θ) fε̇(t;θ)]Φm − kdΦ(t;θ) , (2.7)
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where k0,k1,kd are constants describing respectively basal SF formation, stress-induced
SFs formation, and SFs dissociation. In addition, Φm is the fraction of monomeric actin,
while

f a
ε (t;θ) = exp

(
−

ε2
N(t;θ)

ε2
0 (t;θ)

)
and fε̇(t;θ) =

1
1+ 2√

5

(
1+

kvε̇N +2√
(kvε̇N +2)2 +1

)

represent the active reduction in contraction due to strain (dashed blue curve in Fig. 2.13)
and the tension-velocity Hill-like relation (akin to the green curve in Fig. 2.13), respectively.
We remark that, differently from [103], increasing SF tension in this case leads to enhanced
SF formation, rather than to reduced dissociation as per Eq. (2.5).

Then, this type of models was further developed by Vigliotti et al. [372] who proposed
a very sophisticated thermodynamical framework, coupling the macroscopic evolution of
the cytoskeleton with Statistical Mechanics considerations about stress fibre formation.
In particular, they derived the evolution equation for the SF from the microscale and
introduced micro-remodelling of the fibre functional structure, as well as diffusion of un-
bound actin in the cell. The model is capable of accurately predicting several experimental
features, such as the discrepancy between perpendicular alignment on 2D substrates and
parallel alignment to the deformation in 3D gels, as discussed in Section 2.1.4. Moreover,
the model turns out to be sensitive to differences in the applied waveforms, allowing
comparisons with specific experiments [362]. Nevertheless, the complex framework of
[372] does not describe the dependence on the biaxiality ratio r.

Further investigations adapted the previous model to simulate also the reorientation
of cells on grooved substrates, together with the competition between topographical and
mechanical cues due to surface patterns and cyclic strain, respectively [304, 371]. In
particular, computational studies showed that cells reorient if the pitch size is sufficiently
small, whereas they align along the grooves if the pitch is large enough, coherently with
experimental assays discussed in Section 2.1.3 [294]. Extensions and refinements were
also developed to explain the transient force generation [249] experimentally noticed by
Wille et al. [389], and to deal with the alignment in 3D collagen gel constructs [67, 299]
described in Section 2.1.4.

Instead, the approach pursued by Hsu and coworkers [171, 172, 196] consists in a
purely kinematical description of SF disassembly and preferential realignment, based on
experimental reports that fibres are pre-stretched at a homeostatic level [230]. Mechanical
perturbations then destabilise this state and provoke a reorganisation of the cytoskeleton.
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In particular, after introducing the deformation gradient Ft(t ′) = F(t ′)F−1(t) from the
configuration at time t to the new configuration at time t ′, and the corresponding right
Cauchy-Green tensor Ct(t ′) = Ft(t ′)TFt(t ′), the authors define the stretch ratio of the i-th
fibre directed along Ni as

λ
i
t (t

′) =
√

Ni(t) ·Ct(t ′)Ni(t) .

Discretising time in intervals of amplitude ∆t, the total stretch at time t +∆t is therefore
λ i(t)λ i

t (t +∆t). A first version of their model was based on a deterministic evolution
equation, with a time rate depending on the deviation from the homeostatic pre-stretch
[196]. In subsequent works, the dynamic turnover of SFs was then described by a stochastic
formulation [171, 172], with the probability of stress fibre disassembling during the time
interval ∆t which is taken to be

P =

[
k0 + k1

(
λ i −λ0

λ0

)2
]

∆t ,

where λ0 is the fibre homeostatic pre-stretch that is experimentally found to be λ0 ≈ 1.1
[230]. If a SF is disassembled, a new SF oriented randomly with a stretch λ0 is immediately
built. An additional assumption is that SFs can relax at a rate proportional to the perturba-
tion in the set-point pre-stretch. The model turns out to be effective in predicting several
behaviours of cell under stretch, including the reorientation away from the stretching
direction and the absence of alignment for equi-biaxial deformation. However, the model
seems to suggest that cells align along the direction of minimum deformation, which is not
always accurate as we will discuss later. Moreover, another difference between [172] and
[103] lies in the choice of initial conditions. While in the former the SFs are considered as
randomly distributed at the beginning, the latter takes a cell devoid of fibres at the initial
time instant and studies its rebuilding.

The same group [197, 362] successively proposed a sarcomeric model of a SF as a
passive elastic element coupled with an active contractile myosin filament, borrowing
again ideas from muscle contraction. The reference length of the sarcomere may change
in time due to myosin sliding, which provides an equation that also embeds viscous-like
effects. An Hill-type dynamics to relate force and contraction velocity is also chosen, as
done by several other authors described in this Section. Thanks to these modelling choices,
the results are able to capture the different evolution of SF orientation due to high and low
frequency periodic strains. In particular, for high frequencies the changes in SF length are
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Fig. 2.14 Evolution of circular variance in time for different applied frequencies, taken from [197],
where a model for active contractile stress fibres is proposed. An increase in the frequency leads
to a decrease in the circular variance, that is, to a more pronounced orientation of SFs along the
orthogonal direction, as shown by the circular histograms.

faster than the myosin can respond and the behaviour is elastic. Low frequencies instead
allow the SF to maintain a constant force employing myosin sliding. An increase in the
frequency also decreases the circular variance, as shown in Fig. 2.14. Analogous ideas are
found in the work by Chen et al. [66], where the role of focal adhesions is taken explicitly
into account in the elasto-sarcomere picture of SF. The existence of two activation modes
for the SF, called localized and homogeneous activation, introduces two intrinsic time
scales. These are related to a lower and an upper frequency, respectively, which represent
the minimal and maximal threshold frequencies observed experimentally [190]. Again, the
model predicts that SFs reorient towards the direction of least substrate deformation.

Another interesting contribution to the structural modelling of SFs is the one by the
group of Qian [220, 295]. A mechano-chemical theory at the microscale is presented,
which accounts for the formation of ligand-receptor bonds between cell and substrate
through simple first-order kinetics. The activation of contractile fibres is based on a
microscopic energy reduction that includes the force generated by the filaments and the
stiffness of the substrate. In particular, the SF is modelled as a Maxwell element in
parallel with an active component, and its reorientation happens as a stochastic Brownian
process. By using this framework, the authors report several intriguing predictions, such
as differences between reorientation on stiff and soft substrates, amplitude and frequency
thresholds, and the role of the protein Rho [295]. However, a consistent limitation of this
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model regards the fundamental hypothesis that cells align along the direction of maximum
actin density, which is not strongly corroborated by experiments and also leads to a difficult
interpretation of the results. Indeed, some simulations in [295] seem to show that the
average actin density at 1 Hz frequency is almost the same for orientations between 75
and 90 degrees. Hence, it is unclear why the cell should prefer any of the directions
inside this range. A refinement is then introduced by the same authors in [220] for neuron
reorientation, accounting also for changes in neuronal length.

Finally, we mention the work by Zhong et al. [406], in which a multiscale link between
the focal adhesion bond microscopic dynamics, the turnover of stress fibres and the cell-
matrix coupling is drawn. Specifically, as done in a previous work by the same group
[205] the FAs are described as a set of bonds connected to the substrate by linear elastic
springs. These bonds might be open or closed, and the transition between the two states
is regulated by the force acting on each spring. In addition, the SFs are modelled as
viscoelastic Kelvin-Voigt elements, connected to the FAs, and undergoing turnover as a
consequence of FA instability. The extracellular matrix is treated as a triangular lattice of
elastic rods, to which a cyclic deformation is applied. Simulations show results compatible
with experimental data, especially by Jungbauer et al. [190].

In most of the models presented so far, circular histograms are employed to represent
the orientation of stress fibres, as shown in Fig. 2.14.

2.2.2 Strain Avoidance

Historically, the very first modelling approaches to describe cell reorientation under stretch
were based on a strain minimization principle, which led to naming the phenomenon as
strain avoidance [51, 375]. According to this hypothesis, the cell would preferentially
align along the directions where it feels the minimum possible strain, so as to minimize the
discomfort and the cyclic elongations of its cytoskeleton. Through standard calculations,
we can therefore write the strain experienced along a direction N = (cosθ ,sinθ ,0) as

εN = εxx cos2
θ + εyy sin2

θ = εxx[(1+ r)cos2
θ − r] , (2.8)

where εxx,εyy are the principal strains and r := −εyy/εxx. A direct application of the
minimal strain principle to Eq. (2.8) readily allows to state that the preferred directions are
given by

θeq = arccos
√

r
1+ r

, (2.9)
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Fig. 2.15 Axial strain in direction θ , defined by Eq. (2.8), as a function of the angle for different
values of r and a fixed value of εxx = 0.1. According to the strain avoidance approach, the cell
preferential angle defined by Eq. (2.9) corresponds to the intersection between the coloured curves
and the dashed line, which represents zero strain.

which is equivalent to (2.6). In particular, for r = 0, the only preferential orientation is
θeq =

π

2 . As shown in Fig. 2.15, θeq corresponds to the intersection of the strain curve,
defined by Eq. (2.8), with the zero strain line.

With respect to this approach, Takemasa et al. [352] were among the first to suggest
that the stress fibre orients to minimize changes in its length during cyclic stretch, i.e.
along the direction of null stretch, based on geometrical considerations. Then, Wang et al.
[375] proposed a more refined description based on strain avoidance, under the following
assumptions:

(i) cell reorientation is initiated by the strain along the cell major axis;

(ii) each cell has an axial strain threshold it can sustain, and such threshold is nor-
mally distributed in the cell population, with 3% mean and 1.5% standard deviation
estimated for melanocytes;

(iii) the cell avoids any direction where the axial strain exceeds its threshold;

(iv) the final orientation is selected randomly among the directions where the axial strain
is less than the threshold.

Although some of the previous assumptions are quite strong, this is one of the first attempts
to rationalise the strain avoidance mechanism, already observed in experiments by Buck
[51] and Dartsch [88, 89] in the 80s. The model by Wang and collaborators was also
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used by Barron et al. [32], who estimated a mean of 1.8% and a standard deviation of
0.75% for the normal distribution of tolerable strain in a population of endothelial cells.
Neidlinger-Wilke and coworkers [267] estimated instead an axial strain limit of 6.4%
for osteoblasts and of 4.2% for fibroblasts. More recently, a very similar approach was
followed in [258], where a simple linear elastic model for SFs and MTs is proposed, though
the role of the latter is not clear experimentally (see Section 2.1.2).

The reasoning put forward by Wang in 2000 [378] refined the previous description
of actin filament dynamics. In particular, he evaluated the change in the strain energy of
a fibre due to the action of the axial strain ε f transmitted to it. It was also assumed that
only a fraction of the substrate strain was effectively transferred to the filaments, that is,
ε f = αtεN in tension and ε f = αcεN in compression, with αt < αc and εN as in Eq. (2.8).
The model is then developed under the following hypotheses:

(i) in absence of deformation, each filament of actin owns a basal strain energy given
by Eb = kδ 2/2, where δ is the pre-strain of the SF due to its inherent tension; then,
the total energy of the fibre is E f = k(δ +Lε f )

2/2, where L is the initial length of
the filament;

(ii) only the normal strain εN is transmitted to the filaments;

(iii) the actin filaments cannot bear compression;

(iv) disassembly of SFs occurs if the strain energy E f is decreased to zero or increased
to twice the basal energy Eb.

The limits in hypothesis (iv) are crucial, since they allow to identify through Eq. (2.8) an
interval of orientations:

θ ∈

arccos

√
r

1+ r
+

(
√

2−1)δ
(1+ r)αtεxxL

, arccos

√
r

1+ r
− δ

(1+ r)αcεxxL

 . (2.10)

By taking αt = (
√

2−1)αc and defining B := δ/(αcL), the interval (2.10) can be written
as

θ ∈

[
arccos

√
r

1+ r
+

B
(1+ r)εxx

, arccos

√
r

1+ r
− B

(1+ r)εxx

]
. (2.11)
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Fig. 2.16 Sketch of the force-dipole model for cell reorientation used in [93, 94]. The cell is
assumed to have its major axis aligned with the z axis, whereas the externally applied stress σa

is acting at an angle θ with respect to the cell axis. P is the cell dipole magnitude and σR is the
subsequent reaction stress developed in the matrix due to active contractility.

It is immediate to observe that in the limit B → 0, which corresponds to a vanishing
pre-strain δ , the interval collapses to the point

θeq = arccos
√

r
1+ r

= arctan

√
1
r
, (2.12)

that is again the direction of null strain. In addition, increasing the applied strain εxx

(without conflicting with the small deformation assumption) leads as well to a narrowing of
the range of preferential angles. This correlates with the fact that higher strain amplitudes
are associated with a smaller range of observed orientation angles in experiments, and
therefore to more peaked probability distributions as shown in Fig. 2.6.

A different but somehow related approach is pursued by De and co-workers [93, 94].
Using a coarse-grained picture, they model the cell as an anisotropic force dipole [39, 316]
as sketched in Fig. 2.16, to mimic the action of a stress fibre along a given direction. In
their work, the focus is on how the cell readjusts its contractile activity by developing
a force along its major axis, which can be reoriented as a consequence of perceived
mechanical cues. Additionally, the authors assume that such a reorganisation is driven by
the maintenance of an optimal level of strain εtarget. As a consequence, a reaction strain in
the surrounding matrix is identified:

εR =−(1+ r)P
πa3E

,

where P is the (negative) cell contractile dipole magnitude, E is the Young modulus of the
matrix and a is the cell size. Instead, the component of the applied strain along the cell
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axis is
εa =

σa

E

[
(1+ r)cos2

θ − r
]
,

with σa the external uniaxial applied stress. Starting from these considerations, a free
energy is built:

Uε = Ucell,ε +Uself +Uint ,

where

Ucell,ε =
1
2

χ

[
σa

E
[(1+ r)cos2

θ − r]− P(1+ r)
πa3E

− εtarget

]2

,

Uself = (1+ r)
10r2 −14r+9

30(1− r)2
P2

2πa3E
, (2.13)

Uint = P
σa

E

[
(1+ r)cos2

θ − r
]
.

In detail, the contribution Ucell,ε is the free energy related to the contractile activity of the
cell, which is minimized when εa + εR = εtarget, i.e. when the cell feels the optimal strain.
On the other hand, Uself gives rise to a force that tends to reduce the magnitude of the
dipole [93], whereas Uint represents the interaction between the dipole and the external
strain. The variables of the model are therefore P and θ , with a dynamics assumed to be
given by [94]:

dP
dt

=− 1
τP

∂Uε

∂P
,

dθ

dt
=− 1

τθ

∂Uε

∂θ
. (2.14)

Actually, in a subsequent work [93], the equation for θ is modified by multiplying for a
factor 1/P2, even though the results are only altered slightly. When a cyclic deformation
with a high frequency is applied, in the form σa(t) = σa(1− cosωt), the energy may be
averaged over a period, since the cell is not able to follow the stress instantaneously. The
resulting averaged energy has an additional contribution, namely,

⟨Uε⟩= Ucell,ε +Uself +Uint +Uav,ε , (2.15)

in which the first three terms have the same form as (2.13) and

Uav,ε =
1
4

χ

[
σa

E
[(1+ r)cos2

θ − r]
]2

.

The stationary solutions can be derived by imposing that the derivatives of such an energy
with respect to both P and θ are null. These steady state solutions are found to be θeq = 0,
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θeq = π/2 and an oblique one, which is defined in terms of its squared cosine. In the case
where the interaction forces with the matrix are negligible, such an oblique orientation is
given by

cos2
θeq =

r
1+ r

,

which again corresponds to the minimal strain direction. If all the terms in the energy
are taken into account, the dependence is less trivial and the authors study it numerically,
finding that the steady state preferential angle is a decreasing function of r. As we will
discuss in the following Section, in [94] the possibility that cell remodelling aims at
maintaining a target stress rather than a target strain is also investigated. We conclude this
Section by mentioning that a similar approach may be generalized to the case of more
than one cell [398]. A more recent work has been specifically focused on the role of focal
adhesions [92] and on their catch-bond dynamics [206]. Finally, in Ref. [314] and [120] a
random noise is added when studying the reorientation of cell dipoles.

2.2.3 Stress Avoidance

As just mentioned, in [93–95] the alternative hypothesis about the existence of a target
stress is examined, within a framework akin to the one discussed in the previous Subsection.
Specifically, if a single cell acting like a force dipole is considered, it is assumed that
its contractile activity is devoted to maintaining an optimal local stress. In this case, the
reaction stress writes

σR =−2− r
1− r

P
2πa3 ,

with the same notation as above. The force component due to the applied stress on
the surrounding matrix along the direction of the cell axis is given by σa cos2 θ (see
Fig. 2.16). The free energy of the system, which includes the active contribution from the
cell cytoskeleton and the forces acting on the cellular dipole due to the elasticity of the
matrix, becomes

Uσ = Ucell,σ +Uself +Uint ,

where

Ucell,σ =
1
2

χ

[
σa cos2

θ − 2− r
1− r

P
2πa3 −σtarget

]2

,

is the active energy of the cell, whereas the contributions due to the interactions of the
dipole with the surrounding matrix and the external stress are the same as in Eq. (2.13).
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Instead, σtarget identifies the target stress of the cell, so that Ucell,σ is minimized if the sum
of the reactive stress σR and the applied stress σa is equal to the target. If an averaging
over a cycle is performed, the energy becomes

⟨Uσ ⟩= Ucell,σ +Uself +Uint +Uav,σ ,

with
Uav,σ =

1
4

χσ
2
a cos4

θ .

The equilibrium orientations of the system, i.e. the solutions of (2.14), are then identified
with θeq = 0, θeq = π/2 and an oblique orientation defined in general by the implicit
relation

cos2
θeq =

2
3

[
2− r
1− r

Peq(θeq)

2πa3σa
+

σtarget

σa
−

Peq(θeq)

χEσa
(1+ r)

]
. (2.16)

It should be noticed that there are strong constraints, especially on r, for the existence
of such an oblique equilibrium. For instance, it might not exist for values of r suitably
close to 1, which correspond to a 2D incompressible situation. It is also worth to point
out that, if solely the energy of the cell is considered, i.e. Uself and Uint are neglected, the
only equilibrium orientations are θeq = 0 and θeq = π/2. The latter is the stable one and
corresponds to the direction of minimal stress, if a uniaxial applied stress is considered.
The authors then study the response of such a dipole model to external stresses, both in
static and cyclic conditions [93, 94]. For the former, results predict an alignment parallel to
the stress, while the latter induces a cellular orientation along one of the angles mentioned
above. Moreover, for very low frequencies, their theory suggests that cells align nearly
parallel to the applied load. The dependence of the reorientation time on the frequency is
also considered, in accordance with experimental results [93].

2.2.4 Elastic Energy Approaches

In order to disentangle the dichotomy between optimal strain and optimal stress, Livne
and coworkers [226] performed an extensive series of experiments carefully controlling
the biaxiality ratio r ∈ [0,1]. In this way, the authors were able to show that neither the
zero strain direction given by Eq. (2.6) nor the zero stress directions were accurate in
fitting their experimental data. Specifically, for low values of r, a deviation from the zero
strain prediction up to 10◦ emerged, which was 20 times greater than the error bars. In
the zero stress case, such a discrepancy was even worse [226]. Therefore, they suggested
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a novel approach, based on a different standpoint: instead of looking for the zero strain
direction, the cell reorients to target the minimum of the passively stored 2D elastic energy.
In other words, the cell attempts to minimize the energy expenditure and not the stress or
strain, which is different from previous perspectives. Working in the framework of linear
elasticity, they consider an energy in the form

Ucell =
1
2

σ : ε , (2.17)

where σ and ε are the stress and strain tensors in polar coordinates, respectively. By using
anisotropic elasticity, the energy reads

Ucell =
1
2

Kε
2
xx

[
(1+ r)cos2 θ −1

b
+(1− r)

]2

+ f (r) , (2.18)

with f (r) a function independent of θ , which is the cell orientation angle, while K and b

are material parameters. Then, they consider a dissipative dynamics in the form

dθ

dt
=− 1

η

dUcell

dθ
(2.19)

and calculate the steady states for a periodic strain εxx =
1
2ε0(1− cosωt). Upon averaging

over a period, since the frequency is considered to be high, it is found that the steady states
for the cell orientation satisfy

cos2
θeq =

b(r−1)+1
1+ r

= b+
1−2b
1+ r

(2.20)

in addition to θeq = 0 and θeq = π/2. In particular, it is worth to stress that a linear relation
between cos2 θeq and 1/(1+ r) for the oblique angle exists, and a fitting of data gives
b ≈ 1.13. Such a prediction appears to be in excellent agreement with their experimental
data, as shown in Fig. 2.17, both for the equilibrium angles as functions of r and for the
dynamical evolution of θ , even for amplitudes ε0 up to 24%.

An energetic framework had been previously used by Lazopoulos and coworkers [214],
working in a nonlinear elastic setting. The cell was modelled as a pre-stressed, isotropic,
Mooney-Rivlin elastic material and analytical computations were performed, finding that
the stable preferential orientation is almost perpendicular to the strain direction. However,
their model predicts that the final orientation angle increases with the magnitude of applied
strain, which does not seem to be the case in all experiments as discussed in Section 2.1.2.
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Fig. 2.17 Relation between the orientation angle θeq and the parameter r, according to the model
in Eq. (2.20) proposed by Livne et al. [226]. The line with slope b ≈ 1.13 accurately fits their
experimental data, whereas the strain avoidance approach, corresponding to b = 1, does not.

Instead, experimental assays point towards a narrowing of the probability distribution for
increasing strain. The model is then extended to account for the coexistence of symmetric
orientations by considering a non-convex strain energy density function [213]. Such a
choice allows to obtain two symmetric oblique orientations, albeit the energy is quite
non-standard for stress fibres [98]. The same authors relax this assumption in a following
work, by focusing on an individual SF-FA assembly with linear elastic behaviour at the
microscopic scale [329]. In the latter, the emergence of stable oblique orientations requires
the introduction of the chemical potential of the fibres, which has to be stress-dependent
[329]. Moreover, the geometrical role of FAs in the reorientation process is underscored.
Finally, in [290] the effect of cytoskeletal fluidisation and resolidification is also taken into
account.

In a recent work, Gérémie et al. [152] derived an equation for the equilibrium orien-
tations akin to Eq. (2.20) starting from a vertex model. They define the total mechanical
energy as

Utot =
N

∑
i=1

KA(Ai −A0)
2 + γPPi +KPP2

i , (2.21)

where Ai is the area of the i-th cell and Pi denotes its perimeter. Hence, a penalization
on area deformation from the optimal value A0 is introduced, as well as an energy cost
associated with cell perimeter changes and tension. Using a mean-field argument and an
averaging procedure, the authors showed that the time-averaged energy for a single cell
reads

⟨Ucell⟩= κ
[
(1+ r)cos2

θ +b(1− r)−1
]2

,
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which leads exactly to Eq. (2.20). Interestingly, however, the authors in this case found a
different fitting value for the parameter b ≈ 2.25 compared with the one by Livne, probably
due to the confluent conditions employed in their experiments.

Finally, in another recent publication, Chatterjee et al. [63] proposed a model based on
the multiplicative decomposition of the deformation gradient for cell reorientation, where
the cell is considered as a nonlinear elastic solid. In such a model, SFs can rotate and grow
as a consequence of the deformation: their reorientation vector m follows an elementary
evolution law given by

dm
dt

=
1
τ

[
mtarget − (mtarget ·m)m

]
,

which enforces the fibres to preferentially align along the direction mtarget. The latter
is taken as orthogonal to the uniaxial applied stretch, so it is implicitly assumed that
such an orientation is always preferential for the SFs, which might not be the case for all
experimental conditions. Instead, the introduction of a growth tensor in the form

G= I− (γSF −1)er ⊗ er

accounts for stress fibre growth in the direction er, with γSF being a phenomenological
time-dependent parameter.

2.2.5 Viscoelasticity

Even though the equilibrium orientations obtained thanks to the purely elastic approaches
of the previous Subsection compare well with experimental data, the process of cell
realignment is intrinsically viscoelastic. Indeed, as discussed in Section 2.1.2, the frequency
of the applied cyclic deformation appears to influence the reorientation time, and also
involves threshold effects. Moreover, in some cases, experiments have shown that the
strain rate of the cyclic stretch, or equivalently the choice of different waveforms, might
affect the reorientation of cells. These mechanisms cannot be captured by elastic models,
which by their nature imply an instantaneous response, and call for the introduction of
characteristic times or viscous dynamical processes.

Almost all the models that, to our knowledge, account for viscoelastic properties are
based on descriptions at the microscale. Indeed, some of the frameworks for stress fibre
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modelling discussed in Section 2.2.1 embed viscosity in direct or indirect ways, taking into
account that SFs have been shown experimentally to behave as viscoelastic cables [209].

Just to mention some examples, the simple sarcomeric model of SFs by Kaunas et
al. [197] is certainly able to account for viscous-like effects. By considering the SF as
a filament composed of actively contractile subunits in parallel, they derive an evolution
equation for the force in each subunit:

dF
dt

=
k

lref

dl
dt

+
2klv
l2
ref

, (2.22)

in which F is the force, k is the stiffness of each actomyosin unit, l is the length of the SF
whereas lref is the reference length, which can vary over time due to myosin sliding with
velocity v. Specifically, the first term in Eq. (2.22) describes the purely elastic contribution,
while the second one represents the rate of force relaxation due to myosin activity. For high
applied frequencies, the SF is unable to respond quickly enough to mechanical changes
and the second term vanishes, leading to an almost linear elastic behaviour. Conversely, for
low frequencies the two terms compete and the SF manages to regulate the optimal force.
Such a model therefore is able to qualitatively reproduce the differences due to frequency,
by introducing viscous-like effects related to acto-myosin sliding. As already mentioned
above, a similar approach is pursued by Chen and coworkers [66], with emphasis on the
intrinsic clocks of the cell and on the role of focal adhesions; by Qian et al. [220, 295],
who considered a Maxwell-like model with an active force contribution; and by Kong
et al. [205, 406], where the cytoskeletal fibres were described by Kelvin-Voigt elements
coupled with focal adhesions. The viscoelastic stress relaxation of SFs is instead modelled
by Nagayama et al. [264] using a seven-parameter spring-dashpot scheme, which features
three different characteristic times. Such a description turns out to be able to fit their
experimental curves for different waveforms and suggests that SFs avoid directions where
they undergo compressive forces for too long times.

The cell dipole model by De et al. [92, 93, 314] is also able to introduce a distinction
in the outcomes between high and low frequency regimes. In their case, the relaxation
dynamics is postulated, highlighting a relation between the frequency and the characteristic
time which is coherent with experimental data.

Instead, to the best of our knowledge, macroscopic viscoelasticity frameworks to
describe the reorientation of cells under stretch are very few. Here, we mention the work
by McEvoy et al. [249], in which a nonlinear viscoelastic element composed of a spring
in parallel with another spring and a dashpot is used to reproduce the passive mechanical
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Fig. 2.18 Possible modes of cell reorientation under cyclic strain. In the strain mode, the cell
disassembles the stress fibres aligned in the stretching direction, becomes rounded, and then
rebuilds them in the newly preferential direction. Instead, in the rotation mode, the cell remains
elongated and actually undergoes a rotation of its major axis. According to the Statistical Mechanics
model in [90], the latter seems to be the preferable process. Redrawn from [90].

behaviour of the cell cytoskeleton, in addition to its active counterpart. Reynolds and
collaborators [299] adopted an analogous framework, with an additional component to
represent the mechanics of the hydrogel wherein the cells are embedded.

2.2.6 Statistical Mechanics

To conclude the review about mathematical models, we briefly mention some approaches
based on Statistical Mechanics tools, even though they are not the focus of this Thesis.
Indeed, almost all the approaches introduced so far worked in a deterministic framework,
while biological processes like cell alignment are characterised by a certain degree of ran-
domness. In this respect, De and collaborators [92, 314] and Qian et al. [295] implemented
some non-deterministic effects in their models, mainly dealing with the association and
dissociation processes of SFs under the action of stretch. In particular, in [314] the orienta-
tions of a single cell are described by a Boltzmann distribution, with a competition between
the force determining the free energy of the dipole and an effective temperature. On the
same basis, Faust et al. [120] extended the deterministic equilibrium determined by energy
minimization by including a Boltzmann distribution over the angles. A Boltzmann-like
probability density is also introduced in [239], where the energy is modelled as the sum of
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three contributions given by the work done by focal adhesions, pulling force and elastic
potential energy. In a similar spirit, the stochastic nature of SF formation and activation
is included through proper probability functions in [171, 172, 197, 362], which were all
discussed before.

Recently, a Fokker-Planck approach to describe the evolution in time of the probability
density function of cell orientations has been proposed by Loy and Preziosi [229]. Both
local and non-local Fokker-Planck equations are introduced, to model the stochastic sensing
of the cell. Moreover, it is found that the distributions postulated by Faust et al. [120]
and by Mao et al. [239] can be recovered as particular cases. The emergence of statistical
distributions with a double peak is discussed also by Moriel et al. [257] and by Geremie et
al. [152]. Both these groups extended the evolution equation (2.19) by adding a random
noise term with zero mean and unit variance, and found results coherent with [229].

We also cite in this Section the work by Buskermolen et al. [55], who deal with a
Statistical Mechanics framework for cell homeostasis. Such a description turns out to be
appropriate for the modelling of cell alignment on micropatterned substrates as a function
of stripe width, recalling the experiments presented in Section 2.1.3.

Finally, a very recent work by Das et al. [90] extended the Statistical Mechanics
framework proposed in [321] to the cell cyclic straining experiment. The main outcomes
of such a model involve the decoupling between the SFs and cell morphology dynamics.
The authors in particular argue that cyclic strain mainly affects cell orientation away from
stretch rather than SF alignment, and they explicitly consider the interplay of fibres and
cell morphology, which was not taken into account before. Their results reproduce quite
well the experimental data for strains of high frequency and for the case r = 0, in which the
cell is expected to align perpendicularly. However, the model predicts that in general cells
preferentially orient at the angle that minimizes the strain rate, following again Eq. (2.6).
Although a certain qualitative agreement with experiments is also shown for the case r ̸= 0,
the direct comparison with data by Livne et al. [226] seems to confirm that the biaxial case
requires a different approach to increase the accuracy of the predicted final orientation. An
intriguing result proposed in [90] concerns instead the manner whereby cell reorientation
towards the preferred direction happens. In fact, experimental results do not appear to
fully clarify whether the cell follows a strain mode, firstly becoming rounded and then
elongating towards the new direction, or a rotation mode, in which the cell elliptic body
actually rotates (see Fig. 2.18). Remarkably, the simulations of the statistical framework
in [90] strongly suggest that the rotation mode is the preferable process.



Chapter 3

Mechanical Modelling of Cytoskeletal
Reorientation

In this Chapter, we present our results concerning the mechanical modelling of cell
cytoskeletal realignment due to an applied stretch. Starting from the available experimental
observations and from previous models describing such a behaviour of cells, we employ
the framework of Continuum Mechanics to enrich the description of the phenomenon.
First of all, in Section 3.1 we generalise the energetic approach proposed by Livne et al.
[226] by using nonlinear anisotropic elasticity to predict the preferential orientations of
stress fibres. We find that the impact of nonlinearities is slight and linear elastic models
are therefore valid to characterise the equilibrium angles of cell alignment in a wide range
of cases. Afterwards, in Section 3.2 we derive a thermodynamically consistent model of
fibre reorientation in anisotropic materials and we show that it can be effectively applied to
the dynamic realignment of cytoskeletal structures. Finally, to account for the effects of
the deformation frequency on the reorientation time, in Section 3.3 we propose a simple
linear anisotropic viscoelastic model which is able to capture some further experimental
observations.
The results of this Chapter led to the following publications:

G. Lucci and L. Preziosi. A nonlinear elastic description of cell preferential orientations
over a stretched substrate, Biomechanics and Modeling in Mechanobiology 20:631–649
(2021).

G. Lucci, C. Giverso, and L. Preziosi. Cell orientation under stretch: Stability of a
linear viscoelastic model, Mathematical Biosciences 337:108630 (2021).
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J. Ciambella, G. Lucci, P. Nardinocchi, and L. Preziosi. Passive and active fiber reorien-
tation in anisotropic materials, International Journal of Engineering Science 176:103688
(2022).

3.1 Nonlinear Elastic Description of Preferential Orien-
tations

As discussed in Chapter 2, several types of cells adhering to an elastic substrate tend
to reorient themselves when the membrane is cyclically stretched, to achieve a stable
configuration characterised by a well-defined angle between their main axis and the
direction of stretching. The mechanisms behind this phenomenon and the relation between
the preferred angle and the mechanical variables have been studied by several authors. In
particular, Livne et al. [226] investigated the response of cells on a substrate subject to
biaxial extensions using energetic arguments discussed in Section 2.2. They found that
cells align the cytoskeletal stress fibres along directions that minimize the linear elastic
energy. Moreover, the existence of a linear relation between cos2 θeq, where θeq is the
angle formed by the main stretching direction and the most elongated axis of the cell, and
1/(1+ r), with r being the biaxiality ratio, is highlighted, as in Eq. (2.20).

Nevertheless, as clearly evidenced by the data in Tables 2.1–2.3, it is worth to observe
that several experimental assays are performed applying deformations for which the use of
linear elasticity might be arguable, at least theoretically. For instance, maximum strains
up to 24-25% [40, 226, 330] or even 32% [120] are applied to the specimen in some
experiments. Therefore, an investigation of the possible presence of nonlinear effects at
high strains is crucial, in order to quantify their relevance in cellular mechanosensing and
orientation dynamics.

The aim of this Section is then to study the problem of cell cytoskeletal alignment in
the framework of nonlinear elasticity, to understand why and to what extent the use of
linear elasticity is justified. We find that, if we treat the substratum with seeded cells as a
finite-elastic orthotropic material, a very large class of elastic energies is minimized by
a relationship that can be considered as the nonlinear generalization of the one found in
[226]. Specifically, introducing the parameter Λ := λx−1

λx−λy
(where λx and λy are the principal

stretches and λx > λy without loss of generality) that quantifies the biaxiality of the finite
deformation, we put in evidence a linear relation between Λ and cos2 θeq, where θeq is the
equilibrium angle of the cell with respect to the x-axis. Instead, a nonlinear dependence
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of the preferential angle on Λ comes out visibly if the elastic energy is allowed to depend
on the anisotropic invariants related to the square of the Cauchy-Green strain tensor C2,
defined in Section 1.2. For small values of the elastic coefficient related to the invariant
I5, the deviation from the linear behaviour is still compatible with experimental data and
provides a slight improvement of the fitting. Conversely, a non-vanishing coefficient related
to the invariant I7 gives rise to results that look incompatible with experiments, suggesting
this term is not present in the constitutive model [234].

Overall, our model turns out to be very general and provides a unified framework to
study the preferential orientations of stress fibres on a planar substrate undergoing cyclic
stretching. Moreover, we are able to study the appearance of bifurcations depending on Λ,
i.e. the nonlinear generalisation of the biaxiality ratio r, and on the values of the energy
coefficients. The results suggest that nonlinearities do not play a dominant role in finding
the preferred angles of cell alignment: this might be the reason why experimental results
obtained with high stretches are still well described by linear models.

3.1.1 Problem Set-Up

We consider a substratum provided with an ensemble of cells adherent to its surface in
a sub-confluent configuration, to rule out the possible influence of cell-cell interaction,
as discussed in the previous Chapter. The whole system is then subject to a biaxial
deformation, due to pulling and compression of its lateral sides performed by an external
device. Following this mechanical stimulus, cells on the substrate orient preferentially
along a certain direction, which can be identified through a unit vector N in the first
quadrant of a reference frame with axes aligned with the principal directions of the biaxial
deformation. A sketch of the experimental set-up that we consider here is depicted in
Fig. 3.1.

If we assume that the system composed by the substrate and the overlying cells behaves
as an elastic continuum, the deformation will induce a storage of energy into the body that
depends on the cell orientation N. We want here to study how the elastic strain energy of
such a system subject to a biaxial stretch depends on the preferential direction of the stress
fibres.

For this purpose, we consider a general elastic energy density W for an orthotropic
material

W=W(I1, I2, I3, I4, I5, I6, I7, I8), (3.1)
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which depends on the deformation gradient F through the invariants of the right Cauchy-
Green deformation tensor C= FTF, namely,

I1 := trC , I2 :=
1
2
[
(trC)2 − trC2] , I3 := detC ,

I4 := N ·CN = |FN|2, I5 := N ·C2N = |CN|2,

I6 := N⊥ ·CN⊥ = |FN⊥|2, I7 := N⊥ ·C2N⊥ = |CN⊥|2,

I8 := N⊥ ·CN = (FN⊥) ·FN ,

(3.2)

where N⊥ is the direction perpendicular to N in the plane of the substratum.

This kind of strain energy is commonly used to describe the mechanical behaviour
of hyperelastic anisotropic materials which exhibit two preferential directions [166, 168,
276, 289]. For instance, it is employed for fibre-reinforced materials with two orthogonal
bundles of fibres that influence the mechanical response of the body: a relevant example
in the context of biology is represented by blood vessel walls, showing fibre bundles
in different directions [166–168]. In our case, the system displays a natural anisotropy
of this kind due to the presence in the cells of aligned stress fibres and actin filament
structures that are cross-linked by several types of proteins, like fascin, fimbrin, α-actinin,
filamin, ARP2-3 [75, 231, 392] (see Figure 3.1). Since SF are two to even ten times
stiffer than the lateral actin network [174, 231, 245, 325] and the cytoplasm, they induce
bidirectional anisotropy in the mechanical response, justifying the general assumption
(3.1) to consider the system as orthotropic. Indeed, experimental measurements on cell
stiffness demonstrated that a mechanical anisotropy exists and is due to the presence of SF
bundles, since their disruption restores a more isotropic response [174]. Analogous results
were reported in [325], where cells subjected to cyclic strain were found to be consistently
stiffer along their main axis due to the alignment of SFs.

We also observe that, in the context of reorientation following a mechanical cue,
cells do not own a polarization, namely, it is not possible to identify a head and a tail
[75, 375]. Therefore, configurations with cells aligned along N and −N are geometrically
indistinguishable and must be energetically equivalent. A similar fact holds true if we
replace N⊥ with −N⊥. To guarantee that there is not a preference for either of these
orientations with respect to the other, it is necessary that the energy be the same under
the related symmetry transformations. In this respect, all the invariants mentioned in
Eq. (3.2) achieve the same values under the symmetry transformations above, except for
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Fig. 3.1 Sketch of typical experimental set-up and consequent inner structure of a cell, highlighting
the principal cytoskeletal structures and proteins involved in the process of reorientation.
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I8 that changes sign, i.e., for a given deformation, I8(−N,N⊥,C) = −I8(N,N⊥,C) and
I8(N,−N⊥,C) =−I8(N,N⊥,C). Therefore, to satisfy the symmetry requirements, U must
be an even function of I8.

Remark 3.1. As pointed out in Chapter 1, the definition of the invariant I8 used in this
Section is not the only one found in the literature. Indeed, several works dealing with
orthotropic materials use instead I8 := (a ·b)(a ·Cb), where a and b are the vectors of the
preferential directions. If such a definition is adopted, then the energy is automatically
invariant under change of sign of either fibre vector. A shortcoming of this formulation,
instead, is that for orthogonal fibres we have I8 = 0 identically. In Section 3.2 we will
consider the new definition and show that the conclusions derived in the following do not
change.

If we orient the x- and y-axes of the reference frame along the principal stretching
directions, the right Cauchy-Green tensor is diagonal and its eigenvalues are the principal
stretches, i.e.

C=

λx 0 0
0 λy 0
0 0 λz

 ,

with λx > λy and λx > 1. The reason why we exclude the case λx = λy is that, for equi-
biaxial deformations of the substrate, cells do not show a preferential orientation, but rather
protrude outside the plane of the membrane [377]. Once the deformation is fixed, our goal
is to study which orientations for the stress fibres and cells correspond to minima of the
elastic energy. Following the line of thought put forward by Livne and coworkers [226],
these directions will correspond to the preferential orientations of the cells.

3.1.2 Stationary Points by the Coaxiality Approach

The general problem of finding the critical points of an hyperelastic anisotropic strain
energy for a body subject to a rotation and a deformation has been studied by Vianello
and coworkers [313, 319, 370]. In particular, it has been shown that the critical points of
the energy are achieved for those rotations that make the stress and strain tensors coaxial.
Since, two symmetric tensors are coaxial if and only if they commute, according to the
definition considered by Vianello [370], we have to find the rotations Q about the z-axis
such that

S∗C∗ = C∗S∗, (3.3)
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where C∗ =QTCQ is the Cauchy-Green tensor obtained rotating by Q before applying
the deformation F and S∗ = S(C∗) is the second Piola-Kirchhoff stress tensor associated
with C∗ [319]. To explicitly write S∗ in our case, we define the structural tensors

A0 := N0 ⊗N0 , A0
⊥ := N0

⊥⊗N0
⊥ , V0 :=

1
2
[
N0 ⊗N0

⊥+N0
⊥⊗N0] , (3.4)

where N0, N0
⊥ are the preferential orientation and its orthogonal, respectively, before

rotation happens. By recalling that

∂ I1

∂C
(C) = I ,

∂ I2

∂C
(C) = I1(C)I−C ,

∂ I3

∂C
(C) = I3(C)C−1 ,

∂ I4

∂C
(N0,C) = A0 ,

∂ I5

∂C
(N0,C) = A0C+CA0 ,

∂ I6

∂C
(N0

⊥,C) = A0
⊥ ,

∂ I7

∂C
(N0

⊥,C) = A0
⊥C+CA0

⊥ ,

∂ I8

∂C
(N0,N0

⊥,C) = V0 ,

(3.5)

the second Piola-Kirchhoff stress tensor reads

S∗ = 2
∂W

∂C
(C∗) = 2

8

∑
p=1

∂W

∂ Ip

∂ Ip

∂C
(C∗)

= 2
[
w1I+w2(I1(C∗)I−C∗)+w3I3(C∗)(C∗)−1 +w4A0 +w5(A0C∗+C∗A0)+

+w6A0
⊥+w7(A0

⊥C
∗+C∗A0

⊥)+w8V0] , (3.6)

where we have defined

wp :=
∂W

∂ Ip

(
I1(C∗), . . . , I8(N0,N0

⊥,C
∗)
)
, p = 1, . . . ,8 .

