
 

UNIVERSITÀ DEGLI STUDI DI TORINO 
 

DIPARTIMENTO DI PSICOLOGIA 
 

DOTTORATO DI RICERCA IN NEUROSCIENZE 

 
CICLO XXXI 

 

TITOLO DELLA TESI: 

 

Distribution Patterns 

of Morphometric Neuropathological Alterations 

and Their Relationship with Brain Connectivity 

  

 

TESI PRESENTATA DA: Andrea Nani 

TUTOR: Prof. Franco Cauda 

COORDINATORE DEL DOTTORATO: Prof. Marco Sassoè 

 

ANNI ACCADEMICI: 

1 Ottobre 2015 – 30 Settembre 2019  



2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3 

 

Index 

 

 

Abstract              6 

 

1. Background             7 

1.1. Windows into the brain            7 

1.2. The brain functional connectivity          8 

1.3. The brain anatomical connectivity        12 

1.4. The brain genetic connectivity         14 

1.5. Network analysis and the pathological brain       16 

 

2. Study 1            19 

2.1. Introduction           19 

2.1.1. Mechanisms at the basis of alterations’ spread      20 

2.1.2. A core set of co-altered areas         25 

2.1.3. The research hypotheses of the study and the introduction 

          of a new method to test them         26 

 

2.2. Materials and methods          31 

2.2.1. The voxel-based morphometry        31 

2.2.2. Selection of studies          36 

2.2.3. Anatomical likelihood estimation 

          and creation of a modelled alteration map       61 

2.2.4. Construction of nodes          62 

2.2.5. Construction of the structural co-alteration network      78 

2.2.6. Construction of the functional connectivity matrix      80 

2.2.7. Construction of the anatomical connectivity matrix      80 

2.2.8. Construction of the genetic co-expression matrix      81 

2.2.9. Assessing the reliability of measures        82 

2.2.10. Comparison of connectivity matrices       83 



4 

 

2.2.11. Construction of the diffusion connectivity matrix      83 

2.2.12. Contribution of the connectivity profiles to the co-alteration matrix   85 

2.2.13. Techniques of network analysis        86 

 

2.3. Results            87 

2.3.1. The most frequently altered areas of the brain      87 

2.3.2. Creation of nodes and the structural co-alteration network     91 

2.3.3. Anatomical, functional and genetic connectivity      91 

2.3.4. Reliability of connectivity matrices        93 

2.3.5. Correlational analyses          96 

2.3.6. Progressions along the spatial and temporal dimensions     99 

 

2.4. Discussion         101 

2.4.1. The distribution of gray matter alterations     102 

2.4.2. The relationship between the distribution of GM alterations 

          and brain connectivity        105 

2.4.3. Brain connectivity can account for the distribution patterns 

          of gray matter alterations       108 

2.4.4. Limitations and future directions      109 

 

2.5. Conclusion         113 

 

3. Study 2          115 

3.1. Introduction         115 

 

3.2. Material and methods        116 

3.2.1. The parcellation of the insular cortex      116 

3.2.2. Selection of studies        117 

3.2.3. Anatomical likelihood estimation and comparison 

          between functional connectivity and alteration patterns   118 

3.2.4. Behavioral profile analysis       119 

3.2.5. Construction of the morphometric co-alteration networks   119 



5 

 

3.3. Results          120 

3.3.1. Results from the queries       120 

3.3.2. The co-alteration pattern of the insula      130 

3.3.3. Comparison between co-alteration pattern 

          and functional connectivity of the insula     131 

3.3.4. Behavioral profile analysis       136 

3.3.5. The co-alteration network of the insula     136 

 

3.4. Discussion         143 

3.4.1. The co-alteration network of the insula     143 

3.4.2. Distribution analysis of edges       144 

3.4.3. The co-alteration networks and functional connectivity of the insula 145 

3.4.4. Behavioral profile analysis       147 

3.4.5. Limitations and future directions      148 

 

3.5. Conclusion         150 

 

4. Epilogue          152 

 

Acknowledgments         154 

 

Bibliography          155 

 

 

 

 

 

 

 

 



6 

 

 

Abstract 

The pathological brain is typically characterized by network-like morphological 

coalterations of gray matter. These coalteration patterns can be identified by 

analyses of voxel-based morphometry (VBM), a technique capable of detecting 

values of increased or decreased gray or white matter. In a first study, a large 

transdiagnostic sample of VBM experiments, obtained from the BrainMap 

database, was analyzed with an innovative methodology, so as to construct a map 

of the pattern formed by co-altered cerebral areas across the brain. This 

coalteration pattern has been compared to three corresponding maps of 

connectivity profiles: functional, structural, and genetic. This comparison 

provided a transdiagnostical evidence of how the three different types of 

connectivity can influence the distribution of neuronal alterations. The analysis 

showed that all the three types of connectivity explain and predict with good 

statistical accuracy the distribution and temporal progression of the coalterations. 

Among these three types of brain connectivity, the functional gives the better 

account, followed by the structural and the genetic. In a second study, the insular 

cortex was taken as a target region with the aim to investigate what distribution 

pattern of alterations is associated with this area and whether this pattern 

correlates with its functional meta-analytic connectivity. The analysis revealed 

that the coalteration and functional maps largely overlap each other. This finding 

suggests that neuropathological alterations are likely to develop according to the 

constraints of brain connectivity, and that brain hubs are at the center of the 

distribution patterns of coaltered areas. 
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1. Background 

 

 

 

 

 

1.1. Windows into the brain 

Connectomics is a broad term that has been used in several ways since its 

first appearance. As it was originally defined, connectomics is “a comprehensive 

structural description of the network of elements and connections forming the 

human brain” (Sporns et al., 2005). This new approach – which can be developed 

either at the macroscale of cerebral areas and pathways or at the microscale of 

single neurons and synapses – has led to a picture of cerebral functioning in 

terms of networks and has emphasized the great need for an overarching 

mapping of the whole organization of connections that shapes the human brain 

(i.e., the so-called connectome). 

This change of paradigm in neuroscience was radical, given that, before the 

advent of the neuroimaging techniques that made it possible, the brain was 

considered as an organ of different segregated modules capable of implementing 

different specialized cognitive functions. Apparently, it was thought that each 

mental faculty had its own dedicated brain area, which could operate largely in 

isolation with respect to the others. This idea received in the last century 

theoretical support by the philosopher Jerry Fodor (1983) and still to date is 

considered to be a milestone of cognitive neuroscience (Sternberg, 2011). This 

view has been also supported by the association of the clinical observation of 

specific deficits in neurological patients with the impairment of certain brain 

areas that appeared clearly damaged in the autoptic examination. But, although 

post-mortem investigations could provide important insights into the anatomy 

and structure of the brain – see for instance the ground-breaking investigations of 
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Paul Broca (Damasio and Geschwind, 1984) –, these inquiries were utterly silent 

about the functional side. After the development of brain imaging procedures, 

everything changed. In fact, for the first time it was possible to study the brain in 

vivo, in the very moment of its activity. 

The first technique that proved itself to be effective was the computerized 

tomography (CT), developed around the 1970s by the independent research of 

the engineer Godfrey Hounsfield and physicist Allan Cormack, who in 1979 

were awarded the Nobel Prize for medicine. The CT is still used nowadays in 

both clinical and research contexts; however, it can offer only structural images. 

Other brain imaging techniques capable of providing functional patterns of 

brain activity were the positron emission tomography (PET), the single position 

emission computerized tomography (SPECT), the magnetoencephalography 

(MEG), and the functional magnetic resonance imaging (fMRI). All these 

procedures can inspect the dynamics of activation of different brain sites. Almost 

in real time it became possible to study the physiology of the brain in both 

normal and pathological conditions.  

With these functional techniques, neuroscience was able to literally open 

windows into the brain and glimpse the dynamics of the mind. As a  result, the 

idea of segregation at the basis of human cognition appeared to be just one side 

of the coin. Neuroscientists realized that in addition to functional differentiation 

(due to segregated brain modules), cognitive tasks also needed the integration of 

cerebral areas able to form widespread functional networks (Buchel and Friston 

2001; Bullmore and Sporns 2009; Friston 1994; McIntosh and Gonzalez-Lima 

1994). Studies provided evidence that specialized modular assemblies of neurons 

did not work in isolation but, rather, exchanged information and created 

functional networks in which this information could be integrated. Functional 

processes were therefore based on the interplay between segregation and 

integration. The new research field of brain network analysis had emerged and to 

date it has been one of the most dynamic and fruitful branches of neuroscience. 

 



9 

 

1.2. The brain functional connectivity 

Brain connectivity can be studied at the functional, anatomical, and genetic 

level. This paragraph will be dedicated to a brief overview of the neuroscientific 

approach to the study of functional connectivity. 

Although it is still a moot point whether the neural correlate of a mental 

process can be necessary and sufficient or necessary but not sufficient for the 

mental process to occur, there is sound evidence suggesting that functional 

changes in one’s brain are always associated with changes in one’s state of mind. 

In light of this, the standard neuroscientific view presupposes that mental 

processes are supported by brain processes (Shulman, 2001). Still, functional 

brain imaging techniques do not measure cerebral activity directly, but they 

detect a signal obtained from physiological parameters of energy consumption 

(i.e., glucose oxidation and consumption, and blood flow changes). 

The average adult human brain, which is about 2% of the body weight, 

requires to function an amount of energy that is about 20% of an individual’s 

resting metabolic rate (McKenna et al., 2006). The metabolism of the brain is 

quite constant over time, despite variation in cognitive as well as motor 

performances. This can be accounted for by the fact that the resting state 

typically needs substantial energy for the maintenance of the membrane 

potentials. Around 75% of energy consumed by brain is related to signaling, 

while the remaining 25% of energy is used to support the necessary non-

signaling cellular activity, including nucleotide turnover, synthesis and 

degradation of proteins, mitochondrial proton leak and axoplasmic transport 

(Attwell and Laughlin, 2001). 

Since a high metabolism rate characterizes the brain both when we are 

engaged in cognitive tasks and when we are behaviorally passive (resting state), 

it is reasonable to ask what type of brain activity are we considering in the 

context of neuroimaging techniques such as PET and fMRI. A possible solution 

requires to clarify what is meant by the term ‘activation’ when we refer to the 

transient changes in brain activity (Raichle and Gusnard, 2002). Neuronal 
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activations differ from the normal metabolic activity of the brain in terms of how 

the blood flow and oxygen consumption are related to each other. In a healthy 

brain the balance between oxygen delivery (i.e., blood flow) and oxygen 

consumption changes to an appreciable degree when neuronal activations occur 

during the performance of specific tasks (Raichle and Mintun, 2006). Notably, 

the changes in blood flow are greater than the corresponding changes in oxygen 

consumption. As a consequence, the oxygen supply increases more than the 

oxygen demand. However, while oxygen consumption increases less than blood 

flow, glucose utilization increases in proportion to changes in blood flow, as a 

portion of the metabolic increase is related to glycolysis (Fox et al., 1988). Since 

both blood flow and glucose utilization increase more than oxygen consumption, 

neuronal activations can be differentiated from the normal metabolic activity of 

the brain. 

Furthermore, deoxyhemoglobin (i.e., hemoglobin with no oxygen) and 

oxyhemoglobin (i.e., hemoglobin with oxygen) have different magnetic 

properties. The former is paramagnetic, that is, more influenced by a magnetic 

field, while the latter is diamagnetic, that is, less influenced by a magnetic field. 

As a consequence, the fraction of oxyhemoglobin and deoxyhemoglobin 

produces changes in the magnetic response of the blood, so that the blood 

oxygenation level dependent (BOLD) effect can be used to detect indirectly brain 

activations. 

These methodological grounds allow the design of functional imaging 

experimental protocols in order to detect differences in the brain signal between 

two behavioral conditions. In one condition (i.e., the control task) the individual 

is at rest, while in the other condition he or she is engaged in performing a 

specific task. Then, the activation patterns obtained at rest are subtracted from 

those obtained during task, so as to identify statistically significant changes in the 

brain signal. The images resulted from subtraction are supposed to show the 

brain areas that mainly correlate with a specific mental process. 
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It is important to highlight that the same cerebral region could be involved in 

more than one cognitive process. This phenomenon is well known and has been 

called ‘neuronal context’ (McIntosh, 1998) or ‘functional context’ (Bressler and 

Kelso, 2001). Furthermore, single-cell studies have shown that patterns of 

neuronal firing largely depend on many co-factors rather than on single stimulus 

or one response parameter. Therefore, the creation of effective connections is 

thought to be context-sensitive (Buchel and Friston, 1997), so that the 

contribution of a certain neuronal assembly or single cell to a specific cognitive 

process is significantly related and influenced by the state of other anatomically 

connected elements. This is why the same level of activity in a certain brain 

region may be involved in diverse mental processes depending on what other 

areas are momentarily co-active (McIntosh 1999). The neuronal or functional 

context has important consequences for the understanding of brain activation 

patterns, especially with regard to the study of higher-order psychological func-

tions, in which we expect to find a great overlap of activation patterns for many 

different cognitive operations (McIntosh et al., 2001). 

It is now well established that brain areas consistently found to be active 

together are supposed to be functionally connected. They form typical functional 

networks and, to date, brain imaging studies have identified several of them 

(Beckmann et al., 2005; Fransson, 2005; Salvador et al., 2005; van de Ven, et al. 

2004; van den Heuvel et al., 2008). Among the most studied we can include the 

visual network, the motor network, a salience network composed of bilateral 

temporal insular and anterior cingulate cortex regions, the dorsal and ventral 

attention networks, and the default mode network (Buckner and Vincent, 2007; 

Fox and Raichle, 2007; Fox et al., 2005; Raichle and Snyder, 2007; Sporns, 

2010). 

These networks constitute the functional architecture of the human brain. 

Within them, however, brain areas play different roles: if damaged, some areas 

can be replaced by others, so that the network can continue to support its 

function. In contrast, other areas, in virtue of their centrality and elevated number 
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of connections, are essential for the normal function of the network. These 

pivotal centers are called brain hubs and are the fundamental nodes of the 

functional organization of the brain. Their damage leads to the inevitable 

disruption of the network and to the emergence of pathological functional 

patterns (Fornito et al., 2015). 

In sum, the brain network analysis has provided a new theoretical approach for 

neuroscience as well as the potential to help us understand how brain functional 

processes produce behavior, cognition and, when impaired, mental illness (Yuste, 

2015). 

 

1.3. The brain anatomical connectivity 

A second type of brain connectivity takes into consideration the fibers of 

white matter that link neurons to neurons. All the brain cells in the nervous 

system form vast webs by means of local and long-range structural connections. 

Axonal projections can link neurons that are near and contiguous or neurons that 

are far away and in different districts of the brain. The length of projections 

depends on the type of neuron and on the type of function that the cell supports. 

The patterns of anatomical connectivity are elegantly shaped by the principles of 

segregation and integration on the one hand, and experience on the other. 

As we have seen, segregation refers to the division of the brain into regions 

dedicated to specific functional tasks. This makes possible for the brain to 

elaborate different types of information in parallel and simultaneously. 

Segregation implies that distinct assemblies of neurons, specialized in a specific 

function, can be anatomically localized, with an organization that is quite stable 

across individuals and species (Zamora-López et al., 2011). In turn, integration is 

the capacity of a system to gather information of different types and process it to 

combine and create new and useful information. For instance, visual sensory data 

need the binding of different features related to the receptive field, such as color, 

orientation, and position of an object (Zamora-López et al., 2011). So, if neuronal 

assemblies follow predominantly the segregation principle, then they will tend to 
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form and be part of small-world networks, in which the neighboring areas (or in 

the jargon of brain network analysis, the nodes) of any given area are likely to be 

neighboring nodes of each other, and most nodes can be reached from every 

other node by a small number of steps along the routes or axonal paths that 

connect them. This type of small-world networks is largely present in the primary 

sensory cortices, in which specialized modules interact to process specific chunks 

of information. As a result, these networks show unique topological properties, 

as they are highly clustered with a locally efficient information transfer 

(Telesford et al., 2011). 

On the other hand, if neuronal assemblies follow predominantly the 

integration principle, then they will tend to form and be part of large-scale 

networks, in which brain areas and small networks can be organized in 

hierarchical arrangements. This structural organization is mainly related to 

associative cortices and may enhance both the brain’s functional stability and 

information processing capabilities, as its topological aspects appear significant 

for implementing dynamic patterns of integration between different features of 

reality in order to generate global percepts (Hilgetag and Goulas, 2016). These 

large-scale networks are characterized by rich club properties, in which some 

areas play the role of central hubs in virtue of their high density of connections 

not only with other areas within networks but also with hubs of different 

networks. For instance, the insular cortex is thought to be an important brain hub. 

It has a central position within the salience network and some of its neurons (Von 

Economo’s neurons, VENs) are characterized by long-range projections. VENs 

are large spindle-shaped cells that are supposed to be involved in higher-order 

processes regarding the monitoring of the state of the body, such as interoception 

and proprioception (Allman et al., 2005; Cauda et al., 2013, 2014; Medford and 

Critchley, 2010; Seeley et al., 2007). 

The other fundamental factor capable of shaping the patterns of brain 

anatomical connectivity is experience. In neuroscience this mechanism is known 

as the Hebbian rule, according to which neurons that fire together wire together 
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(Löwel and Singer, 1992). In the words of Donald Hebb: “…the persistence or 

repetition of a reverberatory activity (or ‘trace’) tends to induce lasting cellular 

changes that add to its stability. [...] When an axon of cell A is near enough to 

excite a cell B and repeatedly or persistently takes part in firing it, some growth 

process or metabolic change takes place in one or both cells such that A’s 

efficiency, as one of the cells firing B, is increased” (Hebb, 1949). This 

mechanism is supposed to be at the root of the formation of new synapses and, 

therefore, of synaptic plasticity. In turn, the creation of new anatomical 

connections between neurons is thought to be at the basis of the unsupervised 

learning process. 

Techniques of diffusion MRI permit to perform fiber tracking analyses in 

order to obtain images of axonal bundles connecting different brain regions. 

Among them there are the diffusion-weighted imaging (DWI), diffusion tensor 

imaging (DTI), and diffusion spectrum imaging (DSI). All these methods use the 

detection of differences in the movement or speed of the water molecules in a 

medium. In fact, at a microscopic scale, in an isotropic medium water molecules 

move freely in all directions in a jittery and erratic manner. But in an anisotropic 

medium, such as the brain, water molecules move differently according to the 

type of cerebral tissue. Specifically, they move faster along than across structural 

constraints (Le Bihan et al., 2001; Mori and Zhang, 2006; Tuch et al., 2003). 

These analyses allow the description of the properties of white matter with 

regard to a diffusion gradient, its axis and radiofrequency impulses (Hagmann et 

al., 2006). Data obtained with DWI, DTI and DSI can be used for the fiber 

tracking analysis in order to construct anatomical connectivity maps of the routes 

followed by white matter bundles connecting different brain regions with regard 

to healthy and pathological conditions. 

 

1.4. The brain genetic connectivity 

The last type of brain connectivity that we are going to discuss is based on 

different genetic profiles that brain areas can express. The link between gene 
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expression of cerebral areas and their neural connectivity patterns is one of the 

fundamental questions in neuroscience. Genes play an essential role in the 

formation and development of the nervous system, as well as in the maintenance 

of its functions. They store information for specifying neuronal cell types, 

destining neurons into specific networks and for determining their connectivity 

pathways (Hobert, 2003; Kania et al., 2000). In particular, neuronal wiring is 

supposed to take place in virtue of the selective attachment guided by certain 

molecular identifiers, and a number of studies have described different families 

of genes that play a role in axonal guidance and in defining their specific targets 

(Araujo and Tear, 2003; Chilton, 2006; Huber et al., 2003; Markus et al., 2002; 

Tessier and Goodman, 1996). The synaptic function needs the coordinated 

expression of genes guiding the synthesis of neurotransmitters in the presynaptic 

cell and of receptors in the post-synaptic cell (Polleux et al., 2007). Gene 

expressions are therefore deeply involved in the organization of the brain, both 

with regard of its functional and structural aspects. 

Therefore, the understanding of gene functions, of their mutual interaction 

as well as of the relationship between genes expression and the brain connectome 

is of fundamental importance for explaining the other two brain connectivity 

profiles that have been discussed so far: the functional and the anatomical. 

During the last years, researchers have been investigating gene co-expressions 

patterns of the human genome in the brain. But unravelling the function of the 

genome will require comprehending how all of its parts co-operate in forming a 

complex system composed of different gene expression patterns, which is a 

fascinating but also a big challenge. 

Thus far, the exploration and analysis of gene expression data have used 

genome-wide microarrays, which are tools that can identify gene co-expression 

patterns and detect sets of co-transcribed genes. In this way it is possible to map 

the expression patterns that distinguish brain regions from each other. Within this 

picture, brain areas expressing the same set of genes can be considered to be 

genetically connected. The aim of this line of research is to construct a landscape 
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of the human brain constituted by different patterns of gene expression associated 

with cerebral areas. To decipher this landscape will be a great advancement in the 

comprehension of the complex interplay between the genome and brain 

connectivity. 

The study of genetic co-expression patterns can in fact shed light on the 

mechanisms of human cognition, emotion and personality. Furthermore, many 

genes have been recognized to be involved in the development of brain disorders, 

whose etiopathogenesis is thought to be associated, in part, with aberrant 

connectivity patterns (Heck et al., 2014). Explaining the role of genes in brain 

diseases will help achieve a better predictive diagnostic power with regard to the 

classification of symptoms and their development, so as to improve medical care 

and treatment. 

 

1.5. Network analysis and the pathological brain 

The pathoconnectivity network analysis is an intriguing subfield of 

connectomics, and can be defined as the ‘description of networks formed by co-

altered brain areas’. Studies in this recent neuroscientific discipline show that 

brain disorders do not typically produce alterations on a single cerebral region; in 

contrast, they frequently affect several different regions. Furthermore, a growing 

body of evidence suggests that morphological alterations of gray matter (GM) do 

not occur randomly but, rather, form characteristic patterns of distribution 

(Cauda et al., 2017; Crossley et al., 2014; Fornito et al., 2015; Menon et al., 

2011). For instance, with regard to mental illness it has been proposed that 

alterations in a certain set of cerebral regions might be commonly related to a 

broad spectrum of psychiatric conditions (Crossley et al., 2015; Goodkind et al., 

2015). And another meta-analysis has shown overlapping patterns of GM 

alterations in three neuropsychiatric disorders – i.e., autism spectrum disorder, 

schizophrenia, and obsessive spectrum disorder (Cauda et al., 2017). 

These studies provide a transdiagnostic model for mental illness suggesting 

that risk factors may generate alterations in the functioning of cerebral circuits, 
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which in turn may induce vulnerability to psychopathologic processes in such a 

way that specific cognitive domains result to be affected. This view emphasizes 

the connection between common symptom variance and common genetic 

variance and considers it to be a consequence of a shared genetic liability, which 

might contribute to the disruption of brain networks underlying different 

cognitive domains (Buckholtz and Meyer-Lindenberg, 2012). Brain alterations 

and dysfunction would not be strictly associated with typical clinical symptoms 

but, rather, to endophenotypes; in other words, they may be associated with 

specific domains and neuropsychological functions, together with epigenetic and 

environmental factors that could interact with the endophenotypes to generate a 

complex set of symptoms and, eventually, a phenotypical syndrome. These 

genetic and environmental risk factors are supposed to impact on systems-level 

circuits for the main dimensions of cognition. Thus, the disruption of these 

important circuits might cause a transdiagnostic symptomatology and a sort of 

susceptibility to a variety of psychopathological conditions rather than to clear-

cut categorical diseases (Buckholtz and Meyer-Lindenberg, 2012). 

Distribution of GM alterations in network-like patterns have been found not 

only in neurodegenerative and psychiatric diseases, but also in other 

neuropathological conditions such as chronic pain (Tatu et al., 2018). In 

particular, Tatu et al. (2018) have showed that GM alterations are characterized 

by symptom-related patterns of morphometric co-alterations, which strongly 

reflect the patterns of brain functional connectivity. Furthermore, within the 

network formed by co-altered areas it is possible to identify a set of highly 

connected nodes. Specifically, regions exhibiting GM increases appear to be 

more locally distributed, while regions exhibiting GM decreases appear to 

produce a more densely distributed network, with long-range, intra- and inter-

hemispheric connections (Tatu et al., 2018). 

In another meta-analytic study, dedicated to the construction of the 

pathoconnectivity profile of Alzheimer’s disease (AD), Manuello et al. (2018) 

have proposed to call the distribution patterns of neuronal alterations 
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“morphometric co-alteration networks”. These co-alteration networks, which 

seem to develop according to brain connectivity constraints (Raj et al., 2012; 

Zhou et al., 2012), can be considered as a form of pathologic anatomical 

covariance (Evans, 2013; Mechelli et al., 2005). The pathoconnectivity analysis 

of this study provided further evidence that GM alterations are distributed across 

the brain in network-like patterns. Moreover, the meta-analysis showed that 

certain areas of the co-alteration network, in virtue of their network centrality and 

high values of node degree, may be considered as pathoconnectivity hubs 

capable of influencing the development of morphological abnormalities 

(Manuello et al, 2018). 

In sum, these innovative methodologies of pathoconnectivity analysis 

(which so far have been based almost exclusively on transdiagnostic maps, i.e,  

neuroimaging maps that meta-analytically merge different results related to 

various pathologies) are proving themselves to be important tools for opening 

novel perspectives on brain disorders, as their application to both neurological 

and psychiatric diseases provides valuable insights capable of improving our 

understanding of the pathological brain. Furthermore, this transdiagnostic 

outlook aims at cutting across existing categorical diagnoses in order to construct 

an improved classification system for brain diseases. 

On these grounds, two studies are going to be discussed in the following 

chapters. One that investigates how three different types of brain connectivity 

can influence the distribution of GM alterations, and another that focuses on 

analyzing the distribution pattern of GM alterations associated with one of the 

most frequently pathologically affected areas of the brain, the insular cortex. 
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2. Study 1 

 

2.1. Introduction 

 

As we have seen in the preceding paragraphs, brain disorders (be they 

neurological or psychiatric) are characterized by distributed GM alterations. With 

regard to neurodegenerative diseases, in particular, GM alterations have been 

reported to propagate from one brain area to another in distinctive network-like 

patterns (Yates, 2012; Pandya et al., 2017). These distribution patterns of 

pathological co-alterations seem to propagate along pathways that are influenced 

by the constraints of brain connectivity (Cauda et al., 2018a; Iturria-Medina and 

Evans, 2015; Manuello et al., 2018; Oxtoby et al., 2017; Raj et al., 2012; Tatu et 

al., 2018; Yuan et al., 2017; Zhou et al., 2012). As a matter of fact, distribution 

patterns of neuronal atrophy generated by neurodegenerative processes resemble 

the patterns of neural connections (Warren et al., 2013). What is more, brain 

disorders tend to selectively target specific subpopulations of neurons, which 

frequently are at the center of important functional networks (Saxena and Caroni, 

2011). In virtue of their significant central position, these areas can be considered 

as brain hubs and, thereby, more likely to be vulnerable to pathological processes 

(Crossley et al., 2014; Cope et al., 2018). 

In light of the aforementioned studies, brain connectivity profiles are 

supposed to influence the spread of GM alterations across different cerebral 

regions; therefore, they can be significantly involved in the development of brain 

diseases. What remains as yet unclear is why pathological alterations propagate 

along such networks, how much different connectivity patterns can influence and 

guide the spread of alterations, and whether the strength of network connectivity 

may predict the severity of disease. A connectomic approach to the pathological 

brain is fundamental to address these issues, as it is uniquely entitled to answer 

the following questions. Are there some pathways that are prevalently followed 
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by alterations? Are there connectivity patterns that can influence more 

significantly the distribution as well as the spread of alterations? And, finally, is 

it possible to predict the development of GM alterations on the basis of 

connectivity constraints? 

 

2.1.1. Mechanisms at the basis of the alterations’ spread 

To date, at least four underlying mechanisms (which are not necessarily 

mutually exclusive) have been proposed to account for the propagation of brain 

alterations: i) transneuronal spread, ii) nodal stress, iii) shared vulnerability, and 

iv) trophic failure (Fornito et al., 2015; Zhou et al., 2012). 

The hypothesis of the transneuronal spread considers the involvement of toxic 

agents moving along axonal connections (Clavaguera et al., 2014; Goedert et al., 

2010; Jucker and Walker, 2013; Korth, 2012; Kraus et al., 2013; Soto and 

Estrada, 2008; Walker et al., 2013). Converging findings suggest that misfolded 

proteins might propagate in a prion-like manner along axonal pathways, 

diffusing a corruptive templating that in turn might cause a cascade phenomenon 

of misfolded protein spread (Hardy and Revesz, 2012; Jucker and Walker, 2011; 

Warren et al., 2013). Within the brain, in fact, axonal projections and synaptic 

contacts may serve as conduits for the spread of pathological processes. In other 

words, misfolded proteins would diffuse GM alterations across brain areas that 

are anatomically connected (Chevalier-Larsen and Holzbaur, 2006; Fornito et al., 

2015; Goedert et al., 2010; Iturria-Medina et al., 2014; Zhou et al., 2012). 

Disruption could therefore spread easily between the connected elements of a 

network, the dysfunction of which might eventually impact on a large-scale 

system. The transneuronal spread of toxic agents would produce over time a 

transneuronal degeneration, that is, a structural deterioration of areas connected 

to the ones affected by pathology. When the pathology progresses, the 

transneuronal deterioration often affects areas that are remote from the site of 

inception. This type of degeneration can be either anterograde or retrograde 

(Fornito et al., 2015). The former refers to the damage of one neuron that causes 
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deterioration to postsynaptic sites; the latter refers to the deterioration of a 

presynaptic neuron as a consequence of the damage of its postsynaptic target. 

The degeneration can have different manifestations, including reductions in 

dendrite and synapse number, neuronal shrinkage, alterations of axonal myelin 

content and fiber number, and finally the brain cell death (Cowan, 1970). 

Resembling the mechanism identified in prion disease (Aguzzi et al., 2007), 

the transneuronal spread has been suggested to play e role in the development of 

neurodegenerative conditions, such as Parkinson’s disease, AD, Huntington’s 

disease, hereditary motor neuropathy, hereditary spastic paraplegia, tauopathies, 

amyotrophic lateral sclerosis, and Charcot-Marie-Tooth disease (Bartzokis, 2011; 

Bourdenx et al., 2017; Clavaguera et al., 2013; Hirokawa et al., 2010; Perlson et 

al., 2010). However, despite these interesting findings, it should be observed that 

the prion-like hypothesis at the root of neurodegenerative diseases is still an open 

field of research (Guest et al., 2011). 

The hypothesis of the nodal stress claims that the most active brain areas 

(i.e., network hubs) might also be the most functionally stressed (Crossley et al., 

2014). In fact, in virtue of their intense activity, these cerebral regions are 

supposed to be more susceptible to be structurally altered (Buckner et al., 2005; 

Saxena and Caroni, 2011). In the long run this intense activity might disrupt the 

brain cell metabolism, leading to hyperexcitability and increased vulnerability of 

functionally interconnected hubs (Saxena and Caroni, 2011; Zhou et al., 2012). 

The phenomenon of the nodal stress has been reported in humans by using brain 

imaging techniques and voxel-based meta-analyses (Crossley et al., 2014). It 

strongly suggests that not all brain areas are equal; on the contrary, some are 

more fundamental for the functional maintenance of the network which they 

contribute to, so much so that the pathological impact of network disruption 

depends on the centrality and connection topology of the affected areas (Alstott 

et al., 2009; Honey and Sporns, 2008). The centrality of a node (i.e., brain area) 

measures the topological importance of a network node. It is commonly 

quantified on the basis of the node degree, which is the number of connections or 
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edges linked to the node (Borgatti, 2005). Functional brain networks are 

characterized by various degree distributions, that is to say, they are composed of 

many nodes with low degree and a small amount of nodes with high degree. 

These are the hubs of the network and a damage to them would result in the 

failure of a disproportionate number of connections, leading to the network 

fragmentation and disruption (Albert et al., 2000). This is so because 

topologically central hubs are highly interconnected; they form, as we have 

already said, a rich club capable of favoring communications between different 

cerebral regions (van den Heuvel and Sporns, 2011). Of note, these brain hubs 

are more distributed in integration and association cortices; primary sensory 

cortices, on the other hand, appear to present lower degrees of topological 

centrality (Harriger et al., 2012; Zamora-López, 2010). It is not surprising, 

therefore, that a damage to these highly connected areas and/or to the 

connections between them has significant effect on brain network organization 

and function than the damage affecting topologically peripheral nodes or 

connections (Alstott et al., 2009; Honey and Sporns, 2008; van den Heuvel and 

Sporns, 2011). Furthermore, there are distinctions among hubs, since some of 

them are more “provincial” than others. The provincial hubs are characterized by 

a strong inter-modular connectivity, that is, they connect prevalently with other 

nodes within the same module, and for this reason they play a pivotal role in 

functional specialization. In contrast, other hubs, which can be called “connector 

hubs”, exhibit a more widespread effect on network dynamics, linking different 

modules within a network, and, thereby, play an essential role in functional 

integration (Fornito et al., 2012; Guimera and Nunes Amaral, 2005; Power et al., 

2013). In other words, these regions serve as “convergence zones” allowing the 

integration of specialized processes between different neural structures 

(McIntosh, 2004). 

In line with this theoretical considerations and with the nodal stress 

hypothesis, computational models show that, when impaired, connector hubs 

disrupt more profoundly the network system, resulting in more pervasive 
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dysfunction (Honey and Sporns, 2008). Instead, impairment to provincial hubs 

produce specific deficits. These conclusions are also supported, for instance, by 

clinical evidence of patients whose dorsomedial prefrontal cortex and anterior 

insular cortex have been impaired. It is known that these brain areas are 

functionally connected to many different regions; in accord with the nodal stress 

hypothesis, patients with damage to these areas exhibit a pervasive clinical 

profile of neuropsychological deficits within several cognitive domains (Warren 

et al., 2014). Furthermore, on the basis of the transneuronal spread hypothesis, 

altered brain hubs might enhance the diffusion and progression of GM alterations 

(Kitsak et al, 2010). Support to this mechanism of spread is given by evidence 

that brain areas which are more susceptible to transneuronal degeneration are 

those that are connected or topologically close to the sites already altered by 

pathological processes (Klupp et al., 2014; Myers et al., 2014; Verstraete et al., 

2013; Zhou et al., 2012). But it is also true the other way round, since a large 

number of shortest paths between cerebral areas pass through network hubs, 

which is indicative that these connected nodes can be easily reached by 

transneuronal degeneration processes (van den Heuvel et al., 2012). Finally, the 

intense baseline activity and metabolic needs of brain hubs (Liang et al., 2013; 

Tomasi et al., 2013) could make their neuronal structures specifically exposed to 

metabolic stress or activity-dependent deterioration, especially if levels of 

activity increase well beyond the baseline, when these areas are employed for 

compensation purposes (Bullmore and Sporns, 2012; de Haan et al., 2012; 

Saxena and Caroni, 2011). 

The third hypothesis proposes that certain regions with shared gene or 

protein expressions may exhibit common vulnerability to brain disorders (Zhou 

et al., 2012). This phenomenon might be mediated in part by the relationship 

between patterns of brain connectivity and expression of certain genes (Cioli et 

al., 2014; French and Pavlidis, 2011; Wolf et al., 2011). The idea that gene 

expression is associated with brain connectivity should not be surprising. For 

instance, the expression of a neurotransmitter must be associated with the 
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expression of proper receptors in the postsynaptic target. Furthermore, the 

regulation of neurite development, plasticity mechanisms, as well as cell 

adhesion molecules need appropriate gene expressions in connected neurons 

(Gascon et al., 2007; Kiryushko et al., 2004). 

Although inquiries into this field of research are very complex to conduct in 

vivo, studies on humans show that functionally connected areas share genetic 

characteristics, which particularly regard the regulation of axon guidance (Cioli 

et al., 2014; Prieto et al., 2008). Many genes that are involved in brain 

connectivity result to be very active during the early stages of brain development. 

There is evidence that these genes are not only active in the developing brain but 

also in the adult, when they might continue to be effective in the maintenance or 

tuning of neural connectivity (Murray et al., 2007; Zapala et al., 2005). Of note, 

some of these genes that are crucial in the growth and maintenance of cerebral 

structures are supposed to play a role in neuropathological processes (French and 

Pavlidis, 2011). If so, neuropsychiatric developmental disorders, such as autism 

spectrum disorder (ASD), which has been associated with connectivity 

abnormalities (Belmonte et al., 2004; Geschwind and Levitt, 2007), may be due 

in part to dysfunction in the expression patterns of genes. Given the risk of 

heritability of many such neurodevelopmental disorders, it is expected that future 

research will find the relationship between gene expression and connectivity to 

be strict. Investigations are paving the way for the integration between genetics 

and connectomics (Lichtman and Sanes, 2008). The study of the relationship 

between the genome and brain connectivity might be very relevant to the 

understanding of behavior in these disorders and potentially open new avenues 

for their treatment. 

The fourth hypothesis of GM alterations’ spread presupposes a failure in 

the mechanism of trophic factors’ production, which can cause the pathological 

degeneration of neural wiring (Fornito et al., 2015; Zhou et al., 2012). The 

dysfunction of trophic factors, which are indispensable ingredients for the 

development and maintenance of axons and dendrites, could bring about 
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alterations in specific areas as well as in the connecting pathways. Given that 

genes play a fundamental role in the growth and conservation of neural routes, 

the disruption of these factors is also probably related to pathological gene 

expression patterns (Appel, 1981; Fornito et al., 2015; Salehi et al., 2006; Zhou 

et al., 2012). 

 

2.1.2. A core set of co-altered areas 

Pathoconnectivity studies investigating the networks composed of brain 

areas that occur to be co-altered are providing interesting insights into the 

pathological brain; these insights suggest the validity of a neurobiological and 

transdiagnostic approach for a better understanding of neurological and 

psychiatric disorders (Buckholtz and Meyer-Lindenberg, 2012; Cauda et al., 

2018a; Fornito et al., 2015; Goodkind et al., 2015; Iturria-Medina and Evans, 

2015; McTeague et al., 2016; Raj et al., 2012; Sprooten et al., 2017; Zhou et al., 

2012). This approach may be counterintuitive, as we tend to think that brain 

disorders have typical etiological and pathogenetic bases, which, in turn, can 

cause specific patterns of GM alterations. Nonetheless, converging evidence 

shows that, except for some pathology-specific abnormalities, a “core set” of co-

altered regions is often involved in the larger part of brain disorders (Baker et al., 

2014; Cauda et al., 2018a; Douaud et al., 2014; Ellison-Wright and Bullmore, 

2010; Etkin and Wager, 2007; Goodkind et al., 2015; Hamilton et al., 2012; 

Jagust, 2013; Menon, 2013; Saxena and Caroni, 2011). Furthermore, interesting 

findings obtained from animal models suggest that neurodegenerative conditions 

mostly affect the brain network hubs that are more susceptible to dysfunction due 

to the nodal stress caused by their intense activity (Crossley et al., 2014; Raj et 

al., 2012; Seeley et al., 2009). 

As we have seen, these core areas are likely to be brain hubs, which are 

supposed to be more vulnerable to alterations and more responsible for their 

propagation. In particular, in humans this “core set” is usually constituted by 

regions, such as the insular and anterior cingulate cortices, which are involved in 
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important associative and cognitive functions. These areas are key parts of the 

cognitive control system, which is thought to monitor a variety of higher-order 

functions (Cauda et al., 2012b). In particular, the cognitive control exerted 

through executive functions refers to those brain processes related to the efficient 

and flexible employment of cognitive resources for dealing with changing 

contingencies. It is activated in multiple demands involving tasks that range from 

performance monitoring to focusing attention, allocating information in working 

memory, inhibiting irrelevant inputs and assessing for selection competing task-

relevant responses (Fedorenko et al., 2013; Müller et al., 2015). Consequently, 

cognitive control is essential for self-regulation as well as for the dynamic 

response to the requests of the environment (Diamond, 2013). Thus, a prolonged 

distress favored by brain disorders is likely to enhance the recruitment of 

cognitive control circuits and areas (such as dorsolateral prefrontal and posterior 

parietal cortices, anterior cingulate cortex, anterior insula, and anterior prefrontal 

cortex) in order to cope with symptoms and emotions (Kohn et al., 2014). 

In virtue of both its functional and topological features, a large number of 

brain disorders could impact on the cognitive control system (McTeague et al., 

2016). Therefore, perturbations in this important system are likely to be present 

in a variety of brain diseases (i.e., transdiagnostically). This phenomenon would 

make it more difficult to distinguish neuropathological conditions that are 

uniquely based on functional or structural abnormalities regarding the regions of 

this system (Sprooten et al., 2017). In such cases, an in-depth pathoconnectivity 

analysis might be of great use to better discriminate between different diseases. 

 

2.1.3. The research hypotheses of this study and the introduction of a new 

method to test them 

As we have seen when we discussed the studies within the field of 

pathoconnectivity, it is supposed that the spread of GM alterations across the 

brain might form recognizable networks that in part may be guided by the 

organization of brain connectivity (Yates, 2012; Raj et al., 2012; Zhou et al., 
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2012). Furthermore, a number of studies suggest that these co-alterations 

networks are associated with both neurodegenerative and psychiatric disorders. 

In support of this view, genetic studies regarding neurodegenerative dementias 

indicate how brain alterations antedate the beginning of symptoms by many 

years (Chhatwal et al., 2018; Rohrer et al., 2015; Quiroz et al., 2015), a finding 

that implies a less clear-cut boundary between degenerative and 

neurodevelopmental diseases (Lahiri and Maloney, 2010; Warren et al., 2013; 

Zawia and Basha, 2005). Eventually, a growing body of investigations about 

structural and functional changes in psychiatric conditions will increasingly 

bridge psychiatry and neurology together (Douaud et al., 2014; Du et al., 2017; 

Gupta et al., 2015). 

The absence of direct correspondence between the development of brain 

disorders and the manifestation of GM alterations suggests an overlap of 

symptoms depending on the impairment of large-scale networks. Furthermore, 

transdiagnostic symptomatology is frequently caused by environmental and 

genetic factors affecting brain circuits at system-level for several domains of 

cognitive functions. The disruption of these circuits produces susceptibility to 

different psychopathological conditions rather than specific diseases (Buckholtz 

and Meyer-Lindenberg, 2012). 

In light of the fact that the diffusion of GM alterations appears to be non-

random in both neurological and psychiatric conditions (Cauda et al., 2018a; 

Tatu et al., 2018), a crucial and still unanswered question is whether there is a 

prevalence of one or more mechanisms of spread at the basis of the development 

of different brain diseases. One study (Cope et al., 2018) tried to estimate using 

in vivo techniques, such as PET and fMRI, which mechanism of spread is mainly 

related to the distribution patterns of AD and progressive supranuclear palsy. 

This study, however, was limited to these two neurodegenerative conditions. As 

a matter of fact, if GM alterations are guided by the constraints of brain 

connectivity, it should in theory be possible to predict the distribution of GM 

alterations on the basis on certain connectivity profiles (Iturria-Medina et al., 
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2014; Raj et al., 2012; Robinson, 2012; Zhou et al., 2012). In other words, it 

should be possible to simulate the temporal development of GM alterations and 

deduce which of the different connectivity patterns (i.e., functional, anatomical, 

and genetic) can better account for the distribution of a specific structural co-

alteration pattern. Furthermore, we can reason that the different contributions of 

the mechanisms of spread might cause typical patterns of structural co-

alterations. Thus, the presence of a distribution pattern of GM alterations 

prevalently constituted by anatomically connected regions is supposed to be 

better accounted for by the hypothesis of the transneuronal spread, which, as we 

have seen, entails a diffusion of GM alterations to contiguous and directly 

connected areas. On the other hand, the presence of a distribution pattern of GM 

alterations prevalently constituted by functionally connected areas is supposed to 

be better explained by the hypothesis of the nodal stress, which implies a 

distribution of alterations to functionally associated areas (Biswal, 2012; Buckner 

et al., 2013). Finally, the presence of a distribution pattern of GM alterations 

prevalently constituted by similar gene co-expression profiles is supposed to be 

better accounted for by the hypothesis of the shared vulnerability, which, as we 

have seen, suggests that structurally co-altered regions are those sharing specific 

gene expressions (Stuart et al., 2003). 

As already said, these four mechanisms should not be considered as mutually 

exclusive. Conversely, it is very likely that different pathological processes might 

occur simultaneously and cause the complex picture of increasing dysfunction of 

brain networks. Furthermore, the distribution of GM abnormalities could result in 

different patterns, depending on which mechanisms are predominant in a specific 

disease. Therefore, identifying what patterns are associated with the alteration of 

different brain regions is the first important step to achieve an in-depth 

comprehension of how brain disorders affect the connectome. If certain brain 

areas – typically those having a pivotal role in the cerebral functional 

organization (i.e., brain hubs) – are supposed to be generally affected in brain 

degeneration (Crossley et al., 2014, 2016), then it can be hypothesized that these 
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altered hubs might form typical co-alteration patterns with other altered brain 

regions. 

This co-alteration network analysis would allow to better understand how 

GM alterations are distributed within the brain, and provide clues to assess the 

aforementioned different hypotheses of brain alterations’ spread (Cauda et al., 

2015). To test the hypotheses of the present study and achieve this 

pathoconnectivity analysis, an innovative methodology has been applied, which 

is capable of estimating how each type of brain connectivity profile can predict 

the distribution patterns produced by GM co-alterations (Cauda et al., 2018a, 

2018b). This method has been employed transdiagnostically in order to analyze a 

large number of meta-analytical data and demonstrate that, in principle, the 

methodological procedure is applicable for the analysis of GM alterations 

produced by any brain disorder. 

The voxel-based morphometry (VBM, for a detailed description of this 

technique, see the Materials and Methods section) database of BrainMap (Fox et 

al., 2005; Fox and Lancaster, 2002; Laird et al., 2005b; see the Materials and 

Methods section for an illustration of the BrainMap initiative) was examined in 

order to create a transdiagnostic map of GM alterations. GM alterations 

identified by VBM were used as a proxy for morphological abnormalities. Then, 

co-occurrences of alteration between different brain areas were established. In 

other words, given an altered brain regions A, it was calculated whether other 

brain regions resulted to be altered with A (Cauda et al., 2018a; Manuello et al., 

2018; Tatu et al., 2018). 

The result of this procedure was the construction of undirected co-alteration 

graphs illustrating the brain regions constituting the structural co-alteration 

network. Subsequently, to evaluate which of the three different connectivity 

profiles (anatomical, functional, and genetic) could explain better the patterns of 

structural co-alterations, connectivity networks associated with the three profiles 

were calculated using anatomical, resting state functional, and genetic (i.e., the 

correlated gene expression patterns) data, on the basis of the most altered regions 
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as starting points (nodes). The obtained different network matrices were 

eventually compared with the structural co-alteration matrix. This allowed to 

discover the contribution of each connectivity profile to the co-alteration network 

derived from the VBM database. With the help of simulation techniques, the 

spatial and temporal progressions of the distribution patterns of co-alterations 

were estimated; this allowed to assess whether the distribution of structural co-

alterations could be predictable in terms of anatomical, functional, and genetic 

connectivity. 

It was therefore possible to address the following issues. 1) What are the 

distribution patterns of structural co-alterations across the pathological brain? 2) 

Given that GM alterations tend to propagate from one brain area to another, is the 

propagation influenced by the constraints of brain connectivity? 3) What type of 

connectivity (anatomical, functional, or genetic) can mainly account for the 

distributions patterns of GM alterations? 4) And what type of connectivity is able 

to better predict the development of these co-alterations? 
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2.2. Materials and methods 

 

2.2.1. The voxel-based morphometry 

Among the structural techniques of brain imaging, the most used is 

probably the voxel-based morphometry (VBM), originally proposed by Wright et 

al. (1995). Today most neuroimaging software can do this type of analysis. The 

VBM is a computational approach that measures differences in local 

concentration of brain tissue. It is an essential tool for studying the conformation 

of the brain and is mainly employed to examine and compare the anatomical 

characteristics of specific populations (Ashburner and Friston, 2000). 

Before VBM, this type of studies required the manual individuation of brain 

areas on MR images throughout a long and painstaking process. But the 

anatomical details were coarse. In contrast, the automatic approach of VBM 

allowed a higher resolution, faster times of elaboration and more accuracy in the 

detection of anatomical structures (Filippi, 2009). VBM is generally used in 

cortical and subcortical analyses of GM, but morphometric studies of white 

matter (WM) are also possible. 