Then, using (3.6), Eq. (3.3) leads to the condition

w4
[
A0C∗−C∗A0]+w5

[
A0(C∗)2 − (C∗)2A0]+w6

[
A0
⊥C

∗−C∗A0
⊥
]
+

+w7
[
A0
⊥(C

∗)2 − (C∗)2A0
⊥
]
+w8

[
V0C∗−C∗V0]=O. (3.7)
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Multiplying both sides by QT on the right and by Q on the left, one obtains

w4 [AC−CA]+w5
[
AC2 −C2A

]
+w6 [A⊥C−CA⊥]+

+w7
[
A⊥C2 −C2A⊥

]
+w8 [VC−CV] =O, (3.8)

in which we have set A :=QA0QT, A⊥ =QA0
⊥Q

T and V :=QV0QT. Now, we use the fact
that A0

⊥ = I−A0 −k⊗k, where k := N0 ×N0
⊥ is the axis of rotation of Q, perpendicular

to the plane of the substrate. As a consequence, we immediately have A⊥ = I−A−k⊗k,
since Qk = k. It is therefore immediate to find that

(w4 −w6) [AC−CA]+ (w5 −w7)
[
AC2 −C2A

]
+w8 [VC−CV] =O , (3.9)

where we have used the fact that k is an eigenvector of C, and then k⊗Ck = Ck⊗k and
k⊗C2k = C2k⊗k.

Focusing on the last term on the left-hand side of (3.9), elementary tensor algebra
allows to rewrite it as

VC−CV= Sym(QN0 ⊗QN0
⊥)C−CSym(QN0 ⊗QN0

⊥) = Sym(R)C−CSym(R),

with
R :=QN0 ⊗QN0

⊥ , (3.10)

whereas the operator Sym takes the symmetric part of its tensorial argument. A direct
substitution into (3.9) leads to

[(w4 −w6)A+w8 Sym(R) +(w5 −w7)AC]C

−C [(w4 −w6)A+w8 Sym(R)+(w5 −w7)CA] =O,

or equivalently
ÂC−CÂ=O, (3.11)

where
Â := (w4 −w6)A+2(w5 −w7)Sym(AC)+w8 Sym(R). (3.12)

Eq. (3.11) states that stationary configurations are identified by the rotations Q about the
z-axis which make the tensors C and Â, defined in (3.12), commute. As pointed out in
[70, 72, 319, 370], there are always at least two solutions, which can be easily identified in
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this case. In fact, if Q is such that QN0 is along one of the principal strain directions, then
trivially A=QN0 ⊗QN0 commutes with C and with C2. On the other hand, we have that
I8(N0,N0

⊥,C
∗) = I8(QN0,QN0

⊥,C) which vanishes because in this case QN0 and QN0
⊥

are both eigenvectors of C. Consequently, w8(I8) must be null as well, since it is assumed
to be an odd function of I8 due to the symmetry requirements on W which prescribe the
energy to be even in I8.

We conclude that configurations with cells oriented along the principal stretching
direction or perpendicularly to it always correspond to stationary points of the elastic
energy. However, one might have further stationary solutions for other possible rotations
satisfying (3.11), which will depend in general on the specific energy functional considered.
In the following we will show that, for a large class of elastic energies, there might be two
symmetric equilibria and we will study the stability of all configurations.

3.1.3 Stability Conditions for a Quadratic-Like Energy

Since we are using the reference frame with axes aligned with the principal stretching
directions, so that C is diagonal, it is convenient to identify the cell major axis through
the angle θ it forms with the x-axis (see Fig. 2.3), so that N =QN0 = (cosθ ,sinθ ,0) and
N⊥ =QN0

⊥ = (−sinθ ,cosθ ,0). This angle is univocally associated with a rotation Q in
the framework of the previous Subsection and in the following will be used as our main
variable. With this choice, the invariants in (3.2) read

I4 = λx cos2 θ +λy sin2
θ = (λx −λy)cos2 θ +λy ,

I5 = λ 2
x cos2 θ +λ 2

y sin2
θ = (λ 2

x −λ 2
y )cos2 θ +λ 2

y ,

I6 = λx sin2
θ +λy cos2 θ = λx − (λx −λy)cos2 θ ,

I7 = λ 2
x sin2

θ +λ 2
y cos2 θ = λ 2

x − (λ 2
x −λ 2

y )cos2 θ ,

I8 =−(λx −λy)sinθ cosθ ,

(3.13)

and can be compactly rewritten as

Îi := Ii −1 = ai cos2
θ +bi , for i = 4,5,6,7
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where

a4 := λx −λy , b4 := λy −1 ,

a5 := λ 2
x −λ 2

y = a4(λx +λy) , b5 := λ 2
y −1 = b4(λy +1) ,

a6 :=−(λx −λy) =−a4 , b6 := λx −1 ,

a7 :=−(λ 2
x −λ 2

y ) =−a5 =−a4(λx +λy) , b7 := λ 2
x −1 = b6(λx +1) .

(3.14)

The Elastic Energy

In order to investigate the existence of other stationary configurations in addition to the
trivial ones, and to study their stability, we need now to specialize the elastic energy, trying
to keep it as general as possible. We consider then a class of elastic energies that can be
written as a homogeneous second order polynomial in the variables Îi, for i = 4,5,6,7, and
I8, plus a term related to the isotropic response:

W(I) =
1
2

I ·KeI+U , (3.15)

where I :=
(
Î4, Î5, Î6, Î7, I8

)
and Ke is the symmetric matrix of elastic coefficients, while U

is the purely isotropic contribution that depends on (I1, I2, I3). We remark that, in order
to slightly reduce the terms influencing the stability analysis, we do not consider here
possible isotropic-anisotropic couplings in the energy (3.15), that is, we exclude for the
moment terms like IhÎl , where h ∈ {1,2,3} and l ∈ {4,5,6,7,8}. However, in Section 3.3
we will show that their introduction does not change the conclusions about the preferential
orientations, but only the definition of some parameters.

We also observe that the following analysis can be straightforwardly repeated for a
Fung-type energy

WF =C
[

exp
(

W

W0
−1
)
−1
]
, (3.16)

that is often used in biomechanical applications [127, 166–168, 273, 289], giving rise
to the same results. In fact, the stationary points of WF coincide with the ones of W.
Moreover, their stability character may be identified by the second derivative of W and
then it is the same as well. Therefore, the results obtained for a quadratic energy also hold
for an exponential-like energy, amplifying the validity of our conclusions.
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For future notational convenience, it is useful to denote by ki j, for i, j = 4, . . . ,8 the
coefficients of the matrix Ke. For example, k44 stands for the coefficient in the top left
corner of the matrix. For what concerns the physical meaning, the coefficient k44 is related
to the stiffness along the major axis of the cell, whereas k66 refers to the stiffness along
the direction orthogonal to the one of cell orientation. By considering that stress fibres are
mainly aligned to the cell axis, coherently with [57] we will assume that

k44 > k66 .

We also point out that the coefficient k88 is related to the response to shear and to the
coupling of the fibres. At the microscopic level, therefore, it may correspond to the
resistance of changing angle among actin fibres, also involving the action of actin cross-
linking proteins, such as filamin, Rho/Rac GTPases [75, 377] and Arp2/3 as well [138, 310]
(see Figure 3.1).

As a final remark we note that, because of the symmetry conditions related to a
switching of the orientation axis, the coefficients ki8 (and k8i), i = 4,5,6,7 must vanish.
Indeed, they appear in front of cross-terms involving the invariant I8 linearly, which would
change sign if the preferential direction is reversed from N to −N. Thus, their inclusion
would break the symmetries of the energy and introduce an imbalance between some
directions that should be equivalent to each other, as discussed before. To avoid such a
biologically unfeasible situation, we consider ki8 = 0 for i = 4,5,6,7.

Critical Points of the Energy and their Stability

Taking into account the consequences of symmetry on the coefficients of matrix Ke in
(3.15), the critical points of the energy as a function of the angle are identified by the
solutions of

I(θ) ·Ke
∂ I
∂θ

(θ) = 0 ,

that can be explicitly written as

7

∑
i, j=4

ki j Îi
∂ Î j

∂θ
+ k88I8

∂ I8

∂θ
= 0 .
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By recalling the form of the coefficients defined in Eq. (3.14), the previous equation reads[
−2

7

∑
i, j=4

ki jaia j cos2
θ −2

7

∑
i, j=4

ki jbia j + k88a2
4(cos2

θ − sin2
θ)

]
sinθ cosθ = 0 .

As already underscored, the configurations with θ = 0 and θ = π/2 (which in the following
will sometimes be referred to as parallel and perpendicular orientation, respectively)
always correspond to critical points of the energy. However, for the choice we made, there
might be additional non-trivial critical angles that satisfy

cos2
θeq =

1
2a4

2Σ2 − k88a4

Σ1 − k88
,

or equivalently

cos2
θeq =

1
2
− 1

2
Σ1

Σ1 − k88
+

1
a4

Σ2

Σ1 − k88
, (3.17)

where we have set

Σ1 :=
1
a2

4

7

∑
i, j=4

ki jaia j , and Σ2 :=− 1
a4

7

∑
i, j=4

ki jbia j .

In particular, the coefficients Σ1 and Σ2 can be made explicit as

Σ1 = k44 −2k46 + k66 +2(k45 − k47 − k56 + k67)(λx +λy)+(k55 −2k57 + k77)(λx +λy)
2 ,

and

Σ2 = k44(1−λy)+ k55(λx +λy)(1−λ 2
y )+ k66(λx −1)+ k77(λx +λy)(λ

2
x −1)

+k45(1−λy)(λx +2λy +1)− k46(λx −λy)− k47(λ
2
x −λ 2

y −λxλy +λx +λy −1)

−k56(λ
2
x −λ 2

y +λxλy −λx −λy +1)− k57(λx +λy)
2(λx −λy)

+k67(λx −1)(2λx +λy +1).

The nontrivial solution θeq, also called oblique orientation, exists if and only if

0 ≤ 2Σ2 − k88a4

Σ1 − k88
≤ 2a4 , (3.18)
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or analogously if

2Σ2 − k88a4

Σ1 − k88
≥ 0 and

2Σ2 −2a4Σ1 + k88a4

Σ1 − k88
≤ 0 . (3.19)

It is immediate to observe that, if θeq is an angle satisfying (3.17), then −θeq and π +θeq

are critical points of the energy as well. This is in line with the symmetries discussed before,
leading to configurations which are equivalent for the cell from an energetic viewpoint.

As far as stability is concerned, we need to evaluate the second derivative of the energy,
that is,

W′′(θ) =

[
4

7

∑
i, j=4

ki jaia j cos2
θ sin2

θ −2
7

∑
i, j=4

ki ja j(ai cos2
θ +bi)(cos2

θ − sin2
θ)

+ k88a2
4
(
(cos2

θ − sin2
θ)2 −4cos2

θ sin2
θ
)]

.

If we impose the positivity of W′′, we are led to the following stability conditions:

θ = 0 : stable ⇐⇒ 2Σ2 −2a4Σ1 + k88a4 > 0 ,

θ =
π

2
: stable ⇐⇒ 2Σ2 − k88a4 < 0 ,

θ = θeq : stable ⇐⇒ 2Σ2 − k88a4 ≥ 0 and 2Σ2 −2a4Σ1 + k88a4 ≤ 0 ,

(3.20)

where in the last condition we have used the fact that the positivity of the second derivative
W′′(θeq)> 0 requires Σ1 − k88 > 0 to simplify the existence condition (3.19).

In the following, we will sometimes refer to the orientations of Eq. (3.20) as equilibrium

angles. However, we remark that they are not in general solutions of the elastic problem,
but only critical points of the elastic energy.

3.1.4 Bifurcation Results and Nonlinear Effects

In this Section, by means of a bifurcation analysis, we discuss the preferential orientations
of cells on a stretched substrate, for an elastic energy given by (3.15) or (3.16). We firstly
consider the case in which the strain energy does not depend on the invariants related to
C2, i.e. I5 and I7. This is a simplified but very relevant situation, since it allows to extend
the range of validity of previous linear models. Then, we thoroughly analyse the effects of
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the corrections brought along by those invariants, since they introduce a significant change
in the predicted behaviour.

Hereafter, we consider three types of finite deformation: in the first one, we fix the
stretch in the y-direction λy to a certain value and λz = 1, while letting λx vary. In the
second one, we keep λxλy = 1, corresponding to an isochoric planar deformation if λz = 1.
Finally, we set λy = 1/

√
λx, equivalent to a pure isochoric deformation that involves also

the z-direction. Although we do not have any experimental information on λz, it does not
affect the discussion on equilibrium angles or on their stability character.

Energy Independent of C2

Let us firstly consider the case in which the elastic energy is independent of terms contain-
ing C2, that is, of the anisotropic invariants I5 and I7. More explicitly, recalling Eq. (3.15),
we deal with an energy in the form

W(Î4, Î6, I8) =
1
2

k44Î2
4 +

1
2

k66Î2
6 + k46Î4Î6 +

1
2

k88I2
8 +U , (3.21)

where k44,k46,k66,k88 > 0 and with the following constraint in order to ensure the positive
definiteness of the elastic coefficients matrix: k44k66 − k2

46 > 0. The results for such a
particular situation can be easily obtained from the previous computations by setting
k45 = k47 = k55 = k56 = k57 = k67 = k77 = 0. Doing so, we can get simplified forms for
the terms

Σ1 = k44 −2k46 + k66 and Σ2 = k44(1−λy)− k46(λx −λy)+ k66(λx −1) .

Thus, in addition to the trivial equilibria, Eq. (3.17) simplifies to

cos2
θeq =

1
2
+

k44 − k66

k44 + k66 −2k46 − k88

(
1
2
− λx −1

λx −λy

)
, (3.22)

putting in clear evidence a linear relationship between cos2 θeq and the parameter

Λ :=
λx −1
λx −λy

, (3.23)

which compares the elongation along x with respect to the sum of elongation and contrac-
tion along y. It is interesting to notice that Eq. (3.22) is a generalisation to the nonlinear
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case of the relation derived by Livne et al. [226] in Eq. (2.20). Indeed, Λ represents the
corresponding biaxiality parameter and reduces to 1

1+r in the linear elastic case.

The slope of the straight line in Eq. (3.22) is determined by the combination of
coefficients

K :=
k44 − k66

k44 + k66 −2k46 − k88
,

or equivalently by its inverse

α :=
1
K

=
k44 + k66 −2k46 − k88

k44 − k66
, (3.24)

as shown in Fig. 3.2. Actually, data from [120, 226] suggest a slope for such a straight line
of K = 1.26±0.08, corresponding to α = 0.794±0.08. It is also worth to observe that
such line always passes through the point corresponding to cos2 θeq = 1/2 (i.e., θeq = π/4)
when Λ = 1/2, for any values of the elastic parameters. This is explained by the fact that,
for a deformation satisfying Λ = 1/2 (or equivalently λx −1 = 1−λy), the minimum of
the energy coincides with the direction of minimal strain. Indeed, the latter is given by the
angle θ̃ such that I4 = 1, that is,

θ̃ = arctan

(√
λx −1
1−λy

)
= arctan

(√
Λ

1−Λ

)
.

Therefore, when Λ = 1/2, we have θ̃ = π/4 which coincides with θeq obtained using
Eq. (3.22). This is not true in general, since the minimal strain angle θ̃ satisfies

cos2
θ̃ = 1−Λ,

differently from what is found through energy minimization in Eq. (3.22) except for the
case α = 1, which does not fit the experimental data [120, 226]. In fact, as pointed out
in [226], choosing the minimal strain direction as the preferential one for cell orientation
does not allow to describe the experimental observations, while an energetic approach
does. The only case in which the minimal strain direction and the minimal energy direction
coincide is precisely when Λ = 1/2. These observations also allow us to justify the need
of choosing an orthotropic constitutive model instead of a purely transversely isotropic
one. In fact, the elastic strain energy for a transversely isotropic medium only depends
on I4 and I5 in addition to the three isotropic invariants, and then only on I4 when the
dependence on C2 is not considered as done in this Section. However, in such a case
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one obtains α = 1 and so minimizing a transversely isotropic energy would be equivalent
to choosing the minimal strain direction again, which as just discussed does not seem
accurate. We also remark that Λ = 1 corresponds to clamping the specimen, so that λy = 1,
while Λ > 1 corresponds to stretching also along y, still keeping λy < λx. On the other
hand, values of Λ < 1

2 correspond to λx−1 < 1−λy, i.e. compressions along y are stronger
than elongations along x, which is not done in experiments reported in the literature.

Finally, we observe the following cases related to isochoric deformations, which will
be examined in detail later:

If λy =
1
λx

, then Λ =
λx

1+λx
∈
[

1
2
,1
)

;

If λy =
1√
λx

, then Λ =
λx +

√
λx

λx +
√

λx +1
∈
[

2
3
,1
)
,

(3.25)

with Λ → 1 for very large λx and the lower extremum of the interval achieved in the limit of
no stretching. Of course, for these types of finite deformation, the case Λ > 1 is unfeasible.
In terms of α and Λ, the existence condition for the non-trivial equilibrium (3.18) writes as

1−|α|
2

≤ Λ ≤ 1+ |α|
2

.

When α > 0, the stability conditions (3.20) become

θ = 0 : stable ⇐⇒ Λ <
1−α

2
,

θ =
π

2
: stable ⇐⇒ Λ >

1+α

2
,

θ = θeq : stable ⇐⇒ Λ ∈
[

1−α

2
,
1+α

2

]
,

(3.26)

that is, the non-trivial equilibrium position is stable whenever it exists.

Recalling that k44 > k66 and focusing for the moment only on the case α > 0, there
are two relevant sub-cases to discuss, depending on the following relationships between
parameters:

i) k46 +
k88

2
< k66 ⇐⇒ α > 1 , or
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(a) (b)

Fig. 3.2 Bifurcation diagram of equilibrium angles in terms of Λ, defined in Eq. (3.23), with α

from Eq. (3.24) positive in (a) and negative in (b). The black lines refer to the case |α|> 1 and
the red lines to |α|< 1, while dashed lines represent unstable configurations and full lines stable
ones. In (b) full lines indicating the stability of θ = 0 till the bifurcation point and of θ = π/2 for
α <−1 are not drawn. The area with Λ < 0 is not shown because of the pulling characteristics of
the experiments.

ii) k66 < k46 +
k88

2
<

k44 + k66

2
⇐⇒ 0 < α < 1.

Referring to Fig. 3.2a, in case ii) – represented by red lines – we have two supercritical
bifurcation points at

Λ =
1±α

2
.

The configuration with orientation perpendicular to the stretching direction (i.e., θeq = π/2,
cos2 θeq = 0) is stable if Λ > 1+α

2 . When Λ is decreased below this value, the preferential
axis of the cell tends instead to be oriented obliquely, until it becomes completely aligned
to the stretching direction if Λ < 1−α

2 . However, in case i), represented by the black line
in Fig. 3.2a, this value is negative and so it cannot be physically achieved in the usual
experimental set-up. In this situation, cells will never orient themselves parallel to the
stretching direction.

In order to compare this behaviour with previous linear elasticity results, since in [226]
α = 0.794±0.08 < 1 was found, the situation observed in the experiments by Livne and
collaborators seems to correspond to case ii). In addition, the results are coherent with a
previous analysis for optimal orientation of orthotropic materials by Pedersen [285, 286],
carried out in a linear elastic regime.
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The computation done here shows, in particular, that any model of quadratic type (3.15)
or of Fung type (3.16) independent of I5 and I7 with the following relation among the
elastic coefficients:

k44 + k66 −2k46 − k88

k44 − k66
≈ 0.794 (3.27)

is able to fit the data on cell orientation in a way that is independent of the magnitude
of the applied strain, even outside the range of validity of linear elasticity. This explains
why the experimental behaviour shown in [120, 226] seems to be independent or nearly
independent of the magnitude of the applied strain.

For the sake of completeness, we also analyse the case in which α < 0, which can
occur, for instance, if k88 is much larger than the other parameters. If this is the case,
noticing that 1+α

2 < 1−α

2 , the stability conditions are the following:

θ = 0 : stable ⇐⇒ Λ <
1−α

2
,

θ =
π

2
: stable ⇐⇒ Λ >

1+α

2
,

θ = θeq : unstable ∀Λ > 0.

(3.28)

More precisely, in this case there are as well two distinct situations to be considered:

iii)
k44 + k66

2
< k46 +

k88

2
< k44 ⇐⇒ −1 < α < 0 , or

iv) k44 < k46 +
k88

2
⇐⇒ α <−1 .

Referring to Fig. 3.2b, in case iii) – corresponding to red lines – one has two admissible
subcritical bifurcation points with coexistence of two critical equilibria if Λ ∈

[1+α

2 , 1−α

2

]
,

corresponding to the parallel and perpendicular orientation, and only one of them is stable
outside this range. In case iv) the equilibrium θ = π/2 is always stable while θ = 0 is
stable only if Λ < 1−α

2 . In all cases, if α < 0 the oblique orientation is unstable.

A detailed analytical characterisation of the bifurcations presented so far will be carried
out in Section 3.3. We conclude this Section by making a remark concerning the global or
local character of the energy extrema that we found through the stability analysis. Clearly,
the oblique equilibrium angle corresponds to a global extremum, whenever it exists. In
particular, it is a global minimum for α > 0 and a global maximum for α < 0. It is however
more interesting to evaluate the behaviour of the trivial extrema, i.e. θ = 0 and θ = π/2.
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In particular, for an energy in the form (3.21), we have

W(θ = 0)−W(θ = π/2) =
1
2
(k44 − k66)

[
λ

2
x −λ

2
y −2(λx −λy)

]
, (3.29)

which is positive if and only if Λ > 1/2. Therefore, for α > 0, we have the following cases:

•
1−α

2
< Λ <

1
2

=⇒ θ = 0 local max , θ =
π

2
global max,

•
1
2
< Λ <

1+α

2
=⇒ θ = 0 global max , θ =

π

2
local max.

The situation is reversed if α < 0, namely,

•
1+α

2
< Λ <

1
2

=⇒ θ = 0 global min , θ =
π

2
local min,

•
1
2
< Λ <

1−α

2
=⇒ θ = 0 local min , θ =

π

2
global min.

Influence of I5 and I7

We now analyse the modification that is introduced if a dependence of the energy on the
invariants involving C2, that is, I5 and I7, is allowed. The presence of these invariants was
neglected so far, but it is interesting to study how they affect the oblique angle given by
Eq. (3.22). For this purpose, it is convenient to rewrite

Σ1 = k44 −2k46 + k66 +A1 ,

with

A1 := 2(k45 − k47 − k56 + k67)(λx +λy)+(k55 −2k57 + k77)(λx +λy)
2 ,

and
Σ2 = (k44 − k46 +A2)(λx −λy)− (k44 − k66 +B2)(λx −1) ,
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where

A2 := [k55(λy +1)− k47 − k56 − k57(λx +λy)] (λx +λy)+ k45(λx +2λy +1)

−k47 − k56

2
(λx −1) ,

B2 := [k55(λy +1)− k77(λx +1)] (λx +λy)+ k45(λx +2λy +1)− k67(2λx +λy +1)

−(k47 − k56)

(
λx −1−

λx −λy

2

)
.

After some computation, we can explicit the nontrivial equilibrium (3.17) as

cos2
θeq =

k44 − k46 − k88
2 +A2 − (k44 − k66 +B2)Λ

k44 + k66 −2k46 − k88 +A1

=
1
2
+

k44 − k66

k44 + k66 −2k46 − k88 +A1

(
1
2
−Λ

)
−

A1
2 −A2 +B2Λ

k44 + k66 −2k46 − k88 +A1

=
1
2
+α1(Λ)

(
1
2
−Λ

)
+α2(Λ) , (3.30)

where we defined for the sake of conciseness

α1(Λ) :=
k44 − k66

k44 + k66 −2k46 − k88 +A1
, (3.31)

α2(Λ) :=−
A1
2 −A2 +B2Λ

k44 + k66 −2k46 − k88 +A1
. (3.32)

We notice that Eq. (3.30) represents a generalisation of the oblique angle expression
(3.22), with the terms A1, A2 and B2 representing the corrections related to the presence of
C2-dependent terms through the invariants I5 and I7. Indeed, when the elastic energy does
not include their contribution, we recover Eq. (3.22), i.e. the linear relationship between
cos2 θ and Λ discussed previously. However, since the correction coefficients depend on
λx and λy and therefore on Λ, Eq. (3.30) does not represent a straight line any longer in
the parameter space (Λ,cos2 θeq).

An additional remark concerns the behaviour of Eq. (3.30) in the limit of small
deformations. In this case, the zero-th order approximations of the correction coefficients
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become
A1(Λ)≈ Ã1 := 4(k45 + k55 − k47 − k56 + k67 −2k57 + k77) ,

A2(Λ)≈ Ã2 := 2(2k45 +2k55 − k47 − k56 −2k57) ,

B2(Λ)≈ B̃2 := 4(k45 + k55 − k67 − k77) ,

with Ã1, Ã2, B̃2 constants. As a consequence, if we substitute in Eq. (3.30) and rearrange
the terms, we find that the approximating curve is again a straight line:

cos2
θeq ≈

1
2
+

k44 − k66 + B̃2

k44 + k66 −2k46 − k88 + Ã1

(
1
2
−Λ

)
, (3.33)

which still has the property that θeq = π/4 when Λ = 1/2. Hence, in the small deformation
limit, we are able to find a relation that is akin to the one derived in the previous Subsection.
In fact, Eq. (3.33) can be rewritten in the same form as (3.22) by making the following
formal substitutions:



k44 −→ K∥ := k44 +4k45 +4k55 ,

k66 −→ K⊥ := k66 +4k67 +4k77 ,

k46 −→ K∥⊥ := k46 +2k47 +2k56 +4k57 ,

k88 −→ Ks := k88 ,

(3.34)

(3.35)

(3.36)

(3.37)

which lead us to

cos2
θeq =

1
2
+

K∥−K⊥

K∥+K⊥−2K∥⊥−Ks

(
1
2
−Λ

)
. (3.38)

The formal analogy of Eq. (3.38) and Eq. (3.22) is evident: the only difference from
the case discussed previously lies in the fact that more coefficients contribute to the
identification of the line slope. In other words, given the experimental data about the
angle and the deformation, it is impossible to distinguish which coefficients of the energy
defined by (3.15) contribute to the slope of the line. This is coherent with the inherent
nonlinearity of the corrections introduced by the invariants related to C2. Indeed, for
small deformations, the contribution to the energy of I4 is indistinguishable from that of
I5. Likewise, the dependence on I6 merges with the one on I7, as it is evident from the
re-definition of the coefficients provided by Eqs. (3.34)–(3.37).
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We now turn the attention to the fitting of experimental data, to investigate whether
the introduction of the nonlinear contributions may give an improvement in the prediction
of preferential orientations. To evaluate the influence of C2-corrections, we change one
parameter at a time while keeping the slope of the straight line in Eq. (3.33) constant, in
order to start from the same linear dependence. For instance, when k55 > 0, then, recalling
Eq. (3.34), k44 is decreased accordingly, so that the value of K∥ is maintained constant.
In particular, with this idea in mind, we fix the coefficients to representative values of
K∥ = 0.4 ,K∥⊥ = 0.1 ,K⊥ = 0.1 and Ks = 0.0618 in order to match the experimental fitting
value for the slope reported in Eq. (3.27).

First of all, we focus on the effect of a non-vanishing k55, keeping all the other
coefficients with indices 5 and 7 equal to zero. The results are reported in Fig. 3.3. As
already stated above, to keep the same value of K∥ and therefore the same linear limit
given by (3.33), as we vary k55 we accordingly change k44 = K∥−4k55. To observe how
the non-trivial equilibrium is changed, we focus on the three types of deformation defined
at the beginning of the Section. One can observe that, in all cases, increasing k55 leads
to a deviation of the curve defining the equilibrium angles from the straight line limit. In
addition, keeping λy fixed and changing Λ as in Fig. 3.3a, one can appreciate a decrease in
the value of cos2 θeq, which means an increase in the equilibrium angle, for Λ = 1/2.

If we consider a deformation such that λxλy = 1, as in Fig. 3.3b, recalling Eq. (3.25)
the admissible values of Λ range between 1/2 and 1. Specifically, we have that θeq stays
fixed at π/4 if Λ = 1/2. In fact, in the latter case A1 = A2 = B2 = 4k55 and the numerator
of the last term in Eq. (3.30) vanishes for Λ = 1/2. Instead, when Λ → 1, then α1(Λ)→ 0,
whereas α2(Λ)→ 1/2, since all the coefficients except k55 are null. Thus, the curve given
by Eq. (3.30) tends to 0 when Λ → 1, even though such effect is not evident from the
Figures since the curve becomes negative and a bifurcation between the perpendicular and
oblique orientation happens.

Finally, in the third deformation case λy = 1/
√

λx shown in Fig. 3.3c, we have a
minimal possible value of Λ = 2/3, corresponding to an equilibrium angle such that
cos2 θeq = 0.29, i.e., θeq ≈ 57◦, that is reported in some discussions of experiments (see,
for instance, [375, 376]).

As regards the bifurcation point between the perpendicular equilibrium branch θ = π/2
and the oblique one given by Eq. (3.30), it is implicitly defined by the value Λb such that

Λb =
k44 − k46 − k88

2 +A2

k44 − k66 +B2
, (3.39)
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(a) (b)

(c) (d)

Fig. 3.3 Analysis of non-trivial equilibrium position for k55 ̸= 0 and k44 = 0.4−4k55 to keep the
same linear limit. The other non-vanishing parameters are k66 = k46 = 0.1, and k88 = 0.0618. In
(a) λy = 0.8 while in (b) λy = 1/λx and in (c) λy = 1/

√
λx. For all the three types of deformation,

we see that the presence of k55 leads to a departure from the linear relation between cos2 θeq

and Λ. In (d) the bifurcation point Λb for which θeq = π/2 is shown as a function of k55: the
plot highlights that, for sufficiently high values of k55 (for instance k55 > 0.086 for λy = 0.8, and
k55 > k88/2 ≈ 0.03 for the other two deformations), the bifurcation point disappears, since values
of Λb > 1 are not admissible for the deformations we consider.

since the coefficients A2 and B2 also depend on Λb itself. Therefore, while we have seen
that the energy dependence on I4, I6 and I8 does not modify the bifurcation obtained in the
linearised theory, introducing the invariants related to C2 entails an identifiable shift of the
bifurcation point between the perpendicular orientation and the oblique one that may also
disappear for large values of k55, as shown in Fig. 3.3d. Since we are considering k55 ̸= 0,
the shift of the bifurcation point for θ = π/2 can be evaluated through Eq. (3.39), which
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becomes

Λb =
k44 − k46 − k88

2 + k55(1+λy)(λx +λy)

k44 − k66 + k55(1+λy)(λx +λy)
. (3.40)

Thus, if all the coefficients but k55 are prescribed, Eq. (3.40) implicitly defines Λb in terms
of k55 that, actually, can be made explicit by writing

k55 =
(k44 − k66)Λb − k44 + k46 +

k88
2

(1−Λb)(1+λy)(λx +λy)
. (3.41)

In Eq. (3.40), the term (1+λy)(λx +λy) is a function of Λb, given, for instance, by

(1+λy)(λx +λy) =
1−2Λb +2Λ2

b

Λ2
b(1−Λb)

if λxλy = 1 , (3.42)

and by

(1+λy)(λx +λy) = (1+ λ̄y)
1+ λ̄y −2λ̄yΛb

1−Λb
for fixed λy = λ̄y. (3.43)

If λy = 1/
√

λx we have that

1−Λb =
1

λx +
√

λx +1

which corresponds to

λx =

(
−1

2
+

1
2

√
4

1−Λb
−3

)2

.

These relations can be employed to plot the variation of the bifurcation point Λb as a
function of the parameter k55, as done in Fig. 3.3d. Such a point clearly approaches 1 for
increasing values of k55 for all the types of deformation considered, eventually leading to
a disappearance of the bifurcation, since Λb > 1 lies outside the admissible values of Λ.
More specifically, if λ = λ̄y, for

k55 >
k46 − k66 +

k88
2

1− λ̄ 2
y

the branches relative to the oblique equilibrium and θ = π/2 do not cross for physically
admissible values of Λ and therefore the perpendicular orientation is always unstable.
For the value of λ̄y = 0.8 that we consider as reference, the critical value amounts at
k55 ≈ 0.086. Differently, for the other two deformation modes, the threshold value of k55
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(a) (b)

Fig. 3.4 Nonlinear fitting of experimental data with k55 ̸= 0. Data from [226] are compared with
the family of curves obtained for λy = 0.8 and different values of k55 in (a) and with the best fitting
value k55 = 0.008 in (b).

above which the bifurcation disappears is the same and amounts to

k55 = k46 − k66 +
k88

2
.

This can be derived immediately from Eqs. (3.41) and (3.42) for λy = 1/λx, while in the
case λy = 1/

√
λx it is enough to observe that

(1−Λb)(1+λy)(λx +λy) = (1−Λb)

(
1+

1√
λx

)(
λx +

1√
λx

)
= 1+

1
λx

−2(1−Λb) . (3.44)

Substituting into (3.41) and recalling that Λb → 1 means λx →+∞ immediately leads to
k55 = k46 − k66 + k88/2, coherently with Fig. 3.3d.

In order to evaluate the relevance of the nonlinear correction due to k55, we performed
a fitting of experimental data extracted from [226] where, using a biaxial experiment,
the stretches in the two directions are controlled. Although the precise value of λy is
not given, we fix it to be λy = 0.8, taking into account that λy = 1 would correspond to
Λ = 1 identically. Thus, in Fig. 3.4, we explored the possibility of an improvement in
the fitting using nonlinear elasticity and C2-related terms. Actually, as already observed,
the straight line passing through (1/2,1/2) with slope determined by the inverse of (3.27)
already provides a very good and robust fitting. However, by using a nonlinear regression
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(a) (b)

(c)

Fig. 3.5 Nonlinear fitting of experimental data taken from [120] and [226]. (a): Best fitting for
λy = 0.952 obtained for k55 ≈ 0.04. (b): Deviation δ from the straight line approximation when
fitting all data (blue curve) and only data from [226] for a fixed λy = 0.952 (red curve; in this case,
the best k55 ≈ 0.03). (c): Equilibrium orientation as a function of k55 for λx = 1.32 and λy = 0.952,
related to experimental actin orientations obtained by Faust et al. [120] (represented by the circle).
As shown, a value of k55 = 0.088 is able to capture the experimental orientation precisely.

estimation, we are able to find that a small value of k55 = 0.008 slightly improves the
fitting for data extracted by [226]. We also find that, if we increase the fixed value of λy,
a higher value of the coefficient k55 is needed to fit the data. For instance, when we take
λy = 0.98, the best fitting value amounts at k55 = 0.08, which is an order of magnitude
greater than the one obtained when λy = 0.8. To explain this fact we notice that, when
λy ≈ 1, a small stretch λx in the x-direction is sufficient to span all the admissible values of
Λ. Consequently, nonlinear effects become less relevant and to fit the nonlinear model we
need to take very high values of the related coefficients.
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In Fig. 3.5 we present the fitting using also the data by Faust et al. [120]. Specifically,
considering the experimental settings with λx = 1.32, one finds a value of λy = 0.952, since
Λ ≈ 0.87. As a first attempt, we tried to fit the data from [120, 226] simultaneously, to
assess whether a nonlinear correction could better explain the experimental observations in
different settings. The results are shown in Fig. 3.5a and suggest that a value of k55 = 0.04
provides a slightly better fitting than the straight line approximation. Instead, a nonlinear
regression performed only on the dataset by Livne [226] returns a value of k55 = 0.03 for
the same λy. To highlight this difference, in Fig. 3.5b we plot the deviation δ from the
linear approximation, that is,

δ (Λ) := cos2
θeq(Λ)−

[
1
2
+

k44 − k66

k44 + k66 −2k46 − k88

(
1
2
−Λ

)]
, (3.45)

as a function of Λ. Clearly, if δ = 0, then the squared cosine of the experimental angle
is exactly given by the linear relation and no correction is needed. However, since the
majority of experimental data falls below the horizontal line δ = 0, the introduction of
k55 makes the curve convex and is able to provide an overall better approximation of the
observed behaviour, even if the difference is of the order of 10−2. As a final comparison,
we chose one of the experimental actin angle values obtained in [120] while fixing λx

and λy to have the same value of Λ used in the experiment. After that, we looked for
a value of k55 able to capture the experimental point using the nonlinear Eq. (3.30): as
shown in Fig. 3.5c, choosing k55 = 0.088 precisely fits the orientation angle for such a
fixed deformation.

We conclude our analysis about the role of k55 by making a comparison with the
transversely isotropic case, which we already discussed as inadequate to fit the experimental
data for an energy in the form given by Eq. (3.15). This is confirmed by the curves reported
in Fig. 3.6. Indeed, if we consider a transversely isotropic energy that depends only on five
invariants, recalling (3.30) we get:

cos2
θeq =

k44 + k55(λy +1)(λx +λy)+ k45(λx +2λy +1)
k44 +2k45(λx +λy)+ k55(λx +λy)2 (1−Λ). (3.46)

In Fig. 3.6a we plot the relationship (3.46) for different values of k55 and k45 = 0, while
in Fig. 3.6b the case k45 ̸= 0 is shown. It is clearly observed that, in both cases, the
transversely isotropic model provides a fitting which is not satisfactory compared to the
orthotropic one reported in Fig. 3.4. To have a better insight, in Fig. 3.6c we show a direct
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(a) (b)

(c)

Fig. 3.6 Nonlinear fitting of experimental data from [226] with a transversely isotropic model, in
the case λy = 0.8. In (a) the family of curves obtained from Eq. (3.46) for different values of k55 is
shown, while in (b) the effect of k45 is investigated. In (c) a direct comparison between the best
fitting curves for the transversely isotropic and orthotropic case is provided, showing that the latter
is more accurate.

comparison between the best fitting curves in the transversely isotropic and orthotropic
case: in the latter, there is a significant improvement in the fitting of experimental data.

We turn now the attention to the effect of a non-vanishing k77, keeping K⊥ fixed, and
perform a similar reasoning as we did for k55. Again, as shown in Fig. 3.7b, if λxλy = 1
then θ = π/4 when Λ = 1/2 for any value of k77. In fact, in this case, A1 = 4k77 and
B2 =−4k77, while A2 = 0 and therefore α2(Λ) = 0. This is not the case if λy is kept fixed,
as shown in Fig. 3.7a where it is clear that the value of cos2 θeq corresponding to Λ = 1/2
slightly increases for increasing values of k77. A more noticeable effect occurs if k77 ̸= 0
when Λ → 1: the results are reported in Figs. 3.7b–3.7c. Indeed, in this situation we
have that α1(Λ)→ 0 but α2(Λ)→−1/2. As a consequence, the curve in Eq. (3.30) tends
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(a) (b)

(c) (d)

Fig. 3.7 Analysis of non-trivial equilibrium position for k77 ̸= 0 and k66 = 0.1−4k77 to keep the
same linear limit. The other non-vanishing parameters are k44 = 0.4, k46 = 0.1, and k88 = 0.0618.
In (a) λy = 0.8, while in (b) λy = 1/λx and in (c) λy = 1/

√
λx. For all the three types of deformation,

one can see that introducing k77 provokes a significant difference from the linear behaviour which
is not observed in experiments, suggesting that such a parameter is not present in the constitutive
model. In (d) the bifurcation points Λb for which θeq = π/2 are shown as a function of k77. The
region enclosed by the curve identifies the values of Λ for which θeq = π/2 is stable. For sufficiently
high values of k77 the bifurcation points disappears and the configuration θeq = π/2 is always
unstable.

to 1 when Λ → 1. Moreover, there are two bifurcation values between the equilibrium
configuration θeq = π/2 and the oblique one, given by the implicit relationship

Λb =
k44 − k46 − k88

2
k44 − k66 − k77(λx +1)(λx +λy)

, (3.47)
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which for instance in the case λxλy = 1 can be specialised as

k77 =

[
(k44 − k66)Λb − k44 + k46 +

k88
2

]
(1−Λb)

2

2Λ2
b −2Λb +1

. (3.48)

As reported in Fig. 3.7d, the two bifurcation points disappear for very small values of k77

and the branch represented in Fig. 3.7 is always stable. This does not seem to correspond
to what is observed in experiments, suggesting that k77 = 0 or that it must have a very
small value in the constitutive model.

Finally, we discuss the effect of coupling terms other than k46, which was already
present in the analysis carried out above since it is related to C. Having ruled out the
importance of k77, we do not evaluate the impact of other coefficients related to I7, namely
k47, k57 and k67, and we focus instead on the mixing parameter k45. The results of its
introduction in the model are shown in Fig. 3.8. In particular, we fixed a value of k55 = 0.01
and plotted the equilibrium angle as a function of Λ for the three different deformations
considered. We observe an effect on the equilibrium curve similar to the one encountered
increasing k55. The deviation from the straight line is slighter if λy = 0.8, and greater in
the other two cases. Referring to Fig. 3.8d, the bifurcation point Λb moves towards 1 as k45

is increased, finally disappearing for high values of this parameter. As a last observation,
comparing the theoretical results with experimental data shown in Fig. 3.8a, it does not
seem that the introduction of the mixing term k45 is relevant for a better fit, as confirmed
by nonlinear regression.

3.1.5 Discussion

In this Section, we have used theoretical tools of anisotropic hyperelasticity to investigate
the problem of cell orientation on a planar substrate undergoing a deformation. We
employed therefore an energetic approach, which in previous studies was shown to be
effective [226], to characterise the preferential angles for stress fibre alignment. Assuming
that the system behaves as an orthotropic elastic continuum, our goal was to determine
the minima of the elastic energy stored in the system, corresponding to stable orientation
angles for the cell. Moreover, we focused on constitutive models pertaining to nonlinear
elasticity, in order to analyse the effects of large deformations on the reorientation process.

As a starting point, we have formulated the problem using the very general theory of
coaxiality proposed by Vianello and coworkers [313, 319, 370]. In this way, in Eq. (3.11)
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(a) (b)

(c) (d)

Fig. 3.8 Analysis of non-trivial equilibrium position for k45 ̸= 0, considering k55 = 0.1 and
k44 = 0.4− 4k55 − 4k45 to keep the same linear limit. The other non-vanishing parameters are
k46 = 0.1 and k88 = 0.0618. In (a) we set λy = 0.8, while in (b) λy = 1/λx and in (c) λy = 1/

√
λx.

Moreover, in (a) we reported the experimental data obtained in [226]: the introduction of the mixing
parameter k45 does not improve significantly the fitting of such data. In (d) the bifurcation point Λb
for which θeq = π/2 is shown as a function of k45, when k55 = 0.01 is kept fixed. For all the types
of deformation considered, the bifurcation disappears when k45 crosses a critical value, which is
the same for λy = 1/λx and λy = 1/

√
λx.

we are able to provide a condition which identifies the rotations that make the energy
critical. Such a condition will be derived again in Section 3.2 using a slightly different
framework and is also coherent with a one derived for transversely isotropic materials in
[72].

Then, to allow a more direct comparison with experimental data and simplify the stabil-
ity analysis, we chose to work with a class of energies that is widely used in biomechanical
applications. Firstly, we considered an elastic energy independent of the invariants I5 and
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I7, related to the square of the right Cauchy-Green strain tensor. In this setting, we found
that a linear relation exists between cos2 θeq, where θeq is the preferential angle, and a
deformation parameter Λ, defined in Eq. (3.23). A relation of this form was already found
by Livne et al. [226] in a linear elastic framework, showing a very good agreement with
experimental data, recalling Fig. 2.17. Therefore, our model suggests that the results
obtained with linear elasticity extend their validity also in the nonlinear regime, for a
wide class of orthotropic energies. This might be an explanation of why experimental
results obtained with large stretch amplitudes are still well described by a linearised theory.
In summary, we demonstrated that any quadratic-like or Fung-type constitutive model
independent of the invariants involving C2 can fit the experimental data, provided that the
energy coefficients satisfy the condition (3.27). The only difference from the theoretical
point of view is that, using finite elasticity, one has more coefficients contributing to
the slope of the straight line. For what concerns the bifurcations, we also showed that
variations of Λ may be associated with changes of preferential orientations from oblique
to perpendicular or parallel. In particular, for Λ > (1+α)/2 ≈ 0.897 the only stable
orientation is the perpendicular one, which is very often seen in experimental assays.

Next, we introduced the corrections due to C2 and analysed their influence. It is
found that the presence of the invariant I5 has an effect which is still compatible with
experimental data, for small values of the pertaining coefficient k55 and for all the three
types of deformation considered. In this case, however, the dependence discussed above
is no longer linear and the effect due to finite elasticity comes out clearly. This allows
us to speculate that there might be a weak nonlinear impact in the phenomenon, since
the introduction of k55 provided a slightly better fit to experimental data. On the contrary,
we showed that a dependence of the strain energy on the invariant I7 yields results that
look incompatible with experiments. Finally, we showed that the influence of a mixing
parameter related to C2 like k45, which couples the effect of the invariants I4 and I5, is
negligible and does not provide a consistent improvement of the fitting.

In summary, we have provided a characterisation of the preferential orientations of
cells on a substrate by looking for the critical points of the system’s elastic energy as a
function of the alignment angle. Our results suggest that intrinsically nonlinear effects do
not play a fundamental role in identifying the alignment of the cytoskeleton, even though
further experimental confirmation is needed. The identification of cell orientation angles
as a function of the deformation may be important to understand how cells respond to
mechanical stimuli and to take advantage of such orientation in applications like tissue
engineering. However, the theoretical foundations of the model and the procedure for
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energy minimization are very general and might also be of interest in other circumstances,
like the optimization of fibre orientation in elastic composites.

In what follows, we will extend this framework to account for two additional relevant
points: the dynamic remodelling of the cytoskeleton, discussed in Section 3.2, and the
introduction of viscous effects, for which a model is proposed in Section 3.3.

3.2 Cytoskeletal Alignment as a Fibre Reorientation Prob-
lem

The energetic approach presented in the previous Section can be effectively applied to
the deduction of cell preferential orientations, given a certain deformation of the elastic
substrate. However, as pointed out in Chapter 2, the reorientation of a cell subsequent
to the mechanical prompt involves a reorganisation of the cytoskeletal architecture and
microstructure in a dynamic way. Therefore, the change in the cell internal structure and in
the alignment of the cytoskeletal fibres can be regarded as a remodelling problem. In fact,
the reorientation of fibres, which can be defined as a change in their local orientation due
to some external actions, represents a particular type of remodelling that can be studied
using Continuum Mechanics tools.

For transversely isotropic materials, with a single preferential direction, the problem of
fibre reorientation has been recently studied by Ciambella and Nardinocchi [71, 72], taking
into account both passive and active changes in the fibre directions. The introduction
of a remodelling equation, that complements the usual mechanical balances, allows to
describe the evolution of fibre orientation under mechanical [72] and magnetic [71] stimuli.
Moreover, in [72], it was shown that the stationary solutions of the remodelling equation
are the ones that make the remodelled stress and strain tensors coaxial [370]. However, the
framework proposed in [72] is limited to transversely isotropic materials, for which only
one preferential direction exists.

Instead, in the nonlinear elastic description of cell orientations proposed in Section 3.1,
the material composed by substrate and cells is treated as orthotropic [234], even though it
does not include an explicit remodelling in time of the cytoskeletal structure. It seems then
quite natural to provide an extension of the results presented in [72] to a more general case,
where an hyperelastic material is endowed with a double fibre microstructure, as in the
cellular orientation example. Furthermore, while in Section 3.1 the two fibres were fixed
to be perpendicular [234], it is of interest to characterize the remodelling of the different
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fibre families independently, in a way that each fibre can change the orientation according
to its own rotation.

Motivated by these observations, in this Section we propose a mechanical model that
describes the reorganization of an anisotropic material structure, characterized by two
fibre families that can modify their orientation following different evolution equations.
Both active contributions affecting the reorientation process and purely passive material
remodelling can be incorporated in the proposed framework. In doing so, we are able
to extend the energetic modelling of cell alignment put forward in the previous Section
[226, 234] using the fibre reorientation framework from [72], in which the rotation of
the cells due to the mechanical prompt is treated as an additional variable for the model.
This allows us to derive the reorientation equations on a rigorous and thermodynamically
consistent basis, recovering the results presented in Section 3.1 as a particular case. At
the same time, we provide an extension of the fibre reorientation model proposed in [72],
adapting it to anisotropic materials with two preferential directions that can change their
orientation in different manners, even though they can be properly coupled. The limit of
two families of fibres which cannot change their relative orientation, as done for instance
by Menzel [250] in the orthotropic case, is recovered within the terms of a constrained
model.

The advantages of the proposed framework consist in its generality as well as in its
consistency from a thermodynamical viewpoint. Moreover, it is possible to show that the
inclusion of an additional family of fibres, which is able to reorient without remaining
orthogonal to the first one, completely changes the behaviour of the system, leading
to an extension of the coaxiality results by Vianello [319, 370]. At the same time, the
model provides a good fitting of experimental data for peripheral and nuclear stress fibres,
highlighting the key role played by the coupling between the two fibre families. Finally,
we are able to recover the results for the stationary solutions discussed in Section 3.1, by
introducing a constraint between the fibres that enforces the orthogonality.

3.2.1 Remodelling Framework

Before moving to the biological application of interest, in this Subsection we present the
general remodelling framework, following the theory of finite elasticity with remodelling
[72, 107]. We consider a material equipped with an anisotropic two families of fibres (TFF)
internal structure whose change of orientation is not simply dragged by the deformation
but described by additional state variables, therefore including a remodelling of the fibre
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structure. The relationship between fibre orientations and mechanical forces, as well as
the constitutive coupling between the two fibre families which characterize the anisotropic
structure, are derived in the following on a thermodynamically consistent basis.

Kinematics

Recalling the notation introduced in Section 1.2, we consider a body, identified with a
region Ω0 of the Euclidean three-dimensional space E , and a time interval T , to define the
motion χχχ and the current configuration Ω. The first kinematic variable of our model is the
displacement field u, which is related to the deformation gradient by F= I+Gradu.

Then, in addition to the displacement field describing the current position of the
body, we are interested in the evolution of the orientation of the anisotropic TFF internal
structure, which in Ω0 is identified by a pair of material unit vector fields a0 : Ω0 →V and
b0 : Ω0 →V (with |a0|= |b0|= 1); they represent the preferred directions that the internal
structure endows to the material, i.e., the direction of each fibre at X ∈ Ω0. For practical
usage, it is convenient to introduce the corresponding structural or orientation tensors

at Ω0, defined as A0 := a0 ⊗a0 and B0 := b0 ⊗b0. In the following, we will sometimes
refer to the field a0 as the primary structure of the material, while b0 will be consequently
called secondary structure. Both A0 and B0 contribute to the material anisotropy and
can reorient as prescribed by two different rotation fields, each one interpreted as the
rotation of a single fibre family. In this respect, we will consider a time-dependent tensor
field Rp : Ω0 ×T → Rot, with Rot denoting the space of rotations, which represents the
reorientation of the primary structure and changes the reference orientation from a0(X) to

a(X, t) = Rp(X, t)a0(X) , (3.49)

or equivalently A0(X) to

A(X, t) = Rp(X, t)A0(X)RT
p(X, t), (3.50)

where A := a⊗a. Likewise, the second rotation field Rs : Ω0 ×T → Rot describes the
reorientation of the secondary structure and changes b0(X) to

b(X, t) = Rs(X, t)b0(X) (3.51)
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Fig. 3.9 Schematic representation of the reorientation process at a material point. A material line
element dX in the reference configuration Ω0 is deformed to the corresponding line element FdX
in the current configuration Ω. Instead, the primary structure a0 firstly undergoes remodelling due
to the rotation Rp while the secondary structure b0 is reoriented according to another rotation Rs.

and B0(X) to
B(X, t) = Rs(X, t)B0(X)Rs(X, t)T, (3.52)

having denoted B := b⊗b. Each fibre family of such an anisotropic material may change its
orientation as time evolves; then, the deformation gradient tensor F maps each remodelled
fibre to the current configuration, as sketched in Fig. 3.9. With these definitions at hand,
the state variables of the problem are the displacement and rotation fields, that is, the
triple (u,Rp,Rs) ∈ V ×Rot×Rot, and the corresponding velocity fields are identified
by the time derivatives (u̇, ṘpRT

p, ṘsRT
s ) ∈ V ×Skw× Skw, where Skw denotes the space

of skew-symmetric tensors. Finally, we denote as (w,Wp,Ws) ∈ V ×Skw× Skw the
associated virtual velocity fields.

Remark 3.2. Let us note that our kinematic framework does not filter out the rotation
fields Rp and Rs such that Rpa0 = a0 and Rsb0 = b0, which are included in the admissible
rotation fields even if they maintain the energy unchanged and so are of no interest in the
remodelling problem.

Balance Equations

The balance equations of the model are delivered by the principle of virtual working, based
on the choice of the external and internal virtual workings defined as continuous, linear,
real-valued functionals defined on the space of virtual velocities [107]. By introducing
forces and torques of the model which are working-conjugate to each kinematic variable



110 Mechanical Modelling of Cytoskeletal Reorientation

[9, 72, 107, 146, 278], we write

Le(w,Wp,Ws) =
∫

Ω0

(z ·w+Zp : Wp +Zs : Ws)dV +
∫

∂tΩ0

s ·wdA (3.53)

for the external virtual working and

Li(w,Wp,Ws) =
∫

Ω0

(P : Gradw+Σp : Wp +Σs : Ws) dV (3.54)

for the internal virtual working. The pair (z,s) are forces per unit of referential volume
and area, respectively, while P is the first Piola–Kirchhoff stress tensor. The pair of skew
tensors (Zi, Σi), with i = p,s, are torques per unit of referential volume, and represent
the outer and inner remodelling torques, as Wp, Ws are skew-symmetric tensors. More
specifically, the outer torques Zp and Zs represent external source terms which may affect
fibre reorientation, for instance magnetic effects [71] or chemo-mechanical processes. On
the other side, the inner remodelling torques Σp and Σs take into account the internal actions
driving the reorientation of the primary and secondary material structures, respectively. It
is worth remarking that, for what concerns the remodelling torques, our theory is of order
zero-th, i.e., we do not take into account the gradients of the rotation fields, which instead
may become relevant when the fibres are closely packed.

By enforcing the condition that the external and internal virtual working be equal for
any virtual velocities (w,Wp,Ws) ∈ V ×Skw×Skw and for any subregion R⊂ Ω0, we
obtain the following balance equations and associated boundary conditions:

DivP+ z = 0 and Σp = Zp and Σs = Zs in Ω0 , (3.55)

u = û on ∂uΩ0 and Pn∗ = s on ∂tΩ0 , (3.56)

with ∂uΩ0 and ∂tΩ0 denoting parts of the boundary ∂Ω0 where displacements and tractions
are respectively prescribed, and n∗ denoting the unit normal to ∂tΩ0 pointing outwards.
Equations (3.55) are the three balance equations of our theory. The first is the usual balance
of mechanical forces, where inertial effects can be included in the bulk force z, even if in the
present model they are neglected since the remodelling time scale is typically much longer
than the inertial one. The second and third equations are the balances of the remodelling
torques, which drive the reorientation of the primary and secondary structures, respectively,
once the appropriate constitutive equations will be considered. In particular, they prescribe
that the outer and inner remodelling torques be equal. These equations generalise the theory
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presented in [72], where only a transversely isotropic internal structure was considered.
The external working, that corresponds to balanced forces and torques and is evaluated
on the actual velocity fields (u̇, ṘpRT

p, ṘsRT
s ), identifies the external actual power Pe

expended during the evolution of the continuum:

Le(u̇, ṘpRT
p, ṘsRT

s ) =
∫

Ω0

(
z · u̇+Zp : ṘpRT

p +Zs : ṘsRT
s
)

dV +
∫

∂tΩ0

s · u̇dA

=
∫

Ω0

(
P : Ḟ+Σp : ṘpRT

p +Σs : ṘsRT
s
)

dV = Pe . (3.57)

Constitutive Equations and Energy Imbalance

The constitutive prescriptions to describe the behaviour of the material with the reorientable
anisotropic TFF internal structure are imposed in a thermodynamically consistent way,
through the following steps. Firstly, we take into account a class of materials that admits
an elastic strain energy density in the form

W=W(E,A,B) , (3.58)

dependent upon the deformation F through the Green–Lagrange strain tensor E, defined
in Eq. (1.5), and on the remodelled orientation tensors A and B or, equivalently, on the
rotations Rp and Rs that transform the primary and secondary structures. More specifically,
following the theory of double-fibred finite elasticity, we assume that W is an isotropic
function of its arguments [151, 224].

We also assume that dissipation is only associated with the remodelling processes, and
the dissipation density δ can be written as

δ = δ
(
ṘpRT

p, ṘsRT
s
)
. (3.59)

To derive constitutive equations that are consistent with the first and second laws of
thermodynamics, we enforce the energy imbalance, stating that for any admissible process,
characterised by the state variables (u,Rp,Rs), the time derivative of the energy must not
exceed the external actual power expended on the body along the same process, i.e., the
dissipation must be positive:∫

Ω0

δ dV = Pe −
∫

Ω0

Ẇ dV ≥ 0. (3.60)
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Within the framework discussed so far and using Eq. (3.58), we can write the time derivative
of the elastic energy as

Ẇ=
∂W

∂E
: Ė+

∂W

∂A
: Ȧ+

∂W

∂B
: Ḃ . (3.61)

At this point, it is useful to introduce the commutator operator between two tensors
[·, ·] : Lin×Lin→ Lin, where Lin stands for the space of second-order tensors, defined
as:

[X,Y] = XY−YX, ∀X,Y ∈ Lin.

With this definition on hand, recalling Eqs. (3.50)–(3.52) we have

Ȧ= [ṘpRT
p,A] and Ḃ= [ṘsRT

s ,B] , (3.62)

and, in general, for any X,Y ∈ Lin,

X : [ṘpRT
p,A] = ṘpRT

p : [X,A] and Y : [ṘsRT
s ,B] = ṘsRT

s : [Y,B] ,

which allow Eq. (3.61) to be rewritten as

Ẇ=
∂W

∂E
: Ė+[

∂W

∂A
,A] : ṘpRT

p +[
∂W

∂B
,B] : ṘsRT

s . (3.63)

The constitutive prescriptions for the stress P and for the inner remodelling actions Σp and
Σs have to satisfy the imbalance principle stated above, which can be rephrased in local
form by requiring that

δ = P : Ḟ+Σp : ṘpRT
p +Σs : ṘsRT

s −Ẇ≥ 0 (3.64)

has to be positive for every realizable process [80]. By using Eqs. (3.61)–(3.63), we reduce
the inequality (3.64) to:(

P−F
∂W

∂E

)
: Ḟ+

(
Σp − [

∂W

∂A
,A]
)

: ṘpRT
p +

(
Σs − [

∂W

∂B
,B]
)

: ṘsRT
s ≥ 0 . (3.65)

Since we assume that dissipation is only due to remodelling, the constitutive equation for
the stress can be chosen as a standard hyperelastic law:

P= F
∂W

∂E
, S= F−1P=

∂W

∂E
, (3.66)
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where S is the second Piola-Kirchhoff stress tensor. The remainder of the dissipation
inequality (3.65) can be satisfied on assuming that each inner remodelling torque can be
additively decomposed into an elastic and a dissipative part:

Σp = Σ
(e)
p +Σ

(d)
p = [

∂W

∂A
,A]+DpṘpRT

p, (3.67)

Σs = Σ
(e)
s +Σ

(d)
s = [

∂W

∂B
,B]+DsṘsRT

s , (3.68)

where Dp and Ds are positive-definite fourth order tensors that represent the resistance to
remodelling of the primary and secondary material structure, respectively.
By substituting the constitutive equations (3.66)–(3.68) in the balance equations (3.55),
we are able to obtain two differential equations that describe the evolution of the rotation
fields, and therefore of the associated fibre families. The general remodelling problem
for the anisotropic TFF microstructure can then be expressed as the following system of
nonlinear ordinary differential equations in Ω0 ×T :

DpṘpRT
p = Zp − [

∂W

∂A
,A] ,

DsṘsRT
s = Zs − [

∂W

∂B
,B] ,

(3.69)

with initial conditions

Rp = I and Rs = I in Ω0 ×{t0}. (3.70)

The problem (3.69) has to be solved together with the balance of forces (3.55)1 and the
constitutive prescription (3.66). We observe that the elastic terms on the right-hand side of
Eqs. (3.69), represented by the commutators, include the mutual interaction between the
two fibre families, as it will be explicitly shown in the case of plane remodelling. Moreover,
when Zp = Zs =O, as we will assume hereafter, we notice that the stationary solutions of
the system (3.69) are determined by solving the equations

[
∂W

∂A
,A] =O and [

∂W

∂B
,B] =O . (3.71)
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Further Constitutive Prescriptions

For the calculations carried out in the following, it is convenient to express the strain energy
density in terms of the invariants of the tensors E, A and B. In doing so, we introduce the
following classical set of isotropic invariants of E:

J1 = E : I , J2 = E† : I , J3 = det(I+2E) , (3.72)

where E† := (detE)E−T, together with the anisotropic ones [327]

J4 = E : A , J5 = E2 : A ,

J6 = E : B , J7 = E2 : B ,

J8 = E : Sym(AB) = (a ·b)
(
Ea ·b

)
.

(3.73)

The anisotropic invariants J4 and J6 take into account the deformations along the directions
of the primary and secondary internal structures, while J5 and J7 are also measures of fibre
stretch but include the influence of shear on the fibres [251]; J8 is instead used to account
for the interactions between the two fibre families.

Remark 3.3. As mentioned previously, the definition of J8 is slightly different from the
one used in Section 3.1 for I8. However, at the end of the present Section we will show
that the results do not change.

If we use the representation theorem for isotropic scalar functions of three symmetric
tensors (see [225, 399, 405]), we can write

W(E,A,B) = Ŵ(J1,J2,J3,J4,J5,J6,J7,J8) . (3.74)

On adopting the representation (3.74) and denoting with wi := ∂Ŵ/∂ Ji, i = 1, . . . ,8, one
has:

∂W

∂E
= w1I+w2(J1I−E)+2w3J3

(
2E+ I

)−1
+w4A+w5(AE+EA) ,

+ w6B+w7(BE+EB)+
1
2

w8 (AB+BA) , (3.75)

∂W

∂A
= w4E+w5E2 +

1
2

w8(EB+BE) , (3.76)

∂W

∂B
= w6E+w7E2 +

1
2

w8(EA+AE) . (3.77)
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Remark 3.4. It is often customary to express Ŵ in terms of the invariants of the right
Cauchy–Green strain tensor C rather than E, which can be rewritten similarly to Eq. (3.73)
as:

I1 = C : I, I2 = C† : I, I3 = detC ,

I4 = C : A, I5 = C2 : A,

I6 = C : B, I7 = C2 : B,

I8 = C : Sym(AB).

(3.78)

However, recalling Eq. (1.5), the relationship C = 2E+ I holds true, so the two sets of
invariants are connected by the following linear transformations:

J1 =
1
2
(
I1 −3

)
, J2 =

1
4
(
I2 −3

)
− 1

2
(
I1 −3

)
, J3 = I3,

J4 =
1
2
(
I4 −1), J5 =

1
4
(
I5 −1

)
− 1

2
(
I4 −1

)
,

J6 =
1
2
(
I6 −1), J7 =

1
4
(
I7 −1

)
− 1

2
(
I6 −1

)
,

J8 =
1
2
(
I8 −A ·B

)
.

(3.79)

3.2.2 Characterisation of the Remodelling Stationary Solutions

In [72], it was proved that, for materials equipped with a reorientable transversely isotropic
internal structure described by a rotation field Q and in absence of external stimuli, the
stationary solutions of the remodelling equations are those rotations which make stress S
and strain E, or equivalently C, coaxial. In addition, those rotations render the map

σ : Rot ∋Q 7→ σ(Q) = ψ(C,Q)

stationary, where ψ(C,Q) is the elastic strain energy (see Proposition 1 of [72] and also
[370]).
In this Section, it is shown that these results can be partially extended to include the
anisotropic double-fibred internal structure considered here. To do so, we first note that
the results in [370] about coaxiality, which were already employed in Section 3.1.2, hold
true whatever class of material symmetry is considered, either transversely isotropic or
orthotropic, granted that all fibre families are transformed under the same rotation acting
on the body. It is then reasonable to expect that, under our more general framework in
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which two rotations appear, there could be a loss of equivalence between coaxiality and
stationarity of the energy, as we shall prove in the following.

Stationarity and Coaxiality

Before passing to the main result of this Section, we recall that two symmetric tensors
U,V are said to be coaxial if they commute, or equivalently if their commutator vanishes,
i.e. [U,V] =O. Moreover, we prove the following relation:

[
∂W

∂A
,A]+ [

∂W

∂B
,B] = [E,S] . (3.80)

By recalling Eq. (3.76) and Eq. (3.77), the left-hand side of Eq. (3.80) can be written as

[
∂W

∂A
,A]+ [

∂W

∂B
,B] = w4[E,A]+w5[E2,A]+w6[E,B]+w7[E2,B]

+
w8

2
(EBA+BEA−AEB−ABE)

+
w8

2
(EAB+AEB−BEA−BAE)

= w4[E,A]+w5[E2,A]+w6[E,B]+w7[E2,B]

+
w8

2
E(BA+AB)− w8

2
(AB+BA)E

= w4[E,A]+w5[E2,A]+w6[E,B]+w7[E2,B]+w8[E,Sym(AB)]

which, in view of Eq. (3.75) and Eq. (3.66), is indeed equivalent to

[
E,w4A+w5(AE+EA)+w6B+w7(BE+EB)+w8 Sym(AB)

]
= [E,S] ,

which proves Eq. (3.80). Then, at stationarity, since both commutators on the left-hand
side of Eq. (3.80) vanish,

[
E,S

]
=O holds, that is, the stationary solutions of Eq. (3.69)

in the passive case are rotations
(
R∗

p,R∗
s
)

which make stress and strain coaxial. This result
generalizes the one derived in [72] for transversely isotropic materials. We note however
that the inverse statement is not necessarily true: in fact, coaxiality of stress and strain does
not imply that both commutators have to vanish, and therefore need not be equivalent to a
stationary solution of the remodelling system.
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Taking into account these observations, we are now in the position of proving the
following result.

Proposition 3.1. Let E be a given deformation.

(a) (R∗
p,R∗

s ) is a stationary solution of the passive remodelling system of equations if

and only if (R∗
p,R∗

s ) is a critical point of the map

σ : Rot×Rot→ R (3.81)

(Rp,Rs) 7→ σ(Rp,Rs) =W(E,A,B) =W(E,RpA0RT
p,RsB0RT

s ) ,

where W is the strain energy density.

(b) If (R∗
p,R∗

s ) is a stationary solution of the remodelling system of equations, then the

stress S∗ = S(E,R∗
p,R∗

s ) and strain E tensors are coaxial.

Proof. Statement (b) follows from the discussion carried out at the beginning of this Sub-
section. As a matter of fact, if (R∗

p,R∗
s ) is a stationary solution of the passive remodelling

system (3.69), then

[
∂W

∂A
,A]∗ =O and [

∂W

∂B
,B]∗ =O ,

where we have used a superscript ∗ to denote quantities at stationarity. Consequently, by
(3.80),

O= [
∂W

∂A
,A]∗+[

∂W

∂B
,B]∗ = [E,S∗]

and therefore the stress and strain tensors are coaxial. To prove statement (a), we follow
the procedure put forward by Vianello [370]. In this case, however, we need to exploit the
canonical isomorphism between the tangent space Rot(Rp,Rs) to the product manifold
Rot×Rot at (Rp,Rs) and the product space Skw×Skw, for which

Rot(Rp,Rs) = {(WpRp,WsRs) |(Wp,Ws) ∈ Skw×Skw}.

In such a case, the derivative of the energy at (Rp,Rs) in the direction (WpRp,WsRs)

becomes

σ̇(Rp,Rs) = Dσ(Rp,Rs)[WpRp,WsRs] =
∂W

∂Rp
: WpRp +

∂W

∂Rs
: WsRs

= [
∂W

∂A
,A] : Wp +[

∂W

∂B
,B] : Ws ,
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which is null for every pair (Wp,Ws) ∈ Skw×Skw if and only if

[
∂W

∂A
,A]∗ =O and [

∂W

∂B
,B]∗ =O, (3.82)

i.e., if and only if (R∗
p,R∗

s ) is a stationary solution of the remodelling equations.

Previous derivations confirm the loss of equivalence between critical points of the en-
ergy and coaxiality of stress and strain; indeed, in this anisotropic TFF context, stationarity
is a stronger requirement than coaxiality, since it requires that both commutators have
to vanish. In other words, the set of stationary solutions is a proper subset of the set of
rotations that make the stress and strain coaxial.

3.2.3 In-Plane Remodelling

There are many situations of interest in which both fibre families lie and rotate in the same
plane; we refer to this situation as in–plane remodelling and study it in more detail, since
it is closely related to the cell reorientation problem that we ultimately have in mind as an
application.

By introducing an orthonormal basis {e1,e2,e3} in the vector space V , we assume that
the fibres lie in the plane spanned by {e1,e2}, whereas the rotations have an axis parallel
to e3, so that Rpe3 = Rse3 = e3. For simplicity, we also assume that the mobility tensors
introduced in Eq. (3.69) are both spherical. Therefore, they are fully determined by two
positive scalar constants mp = µτp and ms = µτs, with mp ̸= ms in general, µ is a shear
modulus and τp, τs are two characteristic times of the remodelling processes:

Dp = mp I and Ds = ms I, (3.83)

with I the fourth-order identity tensor with components Ii jkl = δikδ jl . Taking into account
that ȧ = ṘpRT

pa and ḃ = ṘsRT
s b, the remodelling system of equations becomes

mp ȧ =−[
∂W

∂A
,A]a ,

ms ḃ =−[
∂W

∂B
,B]b .

(3.84)
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On recalling Eqs. (3.76)–(3.77), the previous system can be recast in the following form:
mp ȧ =

(
A− I

)(
w4Ea+w5E2a+ w8

2 BEa+ w8
2 EBa

)
,

ms ḃ =
(
B− I

)(
w6Eb+w7E2b+ w8

2 AEb+ w8
2 EAb

)
.

(3.85)

Since the problem is in-plane, it is convenient to introduce a parametrization in terms of
the remodelling angles θp and θs, that is, we set a = cosθp e1 + sinθp e2 for the primary
structure and b = cosθs e1 + sinθs e2 for the secondary one. In addition, without loss
of generality, we can assume that e1, e2 and e3 are the principal strain directions of E
associated with the principal strains ε1, ε2 and ε3.
Equations (3.85) correspond therefore to the following system of scalar evolution equations
for the angles:

2mp θ̇p =
[
w4 +

w8
2 +w5(ε1 + ε2)

]
(ε1 − ε2)sin2θp +

w8
2 (ε1 + ε2)sin [2(θp −θs)] ,

2ms θ̇s =
[
w6 +

w8
2 +w7(ε1 + ε2)

]
(ε1 − ε2)sin2θs +

w8
2 (ε1 + ε2)sin [2(θs −θp)] ,

(3.86)
to be solved with the initial conditions θp(0) = θp0 and θs(0) = θs0, in which θp0, θs0 are
the referential primary and secondary orientation angles, respectively.

The following observations are duly noted:

1. depending on the representation form of the elastic strain energy, the strain com-
ponent ε3 of E may or may not enter the system (3.86); indeed, ε3 does not appear
explicitly, but it may be included in one of the energy derivatives wi, i = 4, . . . ,8.
For the sake of simplicity, in the following we will assume that the deformation in
the direction of e3 is negligible, and therefore ε3 = 0;

2. the directions of principal strain e1, e2, that correspond to θp = k π

2 and θs = j π

2

(k, j = 0,1,2...) are stationary solutions of the remodelling equations (3.86);

3. if ε1 = ε2 = ε , i.e., the deformation is equibiaxial, the system of equations (3.86)
simplifies into mp θ̇p =

1
2w8 ε sin [2(θp −θs)] ,

ms θ̇s =
1
2w8 ε sin [2(θs −θp)] ,

(3.87)

and the stationary solutions are achieved either if w8(ε,θp,θs) = 0 for some θp,θs or
if sin2(θp−θs) = 0. The latter means that ∆θ = θs−θp = k π

2 (k = 0,1, ...), i.e., the
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fibres become either parallel or orthogonal, yet their "absolute" angle with respect
to e1 remains undetermined. On the other hand, if w8 = 0 identically, meaning that
the energy does not depend on J8, then no remodelling occurs, as found also for
transversely isotropic materials [72].

To solve the remodelling problem (3.86) and make comparisons with experiments, as
we shall do in the following Subsection, we need an ansätz on the strain energy function. In
this respect, one could consider the most general form of the strain energy function which
is quadratic in the deformation measure E. To do so, we generalize the well-known Saint
Venant–Kirchhoff model, that in its original formulation only depends on the isotropic
invariants, to a double-fibred material [28, 181]. The minimal representation of that
energy which provides the simplest coupling between the fibres and allows to fit data from
experiments on biaxial tests is:

Ŵ(J1, . . . ,J8) =
1
2

k1 J2
1 + k2 J2 +

1
2

k4 J2
4 +

1
2

k6 J2
6+

+ k14 J1J4 + k16 J1J6 +
1
2

k8J2
8.

(3.88)

With these assumptions, the remodelling problem takes the following form:

2mp θ̇p = (1+ r)ε2
1 F(θp,r;k4,k14)+

1
2

ε
2
1 k8 [G(θp,θs,r)+H(θp,θs,r)] , (3.89)

2ms θ̇s = (1+ r)ε2
1 F(θs,r;k6,k16)+

1
2

ε
2
1 k8 [G(θs,θp,r)+H(θs,θp,r)] , (3.90)

where we have introduced the biaxiality ratio r := −ε2/ε1 between the transverse and
longitudinal deformation, while the functions F , G and H are defined as

F(θp,r;k4,k14) :=
[
k4(cos2

θp − r sin2
θp)+ k14(1− r)

]
sin2θp , (3.91)

G(θp,θs,r) := 2(1− r)cos2(θp −θs)
(

cosθp cosθs − r sinθp sinθs
)

sin(θp −θs) ,

(3.92)

H(θp,θs,r) := (1+ r)cos(θp −θs)
(

cosθp cosθs − r sinθp sinθs
)

sin2θp . (3.93)

A discussion of the reorientation dynamics prescribed by the equations above is postponed
to the next Subsection.

Remark 3.5. The representation form of Eqs. (3.89)–(3.90) suggests to identify a system
of elastic actions which contribute to the time rate of the fibre orientation angles θp and θs.
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Firstly, we introduce the pair

Tp := (1+ r)ε2
1 F(θp,r;k4,k14) and Ts := (1+ r)ε2

1 F(θs,r;k6,k16) . (3.94)

Then, we note that
G(θs,θp,r) =−G(θp,θs,r) . (3.95)

As a consequence, we can identify the following mutual elastic interaction between the
fibres:

Tps :=
1
2

ε
2
1 k8 G(θp,θs,r) , (3.96)

dependent upon the constitutive coefficient k8. In addition, we can define

TH p :=
1
2

ε
2
1 k8H(θp,θs,r) and THs :=

1
2

ε
2
1 k8H(θs,θp,r) . (3.97)

With these definitions on hand, the remodelling equations are compactly restated as

2mp θ̇p = Tp +Tps +TH p and 2ms θ̇s = Ts −Tps +THs , (3.98)

which have a more clear physical interpretation. Specifically, the time evolution of the
orientation of the primary (resp. secondary) angle depends on the elastic actions Tp (resp.
Ts), TH p (resp. THs) and Tps (resp. −Tps). Tp is defined in Eq. (3.94) and depends on the
orientation θp (resp. θs) of the fibre itself and on the stretches ε1, ε2. On the other hand,
the interactions Tps and TH p (resp. THs) depend on both the orientations θp and θs and
in particular they vanish when the two fibre families are constitutively uncoupled, that is,
when k8 is equal to zero.
It is of particular interest the evaluation of Tp, Ts, TH p, THs and Tps when the stretch is
equibiaxial, i.e., for r =−1, and then ε1 = ε2 = ε . In such a case, Eqs. (3.92), (3.96) and
(3.97) imply Tp = Ts = TH p = THs = 0 and

Tps = 2k8 ε
2 cos3(θp −θs) sin(θp −θs) = k8ε

2 cos2(θp −θs)sin2(θp −θs) , (3.99)

meaning that the only non-zero term in the right-hand side of (3.98) is Tps. We recall that, as
per Eq. (3.87), stationarity under equibiaxal stretch is attained if either sin2(θp−θs) = 0 or
w8(θp,θs) = k8J8 = k8ε cos2(θp −θs) = 0, for the specific energy that we are considering.
Therefore, Eq. (3.99) states that the stationary value of the elastic interaction is zero in the
equibiaxial case.
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3.2.4 Constrained Reorientation

There may be practical cases in which the rotation of a fibre family induces the same
rotation in the other family, in the sense that, during the remodelling process, the difference
between the reoriented fibre angles remains the same. This behaviour is introduced in the
modelling framework detailed above by properly constraining the elastic energy with a
Lagrange multiplier. Among the many possible choices (see for instance [177]), guided by
the experiments in [226] we require that the primary Rp and secondary Rs rotation tensors
be equal at any time instant. As such, we introduce the representation of rotation tensors
through the exponential maps [177] given by

Rp = expΩp and Rs = expΩs . (3.100)

Then, Ωp = Ωs implies Rp = Rs, and the constraint expression takes the form

λ c(Ωp,Ωs) = Ωp −Ωs , (3.101)

with the corresponding constrained energy given by

W̃(E,A,B) =W(E,A,B)+Λ : λ c(Ωp,Ωs) . (3.102)

Hence, the skew tensor field Λ is the Lagrange multiplier, which physically represents the
reaction needed to maintain the relative rotation between the two fibre families the same.
Equation (3.101) implies

λ̇ c(Rp,Rs) = ṘpRT
p − ṘsRT

s . (3.103)

On substituting (3.101) and (3.102) into the dissipation inequality, we arrive at

(
−P+F

∂W

∂E
)

: Ḟ+ Λ̇ : λ c(Ωp,Ωs)

+
(
−Σp +[

∂W

∂A
,A]+Λ

)
: ṘpRT

p

+
(
−Σs +[

∂W

∂B
,B]−Λ

)
: ṘsRT

s ≤ 0 ,
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which leads to the following system of constrained remodelling equations:

DpṘpRT
p =−[

∂W

∂A
,A]−Λ ,

DsṘsRT
s =−[

∂W

∂B
,B]+Λ ,

λ (Ωp,Ωs) =O .

(3.104)

Summing up the first two equations in (3.104), we obtain an evolution equation independent
of the Lagrange multiplier Λ:

DpṘpRT
p +DsṘsRT

s =−[
∂W

∂A
,A]− [

∂W

∂B
,B]

which, at stationarity, gives

[
∂W

∂A
,A]∗+[

∂W

∂B
,B]∗ =O= [E,S]∗, (3.105)

recovering the result in Eq. (3.80). On the other hand, by subtracting (3.104)1 from
(3.104)2 and using (3.105), at stationarity we obtain

Λ
∗ = [

∂W

∂B
,B]∗ . (3.106)

which furnishes the stationary values of the Lagrange multiplier Λ
∗. Equations (3.105),

(3.106) together with the constraint equation (3.104)3 are a system of nine equations.
The nine unknowns are the six components (ai,bi) (i = 1,2,3) and the three independent
components of Λ ∈ Skw. Therefore, in this constrained case, the equivalence between
coaxiality of stress and strain and stationarity of the solutions of the remodelling equation
is recovered thanks to the introduction of the multiplier Λ. Indeed, if (R∗

p,R∗
s ) is a pair of

rotations compatible with the constraint that makes stress and strain coaxial, then (3.105)
is trivially satisfied. However, the reaction term Λ and the constraint equation guarantee
that (R∗

p,R∗
s ) is also a stationary solution, as it is possible to find a value of Λ

∗ satisfying
Eq. (3.106) once a∗ and b∗ are known.

When in-plane remodelling is considered, with e3 the orthogonal vector to the plane,
we can set Ωp = (θp −θp0)⋆ e3 and Ωs = (θs −θs0)⋆ e3, where the operator ⋆ : V → Skw
associates to each vector w a skew tensor W whose axial vector is w, i.e. (⋆w)u = w×u
for any u ∈ V . With this notation, we have Λ = κ ⋆ e3. As a consequence, the constraint
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reduces to
λc(θp,θs) = (θp −θs)− (θp0 −θs0) , (3.107)

whence the remodelling equations become
2mp θ̇p = (1+ r)ε2

1 F(θp,r;k4,k14)+
1
2ε2

1 k8 [G(θp,θs,r)+H(θp,θs,r)]−2κ

2ms θ̇s = (1+ r)ε2
1 F(θs,r;k6,k16)+

1
2ε2

1 k8 [G(θs,θp,r)+H(θs,θp,r)]+2κ

θp −θs = θp0 −θs0 .

(3.108)

The constraint equation (3.108)3 implies

θ̇p − θ̇s = 0

from which by summing and subtracting (3.108)1 and (3.108)2 we get

2(mp +ms)θ̇p = (1+ r)ε2
1 [F(θp,r;k4,k14)+F(θs,r;k6,k16)]

+
1
2

ε
2
1 k8 [H(θp,θs,r)+H(θs,θp,r)] (3.109)

and

2(mp −ms)θ̇p = (1+ r)ε2
1 [F(θp,r;k4,k14)−F(θs,r;k6,k16)]

+
1
2

ε
2
1 k8 [2G(θp,θs,r)+H(θp,θs,r)−H(θs,θp,r)]−4κ, (3.110)

respectively, recalling (3.95). When the deformation is equibiaxial, r =−1 and by using
the definitions of the functions F , G and H, Eq. (3.109) gives

2(mp +ms)θ̇p = 0, (3.111)

thus θ̇s = θ̇p = 0 and no evolution occurs as happened in the transversely isotropic case
[72]. Moreover, Eq. (3.110) evaluated for r =−1 gives

κ = k8 ε
2
1 cos3(θp0 −θs0)sin(θp0 −θs0) (3.112)
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Fig. 3.10 Sketch of the cell structure and reorientation process. For comparison with experimental
assays in [226], following [234], we consider the reorientation of the actin peripheral stress fibres
(in red) which determine the alignment of the cell body, while the lateral protein network (in gray)
is constrained to remain orthogonal to the SF. Instead, to compare our model with results in [308],
we consider the peripheral stress fibres as the primary structure, whose orientation is changed
according to Rp, while the nucleus and the perinuclear stress fibres (in blue) that drive its orientation
represent the secondary structure, evolving with Rs.

and shows that the reaction κ is trivially constant. In particular, it is equal to zero either
for fibres initially parallel, i.e., θp0 − θs0 = kπ , or orthogonal, i.e., θp0 − θs0 = π

2 + kπ

(k = 0,1, ...).

3.2.5 Comparison with Experimental Data

In this Section, we illustrate some applications of the proposed reorientation framework to
the problem of cell alignment. This allows us both to discuss interesting implications of
the model itself and to make a comparison with experimental data, showing the possibility
of employing it to describe cytoskeletal remodelling. In particular, we will firstly consider
a constrained case, in which the two fibre families cannot move with respect to each
other: this may represent, for instance, the reorientation of actin stress fibres and lateral
protein network. Then, we will focus on an unconstrained case, that may be relevant in the
description of different stress fibre subtypes [308].

The Case of Constrained Reorientation

We consider here a case in which the two fibre families represent the cell aligned stress
fibres and the orthogonal protein network, as sketched in Fig. 3.10. Such a choice mirrors
the one made by Livne and coworkers [226] and ourselves [234] in Section 3.1. In the
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following, we show that our model is able to recover the results in [226, 234] as a particular
case, without the need of any phenomenological justification of the evolution equation.

As a starting point, following Section 3.1, we consider the cell monolayer as an
hyperelastic anisotropic material, characterized by the strain energy function defined in
Eq. (3.88). Then, we introduce the two assumptions also (implicitly) done in [226]: (1) the
families of fibres are orthogonal in the reference configuration and constrained to remain
orthogonal during remodelling; and (2) the fibres lie in the plane of unit normal e3. Finally,
we consider a deformation of the substrate defined by E= diag(ε1,−rε1,0).

In doing so, we are able to apply the constrained in-plane remodelling theory derived
in Section 3.2.4 and to write the reorientation equations using (3.108). If we take into
account that the fibres are orthogonal, i.e. θp0 − θs0 = π/2, the constraint becomes
λc(θp,θs) = (θp −θs)−π/2 = 0, which also implies λ̇c(θp,θs) = θ̇p − θ̇s = 0. Moreover,
the orthogonality of the fibres yields

G(θp,θs,r) = G(θs,θp,r) = 0 and H(θp,θs,r) = H(θs,θp,r) = 0,

and the remodelling equations are simplified as
2mp θ̇p = (1+ r)ε2

1 F(θp,r;k4,k14)−2κ ,

2ms θ̇s = (1+ r)ε2
1 F(θs,r;k6,k16)+2κ .

(3.113)

Summing up the two equations and exploiting the constraint, we can obtain an evolution
equation for the primary cell orientation θp:

m̂ θ̇p = (1+ r)ε2
1

[
k̂p(cos2

θp − r sin2
θp)+ km(1− r)

]
sin2θp , (3.114)

where
m̂ := 2(mp +ms) , k̂p := k4 + k6 , km := k14 − k16 − k6 .

The stationary solutions of Eq. (3.114) can be readily identified: they correspond either to
the cell being aligned with the principal directions of strain, i.e. θ ∗

p = kπ/2, k ∈ Z, or to
the oblique orientations defined by

cos2
θ
∗
p = 1+

km

k̂p
− 1

1+ r

(
1+2

km

k̂p

)
=

1
2
+K

(
1
2
− 1

1+ r

)
, (3.115)
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Fig. 3.11 Evolution of the cell orientation angle θp with maximum strain of 10%, following Eq.
(3.114), for different values of the biaxiality ratio r. The curves show the best fitting of the model,
while the dots represent experimental data taken from [226].

where K := 1+2km/k̂p. Such a result is coherent with our previously derived findings,
recalling Eq. (3.22). However, in our model we did not postulate the evolution equation
(3.114) as done for instance by Livne and coworkers [226], but rather derived it from a more
general framework which lays on balance principles and thermodynamics. Clearly, the
oblique stationary solutions only exist when r ̸=−1 and the right-hand side of Eq. (3.115)
has a value between 0 and 1; for details on the bifurcation analysis of the orientations, we
refer the reader to Section 3.1.4.