The 3-D neuroimaging unit is the voxel, which can have a cubic form, if 

isometric, or be a parallelepiped. Each voxel conveys the information associated 

with the brain tissue represented in the image; different levels of intensity 

indicate different concentration of tissues. In case of GM measures, therefore, 

decreases are values of GM density below the average, while increases are values 

of GM density above the average. In order to compare subjects and population of 

subjects, it is necessary to standardize the data through a spatial normalization. 

This process brings the individual anatomical coordinates into a common 

stereotactic space (Ashburner and Friston, 2000). There are different reference 

templates but the most used are certainly the Talairach and MNI atlases. The 

former was realized in 1967 by the neurosurgeon Jean Talairach and is based on 

the post-mortem dissection of a single brain; the latter, instead, was realized by 

the Montreal Neurological Institute and is based on a wider sample of brains. 
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After the spatial normalization, each voxel is assigned to one of three 

classes (GM, WM, and liquor). Algorithms implement a probabilistic calculus 

and take primarily into consideration values of luminous intensity of every voxel 

as well as its spatial position (Ashburner and Friston, 2000). The degree of 

reliability of this procedure is higher for wider and more uniform regions, lower 

for regions that are less uniform or because they are adjacent to different brain 

tissues. At this point it is possible to compare different subjects or different 

populations, evaluating the values of couples of voxels having the same position 

in the standardized space. The VBM analysis is therefore voxel-wise, as each 

voxel is always taken into consideration. 

To date, limitations of this technique are related to difficulties in the 

physiological interpretation of results. Despite the best available resolution, the 

biological processes at the basis of changes in brain structure are still 

unobservable with MR images. Furthermore, it is as yet not possible to precisely 

define the histological nature of the tissue within a specific voxel. 

For instance, with regard to neurodegenerative diseases such as AD, 

quantification of atrophy progression need straightforward methods. Historically, 

a region of interest such as the hippocampus could be manually delineated on a 

baseline scan, then a volume was calculated, and the same process was repeated 

on a follow-up scan, so that the difference in volumes represented the measure of 

change over the interval between scans. Such methodology, applied in many 

studies, was transparent, but frequently lacked power. Measurement errors in 

manual outlining are in fact aroud the order of 5%. Furthermore, trials aiming to 

show disease impact using atrophy as a sign of alteration are typically powered 

for a 25% reduction in rate of loss, i.e. to include enough subjects for a 

significant difference between those on placebo declining at 4% per year and 

those on treatment declining at 3% per year. It is not surprising that the difficulty 

of detecting such small changes has led to costly trials involving many hundreds 

of patients. Therefore, the development of automated techniques capable of more 

precise and robust measures with increased power to detect change has been 
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warmly welcomed. On the other hand, this new procedures have caused the 

emergence of other potential methodological biases. For instance, the possible 

bias arising from asymmetric image registration has been a concern pointed out 

by many authors, including Smith et al. (2002), Reuter et al. (2010) and 

Yushkevich et al. (2010). These problems can be addressed by using different 

metrics to compare measurements as well as by defining the sample size, which 

is the number of subjects needed per study, whose construction is driven by two 

key components: the amount of change in the measure over time (in case of 

atrophy the mean “pathological” atrophy rate), and the variability (variance) of 

that measure in the population under study. 

Another problem for atrophy quantification, as well as for several areas in 

the field of neuroimaging is the lack of “ground truth”. Unlike many biochemical 

tests, there is not a gold standard according to which we can evaluate image 

quantification, in particular in the case of heterogeneous and complex 

neurodegenerative diseases. In fact imaging reports of atrophy patterns are hardly 

to be confirmed, as the brain is rarely available for direct examination, and never 

serially. In order to address this problem, an approach proposes to simulate 

atrophy (Camara et al., 2006) and to assess the precision and accuracy by which 

a methodology can quantify the simulated change (Camara et al., 2008). Yet, the 

complex interplay between the human brain and its response to disease implies 

that simulations are always partial. Furthermore, highly sophisticated simulations 

may be susceptible to biases of their own. 

Facing this situation, Fox et al. (2011) have put forward the following 

suggestions in order to improve methodologies designed to quantify atrophy 

from serial scans: 1) using simulations of atrophy; 2) assessing the commutative 

symmetry of measures; 3) assessing the transitivity of measures: if three 

sequential scans are available, does the sum of measures for A→ →B and B C 

reproduce the outcome of directly measuring A→C?; 4) if possible, comparing 

automated imaging results with low-bias (but high-variability) manual 

measurements; 5) comparing results of different techniques on the same data set; 
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6) assessing the “reproducibility” of results after short interval scans; 7) when 

possible, comparing imaging results with the known disease biology and 

pathological studies. 

VBM have been largely used to evaluate the pathology of various 

neurodegenerative disorders, following the assumption that there is a close 

relationship between specific alteration patterns of cerebral atrophy and the 

symptomatic cognitive disturbances. But although focusing the analyses on 

similar disease states, many studies have varied significantly with respect to the 

steps employed in the sequence of image processing, and this may produce 

difficulties in the comparison of results between studies. Thus, in the absence of a 

precise quantitative procedure for comparing VBM implementations, a useful 

approach is to qualitatively compare results of each methodology against well-

known concepts about the anatomic distribution of a neurodegenerative disease, 

as well as the application of different VBM pipelines and the subsequent 

comparison of the obtained results. 

An evaluation of different VBM implementations was carried out by 

Senjem et al. (2005), who compared five VBM methods. Authors observed that 

changes in the image processing chain of VBM can significantly influence the 

results of inter-group morphometric comparisons. It is therefore suggested to be 

careful in the interpretation of results, so as not to mistake differences due to 

implementation details for real biological differences. Conclusions of the authors 

were the following. Optimized VBM provides different results than those 

obtained with standard VBM. The use of custom template and prior images 

improves the plausibility of inter-group comparisons, probably because of the 

improved segmentation and spatial normalization. Instead, the use of manually 

edited brain masks in the segmentation and normalization processes does not 

significantly affect group comparison results. But the additional step of Method 

5, which uses previous estimates to initialize the normalization and segmentation 

routines can give more plausible results. Table 1 illustrates the general features of 

each of the five VBM methods examined by Senjem at al. (2005). 
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Table 1. Comparison of different voxel-based morphometry (VBM) procedures. 

Description Pipeline steps 

Method 1: Standard VBM 

with the Montreal 

Neurological Istitute (MNI) 

template 

(i) performing a 12 degrees of freedom (DOF) affine 
registration between each subject’s MRI image and the MNI 
template; 
(ii) performing of a non-linear normalization of the affine 
registered subject image to the MNI template; 
(iii) segmenting the normalized image using the MNI priors; 
(iv) applying Jacobian modulation to the segmented GM 
image; 
(v) applying a 12-mm full width at half maximum (FWHM) 
spatial smoothing to the modulated GM image; 
(vi) statistical comparison between patient and control 
populations using a two-sided t test. 

Method 2: Optimized VBM 

with the MNI template and 

priors 

 

(i) performing a 12 DOF affine registration between each 
subject’s MRI image and the MNI template; 
(ii) segmenting the affine-registered image using the MNI 
priors; 
(iii) performing a non-linear normalization of the segmented 
GM image to the MNI GM prior, applying the parameters 
obtained to the original whole head image; 
(iv) segmenting the normalized whole head image using the 
MNI priors; 
(v) applying Jacobian modulation to the segmented GM 
image; 
(vi) applying the 12 mm FWHM spatial smoothing to the 
modulated GM image, and proceed to the statistics stage. 

Method 3: Optimized VBM  

with a custom template 

and priors 

(i) performing a 12 DOF affine registration between each 
subject’s MRI image and the custom template; 
(ii) segmenting the affine-registered image using the custom 
priors; 
(iii) performing a non-linear normalization of the segmented 
GM image to the custom GM prior, applying the parameters 
obtained to the original whole head image; 
(iv) segmenting the normalized whole head image using the 
custom priors; 
(v) applying Jacobian modulation to the segmented GM 
image; 
(vi) applying 12 mm FWHM spatial smoothing to the 
modulated GM image, and proceed to the statistics stage. 

Method 4: Optimized VBM 

with a custom template 

plus manually edited brain 

masks for each patient 

Steps are identical to Method 3, except that the hand edited 
brain mask are used as a weighting image during both 
segmentation steps. 

Method 5: Optimized VBM 

with a custom template 

plus a re-initialization routine 

This Method follows the same algorithm as Method 3, except 
for the re-initialization routines: when creating the custom 
template and priors, the original images are normalized to the 
MNI template, and then segmented using the MNI priors. 
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As we have seen, VBM has been widely applied both in group studies 

(Focke et al., 2008a; Keller and Roberts, 2008) and in comparing single subjects 

against a group (Focke et al., 2008b; 2009; Woermann et al., 1999). It is 

important to highlight that within the preprocessing of VBM data, correction of 

image bias is a key step, which is iteratively improved together with the 

segmentation technique, e.g. in FAST4 (Zhang et al., 2001) or in the unified 

segmentation algorithm of the SPM packages (Ashburner and Friston, 2005). 

Given the differences in VBM procedures, especially in the segmentation 

techniques, some authors have investigated whether or not data coming from 

different scanners could be combined together in order to be meta-analytically 

examined. Stonnington et al. (2008) concluded that “data can be pooled from 

different scanners without corroding the integrity of results is reassuring for 

largemulti-site studies”. However, another study considering three different sites 

(2×1.5 T, 1 x 3T, all with transmit-receive head coils) have reported stronger 

scanner specific than disease specific (childhood absence epilepsy) differences, 

exceeding a p < 0.05 (FWE corrected) threshold (Pardoe et al., 2008). Finally, a 

study by Focke et al. (2011) showed severe scanner differncences and concluded 

that the applied version of the SPM8 segmentation algorithm seems to be more 

robust than the FSL4.1/FAST4 method. A lowered bias cutoff in the unified 

segmentation of SPM8 reduced cortical differences but resulted in higher coeffD 

values in basal ganglia regions (putamen/pallidum). This study, however, was 

carried out on healthy controls only and could not, therefore, compare volumetric 

differences to changes due to a disease condition. 

For all these considerations, results of Study 1 are to be interpreted with 

caution, as clearly stated in the limitation section. 

 

2.2.2. Selection of studies 

The VBM BrainMap database (Fox and Lancaster, 2002; Fox et al., 2005; 

Laird et al., 2005b; Vanasse et al., 2018) was queried in December 2017 with the 

following search criteria: 
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(i) decreases: Experiments Context is Disease AND Experiment Contrast 

is Gray Matter AND Experiments Observed Changes is Controls > 

Patients; 

 

(ii) increases: Experiments Context is Disease AND Experiment Contrast 

is Gray Matter AND Experiments Observed Changes is Patients > 

Controls. 

 

The retrieved experiments were 912 for the first query and 350 for the 

second query. All the experiments having a sample size smaller than 8 subjects 

were removed. This threshold is in line with Scarpazza et al. (2015), who 

provided evidence that VBM experiments based on groups of equal size should 

not be biased by a high false positive rate. 

Furthermore, all the experiments that did not clearly compare pathological 

population with healthy controls were removed. The remaining experiments were 

coded on the basis of the ICD-10 system. All the experiments not coded with the 

labels ‘F’ (i.e., mental, behavioral and neurodevelopmental disorders) or ‘G’ (i.e., 

diseases of the nervous system) were excluded. Finally, all the experiments that 

were associated with codes not regarding primary brain disorders were removed 

(i.e., F10: Alcohol related disorders; F15: Other stimulant related disorders; F28: 

Other psychotic disorder not due to a substance or known physiological 

condition; F91: Conduct disorders; G11: Hereditary ataxia; G43: Migraine; G44: 

Other headache syndromes; G47: Sleep disorders; G50: Disorders of trigeminal 

nerve; and G71: Primary disorders of muscles). 

At the end of this selection, experiments fed to the analyses for the first 

query were 642 (for a total of 15820 subjects and 7704 foci) and 204 (for a total 

of 4966 subjects, and 2244 foci) for the second query. 

With regard to the first query, the majority of VBM studies investigated 

F20: Schizophrenia (17.9%); F32-F33: Major depressive disorder, single 
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episode/recurrent (9.8%); G40: Epilepsy and recurrent seizures (8.7%); G30: 

Alzheimer’s disease (8.3%) and G31: Other degenerative diseases of the nervous 

system (8.1%). 

With regard to the second query, the majority of VBM studies investigated 

F20: Schizophrenia (16.2%); G40: Epilepsy and recurrent seizures (12.7%); F84: 

Pervasive developmental disorders (11.3%); F31: Bipolar disorder (9.8%) and 

F32-F33: Major depressive disorder, single episode/recurrent (9.3%). The entire 

overview of the pathologies considered in this study is reported in Table 2. 
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Table 2. Synopsis of pathologies of the database used for analyses. 

Exp (n) = number of experiments; Exp (%) = percentage of the total of the experiments; 

Subj (n) = number of subjects. 

 

 ICD-10 code Exp (n) Exp (%) Subj (n) 

First 

query 

F20: Schizophrenia 115 17.9 3807 

 F28: Other psychotic disorder not due to a 

substance or known physiological condition 

3 0.5 68 

 F31: Bipolar Disorder 45 7.0 1191 

 F32-F33: Major depressive disorder, single 

episode/recurrent 

63 9.8 1919 

 F41: Other Anxiety Disorders 13 2.0 306 

 F42: Obsessive Compulsive Disorder 12 1.9 377 

 F43: Reaction to Severe Stress and 

Adjustment Disorders 

24 3.7 367 

 F50: Eating Disorders 12 1.9 148 

 F60: Specific Personality Disorders 10 1.6 222 

 F65: Paraphilias 1 0.2 18 

 F80: Specific Developmental Disorders of 

Speech and Language 

2 0.3 22 

 F84: Pervasive Developmental Disorders 29 4.5 696 

 F90: Attention Deficit/Hyperactivity Disorder 9 1.4 139 

 F95: Tic Disorder 2 0.3 33 

 G10: Huntington's Disease 12 1.9 258 

 G12: Spinal Muscular Atrophy and Related 

Syndromes 

14 2.2 211 

 G20: Parkinson’s Disease 28 4.4 501 

 G23: Other degenerative diseases of basal 

ganglia 

13 2.0 212 

 G24: Dystonia 6 0.9 89 

 G25: Other extrapyramidal and movement 

disorders 

7 1.1 135 

 G30: Alzheimer's Disease 53 8.3 1194 

 G31: Other Degenerative Diseases of Nervous 

System 

52 8.1 838 

 G35: Multiple Sclerosis 45 7.0 1422 

 G40: Epilepsy and Recurrent Seizures 56 8.7 1426 

 G90: Disorders Autonomic Nervous System 13 2.0 181 

 G93: Other disorders of brain 3 0.5 40 
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Second 

query 

F20: Schizophrenia 33 16.2 1175 

 F28: Other psychotic disorder not due to a 

substance or known physiological condition 

3 1.5 75 

 F31: Bipolar Disorder 20 9.8 545 

 F32-F33: Major depressive disorder, single 

episode/recurrent 

19 9.3 453 

 F41: Other Anxiety Disorders 4 2.0 51 

 F42: Obsessive Compulsive Disorder 10 4.9 287 

 F43: Reaction to Severe Stress and 

Adjustment Disorders 

2 1.0 48 

 F50: Eating Disorders 4 2.0 54 

 F80: Specific Developmental Disorders of 

Speech and Language 

3 1.5 48 

 F84: Pervasive Developmental Disorders 23 11.3 515 

 F90: Attention Deficit/Hyperactivity Disorder 2 1.0 27 

 F95: Tic Disorder 2 1.0 45 

 G10: Huntington's Disease 1 0.5 21 

 G12: Spinal Muscular Atrophy and Related 

Syndromes 

1 0.5 22 

 G20: Parkinson's Disease 9 4.4 139 

 G24: Dystonia 8 3.9 133 

 G25: Other extrapyramidal and movement 

disorders 

7 3.4 125 

 G30: Alzheimer's Disease 7 3.4 114 

 G31: Other Degenerative Diseases of Nervous 

System 

10 4.9 123 

 G35: Multiple Sclerosis 10 4.9 253 

 G40: Epilepsy and Recurrent Seizures 26 12.7 713 

 

The outline of the search strategy in order to select the studies is illustrated 

in the flow chart of Figure 1, which reports the key steps implemented to get the 

final data set, elaborate data and obtain different levels of results. Tables 3 and 4 

reports the full list of the selected studies (432 for the first query and 135 for the 

second query, respectively). 
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Figure 1. Flow chart of key steps implemented to get the final data set, elaborate data 

and obtain different levels of results. 

 

 

 

  

BrainMap data set     

First Query 

(642 exps n = 15820) 

ALE meta-analysis and creation of the structural co-alteration network 

Altered pattern 

Source and Research 
[Pubmed] 

Action Initiative to 

avoid Selection Bias 

Input Second Query 

(204 exps n = 4966) 

Algorithm 

Structural, Functional, and Genetic Connectivity Matrix 

Reliability Measures Action Initiative to 

avoid Outcome Bias 

Mantel Test 

Connectivity Matrix predictions Action Initiative to 

avoid Outcome Bias 

Prediction of propagation of co-alteration patterns 

Network Analysis Techniques 

Outcome Node creation Co-alteration network 

Structural, functional, and  

genetic connectivity matrix 

Comparison between connectivity matrices Spatial and temporal progressions 

First Query 

(912 exps) 

Second Query 

(350 exps) 

Experiments excluded 

35 not pathology vs HC 

65 less than 8 subjects 

170 non-relevant disorders  

Experiments excluded 

34 not pathology vs HC 

24 less than 8 subjects 

88 non-relevant disorders  
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Table 3. List of experiments obtained and selected from the first query. 

 

 
Year 1st Author Journal Medline  ICD-10 Code 

1 2010 Abe O Psychiatry Res - 
F32-F33: Major depressive disorder. 

single episode/recurrent 

2 1999 Abell F NeuroReport 10501551 
F84: Pervasive Developmental 

Disorders 

3 2012 Adleman N E 
J Child Psycho 

Psychiatry 
3472043 F31: Bipolar Disorder 

4 2005 Adler C M Biol Psychiatry 15922309 F31: Bipolar Disorder 

5 2007 Agosta F Hum Brain Mapp 17370339 
G12: Spinal Muscular Atrophy and 

Related Syndromes 

6 2010 Agosta F  Eur J Neurosci 20597976 
G23: Other degenerative diseases of 

basal ganglia 

7 2011 Agosta F Radiology 21177393 G30: Alzheimer's Disease 

8 2011 Agosta F Radiology 21177393 
G31: Other Degenerative Diseases of 

Nervous System 

9 2012 Ahmed F Neuropsychobiology 22948482 
F43: Reaction to Severe Stress and 

Adjustment Disorders 

10 2011 Ahrendts J 
World J Biol 

Psychiatry 
20879808 

F90: Attention Deficit/Hyperactivity 

Disorder 

11 2013 Alemany S J affect disord - 
F32-F33: Major depressive disorder. 

single episode/recurrent 

12 2009 Almeida J R C 
Psychiatry Res 

NeuroImaging 
19101126 F31: Bipolar Disorder 

13 2016 Alonso_Lana S PLoS One 4957815 F31: Bipolar Disorder 

14 2013 Ambrosi E J Affect Disord - F31: Bipolar Disorder 

15 2002 Ananth H Am J Psychiatry 12202269 F20: Schizophrenia 

16 2005 Antonova E Biol Psychiatry 16039619 F20: Schizophrenia 

17 2009 Arnone D 

Eur 

Neuropsychopharmac

ol 

- 
F32-F33: Major depressive disorder. 

single episode/recurrent 

18 2013 Arnone D Mol Psychiatry 23128153 
F32-F33: Major depressive disorder. 

single episode/recurrent 

19 2009 Asami T Psychiatry Res 19560907 F41:  Other Anxiety Disorders 

20 2011 Ash S Brain Lang 21689852 
G31: Other Degenerative Diseases of 

Nervous System 

21 2004 Audoin B J magn reson imaging 15503338 G35: Multiple Sclerosis 

22 2006 Audoin B J Neurol 17093899 G35: Multiple Sclerosis 

23 2010 Audoin B 
J Neurol Neurosurg 

Psychiatr 
20392976 G35: Multiple Sclerosis 

24 2007 Audoin B Mult Scler 17463071 G35: Multiple Sclerosis 

25 2008 Barbeau E Neuropsychologia 18191160 
G31: Other Degenerative Diseases of 

Nervous System 

26 2001 Baron J C NeuroImage 11467904 G30: Alzheimer’s Disease 

27 2007 Bassitt D P 
 Eur Arch Psychiatry 

Clin Neurosci 
16960651 F20: Schizophrenia 

28 2006 Baxter L C J Alzheimers Dis 16914835 G30: Alzheimer’s Disease 

29 2005 Bell-McGinty S Arch Neurol 16157746 
G31: Other Degenerative Diseases of 

Nervous System 

30 2011 Bergè Acta Psychiatr Scand 21054282 F20: Schizophrenia 
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31 2009 Bergouignan L NeuroImage 19071222 
F32-F33: Major depressive disorder. 

single episode/recurrent 

32 2008 Berlingeri M Behav Neurosci 18413913 G30: Alzheimer’s Disease 

33 2004 Bernasconi N NeuroImage 15488421 
G40: Epilepsy and Recurrent 

Seizures 

34 2013 Bertsch K 
 Eur Arch Psychiatry 

Clin Neurosci 
23381548 F60: Specific Personality Disorders 

35 2008 Beste C Hum Brain Mapp 17497629 G10: Huntington’s Disease 

36 2007 Beyer M K 
J Neurol Neurosurg 

Psychiatr 
17028119 G20: Parkinson’s Disease 

37 2011 Biundo R J Neurol Sci 21862438 G20: Parkinson’s Disease 

38 2005 Boccardi M Neurobiol Aging 15585344 
G31: Other Degenerative Diseases of 

Nervous System 

39 2009 Bodini B Hum Brain Mapp 19172648 G35: Multiple Sclerosis 

40 2011 Boghi A Psychiatry Res 21546219 F50: Eating Disorders 

41 2011 Bonavita S Mult Scler 21239414 G35: Multiple Sclerosis 

42 2008 Bonilha L Schizophr Res 18164594 F20: Schizophrenia 

43 2004 Bonilha L Arch Neurol 15364683 
G40: Epilepsy and Recurrent 

Seizures 

44 2010 Borgwardt S J Biol Psychiatry 20006324 F20: Schizophrenia 

45 2008 Borroni B Arch Neurol 18541800 
G31: Other Degenerative Diseases of 

Nervous System 

46 2009 Bose S K Schizophr Res 19450953 F20: Schizophrenia 

47 2008 Bouilleret V Neurology 18195263 
G40: Epilepsy and Recurrent 

Seizures 

48 2006 Boxer A L Arch Neurol 16401739 
G23: Other degenerative diseases of 

basal ganglia 

49 2003 Boxer A L Arch Neurol 12873851 G30: Alzheimer’s Disease 

50 2003 Boxer A L Arch Neurol 12873851 
G31: Other Degenerative Diseases of 

Nervous System 

51 2006 Boxer A L Arch Neurol 16401739 
G31: Other Degenerative Diseases of 

Nervous System 

52 2006 Bozzali M Neurology 16894107 G30: Alzheimer’s Disease 

53 2006 Bozzali M Neurology 16894107 
G31: Other Degenerative Diseases of 

Nervous System 

54 2009 Brambati S M Neurobiol Aging 17604879 
G31: Other Degenerative Diseases of 

Nervous System 

55 2009 Brazdil M Hum Brain Mapp 18609565 
G40: Epilepsy and Recurrent 

Seizures 

56 2004 Brenneis C 
J Neurol Neurosurg 

Psychiatr 
14742598 

G23: Other degenerative diseases of 

basal ganglia 

57 2004 Brenneis C NeuroReport 15257132 G30: Alzheimer’s Disease 

58 2004 Brenneis C NeuroReport 15257132 
G31: Other Degenerative Diseases of 

Nervous System 

59 2003 Brenneis C J Mov Disord 14534916 
G90: Disorders Autonomic Nervous 

System 

60 2006 Brenneis C J Mov Disord 16161039 
G90: Disorders Autonomic Nervous 

System 

61 2007 Brieber S 
J Child Psychol 

Psychiatry 
- 

F84: Pervasive Developmental 

Disorders 

62 2007 Brieber S 
J Child Psychol 

Psychiatry 
- 

F90: Attention Deficit/Hyperactivity 

Disorder 
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63 2010 Brunner R NeuroImage 19660555 F60: Specific Personality Disorders 