The Lagrange multiplier κ , that represents the reaction needed to keep the fibres
orthogonal, can be evaluated at stationarity through

4κ
∗ = (1+ r)ε2

1
[
(k4 − k6)(cos2

θ
∗
p − r sin2

θ
∗
p)+(k14 + k16 + k6)(1− r)

]
sin2θ

∗
p .

We observe that, when the cell is aligned with the principal strain directions, κ∗ = 0.
Indeed the same holds true when r =−1 (see Eq. (3.114)), i.e. in the case of equibiaxial
deformation when no reorientation occurs. For oblique orientations, instead, we have

4κ
∗ = 2(1− r2)ε2

1
k4k16 + k4k6 + k6k14

k4 + k6
sin2θ

∗
p ,

which is in general different from zero provided that r ̸= 1.
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r km/k̂p τ [s]

0.25 0.1594 7.3

0.48 0.2142 5.9

0.69 0.2596 5.7

Table 3.1 Constitutive parameters in Eq. (3.114) estimated from the fitting of experiments in [226].

We conclude this discussion by comparing the prediction of the constrained model
with the data on cell reorientation in [226]. It can be seen from Eq. (3.114) that the three
parameters k̂p,km and τ , where the latter is the characteristic time inside m̂, have to be
calibrated. The results of this procedure, carried out through a nonlinear least square
algorithm, are shown in Figure 3.11. The model matches accurately the evolution of the
orientation angles seen in the experiments. The optimal parameters used for the fitting for
r ∈ {0.25,0.48,0.69} are listed in Table 3.1 and are indeed coherent with experiments in
[226], where the authors found a value of the ratio km/k̂p = 0.13±0.04 and a characteristic
time τ = 6.6±0.4 s.
It is worth noting that the evolution of the angle in Eq. (3.114) only depends on three
constitutive parameters including a characteristic time. The evaluation of the other model
coefficients, necessary to estimate the Lagrange multiplier κ∗, would require further
experimental data.

Remark 3.6. In the general case of two plane fibre families constrained to remain orthogo-
nal, namely such that A+B= Ǐ with Ǐ the identity tensor in the fibre plane, it can be easily
shown that the stationarity requirement

[
∂W

∂A
,A]∗+[

∂W

∂B
,B]∗ =O (3.116)

implies
[E,(w∗

4 −w∗
6)A

∗+(w∗
5 −w∗

7)(A∗E+EA∗)] =O , (3.117)

which has the following consequences:

1. If w6 = w7 = 0 identically, meaning that there is a single fibre family, the relation
[E,S∗] =O for a transversely isotropic material found in [72] is recovered.

2. If the remodelled direction a is along a principal direction of strain (and then so
is b because they are orthogonal), the commutator on the l.h.s. of (3.117) is null.
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Therefore, rotations that align the preferential orientations with the principal strain
directions are always stationary solutions of the problem at hand.

3. If a is not aligned with a principal strain direction, there might be additional non-
trivial solutions identified by the two conditions

w∗
4(E,A∗) = w∗

6(E,A
∗) and w∗

5(E,A
∗) = w∗

7(E,A∗).

It is also immediate to observe that the relation (3.117) is consistent with Eq. (3.12), as
expected. The only difference lies in the presence of w8 which does not appear here:
this is due to the different definition of the invariant I8 employed in the present Section,
compared with the one used in Section 3.1. However, it is easily possible to show that, if
the definition of I8 given in Eq. (3.2) is instead adopted, then the result in Eq. (3.12) is
completely recovered. Indeed, in this case the commutator between the strain tensor and
the second Piola-Kirchhoff stress tensor can be written as

[E,(w4 −w6)A+(w5 −w7)(AE+EA)+w8 Sym(a⊗b)] =O , (3.118)

which is precisely equivalent to Eqs. (3.11)–(3.12).

The Case of Independent Reorientation

The complex interaction between the cell nucleus and the cytoplasm can be still captured
by the proposed model in terms of changes in their relative orientation when cells are
cyclically stretched. In [308], the mechanoadaptive organization of stress fibres and nuclei
in epithelial cells under cyclic stretches is considered, highlighting that these two cellular
components follow different orientation dynamics. In particular, epithelial cells on a
plane substrate were stretched for 2 hours at 5%, 10% and 15% maximum strains whilst
measuring the reorientation of the different stress fibre subtypes. It was seen that dorsal
stress fibres, transverse arcs, and peripheral stress fibres were mainly involved in the
cytoplasm response whereas perinuclear cap fibres were associated with the reorientation
and elongation of the nucleus (see Fig. 3.10).

A sketch of the experimental set-up of [308] is shown in Fig. 3.12(a) where the coloured
arrows are used to indicate the primary (red) and secondary (green) cell structures, i.e.,
cytoplasm and nucleus of the cell, respectively. In the experiments, the longitudinal strain
ε1 was controlled for 2 hours with the time history shown in inset 3.12(b) at three different
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Fig. 3.12 (a): Sketch of the experiments in [308], where the substrate is deformed with a periodic
strain. The peripheral (red) and the perinuclear (green) fibres represent the two fibre families. (b):
Time history of the longitudinal strain ε1 imposed to the substrate, with maximum amplitude of 5%
(blue curve), 10% (red curve), and 15% (yellow curve). (c)–(e): Evolution of the orientation angles
of cytoplasm and nucleus for a maximum strain of 5% (c), 10% (d) and 15% (e), compared with
experimental results from [308]. The curves represent the best fitting obtained for the given data.
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Table 3.2 Constitutive parameters in Eqs. (3.89)–(3.90) identified from the experiments in [308].

εmax k14/k4 k16/k6 k6/k4 k8/k4 τp [s] τs [s]

5% 26.5 3.3 9.75 55 128 313
10% 26.5 3.3 9.75 72 148 193
15% 26.5 3.3 9.75 76.25 128 133

level of maximum strain (5%, 10% and 15%); the lateral strain was also controlled in a way
that r =−ε2/ε1 = 0.49 and the frequency of the deformation was set to 0.3 Hz. The plots
in Fig. 3.12(c)-(e) were obtained by fitting the experimental data against Eqs. (3.89)-(3.90)
(with mp = k4τp and ms = k6τs), through a nonlinear least square algorithm implemented
in MATLAB®. The corresponding best fit parameters are listed in Table 3.2. The stretch
dependence for both the primary and secondary angles is well captured by the model for
all the different values of applied strain and with very similar parameters. Interestingly, it
can be observed that the main differences in the best fitting parameters are represented by
k8 and τs, which are related to the coupling between the fibre families and to the nucleus
reorientation time, respectively. In particular, as the maximum applied strain increases,
an increase in the coupling parameter also happens, leading to a corresponding decrease
in the nucleus characteristic time. Therefore, the model predicts that the constitutive
coupling between the fibre families becomes stronger as the applied deformation increases
in magnitude. The decrease of the nucleus characteristic time for greater strains is also
coherent with the experimental observations by Roshanzadeh and coworkers [308].

3.2.6 Discussion

Starting from a very general theory previously developed for transversely isotropic materi-
als, in this Section we have proposed a remodelling framework to describe the reorientation
of a material structure that features two families of fibres. The main novelty of our ap-
proach lies in the fact that the two preferential directions may change in time following
different evolution dynamics, without being a priori constrained to keep the relative angle
fixed. However, the fibres can be properly coupled by making appropriate constitutive
choices, for instance concerning the hyperelastic strain energy density. The thermodynami-
cally consistent structure of the model also offers an advantage over phenomenological
approaches sometimes pursued in the literature.
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After having derived the balance and remodelling equations, we thoroughly studied
the stationary solutions of the latter. Interestingly, the addition of a fibre family which is
able to reorient following its own dynamics leads to a generalisation of the well-known
coaxiality result by Vianello. The equivalence between critical points of the elastic energy
and coaxiality of strain and stress is then recovered by introducing a proper constraint
between the two fibres, making them rotate without any change in their relative angle.
Therefore, the case of two material structures that remodel with different rotation tensors
does not turn out to be a simple generalisation of the transversely isotropic case, but rather
provides a more complex enrichment of the reorientation theory for orthotropic materials.

The framework proposed in this Section remains very general and could therefore be
readily adapted to describe materials like composites with two families of fibres which
are engineered to reorient according to different stimuli. However, we chose to focus on
biological applications of cell reorientation under external mechanical cues, in order to
study the cytoskeletal remodelling in more detail. We found that our model is able to
reproduce some experimental data from different groups [226, 308], both for constrained
and unconstrained fibres, representing different structures of the cytoskeleton. In particular,
when experiments by Livne and collaborators are considered [226], we recovered the
preferential orientations derived in Section 3.1 as a particular case for orthogonal fibres.
Then, we tested the behaviour of our model in a case where the fibres are not fixed to keep
the initial angle, following experimental assays by Roshanzadeh et al. [308]. An interesting
outcome in this case suggests that greater deformation magnitudes are associated with a
stronger coupling between peripheral stress fibres and perinuclear cap fibres.

In summary, we have derived a system of equations capable of describing the remod-
elling of a material with two preferential directions, which can rotate independently but in
a coupled way. From a theoretical viewpoint, we found that a generalisation of well-known
results about coaxiality holds and is related to the stationary solutions of the system. Then,
considering applications to cell layers under stretch, our results suggest the feasibility and
flexibility of our framework for the description of cytoskeletal reorientation dynamics.

As a final remark, we recall that all the equations derived in this Section hold for a
nonlinear elastic material, while no viscous effects have been incorporated.
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3.3 Linear Viscoelastic Description

As discussed in Chapter 2, there are several mechanical factors that influence the process
of cell reorientation under substrate stretching. Nevertheless, the mathematical models
proposed in the previous Sections to investigate such a problem were mainly concerned
with the relation between the cell orientation angle and the amplitude of the periodic
deformation. Moreover, the important role of the biaxiality ratio r has been highlighted and
analysed in detail. However, an additional relevant factor to be taken into account is the
frequency of the applied stretch. As a matter of fact, as already pointed out in Section 2.1.2,
in order to trigger a cellular response the period of the stretching cycle must be sufficiently
small, or equivalently there is a lower frequency threshold [171, 190]. As specified in
[190], this threshold seems to be cell-type dependent, leading to minimum frequencies
that go from 0.01 Hz for rat embryonic fibroblasts to 0.1 Hz for human dermal fibroblasts.
Furthermore, we recall that also an upper threshold seems to exist, above which there
is no increase in the reorientation speed of the cells due to saturation of the molecular
mechanisms.

The presence of these threshold effects cannot be covered by the purely elastic descrip-
tions discussed above, and calls for the introduction of a characteristic response time that
needs to be compared with the periodic deformation time scale. The existence of such a
characteristic time might be related to the reorganisation of the acto-myosin cytoskeleton
and to the remodelling of the ensemble of focal adhesions with the substrate. Indeed, it is
known that the characteristic turnover times of both phenomena are of the order of tens of
seconds, or even minutes (see, for instance, [68, 282, 284, 397]).

On the basis of these facts, in this Section we enrich the previous descriptions by
proposing a simple viscoelastic model for cell preferential orientations, in order to account
for reorganisation processes occurring inside the cell and between the cell and its microen-
vironment when a deformation is applied to the substrate. To our knowledge, previous
viscoelastic descriptions of cell stress fibre dynamics have been mainly focused on the
microscopic scale [205, 295], while here we treat the cell and the substrate as a continuum.
In particular, we introduce an anisotropic viscoelastic framework that couples the evolution
of the stress fibre orientation angle with the mechanical stress exerted on the cell as a
consequence of cyclic stretching. Hence, the ensemble of cells lying on the substrate is
considered as a Maxwell orthotropic fluid with a single relaxation time. We prove that, for
high stretching frequencies, the cell cytoskeleton does not have enough time to reorganise
and behaves elastically, while for slow frequencies the viscous character emerges and the
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system behaves like a fluid. Furthermore, after having showed that the preferred angles are
predicted by an energy minimization which mimics the one presented in Section 3.1, we
perform an extensive bifurcation analysis, discussing the role of elastic parameters and
finding the conditions under which a certain angle of cell orientation is stable. We find
that also in this general set-up there exists a linear relationship between cos2 θeq and a
combination of parameters of the orthotropic elasticity tensor.

Finally, we perform some numerical simulations using the complete viscoelastic model,
to study the reorientation dynamics in the high frequency and low frequency cases together
with stress evolution. It is found that the cell orientation angle evolves toward the steady
state predicted by the linear stability analysis, with a speed which depends on the elastic
or viscous character of the system. Moreover, in accordance with the observation in
[171, 190], simulations show that the speed of reorientation towards the equilibrium angle
sensibly depends on the frequency of imposed oscillations. In particular, it presents a
transition for values of the ratio of the oscillation period and the characteristic time of
viscoelasticity close to 2π , so that the time required to observe reorientation is of the order
of days for smaller frequencies, saturating to one hour for larger frequencies.

3.3.1 Viscoelastic Model

We consider a two-dimensional substrate seeded of cells that is stretched biaxially. While
the response of the extracellular material is in general isotropic and elastic, the mechanical
behaviour of the ensemble of cells can be regarded as anisotropic and viscoelastic. The
viscoelastic character is due to the reorganization of the acto-myosin network inside the
cell and to the rearrangement of focal adhesions, performed through repeated detachments
and attachments of integrin bonds with the substrate, especially under stretch, to relax the
perceived stress [293]. Instead, anisotropy derives from the fact that, when subject to a
mechanical deformation, cells tend to build properly oriented actin stress fibers within
their cytoskeleton [180, 378]. In addition, these SFs are linked by a network of proteins
(such as fascin, fimbrin, α-actinin, filamin, ARP2-3 [75, 138, 310, 377]) that spans them
orthogonally with respect to the fibre bundles or at well-defined angles, as in the case
or ARP2-3, as sketched in Fig. 3.1. As a consequence, the cell responds differently to
stretches and stresses along its major axis with respect to the transversal axis and to shear
as well.

The main orientation of SFs, which will be identified by a unit vector N, can change in
time due to the mechanical cue. We will here consider, as in experiments, that the specimen



3.3 Linear Viscoelastic Description 135

is subject to a biaxial stretch and take the x-axis aligned to the direction of maximal stretch.
Then, the angle formed by N and the x-axis will be denoted by θ .

Resorting to Lagrangian mechanics, we can relate the evolution in time of the orienta-
tion angle θ with the changes in the virtual work L done by the stress acting on the cell
due to SF alignment. Considering an overdamped regime, which corresponds to neglecting
inertial effects, we can then write

0 =−η
dθ

dt
− ∂L

∂θ
, (3.119)

where L := T : E, being T the excess Cauchy stress tensor and E the infinitesimal defor-
mation tensor, is the work done by the stress, assuming that the mechanical behaviour is
linear.

Remark 3.7. We choose to employ the same notation E to denote both the Green-Lagrange
strain tensor and the infinitesimal deformation tensor. Indeed, in the linear elastic limit
that we are studying in this Section they coincide. Therefore, unless otherwise stated, in
the following E will refer to a small deformation.

Moreover, η > 0 is a viscous-like coefficient measuring cell resistance to realignment.
Since we are interested in deformation tests, where a periodic stretch is imposed to
the specimen, E is assumed to be independent of θ and externally imposed. It is then
convenient to rearrange Eq. (3.119) to get the following evolution equation for θ(t):

dθ

dt
(t) =− 1

Eλθ

∂T
∂θ

(t|θ) : E(t) , (3.120)

where we identified E as the characteristic Young modulus of the material and λθ := η/E

as a parameter related to the time the cell takes to reorient itself. The notation T(t|θ) reads
as the stress at time t given the history of orientations θ .

Equation (3.120) implies that, for a given deformation E, θ tends to assume a value
such that the variation of T with respect to θ either vanishes or becomes orthogonal to E.

Focusing on T, we assume here that the stress in the elastic substrate and the viscoelastic
cellular component embedded in it is given by

T(t|θ) =
∫ t

−∞

C(θ(τ); t − τ)[E(t)−E(τ)]dτ , (3.121)

(see, for instance, [23] for the isotropic case and [287, 288] for the anisotropic case).
We notice that the elements of the fourth-order tensor C are all bounded and that, in the



136 Mechanical Modelling of Cytoskeletal Reorientation

isotropic case, C reduces to the derivative of the so-called relaxation kernel (apart from the
sign) times the identity tensor. The kernel C depends on the alignment direction, i.e. on
the orientation angle θ , which during the history of deformation can evolve in time. On
the other hand, the second part of the kernel dependence takes into account the weight of
past orientations (at time τ) on the present state of stress and represents memory effects of
the viscoelastic material. We will assume that such a dependence is exponential with a
single relaxation time λ [287, 288], that is,

C(θ(τ); t − τ) =
1
λ
C0(θ(τ))e−(t−τ)/λ , (3.122)

where C0(θ(τ)), which is the fourth-order elasticity tensor depending on the orientation
direction θ at time τ , inherits from C the boundedness and regularity properties. Therefore,
we can write

T(t|θ) =
∫ t

−∞

1
λ

e−(t−τ)/λC0(θ(τ))[E(t)−E(τ)] dτ . (3.123)

As usual in rheology, for this type of kernels it is useful to differentiate (3.123) and to
rewrite the constitutive equation in the following differential form:

λ
dT
dt

(t|θ)+T(t|θ) = C0(t|θ)
dE
dt

(t) , (3.124)

where

C0(t|θ) :=
∫ t

−∞

e−(t−τ)/λC0(θ(τ)) dτ =
∫ +∞

0
λe−sC0(θ(t −λ s)) ds , (3.125)

is a functional on the exponentially weighted history of past orientations. We observe that,
in the isotropic case, C0 is twice the so-called elastic viscosity, i.e., the area under the
relaxation kernel (times the identity tensor).

In Eq. (3.120) and (3.124) there are two intrinsic characteristic times that appear:
λ refers to the viscous behaviour of cells due, for instance, to the continuous renewal
of adhesion bonds with the substrate, while λθ is related to the characteristic time of
reorganization of stress fibres and consequently to the change in cell orientation. It is
known that both remodelling phenomena occur on time scales of seconds or even minutes
[68, 282, 284, 397]. Now, given that in mechanical tests cells are often subject to cyclic
strains, it is useful to discuss how the model behaves when the imposed oscillation period
T is much shorter or longer than the characteristic times mentioned above. In order to do
so, we observe that, for a periodic deformation E(t) = E0eiωt , the expression of the stress
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given by Eq. (3.123) can be rephrased as

T(t|θ) = 1
λ

[∫ t

−∞

e−(t−τ)/λ C0(θ(τ))
(

1− e−iω(t−τ)/λ

)
dτ

]
E0eiωt

=

[∫ +∞

0
e−sC0(θ(t −λ s))

(
1− e−iλωs

)
ds
]
E0eiωt . (3.126)

High Frequency Regime

First of all, we consider a high frequency regime with λ ,λθ ≫ T = 2π/ω , so that the
relaxation times are much longer than the oscillation period of the deformation, i.e., the
reorganization process is slower than the imposed cyclic strain. In this case, it is useful to
split the integral in Eq. (3.126) as

T(t|θ) =
[∫ +∞

0
e−sC0(θ(t −λ s)) ds

]
E0eiωt

−
[∫ +∞

0
e−sC0(θ(t −λ s))e−iλωs ds

]
E0eiωt . (3.127)

We observe that, as stated before, the coefficients of tensor C0(θ(t)) are regular in θ . In
particular, they are bounded as well as their derivatives. Hence, by Riemann-Lebesgue
lemma, the second integral in the r.h.s. of Eq. (3.127), which can be regarded as the
unilateral Fourier transform of the L1 function e−sC0(θ(t −λ s)), vanishes in the limit of
high frequencies.

As regards the first term, integrating by parts and exploiting Eq. (3.120) we have

T(t|θ) =
[
C0(θ(t))+

λ

Eλθ

∫ +∞

0
e−s ∂C0

∂θ
(θ(t −λ s))

∂T
∂θ

(t −λ s|θ) : E0eiω(t−λ s) ds
]
E0eiωt

= C0(θ(t))E0eiωt +

[
λ

Eλθ

∫ +∞

0
e−s ∂C0

∂θ
(θ(t −λ s))

∂T
∂θ

(t −λ s|θ) : E0e−iλωs ds
]
E0ei2ωt .

Provided that, denoting by H(s) the Heaviside function, the function

f (s) = H(s)
∂C0

∂θ
(θ(t −λ s))

∂T
∂θ

(t −λ s|θ) : E0e−s ∈ L1(R) ,

as we expect because of the boundedness of the derivative of the coefficients in C0, the
integral in the stress expression corresponds to the Fourier transform of f (s), which again
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vanishes in the limit of high frequencies. Hence, in the high frequency regime we are left
with

T(t|θ)≈ C0(θ(t))E0eiωt . (3.128)

Such a constitutive equation corresponds to an anisotropic linear elastic response of the
material, where C0(θ(t)) is the fourth-order elasticity tensor depending on the orientation
θ . So, in the high frequency regime, Eq. (3.120) can be simplified to

dθ

dt
=− 1

η

[
∂C0

∂θ
E
]

: E=− 2
Eλθ

∂W

∂θ
, (3.129)

where
W(t,θ) :=

1
2
E(t) : C0(θ)E(t) , (3.130)

is the elastic strain energy. Therefore, in this regime, the change in cell orientation is driven
by the minimization of an elastic energy with respect to the orientation angle, coherently
with previous models and experimental results [226, 234].

Low Frequency Regime

In a low frequency regime, in which the period of the cyclic strain imposed to the spec-
imen is much longer than the characteristic time λ of cell relaxation, the reorientation
process is faster than the externally applied oscillations. Therefore, taking into account the
approximation λ ≪ T = 2π/ω , or equivalently λω ≪ 1, we have that

1− e−iλωs ≈ iλωs ,

and the stress can be expressed using Eq. (3.126) through

T(t|θ)≈ iλω

[∫ +∞

0
se−sC0(θ(t −λ s)) ds

]
E0eiωt , (3.131)

which, if we define

C0(t|θ) :=
∫ +∞

0
se−sC0(θ(t −λ s)) ds ,

shows an anisotropic viscous-like response characterized by the constitutive equation

T(t|θ)≈ λC0(t|θ)
dE
dt

(t) . (3.132)
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Essentially, if the imposed oscillations are sufficiently slow, the system behaviour is similar
to the one of a viscous fluid with anisotropy induced by oriented cells. Moreover, since
we are mostly interested in steady orientations, given that C0(θ(t − λ s)) is an analytic
function on R it is possible to write

C0(θ(t −λ s)) =C0(θ(t))+C′
0(θ(t))

dθ

dt
(t)(−λ s)

+
1
2

[
C′′

0(θ(t))
(

dθ

dt
(t)
)2

+C′
0(θ(t))

d2θ

dt2 (t)

]
(−λ s)2 + . . .

and therefore, at the equilibrium orientations,

C0(θ(t −λ s))≈ C0(θ(t)). (3.133)

By means of this approximation, we can write the steady state oscillatory stress in the low
frequency regime using Eq. (3.132) and Eq. (3.133) as

T(t|θ)≈ λC0(θ(t))
dE
dt

(t) . (3.134)

Comparing the latter with the stress in the high frequency case from Eq. (3.128), we
observe that they essentially differ for a factor λω , as will be highlighted by the simulations.
Finally, recalling Eq. (3.120), we have that the angle θ tends to assume, as already stated,
the configuration such that ∂T

∂θ
⊥ E, which in the low frequency limit writes as(

∂C0

∂θ

dE
dt

)
⊥ E .

However, since the deformation is periodic, the last condition can be rephrased as

iω
(

∂C0

∂θ
E0

)
: E0 = 0 =⇒ ∂W

∂θ
= 0 ,

where W is the elastic energy defined in (3.130). Therefore, we conclude that in the low
frequency regime also in the viscoelastic case the steady cell configurations are predicted
by a minimization with respect to the orientation angle θ of the energy introduced in the
elastic case.

We remark however that, even though our model predicts that the equilibrium orien-
tation of the cell is the same in both regimes, the time needed for reorientation is highly
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influenced by the frequency. This leads therefore to final orientation angles of the cell that
are in practice different in the two regimes of low and high frequencies, considering the
time span of the biological experiment. Indeed, the reorientation time necessary to reach
the predicted steady state for low frequencies is much longer than the actual experiment
time scale, as will be shown in Section 3.3.3.

3.3.2 Bifurcation Analysis

In this Section, we study the equilibrium orientations of the cells and their bifurcations.
Our goal is to describe the cell population subject to a periodic stretch through its elastic
energy, since the steady orientation of the stress fibres is predicted by its minimization,
as discussed above. This allows us to study in detail the equilibrium angles in terms of
a very general strain energy, looking for those orientations which minimize it for a fixed
deformation. Finally, we draw bifurcation diagrams in terms of the biaxiality ratio r of the
deformation, putting in evidence the conditions under which the preferential orientations
exist and are stable.

Elastic Energy and Deformation

We consider the most general elastic energy density W depending on the classical first
three invariants I1, I2, and I3, which represent the isotropic response of the material, and
on the anisotropic invariants I j, j = 4, . . . ,8, defined in Eq. (3.2). Then, the general energy
functional can be written as

W=Wi(I1, I2, I3)+Wℓ(I1, I2, I3, I4, I5, I6, I7, I8)+Wq(I4, I5, I6, I7, I8), (3.135)

where Wi is the purely isotropic contribution, Wq is the purely anisotropic one and Wℓ

includes a coupling between isotropic and anisotropic terms. However, since the invariants
I1, I2, I3 do not depend on the orientation angle, the inclusion of Wi will not influence the
following discussion. Henceforth, the energy dependence upon the purely isotropic term
will not be explicitly mentioned anymore, though one should recall that Wi might appear
in an irrelevant way as an extra contribution in the energy that does not alter our results
and conclusions.
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Since we work here in the limit of small deformations, denoting by E the infinitesimal
strain tensor one has

I4 ≈ 1+2N ·EN , I5 ≈ 1+4N ·EN ,

I6 ≈ 1+2N⊥ ·EN⊥ , I7 ≈ 1+4N⊥ ·EN⊥ ,

I8 ≈ 2N⊥ ·EN,

recalling also the relationship between the invariants of E and C from Eq. (3.79) and
neglecting terms of higher order. It follows that, in linear elasticity, it is impossible to
discriminate the dependence on I4 (resp. I6) from the one on I5 (resp. I7), since they both
merge in a dependence on N ·EN (resp. N⊥ ·EN⊥). As a consequence, working in a linear
framework, from now on we will consider the following dependencies:

Wq =Wq
(
Î4, Î6, I8

)
and Wℓ =Wℓ

(
ÎiÎ4, ÎiÎ6, ÎiI8

)
, i = 1,2,3,

where we have defined

Î1 := I1 −2, Î2 := I2 −2, Î3 := I3 −1,

Î4 := I4 −1 ∝ N ·EN, Î6 := I6 −1 ∝ N⊥ ·EN⊥.

(3.136)

However, we anticipate here that, since we will be working with an energy which is
quadratic in the deformation measures, the dependence on Î2 and Î3 inside Wℓ will be
dropped later on.

Consider now a biaxial extension experiment. We assume that the deformation inside
the specimen is homogeneous, so that in two dimensions the infinitesimal strain tensor
writes

E=

(
ε 0
0 −rε

)
, (3.137)

where the parameter r is the biaxiality ratio that already appeared in previous discussions
and was introduced in Eq. (2.1). We also observe that, as stated before, the maximum
stretching is performed along the x-direction, which implies 1+ r > 0. Finally, we recall
that the equi-biaxial case, corresponding to r =−1, will not be discussed explicitly and
is not interesting from the practical point of view. In fact, as discussed in Chapter 2,
experimental evidence showed that, under equi-biaxial stretch, cells do not orient in a
specific direction in the plane of the deformation [377].
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Recalling that θ is the angle formed by the predominant cell orientation direction and
the x-axis, then N = (cosθ ,sinθ) and one has

N ·EN = (cos2 θ − r sin2
θ)ε = [(r+1)cos2 θ − r]ε ,

N⊥ ·EN⊥ = [1− (r+1)cos2 θ ]ε ,

N⊥ ·EN =−(r+1)sinθ cosθ ε ,

and therefore, in the small deformation approximation, we can write both terms Wℓ and
Wq of the elastic energy as functions of θ .

As regards Wq, the most general elastic constitutive model for linear elasticity takes
the following quadratic form:

Wq
(
Î4, Î6, I8

)
=

1
2

K∥(N ·EN)2 +
1
2

K⊥(N⊥ ·EN⊥)
2 +

1
2

Ks(N⊥ ·EN)2

+K∥⊥(N ·EN)(N⊥ ·EN⊥)+K∥s(N ·EN)(N⊥ ·EN)+K⊥s(N⊥ ·EN⊥)(N⊥ ·EN) ,
(3.138)

where K∥ is a coefficient related to the stiffness to stretching in the direction of cell
alignment, K⊥ weighs the stiffness in the orthogonal direction, and Ks measures the
response related to shear. The other coefficients are due to mixing effects among these
three. In terms of θ , the purely anisotropic part of the energy can then be written as

Wq(θ) =
1
2

ε
2
{

K∥ [ξ (θ)− r]2 +K⊥ [1−ξ (θ)]2 +Ks ξ (θ) [r+1−ξ (θ)]

+2K∥⊥ [ξ (θ)− r] [1−ξ (θ)]−2K∥s [ξ (θ)− r] (r+1)sinθ cosθ

−2K⊥s [1−ξ (θ)] (r+1)sinθ cosθ

}
, (3.139)

where for compactness we defined ξ (θ) := (r+1)cos2 θ . We remark that, here and in the
remainder of this Section, we have dropped the explicit energy dependence on t, since we
are interested in the steady orientations of the cells which do not depend on time.

Moreover, we point out that we will take K∥s = K⊥s = 0 due to symmetry requirements
on the energy. Indeed, for the problem at hand, biological observations suggest that the
energy must be symmetric with respect to θ = 0 and θ = π/2, that is,

W(−θ) =W(π −θ) =W(θ) ∀θ ,
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as was already imposed in Section 3.1. It is clear that, among the invariants appearing in
the energy, the one which can lead to symmetry issues is I8, because it gives rise to terms
like sinθ cosθ which do not preserve the above symmetries. Hence, it is reasonable to
assume that Wq depends on I8 only through its square, leading to K∥s = K⊥s = 0. For the
sake of completeness, at the end of this Subsection we also discuss the case K∥s,K⊥s ̸= 0,
showing that their introduction provokes a symmetry breaking which is not biologically
feasible, unless one needs to account for other directional cues.

Instead, concerning Wℓ, we firstly drop the dependence on I8 for the same symmetry
reasons discussed above. Moreover, we observe that, in the linearised case, the contribution
of Î3 is equivalent to the one of Î1. In fact, since C≈ I+2E, we have that

Î1 = tr(C)−2 ≈ 2tr(E)≈ Î3,

neglecting terms of higher order. Consequently, the dependence on Î3 can be dropped and
merged with the one on Î1. Finally, since we are considering a quadratic approximation of
the energy in the linear regime, the only admissible couplings between the other invariants
are Î1Î4 and Î1Î6, because products involving Î2 would have a higher order. Therefore, the
dependence on Î2 can be neglected as well, and the most general admissible expression of
the coupling term becomes

Wℓ

(
Î1, Î4, Î6

)
= 2K14(trE)(N ·EN)+2K16(trE)(N⊥ ·EN⊥) ,

or, as a function of θ ,

Wℓ(θ) = 2ε
2(1− r)

[
(K14 −K16)ξ (θ)+(K16 − rK14)

]
,

where K14 and K16 are coefficients that weigh the coupling between the three invariants
involved.

To summarise, the energy as a function of θ that we consider is given by

W(θ) =
1
2

ε
2
{

K∥ [ξ (θ)− r]2 +K⊥ [1−ξ (θ)]2 +Ks ξ (θ) [r+1−ξ (θ)]

+2K∥⊥ [ξ (θ)− r] [1−ξ (θ)]
}
+2ε

2(1− r)
[
(K14 −K16)ξ (θ)+(K16 − rK14)

]
.

(3.140)
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Since we want to study in more detail the equilibrium orientations and their stability, we
take the first derivative of the overall energy with respect to θ and obtain

W′(θ) = W′
q(θ)+W′

ℓ(θ)

= ε
2
{

K∥ [ξ (θ)− r]+K⊥ [ξ (θ)−1]+
(

1
2

Ks +K∥⊥

)
[r+1−2ξ (θ)]

+2(K14 −K16)(1− r)
}

ξ
′(θ) . (3.141)

In order to rewrite the expression (3.141) in a more compact form, we define

K̂∥ := K∥+4K14 , K̂⊥ := K⊥+4K16 , Km :=
1
2

Ks+K∥⊥+2K14+2K16 , (3.142)

so that

W′(θ) = ε
2
{

K̂∥ [ξ (θ)− r]+ K̂⊥ [ξ (θ)−1]+Km [1+ r−2ξ (θ)]
}

ξ
′(θ)

= ε
2
[
Aξ (θ)−B(r+1)+C

]
ξ
′(θ) , (3.143)

setting

A := K̂∥+ K̂⊥−2Km , B := K̂∥−Km , C := K̂∥− K̂⊥. (3.144)

Since, under mechanical stretch, the preferential direction of the cell is identified by the
aligned stress fibres, coherently with [57] we will consider K̂∥ > K̂⊥. As a consequence,
the coefficient C is always positive, while the sign of A and B cannot be determined a
priori, since it depends on the relative magnitude of the various coefficients involved.

Finally, to study the stability of the equilibrium orientations we will need to examine
the sign of the second derivative of the energy, which reads

W′′(θ) = ε
2
{

Aξ
′(θ)2 +[Aξ (θ)−B(r+1)+C]ξ ′′(θ)

}
. (3.145)

Equilibrium Orientations and Stability

Recalling (3.143), the equilibrium orientations are given by

θ : ξ
′(θ) = 0 i.e. θ = kπ/2, k ∈ Z or θ : Aξ (θ)−B(r+1)+C = 0 ,
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the latter meaning

cos2
θ =

B
A
− C

A
1

1+ r
=

1
2
+K

(
1
2
− 1

1+ r

)
, (3.146)

where we have defined

K :=
C
A
=

K̂∥− K̂⊥

K̂∥+ K̂⊥−2Km
. (3.147)

So, in addition to the angles θ = k π

2 , one might have other four symmetric equilibrium
angles given by Eq. (3.146) that depend only on the combination of parameters contained
in K. For simplicity, we will denote these configurations as oblique equilibria, while
those with θ = kπ will be referred to as parallel equilibria and those with θ = 2k+1

2 π

as perpendicular equilibria, where the definition of parallel and perpendicular obviously
refers to the stretching direction. We remark that the result found in Eq. (3.146) is coherent
with the findings in Sections 3.1 and 3.2, and more specifically with Eqs. (3.22) and
(3.115), up to an identification of the different coefficients. In particular, it is interesting to
notice that the addition inside the energy of isotropic-anisotropic coupling terms, as done
here through Wℓ, does not modify the qualitative expression which defines the oblique
angles. Indeed, it only affects the values of the coefficients, but a linear relation between
the squared cosine and a parameter related to the deformation is still found.

As we shall see, the discussion about bifurcations will depend on the sign of K (i.e.,
whether A is positive or negative, having observed that C > 0) and on whether |K| is
smaller or larger than 1. For this purpose it is useful to define

ρ∥ :=
K−1

2K
=

Km − K̂⊥

K̂∥− K̂⊥
,

ρ⊥ :=
K+1

2K
=

K̂∥−Km

K̂∥− K̂⊥
,

ρ :=
K+1
K−1

=
K̂∥−Km

Km − K̂⊥
.

(3.148)

Then, the existence of the oblique equilibrium angle depends on the value of the biaxiality
ratio r. Namely, referring to Fig. 3.13, the equilibrium orientation defined by Eq. (3.146)
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exists if
ρ∥ <

1
1+ r

< ρ⊥ or
1
ρ
< r < ρ when K > 1 ,

0 <
1

1+ r
< ρ⊥ or r >

1
ρ

when 0 <K < 1 ,

0 <
1

1+ r
< ρ∥ or r > ρ when −1 <K < 0 ,

ρ⊥ <
1

1+ r
< ρ∥ or ρ < r <

1
ρ

when K <−1 .

Looking at the stability of such an orientation, recalling Eq. (3.145) one readily has that
the second derivative evaluated in this configuration gives W′′(θ) = ε2Aξ ′(θ)2, which is
positive provided that A > 0. So, if the coefficient A is positive, or equivalently if K > 0,
the oblique equilibrium angle turns out to be stable. Otherwise, if the combination of
elastic coefficients in A becomes negative, the oblique orientation is unstable.

If we look instead at parallel orientations, e.g., θ = 0, we have that

W′′(0) =−2ε
2(r+1) [(A−B)(r+1)+C] . (3.149)

Therefore, referring again to Fig. 3.13 and observing that A−B =−ρ∥C, such an orienta-
tion is stable if

1
1+ r

< ρ∥. (3.150)

Consequently, if ρ∥ > 0 (i.e. if K < 0 or K > 1) the parallel orientation is stable under the
condition (3.150), while if ρ∥ < 0 (i.e. if 0 <K < 1) it is always unstable.

Finally, the perpendicular orientations, e.g. θ = π/2, are stable if

W′′
(

π

2

)
=−2ε

2(r+1)[B(r+1)−C]> 0, (3.151)

leading to the condition
1

1+ r
> ρ⊥, (3.152)

or equivalently r < 1/ρ . However, if K ∈ (−1,0) the r.h.s. of (3.152) is negative. So, in
this range the perpendicular orientation is always stable, while outside the aforementioned
interval stability is granted whenever r satisfies (3.152).

The stability conditions discussed so far are summarised by the bifurcation diagrams
reported in Fig. 3.13. Taken together, these results argue that, for the general quadratic
orthotropic energy that we consider in a linear elastic regime, oblique equilibrium angles
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(a) (b)

(c) (d)

Fig. 3.13 Bifurcation diagrams for positive K (top) and negative K (bottom). In particular, (a) and
(c) show the bifurcation diagrams in the parameter space (r,θeq), whereas (b) and (d) are plotted
in the parameter space ((1+ r)−1,cos2 θeq). The bifurcation values for the latter are obtained for
(1+ r)−1 = ρ∥ = (Km − K̂⊥)/(K̂∥− K̂⊥) and (1+ r)−1 = ρ⊥ = (K̂∥−Km)/(K̂∥− K̂⊥). The insets
and dots in (a) and (b) show representative cellular orientations: perpendicular (green), oblique
(purple) and parallel (red).
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follow a straight line in the
(
(1+ r)−1,cos2 θ

)
plane upon changes in the values of the

biaxiality ratio. This is confirmed by experimental assays: in the set-up of the experiments
by Livne et al. [226], collected data of the oblique orientation seem to align along a straight
line with K = 1.26±0.08. This is also coherent with the results for a nonlinear quadratic
energy discussed in Section 3.1, suggesting that a model which considers the cell-substrate
system as an anisotropic elastic material is able to recover experimental data.

More specifically, in Figs. 3.13a and 3.13c we show the bifurcation diagram in the
(r,θ) plane for K > 1 and K <−1 respectively, while in Figs. 3.13b and 3.13d we report
the straight lines in the

(
(1+ r)−1,cos2 θ

)
plane, for K > 0 and K < 0 respectively. It can

be observed that, if K> 1 as in Fig. 3.13a, there are two supercritical pitchfork bifurcation
points for r = 1/ρ and r = ρ . So, for any r there is only one stable equilibrium angle
in the interval

[
0, π

2

]
, and its symmetric counterpart with respect to π/2 if r ∈

(
ρ−1,ρ

)
.

Hence, by changing r one can smoothly pass from a configuration with the cell axis
aligned along the stretching direction to a situation with such axis perpendicular to the
main stretching direction. We observe however that the range of values tested in the
experiments is (1+ r)−1 ∈

[1
2 ,1
]
, because the substrate is not compressed along y more

than it is stretched along x, which would correspond to values of r > 1. At the same time,
we have not found experiments where the specimen is simultaneously stretched along x

and y, which would lead to negative values of r. We observe that, since for instance in
[226] it is found that K ≈ 1.26, a constraint can be inferred among the three coefficients
appearing in (3.147), or equivalently among the six parameters in (3.142). In particular,
the fact that K > 1 assures that Km cannot be neglected, because otherwise K in (3.147)
would always be smaller than 1. Starting from this observation and recalling that K̂∥ > K̂⊥,
we can make some considerations about the minimum number of coefficients necessary
to satisfy the experimental values. For instance, if we neglect K̂⊥, we find that K can be
rewritten in terms of the ratio Km/K̂∥ as

1
K

≈ 1−2
Km

K̂∥
.

Therefore, since from experiments 1/K ≈ 0.794 [226], we can argue that

Km

K̂∥
=

1
2Ks +K∥⊥+2K14

K∥+4K14
≈ 0.103 . (3.153)
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Hence, even though the contribution of Km is smaller than the one of K̂∥, the former
parameter is fundamental to obtain a biologically relevant fitting.

Remark 3.8. From these calculations we can also observe that, if K14 = 0, then Eq. (3.153)
yields

1
2Ks +K∥⊥

K∥
≈ 0.103 .

It is then clear that, if we now consider a transversely isotropic energy, for which
Ks = K∥⊥ = 0, it is not possible to match the above condition. We already discussed such
issue in Section 3.1. However, if K14 ̸= 0, then Eq. (3.153) can be satisfied also in the
transversely isotropic case by taking

2K14

K∥+4K14
≈ 0.103 =⇒ K14 ≈ 0.065K∥ .

If we consider now the case K <−1, as in Fig. 3.13c, which might for instance occur
if Km is large with respect to K̂∥ and K̂⊥, then the pitchfork bifurcations become subcritical

and one jumps from the parallel to the perpendicular equilibria, since the oblique one is
always unstable. So, imagining to operate on Km, when 2Km passes from being smaller to
being larger than K̂∥+ K̂⊥, corresponding respectively to ρ∥ < ρ⊥ and ρ∥ > ρ⊥, there is a
switch from supercritical to subcritical bifurcations. In Fig. 3.13d we also plot the case
−1 <K < 0, in which one has the same bistable behaviour for all the experimental values
of r, while the oblique orientation loses its stability. This could be an explanation of why
the oblique orientation might not be observed in the case K < 0, that is K̂∥+ K̂⊥ < 2Km.
Differently from previous models, our bifurcation analysis includes this possibility, which
however needs to be validated precisely through experimental data. Moreover, even though
experiments are commonly performed in a range of biaxiality ratio r ∈ [0,1], our model is
able to foresee the behaviour of the cell even for values of r > 1, i.e. when the substrate is
more compressed in the y-direction than it is stretched in the x-direction, a condition not
tested yet experimentally.

The bifurcations we have found and discussed qualitatively in the high frequency
regime can be also characterised from an analytical standpoint. We refer the reader to
Appendix A and Proposition A.1 for the details.

We finally observe that the presence of pitchfork bifurcations is not surprising, since
they often arise in one-dimensional dynamical systems that present some symmetries: this
is indeed our case, since we took an energy functional which is even and symmetric with
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respect to π/2 in order to match some biological considerations. As a matter of fact, the
introduction of K∥s and K⊥s, discussed in the following, leads to a symmetry breaking and
therefore to the appearance of turning points.

The Asymmetric Case

To complete the overview about bifurcations and stability of the preferential orientations,
we turn our attention to a more general case for which K⊥s,K∥s ̸= 0 in the anisotropic
energy (3.139). In particular, we will show that their introduction leads to a symmetry
breaking bifurcation, which however does not seem to be observed in experiments.

If we do not neglect the contribution of the parameters K⊥s and K∥s, the overall strain
energy as a function of θ reads

W(θ) =
1
2

ε
2
{

K∥[ξ (θ)− r]2 +K⊥[1−ξ (θ)]2 +Ks ξ (θ)[r+1−ξ (θ)]

+2K∥⊥[ξ (θ)− r][1−ξ (θ)]−2K∥s[ξ (θ)− r](r+1)sinθ cosθ

−2K⊥s[1−ξ (θ)](r+1)sinθ cosθ

}
+2ε

2(1− r)
[
(K14 −K16)ξ (θ)+(K16 − rK14)

]
, (3.154)

while its first derivative is

W′(θ) = ε
2
{[

K∥ [ξ (θ)− r]+K⊥ [ξ (θ)−1]+
(

1
2

Ks +K∥⊥

)
[r+1−2ξ (θ)]

−
(
K∥s −K⊥s

)
(r+1)sinθ cosθ +2(K14 −K16)(1− r)

]
ξ
′(θ)

−
[
K∥s[ξ (θ)− r]+K⊥s[1−ξ (θ)]

]
(r+1)(cos2

θ − sin2
θ)
}
.

Before going further, we observe that, in order to have coherence with the experimental con-
dition W′(π/4)= 0 for r = 1 (which was automatically satisfied in the case K∥s = K⊥s = 0),
the following constraint is necessary:

K∥s = K⊥s.
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Hence, we have that the mixing contributions related to shear must be equal. Under this
condition, the energy derivative rewrites as

W′(θ) = ε
2
{
[Aξ (θ)−B(r+1)+C]ξ ′(θ)+K∥s(r

2 −1)(cos2
θ − sin2

θ)
}
, (3.155)

where A, B and C are defined as in (3.144). Then, differently from Eq. (3.143), we have
an additional contribution related to K∥s.

In this situation, to derive the equilibrium orientations, we try to write them by making
r explicit when imposing that W′(θ) = 0. Therefore, we have that the steady state angles
satisfy

2[A(r+1)cos2
θ −B(r+1)+C]sinθ cosθ +(1− r)K∥s(cos2

θ − sin2
θ) = 0 ,

that can be readily solved and yields

r =
K∥s cos2θ +(Acos2 θ −B+C)sin2θ

K∥s cos2θ − (Acos2 θ −B)sin2θ
. (3.156)

Actually, as in the case K∥s = 0, a more compact form only depending on a single parameter
can be achieved working in terms of 1

1+r . In fact, with this idea Eq. (3.156) becomes

1
1+ r

=
C sin2θ −Asin2θ cos2θ +2K∥s cos2θ

2(2K∥s cos2θ +C sin2θ)
=

1
2

[
1− 1

K
sin2θ cos2θ

sin2θ +2γ cos2θ

]
,

(3.157)
where K is defined in (3.147) and

γ :=
K∥s

C
=

K∥s

K̂∥− K̂⊥
. (3.158)

Thus, the introduction of the parameter K∥s, related to the mixed contribution of stretch
along the cell axis and shear, brings a new parameter γ into the equation for nontrivial
equilibrium orientations. As expected, for γ = 0 we recover the symmetric situation
described before in Eq. (3.146).

In order to make some theoretical considerations about stability and bifurcations, the
first thing to notice is that if γ ̸= 0 the graph in the (θ ,(1+ r)−1) plane given by (3.157)
presents asymptotes when sin2θ +2γ cos2θ = 0, namely if

θ =− 1
2

arctan2γ + k
π

2
,
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and it has stationary points when tan3 2θ = 2γ , i.e. whenever

θ =
1
2

arctan 3
√

2γ + k
π

2
, (3.159)

achieving in such points the values

1
r+1

=
1
2

1± 1

K
(

1+ 3
√

4γ2
)3/2

 .

Now we discuss the stability of the equilibrium orientations obtained by (3.157). In this
case, recalling Eq. (3.145), the second derivative of the elastic energy can be written in
general as

W′′(θ) = ε
2
{

Aξ
′(θ)2 +[Aξ (θ)−B(r+1)+C]ξ ′′(θ)+4K∥s(1− r2)sinθ cosθ

}
.

Our goal is to study the sign of this derivative when evaluated in the equilibrium angles: in
particular, since we consider 1+ r > 0, we can focus on the stability condition given by
the inequality

Asin2 2θ −2Acos2
θ cos2θ +2Bcos2θ −2

C
1+ r

cos2θ +2K∥s
1− r
1+ r

sin2θ > 0.

Substituting Eq. (3.157) and dividing by cos2 2θ leads to

1
K

tan2 2θ − 1
K

+
1
K

sin2θ

sin2θ +2γ cos2θ
(1−2γ tan2θ)> 0 (3.160)

which is equivalent to
1
K

tan3 2θ −2γ

tan2θ +2γ
> 0. (3.161)

Therefore, if K > 0, the stable configurations are those with

θ ∈
[

1
2

arctan 3
√

2γ,
π

2
− 1

2
arctan2γ

]
∪
[

π

2
+

1
2

arctan 3
√

2γ,π − 1
2

arctan2γ

]
.

Instead, if K < 0, the angles corresponding to stable orientations for the cell are given by

θ ∈
[

0,
1
2

arctan 3
√

2γ

]
∪
[

π

2
− 1

2
arctan2γ,

π

2
+

1
2

arctan 3
√

2γ

]
∪
[

π − 1
2

arctan2γ,π

]
.
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(a) (b)

Fig. 3.14 (a): Bifurcation diagram in the general case Ks∥ ̸= 0 for 1/K = 0.2, γ = 0.1. Differently
from the symmetric case, here we have two turning points in (θ ∗

1 ,r
∗
1) and (θ ∗

2 ,r
∗
2). (b): The

introduction of γ induces a symmetry breaking in the system, switching from pitchfork to saddle-
node bifurcations.

Then, by combining the information given by the second derivative and the equation
of the bifurcation curves, we can draw the bifurcation diagram of the system, shown in
Figure 3.14a for the case K > 0. In particular, we observe that for r < r∗2 there are two
equilibria, one stable and one unstable; however, when r crosses the critical value r∗2, two
new equilibria appear, of which one is stable and another one is unstable. Finally, we
have another bifurcation for r = r∗1, when the first two equilibria collide and annihilate
each other. In order to give an idea of some numerical values, we reported in the plot in
Fig. 3.14a some notable values of θ : more specifically, concerning the peculiar case we
considered for K and γ , i.e. γ = 0.1 and K = 5, for r < r∗2 we have a stable orientation
which is less than π/2.

The main difference from the symmetric case treated at the beginning of this Subsection
lies in the type of bifurcations involved: here we have two saddle-node bifurcations. Hence,
the introduction of the mixing parameter K∥s provokes the disappearance of the pitchfork
bifurcations, while two turning points appear. The biggest consequence of this fact,
which can be observed in Figure 3.14b, is that a symmetry breaking happens, leading
for γ ̸= 0 to equilibrium orientations that are not symmetric. This is due to the fact
that the introduction of the coefficient K∥s brings into the energy a term proportional to
sinθ cosθ , which is neither even nor symmetric with respect to π/2. Consequently, unlike
the symmetric case previously discussed, one has W(−θ) ̸=W(θ) and W(π−θ) ̸=W(θ),
but W(π −θ) =W(−θ). However, this situation does not seem biologically meaningful,
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because there is no reason why one of the two orientations corresponding to −θ or θ

should be energetically preferable for the cell with respect to the other, unless one can
envisage an internal (left-right) bias in the cell itself. Therefore, we can conclude that, from
the biological point of view, in the problem at hand the assumption K∥s = 0 is justified,
since we expect to have symmetries in the system which would be broken if this coefficient
is not null.

We conclude the discussion about the asymmetric case by remarking that the analytical
conditions for a saddle-node bifurcation are actually satisfied, as we show in detail in
Appendix A (see Proposition A.2).

3.3.3 Numerical Simulations

After having discussed the equilibrium orientations in Section 3.3.2, here we focus on the
dynamics of cell reorientation in response to the viscoelastic model presented in Section
3.3.1, performing some numerical simulations. More specifically, we consider the system
of equations which describes the time evolution of the Cauchy stress tensor T and the
reorientation dynamics of the angle θ . As regards the former, its evolution is governed by
the viscoelastic constitutive equation (3.124) described in Section 3.3.1; concerning the
angle, as in Eq. (3.120) we assume that changes in orientation are driven by a dissipative
process in which the cell tries to find the direction which minimizes the virtual work done
by the Cauchy stress. Consequently, the system of equations is

θ̇ =− 1

K̂∥λθ

∂T
∂θ

: E ,

Ṫ+
1
λ
T=

1
λ
C0Ė ,

(3.162a)

(3.162b)

where C0 is the functional that accounts for the exponentially weighted history of past
orientations defined in Eq. (3.125), depending on the elasticity tensor C0. The components
of C0 can be written in terms of θ as

(C0)xxxx = K̂∥ cos4
θ + K̂⊥ sin4

θ +2Km sin2
θ cos2

θ ,

(C0)yyyy = K̂∥ sin4
θ + K̂⊥ cos4

θ +2Km sin2
θ cos2

θ ,

(C0)xxyy = Km − 1
2

Ks +(K̂∥+ K̂⊥−2Km)sin2
θ cos2

θ .
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We consider a specimen stretched in the x-direction uniformly with a fixed biaxiality ratio
r, such that the infinitesimal deformation tensor is given by Eq. (3.137) with

ε(t) =
1
2

ε0(1− cosωt) ,

for different angular frequencies. Compared to experiments, in the simulations we do not
assume that the oscillation period is smaller or greater than the characteristic relaxation
time λ or reorientation time λθ , in order to put in evidence both the elastic and the viscous
behaviour of the system.

We now solve Eq. (3.162) for a range of values of r to check the theoretical predictions
obtained through the bifurcation analysis. In particular, a numerical algorithm has been
implemented using MATLAB®. As regards Eq. (3.162b), its discretisation was performed
through the explicit Euler method. It is equivalent to two scalar equations for the com-
ponents Txx, Tyy of the Cauchy tensor T. The integrals in the r.h.s. of (3.162b) have been
approximated observing that, for instance in the case r = 0,

(Ck+1
0 )xxxx =

∫ tk+1

−∞

e−(tk+1−τ)/λ (C0)xxxx(θ(τ)) dτ

= e−(tk+1−tk)/λ (Ck
0)xxxx +

∫ tk+1

tk
e−(tk+1−τ)/λ (C0)xxxx(θ(τ)) dτ. (3.163)

Then, with an analogous procedure, all the integral terms can be evaluated from the value
at the previous time instant plus the discretisation of the remaining integral in (3.163),
which was performed through the trapezoidal rule. The generalization to the case r ̸= 0
is then straightforward. Finally, concerning the virtual work term in Eq. (3.162a), the
derivative of the stress with respect to θ was approximated using a centred finite difference.
In all our simulations we take λ = λθ = 6.6 s and to have coherence with experimental
data we consider a value of K = 1.26 [226]. Instead, we focus on the effect of variations
of r, ε0 and ω to evaluate their impact on the reorientation dynamics of the cell.

In Figure 3.15a we show the evolution of the orientation angle in the high frequency
case, starting from an initial condition θ(0) = π/6, for different values of r. We see that
the angle approaches the value obtained in Section 3.3.2 in the stationary case (identified by
a coloured marker on the the right side of the plot) and reported in the bifurcation diagrams
in Fig. 3.13. More specifically, for low values of r the final orientation is almost orthogonal
to the direction of stretching. Increasing the biaxiality ratio r makes the equilibrium angle
decrease, reaching the expected value given by the bifurcation diagrams. In particular,



156 Mechanical Modelling of Cytoskeletal Reorientation

(a) (b)

Fig. 3.15 Evolution of θ according to (3.162) in the high frequency (a) and low frequency (b) cases,
for K= 1.26 and ε0 = 0.1, while the biaxiality ratio r is varied. As initial condition, we take in both
cases θ(0) = π/6. The squares on the right of each plot highlight the steady orientations predicted
by the bifurcation analysis. Moreover, all curves display an oscillatory behaviour, as shown in the
insets for the specific case r = 0.3.

we observe that the steady angle is π/4 when r = 1, as predicted by the theory and by
the experiments. For the sake of completeness, we also showed a case in which r ≫ 1,
even if no experimental data are available in this case: in this situation one has θ → 0,
coherently with the study carried out in Section 3.3.2. Conversely, in Figure 3.15b, we
report the plots of θ in the low frequency regime for the same initial condition, choosing
ω = 0.08 rad/s which is slightly above the experimental reorientation threshold of 0.06
rad/s suggested for experiments. The dynamics is coherent with model predictions: we
have the same equilibria as in the high frequency case, even if the convergence towards the
steady angle is slower due to the presence of viscous effects. As shown in the inset plots in
Fig. 3.15a and Fig. 3.15b, all curves display an oscillatory behaviour as expected, since
we are imposing a periodic deformation to the specimen. Hence, the orientation angle
progressively increases through small oscillations until it reaches the predicted orientation.
In particular, such oscillations are smaller in amplitude and faster in the elastic case, while
they have a greater amplitude and are slower in the viscous limit.

To compare our results with reorientation frequencies and thresholds from Jungbauer et
al. [190], we performed some simulations for their same experimental biaxiality ratio and
amplitude, changing instead the value of ω . As shown in Fig. 3.16a, angular frequencies
below a minimum threshold (which can be quantified in about 0.01 Hz ≈ 0.06 rad/s,
coherently with experiments on some cell types [171, 190]) do not induce a significant
or significantly fast response. In this case, the reorientation happens so slowly that it
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(a) (b)

(c)

Fig. 3.16 (a): Evolution of θ according to Eq. (3.162) for a fixed biaxiality ratio and different
angular frequencies. We observe that low frequencies (approximately below a minimum threshold
of 0.06 rad/s, i.e., about 0.01 Hz, coherently with experimental results [171, 190]) do not induce
a significant reorientation response. For higher frequencies, the preferential orientation becomes
visible and the reorientation time decreases. (b): Average speed of reorientation vm, computed in a
suitable interval where the evolution curve is approximately linear, as a function of the imposed
angular frequency in logarithmic scale. Recalling that we used λ = λθ = 6.6 s, a transition occurs
when λω = 1, i.e., the inflection point in ω ≈ 0.15 rad/s. Then, there is a second threshold of
about 2π rad/s, above which a further increase does not induce a significantly faster response [190].
The coloured dots match the values used in (a) for the curves. (c): Plot of the model characteristic
time τ := (θeq −θ0)/vm as a function of the angular frequency in logarithmic scale, together with
experimental results for rat embryonic fibroblasts (REF cells) taken from [190].
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(a) (b)

Fig. 3.17 Evolution of θ according to (3.162). In (a) the high frequency and in (b) the low frequency
cases are shown, for different values of the stretch amplitude ε0 and fixed biaxiality ratio r = 1.

cannot be observed on time scales comparable with the cell cycle, and in the experimental
case the process is destroyed by random fluctuations. Instead, higher frequencies induce
reorientation, with a characteristic time that, coherently with [190], decreases with the
frequency. This is true until ω reaches a second threshold of about 2π rad/s (i.e. 1 Hz), after
which a further increase in the frequency does not substantially accelerate the reorientation
process towards the expected equilibrium angle. This is confirmed and summarized by the
results in Fig. 3.16b, where we report the average speed of reorientation vm, calculated
over a suitable interval where each curve can be approximated by a line, as a function
of the frequency of the imposed deformation. We find that the speed of reorientation is
very low when ω < 0.01 rad/s, corresponding to evolution times of the order of days.
Then, there is a sudden transition interval for ω ∈ [0.01,1] rad/s with an inflection point
close to ω ≈ 0.15 rad/s, i.e. when λω ≈ 1, related to the viscous-elastic transition in the
material. Finally, for higher values of ω , the speed of reorientation saturates to values
corresponding to experimental times of the order of an hour. To make a further comparison
with experiments, we define the characteristic time of reorientation for our model as
τ := (θeq − θ0)/vm, assuming that the evolution curves for θ as a function of time are
approximated by a saturating exponential. Then, in Fig. 3.16c we plot this characteristic
time together with data for rat embryonic fibroblasts (REF cells) from [190]. As discussed
before, such a time decreases with the frequency until a threshold, above which it remains
almost constant, and the model predictions show a good agreement with experimental data.

In Figure 3.17 we studied instead the influence of the stretch amplitude ε0, while the
angular frequency is kept high in Fig. 3.17a and low in Fig. 3.17b, fixing r = 1 and
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therefore θeq = π/4. As one could expect, the equilibrium orientation for a given initial
condition θ(0) and biaxiality ratio r is not altered by variations of ε0 and remains equal to
π/4 in this case. Changes in the amplitude only influence the speed of convergence towards
the predicted equilibrium angle. Indeed, if we scale times with 1/ω , the stress tensor with
K̂∥ε0, and the strain tensor with ε0, the system (3.162) rewrites in dimensionless terms
formally substituting K̂∥λθ with Λ̃θ = λθ ω/ε2

0 and λ with Λ̃ = λω . In formulas, defining
t = t̃/ω , T= T̃K̂∥ε0, E= Ẽε0 and C0 = C̃0K̂∥λ yields

dθ

dt̃
=− 1

Λ̃θ

∂ T̃
∂θ

: Ẽ ,

dT̃
dt̃

+
1

Λ̃
T̃= C̃0

dẼ
dt̃

.

(3.164a)

(3.164b)

As already discussed, the dimensionless group Λ̃θ is related to the time needed by the
cell to re-orientate in terms of the oscillation frequency and amplitude, while Λ̃ identifies
the relative role of viscoelasticity. In particular, focusing on Λ̃θ , if the amplitude of
oscillation increases (e.g., doubles) the evolution of the orientation angle θ remains the
same provided that the reorganization time λθ is suitably increased (e.g., quadruples). On
the other hand, if λθ is kept constant, as done in Fig. 3.17, cells re-orient faster, and the
re-orientation time scales like the square of the oscillation amplitude. However, to simplify
the direct comparison with experimental results, we decided to perform all simulations
using dimensional quantities.

Finally, in Figure 3.18 we report the evolution of the Cauchy stress components Txx

and Tyy, both normalized with respect to K̂∥. In particular, Figs. 3.18a and 3.18b show the
stresses in the high frequency case, for a fixed biaxiality ratio r = 0.3. It can be observed
that, starting from a stress-free configuration, there is a first increase in both stress values
up to a peak, after which relaxation begins and completes in about 100 seconds. Once the
transient is passed, the stress components start to oscillate around zero, meaning that the
system is behaving purely elastically. In the low frequency case, plotted in Fig. 3.18c and
3.18d, the response of the system is much slower, since the viscous component emerges
visibly. Concerning the stress magnitude when the equilibrium orientation is reached, as
predicted by the model, we observe that the stress components in the low frequency case
differ from the ones in the high frequency case by a factor λωlow ≈ 0.53.

As a final observation, we stress that, in all simulations, we kept the characteristic
times λ and λθ constant, to better identify the effects of the oscillation characteristics in
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(a) (b)

(c) (d)

Fig. 3.18 Time evolution of the stress tensor components Txx and Tyy (normalized w.r.t. K̃∥), for
r = 0.3. In the top row, the high frequency case is reported, while in the bottom row the plots refer
to the low frequency case. The time axis is reported in logarithmic scale to put in evidence the
temporal behaviour of stress amplitudes.

terms of frequency and amplitude. However, the dynamics of adhesion to the substrate is
more involved because the application of a stress on them has the consequence of both
strengthening the bonds, due to an increased clustering of integrins, and prolonging their
lifetime. In particular, two types of bonds are identified in the literature, called catch and
slip bonds [206, 219, 368, 407, 408]. Increasing the applied deformation has the effect
of increasing the applied force acting on the bonds and this causes a decrease (resp., an
increase) of the lifetime of slip (resp., catch) bonds. So, the dependence of the adhesion
bond lifetime, and therefore of λ , on the deformation is not constant and might actually
not even be monotone, with a maximum corresponding to an applied force of the order of
10 pN. However, as discussed in Section 3.3.1, the inclusion of such a strain-dependence
lifetime would not change the equilibrium configuration, but only the temporal behaviour
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of the system. Conversely, a strengthening of the adhesion bond might change both, though
we do not expect them to be relevant.

3.3.4 Discussion

In addition to parameters like the amplitude and the biaxiality ratio, the frequency of
the applied periodic deformation is known to affect the process of cell reorientation. In
particular, as pointed out in Chapter 2, higher frequencies are associated with a faster
reorientation, provided that they exceed a minimum threshold value. Essentially, the
comparison between the period of the cyclic strain and the characteristic time of cell bond
turnover determines how fast cell realignment happens. Such an effect cannot be captured
by the purely elastic descriptions employed in Sections 3.1 and 3.2.

Therefore, in this Section we have proposed a linear viscoelastic model of the system
composed by cells and substrate, with anisotropy due to the presence of aligned stress
fibres and lateral protein network. The model couples a Maxwell-type evolution equation
for the stress tensor with the dynamics of the orientation angle, which is assumed to be
driven by the stress-strain virtual work. We showed that our model is able to differentiate
the behaviour of the system depending on the period of the applied cyclic stretch: if it is
much shorter than the cell characteristic reorganisation times, then the response is elastic.
On the other hand, if the frequency is low, viscous-like effects emerge and slow down the
reorientation, until the whole process becomes too slow to be relevant. These differences
can be put in evidence by taking the limit of the general constitutive equation in the high
and low frequency cases.

Then, we thoroughly studied the stationary solutions of the evolution equation for
the angle. Specifically, we focused on the bifurcations that occur when the biaxiality
ratio of the deformation is changed. We observed the presence of supercritical pitchfork
bifurcations when K > 1, with the appearance of two specular oblique equilibria. Instead,
such bifurcations become subcritical when K <−1. Even if this case has not been tested
experimentally, our model is in principle able to describe it. The presence of pitchfork
bifurcations is coherent with the energy symmetries that we assumed for consistency
with biological observations. For completeness, we also discussed what happens if the
symmetry requirements are removed, showing that a symmetry breaking takes place.

Numerical simulations in the case K > 0 confirmed the analytical predictions and
showed an evolution towards a steady state angle which depends on the imposed biaxiality
ratio, but not on the frequency. Instead, coherently with experimental results, the frequency
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affects the speed of cytoskeletal reorientation. In particular, in the low frequency regime,
convergence towards equilibrium is slowed down due to the presence of viscous effects,
even if the theoretical stationary orientation is still predicted by energy minimization.
Finally, we showed that our model is able to reproduce the presence of an upper frequency
threshold, recovering the results by Jungbauer and collaborators [190].

Hence, our model seems consistent with previous experimental data and theories
describing the behaviour of an ensemble of cells on a stretched substrate, also discussing
the case of isotropic-anisotropic couplings in the energy and recovering once more the
established linear relation between the squared cosine of the angle and a parameter related
to the deformation.



Chapter 4

Mathematical Modelling of Axonal
Cortex Contractility

Neurons constitute the main component of nervous tissue and represent a paramount exam-
ple of electrically excitable cells, which are able to propagate signals to their neighbours.
However, recent experimental results have shown that the axon of a neuron possesses a very
mechanosensitive cytoskeleton, which is able to develop active contractility both in the
axial and in the hoop directions. The fact that axons can regulate their longitudinal tension
in an active way has been known for many years, but very recently the circumferential
contractility has been put in evidence. Moreover, the same experiments appear to point
towards the existence of a strong coupling between the axial and circumferential active
contractions in the axonal cortex: this synergistic interplay does not seem trivial and it has
not been fully clarified. To shed light on the active mechanics of the axon, in this Chapter
we propose a mathematical model for the contractility of the cortex based on an active
strain approach.

In detail, the structure of the Chapter is as follows. We begin in Section 4.1 with some
biological background about the axon structure, which is fundamental for understanding
the physical mechanisms of contraction. In Section 4.2, we propose a continuum model of
the axon which takes into account both the axoplasm as a passive component and the cortex
as an actively contracting coating. By using the Coleman-Noll procedure, we obtain the
evolution equations for the coupled hoop and axial active stretches. Afterwards, in Section
4.3 we assume the axon to be an incompressible medium. In this case, the above mentioned
equations reduce to a simple dynamical system whose equilibria can be studied analytically.
This provides interesting qualitative observations and clearly allows to notice that a single
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active stretch is not enough to reproduce the axonal behaviour. Then, in Section 4.4 we
assume a more appropriate compressible constitutive equation and numerically solve the
mathematical model. Comparisons are made between numerical and experimental results
available in the literature from a quantitative viewpoint, showing a very good agreement.
Finally, we summarise the main outcomes and remarks in Section 4.5.

The results of this Chapter led to the following publication:

D. Andrini, V. Balbi, G. Bevilacqua, G. Lucci, G. Pozzi, and D. Riccobelli. Mathemati-
cal modelling of axonal cortex contractility, Brain Multiphysics 3:100060 (2022).

4.1 Biological Background

The capability of neurons to transmit electrical signals and action potentials represents
the foundational feature of the nervous system, which allows to control all actions in the
body. In particular, as sketched in Fig. 4.1, the typical structure of a single neuron features
a cell body, called soma, from which two types of cytoplasmic protrusions branch out.
The dendrites are numerous extensions that receive signals from nearby neurons, whereas
the axon is a single, slender protrusion that carries electro-chemical stimuli away towards
neighbouring cells. The inner part of an axon, called axoplasm, constitutes the cytoplasmic
part within an axon and contains several organelles as well as microtubules. The latter are
cross-linked together, forming a network which confers the axoplasm an elastic behaviour.
Then, the axoplasm is surrounded by a coating, called cortex, composed of F–actin, namely
polymer microfilaments made of actin, interconnected together by myosin II molecular
motors and spectrin, as sketched in Fig. 4.1. In particular, such a cortex is able to actively
contract, thanks to the combined action of actin and myosin. In addition, the interplay
between the microtubule network and the cortical actomyosin machinery is important for
maintaining the cylindrical shape of the axon [279].

Many phenomena can alter such a delicate dynamic equilibrium. For instance, the
disruption of the elastic component of the axoplasm during stretch can lead to bulging
along the axon length. Such a process, called axonal beading or pearling, represents a
hallmark of neuronal damage [91, 212]. However, axons can sustain large deformations,
also up to 100%, if the strain is slowly and progressively imposed [356]. Under such
conditions, the elastic deformation can even induce an axial growth of the axon itself thanks
to the production of new microtubules [47, 60, 277, 404]. Conversely, rapid stretching
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Fig. 4.1 Components of a neuron and microstructure of the axon. In the axonal cortex, F–actin is
arranged in rings around the circumference of the axon. The myosin II motors both connect the actin
rings and run along the length of the axon, creating a coupled contraction in the circumferential and
the longitudinal directions. Adapted from [17, 318].

of the axon in the axial direction can lead to a damage of the cytoskeleton and to the
depolymerisation of microtubules [29, 356], which consequently might provoke bulging.

Axonal beading has also been observed as a consequence of several pathological
conditions, such as the Alzheimer’s [334] and Parkinson’s diseases [349], viral infections
[184], and multiple sclerosis [272]. There is increasing evidence that all these conditions
result in structural damage of the axon cytoskeleton. Indeed, it has been shown that
beading can be explained by a mechanical instability triggered by both the reduction of
axoplasm stiffness and the active contraction of the actin cortex [301]. Therefore, unveiling
the mechanisms which underlie the mechanics of the axon, and in particular its cortical
contraction, is of utmost importance to understand how axons maintain their structural
stability.

In this respect, experimental observations show that actin filaments are arranged
in a geometrically regular pattern, forming circles spaced at a constant distance of
180nm−190nm along the axonal length, interconnected by spectrin and myosin II [393]
(see Fig. 4.1). Such a microstructural organisation suggests that the actin cortex can
generate an active tension in both the axial and the circumferential direction. Indeed, a
sliding of the circular actin filaments might induce a hoop contraction, while myosin II is
involved in longitudinal contractility [85, 86]. The fact that axons can actively maintain a
certain axial tension has been known for long [85, 86, 119]. However, recent experiments
have remarkably demonstrated that they are able to contract in an active manner also in
the circumferential direction [119]. Furthermore, such experiments have linked hoop con-
tractility to the self-regulation of the axon diameter following an externally imposed axial
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stretch, microtubule depolymerisation or myosin II disruption [86, 119]. In these works,
the authors suggest that such changes in diameter may be induced by the compressive
force exerted on the axoplasm by the active contraction of the cortex [119]. Moreover, an
active diameter reduction is as well observed when axons are axially stretched. All these
interesting findings suggest a coupling between axial and hoop active tensions in the axon,
whose nature is still not fully elucidated.

Motivated by these observations, in this Chapter we use tools of Continuum Mechanics
to investigate the active contractility of the axon cytoskeleton, with a specific focus on the
non-trivial coupling between the axial and circumferential active contractions. By means
of an active strain approach, we show that cortex contractility induces a compression in the
axoplasm and we derive the coupling between the active stretches in a thermodynamically
consistent manner. Our mechanical model of the axon is able to describe the interplay
between the deformation and the evolution of such stretches, showing a very good agree-
ment with experimental data. Moreover, differently from previous approaches, we do not
postulate the link between the axial and hoop active components of the deformation, but
rather derive it from mechanical principles through the Mandel stress tensor.

4.2 Mathematical Model of Axonal Contractility

In this Section, we construct a mathematical model of actin cortex contraction, with the
purpose of investigating the coupling between the axial and the circumferential contractility
by means of Continuum Mechanics tools.

4.2.1 Notation and Kinematics

We model the axon as a continuum body with reference configuration

Ω0 = {X ∈ E | R ∈ [0, Ro), Θ ∈ [0, 2π), Z ∈ (Z1,Z2)} ,

where we denote by (R, Θ, Z) the Lagrangian cylindrical coordinates of the material point
X = (RcosΘ, RsinΘ, Z) belonging to the three-dimensional Euclidean space E , with
(ER, EΘ, EZ) being the corresponding vector basis. Due to the slenderness of the axon,
whose length is much greater than the radius, in the following derivation we will consider
the reference domain to be infinite along EZ .
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In our model, the axon is composed of an inner part Ω0a and an outer coating Ω0c, that
represent the axoplasm and the actin cortex, respectively. More explicitly, we define

Ω0a = {X ∈ Ω0 | 0 ≤ R < Ri} , and Ω0c = {X ∈ Ω0 | Ri ≤ R < Ro} , (4.1)

where Ri is the internal radius of the axoplasm. Clearly, we have Ω0 = Ω0a ∪Ω0c.

Let χχχ : Ω0 × [t0, t1]→E be the motion of Ω0, so that x = χχχ(X, t) is the actual position
vector of point X at time t. We denote by (r, θ , z) the triple of coordinates of x in a
cylindrical reference frame where (er, eθ , ez) is the corresponding vector basis. In addition,
we set F=Grad χχχ to be the deformation gradient and we resort to the active strain approach
[12, 134] to model the active contraction of the cortex. Such a method was first developed
to model muscle contraction [204, 265, 302, 348] and has been recently used to model
axonal contractility [129, 301]. Following this approach, we assume a multiplicative
decomposition of the deformation gradient F as follows:

F= FeFa ,

where Fe and Fa account for the elastic and the inelastic active distortions, respectively.
The tensor Fa describes the contractility of the cortex and has to be constitutively prescribed
(see Fig. 4.2). We also denote by J, Je, and Ja the determinants of the tensors F, Fe, and
Fa, respectively, representing the local change of volume induced by the relative distortion
field.

As shown in Fig. 4.1, the cortex of the axon has a highly organised structure whereby
the F–actin rings, arranged along the circumference of the axon, are connected by the
myosin II motors [86]. The myosin motors also run along the longitudinal direction and
can generate an axial contraction. Spectrin filaments instead contribute to the structural
integrity and the elasticity of axons. Given this specific microstructural organisation of the
cortex, we can reasonably assume the following form for Fa:

Fa =
1

aΘaZ
ER ⊗ER +aΘ EΘ ⊗EΘ +aZ EZ ⊗EZ, (4.2)

for X ∈ Ω0c, where aΘ and aZ are the active stretches along the circumferential and the
axial direction, respectively. In this way, the active strain tensor accounts for a pure
remodelling of the cortex [117], i.e., Ja = 1, without any volume modification (contrary to
growth/resorption, which is treated for instance in Chapter 5).



168 Mathematical Modelling of Axonal Cortex Contractility

Fig. 4.2 Representation of the multiplicative decomposition of the deformation gradient F= FeFa.

As already discussed, the active contraction is localised in the cortex. Hence, we model
the axoplasm as a passive elastic material by setting Fa = I therein. As for the cortex, we
assume that the reference configuration Ω0c corresponds to a relaxed condition in which
all the active fibres are fully extended. Hence, a further reciprocal sliding of the actin and
myosin filaments cannot take place without generating mechanical stress. Mathematically,
this conditions translates into a unilateral constraint which forces the active stretches to be
less than one, namely, aΘ,aZ ≤ 1.

4.2.2 Balance Equations and Boundary Conditions

In this Section, we specify the balance laws of the model, starting with the balance of
linear momentum. In the absence of external body forces and by neglecting inertia, such a
balance reduces to the following equation:

DivP= 0 , (4.3)

where P is the first Piola-Kirchhoff stress tensor and Div represents the divergence in
material coordinates. Equivalently, the balance of the linear momentum can be recast in
the actual configuration by requesting that ∇ ·T= 0, where T is the Cauchy stress tensor
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and ∇· is the divergence operator in the actual reference frame. For later convenience, we
also introduce the Mandel stress tensor, defined as

M= FT
ePFT

a = JFT
eTF−T

e , (4.4)

which is another measure of the stress commonly used in the theory of plasticity and
remodelling [151, 235].

The momentum balance equation has to be complemented by proper boundary and
interface conditions. We assume that the external boundary of the axon is free of traction,
therefore

Pn∗ = 0 where R = Ro, (4.5)

where n∗ is the outward normal in the reference configuration. We also enforce the
continuity of displacement and traction at the interface between the cortex and the axoplasm,
namely 

lim
R→R−

i

u = lim
R→R+

i

u,

lim
R→R−

i

Pn∗ = lim
R→R+

i

Pn∗.
(4.6)

We remark that, strictly speaking, one should impose only the continuity of the normal
component of the displacement, so that Ju ·n∗K = 0, where J·K denotes the jump across
the interface R = Ri. However, due to the presence of adhesion molecules, it is physically
reasonable to assume that no breakage or rotation between the cortex and the axoplasm
occurs. Hence, we consider that also the tangential component is continuous.

Then, since the actin cortex is made of an active material, we must describe the active
process underlying its contraction by introducing additional balance equations. Specifically,
the active strain tensor (4.2) introduces two additional kinematic variables, which are aΘ

and aZ . Changes in aΘ and aZ describe the microstructural reorganisation of the actin cortex
and the subsequent active contraction. In particular, the cortex can undergo remodelling as
a result of external stimuli, such as the presence of ATP molecules. In line with the theory
developed in [107], we model such external stimuli by introducing two scalar fields, BΘ

and BZ , that play the role of external forces driving cortical contractility in the hoop and in
the axial direction, respectively. We label BΘ and BZ as external remodelling (or active)
stresses. Such stresses induce an inelastic distortion of the material, i.e. they make the actin
filaments undergo a microstructural reorganisation. The response of the material to the
external stimuli (e.g. how much and how fast the actin filaments contract in the presence
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of a given concentration of ATP) depends on how the cortex is organized. This material
property of the cortex is modelled by the scalars CΘ and CZ , representing the resistance of
the cortex to the contraction in the hoop and in the axial direction, respectively. Therefore,
on the one hand BΘ and BZ represent the action of external entities, whereas CΘ and CZ

are called internal remodelling (or active) stresses.

By following [107], we prescribe a balance between the remodelling stresses that drive
the cortex contractility as follows: {

BΘ =CΘ,

BZ =CZ.
(4.7)

In the next Subsection, we provide the constitutive equations for the materials and we
derive the evolution laws for the active stretches.

4.2.3 Thermodynamics Restrictions and Coleman-Noll Procedure

To derive the constitutive and evolution laws, we use the so-called Coleman-Noll [80]
procedure. Specifically, we postulate the existence of a strain energy density function W

and we write the Clausius-Duhem inequality [107]:

∫
R
Ẇ dV ≤

∫
R
P : Ḟ dV +

∫
R∩Ω0c

[
CΘ

ȧΘ

aΘ

+CZ
ȧZ

aZ

]
dV , (4.8)

where R is a subdomain of Ω0. The superposed dot denotes the time derivative, and
A : B = tr(ATB). We remark that the last integral in (4.8) represents the power of the
internal remodelling forces and is performed on R∩Ω0c, since only the cortex can actively
contract.

By following the equipresence principle [365], we postulate that the constitutive
relations for W, CΘ, CZ , and P depend on the same kinematic quantities. Here, we assume
that

W=W(X, F,a j, ȧ j) , C j =C j(X, F,a j, ȧ j) , P= P(X, F,a j, ȧ j) ,
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where j = Θ, Z. Under such assumptions, we can rewrite Eq. (4.8) as follows:

∫
R

(
∂W

∂F
−P
)

: ḞdV +
∫
R∩Ω0c

∑
j=Θ,Z

(
∂W

∂a j
a j −C j

)
ȧ j

a j
dV +

∫
R∩Ω0c

∂W

∂ ȧ j
ä j dV ≤ 0 ,

(4.9)
which must hold for any admissible process [80, 291]. Thus, from the arbitrariness of Ḟ
and ä j, we readily obtain

P=
∂W

∂F
,

∂W

∂ ȧ j
= 0 , j = Θ,Z (4.10)

where the first relation is the classic expression of the first Piola-Kirchhoff stress tensor
of a hyperelastic material, while the second one states that the energy W is independent
of ȧΘ and ȧZ . If we consider every admissible ȧ j, j = Θ, Z, we can further enforce the
Clausius-Duhem inequality (4.9). We then find that a constitutive law for CΘ and CZ

satisfying (4.9) is given by1

C j =
∂W

∂a j
a j +µcτ j

ȧ j

a j
+Γ ja j , j = Θ,Z, (4.11)

where µc is the shear modulus of the cortex and τ j is the characteristic time of axonal
contractility. The additional variable Γ j is the reactive term which enforces the unilateral
constraint a j ≤ 1 and plays the role of a Lagrange multiplier. In physical terms, it can be
interpreted as the force which prevents the actin and myosin filaments from sliding on each
other beyond a certain threshold. More specifically, Γ j satisfies the following relations,
related to the Karush-Kuhn-Tucker conditions [312]:{

Γ j(a j −1) = 0,

Γ j ≥ 0.
(4.12)

We observe that Γ j is zero whenever a j ̸= 1. By using (4.7) and (4.11), we get

ȧ j =
a j

µcτ j

(
B j −

∂W

∂a j
a j −Γ ja j

)
, (4.13)

1We stress that the restrictions on CΘ and CZ depend on the power of the remodelling forces postulated in
(4.8). For an extensive discussion see [140], §14. In addition we remark that the dissipative term in (4.11) is
just one of the admissible choices compatible with the Clausius-Duhem inequality, see [9].
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for j = Θ, Z. If a j = 1, i.e. we are on the boundary of the unilateral constraint a j ≤ 1, and
ȧ j
∣∣
t=t0

= 0, from (4.13) we get

Γ ja j = B j −
∂W

∂a j
a j ,

which holds whenever Γ j ≥ 0, namely when B j ≥ a j
∂W
∂a j

. Conversely, if B j < a j
∂W
∂a j

, from
(4.13) we observe that ȧ j

∣∣
t=t0

is negative, therefore a j(t) < 1 in a neighbourhood of t0,
that is, a j decreases from the maximum admissible value and therefore Γ j = 0 again. In
summary, when a j = 1 the reactive term Γ j is given by

Γ j = max
{

0,
B j

a j
− ∂W

∂a j

}
. (4.14)

As standard in the active strain approach [204, 348], we now make use the multiplicative
decomposition of the deformation gradient to specialise the previously derived equations.
Specifically, let W0 be the strain energy density of the passive material. We define the
active free energy density as

W(X, F, aΘ, aZ) =W0(X, FF−1
a ). (4.15)

With the newly defined energy density in the equation above, from (4.10) we get

P=
∂W0

∂Fe
F−T

a , (4.16)

while from Eq. (4.15) we obtain

∂W

∂a j
=−M :

(
∂Fa

∂a j
F−1

a

)
, M= FT

e
∂W0

∂Fe
, (4.17)

where M is the Mandel stress tensor defined in Eq. (4.4). If we introduce the tensors

IΘ := EΘ ⊗EΘ −ER ⊗ER , IZ := EZ ⊗EZ −ER ⊗ER,

and combine (4.2) with (4.17), we get

∂W

∂a j
a j =−M : I j. (4.18)
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Thus, by substituting (4.18) into (4.13) and enforcing (4.14), we finally get

ȧ j =


a j

µcτ j

(
B j +M : I j

)
, if a j < 1 or B j <−M : I j,

0 , otherwise,
(4.19)

where again j = Θ, Z.

The evolution equations (4.19) for aΘ and aZ can be used to provide a physical interpre-
tation of the external remodelling stress in (4.7). Similarly to the growth processes studied
in [9, 107], BΘ and BZ represent the external forces that drive the active contraction of the
cortex. We additionally observe that, when the linear combinations of the Mandel stress
components M : IΘ and M : IZ are equal to −BΘ and −BZ , respectively, the system is in
chemo-mechanical equilibrium. Therefore, BΘ and BZ can be regarded as the equilibrium,
or homeostatic, stresses towards which the system is led.