64 2004 Burton E J Brain 14749292 G20: Parkinson’s Disease 

65 2002 Burton E J NeuroImage 12377138 
G31: Other Degenerative Diseases of 

Nervous System 

66 2015 Cai Y Neurosci Bull 25502401 F31: Bipolar Disorder 

67 2015 Cai Y Neurosci Bull 25502401 
F32-F33: Major depressive disorder. 

single episode/recurrent 

68 2009 Camicioli R 
Parkinsonism Relat 

Disord 
18573676 G20: Parkinson’s Disease 

69 2010 Canu E Neurobiol Aging 21074899 G30: Alzheimer’s Disease 

70 2005 Carmona S Neurosci Lett 16129560 
F90: Attention Deficit/Hyperactivity 

Disorder 

71 2007 Caroli A J Neurol 17990057 G30: Alzheimer’s Disease 

72 2010 Cascella N Schizophr Res 20452187 F20: Schizophrenia 

73 2009 Castro-Fornieles J J Psychiatr Res 18486147 F50: Eating Disorders 

74 2011 Castro-Manglano P D Bipolar Disord 22017223 F20: Schizophrenia 

75 2009 Ceccarelli A Hum Brain Mapp 19172642 G35: Multiple Sclerosis 

76 2008 Ceccarelli A NeuroImage 18501636 G35: Multiple Sclerosis 

77 2010 Celle S J Neurol 19768657 
G25: Other extrapyramidal and 

movement disorders 

78 2013 Cerasa A J Neurol 23271221 G35: Multiple Sclerosis 

79 2006 Chan C H Epilepsia 16499767 
G40: Epilepsy and Recurrent 

Seizures 

80 2014 Chaney A J Psychiatry Neurosci 23900024 
F32-F33: Major depressive disorder. 

single episode/recurrent 

81 2009 Chang C C European J Neurol 19486137 
G90: Disorders Autonomic Nervous 

System 

82 2005 Chang J L Neurology 16009889 
G12: Spinal Muscular Atrophy and 

Related Syndromes 

83 2012 Chao L L NeuroReport 22453299 
F43: Reaction to Severe Stress and 

Adjustment Disorders 

84 2009 Chen S BMC Psychiatry 19538748 
F43: Reaction to Severe Stress and 

Adjustment Disorders 

85 2006 Chen S Psychiatry Res 16371250 
F43: Reaction to Severe Stress and 

Adjustment Disorders 

86 2007 Chen X Aust N Z J Psychiatry 17464719 F31: Bipolar Disorder 

87 2012 Chen Y PLoS One 23155380 
F43: Reaction to Severe Stress and 

Adjustment Disorders 

88 2015 Cheng B Front Behav Neurosci 26347628 
F43: Reaction to Severe Stress and 

Adjustment Disorders 

89 2010 Cheng Y Neurosci Lett 20594947 
F32-F33: Major depressive disorder. 

single episode/recurrent 

90 2011 Cheng Y PLoS One 21541322 
F84: Pervasive Developmental 

Disorders 

91 2002 Chetelat G NeuroReport 12395096 G30: Alzheimer's Disease 

92 2002 Chetelat G NeuroReport 12395096 
G31: Other Degenerative Diseases of 

Nervous System 

93 2011 Chow E W Am J Psychiatry 21362743 F20: Schizophrenia 

94 2007 Chua S E Schizophr Res 17098398 F20: Schizophrenia 

95 2012 Compta Y 
Parkinsonism Relat 

Disord 
22595621 G20: Parkinson's Disease 
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96 2008 Cooke M A Schizophr Res 18539438 F20: Schizophrenia 

97 2005 Corbo V Biol Psychiatry 16038682 
F43: Reaction to Severe Stress and 

Adjustment Disorders 

98 2005 Cordato N J Brain 15843423 G20: Parkinson's Disease 

99 2005 Cordato N J Brain 15843423 
G23: Other degenerative diseases of 

basal ganglia 

100 2005 Cormack F NeuroImage 16006149 G93: Other disorders of brain 

101 2012 Cosottini M Exp Neurol 22226599 
G12: Spinal Muscular Atrophy and 

Related Syndromes 

102 2007 Craig M C  Br J Psychiatry 17766762 
F84: Pervasive Developmental 

Disorders 

103 2003 Critchley H D NeuroImage 12725766 
G90: Disorders Autonomic Nervous 

System 

104 2011 Cui L Neurosci Lett 21138758 F20: Schizophrenia 

105 2011 Cui L Neurosci Lett 21138758 F31: Bipolar Disorder 

106 2009 de Araujo-Filho G M Epilepsy Behav 19303459 
G40: Epilepsy and Recurrent 

Seizures 

107 2008 de Oliveira-Souza R NeuroImage 18289882 F60: Specific Personality Disorders 

108 2007 Delmaire C Neurology 17646630 G24: Dystonia 

109 2009 Deng M Y Psychopharmacology 19641900 F20: Schizophrenia 

110 2007 Di Paola M J Neurol 17404777 G30: Alzheimer's Disease 

111 2005 Dickstein D P Arch Gen Psych 15997014 F31: Bipolar Disorder 

112 2004 Doris A 
Psychiatry Res 

NeuroImaging 
15033185 F31: Bipolar Disorder 

113 2007 Douaud G J Neurol 17698497 F20: Schizophrenia 

114 2003 Draganski B Neurology 14610125 G24: Dystonia 

115 2010 Ebdrup B H J Psychiatry Neurosci 20184807 F20: Schizophrenia 

116 2011 Eckart C J Psychiatry Neurosci 21118656 
F43: Reaction to Severe Stress and 

Adjustment Disorders 

117 2012 Ecker C Arch Gen Psych 22310506 
F84: Pervasive Developmental 

Disorders 

118 2010 Ecker C NeuroImage 19683584 
F84: Pervasive Developmental 

Disorders 

119 2008 Egger K Psychiatry Res 19013058 
F32-F33: Major depressive disorder. 

single episode/recurrent 

120 2001 Ellis C M Neurology 11706094 
G12: Spinal Muscular Atrophy and 

Related Syndromes 

121 2014 Eshaghi A NeuroImage 3898881 G35: Multiple Sclerosis 

122 2005 Etgen T NeuroImage 15670702 
G25: Other extrapyramidal and 

movement disorders 

123 2009 Euler M Schizophr Res 19775870 F20: Schizophrenia 

124 2005 Farrow T F D Biol Psychiatry 15993858 F31: Bipolar Disorder 

125 2011 Focke N K Hum Brain Mapp 21246668 G20: Parkinson's Disease 

126 2001 Foong J Brain 11335691 F20: Schizophrenia 

127 2012 Friedrich H C NeuroImage 21967727 F50: Eating Disorders 

128 2002 Frisoni G B 
J Neurol Neurosurg 

Psychiatr 
12438466 G30: Alzheimer's Disease 

129 2008 Frodl T Arch Gen Psych 18838632 
F32-F33: Major depressive disorder. 

single episode/recurrent 

130 2013 Gao W J Affect Disord - F31: Bipolar Disorder 
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131 2008 Garcia-Marti G 
Neuropsychopharmac

ol Psychiatry 
17716795 F20: Schizophrenia 

132 2011 Gaudio S 
Psychiatry Res 

NeuroImaging 
21081268 F50: Eating Disorders 

133 2007 Gavazzi C 
J Comput Assist 

Tomogr 
17882035 G10: Huntington’s Disease 

134 2012 Ghosh B C Brain 22637582 
G23: Other degenerative diseases of 

basal ganglia 

135 2008 Gilbert A R J Affect Disord 18342953 F42: Obsessive Compulsive Disorder 

136 2013 Giordano A 
Parkinsonism Relat 

Disord 
23477861 

G23: Other degenerative diseases of 

basal ganglia 

137 2005 Giuliani N R Schizophr Res 15721994 F20: Schizophrenia 

138 2014 Gobbi C Acad Radiol 23812284 G35: Multiple Sclerosis 

139 2010 Gold B T Hum Brain Mapp 20063353 
G31: Other Degenerative Diseases of 

Nervous System 

140 2011 Gong Q NeuroImage 21134472 
F32-F33: Major depressive disorder. 

single episode/recurrent 

141 2011 Granert O 
J Neurol Neurosurg 

Psychiatr 
21705464 G24: Dystonia 

142 2012 Gregory S Arch Gen Psych 22566562 F60: Specific Personality Disorders 

143 2013 Grieve S M NeuroImage 24273717 
F32-F33: Major depressive disorder. 

single episode/recurrent 

144 2010 Gross RG Cogn Behav Neurol 20299856 
G31: Other Degenerative Diseases of 

Nervous System 

145 2006 Grosskreutz J BMC Neurol 16638121 
G12: Spinal Muscular Atrophy and 

Related Syndromes 

146 2009 Guedj E Eur J Nucl Med 19224210 
G31: Other Degenerative Diseases of 

Nervous System 

147 2014 Guo W 
Neuropsychopharmac

ol Psychiatry 
24863419 

F32-F33: Major depressive disorder. 

single episode/recurrent 

148 2010 Guo X Neurosci Lett 19879920 G30: Alzheimer's Disease 

149 2004 Ha T H Psychiatry Res 15664796 F20: Schizophrenia 

150 2010 Ha T H Neurosci Lett 19429131 F31: Bipolar Disorder 

151 2007 Hakamata Y 
Neuroscience 

Research 
17923164 

F43: Reaction to Severe Stress and 

Adjustment Disorders 

152 2008 Haldane M J Psychopharmacol 18308812 F31: Bipolar Disorder 

153 2008 Hall A M Alzheimers Dement 18631978 G30: Alzheimer's Disease 

154 2011 Haller S J Psychiatry Neurosci 21284917 F31: Bipolar Disorder 

155 2007 Hamalainen A Neurobiol Aging 16997428 G30: Alzheimer's Disease 

156 2007 Hamalainen A Neurobiol Aging 16997428 
G31: Other Degenerative Diseases of 

Nervous System 

157 2009 Henley S M J Neurol 19266143 G10: Huntington's Disease 

158 2009 Herold R Acta Psychiatr Scand 19016669 F20: Schizophrenia 

159 2012 Herringa R Psychiatry Res 23021615 
F43: Reaction to Severe Stress and 

Adjustment Disorders 

160 2008 Hirao K Schizophr Res 18774263 F20: Schizophrenia 

161 2006 Hirao K  Nucl Med Commun 16404228 G30: Alzheimer's Disease 

162 2008 Honea R A Biol Psychiatry 17689500 F20: Schizophrenia 

163 2009 Honea R A 
 Alzheimer Dis Assoc 

Disord 
19812458 G30: Alzheimer's Disease 

164 2009 Horn H  Br J Psychiatry 19182174 F20: Schizophrenia 
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165 2010 Horn H 
Psychiatry Res 

NeuroImaging 
20418073 F20: Schizophrenia 

166 2009 Huey E D Arch Neurol 19822784 
G31: Other Degenerative Diseases of 

Nervous System 

167 2001 Hulshoff Pol H E Arch Gen Psych 11735840 F20: Schizophrenia 

168 2004 Hulshoff Pol H E NeuroImage 14741639 F20: Schizophrenia 

169 2006 Hulshoff Pol H E NeuroImage 16497519 F20: Schizophrenia 

170 2010 Hwang J 
J Geriatr Psychiatry 

Neurol 
- 

F32-F33: Major depressive disorder. 

single episode/recurrent 

171 2010 Hyde K L Hum Brain Mapp 19790171 
F84: Pervasive Developmental 

Disorders 

172 2011 Ille R J Psychiatry Neurosci 21406159 G10: Huntington's Disease 

173 2011 Inkster B J Neuroimaging 20977527 
F32-F33: Major depressive disorder. 

single episode/recurrent 

174 2005 Ishii K Eur J Nucl Med 15800784 G30: Alzheimer's Disease 

175 2008 Janssen J 
J Am Acad Child 

Adolesc Psychiatry 
18827723 F20: Schizophrenia 

176 2008 Janssen J 
J Am Acad Child 

Adolesc Psychiatry 
18827723 

F28: Other psychotic disorder not 

due to a substance or known 

physiological condition 

177 2008 Janssen J 
J Am Acad Child 

Adolesc Psychiatry 
18827723 F31: Bipolar Disorder 

178 2005 Jayakumar P N 
Neuropsychopharmac

ol Psychiatry 
15866362 F20: Schizophrenia 

179 2010 Joos A 
Psychiatry Res 

NeuroImaging 
20400273 F50: Eating Disorders 

180 2008 Kanda T Eur J Nucl Med 18661129 G30: Alzheimer's Disease 

181 2008 Kanda T Eur J Nucl Med 18661129 
G31: Other Degenerative Diseases of 

Nervous System 

182 2008 Kasai K Biol Psychiatry 17825801 
F43: Reaction to Severe Stress and 

Adjustment Disorders 

183 2010 Kasparek T Hum Brain Mapp 19777553 F20: Schizophrenia 

184 2007 Kasparek T 
Neuropsychopharmac

ol Psychiatry 
17011096 F20: Schizophrenia 

185 2009 Kasparek T 
Neuropsychopharmac

ol Psychiatry 
19647777 F20: Schizophrenia 

186 2005 Kassubek J Cereb Cortex 15459079 G10: Huntington's Disease 

187 2004 Kassubek J 
J Neurol Neurosurg 

Psychiatr 
14742591 G10: Huntington's Disease 

188 2007 Kassubek J 
J Neurol Neurosurg 

Psychiatr 
17332050 

G12: Spinal Muscular Atrophy and 

Related Syndromes 

189 2012 Kato S J Neurol 21850388 G20: Parkinson's Disease 

190 2006 Kawachi T Eur J Nucl Med 16550383 G30: Alzheimer's Disease 

191 2009 Kawada R 
Neuropsychopharmac

ol Psychiatry 
19625009 F20: Schizophrenia 

192 2004 Kawasaki Y 
 Eur Arch Psychiatry 

Clin Neurosci 
15538599 F20: Schizophrenia 

193 2007 Kawasaki Y NeuroImage 17045492 F20: Schizophrenia 

194 2008 Ke X NeuroReport 18520994 
F84: Pervasive Developmental 

Disorders 

195 2007 Keller S S Epilepsy Res 17412561 
G40: Epilepsy and Recurrent 

Seizures 
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196 2002 Keller S S 
J Neurol Neurosurg 

Psychiatr 
12438464 

G40: Epilepsy and Recurrent 

Seizures 

197 2007 Khaleeli Z NeuroImage 17566765 G35: Multiple Sclerosis 

198 2013 Kim D J Affect Disord 23769608 F31: Bipolar Disorder 

199 2007 Kim E J 
J Neurol Neurosurg 

Psychiatr 
17615169 

G31: Other Degenerative Diseases of 

Nervous System 

200 2007 Kim J H NeuroImage 17689105 
G40: Epilepsy and Recurrent 

Seizures 

201 2008 Kim M J Psychiatry Res 18930633 
F32-F33: Major depressive disorder. 

single episode/recurrent 

202 2011 Kim S J Clin Neurosci 21570296 G30: Alzheimer's Disease 

203 2010 Kobel M 
Psychiatry Res 

NeuroImaging 
20702071 

F90: Attention Deficit/Hyperactivity 

Disorder 

204 2009 Koprivova J Neurosci Lett 19666084 F42: Obsessive Compulsive Disorder 

205 2010 Kosaka H NeuroImage 20123027 
F84: Pervasive Developmental 

Disorders 

206 2009 Koskenkorva P Neurology 19704079 
G40: Epilepsy and Recurrent 

Seizures 

207 2008 Koutsouleris N NeuroImage 18054834 F20: Schizophrenia 

208 2002 Kubicki M NeuroImage 12498745 F20: Schizophrenia 

209 2002 Kubicki M NeuroImage 12498745 

F28: Other psychotic disorder not 

due to a substance or known 

physiological condition 

210 2011 Kurth F Biol Psychiatry 21531390 
F84: Pervasive Developmental 

Disorders 

211 2004 Kwon H Dev Med Child Neurol 15540637 
F84: Pervasive Developmental 

Disorders 

212 2010 Labate A Epilepsia 19780790 
G40: Epilepsy and Recurrent 

Seizures 

213 2008 Ladoucer C D 
J Am Acad Child 

Adolesc Psychiatry 
18356765 F31: Bipolar Disorder 

214 2013 Lagarde J PLoS One 24278277 
G23: Other degenerative diseases of 

basal ganglia 

215 2013 Lagarde J PLoS One 24278277 
G31: Other Degenerative Diseases of 

Nervous System 

216 2015 Lai C H J Affect Disord - 
F32-F33: Major depressive disorder. 

single episode/recurrent 

217 2015 Lai C H J Affect Disord - F41:  Other Anxiety Disorders 

218 2012 Lai C H J Affect Disord 22386047 F41:  Other Anxiety Disorders 

219 2011 Lee H Y J Affect Disord 21546094 
F32-F33: Major depressive disorder. 

single episode/recurrent 

220 2009 Leung K K Psychol Med 18945378 
F32-F33: Major depressive disorder. 

single episode/recurrent 

221 2010 Li C T NeuroImage 19931620 
F32-F33: Major depressive disorder. 

single episode/recurrent 

222 2006 Li L Can J Psychiatry 16838824 
F43: Reaction to Severe Stress and 

Adjustment Disorders 

223 2011 Li M 
Psychiatry Res 

NeuroImaging 
21236649 F31: Bipolar Disorder 

224 2009 Libon D J Neurology 19687454 
G31: Other Degenerative Diseases of 

Nervous System 

225 2013 Lin A Neural Regen Res 25206504 G35: Multiple Sclerosis 

226 2013 Lin C H Front Hum Neurosci 23785322 G20: Parkinson's Disease 
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227 2013 Lin C H Front Hum Neurosci 23785322 
G25: Other extrapyramidal and 

movement disorders 

228 2009 Lin K Epilepsy Res 19570650 
G40: Epilepsy and Recurrent 

Seizures 

229 2014 Liu C H Neuroscience 24406440 
F32-F33: Major depressive 

disorder. single episode/recurrent 

230 2011 Liu M Epilepsia 22092238 
G40: Epilepsy and Recurrent 

Seizures 

231 2010 Lu C Cortex 19375076 
F80: Specific Developmental 

Disorders of Speech and Language 

232 2006 Ludolph A G  Br J Psychiatry 16648537 F95: Tic Disorder 

233 2009 Lui S Am J Psychiatry 18981063 F20: Schizophrenia 

234 2004 Lyoo I K Biol Psychiatry 15013835 F31: Bipolar Disorder 

235 2012 Mainz V Psychosom Med 22511729 F50: Eating Disorders 

236 2009 Mak A K 
Neuropsychopharmac

ol Psychiatry 
19596037 

F32-F33: Major depressive 

disorder. single episode/recurrent 

237 2013 Mak E 
J Neurol Neurosurg 

Psychiatr 
24133286 G20: Parkinson's Disease 

238 2003 Marcelis M Psychiatry Res 12694890 

F28: Other psychotic disorder not 

due to a substance or known 

physiological condition 

239 2007 Marti-Bonmati L Radiology 17641373 F20: Schizophrenia 

240 2003 Massana G Am J Psychiatry 12611840 F41:  Other Anxiety Disorders 

241 2002 Matsuda H 
Eur J Nucl Med Mol 

Imaging 
11884488 G30: Alzheimer's Disease 

242 2010 Matsumoto R 
Psychiatry Clin 

Neurosci 
20923432 

F42: Obsessive Compulsive 

Disorder 

243 2007 Matsunari I 
Eur J Nucl Med Mol 

Imaging 
18006622 G30: Alzheimer's Disease 

244 2008 Mazere J NeuroImage 18191587 G30: Alzheimer's Disease 

245 2005 McAlonan G M Brain 15548557 
F84: Pervasive Developmental 

Disorders 

246 2002 McAlonan G M Brain 12077008 
F84: Pervasive Developmental 

Disorders 

247 2008 McAlonan G M 
J Child Psychol 

Psychiatry 
18673405 

F84: Pervasive Developmental 

Disorders 

248 2007 McAlonan G M Psychiatry Res 17291727 
F90: Attention Deficit/Hyperactivity 

Disorder 

249 2004 McIntosh A M Biol Psychiatry 15476683 F20: Schizophrenia 

250 2004 McIntosh A M Biol Psychiatry 15476683 F31: Bipolar Disorder 

251 2004 McMillan A B NeuroImage 15325363 
G40: Epilepsy and Recurrent 

Seizures 

252 2008 Meda S A Schizophr Res 18378428 F20: Schizophrenia 

253 2008 Meisenzahl E M Schizophr Res 18378428 F20: Schizophrenia 

254 2011 Mengotti P Brain Res Bull 21146593 
F84: Pervasive Developmental 

Disorders 

255 2011 Meppelink A M J Mov Disord 20922809 G20: Parkinson's Disease 

256 2008 Mesaros S Neurology 18272867 G35: Multiple Sclerosis 

257 2007 Mezzapesa D M  Am J Neuroradiol 17296989 
G12: Spinal Muscular Atrophy and 

Related Syndromes 

258 2011 Miettinen P S  Eur J Neurosci 21692882 G30: Alzheimer's Disease 
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259 2011 Miettinen P S  Eur J Neurosci 21692882 
G31: Other Degenerative Diseases of 

Nervous System 

260 2005 Milham M P Biol Psychiatry 15860335 F41:  Other Anxiety Disorders 

261 2007 Minnerop M NeuroImage 17512219 
G90: Disorders Autonomic Nervous 

System 

262 2011 Molina V 
 Eur Arch Psychiatry 

Clin Neurosci 
21188405 F20: Schizophrenia 

263 2010 Molina V 
Psychiatry Res 

NeuroImaging 
20153145 F20: Schizophrenia 

264 2011 Molina V 
 Eur Arch Psychiatry 

Clin Neurosci 
21188405 F31: Bipolar Disorder 

265 2005 Moorhead T W NeuroImage 16085427 F20: Schizophrenia 

266 2006 Morgen K NeuroImage 16360321 G35: Multiple Sclerosis 

267 2006 Mueller S G Epilepsia 16686655 
G40: Epilepsy and Recurrent 

Seizures 

268 2007 Muhlau M J Neural Transm 17024326 G10: Huntington's Disease 

269 2013 Muhlau M Mult Scler 23462349 G35: Multiple Sclerosis 

270 2009 Muller-Vahl K R BMC Neuroscience 19435502 F95: Tic Disorder 

271 2013 Na K S 

Prog 

Neuropsychopharmac

ol Biol Psychiatry 

- F41:  Other Anxiety Disorders 

272 2005 Nagano-Saito A Neurology 15668417 G20: Parkinson's Disease 

273 2013 Nardo D Acta Psychiatr Scand 23113800 
F43: Reaction to Severe Stress and 

Adjustment Disorders 

274 2011 Narita K 
Neuropsychopharmac

ol Psychiatry 
21115089 F31: Bipolar Disorder 

275 2006 Neckelmann G Int J Neurosci - F20: Schizophrenia 

276 2003 Nestor P J Brain 12902311 
G31: Other Degenerative Diseases of 

Nervous System 

277 2013 Niedtfeldl I PLoS One 23776553 F60: Specific Personality Disorders 

278 2010 Nishio Y European J Neurol 20298422 G20: Parkinson's Disease 

279 2006 Nugent A C NeuroImage 16256376 F31: Bipolar Disorder 

280 2007 O’Daly O Psychiatry Res 17720459 F20: Schizophrenia 

281 2011 O’Muircheartaigh J Neurology 21205693 
G40: Epilepsy and Recurrent 

Seizures 

282 2007 Obermann M J Mov Disord 17443700 G24: Dystonia 

283 2006 Ohnishi T Brain 16330500 F20: Schizophrenia 

284 2001 Ohnishi T  Am J Neuroradiol 11673161 G30: Alzheimer's Disease 

285 2011 Ortiz-Gil J  Br J Psychiatry 21727234 F20: Schizophrenia 

286 2001 Overmeyer S Psychol Med 11722157 
F90: Attention Deficit/Hyperactivity 

Disorder 

287 2006 Padovani A 
J Neurol Neurosurg 

Psychiatr 
16306152 

G23: Other degenerative diseases of 

basal ganglia 

288 2010 Pail M Epilepsia 19817822 
G40: Epilepsy and Recurrent 

Seizures 

289 2001 Paillere-Martinot M L Schizophr Res 11378311 F20: Schizophrenia 

290 2011 Pantano P  Am J Neuroradiol 20947646 G24: Dystonia 

291 2009 Pardini M Arch Neurol 19139305 
G31: Other Degenerative Diseases of 

Nervous System 

292 2014 Parisi L J neurol 24952616 G35: Multiple Sclerosis 
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293 2005 Peinemann A J Neurol Sci 16185716 G10: Huntington's Disease 