Despite sharing many similarities with the growth models developed in [9], our ap-
proach features an isochoric active strain tensor, namely, Ja = 1. As a consequence of
this choice, the Mandel stress appears in Eq. (4.19) in place of the Eshelby stress (see for
instance [9]). Secondly, Fa is not a generic tensor with positive determinant but belongs to
the subset described by (4.2). Thus, only a particular combination of the Mandel stress
components is involved in the evolution equations (4.19).

A similar approach has been recently adopted by Dehghany et al. in [99] to model
F–actin contractility in axons. In their work, the authors used an approach inspired by
smooth muscles models, such as those developed by Stålhand et al. [328]. With reference
to these works, we underline that our model considers a more general form for the active
strain tensor. In fact, instead of being prescribed a priori, the active strains aΘ and aZ are
initially decoupled and their coupling is later provided by the Coleman-Noll procedure,
through the Mandel stress tensor. In particular, the assumption of a linear relationship
between aΘ and aZ such as aZ = βaΘ that was sometimes done previously can lead to
some issues (for instance, the tensor Fa cannot be equal to the identity when β ̸= 1). We
will thoroughly analyse the assumption aΘ = aZ in the following, referring to it as the
monoparametric approach.

4.2.4 Symmetry Assumptions

Experimental evidence [119] suggests that changes in the axonal external radius under
contraction are invariant along EZ . We therefore assume the axon deformation to be
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axisymmetric by enforcing the following simplified kinematics:

χχχ(X, t) = r(R, t)er +λZez , (4.20)

with λ ∈ (0,+∞) being the imposed axial stretch along Z. Thus, the deformation gradient
reads

F=
∂ r
∂R

er ⊗ER +
r
R

eθ ⊗EΘ +λez ⊗EZ, (4.21)

where r(R, t) = R+u(R, t) with u representing the radial displacement. Under the assump-
tion (4.20), the balance of linear momentum (4.3) takes the following form:

dPRR

dR
+

PRR −PΘΘ

R
= 0 , (4.22)

where PRR and PΘΘ are the radial and the hoop components of the first Piola-Kirchhoff
stress tensor, respectively. In terms of the Cauchy stress tensor the balance reads as follows:

dTrr

dr
+

Trr −Tθθ

r
= 0, (4.23)

where Trr and Tθθ are the radial and hoop components of T. The balance of linear
momentum must be solved with respect to the radial displacement u, either in material
or spatial coordinates. Moreover, u must satisfy the homogeneous Dirichlet boundary
condition u(0, t) = 0 to ensure the continuity of the deformation field along the Z-axis. By
enforcing (4.20), the boundary condition (4.5) reduces to the scalar equation

PRR|R=Ro
= 0 , or Trr|r=ro

= 0 , (4.24)

depending on whether it is written in the reference or actual configuration; we have also
introduced the notation ro = r(Ro, t). Eq. (4.22) endowed with the above mentioned
boundary condition should be coupled with (4.19) to completely describe the axon dynam-
ics.

4.3 Qualitative Analysis for an Incompressible Axon

In the following, we analyse the evolution equations (4.19) for the particular case where
the axon is treated as an incompressible medium. Such a simplified assumption allows us
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to provide analytical predictions on the existence and stability of the equilibrium solutions
of (4.19).

To impose the incompressibility constraint, we require that

Je = detFe = 1

which, combined with the expression of the active strain tensor (4.2) and the multiplicative
decomposition, implies that J = detF= 1 as well. The enforcement of the incompressibility
constraint can be done by introducing a Lagrange multiplier p. More explicitly, we can
introduce the extended strain energy density

Wext(X,F,aΘ,aZ, p) =W(X,F,aΘ,aZ)− p(J−1), (4.25)

and then proceed as in the previous Section, by replacing W by Wext (see [117] for details).
In particular, the Piola-Kirchhoff stress can be specified as

P=
∂W0

∂Fe
F−T

a − pF−T.

The Cauchy and the Mandel stress tensors instead are given by

T=
∂W0

∂Fe
FT

e − pI, M= FT
e

∂W0

∂Fe
− pI.

As a constitutive choice, we assume that both the cortex and the axoplasm are made of
incompressible Neo-Hookean materials, i.e.

W0(Fe) =
µ

2
(Fe : Fe −3) , µ =

{
µa, R < Ri,

µc, R ≥ Ri,
(4.26)

where µa and µc represent the shear moduli of the axoplasm and of the cortex, respectively,
and are both positive constants. By using the constitutive assumption (4.26), we can
specialise the expressions of the Cauchy and the Mandel stress tensors:

T= µFeFT
e − pI, M= µFT

eFe − pI. (4.27)
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We now look for a radially symmetric solution in the form of (4.20) and we use the
incompressibility constraint J = 1 to get r(R, t) = R/

√
λ , so that (4.21) becomes

F=
1√
λ
(er ⊗ER + eθ ⊗EΘ)+λez ⊗EZ . (4.28)

The only unknown is therefore p, which can be obtained by the balance of linear momentum
(4.23) as

p(r) = k1, 0 ≤ r < ri , (4.29)

p(r) = k2 +

(
a4

Θ
a2

Z −1
)

µc log(r)
a2

Θ
λ

, ri ≤ r < ro , (4.30)

where ri = r(Ri, t). The constants k1 and k2 can be determined by using the interface and
the boundary conditions (4.6)–(4.24) as follows:

k1 =
µa

λ
+

µc [log(ri)− log(ro)] (a4
Θ

a2
Z −1)

a2
Θ

λ
, (4.31)

k2 =
µc
[
a2

Za4
Θ
+ log(ro)−a2

Za4
Θ

log(ro)
]

a2
Θ

λ
. (4.32)

The radial component of the Cauchy stress Trr evaluated at the interface r = ri can be
computed by combining (4.27)–(4.32) as follows:

Trr(ri) =−µc

λ

(a4
Θ

a2
Z −1) [log(ri)− log(ro)]

a2
Θ

. (4.33)

Thus, taking into account the expression of the Mandel stress tensor (4.27)–(4.28), the
evolution equations (4.19) reduce to the following dynamical system:

ȧΘ =
aΘ

µcτΘ

(
BΘ +

µc(1−a4
Θ

a2
Z)

λa2
Θ

)
,

ȧZ =
aZ

µcτZ

(
BZ +

µc
(
λ 3 −a2

Θ
a4

Z
)

λa2
Z

)
,

(4.34)

where the first equation holds whenever aΘ < 1 or the right-hand side is negative, otherwise
ȧΘ = 0. Similarly, the second equation holds if either aZ < 1 or the corresponding right-
hand side is negative, otherwise ȧZ = 0.
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4.3.1 Stability of the Equilibria

Throughout the rest of the Chapter, we will focus on the case where BΘ = BZ = B < 0 is
spatially constant, so that the external remodelling stresses are homogeneous and share
the same value. As we will show in the following, we require B to be negative so that the
cortex actively contracts. Moreover, since we are interested in uniaxial stretching of the
axon, we focus on the range λ ≥ 1.

By setting ȧΘ = ȧZ = 0, we look for equilibrium solutions of (4.34). A subtraction of
the two equations yields

a2
Θ =

a2
Z

λ 3 . (4.35)

We can then substitute (4.35) into the second of equation (4.34) which gives the following
condition to find the equilibria of the system:

f (aZ) = µca6
Z −Bλ

4a2
Z −µcλ

6 = 0. (4.36)

We recall that B< 0 and λ ≥ 1. Therefore, the function f (aZ) in (4.36) is strictly increasing
and takes values of opposite sign at the endpoints of the interval [0,1] whenever

B
µc

<
1−λ 6

λ 4 . (4.37)

Hence, if such condition is satisfied, then the system has a unique equilibrium solution
(āΘ, āZ). In particular, āZ is obtained from (4.36) and āΘ = āZ/λ 3/2 is given by (4.35).

To evaluate the stability of the equilibrium solutions, we compute the Jacobian matrix
of the system (4.34) as follows:

J=

(
J11 J12

J21 J22

)
, (4.38)

with

J11 =
a2

Θ
λB−µc(1−3a2

Za4
Θ
)

λ µcτΘa2
Θ

, J22 =
a2

ZλB−µc(λ
3 −3a4

Za2
Θ
)

λ µcτZa2
Z

J12 =−
2aZa3

Θ

λτΘ

, J21 =−
2a3

ZaΘ

λτZ
.

A direct computation shows that, for all the admissible values of aΘ and aZ , we have
trJ< 0 and detJ> 0. Thus, the equilibrium solution (āΘ, āZ) is asymptotically stable. On
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Fig. 4.3 Homeostatic active stretches āΘ (solid lines) and āZ (dashed lines) plotted against the
applied stretch λ for different values of B. The curves are obtained from (4.35), (4.36), and (4.40)
for B/µc ∈ {−2,−1.6,−1.2,−0.8,−0.4}.

the other hand, if (4.37) does not hold, i.e.

B
µc

≥ 1−λ 6

λ 4 , (4.39)

we set āZ = 1, so that the first equation of (4.19) admits the equilibrium solution

āΘ =
1√
2

√√√√√B2

µ2
c

λ 2 +4+
Bλ

µc
, (4.40)

which always lies in (0,1). Finally, we need to check that BZ +M : IZ ≥ 0, so that āZ = 1
is a stationary solution of (4.19). It can be easily verified that such a condition is equivalent
to (4.39). Moreover, such an equilibrium is always stable since the component J11 of the
Jacobian matrix (4.38) is negative. The existence of asymptotically stable equilibria of
(4.19) implies that, depending on the initial conditions, the system evolves towards the
equilibrium points āΘ and āZ . These equilibrium values represent the homeostatic active
stretches of the axon.

In Figure 4.3, we plot the stationary solutions āΘ and āZ against the applied stretch
λ , for different values of B. Starting from the same value for λ = 1, as evident from
Eq. (4.35), the two homeostatic active stretches āΘ and āZ exhibit opposite behaviours as
λ increases. On the one hand, āΘ decreases with λ , leading to a stronger contraction in the
circumferential direction which is generated by the actin molecular motors. On the other
hand, aZ increases until it reaches 1, meaning that there is no axial contraction.
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Fig. 4.4 Monoparametric approach. (a): Homeostatic active stretch a versus the applied stretch λ .
The value of a is computed by using (4.46). (b): Radial stress at the interface calculated from (4.47)
for Ri/Ro = 0.8. In both cases, the curves are obtained with B/µc ∈ {−2,−1.6,−1.2,−0.8,−0.4}.

We remark that, when āZ < 1, the radial component of the Cauchy stress at the interface
r = ri given by Eq. (4.33) and evaluated at the equilibrium yields

T rr(ri) = B log
(

Ro

Ri

)
, (4.41)

which remarkably is independent of the applied stretch λ . Thus, as the axon is axially
stretched, the cortex undergoes remodelling to maintain a constant compression in the
axoplasm.

4.3.2 Monoparametric Active Stretch

In [99], the authors directly prescribe a coupling between aΘ and aZ , by assuming a linear
relation between the two active stretches. In our case, enforcing aΘ = aZ = a we get

Fa =
1
a2 ER ⊗ER +a(I−ER ⊗ER). (4.42)

The corresponding evolution equation for the active stretch a can be obtained by repeating
the procedure exposed in Section 4.2. In such a case, the balance equations (4.7) for the
remodelling stresses reduce to a single equation, namely B = C. The Clausius-Duhem
inequality (4.8) reads instead∫

R
Ẇ dV ≤

∫
R
P : Ḟ dV +2

∫
R∩Ω0c

C
ȧ
a

dV.
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Analogous computations to those performed above allow to find
P=

∂W0

∂Fe
F−T

a ,

2C = µcτ
ȧ
a
−M : Î+Γ ,

(4.43)

where
Î := EΘ ⊗EΘ +EZ ⊗EZ −2ER ⊗ER,

and Γ is the reactive term that enforces the unilateral constraint a ≤ 1. Similarly to (4.19),
the evolution equation for the active stretch reads as follows:

ȧ =


1

µcτ

(
2B+M : Î

)
a, if a < 1 or 2B <−M : Î,

0 , otherwise.
(4.44)

By assuming cylindrical symmetry as in (4.20), the differential equation can be specialised
for the case a < 1 as

ȧ =
a

µcτ

[
2B+

µc(λ
3 +1−2a6)

λa2

]
, (4.45)

which admits an equilibrium ā < 1 if

f (a) = 2µca6 −2Bλa2 −µc
(
λ

3 +1
)
= 0. (4.46)

Since f (0) < 0, f ′(a) > 0 for B ≤ 0, and f (a)→ +∞ as a → +∞, there exists one and
only one ā > 0 such that f (ā) = 0. Such a root is acceptable if ā < 1, and this holds
whenever f (1)> 0. It is straightforward to prove the asymptotic stability of ā. Otherwise,
if f (1)≤ 0, then 2B+M : Î≥ 0 for a = 1 and the equilibrium solution is ā = 1.

To compute the stress components, we need to explicitly obtain the expression for p.
By setting aΘ = aZ = a in (4.29)–(4.30), we get

p(r) = k̂1, 0 ≤ r < ri ,

p(r) = k̂2 +
(a6 −1)µc log(r)

λa2 , ri ≤ r < ro.
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If we impose the boundary and the interface conditions, (4.24) and (4.6) respectively, we
find the two constants:

k̂1 =
µa

λ
+

µc

λ

(a6 −1) [log(ri)− log(ro)]

a2 , and k̂2 =
µc
[
a6 + log(ro)−a6 log(ro)

]
λa2 .

At the equilibrium, the radial stress at the interface is instead given by

T rr(ri) =
µc(ā6 −1)

λ ā2 log
(

Ro

Ri

)
. (4.47)

As shown in Fig. 4.4a, we observe that a is an increasing function of the axial stretch
λ . Eventually, for large enough values of λ , the axon behaves as a passive material
when a reaches 1. Differently, our approach with two active strains predicts an opposite
behaviour for the hoop stretch, as reported in Figure 4.3. Such differences have important
consequences on the stress distribution within the axon. In fact, while in our model the
compression of the axoplasm is independent of λ , as shown in equation (4.41), in the
monoparametric approach the radial stress at the interface relaxes as we increase λ and,
eventually, becomes zero, see Figure 4.4b. This behaviour is the main drawback of such an
approach since, as we will show in the next Section, axons actively decrease their radius
upon stretching thanks to axoplasm compression.2

4.4 Active Regulation of Axon Diameter

In this Section, we investigate the role of cortex contractility in actively regulating the
axon diameter. We then use experimental data from [119] to validate our numerical model.
In these assays, the authors performed experiments on embryonic drosophila axons and
measured variations in the diameter as a consequence of chemo-mechanical manipulations.
In particular, different drugs were used to test the mechanical contribution of specific
constituents: nocodazole was applied to depolymerise microtubules, while cytochalasin D
was used to disrupt F–actin. The effect of these drugs on the axon is depicted in Fig. 4.5.
Axons were then rapidly stretched and elongated by 20% from their initial length. To
highlight the effect of each drug on the axon diameter, the authors also compared treated
axons with control (untreated) axons.

2In the experiments of Fan et al. [119], to which we refer, the axial stretch is applied fast. We remark that
if the towing is slow enough, axial stretch induces both an axial and radial growth of the axon [164].
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Nocodazole Control Cytochalasin D

Fig. 4.5 Effect of drugs on the axon structure: red lines represent actin filaments while blue
circles indicate microtubules. With respect to the control case (center), nocodazole depolymerises
microtubules (left) leading to a reduction of the axon diameter, while cytochalasin D reduces the
number of the actin filaments (right) and the axon can expand.

In order to replicate the experimental results, we relax the simplified assumption of
incompressibility discussed in Section 4.3. To capture the effect of the active contractility
on the axon radius, we thus rely on numerical simulations and obtain approximate solutions
of the mathematical model. We then upgrade our model to include the effect of the different
drugs on the mechanical response of the axon.

4.4.1 Damage

Experimental evidence shows that the axon stiffness decreases when samples are exposed
to nocodazole and cytochalasin D [279]. We model the structural damage of the axon by
introducing a scalar field α : Ω0 × [t0, t1]→ [0,1] that describes the percentage of solid
material depolymerised by the action of the drug or during the stretch. The free energy for
the damaged axon can then be written as [142]:

W(F, α) = (1−α)W0(FF−1
a ), (4.48)

where W0 is the strain energy density of the passive, sound axon. Initially, the axon is not
damaged and therefore α(X, t = 0) = 0. When nocodazole is applied, the actin cortex is
not affected and only the microtubule network is damaged. Therefore, we propose the
following simple phenomenological law for the damage of the axoplasm, which describes
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an exponential degradation:

α(X, t) =

{
α

∞
n (1− e−t/τn), R < Ri,

0, R > Ri.
(4.49)

Here, α∞
n is a constant associated with the percentage of microtubules depolymerised in an

infinite amount of time, while τn is the characteristic time for the action of nocodazole.

When cytochalasin D is applied, the contractility of the cortex is instead reduced and
the actin filaments are depolymerised, thus damaging its elastic response [309]. Therefore,
similarly to nocodazole, we assume that the damage field α follows a similar law:

α(X, t) =

{
0, R < Ri,

α
∞
c (1− e−t/τc), R > Ri,

(4.50)

where α∞
c and τc play the same role as α∞

n and τn in (4.49). Furthermore, we postulate
that cytochalasin D also reduces the contractility of the actin cortex by modulating the
homeostatic stress in (4.7). For sake of simplicity, we take BΘ = BZ = B and we also
assume that the contractions in the circumferential and axial direction share the same
characteristic time, i.e. τΘ = τZ = τ in (4.19). Here, we assume that the reduction of the
external remodelling stress due to damage writes as follows:

B(X, t) = [1−α(X, t)]2 B0,

where B0 denotes the homeostatic stress in the intact axon. Finally, we also want to take
into account the possible damage due to the deformation. In [119], Fan and co-authors
observed that, when loads are removed, the final radius is smaller than the initial one. They
concluded that this phenomenon was induced by the damage of the axoplasm. Indeed, a fast
axial stretch can induce microtubule depolymerisation [356]. To model this phenomenon,
we introduce an instantaneous damage in the axoplasm, i.e. we consider α(X, t)+αs for
R < Ri, where αs is a constant that represents the stretch-induced damage. If the axon is
also damaged by nocodazole, the value of αs will be smaller, since microtubules have been
already impaired by the drug (see Table 4.1).
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4.4.2 Constitutive Assumptions

For sake of simplicity, we neglect any anisotropy induced by the orientation of microtubules
or actin filaments. We assume that both the axoplasm and the cortex are made of a
compressible Neo-Hookean material. We therefore write the strain energy as follows:

W0(Fe) =
µ

2
(Fe : Fe −2logJe −3)+

Λ

2
(logJe)

2, (4.51)

where µ and Λ are the Lamé coefficients of the intact axon. The axoplasm and the cortex
are homogeneous, so that these coefficients are piecewise constant within the domain:

µ =

{
µa, R < Ri,

µc, R > Ri,
Λ =

{
Λa, R < Ri,

Λc, R > Ri.

In the next Section, we briefly present how the numerical simulations have been performed.

4.4.3 Initial Conditions and Numerical Implementation

In the experiments reported in [119], the axons are in their equilibrium state at the initial
instant of time. Thus, we set λ = 1 and

α|t=0 = 0,

u|t=0 = u0,

aΘ|t=0 = aΘ0,

aZ|t=0 = aZ0,

as initial conditions, where u0, aΘ0, and aZ0 are the stationary solutions of (4.19) and
(4.22). Such equilibrium state has to be determined by means of numerical computations.

Since the problem is independent of Z, we consider a cylindrical portion of the axon as
follows:

B0 = {X ∈ Ω0 | 0 < Z < 1}.

The strain energy of B0 is given by

Ψ(u) =
∫
B0

W(F, α)dV =
∫ R0

0
2πRW(F, α)dR, (4.52)
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(a) (b) (c)

Fig. 4.6 Unstretched axons (λ = 1). Plots are reported for each treatment scenario: control (orange),
nocodazole (blue) and cytochalasin D (green). (a): Comparison between the numerical result
(continuous lines) and the experimental data reported in [119] (dashed lines) for the evolution of
external radius. The latter is normalised with respect to r0, the radius of the axon at equilibrium.
The shaded regions indicate error bars in standard deviation relatively to the experimental data. (b):
Plots of aΘ (continuous lines) and aZ (dashed-dotted lines) averaged over the cortex sectional area.
(c): Evolution of radial stress Trr at the interface r = ri, normalised with respect to the undamaged
shear modulus of the cortex.

where we have used the cylindrical symmetry assumed in (4.20) and W is defined in (4.48).
The function u : (0, Ro)→ R satisfies the balance of linear momentum (4.22) and makes
the functional (4.52) stationary (see [73] for details), i.e.,

δΨ(u)[v] = 0 ∀v ∈V, (4.53)

where v is a real scalar function on the interval (0, Ro). Specifically, the functional space
V is defined as

V = {v ∈ H1(0, Ro) | v(0) = 0},

where H1(0, Ro) denotes the space of square-integrable functions over (0, Ro) admitting a
square-integrable weak derivative.

The spatial computational domain (0, Ro) is subdivided into 500 elements and the time
step of the simulations is ∆t = 0.3 minutes. Then, we solve Eq. (4.53) at each time step,
whereas the time integration of the evolution equations (4.19) for aΘ and aZ is performed
through the explicit Euler method. The numerical algorithm is implemented using the
Python library FEniCS [8, 228].
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(a) (b) (c)

Fig. 4.7 Uniaxial stretch (λ = 1.2). Plots are reported for each treatment scenario: control (orange),
nocodazole (blue) and cytochalasin D (green). (a): Comparison between the numerical result
(continuous lines) and the experimental data reported in [119] (dashed lines) for the evolution of
external radius. The latter is normalised with respect to r60, the radius of the axon at t = 60 minutes,
after the application of a fast stretch. The shaded regions indicate error bars in standard deviation
relatively to the experimental data. (b): Plots of aΘ (continuous lines) and aZ (dashed-dotted lines)
averaged over the cortex sectional area. (c): Evolution of radial stress Trr at the interface r = ri,
normalised with respect to the shear modulus of the sound cortex.

4.4.4 Results of the Simulations

In the following, we present and discuss the results of the numerical simulations. First,
we analyse the effect of drugs in unstretched axons (i.e. λ = 1). Then, in accordance with
the experimental procedure proposed in [119], we impose an elongation of the axon up
to 20% of its initial length (i.e. λ = 1.2) and analyse its effect following a one-hour-long
exposure to drugs. We refer to Table 4.1 for details on the choice of the model parameters.

Effect of Drugs on Unstretched Axons

First, we remark that untreated axons maintain the initial equilibrium state since they
are not damaged, as evidenced by the orange curves in Fig. 4.6. In all the cases, the
active contraction of the cortex induces a compressive stress on the axoplasm. The
depolymerisation of microtubules due to nocodazole leads to a reduction of the radius
and modifies the cortical stress state. Interestingly, the active remodelling forces induce a
progressive decrease of aΘ to restore the equilibrium state, as shown in Figure 4.6b. On the
other hand, the axial active stretch aZ does not undergo significant variations. The increase
in the circumferential contraction results into a greater compression exerted by the cortex
on the axoplasm (i.e. Trr at the interface is negative and decreases, as shown in Figure
4.6c). In summary, the reduction of the axonal radius following nocodazole exposure is
due to the coupling between microtubule depolymerisation and the circumferential active
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Fig. 4.8 Monoparametic approach: plot of the dimensionless radius r/r60 (where r60 is the radius
of the axon at t = 60 minutes, when stretch is rapidly applied) as a function of time in the
case of uniaxial stretch (λ = 1.2). The numerical results (continuous lines) are compared with
the experimental data reported in [119] (dashed lines) for axons treated with nocodazole (blue),
cytochalasin (green), and some untreated axons (orange). The shaded regions indicate error bars
in standard deviation relatively to the experimental data. The monoparametric approach fails to
reproduce the experimental data.

contraction. The longitudinal active stretch instead features an imperceptible deviation
from the equilibrium configuration. Finally, cytochalasin D is responsible for a disruption
of actin filaments in the cortex and the reduction of cortical remodelling stress. As a
consequence, both the active stretches aΘ and aZ undergo a substantial increment which
makes them close to 1 after one hour. In this case, the axoplasm behaves as a nearly passive
material and the stress is almost completely relaxed (see Fig. 4.6c).

Uniaxial Stretch

To reproduce the stretch experiment, first of all the axon is exposed to one of the drugs for
60 minutes, after which a uniaxial stretch is imposed. We first consider the control case,
i.e. the stretching of an untreated axon. The radius significantly reduces in time, as shown
in Figure 4.7a. This is the result of cortex remodelling: while aZ increases to balance the
tension due to the axial stretch, aΘ decreases, i.e. the active hoop contraction increases
(see Figure 4.7b). Such a microstructural reorganisation increases axoplasm compression,
as shown in Figure 4.7c. The changes in the axon diameter are amplified by the axoplasm
damage, induced by the fast stretch.

The dynamics of nocodazole-treated axons under uniaxial stretching is similar, although
the induced thinning is less pronounced when compared to the control case. We remark
that axons treated with nocodazole are already damaged when stretch is applied. Therefore,



4.5 Discussion 189

less microtubules are depolymerised as a result of the deformation, and the initial state
is closer to the final equilibrium state, as depicted in Figure 4.7b. Instead, the evolution
of aZ is almost the same in both cases. Qualitatively similar trends are also observed in
Figure 4.7c where we plot the radial stress Trr at the interface as a function of time: radius
reduction is correlated with an increased compression of the axoplasm.

Finally, we consider the stretching of axons exposed to cytochalasin D. In Figure 4.7a,
we see that the radius is almost constant in time after the deformation. Indeed, as shown in
Figure 4.7b, both the active stretches are close or equal to 1, so that the cortex behaves
as nearly passive material. The constant diameter as result of F–actin depolymerisation
supports our conjecture. In order to maintain a homeostatic stress state during stretching,
the cortex actively reorganise itself and induces changes in the axon diameter.

In Section 4.3.2, based on the analysis performed in the incompressible case, we argued
that imposing a priori a linear relation between the circumferential and the axial active
stretches is not suitable to reproduce the experimental data in the case of the uniaxially
stretched axon. This remains true also under the more realistic hypothesis of a compressible
axon. Indeed, in Figure 4.8, we plot the dynamics of the axonal radius in all the three cases
(control, nocodazole- and cytochalasin D-treated axons), obtained solving Eq. (4.44). We
can see that the monoparametric model fails to fit the experimental curves and the reasons
for that qualitatively rely on the considerations discussed in Section 4.3.2.

To better visualise how the stress profile affects the shape of the axon, in Figure
4.9 we show the actual transverse section at the final instant of time. Here, we plot the
non-dimensional radial stress Trr/µc. We observe that thinning of axons appears to be
correlated with cortex thickening.

4.5 Discussion

In this Chapter, we have proposed a continuum model to predict the active contraction of the
axonal cortex when the axon is subjected to chemo-mechanical stimuli. By modelling the
axon as a continuum hyperelastic body, we have used the active strain approach to describe
cortex contractility. The active contraction of the cortex is regulated by an extra balance law
motivated by the work of DiCarlo and Quiligotti on growth [107]. In particular, Eq. (4.7)
describes the equilibrium between the action of external active forces (modelled by BΘ

and BZ) and the resistance of the material to remodelling, which we have called internal
remodelling stresses and labelled as CΘ and CZ . We have then obtained thermodynamically
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Stretch Nocodazole Control Cytochalasin D

λ = 1

λ = 1.2

Fig. 4.9 Actual transverse section of the axon for λ = 1 (top) and λ = 1.2 (bottom) at t = 60min
and t = 90min, respectively. In each transverse section, on the left half we plot the dimensionless
radial stress profile Trr/µc, while on the right half we highlight the actual configurations of the
axoplasm and of the cortex, represented as the blue and the red areas, respectively.

consistent constitutive laws by following the Coleman-Noll procedure. We extended the
standard dissipation inequality for elastic bodies under isothermal conditions to account for
the power of the cortex active contraction. More specifically, we have obtained the classic
constitutive equation for the Piola-Kirchhoff stress tensor and some constitutive restrictions
on CΘ and CZ . By using such constitutive laws, the remodelling balance in Eq. (4.7)
becomes a system of differential equations that regulates the time evolution of the hoop
and axial active stretches. Such equations exhibit some key features if compared with
models of stress-modulated growth for biological tissues [9, 107]. Indeed, as can be seen in
Eq. (4.19), the system evolves towards a steady state. Specific combinations of the Mandel
stress tensor components associated with such equilibrium state are uniform throughout
the cortex, namely M : I j = −B j. Thus, the axon reacts to external chemo-mechanical
stimuli by regulating the active contraction to reach a homeostatic stress state.

To explore some qualitative characteristics of the model, we have at first assumed the
axon to be incompressible. In this context, the evolution equations reduce to the nonlinear
dynamical system (4.34). Through a linear stability analysis, we have proved the existence
of a single asymptotically stable solution associated with the above mentioned homeostatic
state.
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Then, by means of a more suitable compressible constitutive model, we have im-
plemented numerical simulations of axon dynamics and compared our results with the
experiments reported in [119]. In our simulations, we have modelled the equilibrium
behaviour of the axon followed by a uniaxial deformation of 20% stretch. We have repro-
duced three scenarios: a) control case, b) the disruption of F–actin filaments when axons
are exposed to cytochalasin D and c) the depolymerisation of microtubules following the
application of nocodazole. In our numerical model, the effect of the drugs is accounted
for by introducing a damage function that modifies the energy functional, as we have
discussed in Section 4.4.1. Moreover, since in experiments the axons are pulled at a high
strain rate [119], we have assumed that microtubules are further damaged during the axial
deformation [356].

The numerical results for all three scenarios are in very good quantitative agreement
with the experimental results, as shown in Figures 4.6–4.7. Indeed, the diameter progres-
sively increases when F–actin filaments are disrupted, while a decrease of the transverse
section area with respect to the control case is observed when microtubules are depoly-
merised. We have shown that the diameter of axons is regulated by the compressive stress
applied on the axoplasm by the cortex. Diameter reduction appears to be correlated with a
thickening of the axonal cortex, as shown in Figure 4.9.

Our results support the hypothesis of a coupled mechanism between the axial and hoop
active stretches [119]. The cortex undergoes a microstructural reorganisation to modulate
its stress state and regulates axon diameter by compressing the axoplasm. Understanding
such mechanism may represent a preliminary step towards a better comprehension of the
physical causes which underlie axon morphological degeneration as a consequence of
neurodegenerative diseases, viral infections, and traumatic strain injuries [91, 301].



Chapter 5

Solid and Fluid Stresses in Brain
Tumour Growth

Moving from the cell scale to the tissue and organ scale, the main focus of this Chapter is
to propose a mechanical framework for the description of brain tumour growth. Indeed,
recent experimental findings seem to point towards a relevant role played by solid stresses
induced by the proliferating tumour, in addition to fluid pressure. Such stresses may
be important to understand the progression of the pathology and cannot be captured by
classical models which are mainly based on diffusion equations. To provide a detailed
mechanical description, we derive a model for brain tumour growth based on the theory of
mixtures and on morphoelasticity. Moreover, our framework is able to incorporate patient-
specific data obtained through medical imaging techniques. Simulations are therefore
performed on realistic geometries which include the anisotropic features of brain tissue,
properly modified to account for growth-induced deformations.

The Chapter is organised as follows. In Section 5.1 we provide a short review of brain
tumour modelling and we discuss the role of solid stresses. Then, in Section 5.2 we derive
the mathematical model and provide an estimate to all the parameters involved. After a
discussion about the numerical implementation carried out in Section 5.3, we present the
results of the simulations in Section 5.4. Finally, Section 5.5 is devoted to a summary and
to the conclusions.

The contents of this Chapter have been published in the following article:

G. Lucci, A. Agosti, P. Ciarletta, and C. Giverso. Coupling solid and fluid stresses
with brain tumour growth and white matter tracts deformation in a neuroimaging-informed
model, Biomechanics and Modeling in Mechanobiology 21:1483–1509 (2022).
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5.1 Mechanical Stresses in Brain Tumours

Despite the relevant advances in clinical practice supported by novel therapies and imaging
techniques, the treatment of brain tumours remains not fully effective in many cases, due to
cancer aggressiveness and to the intrinsically fragile nature of brain tissue. For this reason,
in the last three decades, the mathematical modelling of brain tumour growth started to
attract consistent research attention.

Indeed, mathematical and computational models can provide powerful instruments for
investigating cancer progression, especially in those cases that are particularly difficult to
be treated with current therapeutic protocols like brain tumours. Such models can be of
help to understand the mechanisms of cancer progression, providing further support to
clinical observations. At the same time, in silico findings might be employed to maximize
the efficacy of the treatment and to approach personalised therapeutic strategies. To achieve
these goals, mathematical models have become increasingly refined during the years: to
give an overview, in Table 5.1 we summarise some of the main contributions that appear in
the literature. For detailed and extensive reviews on brain cancer modelling, we refer the
reader to [7, 118, 158, 240].

Specifically, at the microscopic and mesoscopic level, discrete computational ap-
proaches such as Cellular Automata (CA) or Agent-Based Models represent useful tools
to explore invasive migration, phenotypic plasticity and early growth of brain tumours.
Models based on Ordinary Differential Equations (ODE) might be employed to describe
sub-cellular and molecular processes. At the macroscopic scale, continuum models are
more suitable to describe brain tumour cell motility and spatial dynamics through Partial
Differential Equations (PDE). The first works [341–345, 364, 391] used reaction-diffusion
equations to model migration and proliferation of gliomas and paved the way for a number
of subsequent studies. Multi-scale formulations bridging the gap between the micro-
scopic and the macroscopic levels, grounded on Kinetic Models (KM) and their scaling
[83, 84, 113–116, 176, 281, 340], also provided an interesting extension of purely diffusive,
phenomenological descriptions. Another approach recently proposed to tackle the problem
of brain tumour proliferation employs a Cahn-Hilliard-type (CH) equation to deal with
the infiltrative nature of some brain tumours, showing a good agreement with real data
[2–4, 82, 118].

Despite the ability of these models to qualitatively capture some peculiar features of
the growth of a brain tumour, they do not account for some important mechanical aspects,
such as the influence of the stress exerted by the healthy tissue on the tumour mass and
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Type of Model References Mechanics Imaging

CA [26, 27, 44, 157, 194,
200, 357]

No No

ODE [31, 178] No No
ABM [236–238] No No
ABM – PDE – RD [132, 133] No No
PDE – RD [306, 341–345, 347, 364,

391]
No Yes (CT+MRI)

PDE – RD [156, 187] No Yes (MRI+DTI)
PDE – ARD [395] No No
PDE – ARD [338] No Yes (DTI)
PDE – ARD – KM [281, 340] No Yes (DTI)
ODE – PDE – ARD – KM [83, 84, 113–116] No Yes (DTI)
PDE – ARD – CM [42, 79, 163] Yes (LE) Yes (MRI+DTI)
PDE – CM [18, 19, 110, 111, 211,

233]
Yes (NLE) Yes (MRI+DTI)

PDE – CM [242] Yes (FL) No
PDE – CH [2–4, 82, 118, 221] Yes (FL) Yes (MRI+DTI)
HYB [126, 202, 203, 315] No No
HYB [355, 401] No No

Table 5.1 Summary of previous contributions concerning brain tumour modelling. The models
are classified according to three criteria: (i) the mathematical framework employed to describe
the growth of the tumour mass (first column); (ii) the inclusion of tumour and tissue mechanics
with quantification of deformations and stresses (third column); (iii) the use of patient-specific
imaging data to perform simulations (fourth column). Abbreviations: CA = Cellular Automaton;
ABM = Agent-Based Model; ODE = Ordinary Differential Equations model; PDE-RD = Reaction-
Diffusion equations; PDE-ARD = Advection-Reaction-Diffusion equations; PDE-KM = Kinetic
model; PDE-CH = Cahn-Hilliard model; PDE-CM = Continuum-Mechanics-based model; HYB =
Hybrid model; FL = Fluid; LE = Linear elasticity; NLE = Nonlinear elasticity.

vice versa. Indeed, not only the growth of the tumour might be limited by the surrounding
tissue, as observed in many biological experiments in vitro [69, 101, 108, 161, 255], but
also the presence of a neoplasm may be a critical clinical issue inside the healthy peripheral
tissue subject to unnatural displacements. Although tumour growth can adversely impact
the health of any hosting organ, this is especially devastating in the brain. As a matter
of fact, compared with extra-cranial organs, the brain is unique because of its physical
confinement due to the skull fixed volume, which can further amplify mechanical force
effects. Furthermore, brain functions might be corrupted by mechanical forces: the tumour
growth-induced deformation and compression is believed to be a major cause of the
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neurological clinical symptoms and severe disabilities seen in patients with brain cancer,
and represents a negative prognostic factor [128, 191, 331]. The identification of the
importance of mechanical cues and their potential regulatory roles in the development
and maintenance of neuronal structures [260] has led to the definition of a new field of
research, named “neuromechanobiology”, dealing with the effects of mechanical forces
on normal neurophysiology and on neurological disorders [16, 45, 49, 260]. In this
regard, understanding how injured and healthy brain fibre tracts deform and re-distribute
in response to the growing tumour mass is a fundamental issue.

In particular, mechanical forces could be exerted either by the tumour-associated
oedema or by the solid components of the malignant tissue, such as cells and extracellular
matrix [317]. This kind of stress is often referred to as solid stress or mass-effect. Its
origin and biological consequences are still poorly understood, with respect to the fluid
pressure associated with oedema, a well-known mechanical abnormality in brain tumours
[64, 141, 185, 317]. Although, recently, the origin and neurological effects of the solid
stress have gained attention, details of their quantification in vitro and their biological
impact on the physiology of the healthy brain surrounding the tumour remain unknown
[191, 317]. Concerning these latter aspects, the tumour-generated solid stress consistently
distorts the micro-anatomy of the neighbouring brain tissue and it compresses the blood
vessels, generating a vascular collapse, as sketched in Fig. 5.1. Consequently, there
is a reduction of peritumoural vascular perfusion, contributing to intratumoral hypoxia,
inducing neuronal loss and hindering the delivery and efficacy of anti-cancer therapies
[64, 269, 280, 317]. Since tumours of similar imaging volumes have been observed to
give rise to different amounts and distributions of solid stresses [269, 331], it is relevant to
evaluate deformations, stresses and displacement caused by their progression, in order to
properly capture the correct area of the brain influenced by the cancer.

Motivated by these facts, some recent models employed the framework of Continuum
Mechanics to provide a description of solid stresses. The first and simpler biomechanical
models considered the brain as a linear elastic (LE) medium [42, 79, 163], while nonlinearly
elastic (NLE) constitutive equations (e.g. Neo-Hookean or Mooney-Rivlin) have been
employed in some successive descriptions [18, 19, 110, 111]. Nevertheless, in these latter
works, the patient-specific anisotropy is not included and the effect of fibre deformations
subsequent to tumour growth, as well as the impact on the diffusion of chemical species
and on the motion of cells, have not been investigated.

Therefore, stimulated by the need to elaborate a more refined description of brain
tumour mechanical impact, in this work we develop a mathematical model for cancer
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Fig. 5.1 Sketch of the solid stress effect in brain tumours, redrawn from [317]. In addition to
compressing neurons, the presence of a solid mass may lead to reduced vessel perfusion. Created
with [38].

growth and proliferation which includes brain hyperelasticity, in order to evaluate the
effects of structural changes in the white matter and the nonlinear elastic deformations
of brain tissue. In particular, we propose a macroscopic model based on the theory of
mixtures and morphoelasticity.

5.2 Mathematical Model

In this Section, we derive a continuous mechanical theory for modelling the macroscopic
brain tumour growth using a multiphase approach [46, 58] and the evolving natural
configurations framework. Even though the general framework of the proposed model
could be used, in principle, to describe the development of any kind of solid tumour, we
specialise it to account for brain tumour evolution in a patient-specific setting. In particular,
we consider both the healthy and the tumour brain tissues as saturated domains comprising
two distinct phases, which represent the cell population (labelled with subscript “s”) and
the interstitial fluid (labelled with subscript “ℓ”). Moreover, the cancer and the host tissue
are localized in different regions, denoted by a smooth approximation of an indicator
function.
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5.2.1 Kinematics and Growth Framework

At a given time t, we consider the current configuration of the brain as a three-dimensional
domain Ω(t) and denote by Ωt(t) the subregion occupied by the growing tumour, while
Ωh(t) stands for the subregion occupied by the healthy tissue, with Ω(t) = Ωt(t)∪Ωh(t).
In particular, the tumour region is identified by a smooth approximation of the indicator
function χΩt(t) of the cancerous domain, which moves at the velocity of diseased cells.
The smoothness of χΩt(t) allows to account for regions of coexistence of tumour cells and
healthy cells near the cancer mass. Such a description is appropriate to describe solid and
low-grade brain tumours, that are mostly localized and characterized by a superposition of
healthy and diseased tissues only around the principal mass, without colonies of growing
and invading cancer cells detached from the tumour bulk. In particular, we identify the
tumour domain with the upper level set Ωt(t) = {x ∈ R3 : χΩt(t)(x) > 0.1}, where x is
the spatial coordinate. Instead, we use the notation Ω0, Ω0

t and Ω0
h for the reference

configurations of the whole brain, the tumour and the host tissue, respectively. Coherently,
the tumour domain in the reference configuration is Ω0

t = {X ∈ R3 : χ
Ω0

t
(X) > 0.1},

where X is the material coordinate. We remark that the tumour region Ω0
t in the reference

configuration does not evolve in time.

As mentioned above, brain tissue (both healthy and unhealthy) is regarded as a mixture
of two phases: a solid one, with volume fraction φs, that represents the cellular component,
and a liquid one, with volume fraction φℓ, including all the fluid components of the brain.
The solid and fluid phases are considered to saturate all the available space, so that the
condition φs + φℓ = 1 holds at any point in the domain Ω(t) and at any time instant.
Following standard definitions in mixtures theory, by knowing the true density ρ̂α of the
material composing the α-phase, with α ∈ {s, ℓ}, it is possible to define the partial phase
density ρα = ρ̂αφα . Then, we can introduce the displacement vector field us of the solid
phase, which defines the deformation of the body mapping the reference configuration to
the current one, and the related deformation gradient Fs = I+Gradus.

Furthermore, it is well known that a tissue undergoing growth, such as the one in the
tumour region, experiences inelastic distortions and residual stresses [140, 307, 323]. To
account for this fact from the mechanical point of view, a possible way is to employ a
multiplicative decomposition of the deformation gradient [10, 107]: the tensor Fs of the
cellular population can therefore be split into two contributions, yielding

Fs = FeFg. (5.1)
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Fig. 5.2 Schematics of the multiplicative decomposition of the deformation gradient for brain
tumour growth.