294 2008 Pell G S NeuroImage 18042496 
G40: Epilepsy and Recurrent 

Seizures 

295 2010 Peng J Eur J Radiol 20466498 
F32-F33: Major depressive disorder. 

single episode/recurrent 

296 2005 Pennanen C 
J Neurol Neurosurg 

Psychiatr 
15607988 

G31: Other Degenerative Diseases of 

Nervous System 

297 2009 Pereira J B NeuroReport 19349926 G20: Parkinson's Disease 

298 2009 Pereira J M Neurology 19433738 
G31: Other Degenerative Diseases of 

Nervous System 

299 2010 Pomarol-Clotet E Mol Psychiatry 20065955 F20: Schizophrenia 

300 2010 Prakash R S Brain Res 19560443 G35: Multiple Sclerosis 

301 2016 Preziosa P Hum Brain Mapp 26833969 G35: Multiple Sclerosis 

302 2010 Price G NeuroImage 19632338 F20: Schizophrenia 

303 2004 Pujol J Arch Gen Psych 15237084 F42: Obsessive Compulsive Disorder 

304 2011 Qiu L PLoS One 21991357 F20: Schizophrenia 

305 2008 Quattrone A  Am J Neuroradiol 18653686 
G25: Other extrapyramidal and 

movement disorders 

306 2007 Rabinovici G D 
Am J Alzheimers Dis 

Other Demen 
18166607 G30: Alzheimer's Disease 

307 2007 Rabinovici G D 
Am J Alzheimers Dis 

Other Demen 
18166607 

G31: Other Degenerative Diseases of 

Nervous System 

308 2009 Rami L Int J Geriatr Psychiatry 19259976 G30: Alzheimer's Disease 

309 2009 Rami L Int J Geriatr Psychiatry 19259976 
G31: Other Degenerative Diseases of 

Nervous System 

310 2007 Ramirez-Ruiz B European J Neurol 17594330 G20: Parkinson's Disease 

311 2015 Ranjeva J P Am J Neuroradiol 15661713 G35: Multiple Sclerosis 

312 2014 Redlich R Arch Gen Psych 25188810 F31: Bipolar Disorder 

313 2014 Redlich R Arch Gen Psych 25188810 
F32-F33: Major depressive disorder. 

single episode/recurrent 

314 2005 Remy F NeuroImage 15734360 G30: Alzheimer's Disease 

315 2012 Riccitelli G Mult Scler 22422807 G35: Multiple Sclerosis 

316 2008 Riederer F Neurology 18678824 
G40: Epilepsy and Recurrent 

Seizures 

317 2009 Ries M L Brain Imaging Behav 19701486 
F32-F33: Major depressive disorder. 

single episode/recurrent 

318 2011 Riva D  Am J Neuroradiol 21700792 
F84: Pervasive Developmental 

Disorders 

319 2014 Rocca M A Radiology 24927473 G35: Multiple Sclerosis 

320 2012 Rocha-Rego V PLoS One 22952599 
F43: Reaction to Severe Stress and 

Adjustment Disorders 

321 2012 Rossi R 
Psychiatry Res 

NeuroImaging 
23146251 F31: Bipolar Disorder 

322 2012 Rossi R 
Psychiatry Res 

NeuroImaging 
23146251 F60: Specific Personality Disorders 

323 2004 Rusch N 
J Neuropsychiatry Clin 

Neurosci 
15260365 

G40: Epilepsy and Recurrent 

Seizures 

324 2003 Salgado-Pineda P NeuroImage 12814586 F20: Schizophrenia 

325 2004 Salgado-Pineda P NeuroImage 15006650 F20: Schizophrenia 

326 2011 Salgado-Pineda P Schizophr Res 21095105 F20: Schizophrenia 
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327 2007 Salmond C H Cortex 17710821 
F84: Pervasive Developmental 

Disorders 

328 2011 Salvadore G NeuroImage 21073959 
F32-F33: Major depressive disorder. 

single episode/recurrent 

329 2016 Sanchis-Segura C Neuroscience Letters 27436479 G35: Multiple Sclerosis 

330 2010 Santana M Epilepsy Res 20223639 
G40: Epilepsy and Recurrent 

Seizures 

331 2015 Saricicek A J Affect Disord 26233321 F31: Bipolar Disorder 

332 2010 Sasayama D 
Psychiatry Clin 

Neurosci 
20546170 

F90: Attention Deficit/Hyperactivity 

Disorder 

333 2006 Saykin A J Neurology 16966547 
G31: Other Degenerative Diseases of 

Nervous System 

334 2010 Scheuerecker J J Psychiatry Neurosci 20569645 
F32-F33: Major depressive disorder. 

single episode/recurrent 

335 2013 Schiffer B Schizophr Bull 23015687 F20: Schizophrenia 

336 2007 Schiffer B J Psychiatr Res 16876824 F65: Paraphilias 

337 2009 Schmidt-Wilcke T NeuroImage 19442751 
G31: Other Degenerative Diseases of 

Nervous System 

338 2012 Schuster C Schizophr Bull 21205677 F20: Schizophrenia 

339 2008 Seeley W W Arch Neurol 18268196 
G31: Other Degenerative Diseases of 

Nervous System 

340 2011 Senda J 
Amyotroph Lateral 

Scler 
21271792 

G12: Spinal Muscular Atrophy and 

Related Syndromes 

341 2006 Sepulcre J Arch Neurol 16908748 G35: Multiple Sclerosis 

342 2013 Serra-Blasco M  Br J Psychiatry 23620451 
F32-F33: Major depressive disorder. 

single episode/recurrent 

343 2012 Shad M U 
J Child Adolesc 

Psychopharmacol 
22537357 

F32-F33: Major depressive disorder. 

single episode/recurrent 

344 1998 Shah P J  Br J Psychiatry 9828995 
F32-F33: Major depressive disorder. 

single episode/recurrent 

345 2002 Shapleske J Cereb Cortex 12427683 F20: Schizophrenia 

346 2006 Shiino A NeuroImage 16904912 G30: Alzheimer's Disease 

347 2006 Shiino A NeuroImage 16904912 
G31: Other Degenerative Diseases of 

Nervous System 

348 2012 Shin S 
J Neurol Neurosurg 

Psychiatr 
22933812 G20: Parkinson's Disease 

349 2001 Sigmundsson T Am J Psychiatry 11156806 F20: Schizophrenia 

350 2012 Singh M K Bipolar Disord 22938166 F31: Bipolar Disorder 

351 2010 Smesny S NeuroImage 20478385 F20: Schizophrenia 

352 2010 Sobanski T Psychol Med 20056020 F41:  Other Anxiety Disorders 

353 2011 Soriano-Mas C Biol Psychiatry 20875637 
F32-F33: Major depressive disorder. 

single episode/recurrent 

354 2010 Spanò B Mult Scler 20007429 G35: Multiple Sclerosis 

355 2003 Specht K Arch Neurol 14568814 
G90: Disorders Autonomic Nervous 

System 

356 2005 Specht K NeuroImage 15734363 
G90: Disorders Autonomic Nervous 

System 

357 2006 Spencer M D NeuroImage 16996749 
F84: Pervasive Developmental 

Disorders 

358 2009 Stanfield A C Bipolar Disord 19267696 F31: Bipolar Disorder 

359 2014 Stratmann M PLoS One 25051163 
F32-F33: Major depressive disorder. 

single episode/recurrent 
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360 2010 Suchan B Behav Brain Res 19729041 F50: Eating Disorders 

361 2010 Sui S G Acta Neuropsychiatr - 
F43: Reaction to Severe Stress and 

Adjustment Disorders 

362 2005 Summerfield C Arch Neurol 15710857 G20: Parkinson's Disease 

363 2002 Suzuki M Schizophr Res 11955962 F20: Schizophrenia 

364 2008 Szeszko P R Am J Psychiatry 18413702 F42: Obsessive Compulsive Disorder 

365 2006 Tae W S  Korean J Radiol 16969045 
G40: Epilepsy and Recurrent 

Seizures 

366 2010 Tae W S  Korean J Radiol 20046492 
G40: Epilepsy and Recurrent 

Seizures 

367 2011 Takahashi R 
Dement Geriatr Cogn 

Disord 
22187545 

G23: Other degenerative diseases of 

basal ganglia 

368 2010 Takahashi R  Am J Neuroradiol 20634303 G30: Alzheimer's Disease 

369 2010 Takahashi R  Am J Neuroradiol 20634303 
G31: Other Degenerative Diseases of 

Nervous System 

370 2005 Taki Y J Affect Disord 16150493 
F32-F33: Major depressive disorder. 

single episode/recurrent 

371 2014 Tang L R 
Psychiatry Res 

NeuroImaging 
25218414 F31: Bipolar Disorder 

372 2012 Tavanti M Neurol Sci 21710131 
F43: Reaction to Severe Stress and 

Adjustment Disorders 

373 2012 Tavazzi E Neurol Sci 25228014 
G12: Spinal Muscular Atrophy and 

Related Syndromes 

374 2012 Tessitore A  Am J Neuroradiol 22538070 G20: Parkinson's Disease 

375 2007 Theberge J Br J Psychiatry 17906243 F20: Schizophrenia 

376 2007 Thivard L 
J Neurol Neurosurg 

Psychiatr 
17635981 

G12: Spinal Muscular Atrophy and 

Related Syndromes 

377 2010 Thomaes K J Clinic Psychiatry 20673548 
F43: Reaction to Severe Stress and 

Adjustment Disorders 

378 2011 Tian L PLoS One 22174900 F20: Schizophrenia 

379 2008 Tiihonen J Psychiatry Res 18662866 F60: Specific Personality Disorders 

380 2009 Tir M J Mov Disord 19194988 G20: Parkinson's Disease 

381 2009 Tir M J Mov Disord 19194988 
G90: Disorders Autonomic Nervous 

System 

382 2010 Toal F Psychol Med 19891805 
F84: Pervasive Developmental 

Disorders 

383 2010 Togao O Psychiatry Res 20833001 F42: Obsessive Compulsive Disorder 

384 2009 Tomelleri L 

Eur 

Neuropsychopharmac

ol 

19717283 F20: Schizophrenia 

385 2010 Tost H J Affect Disord 19419772 F31: Bipolar Disorder 

386 2007 Tregellas J R Schizophr Res 17890058 F20: Schizophrenia 

387 2010 Tzarouchi L C J Neuroimaging 19187475 
G90: Disorders Autonomic Nervous 

System 

388 2008 Uchida R R Psychiatry Res 18417322 F41:  Other Anxiety Disorders 

389 2005 Valente A A Jr Biol Psychiatry 15978549 F42: Obsessive Compulsive Disorder 

390 2015 van de Pavert S H 
J Neurol Neurosurg 

Psychiatry 
25926483 G35: Multiple Sclerosis 

391 2009 van den Heuvel O A Brain 18952675 F42: Obsessive Compulsive Disorder 

392 2013 van Eijndhoven P Am J Psychiatry 23929204 
F32-F33: Major depressive disorder. 

single episode/recurrent 
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393 2010 van Tol M J Arch Gen Psych 20921116 
F32-F33: Major depressive disorder. 

single episode/recurrent 

394 2013 van Tol M J Psychol Med 24176247 
F32-F33: Major depressive disorder. 

single episode/recurrent 

395 2010 van Tol M J Arch Gen Psych 20921116 F41:  Other Anxiety Disorders 

396 2008 Venkatasubramanian G 
Psychiatry Res 

NeuroImaging 
19019637 F20: Schizophrenia 

397 2008 Voets N L NeuroImage 18793730 F20: Schizophrenia 

398 2008 Wagner G J Psychiatry Neurosci 18592043 
F32-F33: Major depressive disorder. 

single episode/recurrent 

399 2011 Wagner G NeuroImage 20832482 
F32-F33: Major depressive disorder. 

single episode/recurrent 

400 2011 Wang F Brain 21666263 F31: Bipolar Disorder 

401 2007 Wang J  Am J Neuroradiol 17353333 
F90: Attention Deficit/Hyperactivity 

Disorder 

402 2009 Waragai M J Neurol Sci 19552926 G30: Alzheimer's Disease 

403 2002 Watkins K E Brain 11872605 
F80: Specific Developmental 

Disorders of Speech and Language 

404 2012 Watson D R Behav Brain Res 22056751 F20: Schizophrenia 

405 2012 Watson D R Behav Brain Res 22056751 F31: Bipolar Disorder 

406 2016 Wei W Medicine 26962820 
G40: Epilepsy and Recurrent 

Seizures 

407 2006 Whitford T J NeuroImage 16677830 F20: Schizophrenia 

408 2013 Whitwell J L European J Neurol 23078273 
G23: Other degenerative diseases of 

basal ganglia 

409 2007 Whitwell J L Neurobiol Aging 16797786 G30: Alzheimer's Disease 

410 2005 Whitwell J L Arch Neurol 16157747 
G31: Other Degenerative Diseases of 

Nervous System 

411 2007 Whitwell J L Neurobiol Aging 16797786 
G31: Other Degenerative Diseases of 

Nervous System 

412 2007 Whitwell J L NeuroImage 17240166 
G31: Other Degenerative Diseases of 

Nervous System 

413 2001 Wilke M NeuroImage 11304078 F20: Schizophrenia 

414 2010 Wilson S M Brain 20542982 
G31: Other Degenerative Diseases of 

Nervous System 

415 2000 Woermann F G 
J Neurol Neurosurg 

Psychiatr 
10644781 

G40: Epilepsy and Recurrent 

Seizures 

416 2008 Wolf R C Eur Psychiatry 18434103 F20: Schizophrenia 

417 2009 Wolf R C Hum Brain Mapp 18172852 G10: Huntington's Disease 

418 2006 Xie S Neurology 16801648 G30: Alzheimer's Disease 

419 2009 Xu L Hum Brain Mapp 18266214 F20: Schizophrenia 

420 2007 Yamada M NeuroImage 17240165 F20: Schizophrenia 

421 2010 Yasuda C L Neurology 20350980 
G40: Epilepsy and Recurrent 

Seizures 

422 2003 Yoneyama E Acta Psychiatr Scand 14531753 F60: Specific Personality Disorders 

423 2005 Yoo H K  Eur J Neurosci 16262646 F41:  Other Anxiety Disorders 

424 2008 Yoo S Y  J Korean Med Sci 18303194 F42: Obsessive Compulsive Disorder 

425 2008 Yoshihara Y Arch Gen Psych 19102744 F20: Schizophrenia 

426 2005 Zahn R 
Psychiatry Res 

NeuroImaging 
16253483 G30: Alzheimer's Disease 
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427 2008 Zamboni G Neurology 18765649 
G31: Other Degenerative Diseases of 

Nervous System 

428 2011 Zhang J Psychiatry Res 21498053 
F43: Reaction to Severe Stress and 

Adjustment Disorders 

429 2009 Zhang T J Affect Disord 19211150 
F32-F33: Major depressive disorder. 

single episode/recurrent 

430 2012 Zhang X J Affect Disord 22129771 
F32-F33: Major depressive disorder. 

single episode/recurrent 

431 2016 Zhang X Int J Mol Sci 28035997 G35: Multiple Sclerosis 

432 2010 Zou K Biol Psychiatry 19897176 
F32-F33: Major depressive disorder. 

single episode/recurrent 
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Table 4. List of experiments obtained and selected from the second query. 
 

  Year 1st Author Journal Medline  ICD-10 Code 

1 1999 Abell F NeuroReport 10501551 
F84: Pervasive Developmental 

Disorders 

2 2005 Adler C M Biol Psychiatry 15922309 F31: Bipolar Disorder 

3 2007 Adler C M Biol Psychiatry 17027928 F31: Bipolar Disorder 

4 2011 Amico F J Psychiatry Neurosci 20964952 
F32-F33: Major depressive 

disorder. single episode/recurrent 

5 2004 Antonini G J Neurol Neurosurg Psychiatr 15489397 
G12: Spinal Muscular Atrophy and 

Related Syndromes 

6 2005 Antonova E Biol Psychiatry 16039619 F20: Schizophrenia 

7 2009 Arnone D Eur Neuropsychopharmacol - 
F32-F33: Major depressive 

disorder. single episode/recurrent 

8 2013 Arnone D Mol Psychiatry 23128153 
F32-F33: Major depressive 

disorder. single episode/recurrent 

9 2009 Asami T Psychiatry Res 19560907 F41:  Other Anxiety Disorders 

10 2007 Bassitt D P 
 Eur Arch Psychiatry Clin 

Neurosci 
16960651 F20: Schizophrenia 

11 2006 Baxter L C J Alzheimers Dis 16914835 G30: Alzheimer's Disease 

12 2007 Beal D S NeuroReport 17632278 
F80: Specific Developmental 

Disorders of Speech and Language 

13 2006 Betting L E NeuroImage 16702001 
G40: Epilepsy and Recurrent 

Seizures 

14 2015 Biederman S V Magn Reson Med 25809140 
F32-F33: Major depressive 

disorder. single episode/recurrent 

15 2004 Bonilha L Arch Neurol 15364683 
G40: Epilepsy and Recurrent 

Seizures 

16 2008 Bonilha L Brain Dev 18362056 
F84: Pervasive Developmental 

Disorders 

17 2007 Bonilha L J Neurol Neurosurg Psychiatr 17012334 
G40: Epilepsy and Recurrent 

Seizures 

18 2007 Brieber S J Child Psychol Psychiatry - 
F84: Pervasive Developmental 

Disorders 

19 2007 Brieber S J Child Psychol Psychiatry - 
F90: Attention 

Deficit/Hyperactivity Disorder 

20 2011 Brown G G Psychiatry Res 21924872 F20: Schizophrenia 

21 2011 Brown G G Psychiatry Res 21924872 F31: Bipolar Disorder 

22 2009 Butler C R Brain 19073652 
G40: Epilepsy and Recurrent 

Seizures 

23 2012 Calderoni S NeuroImage 21896334 
F84: Pervasive Developmental 

Disorders 

24 2006 Calhoun V D Hum Brain Mapp 16108017 F20: Schizophrenia 

25 2009 Carrion V G Psychiatry Res NeuroImaging 19349151 
F43: Reaction to Severe Stress and 

Adjustment Disorders 

26 2009 
Castro-Fornieles 

J 
J Psychiatr Res 18486147 F50: Eating Disorders 
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27 2010 Celle S J Neurol 19768657 
G25: Other extrapyramidal and 

movement disorders 

28 2006 Chan C H Epilepsia 16499767 
G40: Epilepsy and Recurrent 

Seizures 

29 2014 Chaney A J Psychiatry Neurosci 23900024 
F32-F33: Major depressive 

disorder. single episode/recurrent 

30 2007 Chen X Aust N Z J Psychiatry 17464719 F31: Bipolar Disorder 

31 2012 Chen Z 
Neuropsychopharmacol 

Psychiatry 
22119745 F31: Bipolar Disorder 

32 2011 Cheng Y PLoS One 21541322 
F84: Pervasive Developmental 

Disorders 

33 2008 Christian C J Psychiatry Res NeuroImaging 18938065 
F42: Obsessive Compulsive 

Disorder 

34 2011 Cui L Neurosci Lett 21138758 F20: Schizophrenia 

35 2011 Cui L Neurosci Lett 21138758 F31: Bipolar Disorder 

36 2009 
de Araujo-Filho G 

M 
Epilepsy Behav 19303459 

G40: Epilepsy and Recurrent 

Seizures 

37 2011 
de Castro-

Manglano P 
Psychiatry Res 21316203 

F28: Other psychotic disorder not 

due to a substance or known 

physiological condition 

38 2009 Deng M Y Psychopharmacology 19641900 F20: Schizophrenia 

39 2012 Ecker C Arch Gen Psych 22310506 
F84: Pervasive Developmental 

Disorders 

40 2010 Ecker C NeuroImage 19683584 
F84: Pervasive Developmental 

Disorders 

41 2007 Egger K J Mov Disord 17588241 G24: Dystonia 

42 2005 Etgen T NeuroImage 15670702 
G25: Other extrapyramidal and 

movement disorders 

43 2012 Frangou S Front Hum Neurosci 3277296 F31: Bipolar Disorder 

44 2006 Garraux G Ann Neurol 16437578 F95: Tic Disorder 

45 2004 Garraux G Ann Neurol 15122716 G24: Dystonia 

46 2003 Gee J Acad Radiol 14697007 G30: Alzheimer's Disease 

47 2008 Gilbert A R J Affect Disord 18342953 
F42: Obsessive Compulsive 

Disorder 

48 2005 Giuliani N R Schizophr Res 15721994 F20: Schizophrenia 

49 2011 Gong Q NeuroImage 21134472 
F32-F33: Major depressive 

disorder. single episode/recurrent 

50 2011 Granert O J Neurol Neurosurg Psychiatr 21705464 G24: Dystonia 

51 2013 Grieve S M NeuroImage 24273717 
F32-F33: Major depressive 

disorder. single episode/recurrent 

52 2004 Grossman M Brain 14761903 G30: Alzheimer's Disease 

53 2004 Grossman M Brain 14761903 
G31: Other Degenerative Diseases 

of Nervous System 

54 2010 Ha T H Neurosci Lett 19429131 F31: Bipolar Disorder 

55 2004 Ha T H Psychiatry Res 15664796 F20: Schizophrenia 

56 2008 Haldane M J Psychopharmacol 18308812 F31: Bipolar Disorder 

57 2007 Hamalainen A NeuroImage 17683950 G31: Other Degenerative Diseases 
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58 2006 Hendry J NeuroImage 16214373 
F84: Pervasive Developmental 

Disorders 

59 2009 Henley S M J Neurol 19266143 G10: Huntington's Disease 

60 2008 Honea R A Biol Psychiatry 17689500 F20: Schizophrenia 
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2.2.3. Anatomical likelihood estimation and creation of a modeled alteration 

map 

An anatomical likelihood estimation (ALE) (Eickhoff et al., 2009, 2012; 

Turkeltaub et al., 2012) was carried out to summarize the results of the selected 

experiments by means of an in-house developed MATLAB script according to 

the algorithms implemented in Gingerale 2.3.6 and the advices of Eickhoff et al. 

(2017). Results were clustered at a level of p < 0.05, family-wise error (FWE)-

corrected for multiple comparisons, with a threshold for cluster-forming of p < 

0.001 (Eickhoff et al., 2016). 

The ALE is a method of voxel-based meta-analysis capable of providing 

information about the anatomical reliability of results by comparing them to a 

sample of reference studies from the existing literature (Laird et al., 2005a). An 

ALE meta-analysis considers the foci of each experiment as distributions of 

Gaussian probability, with the following formula: 

 

 

 

where d refers to the Euclidean distance between the voxels and the considered 

focus, and  refers to the standard deviation of the distribution. The standard 

deviation can be calculated by means of the full-width half-maximum (FWHM), 

as follows: 

 

  

 

The combination of these Gaussian distributions produced a modeled 

activation (MA) map for each experiment. The final ALE map was eventually 

generated by merging the MA maps. The significance of alteration values in the 
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ALE map was determined by means of a permutation test: the same number of 

foci was redistributed across the brain and an ALE map was redetermined. The 

score histogram so obtained was employed to attribute a threshold p value. 

 

2.2.4. Construction of nodes 

The construction of nodes was derived from the ALE map by using a peak 

detection algorithm that was able to detect the local maxima. The ALE value of a 

voxel that is a local peak is higher than the values of the adjacent voxels. Voxels 

exhibiting a peak value above a given threshold (the 75th percentile of the peak 

values distribution). Subsequently, a distance matrix was created calculating the 

Euclidean distance between peaks. In order to avoid that regions of interest 

overlap each other, all the peaks in a distance of 10 mm from the others were 

removed. A 10 mm2 region of interest was delineated around each surviving peak 

(see Fig. 2 for an illustration of the node construction pipeline, and Tables 5 and 

6 for the nodes’ coordinates). 

These choices were taken on the basis of the following three rationales 

(Cauda et al., 2018a). (1) The nodes’ dimension was established according to 

Eickhoff et al. (2009), who examined meta-analytical imaging data estimating 

the spatial uncertainty regarding the reported coordinates. Since their study 

showed an uncertainty in spatial location with a mean of 10.2 mm and a standard 

deviation of 0.4 mm, a radius of 10 mm was consequently chosen for the nodes. 

(2) The 75 percentile was chosen because, as shown by Kotz et al. (2000), 

independently of the type of the probability distribution, the amount of the 

observation falling within k standard deviations of the population mean is at least 

1 − �
��, which, with � = 2, corresponds to the 75 percentile. (3) As shown by 

Zalesky et al. (2010), despite an arbitrary definition of nodes, it is possible to 

compare the networks if the node parcellation has been constructed at the same 

spatial scale. This is why all the analyses were carried out at a comparable spatial 

scale. 
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Table 5. Synopsis of the nodes related to GM decreases. 

 

Record 

number 

X Y Z Side Label 

(Talairach Client) 

BA 

1 -4 -4 12 L Thal / 

2 6 -16 14 R VLN / 

3 -8 -12 20 L Thal / 

4 14 -40 -6 R Culm / 

5 -52 38 -2 L IFG BA 10 

6 -24 -4 -34 L Uncus BA 36 

7 -34 -10 -34 L Uncus BA 20 

8 40 52 0 R IFG / 

9 46 14 38 R MFG BA 9 

10 54 -2 12 R PrecG BA 6 

11 40 4 0 R Ins BA 13 

12 -46 18 34 L MFG BA 9 

13 -54 -4 -30 L ITG BA 20 

14 -50 10 -28 L MTG BA 21 

15 -60 -32 -2 L MTG BA 39 

16 26 -82 -34 R Pyr / 

17 -30 -34 -14 L PHG BA 36 

18 50 -30 18 R Ins BA 13 

19 -44 2 -22 L MTG BA 21 

20 30 -42 -10 R PHG BA 37 

21 -28 48 28 L SFG BA 9 

22 -8 54 28 L SFG BA 9 

23 54 -8 32 R PrecG BA 6 

24 -40 46 -14 L MFG BA 11 

25 42 -4 -4 R Ins BA 13 

26 42 -30 50 R PostcG BA 40 

27 -52 -8 34 L PrecG BA 6 

28 46 4 34 R PrecG BA 6 

29 -42 10 -4 L Ins BA 13 

30 58 -14 42 R PrecG BA 6 

31 8 2 6 R Cau Body / 

32 -52 2 36 L PrecG BA 6 

33 -38 18 6 L Ins BA 13 

34 52 -48 24 R SMG BA 40 

35 54 8 -20 R MTG BA 21 

36 -58 -50 -10 L MTG BA 37 

37 -10 8 10 L Cau Body / 
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38 38 16 6 R Ins BA 13 

39 42 -6 6 R Ins BA 13 

40 42 -14 12 R Ins BA 13 

41 -48 -52 28 L SMG BA 40 

42 50 -24 6 R STG BA 41 

43 -48 -30 10 L STG BA 41 

44 44 -12 0 R Ins BA 13 

45 -42 -10 12 L Ins BA 13 

46 -12 -58 8 L PCC BA 30 

47 6 24 20 R ACC BA 24 

48 0 -34 44 L PCun BA 7 

49 10 10 12 R Cau Body / 

50 -4 26 20 L ACC BA 24 

51 -42 -4 4 L Ins BA 13 

52 -56 -4 -20 L MTG BA 21 

53 -38 6 6 L Ins BA 13 

54 6 24 -24 R RG BA 11 

55 40 12 -34 R STG BA 38 

56 -40 16 -28 L STG BA 38 

57 32 14 -24 R STG BA 38 

58 -10 0 16 L Cau Body / 

59 -2 14 26 L Cing BA 24 

60 38 4 10 R Ins BA 13 

61 -10 -22 36 L Cing BA 31 

62 10 -22 40 R Cing BA 31 

63 0 -18 34 L Cing BA 24 

64 -8 -12 38 L Cing BA 24 

65 50 12 6 R PrecG BA 44 

66 -2 10 50 L SFG BA 6 

67 16 6 64 R SFG BA 6 

68 56 -16 12 R TTG BA 41 

69 40 8 -22 R STG BA 38 

70 0 40 38 L MedFG BA 8 

71 -40 0 14 L Ins BA 13 

72 -12 -28 44 L Cing BA 31 

73 36 -24 -22 R PHG BA 36 

74 -34 10 -22 L STG BA 38 

75 40 16 -16 R IFG BA 47 

76 -40 8 -14 L STG BA 38 

77 -46 10 38 L MFG BA 8 

78 38 22 12 R Ins BA 13 
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79 -38 12 14 L Ins BA 13 

80 -6 28 -20 L RG BA 11 

81 14 -72 32 R Cun BA 7 

82 4 -70 32 R Cun BA 7 

83 -2 -50 32 L PCun BA 31 

84 38 -10 16 R Ins BA 13 

85 -8 -2 36 L Cing BA 24 

86 -48 -20 14 L TTG BA 41 

87 -12 -74 38 L PCun BA 7 

88 42 4 -12 R STG BA 38 

89 -62 -32 12 L STG BA 22 

90 46 12 -6 R STG BA 38 

91 -10 -52 38 L PCun BA 7 

92 -62 -22 -14 L MTG BA 21 

93 24 -8 -14 R PHG / 

94 -58 -54 14 L STG BA 22 

95 -8 20 -4 L Cau Head / 

96 -6 66 -4 L MedFG BA 10 

97 -4 58 2 L MedFG BA 10 

98 -48 -36 20 L Ins BA 13 

99 10 -30 46 R PCL BA 31 

100 -20 -64 14 L PCC BA 31 

101 18 -60 16 R PCC BA 31 

102 4 0 46 R Cing BA 24 

103 -28 28 40 L MFG BA 8 

104 0 0 -6 L ACC BA 25 

105 34 -36 -18 R FFG BA 20 

106 10 20 -6 R Cau Head / 

107 52 -22 -14 R MTG BA 21 

108 24 -72 24 R PCun BA 31 

109 -26 18 46 L MFG BA 8 

110 -46 -8 -16 L ITG BA 20 

111 -26 6 -30 L Uncus BA 28 

112 -52 -14 14 L PostcG / 

113 -46 -76 10 L MTG BA 39 

114 62 -6 16 R PostcG BA 43 

115 -6 10 0 L Cau Head / 

116 0 40 6 L ACC BA 32 

117 44 -18 22 R Ins BA 13 

118 -22 -4 -12 L PHG / 

119 2 -48 42 R Cing BA 31 
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120 56 -4 -12 R MTG BA 21 

121 0 -14 8 L MDN / 

122 -52 0 -12 L MTG BA 21 

123 -6 50 10 L MedFG BA 10 

124 -42 0 -8 L Ins BA 13 

125 -48 14 10 L IFG BA 44 

126 -48 6 16 L IFG BA 44 

127 -8 -20 14 L Thal / 

128 14 -34 10 R Pulv / 

129 12 -24 10 R Pulv / 

130 58 -12 -10 R MTG BA 21 

131 -54 -64 -4 L MOG BA 19 

132 -30 -86 18 L MOG BA 19 

133 -22 2 -20 L Uncus BA 34 

134 38 -84 18 R MOG BA 19 

135 -30 -42 -8 L PHG BA 37 

136 0 26 -12 L MedFG BA 11 

137 -48 -62 28 L MTG BA 39 

138 -56 -18 42 L PostcG BA 4 

139 -8 22 6 L Cau Body / 

140 12 20 4 R Cau Head / 

141 28 -16 -20 R PhG BA 28 

142 52 -30 -6 R MTG BA 21 

143 -60 -18 -6 L MTG BA 21 

144 -60 -46 -4 L MTG BA 21 

145 4 48 12 R MedFG BA 10 

146 -8 60 14 L MedFG BA 10 

147 0 36 -8 L ACC BA 32 

148 -60 -10 24 L PostcG BA 3 

149 -50 -10 44 L PrecG BA 4 

150 -28 -12 -16 L PHG / 

151 -62 -52 4 L MTG BA 21 

152 -22 10 -8 L LentN / 

153 44 44 -6 R MFG BA 10 

154 2 32 12 R ACC BA 24 

155 2 34 46 R SFG BA 8 

156 -50 30 18 L MFG BA 46 

157 34 -28 -12 R Hip / 

158 -24 2 -2 L Put / 

159 -28 -74 40 L PCun BA 19 

160 -4 2 4 L Cau Head / 
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161 0 4 -16 L SubcallG BA 25 

162 -34 -24 48 L PrecG BA 4 

163 -34 -26 -8 L Hip / 

164 -20 8 6 L Put / 

165 -26 26 -20 L IFG BA 11 

166 52 -34 6 R MTG BA 22 

167 -30 50 -4 L MFG BA 10 

168 -30 56 4 L MFG BA 10 

169 60 -24 44 R PostcG BA 2 

170 58 -20 -22 R FFG BA 20 

171 2 16 -12 R SubcallG BA 25 

172 4 -26 -6 R RedN / 

173 -24 -20 -8 L PHG BA 28 

174 32 -34 -4 R Hip / 

175 4 -16 -6 R RedN / 

176 -18 -34 -16 L Culm / 

177 -46 -38 -24 L Culm / 

178 -60 -38 6 L MTG BA 22 

179 -40 28 -12 L IFG BA 47 

180 50 -20 -4 R STG BA 22 

181 42 -4 -18 R Fus BA 20 

182 12 -32 0 R PHG BA 27 

183 -14 -34 0 L PHG BA 27 

184 48 32 24 R MFG BA 46 

185 -28 -34 -2 L Hip / 

186 -16 -42 -8 L Culm / 

187 -26 -30 -24 L Culm / 

188 50 6 22 R IFG BA 44 

189 8 -40 -20 R Culm / 

190 -58 -4 -4 L MTG BA 21 

191 8 -6 14 R Thal / 

192 -6 44 -4 L ACC BA 32 

193 52 20 24 R IFG BA 9 

194 -38 22 -20 L IFG BA 47 

195 -62 -24 6 L STG BA 22 

196 56 8 14 R IFG BA 44 

197 -26 56 20 L MFG BA 10 

198 38 42 22 R MFG BA 10 

199 38 -6 -38 R ITG BA 20 

200 28 -4 -32 R Unc BA 36 

201 -42 54 2 L IFG BA 10 



68 

 

202 -2 42 16 L MedFG BA 9 

203 -52 4 26 L IFG BA 9 

204 -54 -60 -14 L Fus BA 37 

205 -46 -20 8 L STG BA 13 

206 50 20 12 R IFG BA 45 

207 -48 24 10 L IFG BA 45 

208 54 -10 6 R STG BA 22 

209 4 -32 -14 R Culm / 

210 -52 -20 -32 L ITG BA 20 

211 6 52 -8 R MedFG BA 10 

212 -2 34 26 L Cing BA 32 

213 24 -14 -30 R Unc BA 28 

214 6 20 30 R Cing BA 32 

215 52 28 18 R MFG BA 46 

216 -8 10 36 L Cing BA 32 

217 58 6 28 R IFG BA 9 

218 -2 -4 -14 L HypoThal / 

219 34 28 -12 R IFG BA 47 

220 42 -16 -32 R ITG BA 20 

221 -46 46 -4 L IFG BA 10 

222 -30 60 -6 L SFG BA 10 

223 -54 -10 -28 L ITG BA 20 

224 58 -10 -20 R ITG BA 20 

225 58 -52 -14 R ITG BA 20 

226 30 58 -4 R SFG BA 10 

227 -56 -46 36 L IPL BA 40 

228 4 24 42 R Cing BA 32 

229 26 58 6 R SFG BA 10 

230 -24 4 -12 L SubcallG BA 34 

231 26 6 -30 R Unc BA 28 

232 -24 -8 -28 L Unc BA 28 

233 -50 24 26 L MFG BA 46 

234 -2 52 20 L MedFG BA 9 

235 26 -16 -8 R LentN / 

236 28 50 14 R SFG BA 10 

237 12 16 -22 R RG BA 11 

238 -50 16 20 L IFG BA 9 

239 -40 18 -10 L IFG BA 47 

240 4 30 34 R MedFG BA 6 

241 -26 46 18 L SFG BA 10 

242 -48 36 -10 L IFG BA 47 
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243 -34 36 -8 L MFG BA 11 

244 38 20 -6 R IFG BA 47 

245 26 4 -20 R Unc BA 28 

246 -56 -32 -12 L ITG BA 20 

247 -36 24 -2 L IFG BA 47 

248 16 30 -24 R OrbG BA 47 

249 28 38 -20 R MFG BA 11 

250 -10 -10 48 L MedFG BA 6 

251 -2 38 -18 L MedFG BA 11 

252 6 46 -16 R MedFG BA 11 

253 26 2 -10 R SubcallG BA 34 

254 22 -6 -24 R PhG BA 35 

255 56 -20 24 R IPL BA 40 

256 4 -14 52 R MedFG BA 6 

257 -4 48 -14 L MedFG BA 11 

258 48 38 2 R IFG BA 46 

259 -50 24 0 L IFG BA 47 

260 -28 -22 -18 L PhG BA 35 

261 -42 6 48 L MFG BA 6 

262 -54 -4 8 L PrecG BA 6 

263 -32 34 -18 L MFG BA 11 

264 38 24 0 R IFG BA 47 

265 44 14 28 R MFG BA 9 

266 -40 -54 44 L IPL BA 40 

267 -50 36 10 L IFG BA 46 

268 -58 -16 32 L PostcG BA 3 

269 44 38 -14 R MFG BA 11 

270 18 36 28 R MedFG BA 9 

271 44 32 -6 R MFG BA 47 

272 -18 -28 -8 L PHG BA 28 

273 -28 -18 -28 L PhG BA 36 

274 48 38 12 R IFG BA 46 

275 -2 44 28 L MedFG BA 9 

276 -46 42 18 L MFG BA 46 

277 -44 10 28 L IFG BA 9 
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Table 6. Synopsis of the nodes related to GM increases. 

 

Record Number X Y Z Side Label 

(Talairach Client) 

BA 

1 34 -44 -40 R CerTons / 

2 -22 -70 -40 L Inf_Semi-lunar_Lob / 

3 14 -68 -40 R Inf_Semi-lunar_Lob / 

4 -52 -12 -38 L ITG BA 20 

5 -34 -16 -38 L Uncus BA 20 

6 46 -44 -34 R CerTons / 

7 -42 0 -30 L MTG BA 21 

8 -24 -2 -30 L Uncus BA 36 

9 38 2 -30 R MTG BA 21 

10 -48 -16 -28 L ITG BA 20 

11 -30 -10 -30 L Uncus BA 28 

12 28 -22 -26 R PHG BA 36 

13 24 -8 -26 R Uncus BA 28 

14 22 2 -26 R Uncus BA 28 

15 2 -36 -24 R Culm / 

16 -46 -34 -24 L FFG BA 20 

17 -30 -30 -24 L Culm / 

18 -52 -26 -24 L FFG BA 20 

19 34 -14 -24 R Uncus BA 20 

20 -24 -12 -22 L PHG / 

21 -24 4 -22 L Uncus BA 28 

22 34 -38 -22 R Culm / 

23 -16 -24 -22 L Culm / 

24 -30 -18 -20 L PHG / 

25 38 -4 -22 R MTG BA 21 

26 24 10 -20 R IFG BA 47 

27 8 28 -20 R RG BA 11 

28 8 38 -20 R RG BA 11 

29 18 40 -20 R MFG BA 11 

30 -8 20 -18 L RG BA 11 

31 24 28 -18 R IFG BA 11 

32 -20 42 -18 L SFG BA 11 

33 36 -80 -16 R Declive / 

34 34 -46 -16 R Culm / 

35 6 -30 -16 R Culm / 

36 32 -28 -18 R PHG BA 36 

37 28 -14 -16 R PHG / 
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38 20 -6 -16 R Amyg / 

39 -16 4 -16 L PHG BA 34 

40 38 16 -16 R IFG BA 47 

41 -22 28 -20 L IFG BA 11 

42 34 32 -18 R IFG BA 47 

43 36 -70 -14 R FFG BA 19 

44 -36 -66 -16 L Declive / 

45 -26 -38 -14 L Culm / 

46 -34 -28 -14 L PHG BA 36 

47 -64 -22 -14 L MTG BA 21 

48 -52 -22 -14 L MTG BA 21 

49 40 4 -14 R STG BA 38 

50 10 20 -14 R MedFG BA 25 

51 -36 -86 -12 L IOG BA 18 

52 50 -56 -12 R FFG BA 37 

53 -12 -18 -12 L SN / 

54 -26 -12 -12 L PHG / 

55 -48 -4 -14 L MTG BA 21 

56 20 4 -12 R SubcallG BA 34 

57 -18 12 -10 L LentN / 

58 -42 12 -12 L STG BA 38 

59 -6 30 -14 L MedFG BA 11 

60 -12 40 -12 L MedFG BA 10 

61 56 -48 -10 R ITG BA 20 

62 28 -38 -10 R PHG BA 36 

63 -6 -28 -6 L Thal / 

64 -20 -26 -12 L PHG BA 35 

65 50 -22 -10 R STG BA 22 

66 -4 -8 -12 L MammB / 

67 22 16 -12 R SubcallG BA 47 

68 34 24 -10 R IFG BA 47 

69 6 30 -10 R ACC BA 32 

70 -28 34 -10 L MFG BA 11 

71 26 -92 -10 R FFG BA 18 

72 -14 -48 -10 L Culm / 

73 -54 -44 -8 L MTG BA 20 

74 -28 -46 -6 L PHG BA 19 

75 26 -8 -8 R Amyg / 

76 -42 2 -8 L Ins BA 13 

77 -10 18 -8 L Cau Head / 

78 -20 22 -6 L LentN / 
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79 -36 40 -8 L MFG BA 11 

80 34 48 -10 R MFG BA 11 

81 40 -78 -6 R IOG BA 19 

82 40 -64 -6 R FFG BA 19 

83 -44 -62 -10 L FFG BA 37 

84 12 -38 -6 R Culm / 

85 28 -26 -8 R Hip / 

86 40 -12 -6 R Ins BA 13 

87 -30 -4 -6 L Put / 

88 -18 -4 -6 L LGP / 

89 8 -2 -8 R HypoThal / 

90 36 10 -6 R Ins BA 13 

91 -36 20 -8 L IFG BA 47 

92 -10 48 -4 L MedFG BA 10 

93 30 62 -6 R SFG BA 10 

94 38 -90 -4 R IOG BA 18 

95 16 -48 -6 R Culm / 

96 -26 -32 -6 L PHG Hip 

97 10 8 -4 R Cau Head / 

98 48 -56 0 R ITG BA 19 

99 -14 -40 -4 L PHG BA 30 

100 12 -24 -2 R MGB / 

101 -28 -16 0 L LentN / 

102 52 -14 -4 R STG BA 22 

103 12 -12 -2 R SN / 

104 48 -4 -4 R STG BA 22 

105 -18 6 -2 L LentN / 

106 22 6 -2 R Put / 

107 -40 10 -2 L Ins BA 13 

108 -8 24 0 L Cau Head / 

109 10 36 0 R ACC / 

110 -40 58 -4 L MFG BA 10 

111 20 -92 -2 R LG BA 17 

112 58 -36 -2 R MTG BA 21 

113 -40 -24 -2 L Ins BA 13 

114 40 -24 -2 R Ins BA 13 

115 -8 -10 0 L VLN / 

116 -40 -4 0 L Ins BA 13 

117 -10 8 0 L Cau Head / 

118 -10 40 4 L ACC BA 32 

119 6 -56 2 R Culm / 
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120 -48 -36 2 L STG BA 22 

121 -16 -32 2 L Pulv / 

122 2 -14 0 R Thal / 

123 28 -8 2 R Put / 

124 40 -2 2 R Ins BA 13 

125 42 18 2 R Ins / 

126 -44 22 2 L IFG BA 47 

127 10 46 0 R ACC BA 32 

128 26 52 2 R SFG BA 10 

129 14 -36 4 R PHG BA 30 

130 -18 -18 4 L VPLN / 

131 -28 -8 4 L Put / 

132 -20 -2 4 L Put / 

133 10 12 4 R Cau Head / 

134 -46 32 4 L IFG BA 47 

135 -32 56 2 L MFG BA 10 

136 -8 -56 6 L PCC BA 30 

137 -64 -30 4 L MTG BA 22 

138 12 -18 6 R Pulv / 

139 44 -16 4 R Ins BA 13 

140 -42 4 6 L PrecG BA 44 

141 44 8 4 R Ins BA 13 

142 -24 12 6 L Put / 

143 -6 18 8 L Cau Body / 

144 24 0 12 R LentN / 

145 28 46 10 R MFG BA 10 

146 20 60 6 R SFG BA 10 

147 24 -90 8 R MOG BA 18 

148 10 6 8 R Cau Body / 

149 32 30 8 R IFG BA 45 

150 -36 40 10 L MFG BA 10 

151 32 58 10 R MFG BA 10 

152 -32 -92 12 L MOG BA 18 

153 36 -78 12 R MOG BA 19 

154 -10 -50 12 L PCC BA 30 

155 -46 -40 12 L STG BA 41 

156 -16 -30 12 L Pulv / 

157 16 -22 14 R LPN / 

158 30 -14 12 R Put / 

159 6 -10 12 R MDN / 

160 38 -8 10 R Ins BA 13 
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161 -22 4 12 rePut Put / 

162 -48 10 12 L PrecG BA 44 

163 52 12 10 R IFG BA 44 

164 -4 28 10 L ACC BA 24 

165 40 38 10 R MFG BA 10 

166 -32 50 10 L MFG BA 10 

167 -26 -10 14 L Put / 

168 38 2 12 R Ins BA 13 

169 46 20 12 R IFG BA 45 

170 12 28 14 R ACC BA 24 

171 -44 34 14 L MFG BA 46 

172 20 54 14 R SFG BA 10 

173 -36 -82 16 L MOG BA 19 

174 -56 -30 16 L STG BA 42 

175 -8 48 16 L MedFG BA 10 

176 34 -86 18 R MOG BA 19 

177 44 -34 18 R Ins BA 13 

178 56 -26 18 R PostcG BA 40 

179 12 -18 18 R LDN / 

180 18 -6 18 R Cau Body / 

181 20 64 16 R SFG BA 10 

182 22 -90 20 R Cun BA 18 

183 -10 -42 18 L PCC BA 29 

184 -50 -22 20 L Ins BA 13 

185 56 -6 18 R PrecG BA 4 

186 -18 -8 20 L Cau Body / 

187 -52 4 20 L IFG BA 44 

188 -46 16 20 L IFG BA 9 

189 -52 34 16 L MFG BA 46 

190 -38 -72 18 L MTG BA 39 

191 -8 24 20 L ACC BA 32 

192 12 -48 24 R PCC BA 31 

193 -48 -32 24 L IPL BA 40 

194 48 -60 26 R STG BA 39 

195 -12 -56 26 L Pcun BA 31 

196 48 -40 26 R IPL BA 40 

197 56 -20 24 R IPL BA 40 

198 54 14 26 R IFG BA 9 

199 -44 -78 26 L SOG BA 19 

200 -38 -58 28 L STG BA 39 

201 56 -30 28 R IPL BA 40 
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202 -4 -28 28 L Cing BA 23 

203 -52 -16 28 L PostcG BA 4 

204 -44 -2 26 L IFG BA 9 

205 -46 12 28 L IFG BA 9 

206 -2 14 26 L ACC BA 24 

207 -48 24 26 L MFG BA 46 

208 12 -90 28 R Cun BA 19 

209 8 -56 28 R PCC BA 31 

210 -60 -56 30 L SMG BA 40 

211 -8 -38 28 L PCC BA 31 

212 -56 2 32 L PrecG BA 6 

213 -12 56 32 L SFG BA 9 

214 40 -62 34 R AngG BA 39 

215 -48 -26 32 L PostcG BA 2 

216 32 -80 34 R Pcun BA 19 

217 -10 -62 34 L Pcun BA 7 

218 -36 -50 34 L IPL BA 40 

219 8 -36 32 R PCC BA 31 

220 52 -8 34 R PrecG BA 6 

221 -52 -68 36 L AngG BA 39 

222 -34 -66 36 L PCun BA 19 

223 38 -42 36 R SMG BA 40 

224 58 -26 34 R IPL BA 40 

225 6 -12 36 R ACC BA 24 

226 50 4 38 R MFG BA 6 

227 -44 6 36 L PrecG BA 9 

228 -46 16 34 L MFG BA 9 

229 22 46 34 R SFG BA 9 

230 48 -70 38 R AG BA 39 

231 -34 -42 40 L IPL BA 40 

232 -50 -18 38 L PostcG BA 3 

233 -52 -8 38 L PrecG BA 6 

234 -8 -54 40 L Pcun BA 7 

235 -8 48 38 L SFG BA 8 

236 -32 -58 42 L IPL BA 7 

237 -48 -30 40 L IPL BA 40 

238 58 -18 40 R PrecG BA 4 

239 32 18 42 R MFG BA 8 

240 12 -46 46 R PCun BA 7 

241 -44 12 44 L MFG BA 8 

242 -44 -44 44 L IPL BA 40 
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243 -22 20 46 L MFG BA 8 

244 -2 -42 46 L PCun BA 7 

245 44 -40 46 R IPL BA 40 

246 -32 -36 48 L PostcG BA 3 

247 -46 -26 50 L PostcG BA 2 

248 48 -26 46 R PostcG BA 2 

249 -38 -20 46 L PostcG BA 3 

250 -52 -16 48 L PostcG BA 1 

251 -52 -6 48 L PrecG BA 4 

252 8 6 44 R ACC BA 24 

253 32 24 50 R SFG BA 8 

254 22 -26 48 R PostcG BA 3 

255 16 -4 50 R ACC BA 24 

256 30 10 50 R MFG BA 6 

257 -34 -52 52 L SPL BA 40 

258 20 12 50 R SFG BA 6 

259 4 -50 52 R PCun BA 7 

260 46 -18 52 R PostcG BA 3 

261 0 -68 54 L PCun BA 7 

262 -30 -30 56 L PrecG BA 4 

263 -20 -50 56 L PCun BA 7 

264 -12 -42 56 L PCun BA 7 

265 2 -40 56 R ParacLob BA 5 

266 12 -54 58 R PCun BA 7 

267 10 -32 62 R PostcG BA 3 

268 -6 -48 66 L PostcG BA 7 

269 -18 -44 64 L PostcG BA 5 

270 6 6 66 R SFG BA 6 

271 16 -48 66 R PostcG BA 7 
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Figure 2. Left panel: Pipeline used for detecting the regions of interest (i.e., nodes). Right panel: Nodes obtained for the decrease (top) and 

increase (bottom) conditions. 
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2.2.5. Construction of the structural co-alteration network 

In order to map the distribution of GM alterations, a method capable of 

identifying the structural co-alterations associated with brain disorders was 

applied (Cauda et al., 2018a; Manuello et al., 2018; Tatu et al., 2018). This 

methodology can find whether the alteration of a certain area statistically co-

occurs with the alteration of one or more other cerebral areas. In particular, a co-

alteration matrix was built on the basis of the previously defined set of nodes. In 

the matrix of NxM dimension, N rows stand for experiments and the M columns 

for the network nodes. For each couple of nodes of this matrix, it is possible to 

get the strength of their co-alteration applying the Jaccard index, which is the 

ratio between the number of experiments (rows) activating both nodes and the 

union of the experiments activating the two nodes independently. The Jaccard 

matrix was then thresholded at p < 0.01, with the method of Toro et al. (2008). 