In Eq. (5.1), Fe is the purely elastic contribution to the overall deformation gradient,
whereas Fg represents the inelastic distortions related to growth. The tensor Fg determines
the so-called evolving natural state Ωn(t) of the body undergoing growth processes, where
each material particle is allowed to grow freely and independently of the other ones.
Hence, the natural state of the material is stress-free: the transition between the reference
configuration and the natural state is then described by tensor Fg, while the subsequent
elastic accommodation is included in Fe, because the state defined by Fg is not in general
compatible. We also recall that, throughout the path between the natural state and the
current configuration, mass is assumed to be preserved, so that the growth contribution is
entirely carried by Fg. A sketch of the multiplicative decomposition of the deformation
gradient is reported in Fig. 5.2.

A consequence of Eq. (5.1) is that the volumetric part of the deformation gradient,
Js := detFs, can be written as

Js = JeJg, (5.2)

with Je := detFe and Jg := detFg. Since the overall deformation gradient Fs is assumed
to be non-singular and Jg ≥ 1, since we are considering growth processes, from Eq. (5.2)
it follows that each tensor introduced in Eq. (5.1) is non-singular as well. Finally, we
introduce the elastic right Cauchy-Green deformation tensor Ce := FT

eFe and its isochoric
part Ce := J−2/3

e Ce.
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5.2.2 Balance Equations

The multiphase approach we employ to describe tumour growth is based on the theory
of mixtures and consists of a set of mass and momentum balance equations. First of all,
we assume that the mixture is saturated and that both phases of the mixture have constant
true densities, so that the materials composing the phases are incompressible. Then, since
cells are mainly composed of water, we assume that the true densities of both phases
are equal, i.e., ρ̂s = ρ̂ℓ, and that external body forces (such as the gravitational force)
as well as inertial effects are negligible. These hypotheses are reasonable when dealing
with biological problems [14, 58], since the motion of cells and interstitial fluid is very
slow. Next, we write the balance equations for the cellular phase, with volume fraction φs

moving with velocity vs, and for the liquid phase, with volume fraction φℓ moving with
velocity vℓ. As mentioned above, we remark that the boundary between the tumour and
the healthy domain is advected with the velocity of the cell phase vs. We assume that in
the tumour region Ωt(t) cells proliferate, whereas in the domain occupied by the healthy
tissue Ωh(t) the proliferation of cells is compensated by natural cell death, so that the net
rate of growth Γs is equal to zero. Finally, assuming that the mixture is closed, the mass
increase in the cellular phase happens at the expense of the liquid phase, so that the mass
balances of the cellular and fluid phases read:

∂φs

∂ t
+∇ · (φsvs) = ΓsχΩt(t) , (5.3)

∂φℓ

∂ t
+∇ · (φℓvℓ) = ΓℓχΩt(t) =−ΓsχΩt(t) . (5.4)

The net rate of tumour growth Γs is influenced by many different factors, such as the
availability of nutrients and the solid stress [10, 11, 13, 241]. In a first approximation, one
can assume that the amount of nutrients, denoted by its concentration cn, along with the
availability of space, are the main factors regulating cell growth, so that the following
constitutive equation for the growth term holds:

Γs(φs,cn) = γφs(φmax −φs)(cn − c0)+ , (5.5)

where (·)+ denotes the positive part of its argument and γ is a positive coefficient. That
way, the proliferation rate depends affinely on the available concentration of nutrients
cn, provided that it is greater than a hypoxia threshold c0. Conversely, when cn ≤ c0 the
growth rate becomes zero and tumour expansion arrests. Moreover, in Eq. (5.5) we have
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that growth depends on the fraction of cells that is already present - which is reasonable
since cell population grows by duplication; finally, we have a factor (φmax −φs), whose
presence is explained by the necessity to decrease the proliferation rate as the cellular
phase fills all the available space for the solid constituent φmax: this accounts for the
phenomenon of contact inhibition of growth. More complex relations for Γs including
explicitly the role of stresses may also be considered [241, 242, 335]. Indeed, several
studies have dealt with the effect of mechanical stresses on tumour growth in vitro, by
embedding tumour spheroids either in agarose matrices of varying concentrations or in
a culture medium with biocompatible polymers able to exert a mechanical stress, such
as Dextran [69, 101, 161, 255]. These studies showed that tumour growth is impaired by
the compressive forces generated by the resistance of the surrounding tissue/matrix and
that the mechanical stress has a strong impact on cancer progression. In light of these
observations, we will also take into account an expression for the tumour proliferation rate
that involves growth inhibition due to compressive stresses [241], namely,

Γs(φs,cn,Σ) = γφs(φmax −φs)(cn − c0)+

(
1− δ1Σ+

Σ++δ2

)
, (5.6)

where Σ := −tr(Ts)/3 is a measure of compression, related to the spherical part of the
constitutive Cauchy stress tensor of the solid phase. The presence of the positive part
means that, if the tissue is in compression, then growth is slowed down, while traction does
not inhibit tumour proliferation. The constitutive definition of the stress Ts as a function of
the deformation will be provided in the next Subsection. Instead, δ1 and δ2 are parameters
quantifying the inhibition of growth: in particular, δ1 < 1 regulates the maximum amount
of inhibition due to stress, while δ2 describes how fast the reduction of Γs happens in
response to compressive stresses. A plot of the stress inhibition contribution to the growth
rate for different values of the parameters δ1,δ2 is shown in Fig. 5.3.

In order to insert in the model the growth terms (5.5) and (5.6), it is necessary to
introduce an equation describing the evolution of the nutrients in the domain. We assume
that these chemicals are transported by the fluid phase and can diffuse into it; at the same
time, they are taken by the growing tumour and uniformly supplied by the vasculature.
We introduce the hypothesis that the nutrients’ uptake by the healthy tissue is negligible
compared to the one by the tumour tissue. Biologically, this is equivalent to saying that the
nutrients absorbed by the host tissue are immediately replaced by the vasculature. Hence,
if we denote by cn the concentration of available nutrients normalized with respect to the
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(a) (b)

Fig. 5.3 Stress inhibition component in the growth rate (5.6) as a function of the compressive stress
measure Σ, for different values of the parameters δ1 and δ2. In (a) we fix δ2 = 1.5×10−3 MPa and
change δ1, which governs the maximum amount of stress inhibition. In (b) we have δ1 = 0.8 fixed
and vary δ2, which modifies the sensitivity of Γs to variations in Σ.

physiological concentration, so that cn ∈ [0,1], the mass balance of nutrients in Ω(t) reads

∂

∂ t
(φℓcn)+∇ · (φℓcnvℓ) = ∇ · (φℓD∇cn)+ΓℓcnχΩt(t)+GnχΩt(t) , (5.7)

where D is the diffusion tensor. The use of a tensor in the diffusion term allows to
account for the structural anisotropy of brain tissue [187], that induces fluids to diffuse
preferentially along certain directions. Actually, the tensor D, that can be obtained through
DTI imaging and subsequent modification (see Section 5.2.4), describes how water diffuses
along specific directions. However, if we consider that the main nutrient for cells is oxygen
which is carried by water molecules, we can take the same tensor as a descriptor of the
diffusion values of nutrients. The term Γℓcn accounts for the variation of the chemical
concentration due to absorption/production of the liquid in which the chemical is dissolved.
Instead, Gn models the supply of chemicals due to the presence of the blood as well as
the consumption of nutrients by the cells in the tissue that occurs without net variation
of the liquid amount. This last term could represent the transport of oxygen through the
walls of the capillaries, either without exchange of fluids, or with the possible excess of
fluid due to the presence of leaky vessels in the tumour region automatically balanced by
the venous capillaries and the lymphatic system (not explicitly included in the model).
Thus, the exchanged fluid does not contribute to the growth/absorption of the constituent
and the system remains closed with respect to the fluid and solid phases [22]. Then, Gn

is multiplied by the indicator function of the tumour region, since this term is null in
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the healthy tissue where the nutrient supply is perfectly balanced in the physiological
condition, whereas in the cancer region we have an higher consumption of nutrients due to
the pathological proliferation of cells. Specifically, we will consider the following form for
Gn:

Gn(φs,φℓ,cn) =−ζ φsφℓcn +Sn(1− cn)φℓ . (5.8)

This expression describes the fact that nutrients are consumed by the tumour with a constant
rate ζ : the uptake depends on the volumetric fractions of cells and liquid in the tumour
region, as well as on the available concentration of nutrients. Concurrently, nutrients are
supplied by the vasculature at a constant rate Sn as long as their concentration is below
the physiological value, i.e. cn < 1, and they are dispersed in the liquid phase. The whole
expression is multiplied by the tumour indicator function in Eq. (5.7), since, as mentioned
above, in the healthy region we assume that production and absorption of nutrients are
reciprocally balanced. By using standard calculus techniques and recalling the mass
balance equation of the fluid phase (5.4) and the functional formulation of Gn assumed in
(5.8), Eq. (5.7) can be rephrased as

∂cn

∂ t
+vℓ ·∇cn =

1
φℓ

∇ · (φℓD∇cn)+ [−ζ φscn +Sn(1− cn)]χΩt(t). (5.9)

As regards the momentum balances, we recall that, in a saturated mixture, the partial
Cauchy stress tensor associated with the α-th phase of the mixture can be written as

T̃α =−φα pI+Tα , (5.10)

where Tα is referred to as effective (or extra-) stress, and the purely hydrostatic contribution
−φα pI indicates the amount of pressure sustained by the α-th phase. We underline that,
in the present theory, p plays the role of a Lagrange multiplier related to the mixture
incompressibility. Moreover, in the following we will neglect both the inertial effects and
the momentum exchange rates between phases associated with the mass sources/sinks Γα ,
α ∈ {s, ℓ}. These assumptions are reasonable in the context of biological growth, which is
a process that takes place on long time scales with small velocities for both the phases of
the mixture [136]. Then, taking into account these observations, the momentum balance
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for each phase reads

− p∇φs −φs∇p+∇ ·Ts + m̃sℓ = 0, (5.11)

− p∇φℓ−φℓ∇p+∇ ·Tℓ+ m̃ℓs = 0, (5.12)

where the term m̃αβ represents the force acting on the α-th phase due to the other phase
β . In particular, following thermodynamical prescriptions, the latter can be decomposed
as m̃αβ = p∇φα +mαβ , highlighting the non-dissipative and dissipative contributions,
respectively [136, 154]. Coherently with the hypotheses usually made to deduce Darcy’s
law, we require that the extra-stress of the fluid phase Tℓ is negligible with respect to
the pressure gradient and to the dissipative interaction forces between fluid and solid
phase, that can be assumed in the form mℓs =−m̄uφ 2

ℓK
−1(φℓ)(vℓ−vs) [136], where K is

a permeability tensor. As a consequence, from Eq. (5.12) the classical Darcy’s law as a
momentum balance for the fluid phase is retrieved:

vℓ = vs −
K(φℓ)

µ̄φℓ
∇p, (5.13)

where vℓ is the velocity of the liquid, vs is the velocity of the cellular phase, µ̄ is the
dynamic viscosity of the fluid component and K is the permeability tensor. Then, the
momentum balance for the mixture as a whole can be obtained by summing the balances
in Eqs. (5.11)–(5.12), taking into account the saturation condition φs + φℓ = 1 and the
action-reaction principle msℓ =−mℓs:

−∇p+∇ ·Ts = 0. (5.14)

Remark 5.1. The action-reaction condition applies in principle to the interaction forces
between phases, i.e., m̃sℓ+ m̃ℓs = 0. However, since the non-dissipative contributions
to m̃sℓ and m̃ℓs are given by p∇φs and p∇φℓ, respectively, it follows from the saturation
condition that the constraint also holds for the dissipative parts, leading to msℓ+mℓs = 0.

To model the presence of white and grey matter fibres in the brain tissue and account
for the consequent anisotropy in fluid motion, we will take the permeability tensor as

K(φℓ) = µ̄ k̂(φℓ)A, (5.15)
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where A denotes the tensor of preferential directions [82] derived through DTI imaging,
whose construction will be described in Section 5.2.4 and 5.3. This approach allows to
model preferential fluid and nutrients motion along the fibre tracts in the brain, taking into
account the anisotropic structure of the tissue. Instead, the coefficient k̂(φℓ) is given by
the exponential Holmes–Mow expression [165, 261], as it is often done for soft tissues
[106, 148]:

k̂(φℓ) = k(Je) = k0

(
Je −φsn

1−φsn

)α0

em(J2
e−1)/2, (5.16)

where α0 and m are model parameters, k0 is a reference value for k taken in the natural
state, and φsn is the volume fraction of the solid phase in the natural state. An estimate of
all parameters will be provided in Section 5.2.4.

5.2.3 Constitutive Equations for the Stresses

To close the system of mass and momentum balance equations, derived in the previous
Subsection, it is necessary to determine an appropriate evolution law for the Cauchy stress
tensor Ts associated with the cellular population, both in the diseased and in the healthy
region, i.e.,

Ts = Tt
s χΩt(t)+Th

s (1−χΩt(t)) in Ω(t) , (5.17)

where Tt
s is the Cauchy stress tensor associated with the tumour cells and Th

s is the
Cauchy stress tensor associated with the healthy cells. This is a relevant part of the
mathematical model, since our primary aim is to study how brain tumour growth influences
mechanically the surrounding tissues and to quantify the entity of stress and deformation
as a consequence of abnormal proliferation. In this respect, we remark that several
difficulties arise when dealing with experimental settings involving brain tissue and the
definition of a realistic constitutive equation is a non trivial problem that is still debated
[53, 62]. Most of the brain biomechanical studies performed in the last fifty years have
been conducted in vitro on excised samples of brains (either from humans, when available,
or from animals) with different experimental protocols, that make the results difficult to be
compared. Moreover, in vitro tests need to be generalized to in vivo conditions, providing
additional complications. Novel techniques and protocols have been recently proposed
in the literature to carry out in vivo non-destructive and non-invasive investigations. In
particular, Magnetic Resonance Elastography (MRE) emerged as the most promising
non-invasive imaging technique to measure the mechanical parameters of biological soft
tissues by coupling a mechanical excitation, which promotes elastic wave propagation
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in the soft medium, to a Magnetic Resonance Imaging (MRI) device for visualizing it
[62]. However, nowadays, the use of MRE does not offer enough information to establish
nonlinear, finite strain constitutive models for realistic computational simulations [53]
and the use of in vitro experiments to characterize the brain and tumour elastic properties
in a nonlinear regime (such as the one occurring during tumour growth) is still the most
established.

In the context of in vitro experiments, a first important issue put forward by experi-
mental studies [54, 97, 141] concerns the anisotropy of brain tissue. Despite the intrinsic
microstructural anisotropy due to the presence of nerve tracts, the human brain tissue seems
nearly isotropic from a mechanical viewpoint and no significant directional dependency
affecting the mechanical behaviour can be observed, even in highly anisotropic regions of
the brain. Therefore, the brain can be considered isotropic as far as mechanics is concerned,
whereas anisotropy cannot be neglected when dealing with the diffusion of substances and
with fluids and cell motion [54].

As regards the constitutive characterization, the vast majority of experimental results
agree upon the highly nonlinear and viscoelastic nature of brain tissue [54, 97, 141], under
different loading conditions [253, 296–298] and even with multiple loading modes [54].
However, for the purposes of our work, we are interested in brain response under small
strain rates induced by cell proliferation. Therefore, the rate dependent response can be
neglected without introducing significant errors [10]. To describe the elastic response,
several models have been proposed in the literature [97] and there is a common agreement
that the generalized Ogden model [275] is suitable to represent the mechanical behaviour
of soft brain tissue. In particular, the Mooney-Rivlin model, which is a particular case of
the generalized Ogden energy, turns out to be an appropriate choice from the experimental
point of view [30, 105, 252].

We further remark that the fitting of the experimental data to get a quantitative es-
timation of the behaviour of the brain is generally obtained under the assumption of
incompressibility of the sample described as a solid, without taking into account the contri-
bution of the liquid encapsulated inside it. However, brain tissues have an exceptionally
high water content in vivo [53] and are better represented by a mixture of at least two
constituents, a liquid and a solid phase. As stated before, the constituents composing the
mixture are said to be incompressible if their true densities ρ̂α are constants. The bulk
density ρα does not need to be constant even if the α-constituent is incompressible. Thus,
the elastic determinant Je is not constrained to be equal to 1. The variation of Je leads
instead to a deformation of the pores, that in turn induces volumetric solid stresses. To take
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into account the experimental observations on the mechanical behaviour of the brain under
isochoric conditions and the existence of a volumetric stress due to variations of Je, the
strain energy density function for both the solid tumour mass Wt

sn and the healthy brain
tissue Wh

sn, expressed per unit volume of the natural state Ωn(t), is additively split into an
isochoric part, Ŵωi

sn , and a volumetric part, Ŵωv
sn :

Wω
sn(Ce) = Ŵω

sn(Ce,Je) = Ŵωi
sn (Ce)+Ŵωv

sn (Je) , (5.18)

with ω ∈ {t,h}. We remark that many of the strain energy density functions used to
represent brain tissues, such as the Mooney-Rivlin model used hereafter, can be naturally
written in the separable form of Eq. (5.18). Furthermore, even in those cases in which
the contribution related to Je cannot be naturally decoupled from the one related to Ce,
for small variations of Je (i.e., in the case of approximately elastically incompressible
materials [151]), it is always possible to approximate the strain energy density function
with such a separable form.

Then, even though, in principle, the mechanical model for the tumour tissue might be
taken as totally different from the one describing the elastic behaviour of the healthy tissue
[333], in the following we assume the same functional form for the strain energy density
functions both in the tumour and in the healthy region, with possibly varying mechanical
parameters. Specifically, following [30, 105], we take a Mooney-Rivlin model for the
isochoric strain energy density function, i.e., for ω ∈ {t,h}

Ŵωi
sn (Ce) =

1
2

µ
ω
1

(
I1,Ce

−3
)
+

1
2

µ
ω
2

(
I2,Ce

−3
)
, (5.19)

where I1,Ce
= tr(Ce), I2,Ce

= 1
2

[(
tr Ce

)2 − tr
(
C2

e

)]
are respectively the first and second

principal invariant of Ce. The material parameters of the cancer tissue, µ t
1 and µ t

2, are in
general different from the ones employed to describe the healthy brain tissue, µh

1 and µh
2 .

For what concerns the volumetric part Ŵωv
sn , with ω ∈ {t,h}, we take the following form

[151, 169, 292]:

Ŵωv
sn (Je) =

1
2

κ
ω (logJe)

2 , (5.20)

where κω is the elastic parameter associated with the response of the tumour and healthy
tissue to volumetric deformations. Other functional forms for Ŵωv

sn (Je) taking into account
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the concept of the compaction point [109] or the existence of a maximum cell volume
fraction [58] could alternatively be used.

Once a proper constitutive form for the strain energy density function Wω
sn is chosen,

it is possible to compute the constitutive part of the solid phase stress tensor inside the
tumour and the healthy regions:

Tω
s = 2J−1

e Fe
∂Ŵω

sn(Ce,Je)

∂Ce
FT

e = J−1
e FeSω

snFT
e , (5.21)

where Sω
sn is the solid phase second Piola-Kirchhoff stress tensor associated with the natural

state, in the ω ∈ {t,h} domain.

By classical computations [151] one obtains

Sω
sn = 2J−2/3

e

(
I− 1

3
C−1

e ⊗Ce

)
:

∂Ŵω
sn(Ce,Je)

∂Ce
+ Je

∂Ŵω
sn(Ce,Je)

∂Je
C−1

e

= 2J−2/3
e

(
I− 1

3
C−1

e ⊗Ce

)
:

∂Ŵωi
sn (Ce)

∂Ce
+ Je

∂Ŵωv
sn (Je)

∂Je
C−1

e , (5.22)

where I is the symmetric fourth-order identity tensor, with components Ii jkl =
1
2(δikδ jl +

δilδ jk), and the tensor product A⊗B of two second-order tensors is defined for any
second-order tensor H by (A⊗B) : H= (B : H)A .

As a consequence of Eqs. (5.18) and (5.21), the Cauchy stress tensor of the solid phase
is decomposed into a deviatoric part Tωd

s , for which we have tr(Tωd
s ) = 0, and a spherical

component Tωv
s , with ω ∈ {t,h}, i.e.,

Tω
s = 2J−1

e

[
J−2/3

e Fe
∂Ŵωi

sn (Ce)

∂Ce
FT

e −
1
3

(
Ce :

∂Ŵωi
sn (Ce)

∂Ce

)
I

]
+

∂Ŵωv
sn (Je)

∂Je
I

= Tωd
s +Tωv

s . (5.23)

The constitutive expressions of the Cauchy stress tensors Tt
s and Th

s must be accompa-
nied by equations defining Fs and Fg. However, the deformation gradient tensor Fs, which
is entirely determined by the motion of the cell phase, is not an additional unknown for
the model, whereas Fg has to be determined by solving appropriate evolution equations.
The evolution of Fg can be obtained self-consistently by working out Eq. (5.3) (see, for
instance, [136, 145, 241]). In particular, we assume that the orientation of the mitotic
spindle of cell division, which could be affected by external mechanical cues and by the
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mechanical behaviour of the tissue (here taken as isotropic), is not influenced by brain
fibre alignment, so that growth deformations are isotropic as well. Therefore, the inelastic
tensor can be written as

Fg = gI , (5.24)

with g a scalar field whose evolution is given by an ordinary differential equation [10, 145]:

ġ
g
=

1
3

Γs

φs
χ

Ω0
t

in Ω
0. (5.25)

We remark that, even if the multiplicative decomposition of the deformation gradient
is actually needed only inside the tumour region, for simplicity we assume its validity
everywhere in the domain. This allows to have all quantities defined on both the tumour
and the healthy tissue. Thus, as a consequence of Eqs. (5.24)–(5.25), we will have Fg = I
outside the cancer domain.

5.2.4 Parameters Estimation

A fundamental passage to complete the mathematical model and focus on its numerical
implementation consists in assessing the values of the parameters that appear in the
system. This is both a challenging and delicate task: since our goal is to simulate tumour
progression and its mechanical impact, the choice of the parameters is crucial to have a
realistic and reliable outcome. At the same time, when working in the field of mathematical
biology, accurate estimations of the parameters are often hard to obtain. This is particularly
true for the brain, which is very difficult to be investigated experimentally [141]. In this
Section, we review the literature so as to assign a value, or at least a range of values, to the
parameters introduced in our model, in order to test its qualitative behaviour.

First of all, we deal with the material parameters µ t
1, µ t

2, µh
1 , µh

2 that appear in the
Mooney–Rivlin energy densities. We take as a reference the work by Balbi et al. [30],
who analysed the constitutive behaviour of brain matter considering a Mooney–Rivlin-type
energy, for which they propose as mean values for the material parameters µh

1 = 153 Pa
and µh

2 = 297 Pa. We consider these values as references for the healthy tissue mechanics.
As regards tumour tissue, several experimental studies have assessed that it is in general
stiffer than the healthy one. Stewart et al. [333] showed that human brain tumours like
gliomas and meningiomas are two–five times stiffer than normal brain tissue; Chauvet et al.
[65] and Miroshnikova et al. [254] proved a significant increase in stiffness for high-grade
gliomas, more than ten times the healthy reference value [3, 79]. Therefore, for our main
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simulations we take the material parameters in the tumour region as ten times greater
than the ones in the healthy region. However, some works estimate the stiffness of brain
tumours to be either the same order as the healthy tissue or even softer [269, 339]. Hence,
to compare the growth velocities, we will also consider a case in which the parameters
differ by four times and a case in which the tumour and the host tissue are assigned the
same mechanical parameters, equal to the ones of the normal brain.

For what concerns the volumetric moduli κ t and κh, as mentioned above they penalize
volumetric changes in the solid skeleton. However, their estimation is difficult, since most
of the experimental works and subsequent modelling do not consider the brain as a mixture.
In some previous works on biological tissues considered as porous media, the coefficient
related to the volume excess stress is evaluated using the Young modulus [2, 58, 82],
which is very low for the brain [3, 53, 79]. The work by Prevost et al. [292], which uses
a volumetric brain tissue response comparable to the one of the present work, estimates
a range of 2 · 102 − 2 · 104 Pa for the volumetric modulus. Therefore, following these
observations and taking into account that the brain is very soft, we choose κ t = 1.4 ·10−3

MPa and κh = 1.4 ·10−4 MPa, looking forward to further experimental confirmation.

As regards the parameters involved in the growth rate Γs proposed in Eq. (5.5), we
estimate them as done in other recent works on brain tumours [2, 82]. In particular, the
cell proliferation constant γ is taken as the inverse of typical doubling times for in vitro

glioma cells, that vary from 24 to 48 hours. Thus, a range 0.5−1 day−1 can be considered
appropriate for γ [126]. Since proliferation depends significantly on nutrients availability,
also smaller values seem however admissible [82]. For this reason, in the following we will
consider the minimum value inside the mentioned interval, i.e. γ = 0.5 day−1. The hypoxia
threshold c0 is estimated in the literature as ranging from 0.15 to 0.5 [126, 131, 355]: we
will consider an intermediate value of c0 = 0.3 in simulations. Moreover, we need to
estimate the nutrients consumption rate ζ and the nutrients supply rate Sn appearing in
Eq. (5.8). As far as the former is concerned, following the approach by Colombo et al.
[82] it can be estimated as ζ = 8640 days−1. For the estimation of the nutrients supply
rate Sn, we rely on the value of 104 days−1 proposed in [61], as done also in [2, 82]. When
we consider the stress-inhibited proliferation rate defined in Eq. (5.6), the parameters
governing the impairment of growth due to compression δ1 and δ2 have to be estimated as
well. Referring to [241], in our simulations we will consider δ1 = 0.8−0.9, while we will
choose δ2 = 10−3 −10−4 MPa to investigate different sensitivities to growth inhibition.

Regarding the estimate of φsn, that is, the cell volumetric fraction in the natural state,
it is usually assumed to be a constant given from the outset [10, 145]. Different values
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appear in the literature: Colombo et al. [82] and Agosti et al. [2] in their model considered
a value of φsn = 0.39, which they derived as the complementary value of the extra-cellular
space studied in [48] and amounting at up to 61%. In our simulations, coherently with the
constraint φmax = 0.85 lower than 1, we set φsn = 0.3.

Finally, we need an estimate for the parameters which appear in the permeability
tensor expression from Eq. (5.16), and in particular inside k̂(φℓ). Given its definition
and the spatial and temporal scales we employ in our model, this function has unit of
measure mm2/(MPa · day). As usually done for the Holmes–Mow permeability in soft
tissues [106, 148], the values α0 = 0.0848 and m = 4.638 are considered. Concerning
the reference permeability k0, values found in the literature for the brain cover a range
of 104 − 105 mm2/(MPa · day). For instance, Mascheroni et al. [241] consider a value
of 4.2 ·104 mm2/(MPa · day) for the fluid phase in glioma tumour spheroids, modelled
as mixtures. Instead, Basser [33] proposed values of k0 = 4.31×105 mm2/(MPa · day)
and k0 = 6.47× 105 mm2/(MPa · day) for the permeability of white and grey matter,
respectively. Coherently, Smith and Humphrey [324] reported a range of 1.47× 105 −
2.67× 105 mm2/(MPa · day), while a conversion of the value used by Jin et al. [188]
leads to 7.8×104 mm2/(MPa · day). Finally, in Asgari et al. [21] a value of 1.72×105

mm2/(MPa · day) was employed. Therefore, we choose to consider an intermediate value
of k0 = 2.17×105 mm2/(MPa · day).

We report the complete list of parameters, alongside their description, their values and
the main references, in Table 5.2.

To complete the parameters overview, we need to provide a definition for the diffusion
tensor D and for the tensor of preferential directions A, influencing the permeability K. To
do so, we take advantage of the mechanical description included in the present model to
progressively modify these tensors as time evolves. Indeed, the unnatural displacement
induced by the neoplasm alters the direction of brain fibres in the surroundings, which
should be taken into account in the description of both diffusion and fluid motion. It has
been experimentally observed, by analysing both the DTI and the MRI scans of glioma
patients, that volumetric and diffusion alterations can be recorded not only in the tumour
region, but also in the surrounding healthy tissue. Consequently, structural and connectivity
abrasions of brain areas might happen even distant from the brain tumour. These damage
often underlies the pathogenesis of several neurological symptoms seen in glioma patients
[45]. Since our model explicitly evaluates the deformation and the displacement caused
by the tumour, we are able to track these changes and to exploit them to modify tissue
anisotropy.
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Param. Description Value Ref.

µ t
1 Mooney-Rivlin parameter (tumour) 1.53 × 10−3 MPa [65, 254]

µ t
2 Mooney-Rivlin parameter (tumour) 2.97 × 10−3 MPa [65, 254]

κ t Volumetric modulus (tumour) 1.40 × 10−3 MPa [292]

µh
1 Mooney-Rivlin parameter (healthy) 1.53 × 10−4 MPa [30]

µh
2 Mooney-Rivlin parameter (healthy) 2.97 × 10−4 MPa [30]

κh Volumetric modulus (healthy) 1.40 × 10−4 MPa [292]

γ Cell proliferation constant 0.5 day−1 [126]

c0 Hypoxia threshold 0.3 [131]

ζ Nutrients consumption rate 8640 day−1 [126]

Sn Nutrients supply rate 104 day−1 [82]

δ1 Growth inhibition parameter 0.8−0.9 [241]

δ2 Growth inhibition parameter 10−3 −10−4 MPa [241]

φsn Cell volume fraction (natural state) 0.3 [136]

φmax Maximum cell volume fraction 0.85 -
α0 Holmes–Mow parameter 0.0848 [106, 148]

m Holmes–Mow parameter 4.638 [106, 148]

k0 Reference permeability 2.17 × 105 mm2

MPa−1 day−1
[21, 33, 188,
324]

Table 5.2 Values of model parameters for brain tumour growth.

In detail, we start from a diffusion tensor D0 considered at the initial time instant, which
can be inferred directly from DTI imaging data after a proper computational processing
described in Section 5.3. Since we consider oxygen as the main nutrients source, it seems
appropriate to employ these data in the nutrients balance equation, given that the DTI scan
actually quantifies the diffusion of water inside the brain. Then, we can write

D0 = λ1e0
1 ⊗ e0

1 +λ2e0
2 ⊗ e0

2 +λ3e0
3 ⊗ e0

3 , (5.26)

where we have put in evidence the descending order eigenvalues λ1 > λ2 > λ3 of the
diffusion tensor and the corresponding orthogonal eigenvectors e0

1,e
0
2,e

0
3, all evaluated at

the initial time.

Concerning A0, i.e. the initial value of tensor A, its construction is also performed
using DTI data, to evaluate the preferential directions determined by the presence of white
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matter tracts. In particular, we assume that A0 has the same eigenvectors as the diffusion
tensor, but increased anisotropy along the preferential directions of motion inside the
brain, as described in [2, 4, 187]. To enhance anisotropy without modifying the preferred
directions, a control parameter ς is introduced and A0 is defined as

Â0 = a1(ς)λ1e0
1 ⊗ e0

1 +a2(ς)λ2e0
2 ⊗ e0

2 +λ3e0
3 ⊗ e0

3, (5.27a)

A0 =
1

Aav
Â0 , Aav =

1
3

tr(Â0) . (5.27b)

In Eq. (5.27a), the functions ai(ς), i = 1,2 are given by

a1(ς) = ςal + ςap + as , (5.28)

a2(ς) = al + ςap + as , (5.29)

where the coefficients al , ap, as are the linear, planar and spherical anisotropy indices,
respectively, defined as [187, 281, 386]:

al =
λ1 −λ2

λ1 +λ2 +λ3
, ap =

2(λ2 −λ3)

λ1 +λ2 +λ3
, as =

3λ3

λ1 +λ2 +λ3
. (5.30)

The definition of these coefficients stems from the three simplest modes of diffusion.
Indeed, when λ1 ≫ λ2 ≈ λ3, then al ≈ 1 and diffusion preferentially happens linearly
along the direction of the eigenvector e0

1. On the other hand, if λ1 ≈ λ2 ≫ λ3, the diffusion
process is mainly confined into the plane spanned by e0

1 and e0
2, leading to the planar

coefficient ap ≈ 1. Finally, in the case of spherical diffusion, all the eigenvalues of D0 have
the same order of magnitude and as ≈ 1. Since, in general, the diffusion tensor will feature
a combination of all these modes, it can be decomposed as [386]:

D0 = (λ1 −λ2)Dl +(λ2 −λ3)Dp +λ3Ds ,

where Dl := e0
1⊗e0

1, Dp := e0
1⊗e0

1+e0
2⊗e0

2 and Ds := e0
1⊗e0

1+e0
2⊗e0

2+e0
3⊗e0

3. Therefore,
the coefficients al , ap, as are related to the components of D0 with respect to the tensor basis
{Dl,Dp,Ds}. The scaling factors and trace normalization are introduced to guarantee that
the coefficients range between 0 and 1, while keeping their sum equal to one. Concerning
the definition of the anisotropy coefficients appearing in Eq. (5.28), they are employed to
introduce changes in anisotropy through the parameter ς , as done in [187]. In particular,
the case ς = 1 corresponds to no increase in anisotropy, since al +ap+as = 1, while ς > 1
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enhances anisotropy along the directions of the eigenvectors according to the values of the
coefficients of anisotropy.

Once we have built the starting tensors D0 and A0, their modification subsequent to
growth and deformation is done taking into account that, as far as diffusion is concerned, it
is relevant to consider just the reorientation of the preferential directions. Their extension
or compression, in principle, does not affect nutrients diffusion and cell motility. Therefore,
we deform the eigenvectors according to the deformation gradient Fs, but we normalize
them to account for the fact that only the direction of the fibres is changing (see Fig. 5.4).
Hence, for the modified diffusion tensor we write

D= λ1
Fse0

1 ⊗Fse0
1

|Fse0
1|2

+λ2
Fse0

2 ⊗Fse0
2

|Fse0
2|2

+λ3
Fse0

3 ⊗Fse0
3

|Fse0
3|2

, (5.31)

where we observe that

∣∣Fse0
i
∣∣2 = Fse0

i ·Fse0
i = e0

i ·Cse0
i , i = 1,2,3, Cs = FT

s Fs.

We remark that, in defining the modified diffusion tensor, we choose to keep the trace of the
initial tensor, and therefore the mean diffusivity along the principal directions, unchanged.
As a consequence of these assumptions, the pull-back D∗ of the modified diffusion tensor
D to the reference configuration does not coincide with D0 and the volume of the diffusion
ellipsoid is not preserved in general, as highlighted in Fig. 5.4.

The modified tensor of preferential directions A can be defined using the same proce-
dure as

A= a1(ς)λ1
Fse0

1 ⊗Fse0
1

e0
1 ·Cse0

1
+a2(ς)λ2

Fse0
2 ⊗Fse0

2

e0
2 ·Cse0

2
+λ3

Fse0
3 ⊗Fse0

3

e0
3 ·Cse0

3
. (5.32)

5.3 Numerical Implementation

To perform simulations and solve our equations numerically, we need to introduce a
spatially and temporally discrete formulation of the continuous problems. Therefore, in
this Section we briefly describe the procedures to generate the patient-specific mesh used
for the computation. We then introduce the Lagrangian formulation of the model, that
allows to solve the problem in the reference configuration, and finally we report the finite
element and time discretization of the problem.
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Fig. 5.4 Computational reconstruction and modification of the components of the diffusion tensor
taken from DTI data. The initial tensor D0 is built using medical imaging data (as explained in
Section 5.3) and the values of the six components of the symmetric diffusion tensor are assigned to
each mesh cell. In particular, on the left we show a sample of the components of the tensor D0 as
they appear on a transverse (horizontal) brain section, with higher values of the diffusion coefficients
plotted in red. For a fixed representative cell sketched by the red triangle, on the right we draw the
red ellipsoid representing the preferential directions and values of diffusion at the initial time instant,
i.e. the eigenvectors and eigenvalues of D0, respectively. The initial eigenvectors are modified
according to the deformation of the tissue, in order to obtain the time and spatially dependent tensor
D, given by Eq. (5.31). In the Figure, we report D0 and the pullback D∗ := JsF−1

s DF−T
s of the

modified diffusion tensor (in yellow), which are both defined in the reference configuration. We
observe that D∗ has the same eigenvectors as D0 but different eigenvalues, due to the normalization
and volumetric changes.

5.3.1 Mesh Creation and Preprocessing

The computational mesh used for the numerical simulations is built starting from MRI and
DTI clinical data of a patient affected by a brain tumour gently provided by the Istituto
Neurologico Carlo Besta (Milan). The main advantage of MRI lies in its efficiency for
the detection of brain tumours and to highlight different tissue types composing the brain.
Nevertheless, MRI does not provide any information about the microstructural architecture
of the tissue. Therefore, the values of D0 and A0 are derived from DTI data, which quantify
the diffusivity of water molecules and allow to visualise the orientation of white matter
tracts.

To construct the mesh, first of all a segmentation of the grey-scale MRI image is
performed through the software package Slicer3D [121] in order to recreate the brain
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(a) (b)

Fig. 5.5 (a): Tetrahedral mesh generated within the brain domain, reconstructed from neuroimaging
data, and properly refined in the tumour region; (b): Mesh quality in terms of tetrahedral aspect
ratio.

geometry and boundary. After the segmentation, the computational mesh is built using
TetGen [322], which is able to generate tetrahedral meshes of any 3D domain, and properly
refined inside and around the tumour region. The resulting mesh and its quality evaluated
in terms of aspect ratio of its elements are reported in Fig. 5.5. In particular, we verified
that almost all elements (> 95%) had an aspect ratio smaller than five.

Finally, to incorporate diffusion data, we assign to each mesh cell six piecewise constant
fields, each one associated with one independent component of the tensor D0. In particular,
each cell is assigned the value of the tensor component of the voxel containing the cell
barycentre, as shown in Fig. 5.4. The same process is also carried out for the components
of the tensor of preferential directions A0. For further details, we refer the reader to
[2, 82, 233].

5.3.2 Lagrangian Formulation

Since we solve our equations in the reference configuration, we rewrite the model in
material coordinates. In the following, unless otherwise specified, we will use the same
symbols to denote the variables in the spatial and material description, and also omit the
explicit spatial dependence.

By classical computations [10, 135, 145, 241], using a superimposed dot to denote the
material time derivative, it is possible to derive the following complete set of equations,
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holding in the fixed reference domain Ω0:

Jsφs = Jgφsn , φs +φℓ = 1 , (5.33a)

J̇s = Div
[
K∗

µ̄
Grad p

]
, (5.33b)

Div
[
−Js pF−T

s +Ps
]
= 0 , (5.33c)

ġ = g
Γs

3φs
χ

Ω0
t
, (5.33d)

Jsφℓċn −
K∗

µ̄
Grad p ·Gradcn −Div [φℓD∗Gradcn] = JsGnχ

Ω0
t
, (5.33e)

where K∗ := Jsµ̄k(Je)F−1
s AF−T

s , D∗ := JsF−1
s DF−T

s , and D, A are the tensors modified
according to the deformation, as reported in Eqs. (5.31)–(5.32). We remark that the
pull-backs D∗ and A∗ = JsF−1AF−T of D and A have the same eigenvectors as their initial
counterparts D0 and A0, but the eigenvalues are rescaled because of the normalization of
the deformed eigenvectors and volumetric changes (see Eq. (5.31) and Fig. 5.4). Instead,
Ps is the constitutive part of the first Piola-Kirchhoff stress tensor of the solid phase,
Ps = JsTsF−T

s .

We notice that the system (5.33) is closed, since it constitutes a set of eight scalar
equations and features eight scalar unknowns, namely the displacement vector field of
the solid phase us(X, t) and the scalar fields φs(X, t), φℓ(X, t), g(X, t), cn(X, t) and p(X, t).
The fluid velocity vℓ(X, t) can be derived using Eq. (5.13). We remark that, since all the
equations are pulled back on the reference configuration using the deformation field of the
solid phase, the indicator function χ

Ω0
t

does not evolve in space and time, so it is not an
additional unknown for the model and an evolution equation is not needed.

The system of equations (5.33) allows therefore to determine all the unknown fields,
∀X ∈ Ω0 and ∀t ∈ (0,T ), provided that proper initial and boundary conditions are pre-
scribed. Since in our simulations the external boundary ∂Ω0 stands for the cranial skull,
we consider the following set of boundary conditions:

us = 0 on ∂Ω
0,∀ t ∈ (0,T ) , (5.34a)

p = 0 on ∂Ω
0,∀ t ∈ (0,T ) , (5.34b)

cn = 1 on ∂Ω
0,∀ t ∈ (0,T ) . (5.34c)



5.3 Numerical Implementation 217

In particular, the first boundary condition stems from the rigidity of the skull, which
cannot be displaced, and it represents the most natural constraint on the solid deformation.
Instead, conditions (5.34b)–(5.34c) correspond to fixing both the pressure and the nutrients
concentration on the boundary of the brain. They represent a fairly reasonable assumption
when the tumour is placed sufficiently far from the skull and its growth does not have a
direct impact on the values of the variables at the boundary, which may then be fixed at
reference values.

However, in some cases brain tumours may appear near the brain boundary, leading to
the generation of high stresses and extremely asymmetric growth patterns due to the rigid
constraint that the skull imposes. To investigate such a situation using our mathematical and
computational model, we also performed two sets of simulations with different boundary
conditions. Indeed, if the cancer mass is positioned in close proximity to the skull, zero-flux
Neumann boundary conditions might be appropriate. In fact, it is enough to impose that
the fluid and the chemicals cannot flow out of the boundary, without necessarily forcing
them to attain specific values. Therefore, we performed two simulations near the skull,
using both the Dirichlet boundary conditions (5.34) and the following set of conditions:

us = 0 on ∂Ω
0,∀ t ∈ (0,T ) , (5.35a)

K∗Grad p ·n∗ = 0 on ∂Ω
0,∀ t ∈ (0,T ) , (5.35b)

D∗Grad cn ·n∗ = 0 on ∂Ω
0,∀ t ∈ (0,T ) , (5.35c)

where n∗ is the outer normal vector to the boundary ∂Ω0. In this case, we keep the fixed
null displacement and impose zero normal flux conditions on p and cn.