More specifically, given A and B (two nodes), the null hypothesis affirms that 

the probability that B is altered does not depend on the probability that A, too, is 

altered; on the contrary, the alternative hypothesis affirms that there is a 

relationship of dependence between the occurrences of A and B, which can be 

expressed formally as follows: 

 

	
 = ��
��� = 1|� = 0� 
 

	� = ��
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�
: 	
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��: 	
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From VBM data, an estimate p�  can be obtained under the null hypothesis that 

p� = m/N, where m is the number of experiments in which node B is altered and 

N is the total number of experiments. In a similar way, the estimated probabilities 
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under the alternative hypothesis that there is dependency in the alteration of 

nodes can be obtained as follows: 

 

	̂
 =
�� − ��
�� −  � 

 

and 

 

p�� =
k
n 

 

where n is the number of experiments in which node A is altered and k the 

number of experiments in which both A and B result to be altered. The following 

formula determines the likelihood-ratio test: 

 

 

 

This formula evaluates the alternative hypothesis H1 with respect to the null 

hypothesis H0. The probability of the null hypothesis is expressed as follows: 

 

#��
� = ���;  , 	���� − �;� −  , 	� 
 

where B stands for the binomial distribution in which n is the number of 

contrasts altering the second node; m is the number of contrasts altering the first 

node; N is the total number of contrasts; and p = m/N and k are the numbers of 

contrasts altering both nodes. The probability of the alternative hypothesis is 

expressed as follows: 

 

#���� = ���;  , 	����� − �;� −  , 	
� 
 

λ =
L(H1)

L(H0)
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The  distribution is modelled by a  function with one degree of 

freedom. Connection at p < 0.01 corrected for false discovery rate (FDR) was 

retained, or else discarded. 

 

2.2.6. Construction of the functional connectivity matrix 

The functional connectivity matrix was built for the same set of nodes of 

the previous analysis using resting state data (minimally pre-processed and ICA-

FIX denoised) from 200 healthy adult subjects within the 22–35 age range, 

obtained from the Human Connectome Project (2015 Q4, 900-subject release). 

For details regarding the pre-processing of these data see Van Essen et al. (2012) 

and Glasser et al. (2013). 

The matrix was built on the basis of previously determined ROIs, which 

were used with the dual regression approach (Beckmann et al., 2009) to produce 

a spatial map and subject-specific associated time series of the functional data. 

The spatial map of every subject was regressed into the subject’s 4D space-time 

data set, so that a set of subject-specific time series was created. The output of 

the dual regression was a set of 200 matrices, one for every subject, in which 

columns were the time series of the corresponding ROIs. From these matrices the 

partial correlation between nodes was determined for each subject and then 

mediated so as to obtain a final partial correlation matrix of the subjects’ group. 

This final connectivity matrix was then thresholded (� < 0.05) with one sample 

permutation test (5000 permutation) by means of the FSL randomise program 

(Smith and Nichols, 2009; Winkler et al., 2014). 

 

2.2.7. Construction of the anatomical connectivity matrix 

The anatomical connectivity matrix was built using diffusion tensor 

imaging (DTI) data of 842 subjects within the 22–35 age range. These data were 

obtained from the Human Connectome Project (2015 Q4, 900-subject release) 

(Van Essen et al., 2013). The DTI images were obtained with a multishell 

diffusion scheme. The b-values were 1000, 2000 and 3000 s/mm2. The numbers 

λ χ2
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of the diffusion sampling directions were 90, 90 and 90. The in-plane resolution 

was 1.25 mm, and the slice thickness 1.25 mm. The DTI data were reconstructed 

in the MNI space applying the q-space diffeomorphic reconstruction (Yeh and 

Tseng, 2011) so as to have the spin distribution function (Yeh et al., 2010). A 

diffusion sampling length ratio of 1.25 was used; its output resolution was 1 mm. 

The atlas was built by averaging the spike density functions of the 842 subjects. 

A deterministic fiber tracking algorithm (Yeh et al., 2013) was employed in 

order to reveal the anatomical pathways. The parameters were the following: 

whole-brain seeding region method; angular threshold of 60°; step size of 0.5 

mm; the anisotropy threshold was determined automatically by DSI Studio (Yeh 

et al., 2016). Paths with a length less than 30 mm were discarded. A total of 5000 

seeds were located in the brain. The previously defined set of nodes was used to 

determine the connectivity matrix by considering the numbers of tracts passing 

between two nodes normalized by the median length of the connecting tracks. 

 

2.2.8. Construction of the genetic co-expression matrix 

The “gene expression network” developed by Richiardi et al. (2015) is a 

type of genetic connectivity that can quantify anatomical region to anatomical 

region (i.e., region of interest to region of interest) across genes. This network 

was constructed on the basis of the complete microarray data sets of six brains 

from the Human Brian Atlas Project (Hawrylycz et al., 2012). The data sets are 

constituted by values of gene expression that are normalized across all the six 

brains – for details see the Allen Human Brain Atlas (2013). 

To address the idiosyncrasies of the Allen Brain Atlas (for instance, only 

two brains have bi-hemispheric samples and the variability among cerebral areas 

samples is high, as they were obtained with different stereotactic coordinates), a 

method based on the Voronoi tessellation was employed (Cauda et al., 2012a). 

The tessellation of Voronoi (Voronoi, 1907) is a particular metric division of 

space based on a finite set of points. In a 3D space, a given set of points S, the 

tessellation is a division that relates a volume V(p) to every point  	 ∈ ', in such 
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a way that all the surface points of V(p) are closer to p than to any other point in 

S. With this procedure a parcellation of each of the six brains was created, based 

on the position of their samples, which were treated as the barycentres of the 

polygons of Voronoi. In this way, the gene expression value of the sample 

situated in the barycenter of a particular polygon was attributed to all the voxels 

included in that polygon. 

Six parcellations were then created, and in each of them every voxel was 

associated with a gene expression vector related to its nearest sample. As to the 

four subjects with samples constituted by one hemisphere, just half brain was 

parcellated. Subsequently, the gene expressions of the six individuals were 

averaged voxel-wise. Gene expressions that were reported to be non-statistically 

significant in the Allen database were removed from the averaging process. This 

procedure was able to reduce the variance between the gene expression values of 

the six subjects, which minimized the idiosyncrasies of the Allen database. 

The final result was a single brain tessellation in which every Voronoi 

polygon had the six subjects’ mean gene expression (Cauda et al., 2012a). This 

information was used to construct the genetic co-expression matrix based on the 

set of nodes as previously defined. The gene expression of the Voronoi polygon 

related to a node was attributed to that node. The rows of the matrix were the 

gene expressions and its columns the nodes. From this matrix the full and partial 

correlation of the mean gene expression between the nodes was determined, so 

that a partial correlation matrix was obtained. This final matrix was thresholded 

(α < 0.05) with a permutation test (5000 permutations). 

 

2.2.9. Assessing the reliability of measures  

To evaluate the reliability of the calculations, the Spearman-Brown’s 

prediction formula was used (Stanley, 1971; Allen and Yen, 2001). Each data set 

(meta-analytic, functional, and genetic) was divided into even and odd groups. 

For every group, the connectivity matrices were determined. Subsequently, the 
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correlation between these matrices were calculated employing the Spearman-

Brown’s correction (Allen and Yen, 2001), with the following formula: 

 

( = 2�/�1 + �� 

 

where r is the Spearman’s correlation. 

As DTI data were obtained from the Human Connectome Project as mean 

connectivity matrices, a different approach to evaluate the reliability of the 

anatomical connectivity measures was used. Specifically, another mean DTI 

connectivity matrix was constructed using a replication data set. This data set led 

to a different anatomical connectivity matrix based on 842 subjects’ diffusion 

MRI data, within the 22–35 age range, obtained from the Human Connectome 

Project (2015 Q4, 900-subject release) (Van Essen et al., 2013). In the end, the 

correlation between the anatomical connectivity matrix of the primary data set 

and the matrix of the replication data set was determined. 

 

2.2.10.  Comparison of connectivity matrices 

The co-alteration, anatomical, functional, and genetic matrices were 

compared using the Mantel test (Mantel, 1967). In this test the correlation is 

calculated with a permutation test (5000 permutations). In other words, the 

correlation between the matrices was determined by randomly permutating rows 

and columns. Then, the distribution of the correlations was obtained and the p-

value was calculated. 

 

2.2.11.  Construction of the diffusion connectivity matrix 

To evaluate the progression of the different types of connectivity patterns, a 

diffusion model was created. The spread of GM alterations was thought of as a 

diffusion process by using a brain network-based model G = {N,E}, where nodes 

 * ∈ � and N stands for the cortical and subcortical structures obtained in this 

meta-analysis, while edges +*, ∈ - and E stands for the connection strength 
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connecting node i and node j. Three types of connection strength were 

considered, one for the anatomical matrix, one for the functional matrix, and 

another one for the genetic matrix. 

The diffusion process was modeled with the heat equation following 

Abdelnour et al. (2014) and Kondor and Lafferty (2002), as follows: 

 

     
.x�/�
./ = −0ℒx(t)               

 

in which ℒ is the Laplacian matrix: 

 

ℒ = 2 −Δ3�/4-Δ�/4
 

 

where Δ is the diagonal matrix having 5* = ∑ +*,,  as the ith diagonal element. 

The heat equation can be expressed as follows: 

 

x�7� = exp�−0ℒ7� x
 

 

This formula describes the progression of the initial phase x0. An initial 

phase in which the neuropathological process was uniform in all nodes was 

postulated, thus leading to the following equation: 

 

Cov�7� = exp�−βℒt�	 
 

As the diffusion factor 0 and the time t are free parameters, the formula can 

describe the covariance of the system at each time of its progression. 

In this case, the covariance matrix (obtained from meta-analytic data) and 

the Laplacian matrices (obtained from the resting state data, the anatomical data 

and genetic data) were considered. The diffusion factor 0 was estimated and, 

thereby, the progression of the diffusion for the functional, anatomical and 

genetic data was obtained. The estimate of 0 and the progression of the diffusion 
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were determined with a grid search on the parameter 0, ranging between 0 and 1 

with a step of 0.1. For every 0 value, the matrix of this simulation was correlated 

with the meta-analytic covariance matrix. With a Mantel test the significance of 

this correlation was evaluated and the 0 value maximizing the correlation was 

selected. 

 

2.2.12.  Contribution of the connectivity profiles to the co-alteration matrix 

A model D (i.e., co-alteration matrix) to study the contribution of the 

different types of connectivity profiles to the co-alteration network was 

developed as follows: 

 

< = =>?@AB/ + 0>CAC/ + D>EFAF/ 
 

in which D stands for the co-alteration matrix, >?@AB/ for the functional 

connectivity matrix, >CAC/ for the anatomical connectivity matrix, and >EFAF/ for 

the genetic connectivity matrix. 

By applying an unconstrained nonlinear optimization, the minimum of the 

scalar function of the variables was found. The employed algorithm was the 

search method proposed by Lagarias et al. (1998): 

 

minH,I,J ||�< − =>?@AB/ − 0>CAC/ − D>EFAF/�4 || 
 

This formula allows to find the coefficients minimizing the square 

difference norm between the co-alteration matrix and the other matrices. The 

algorithm was run 1000 times with different initial conditions, every time to 

assess the stability of the obtained minimum (see Fig. 3). 
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Figure 3. This schema shows the progression of the cost function of the minimization 

algorithm that predicts the distribution of the structural GM co-alterations. 

 

 

2.2.13.  Techniques of network analysis 

The co-alteration network was investigated by applying a network-based 

analysis technique.  

The node degree is defined as the number of links that connect the node 

with the other nodes. The degree distribution, which is the fraction of nodes with 

degree k, was used to compare the node degree of different networks’ nodes. In 

this way it was possible to compare the co-alteration network with the other 

networks. The degree distribution is expressed as follows: 

 

 

 

The average path length is considered as the average number of steps along 

the shortest paths for all couples of nodes of a network. Thus, for an unweighted 

graph G with n vertices, the average path length is expressed as follows: 

 

P(k) =
n

k

n
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KL =
1

 � − 1�MN�O*, O,�
*P,

 

 

 

in which d represents the shortest distance between node vR and node vS (with d = 

0 if it is not possible to reach vS starting from vR). 
This measure is one of the most robust in network topology and is inversely 

associated with efficiency, which measures the capacity of a network to 

exchange information between its elements. Specifically, the local efficiency 

measures the network resistance in case of specific nodes’ failure. 

 

 

 

2.3. Results 

 

2.3.1. The most frequently altered areas of the brain 

Figure 4 illustrates the cerebral areas that are mostly altered in the VBM 

studies of this meta-analysis. These areas can be considered to be a “core set” 

that is frequently affected by brain diseases. Regions exhibiting significant 

statistical decreases are the insulae, anterior cingulate cortices, superior and 

middle temporal gyri, superior, middle and inferior frontal, pre- and postcentral 

gyri. Regions exhibiting significant statistical increases are the right anterior and 

posterior insula, left middle insula, right pre- and postcentral gyri, right superior 

frontal gyrus, right superior temporal gyrus, left inferior temporal and inferior 

frontal gyri (see also Tables 7 and 8). 
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Figure 4. Results of the ALE for decreased (left) and increased foci (right). Results of the ALE are clustered at p < 0.05 and family-wise 

error-corrected for multiple comparisons, with a cluster-forming threshold of p < 0.001. 
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Table 7. Clusters of gray matter decreases. 

Cluster # Volume (mm3) x y z Side Label (Talairach Client) BA 

1 112080 -22 -6 -18 L Parahippocampal Gyrus. Amygdala  

  -28 -14 -16 L Parahippocampal Gyrus. Hippocampus  

  -4 -16 8 L  Thalamus. (Medial Dorsal Nucleus)  

  2 -16 6 R Thalamus  

  -36 20 0 L Insula 13 

  -8 12 6 L Caudate (Caudate Body)  

  22 -6 -18 R Parahippocampal Gyrus. Amygdala  

  -28 -36 -4 L Parahippocampal Gyrus. Hippocampus  

  10 12 8 R Caudate (Caudate Body)  

  38 20 2 R Insula 13 

  34 -26 -12 R Temporal Lobe. Sub-Gyral. Hippocampus  

  30 -36 -4 R Temporal Lobe. Sub-Gyral. Hippocampus  

  -4 8 -6 L Caudate (Caudate Head)  

  40 0 6 R Insula 13 

  38 10 0 R Insula 13 

  44 12 0 R Insula 13 

  2 6 -6 R Anterior Cingulate 25 

  -54 4 -6 L Superior Temporal Gyrus 38 

  -42 -6 0 L Insula 13 

  -38 4 6 L Insula 13 

  -44 14 30 L Middle Frontal Gyrus 9 

  12 -32 2 R Thalamus (Pulvinar)  

  -22 8 2 L Lentiform Nucleus. Putamen  

  -36 -14 -38 L Inferior Temporal Gyrus 20 

  58 -8 -12 R Inferior Temporal Gyrus 21 

  -50 10 20 L Inferior Frontal Gyrus 44 

  44 -16 12 R Insula 13 

  -48 -20 14 L Transverse Temporal Gyrus 41 

  -14 -32 2 L  Thalamus (Pulvinar)  

  34 30 -12 R Inferior Frontal Gyrus 47 

  50 -20 -4 R Superior Temporal Gyrus 22 

  54 -18 14 R Transverse Temporal Gyrus 41 

2 8048 -2 36 24 L Anterior Cingulate 32 

  6 24 32 R Cingulate Gyrus 32 

3 4920 -4 56 2 L Medial Frontal Gyrus 10 

  0 38 -12 L Medial Frontal Gyrus 11 

  4 38 -24 R Rectal Gyrus 11 

  6 50 -4 R Medial Frontal Gyrus 10 

4 688 -52 -16 -22 L Fusiform Gyrus 20 

5 464 44 10 34 R Middle Frontal Gyrus 9 

6 432 -30 56 -2 L Superior Frontal Gyrus 10 
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7 288 44 38 -8 R Middle Frontal Gyrus 47 

8 216 -58 -8 30 L Precentral Gyrus 4 

  -52 -8 34 L Precentral Gyrus 6 

 

 

 

Table 8. Clusters of gray matter increases. 

Cluster # Volume (mm3) x y z Side Label (Talairach Client) BA 

1 5016 10 4 0 R Caudate (Caudate Head)  

  26 -12 -16 R Parahippocampal Gyrus. Hippocampus  

  30 -22 -20 R Parahippocampal Gyrus 36 

  22 2 -20 R Uncus 34 

  22 -14 -26 R Parahippocampal Gyrus 35 

2 3752 -18 4 -6 L Lentiform Nucleus. Putamen  

  -8 18 0 L Caudate (Caudate Head)  

  -20 4 4 L Lentiform Nucleus. Putamen  

  -24 -2 12 L Lentiform Nucleus. Putamen  

  -20 16 -6 L Lentiform Nucleus.Putamen  

  -8 18 -10 L Anterior Cingulate 32 

3 2096 -26 -14 -16 L Parahippocampal Gyrus. Hippocampus  

  -30 -10 -4 L Lentiform Nucleus. Putamen  

  -32 -24 -18 L Parahippocampal Gyrus 35 

  -22 -4 -22 L Uncus. Amygdala  

4 1960 26 -32 -2 R Parahippocampal Gyrus 27 

  16 -22 10 R Thalamus (Lateral Posterior Nucleus)  

5 1208 40 -16 -4 R Insula 13 

6 1208 -44 8 38 L Middle Frontal Gyrus 9 

7 1080 -18 -22 8 L Thalamus (Ventral Posterior Medial Nucleus)  

8 640 -38 16 -6 L Inferior Frontal Gyrus 47 

9 568 -50 -22 26 L Postcentral Gyrus 2 

10 424 -28 -36 -4 L Parahippocampal Gyrus. Hippocampus  

11 352 32 -40 -18 R Fusiform Gyrus 20 

12 344 -10 42 -6 L Anterior Cingulate 32 

13 328 -40 4 2 L Insula 13 

14 280 4 -44 56 R Paracentral Lobule 5 

15 224 58 -24 32 R Inferior Parietal Lobule 40 
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2.3.2. Creation of nodes and the structural co-alteration network 

From the sets of GM decreases and GM increases, 277 and 271 nodes were 

obtained, respectively. These nodes are shown in Fig. 2 (right panel) – see also 

Tables 5 and 6. On the basis of these nodes, the structural co-alteration networks 

were constructed for both GM decreases and GM increases. These networks are 

illustrated by Figure 3 (top panel). 

Notably, the two co-alteration networks are topologically different (Fig. 5, 

bottom). The one constituted by GM decreases is more compact and mainly 

involves the insulae and the anterior cingulate cortices. These areas have the 

nodes with the highest values of degree. In turn, the network constituted by GM 

increases is more widespread and less anatomically defined, though it involves 

parts of the insulae and appears to be somewhat prevalent in subcortical areas. 

 

2.3.3. Anatomical, functional and genetic connectivity 

For the same sets of nodes, the resting state functional, anatomical and 

genetic networks were constructed. These networks are visualized in Figures 6 

and 7. In accordance with previous research (Gong et al., 2014; Huang and Ding, 

2016), anatomical and functional connectivity profiles appear to be correlated 

(decreased nodes r = 0.14, p < 0.00002383; increased nodes r = 0.12, p < 

0.00002421). Interestingly, genetic connectivity appears to correlate with both 

anatomical (decreased nodes r = 0.21, p < 0.00002195; increased nodes r = 0.18, 

p < 0.00003028) and functional connectivity (decreased nodes r = 0.18, p < 

0.00003021; increased nodes r = 0.14, p < 0.00002359). 
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Figure 5. Top: The GM decreases (left) and GM increases (right) co-alterations networks. For the sake of visualization, matrices were 

thresholded at the 95th percentile. Colors from blue to red show lower to higher correlation values. Bottom: Topological analysis of the co-

alteration networks, applying a force directed spring embedded layout. Smaller nodes represent lower average shortest path length. Colors 

from green to red show lower to greater degree values. 
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2.3.4. Reliability of connectivity matrices 

The connectivity matrices have a good reliability (Spearman-Brown split 

half test). The obtained mean values are 0.80, 0.72, 0.80, and 0.75 for structural 

co-alteration, functional, gene co-expression and anatomical connectivity 

matrices, respectively. These values suggest a good internal consistency of 

measures. Specifically, the Spearman-Brown formula is associated with the 

Cronbach’s alpha (Carlson et al., 2009; Nunnally and Bernstein, 1994); both 

formulas quantify the ratio of the true-score and total-score variances. As pointed 

out by Nunnally and Bernstein (1994), the rule of thumb for that measure 

generally regards figures > 0.7 as consistent values. 
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Figure 6. Top: functional connectivity (F-Conn) network. Middle: anatomical connectivity 

(A-Conn) network. Bottom: genetic connectivity (G-Conn) network. For visualization 

purposes, matrices were thresholded at the 95th percentile. Colors from blue to red indicate 

lower to higher correlation values. For anatomical connectivity, colors from blue to red 

indicate lower to higher fiber density values. 
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Figure 7. Distance matrices of the structural co-alteration, functional, anatomical and 

genetic connectivity. Colors from blue to red represent lower to higher correlation 

values. 
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2.3.5. Correlational analyses 

As the experimental question of this study was to investigate whether and 

how morphometric neuropathological co-alterations networks (formed by GM 

decreases or GM increases) are influenced by different types of normal brain 

connectivity profiles (i.e., functional, anatomical, and genetic connectivity), these 

co-alterations networks were compared with normal brain connectivity patterns 

obtained from healthy individuals. 

Statistical comparisons between structural co-alteration matrix and the other 

matrices (functional, anatomical, and genetic) show that each connectivity profile 

is statistically correlated with the co-alteration patterns associated with both GM 

decreases and GM increases; in other words, each connectivity profile can 

account for a statistically substantial portion of those co-alteration patterns. 