Concerning initial conditions, at the beginning of the tumour growth process it is
reasonable to assume that the displacement and the pressure are equal to zero everywhere
in the domain; meanwhile, we take the scalar field g related to the growth component
of the deformation gradient as equal to 1 everywhere in the domain at t = 0. Enforcing
the condition that the variation of body mass is due to cell proliferation, it is possible
to show [10, 145] that the solid volumetric fraction in the natural state φsn is constant in
time and, thus, equal to the φs(X,0). In particular, in the following we will consider φsn

homogeneous in space. Finally the initial nutrients concentration is uniformly set to cn = 1
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everywhere. To sum up, we have the following set of initial conditions:

us(X,0) = 0 ∀X ∈ Ω
0 (5.36a)

p(X,0) = 0 ∀X ∈ Ω
0 (5.36b)

g(X,0) = 1 ∀X ∈ Ω
0 (5.36c)

φs(X,0) = φsn ∀X ∈ Ω
0 (5.36d)

cn(X,0) = 1 ∀X ∈ Ω
0. (5.36e)

5.3.3 Finite Element Discretization

To perform numerical simulations, we here introduce the spatially discrete formulation of
a proper continuous variational formulation of the system (5.33). We make use of linear
tetrahedron P1 elements, so we introduce the following finite element spaces:

Vh := {qh ∈
[
C0(Ω0)

]3
: qh|K ∈ [P1(K)]3 ∀K ∈ Th , qh|∂Ω0 = 0} ⊂ H1

0(Ω
0) , (5.37)

Wh0 := {qh ∈C0(Ω0) : qh|K ∈ P1(K) ∀K ∈ Th , qh|∂Ω0 = 0} ⊂ H1
0 (Ω

0) , (5.38)

Wh1 := {qh ∈C0(Ω0) : qh|K ∈ P1(K) ∀K ∈ Th , qh|∂Ω0 = 1} ⊂ H1(Ω0) , (5.39)

where Th is a conforming decomposition of the domain Ω0 into tetrahedra K. Then, we
are able to define our fully discrete variational problem as follows: for k = 1, . . . ,N, given
(uk

h, pk
h,c

k
h) ∈ Vh ×Wh0 ×Wh1 find (uh, ph,ch) ∈ Vh ×Wh0 ×Wh1 such that for all test

functions (vvvh,wh,qh) ∈ Vh ×Wh0 ×Wh0

(Js(uh),wh )+∆t
(

Gradwh,
K∗

µ̄
Grad ph

)
=
(

Jk
s (u

k
h),wh

)
, (5.40)

− (P(uh, ph),Gradvvvh ) = 000 , (5.41)

(Js(uh)ch,qh )−∆t
(

K∗

µ̄φℓ
Grad ph ·Gradch,qh

)
+∆t (Gradqh,D∗Gradch ) =

=
(

Js(uh)ck
h,qh

)
+∆t

(
Js(uh)

Gn(ch)

φℓ
,qh

)
, (5.42)

where, in order to have a lighter notation, we have dropped the unnecessary superscripts
and denoted by the same symbol (·, ·) the standard scalar product on the spaces L2(Ω0),



5.4 Results 219

L2(Ω0;R3) and L2(Ω0;R3×3). Finally, we have indicated by P=−Js pF−T
s +Ps the first

Piola-Kirchhoff stress tensor. We remark that, since we are working in a Lagrangian
configuration, also the tensors K∗ and D∗ depend on uh. The time discretization of
Eqs. (5.40)–(5.42) consists in a semi-implicit Euler scheme, which is solved by a Newton’s
method with a sufficiently small time step ∆t = 0.1 days.

Once we have obtained the discrete formulation of the partial differential equations,
the last step is to introduce a proper discretization of the other equations involved, namely
the ordinary differential equation for g (5.33d) and the relations (5.33a). Concerning the
former, it can be easily discretized in time using the explicit Euler method. Then, we have

gk+1(X j) = gk(X j)

(
1+∆t

Γk
s(X j)

3φ k
s (X j)

χ
Ω0

t

)
j = 1, . . . ,M (5.43)

where X j are the grid nodes and M is the number of spatial nodes in the discretization.
The first equation of (5.33a) is simply discretized as follows:

Jk+1
s (X j)φ

k+1
s (X j) = Jk+1

g (X j)φsn ⇒ φ
k+1
s (X j) =

Jk+1
g (X j)

Jk+1
s (X j)

φsn , j = 1, . . . ,M.

(5.44)

Given the discretized form of all the necessary equations, we implemented our code
using the open source computing software for solving partial differential equations called
FEniCS [8, 228]. Such a software provides a high-level Python and C++ interface for
solving PDEs through the finite element method. In particular, FEniCS code is attractive
since it remains very close to the mathematical formulation, allowing the user to write down
a program which closely resembles the variational form of equations. It also comes with
built-in classes specifically dedicated to the resolution of nonlinear variational problems,
which in our case is an important feature.

5.4 Results

To test the model and its implementation, we perform some numerical simulations on a
realistic brain geometry, constructed from medical imaging data following the procedure
described in Section 5.3. As specified before, we use the finite element method to solve the
equations and we consider an initial tumour radius of about 7 mm. Then, we simulate the
progression of the tumour for 45 days in different conditions. In particular, in Section 5.4.1
we compare the results of tumour evolution using both the growth laws given in Eqs. (5.5)
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and (5.6), the latter including the effect of solid stress inhibition on cell proliferation.
Then, in Section 5.4.2 we report the results concerning the modification of DTI data as a
consequence of growth-induced deformations. Finally, in Section 5.4.3 we consider the
case of a tumour growing near the skull and compare the two different sets of boundary
conditions discussed in Eqs. (5.34)–(5.35).

5.4.1 Stress Inhibition of Tumour Growth

Plane YZ XZ XY

Without
stress-

inhibition

With
stress-

inhibition

Fig. 5.6 Comparison between the displacement magnitude |us| after t = 45 days of tumour growth
in the brain, clipped along a sagittal (first column), an axial (second column), and coronal (third
column) plane centred within the tumour. In the first row, the case without stress inhibition is
reported, while the second row shows a case of stress-inhibited growth. After a month and a half,
the maximum displacement induced by the tumour without any inhibition due to stress amounts at
3.1 mm, while in the inhibited case it is about 1.7 mm.

Results in terms of displacements, cell volume fraction, pressure, and the chosen
measure of stress are shown in Figs. 5.6–5.8 along three sagittal, axial, and coronal
planes centred within the tumour. Specifically, in order to highlight the displacement
induced by the growing mass, in Fig. 5.6 we report the magnitude |us| of the displacement
vector us. The comparison between the case without stress inhibition, in which the rate of
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Plane YZ XZ XY

Without
stress-

inhibition

With
stress-

inhibition

Fig. 5.7 Comparison between the solid volume fraction φs after t = 45 days of tumour growth in the
brain, clipped along a sagittal (first column), an axial (second column), and coronal (third column)
plane centred within the tumour. In the first row, the case without stress inhibition is reported, while
the second row shows a case of stress-inhibited growth.

proliferation is taken as defined in Eq. (5.5), and the stress-inhibited case using Eq. (5.6) is
put in evidence. It can be observed that, in the case without stress inhibition, the maximum
value of the displacement amounts at 3.1 mm; moreover, such a value is not uniform
around the tumour and along the three cutting planes: in the XZ-plane, for instance, the
maximum displacement is about 2.9 mm. This is a consequence of the patient-specific
anisotropy included in the model thanks to the diffusion and permeability tensors. The
presence of fibres influences the movement of fluid and nutrients diffusion, which in turn
affect the growth, leading to a displacement around the tumour mass which is greater along
certain directions. The second row of Fig. 5.6 shows instead the displacement magnitude
in the stress-inhibited case, i.e., when the proliferation term defined in Eq. (5.6) is chosen
with parameters δ1 = 0.8 and δ2 = 10−4 MPa. It can be noticed that compression strongly
inhibits the growth of the tumour, reducing therefore the amount of deformation around its
placement; in particular, the maximum displacement is about 1.7 mm, which is almost a
half of the one attained in the case without stress inhibition. This result highlights once



222 Solid and Fluid Stresses in Brain Tumour Growth

Plane YZ XZ XY

p

Σ

cn

Fig. 5.8 Comparison between variables during tumour growth in the brain, clipped along a sagittal
(first column), an axial (second column) and coronal (third column) plane centred within the tumour,
at time t = 45 days. In the first row the fluid pressure p is reported, while the second row shows the
stress measure Σ=−1

3 tr(Ts) and the third row shows the concentration of nutrients cn.
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(a) (b)

(c) (d)

Fig. 5.9 Comparison between variables during tumour growth in the brain, along three representative
rays in different planes originating from the tumour center, at time t = 45 days. In the insets, the
chosen rays are depicted on the 3D brain mesh. (a): displacement magnitude |us|; (b): solid volume
fraction φs; (c): pressure p; (d): bulk solid stress Σ.

more the importance of having a model which is able to include mechanical features
of tumour growth, both to evaluate the impact of the mass on the healthy tissue and to
correctly predict tumour evolution.

Moreover, the cellular proliferation inside the tumour region leads to an increase in
the volumetric fraction of the solid phase, as shown in the first row of Fig. 5.7. After a
month and a half of growth without stress inhibition, φs has almost reached the saturation
value of 0.85 inside the tumour domain. Then, it starts to substantially increase also in
the surrounding healthy region, due to the compression exerted by the growing mass. On
the other hand, if growth becomes sensitive to compressive stresses, the value achieved
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(a) (b)

Fig. 5.10 (a): Tumour volume evolution over time, for different values of the elastic parameters
in the tumour region. In particular, the tumour is taken as ten times stiffer than the host tissue
(grey curves), four times stiffer (red curves) and equal to the healthy tissue (yellow curves). Solid
lines correspond to the cases without stress inhibition on growth, while dashed lines refer to the
simulations with stress inhibition (δ1 = 0.8, δ2 = 10−4 MPa). (b): Tzz component of the solid
Cauchy stress tensor along a ray that crosses the tumour diameter, for the case of a tumour which is
ten times stiffer (grey curves) and as stiff as the healthy tissue (yellow curve).

by the solid fraction is much smaller after the same period of simulation and the changes
in volume fraction around the tumour are slightly perceivable. This is consistent with
the fact that stress is slowing down tumour proliferation, as observed also in biological
experiments [69, 101, 161, 255].

As regards some other relevant variables of the model, in the first row of Fig. 5.8 we
show the final values of the fluid pressure p, which is negative inside the cancer region,
since the fluid is consumed during the uncontrolled cellular proliferation. In the second
row of Fig. 5.8 we plot the value of Σ = −1

3 tr(Ts), that coincides with the trace of the
volumetric solid Cauchy stress, recalling Eq. (5.23), and it is a stress measure of the
compression used in our model to account for stress-inhibition of growth. As expected, Σ
is positive inside the tumour, meaning that there is a compression in this area, and negative
in zones around the tumour boundary, where the tissue is in traction. The existence of
gradients of compression and tension, moving from the tumour towards the surrounding
brain tissue is confirmed by biological tests combined with a simple finite element model
[269, 317].

Finally, as regards the concentration of nutrients shown in the third row of Fig. 5.8,
it is almost maintained at the physiological value of 1 in the whole healthy region of the
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(a) (b)

Fig. 5.11 (a): Tumour volume evolution, as a function of time, in the case with and without stress
inhibition of growth, for different values of the parameters δ1 and δ2 appearing in Eq. (5.6). The
red marker identifies the initial volume of the tumour. (b): Initial tumour configuration (red),
corresponding to the volume at t = 0; final configuration for the case without stress inhibition (grey)
and for the stress-inhibited case with δ1 = 0.8, δ2 = 10−4 MPa (blue), corresponding to the final
volumes in the line plot (a).

brain, while it substantially decreases inside the tumour, where proliferating neoplastic
cells are consuming the nutrients faster than they are supplied.

In addition to the maps representing the relevant variables on the three-dimensional
brain domain, in Fig. 5.9 we report some line plots along three representative rays
originating from the tumour center and lying in different orthogonal planes. This allows to
evaluate spatial evolutions of the variables, moving away from the tumour centre. It can
be observed that the displacement magnitude presents a peak at the tumour boundary and
then vanishes as we move away from the cancer domain. However, the region of healthy
tissue affected by the unnatural displacement may reach a distance up to 25 mm, which
is significant for a tumour of 7 mm of starting radius. Moreover, the plot in Fig. 5.9a
shows that the displacement is not uniform in the three planes, which highlights again the
anisotropic growth pattern. Instead, as already shown before, the solid volume fraction
φs in Fig. 5.9b displays a non-monotonic behaviour along some rays, due to the fact that
the solid phase is growing and compressing the surrounding healthy tissue. Looking at
Fig. 5.9c, the pressure increases when moving from the tumour center to the healthy tissue,
while the bulk solid stress decreases, coherently with the observation that the maximum
compression is experienced inside the cancer proliferation domain (Fig. 5.9d).
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To compare our results with biological data, we computed the tumour volume evolution
for three different values of its elastic parameters: results are shown in Fig. 5.10a. It can be
seen that there is an initial stage where the tumour volume grows approximately linearly:
then, growth starts to slow down due to saturation. In detail, when the tumour is ten times
stiffer than the healthy tissue, the final volume after 45 days amounts at 3.5 cm3. Moreover,
we observe a volume doubling time (VDT) of about 25 days and a specific growth rate
(SGR, defined as (log2)/VDT) of 2.8%/day. These results are indicative of a very fast
growth and are in the range of experimental data by Stensjøen et al. [332], who reported a
median VDT of 29.8 days, and by Ellingson et al. [112] where a median VDT of 21.1 days
(with average of 41.0 ± 28.2 days) is found. Additionally, the SGR ranges from a median
of 1.2–2.2%/day in [332] to an average of 5.9±2.0%/day in [112]. We remark however
that these quantities are usually obtained in medical assays by assuming that growth is
exponential, which in some cases might be an oversimplification.

Moreover, even if the tumour in our simulations is highly non-spherical due to
anisotropy as discussed before, we computed an average velocity of radial expansion
(VRE) to make a comparison with other experimental results. In detail, starting from
the tumour volume, we computed its equivalent radius considering it as a sphere and
evaluated the expansion velocity along the radial coordinate. Our simulations suggest
an average VRE of approximately vr ≈ 18.4 mm/year, which is biologically feasible
[112, 332, 346, 374] even if there is a high clinical variability from patient to patient and
in some cases the VRE is even greater. In particular, growth is faster in the first period,
when the tumour is still localized and the cell volume fraction is far from the saturation
limit. Instead, if we consider a softer tumour, which is only four times stiffer than the
surrounding brain tissue, its growth is significantly slower: over the same time span of
45 days, the final cancer volume is about 2.2 cm3, with a relative change in volume of
49%. In this case, the average VRE amounts at vr ≈ 8 mm/year, indicative of a slower
growth. In the case in which the mechanical parameters inside the tumour region are equal
to the ones of the healthy tissue [269, 339], volume growth is very slow compared to the
other situations: the final volume of the mass amounts at 1.7 cm3 and the relative volume
change is less than 15%. For each choice of the mechanical parameters, in Fig. 5.10a
we report as dashed lines the corresponding simulation with stress inhibition of growth,
setting δ1 = 0.8 and δ2 = 10−4 MPa. As expected, the sensitivity of volume growth to
compressive stresses increases with the difference in mechanical parameters between the
tumour and the host tissue. Overall, the results underline the importance of accounting for
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the mechanical features of tumour growth, since stiffer cancer masses are more effective in
displacing the surrounding healthy tissue and can progress faster.

Furthermore, we compare our model outcomes with experimental data provided in
[269, 317, 335]. In particular, the profiles of the Cauchy stress component Tzz across
the tumour diameter and the surrounding tissue, reported in Fig. 5.10b are in qualitative
agreement with the experimental results and finite element estimates provided in [269].
It can be observed that the stress has a peak near the interface between the tumour and
the healthy tissue, where tension accumulates. Then, there is a high compression zone
inside the tumour, with a slight decrease at the tumour center. Moreover, if the tumour
is ten times stiffer than the host tissue, the modulus of the considered component of the
Cauchy stress is significantly higher compared with the case in which the two tissues are
mechanically equivalent. In spite of this, the tension and compression values for both
Tzz and Σ predicted by our model are overall higher when we consider the mechanical
parameters of the tumour ten times greater than the ones of the healthy tissue. On the
other hand, if we take equal material parameters we obtain results both qualitatively and
quantitatively comparable with the ones reported in [269, 317], where stresses between
−0.1 and 0.1 kPa are recorded for tumours in mice. These discrepancies may be due
to the fact that the stress values are highly dependent on the material model and on the
chosen constitutive characterization, and most experimental and computational models,
including [269, 317], are based on linear elasticity, while we employ a nonlinear elastic
framework. Moreover, in our case we deal with a tumour that has a radius of about 7
mm, which is almost twice as much as the one used in the experimental set-up of [269].
Since it has been shown that solid stress increases with tumour radius [269], our stress
results may be feasible from a biological viewpoint, though further investigation about
stress for in vivo tumours is needed as well as an accurate estimation of the mechanical
parameters and tumour stiffness. We also find that the tumour solid stress predicted by
our model is within the range of residual stresses estimated for cancer spheroids in [335],
namely between 1.3 and 13.3 kPa, though these results are not brain-specific. In addition,
solid stress values are again shown to be higher in modulus in the tumour interior, where
there is a consistent amount of compression that slows down the growth of the cancer.
Notwithstanding Stylianopoulos et al. [335] reported that the interstitial fluid pressure
increases inside the tumour bulk as a consequence of vascular collapse (not modelled in
our framework), our predictions suggest that the pressure is decreased, in accordance with
other works using mixture models [135, 136]. Moreover, we did not take into account the
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YZ XZ XY

Fig. 5.12 Variation of the fractional anisotropy (FA) after 45 days of tumour growth. It can be noted
that, around the tumour zone, there is an increase in the tissue anisotropy.

possibility of reduced perfusion due to cancer growth, which is an effect often reported in
the literature [317, 335], but it would be interesting to consider it in future research.

Finally, we investigated the role of cancer cell sensitivity to stress-inhibition in the
progression of the disease. To do so, in Fig. 5.11 we compare the evolution of the tumour
volume for different grades of stress inhibition (regulated by the parameters δ1 and δ2),
with respect to the case without stress inhibition. In particular, in Fig. 5.11a we show the
volume evolution of the cancer in the case without stress inhibition and in three stress-
inhibited cases, varying both the parameters δ1 and δ2. Specifically, if we increase the
impact of compression by decreasing δ2 while keeping δ1 = 0.8 fixed, the volume growth
becomes consistently slower and reduces the velocity of cancer expansion. This can be
also seen in Fig. 5.11b, where the three-dimensional configuration of the tumour is shown
at the initial time instant and at t = 45 days, for the case without stress inhibition and
for a strongly stress-inhibited case. An evaluation of the velocities of radial expansion
yields vr = 15.1 mm/year if δ1 = 0.8, δ2 = 10−3 MPa and vr = 11.2 mm/year if δ1 = 0.8,
δ2 = 10−4 MPa. Instead, keeping δ2 = 10−4 MPa fixed and increasing δ1 also leads to a
slower growth, even if the volume reduction due to inhibition is smaller.
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Fig. 5.13 Variation during tumour growth (from t = 0 to t = 45 days) of the eigenvector associated
with the greatest eigenvalue of the diffusion tensor D, quantified in terms of the scalar index s (left)
and the absolute variations of the azimuthal angle |∆θ | (center) and polar angle |∆ϕ| (right).

5.4.2 Modification of DTI Data

In this Section, we show some results related to the DTI data modification due to tumour
growth. Indeed, the expansion of the mass and the induced displacement alter the fibre
tracts in the surroundings, leading to changes in diffusion and preferential directions. To
quantify these changes, we recall that, given λ1 > λ2 > λ3 the descending order eigenvalues
of the diffusion tensor, the fractional anisotropy (FA) is a scalar parameter defined by
[281, 340]:

FA :=

√
1
2
(λ1 −λ2)2 +(λ2 −λ3)2 +(λ1 −λ3)2

λ 2
1 +λ 2

2 +λ 2
3

. (5.45)

A fractional anisotropy of 0 identifies an isotropic medium, where the eigenvalues are all
coincident and the diffusion ellipsoid is actually a sphere, with no preferential direction.
Instead, a FA value of 1 indicates the existence of a totally preferred direction, making
diffusion to occur only along one of the eigenvectors. In order to provide an estimate of how
the diffusion tensor is changed in time as a consequence of the tumour-induced deformation,
in Fig. 5.12 we report the difference ∆FA = FA f −FAi of fractional anisotropy between
the final and initial diffusion tensors. It can be noted that, in the region surrounding the
growing cancer, there is an increase in diffusive anisotropy up to 60%. Variations in FA are
also non-uniform in the tumour area, highlighting zones which are significantly affected by
changes in anisotropy and others which instead maintain their initial preferential directions.
It is also worth to observe that most of the tumour bulk displays no change in FA with
respect to the initial value, computed from medical images. Indeed, DTI data extracted
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from patients are often altered by the tumour, which displaces or even destroys the fibres
as it grows, reducing anisotropy inside the tumour bulk, as pointed out in other works
[340]. Since at the beginning of the simulations the tumour has already a size of some
millimetres, the most significant changes in anisotropy happen around the tumour domain,
where the cancer mass dislocates the surrounding white matter fibres and the displacements
are higher.

Since the fractional anisotropy only gives a scalar measure related to the eigenvalues,
we also investigated the variation in the eigenvector direction e0

1 associated with the greatest
eigenvalue λ1 of the diffusion tensor D0. To do so, first of all we computed in each mesh
cell the direction of the eigenvector e f

1 associated with the greatest eigenvalue of the
diffusion tensor D at the final time step. In fact, thanks to the modification of the initial
tensor D0, we can keep track of the preferential directions of diffusion, which may vary
in each cell due to tumour growth and subsequent deformation. Then, we calculated the
value of

s := 1−|e0
1 · e

f
1 | ,

that is a measure related to the scalar product between the initial and final eigenvectors. In
particular, s = 0 denotes zones where the eigenvector does not change as a consequence of
the deformation, while s = 1 identifies regions with the greatest modifications in the direc-
tion of e0

1 due to tumour growth. As shown in Fig. 5.13, the greatest variations occur in cells
located at the border of the tumour region and in the surrounding healthy area. However,
the scalar index s does not provide details about the change in orientation of the eigen-
vectors. Therefore, we expressed the eigenvectors e0

1 and e f
1 using spherical coordinates

(r,θ ,ϕ), where r > 0 is the distance from the origin, θ ∈ (−π,π] is the azimuthal angle
and ϕ ∈ (0,π] is the polar angle, so that e0

1 = (r0,θ 0,ϕ0) and e f
1 = (r f ,θ f ,ϕ f ). Then, we

calculated the absolute differences |∆θ | = |θ f −θ 0| and |∆ϕ| = |ϕ f −ϕ0| between the
angles θ and ϕ , respectively, at final and initial time instants. Since we are interested in
the preferential axis of diffusion and not in its orientation, we identified azimuthal angles
and polar angles differing by multiples of π and rescaled the angles variation between
0 and π/2. These variations were only computed in anisotropic regions, where D is not
spherical and therefore it is meaningful to evaluate changes in the eigenvector associated
with the greatest eigenvalue. Results for |∆θ | and |∆ϕ| are shown in Fig. 5.13: there are
regions, both inside and outside the tumour domain, in which the two angles defining the
spherical coordinates of e0

1 vary, leading therefore to changes in the preferential direction
of nutrients diffusion, in qualitative agreement with medical observations [45].
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Fig. 5.14 Comparison between the displacement magnitude |us| after t = 35 days of tumour growth
near the skull, clipped along a sagittal (first column), an axial (second column) and coronal (third
column) plane centred within the tumour. In the first row, the case with Dirichlet boundary
conditions as from Eqs. (5.34) is reported, while the second row shows the case with zero-flux
boundary conditions for the pressure and concentration of nutrients, as stated in Eqs. (5.35).

5.4.3 Simulations of a Tumour Close to the Boundary

Lastly, we investigated a situation in which the tumour is placed near the boundary of the
brain, in order to evaluate the effect of different boundary conditions. In particular, we
performed two sets of simulations. In the first case, we used Dirichlet boundary conditions
on us, p, and cn, as we did before when the tumour was far from the boundary. Such
conditions are reasonable when the cancer mass does not reach the skull, where we can
assume that all variables have fixed values. However, in the case of a tumour close to
the boundary, Neumann boundary conditions might be more appropriate and physically
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motivated. Therefore, to make a comparison, we performed a simulation in which we use
the set of boundary conditions defined in Eq. (5.35).

The results are shown in Figs. 5.14–5.15 for the displacement magnitude and the
nutrients’ concentration, respectively. As expected, the presence of the fixed skull gen-
erates a pronounced asymmetry in the tumour growth pattern, that can be seen clearly
in the displacement plot, especially in the case of Dirichlet boundary conditions (5.34).
Moreover, when zero-flux conditions (5.35c) on cn are imposed, the concentration of
nutrients decreases more around the tumour region, since there is no supply coming from
the boundary as in the Dirichlet case.

Plane YZ XZ XY

Dirichlet
BC

Neumann
BC

Fig. 5.15 Comparison between the concentration of nutrients cn after t = 35 days of tumour
growth in the brain, clipped along a sagittal (first column), an axial (second column) and coronal
(third column) plane centred within the tumour. In the first row, the case with Dirichlet boundary
conditions as from Eqs. (5.34) is reported, while the second row shows the case with zero-flux
boundary conditions for the pressure and concentration of nutrients, as stated in Eqs. (5.35).
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5.5 Discussion

Mechanical compression is a common abnormality of brain tumours that has been shown to
be responsible for the severe neurological defects of brain cancer patients and to represent
a negative prognostic factor [128, 191]. To refine previous mathematical descriptions of
brain tumour growth and account for this mechanical impact, in this Chapter we have
proposed a model that explicitly features hyperelastic deformations of brain tissue and
incorporates medical imaging data coming from DTI and MRI.

Using the well-established framework of Continuum Mechanics, we described the
brain and the cancer mass as saturated biphasic mixtures, comprising a solid and a fluid
phase, which are both relevant in a hydrated soft tissue like the brain. This enables us to
evaluate deformations and stresses caused by the proliferation of tumour cells, as well as
the displacement induced on the surrounding healthy tissue. In particular, thanks to the
multiphase approach, the model is able to distinguish the stress contribution associated
with the fluid from the one associated with the solid mass, and therefore it could be useful
in understanding the biological implications and the extent of the so-called mass-effect
[64, 141, 185, 191, 317]. The mechanical description included in the present model allows
to account for growth inhibition due to excessive compression, thanks to the definition
of a proliferation term embedding a proper stress measure. Moreover, by numerically
computing the deformation field, it is possible to modify the diffusion and permeability
tensors, taking into account the displacement of the brain tissue. This is a clear advantage
for simulations of brain tumour growth, since it allows to consider changes in the DTI data
without the need of repeating the clinical screening exams multiple times.



Chapter 6

Conclusions and Perspectives

It is becoming increasingly clear that a deeper understanding of biological systems through-
out all scales requires an interdisciplinary effort. In this respect, the contribution of math-
ematical models and numerical simulations appears rich of potentialities: they can be
suitably used to support experimental researches and to capture the essential mechanisms
behind complex phenomena. A reproduction of these systems through equations and
simulations, although intrinsically incomplete, turns out to be an extremely flexible tool
to accelerate the research process in the fields of biology, biomedicine, and engineering
science in general. Moreover, the development of new models represents also a challenge
from the mathematical point of view, since it requires to build novel frameworks upon
well-established theories.

Motivated by these facts, in this Thesis we addressed the problem of describing
structural reorganisations, growth, and active responses of cells and tissues, with particular
emphasis on their mechanical behaviour. Indeed, the importance of mechanics have been
underscored more and more also at the cellular scale, leading to the development of a
totally new field called mechanobiology. Furthermore, biological organisms are by their
nature capable of dynamically adapting to their environment and to grow. These two
characteristics add difficulties in the modelling process and have to be properly taken into
account. Specifically, we focused on the following open issues:

• the mathematical modelling of cell cytoskeletal reorganisation as a consequence of
external mechanical stimuli;

• the description of active contractility in axons;

• the evaluation of the mechanical impact of a tumour growing in the brain.
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More in detail, in Chapter 2 we have provided a thorough review of the experimental
and modelling literature about the cellular response to mechanical cues. In particular, we
analysed the phenomenon of cell reorientation under cyclic stretching of the substrate,
which is extremely relevant in a number of physiological tissues: blood vessels, the heart,
the lungs, the intestine, and muscles are all constantly subject to periodic deformations,
just to mention a few examples. Moreover, understanding how a cell orients as a reaction
to environmental alterations is extremely relevant in tissue engineering, where the aim is
to build artificial tissues in a faithful way, and also in medicine, since some pathologies
appear related to issues in cell mechanotransduction. We summarised the main features
of the numerous experiments performed from the 1980s until today, trying to capture the
relevant factors that are involved in cell reorientation on smooth 2D substrates, on grooved
substrates and in 3D matrices.

Then, in Chapter 3, we proposed three models with the aim of investigating more
deeply the reorientation of the cell cytoskeleton. First of all, in Section 3.1, we approached
the problem within the framework of nonlinear elasticity, in order to evaluate possible
effects of finite deformations. The system composed by cells and their substrate was treated
as an anisotropic elastic solid, for which we introduced an energy that generalises the one
previously employed in the literature for linear elasticity. We found that, for a large class
of elastic energies, it is possible to find a relation between the angle and the deformation
which is a generalisation of the one put forward by Livne et al. [226] in their very relevant
work. The existence of such a relation might provide an explanation of why experimental
data obtained outside the linear elastic regime are still fitted well by a linear model. Then,
we analysed the effect of intrinsically nonlinear terms within the energy, showing that their
impact is not fundamental to capture the experimentally observed behaviour.

Afterwards, to introduce the dynamic remodelling of the cell cytoskeleton during the
reorientation process, in Section 3.2 we built a thermodynamically consistent model of
fibre realignment in a hyperelastic material. This framework consists of the usual balances
for a continuum body complemented by a system of equations describing the evolution of
two fibre structures, which may evolve following independent rotations. The stationary
solutions of such a system are then studied, showing an extension of a well-known result
about coaxiality of stress and strain if the two fibre families are allowed to reorganise
independently. The case with a fixed angle between fibres is then recovered by introducing
an appropriate constraint between the two rotations. Then, the model is applied to the
problem of cytoskeletal reorientation under mechanical stimuli, showing a good agreement
with experiments both for constrained and unconstrained fibres.
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At the end of Chapter 3, in Section 3.3, we proposed a simple linear viscoelastic
model, to account for the frequency effect seen in experiments. Indeed, as discussed in
Chapter 2, the frequency of the cyclic deformation might impact on the speed of cell
reorientation, and some thresholds to initiate the cellular response also exist. Therefore,
we considered a Maxwell-like viscoelastic model with anisotropy induced by the presence
of cells and stress fibres, and studied its behaviour in both high and low frequency regimes.
In particular, for high frequencies, the equilibrium solutions can be predicted by the critical
points of an energy akin to the one introduced in Section 3.1. We studied the stability
of such equilibrium solutions and their bifurcations in detail. Finally, we performed
some numerical simulations, which were in agreement with the existence of experimental
frequency thresholds.

Another problem related to cellular mechanics and response to mechanical stimuli is
the contractility of axons, which we studied in Chapter 4. In fact, experimental evidence
suggests that the axonal cortex, i.e. the external coating of axons, is able to actively
contract and exert compression on the inner part. This capability seems also related to the
regulation of the axon diameter evidenced in experiments. To describe these phenomena,
we followed an active strain approach to develop a model of active contractility, in which
the coupling between the circumferential and axial active stretches is derived through a
thermodynamically based procedure. Then, we implemented a numerical framework to
simulate the stretching of axons and drug-induced alterations of their cytoskeletal structure.
The variations of the diameter that we found appear in agreement with experimental data
and suggest that the coupling of contractility in two different directions and the compressive
stress exerted by the cortex are very relevant.

Finally, in Chapter 5 we moved to the tissue scale and analysed the mechanical impact
of a growing tumour inside the brain. In particular, we focused on the effect of solid stresses,
which have been shown to be detrimental for patients: their negative repercussions are even
amplified in brain tissue, which is extremely soft and confined by the skull. To investigate
these effects, we proposed a mathematical model based on mixture theory, to account
for solid and fluid components, and morphoelasticity, to describe growth distortions.
Moreover, we considered the healthy brain tissue and the tumour as hyperelastic solids
with different mechanical parameters, so as to evaluate the displacement and stress induced
by the growing cancer mass. Since we explicitly evaluated the deformations following
tumour growth, we were also able to exploit them to compute alterations in the preferential
directions of diffusion and fluid motion. Simulations to test the model behaviour were then
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performed on a realistic brain geometry, built from imaging data, and the results underlined
the relevance of a mechanical description of brain tumour growth.

The mathematical modelling of biological systems is however in constant expansion
and numerous challenges still remain open. With respect to the problems examined in
this Thesis, in our models of cell reorientation we did not feature explicitly the adhesion
between cells and substrates, for the sake of simplicity. However, it is known that the
link between a cell and its environment, due to focal adhesions, is fundamental in the
transduction of mechanical signals both outside-in and inside-out. Even if the modelling
becomes more complicated, it might be worth to investigate adhesion effects. This purpose
should probably be pursued by considering a more detailed description of viscoelasticity,
for instance accompanied by a multiplicative decomposition of the deformation gradient
together with a proper evolution of the material symmetry group. Moreover, it could be
interesting to employ our framework to evaluate the role of microtubules in reorientation,
which is not fully elucidated. In this respect, a model that describes a dragged reorientation
of a family of fibres performed by another family could provide insights and represents
a stimulating mathematical challenge. For what concerns the modelling of axons, future
developments should be focused on the electrical coupling with mechanics, which we
neglected for simplicity. Indeed, the active contractility might be influenced by the action
potential crossing the axon. In addition, it could be important to introduce mechanical
anisotropy due to the presence of microtubules arranged in the axial direction: such an issue
could also be related to a more refined description of axonal damage as a consequence of
imposed stretch. Finally, the brain modelling framework could be improved by considering
first of all anisotropic growth distortions, which may drive the proliferation of the tumour
mass along brain fibres. Then, a further step could be represented by the implementation
of therapeutic protocols, representing a difficult problem for clinicians. The inclusion of
realistic patient-specific mechanical parameters, obtained through Magnetic Resonance
Elastography, also represents a very intriguing possibility, though this imaging technique
is still under development.

In conclusion, we have shown that the mathematical modelling of biological structures
can be fruitfully employed to get insight into the wide variety of phenomena that are
observed. The intrinsically nonlinear, multiphysical, and strongly coupled behaviour
of cells and tissues poses challenging tasks, which however could take advantage of a
mathematically based description.
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Appendix A

Analytical Characterisation of
Bifurcations

In this Appendix, we provide details about the bifurcations discussed qualitatively in
Sections 3.1.4 and 3.3.2. In particular, the following Proposition can readily be proved to
characterise analytically the type of bifurcations which are observed for the strain energy
defined by Eq. (3.140). The result can however be immediately extended to an energy in
the form of Eq. (3.21).

Proposition A.1. The differential equation (3.129), with W′(θ) given by (3.143), presents

a pitchfork bifurcation with r as a bifurcation parameter at each point

(θ0,r0) =

(
π

2
+ kπ,

1
ρ

)
, k ∈ Z , (A.1)

(θ1,r1) = (kπ,ρ) , k ∈ Z , (A.2)

where ρ is defined in (3.148)3, provided that 1/ρ,ρ ̸= 0. Moreover, the bifurcations are

supercritical if K defined in (3.147) is positive and subcritical if K is negative.

Proof. We recall that if a one-parameter family of one-dimensional fields f (θ ,r) (suffi-
ciently regular) satisfies the following conditions:

f (θ ∗,r) = 0 ∀r , (A.3)

∂θ f (θ ∗,r∗) = 0 , ∂
2
θθ f (θ ∗,r∗) = 0 , (A.4)

∂
2
θr f (θ ∗,r∗) ̸= 0 , ∂

3
θθθ f (θ ∗,r∗) ̸= 0, (A.5)
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then the associated dynamical system undergoes a pitchfork bifurcation at (θ ∗,r∗). In the
case we are considering, we have

f (θ ,r) =− 1
η
W′(θ) =−ε2

η
{[Aξ (θ ,r)−B(r+1)+C]ξθ (θ ,r)} , (A.6)

recalling Eqs. (3.143) and (3.144). We remark that, since in the remainder of the proof
we will need to consider also r as a variable, we have employed the notation ξ (θ ,r) to
explicitly underline that ξ is also a function of r. Accordingly, we denote by ξθ and ξr its
partial derivatives with respect to θ and r, respectively.

We start from (θ0,r0) =
(

π

2 + kπ, 1
ρ

)
and show that the previous conditions (A.3),

(A.4), (A.5) are satisfied. First of all, we have

f
(

π

2
+ kπ,r

)
= 0 ∀r

since ξθ (π/2,r) = 0 ∀r and hence the first condition (A.3) holds. Secondly, we get

∂θ f (θ ,r) =−ε2

η

{
Aξθ (θ ,r)2 +[Aξ (θ ,r)−B(r+1)+C]ξθθ (θ ,r)

}
(A.7)

from which, taking into account that

ξθ (θ ,r) =−(1+ r)sin2θ and ξθθ (θ ,r) =−2(1+ r)cos2θ ,

we obtain

∂θ f
(

π

2
+ kπ,

1
ρ

)
=−2

ε2

η

(
1+

1
ρ

)[
−B
(

1+
1
ρ

)
+C
]
= 0, (A.8)

observing that −B(1+ρ)+Cρ = 0. Moreover,

∂θθ f
(

π

2
+ kπ,

1
ρ

)
=−ε2

η
{3Aξθ (θ ,r)ξθθ (θ ,r)+ [Aξ (θ ,r)−B(1+ r)+C]ξθθθ (θ ,r)}|(θ0,r0)

=−ε2

η

[
−B
(

1+
1
ρ

)
+C
]

ξθθθ

(
π

2
+ kπ,

1
ρ

)
= 0 (A.9)
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for the same reason as before. Hence, the conditions given in Eq. (A.4) are satisfied as
well. Finally,

∂
2
θr f
(

π

2
+ kπ,

1
ρ

)
=−ε2

η

[
−2B

(
1+

1
ρ

)]
= 2

ε2

η
C ̸= 0

since we assumed C > 0. The last condition to be verified reads

∂
3
θθθ f

(
π

2
+ kπ,

1
ρ

)
=−ε2

η

[
12A

(
1+

1
ρ

)2

+8B
(

1+
1
ρ

)2

−8C
(

1+
1
ρ

)]

=−ε2

η
12A

(
1+

1
ρ

)2

̸= 0 (A.10)

since A ̸= 0 – otherwise the oblique equilibrium does not exist – and ρ ̸=−1, since K ̸= 0,
having observed that ξθθθ (θ ,r) = 4(1+ r)sin2θ and ξθθθθ (θ) = 8(1+ r)cos2θ . We
conclude that all the conditions for a pitchfork bifurcation are satisfied; furthermore, we
notice that the type of pitchfork bifurcation depends on the sign of A, namely on the sign
of K: if A > 0 the bifurcation is supercritical, since the third derivative is always negative,
while if A < 0 the bifurcation is subcritical.

We now exploit the previous calculation to show that the system displays a pitchfork
bifurcation also at each point (θ1,r1) = (kπ,ρ). In particular, we immediately have

f (kπ,r) = 0 ∀r .

Then, by substituting into (A.7),

∂θ f (kπ,ρ) = 2
ε2

η
(1+ρ)[A(1+ρ)−B(1+ρ)+C] = 0

since (1+ρ)(A−B)+C = 0. The following condition is

∂
2
θθ f (kπ,ρ) =−ε2

η
[A(1+ρ)−B(1+ρ)+C]ξθθθ (kπ,ρ) = 0

for the same reason above. Finally,

∂
2
θr f (kπ,ρ) = 2

ε2

η
(1+ρ)(A−B) = 2− ε2

η
C ̸= 0
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and

∂
3
θθθ f (kπ,ρ) =−ε2

η
12A(1+ρ)2 ̸= 0

if A ̸= 0 and ρ ̸= −1. Therefore, the system undergoes a pitchfork bifurcation also at
(θ1,r1) = (kπ,ρ): again, such bifurcations are supercritical if A > 0 and subcritical if
A < 0.

It is also possible to show that, if we instead consider an energy given by Eq. (3.154),
then the system exhibits saddle-node bifurcations.

Proposition A.2. The differential equation (3.129), with W′(θ) given by (3.155), presents

a saddle-node bifurcation with r as a bifurcation parameter at each point (θ ∗,r∗) such

that

θ
∗ =

1
2

arctan 3
√

2γ + k
π

2
, (A.11)

and

1
1+ r∗

=
1
2

1± 1

K
(

1+ 3
√

4γ2
)3/2

 , (A.12)

where γ is defined in Eq. (3.158).

Proof. We recall that if a one-parameter family of one dimensional fields f (θ ,r) (suffi-
ciently regular) satisfies the following conditions:

f (θ ∗,r∗) = 0 , ∂θ f (θ ∗,r∗) = 0 (A.13)

∂r f (θ ∗,r∗) ̸= 0 , ∂
2
θθ f (θ ∗,r∗) ̸= 0 , (A.14)

then the associated system undergoes a saddle-node bifurcation at (θ ∗,r∗). In this case,
we need to consider

f (θ ,r) =− 1
η
W′(θ) =

{
[Aξ (θ ,r)−B(r+1)+C]ξθ (θ)+K∥s(r

2 −1)(cos2
θ − sin2

θ)
}
.

Again, we have emphasized explicitly the dependence of ξ on r, which here is a variable
and not a fixed parameter. Since, as we verified before, (θ ∗,r∗) are equilibrium points for
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the system, it follows f (θ ∗,r∗) = 0. Then, we have that

∂θ f (θ ∗,r∗) =−ε2

η
C(1+ r∗)2 cos2 2θ

∗
[

1
K

tan2 2θ
∗− 1

K
+

1
K

sin2θ ∗

sin2θ ∗+2γ cos2θ ∗ (1−2γ tan2θ
∗)

]

=−ε2C
ηK

(1+ r∗)2 cos2 2θ
∗

[
3
√

4γ2 −1+
1−2γ 3

√
2γ

1+ 3
√

4γ2

]
= 0 , (A.15)

where we have used Eqs. (A.11)–(A.12). We move on to the third condition and calculate

∂r f (θ ∗,r∗) =−ε2

η

{
− sin2θ

∗ [2A(1+ r∗)cos2
θ
∗−2B(1+ r∗)+C

]
+2r∗K∥s cos2θ

∗
}

=−ε2

η
C cos2θ

∗ {2γ + tan2θ
∗}=−ε2

η
C
(−1)k(2γ + 3

√
2γ)√

1+ 3
√

4γ2
̸= 0 ,

where k ∈ Z and in the second equality we have taken into account that, at equilibrium,
[A(1+ r∗)cos2 θ ∗−B(1+ r∗)+C]sin2θ ∗ = (r∗−1)K∥s cos2θ ∗. Finally, we compute

∂
2
θθ f (θ ∗,r∗) =−ε2

η

{
6A(1+ r∗)2 sin2θ

∗ cos2θ
∗

+4(1+ r∗)sin2θ
∗ [A(1+ r∗)cos2

θ
∗−B(1+ r∗)+C

]
+4K∥s(1− r∗2)cos2θ

∗
}

which, using again the equilibrium condition, gives

∂
2
θθ f (θ ∗,r∗) =−ε2

η

[
6A(1+ r∗)2 sin2θ

∗ cos2θ
∗] ̸= 0 . (A.16)

Therefore, we conclude that all the conditions are satisfied and the system undergoes a
saddle-node bifurcation at each point (θ ∗,r∗).
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