The left top panel of Figure 8 shows the full correlation between the 

structural co-alteration matrix and the other three connectivity matrices. The 

structural co-alteration network of GM decreases is better explained by 

functional connectivity (r = 0.28), then by anatomical (r = 0.19), and finally by 

genetic connectivity (r = 0.18); while the structural co-alteration network of GM 

increases is better explained by functional connectivity (r = 0.26), then by genetic 

(r = 0.23), and finally by anatomical connectivity (r = 0.22). 

As these three types of connectivity profiles are known to be correlated 

with each other and have a shared variance, the partial correlation between them 

and the structural co-alteration matrix was determined, so as to observe how each 

type of connectivity profile correlates with the structural co-alteration network 

with the exclusion of the shared variance. The right top panel of Figure 8 shows 

the results of this analysis, providing further evidence that the structural co-

alteration of GM decreases correlates more with functional (r = 0.24), then with 

anatomical (r = 0.14), and finally with genetic connectivity (r = 0.11). In turn, the 

structural co-alteration of GM increases appears to correlate similarly with the 

three types of connectivity profiles, even though it is slightly better explained by 

functional (r = 0.22), then by genetic (r = 0.17), and finally by anatomical 
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connectivity (r = 0.16). Notably, all results of partial and full correlations are 

statistically significant: p values < 2 × 10–7 for partial correlation, and p values < 

3 × 10–4 for full correlation, respectively. Overall, this suggests that all the three 

types of brain connectivity profiles can in part account for the GM decreases and 

GM increases structural co-alterations networks.  

 

 

 

Figure 8. Results of the correlational and predictive tests. The top panel illustrates the 

results of correlational analyses (left part regards the full correlation, right part regards 

the partial correlation). The bottom panel illustrates the predictive results. 
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Figure 9. Top: Maps illustrating the correlations of the functional, anatomical and 
genetic matrices with the structural co-alteration matrix for different β values as a 
function of time (arbitrary units). Colors from blue to red indicate lower to higher 
correlation values. Bottom: Chart showing the time in which the diffusion of alterations 
reaches the steady state as a function of the β rate for the decrease and increase 
conditions. 
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2.3.6. Progressions along the spatial and temporal dimensions 

The predictive model was able to describe the distribution of neuronal 

alterations’ patterns with good statistical confidence (all predictions survived the 

conservative statistic threshold of p < 0.00001). Figure 9 shows the temporal 

progression of the GM co-alteration patterns (expressed in arbitrary units) as 

predicted by the model’s β	values. For every	β value the temporal progression of 

the alteration process was calculated, and for every time step the diffusion matrix 

obtained from the distribution patterns of co-alterations was correlated with the 

co-alteration matrix derived from the meta-analysis. Around 30 time steps all the 

three types of connectivity profiles can predict the complete distribution of GM 

alterations. Yet, within the initial steps, only genetic connectivity is able to 

predict how structural co-alterations are going to diffuse. This result supports the 

idea that genetic connectivity makes it possible to predict a significant portion of 

the distribution pattern of neuropathological alterations in a range of brain 

disorders just on the basis of its initial phases. The chart at the bottom of Figure 9 

shows how the average temporal progression of co-alterations obtained from the 

model based on GM increases presents a faster development in comparison with 

the one obtained from the model based on GM decreases. 

The model of the distribution patterns of the structural co-alteration 

(D =αMW3XYZZ +βM[3XYZZ +γM\3XYZZ) indicates that it is possible to 

describe the meta-analytic GM co-alteration matrix as a weighted sum of the 

functional, anatomical and genetic connectivity matrices. The D matrix was 

correlated with the co-alteration matrix derived from the meta-analytical data: the 

found variance for the GM decreases was R4 =	0.77 (p < 0.0012), and for the 

GM increases was R4 =	0.72 (p < 0.0025). All the three matrices contribute 

substantially to the description of the meta-analytic structural co-alteration matrix 

(see Table 9 and the bottom panel of Figure 8). With regard to both GM 

decreases and increases, the major contribution is given by functional, then by 

anatomic, and finally by genetic connectivity matrix. 
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 F-Conn ^_ A-Conn ^_ G-Conn ^_     Total ^_
 

Decrease 0.41 0.34 0.25 0.77 

Increase 0.38 0.33 0.29 0.72 

 

Table 9. Correlation values between the three connectivity matrices and the meta-

analytic structural co-alteration matrix obtained with either GM increase or decrease 

data. The total R4 value was the result of the correlation between the diffusion matrix 

derived from the diffusion model and the co-alteration matrix derived from the meta-

analytic data. In this way the contribution of every connectivity profile to the variance 

explained was calculated, determining the R4 of each network with the diffusion matrix 

of the predictive model. 

F-Conn = functional connectivity matrix; A-Conn = anatomical connectivity matrix; G-

Conn = genetic connectivity matrix. 
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2.4. Discussion 

 

Results of this study have provided support for the following points: 1) 

cerebral regions affected by neuropathological processes tend to constitute 

typical patterns of structural co-alterations; 2) the development of these 

coalteration patterns is not random but is likely to follow the pathways of brain 

connectivity; 3) anatomical, functional and genetic connectivity profiles are 

differently involved in the development of structural co-alterations; 4) finally, on 

the basis of different types of brain connectivity, it is possible to describe and 

predict with relatively high accuracy the development of the coalteration patterns 

and, consequently, estimate the progression of how GM co-alterations are 

distributed across the brain. 

Analyses provide evidence that the distribution of brain morphological 

alterations manifests a specific development: alterations are distributed across 

cerebral regions in such a way as to create a network of pathological nodes. 

These co-alteration patterns have a topological definite architecture, which 

includes some areas (i.e., insular and anterior cingulate cortices) that are 

considered to be essential brain functional hubs. 

Interestingly, on the basis of brain connectivity, the predictive model has 

been able to account for the 77% and the 72% of the variance in the co-alteration 

patterns associated with GM decreases and GM increases, respectively. This 

result supports the hypothesis that the network-like distribution of these two 

structural co-alteration patterns, along with their temporal development (Cauda et 

al., 2018a, 2018b), are strictly influenced by brain connectivity constraints. In 

particular, the predictive model has showed that, on the basis of functional and 

anatomical connectivity profiles, more time steps are required to wholly describe 

and predict the progression of GM co-alterations. However, the predictive model 

based on genetic connectivity has been able to describe and predict the 

progression much more early, that is, just within the first stages of the 

neuropathological co-alteration process. 
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This finding allows to appraise the plausibility of three (i.e., transneuronal 

spread, nodal stress, and shared vulnerability) among the four mechanisms so far 

hypothesized for explaining the spread of brain alterations (Saxena and Caroni, 

2011; Zhou et al., 2012; Fornito et al., 2015), since each of them should lead to a 

specific progression (see the “Background” section for an in-depth discussion of 

this point). 

With regard to both GM decreases and GM increases, the functional 

connectivity profile seems to be the best predictor of the co-alteration patterns. 

Yet, it should be observed that also the other two types of connectivity profiles 

are important factors in the distribution of GM co-alterations; their contribution, 

nonetheless, is characterized by different timings. This finding is in line with the 

fact that analyses were carried out on a cross-diagnostic data set (Goodkind et al., 

2015), which included a variety of brain disorders. And as shown by Cope et al. 

(2018), specific mechanisms can be more or less involved in brain disorders. 

 

2.4.1. The distribution of gray matter alterations 

Results, especially those about GM decreases, show that a core set of brain 

regions often appears to be altered in a wide range of neuropathological 

conditions – discussions of the advantages of the transdiagnostic approach 

applied in the present study are provided by Buckholtz and Meyer-Lindenberg 

(2012), and McTeague et al. (2016). This finding gives a further confirmation of 

what found by other meta-analyses, which nonetheless were limited to three 

(Cauda et al., 2017) and six psychiatric conditions (Goodkind et al., 2015). Of 

note, this typical pattern largely includes brain regions that have been proposed 

to be part of the cognitive control network (Cauda et al., 2012b, 2017: McTeague 

et al., 2016). It should be observed, however, that the finding of a common 

alteration pattern in a number of brain disorders does exclude that each disorder 

may exhibit its own typical distribution of GM alterations (Crossley et al., 2015). 

Several studies (Braak and Braak, 1991; Braak et al., 2011; Brooks, 1991; 

Cauda et al., 2014; Fornito et al., 2015; Iturria-Medina and Evans, 2015; Iturria-
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Medina et al., 2014; Pearson et al., 1985; Raj et al., 2012; Ravits, 2014; Saper et 

al., 1987; Weintraub and Mesulam, 1996) have suggested that the distribution of 

GM pathological alterations is not random but associated with typical network-

like patterns. These suggestions have already been supported (Seeley et al., 2006; 

Seeley et al., 2009; Zhou et al., 2012) and now this investigation provides for 

them further evidence: GM alterations are distributed in patterns forming a 

“neurodegenerative networking” (Yates, 2012) or, as it has been called, a 

“morphometric co-alteration network” (Cauda et al., 2018a). This last expression 

seems to be preferable, as it has the advantage to refer to all types of disorders 

causing GM alterations (both increases and decreases), with no commitment to 

just neurodegenerative factors. 

GM decreased regions are mostly parts of the cognitive control network 

(Goodkind et al., 2015; McTeague et al., 2016) and include the insulae, anterior 

cingulate cortices, superior and middle temporal gyri, superior, middle and 

inferior frontal, pre- and postcentral gyri. Instead, GM increased regions include 

the right anterior and posterior insula, left middle insula, right pre- and 

postcentral gyri, right superior frontal gyrus, right superior temporal gyrus, left 

inferior temporal and inferior frontal gyri. The minor contribution of the 

precuneus in the co-alterations patterns could be considered as counterintuitive, 

as this region, being a fundamental hub of the default mode network, is 

extremely connected. Most likely, given the transdiagnostic approach of this 

study and though in some brain disorders the precuneus is undoubtedly altered, 

the frequency of this alteration is not sufficient for reaching statistical relevance. 

Furthermore, it should be observed that the fact that many alterations affect a 

certain brain regions does not necessarily entail for this area to be always co-

altered with other ones. With regard to this point a study by Manuello et al. 

(2018) has showed that in the co-alteration patterns of Alzheimer’s disease the 

precuneus contributes only for a significant node. So, even in the case of AD, the 

precuneus’ degree of alteration seems to be less substantial than previously 

thought. 
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If we compare the structural co-alteration networks of GM decreases and 

GM increases, we see that they differ significantly. With regard to GM decreases, 

insular, cingulate and prefrontal cortices (areas of the cognitive control/salience 

network), appear to be more involved (Seeley et al., 2007; Cauda et al., 2011, 

2012a, 2013); in contrast, with regard to GM increases, alterations appear to be 

more uniformly distributed, though with a little prevalence in subcortical areas 

(Figure 5, top panel). This differentiation is probably due to the different factors 

underlying the development of GM increases and GM decreases. As a matter of 

fact, GM decreases are commonly related to neurodegenerative processes, while 

GM increases are commonly related to compensatory mechanisms (Lin et al., 

2013; Premi et al., 2014, 2016), which are thought to occur at the initial stages of 

brain degeneration. This interpretation is in line with the results of the 

progression analysis, according to which patterns of GM increased values exhibit 

a faster temporal development than patterns of GM decreased values (Figure 9, 

bottom panel). It is also worth noting that decreases are equidistributed between 

neurodevelopmental and degenerative diseases (if one considers schizophrenia a 

neurodevelopmental deficit), while increases are more frequently reported in 

studies about neurodevelopmental deficits. Compensatory processes might 

therefore be considered as more likely to occur during the reorganization that the 

brain undergoes in neurodevelopmental conditions. In these conditions the ability 

of recruiting new cognitive strategies may produce different functional patterns 

(Berlingeri et al., 2010). And in order to face tasks demands the recruitment 

would be “atypical” (for instance, the recruitment of the homologue areas of the 

undamaged contralateral hemisphere). 

On the basis of the topological analysis, when altered, brain regions 

exhibiting a higher node degree and/or less average shortest path length are likely 

to play a pivotal role in the development of GM alterations’ patterns. Their large 

number of connections and intense activity might favor the mechanisms 

hypothesized to be at the root of alterations’ development, in particular the nodal 

stress and the transneuronal spread mechanisms. As it is shown by the predictive 
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model, these two mechanisms are thought to contribute more in the development 

of the GM structural co-alterations, which appear to be more influenced by both 

functional and anatomical connectivity profiles. Nonetheless, as the hypothesized 

causal mechanisms are not mutually exclusive, they all are probably involved in 

the formation of GM structural co-alterations, albeit each with its own 

characteristic temporal pace. 

 

2.4.2. The relationship between the distribution of GM alterations and brain 

connectivity 

All the three profiles of connectivity considered in this meta-analysis 

(functional, anatomical, and genetic) explain a significant part of the variance of 

the distribution of GM co-alterations. Specifically, functional connectivity can 

account for a greater part of the GM co-alteration patterns than the other 

connectivity profiles (followed by anatomic and genetic connectivity, 

respectively). A similar result has also been found by calculating the partial 

correlation between the GM co-alteration matrix and each connectivity matrix, 

with the removal of the contribution of the other connectivity matrices. This 

procedure was needed because, as we have already said, both functional and 

anatomical connectivity patterns are known to be partially correlated (Honey et 

al., 2009; Misic et al., 2016; Skudlarski et al., 2008; van den Heuvel et al., 2009), 

and because both these types of connectivity have been related to the patterns of 

genetic co-expression (Cioli et al., 2014; French and Pavlidis, 2011; French et al., 

2011; Goel et al., 2014; Lichtman and Sanes, 2008; Richiardi et al., 2015; Wolf 

et al., 2011). 

The progression of the alterations’ diffusion described by the predictive 

model, based on functional and anatomical connectivity profiles, requires many 

steps (between 30 and 40 arbitrary units) before reaching completion. In contrast, 

the prediction based on genetic connectivity needs a shorter time: between 10 

and 20 units. This is an interesting finding that is in line with the shared 

vulnerability hypothesis, according to which the GM alterations’ diffusion 
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caused by the disruption of the co-expression of specific genes is thought to 

require a shorter accretion time than when other diffusion mechanisms are 

involved. In other words, it is likely that at the early stages of brain disorders, 

several regions with similar genetic patterns can be affected by pathology. 

Furthermore, since the genetic risk is pleiotropic, it can involve wide and 

transdiagnostic symptomatically-related domains (Buckholtz and Meyer-

Lindenberg, 2012; Gejman et al., 2011), thus causing disruption in brain 

connectivity patterns of networks related to important cognitive functions (Cauda 

et al., 2012b). 

The results of the predictive model may be indicative that a chain of 

pathological factors is probably involved in a wide range of brain disorders in 

which types of connectivity play different roles. In fact, dysfunctional genetic co-

expressions might produce a neuronal shared vulnerability, which, in turn, might 

cause the alteration of brain networks, with the subsequent development of 

abnormal functional and anatomical connectivity patterns. As suggested by 

Buckholtz and Meyer-Lindenberg (2012), “genetic factors shape connectivity in 

networks linked to symptom domains, and imply that connectivity changes 

observed in mental disorders reflect a cause, rather than a consequence, of being 

ill”. The same authors remark that “the latent structure of psychopathology may 

reflect, in part, a genetically determined latent structure of brain connectivity”. 

The finding that functional and anatomical connectivity profiles seem to 

explain better the distribution patterns of GM co-alterations in a longer run than 

the genetic connectivity profile is in accordance with the consideration that both 

nodal stress and transneuronal spread mechanisms require time to exert their 

effects. The nodal stress causes a progressive intensification of excitotoxicity 

factors, while the transneuronal spread entails the transport of pathological 

elements via axons or the extracellular liquid. 

The results suggest that the three mechanisms of alterations’ diffusion 

considered in the present study (transneuronal spread, nodal stress and shared 

vulnerability) might play a synergistic role in the etiology of neurodegenerative 
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disorders and of psychiatric and neurodevelopmental conditions. Even though 

psychiatric and neurodevelopmental conditions are not directly associated with a 

specific proteinopathy, their structural and functional alterations tend to develop 

morphometric co-atrophy patterns that seem to be shaped by connectivity 

constraints (Cauda et al., 2018a). It has also been suggested that schizophrenia 

might be more appropriately conceived as a failure of communication between 

critical nodes of large brain networks rather than a dysfunction of isolated 

regions (Kaspárek et al., 2010; Northoff and Duncan, 2016). 

In brain disorders different factors (such as misfolded proteins, molecular 

nexopathies, and genetic/environmental interactions) might be at play. Overall, 

all these pathological factors can “stress” cerebral circuits and “shape” the 

distribution of GM alterations in network-like patterns. As suggested for 

neurodegenerative proteinopathies (Warren et al., 2013), in other diseases (like 

psychiatric conditions) the complex interplay between neurodevelopmental 

abnormalities and environmental/genetic factors might trigger brain deterioration 

(both functional and structural), even if a proteinopathy is not clearly detected, 

but with a similar impact on brain functioning. 

Given that the transneuronal mechanism (Zhou et al., 2012; Fornito et al., 

2015) implies a sort of spread along anatomical (axonal) routes, that the nodal 

stress mechanism implies a sort of intense functional activity between altered 

regions, and that the shared vulnerability mechanism implies shared gene 

expressions between brain areas, it is possible to hypothesize that, on the grounds 

of the results of this study, the distribution patterns of the GM decreases and 

increases might be more influenced, in sequence, by nodal stress, transneuronal 

spread, and shared vulnerability mechanisms. As we have already said, these 

mechanisms are not supposed to be mutually exclusive; in other words, the 

presence of one mechanism does not rule out the presence of the others. In 

different degrees, therefore, all of them might play a role in neuropathological 

processes according to the constraints of brain connectivity. 
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2.4.3. Brain connectivity can account for the distribution patterns of gray 

matter alterations 

The three matrices related to the types of brain connectivity can account 

well for the distribution patterns of structural co-alterations. This finding is 

important in order to better understand how the pathological brain responds to 

neuropathology, as it allows to link the progression of GM alterations to a 

neurobiological substrate. What is more, the results of this study confirms that 

brain connectivity can influence the development of neuropathological processes 

(Iturria-Medina and Evans, 2015). Some suggestions about this view have 

already been explored. For example, in patients suffering from Alzheimer’s 

disease functional disruption and GM decreases in different brain districts reflect 

covariance patterns of the default mode network, which may indicate that these 

atrophic areas are not altered independently. On the contrary, the main alteration 

in one of these areas might bring about a secondary alteration in other connected 

areas (Wang et al., 2013; Wang et al., 2015). The cognitive deterioration would 

therefore develop through sequential increases in connectivity, thus causing a 

functional overload. Increased connectivity in frontal areas (in particular those 

related to the salience network) are supposed to have a compensatory role. This 

complex pattern of functional disruption appears to mostly mirror the pattern that 

can be recognized in frontotemporal dementia, which involves largely frontal 

areas and the salience network (Zhou et al., 2010). 

Two important clarifications need to be addressed. First, even though brain 

connectivity appears to influence the development of GM co-alterations, this 

does not mean that every type of neuropathology is expected to exhibit similar 

structural co-alterations. In fact, with regard to each brain disease and to the 

patients involved, different network nodes can be affected. Furthermore, even if  

the final set of altered nodes results to be similar, the foci from which GM 

alterations started to propagate might have been different and, consequently, 

different progressions might have occurred. 
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The second clarification regards the relationship between the co-alteration 

network analysis carried out in this study and the anatomical covariance 

investigations (Mechelli et al., 2005). Anatomical covariances are described as 

“the covariance of morphological metrics derived from morphological MRI” 

(Evans, 2013). Apparently, the morphological neuropathological co-alterations 

investigated here may be conceived as a type of anatomical covariance. Yet, 

anatomical covariance is always obtained from single-subject data, while the 

meta-analytic data used here originated from a statistical comparison between 

pathological and healthy individuals. Thus, from the methodological perspective, 

the two approaches, though similar, are different and should not be equated with 

each other (Cauda et al., 2018a). 

 

2.4.4. Limitations and future directions 

The distribution patterns of morphometric neuropathological alterations 

have been investigated by analyzing meta-analytic data, which, compared to their 

original quality, are known to be characterized in part by deterioration. This loss 

of quality can increase the spatial uncertainty and influence the identification of 

alterations by decreasing the probability of statistical co-occurrences between 

nodes. Future studies may use native data, ideally derived from the same group 

of individuals. 

Although VBM analyses are extensively used and based on a well validated 

technique, there are methodological features that could influence the results of 

VBM experiments (e.g., field strength of the scanner, software used for analysis, 

smoothing amount). Yet, it is unlikely that these parameters can bias results in a 

systematic way, as different combinations of them occurred in the experiments 

considered in this meta-analysis. Furthermore, it has been proposed that possible 

false positives in VBM tend to be randomly distributed throughout the brain 

rather than accumulate in certain points, and this should avoid the inclusion of 

spurious nodes of alteration in the co-alteration network. Nonetheless, the 

possibility of some inclusion cannot be ruled out with certainty. 
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To solve the problem of heterogeneity due to experiments with a low 

sample size, a lower bound of 8 subjects for sample size was set, so that all the 

experiments with a sample size smaller than 8 subjects were removed from 

analyses. As already said, this lower bound is in accordance with Scarpazza et al. 

(2015), which have found that using a balanced small samples in the VBM 

studies of just 8 subjects does not influence the false positive rate. Furthermore, 

as the methodology used here identifies the co-occurrences between alterations 

across studies, experiments of small samples showing different results from 

others are supposed to cause a sort of “noise” that likely increases the false 

negative rather than the false positive rate. So, although the potential bias due to 

studies with a limited sample size cannot be completely excluded, it is more 

likely that real co-alterations were missed rather than false ones were detected. 

Yet, future research on larger and more controlled samples are needed as soon as 

they will be available. 

The ALE technique is one of the most used methods in the field of 

coordinate based meta-analysis. One of the limitations of this approach is that 

results can be driven by one, or a few, experiments, thus representing a specific 

case rather that an overall effect. Nonetheless, the ALE technique has been tested 

for its reliability and power specifically for what concerns sample size and 

number of experiments. In fact, a number of 20 experiments is usually thought to 

be the minimum sufficient amount to solve this bias. Therefore, analyses based 

on bigger data sets, as the one carried out here, should avoid the problem. 

However, other factors that could bias the results, such as the uncontrolled 

selection of a variety of different tasks or experimental conditions, had never 

been tested. 

Also the genetic matrix can present idiosyncrasies. First, the sample used in 

this study is made of just six human brains. Therefore, results can hardly be 

generalized to the whole population. Second, some of the six brains were not 

completely sampled. Third, samples had different stereotactic coordinates and 

were not evenly spaced. Although these issues were addressed methodologically, 
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results of the genetic analysis should be interpreted with caution and need the 

support of further evidence. Nonetheless, at present the complex procedure and 

the high costs for obtaining gene expressions data do not allow a more accurate 

analysis. 

Spatial and temporal errors related to fMRI and DTI procedures may affect 

both functional and anatomical connectivity patterns. However, such errors 

should increase more the amount of false negatives than the amount of false 

positives, thus diminishing the correlation values between matrices. Instead, 

given the good significance of the statistical models, results are likely to describe 

real phenomena than spurious factors. In support of the findings of this study the 

reliability values of the connectivity matrices are very good. This suggests that 

the possible errors related to the neuroimaging procedures are not likely to bias 

the conclusions of this study. Yet, future investigations using different statistical 

techniques are needed to be carried out on wider and better samples. 

With regard to possible confounding variables, such as the heterogeneity of 

ICD-10 categories, it should be observed that images’ categorization for meta-

analytical purposes are performed exclusively on the basis of key words; other 

variables are not taken into account. The aim of meta-analyses is in fact to 

provide a general picture of a phenomenon in which the possible influence of 

confounding variables is moderated by considering them as noise. The 

effectiveness of this approach is proven by the fact that a software like 

Neurosynth, which is based on automatic categorizations of certain words that 

are used in the scientific articles, is able to give meaningful maps with a robust 

statistics by comparing meta-analytic results in a specific domain with known 

experimental data. The same principle applies to the transdiagnostic approach of 

this meta-analysis, in which all the ICD-10 categories converge together. 

This meta-analysis focused on transdiagnostic data, coming from a range of 

brain disorders as well as from heterogeneous patients studied in different stages 

of their symptomatology. The aim was to study globally how GM alterations are 

distributed across the brain and, to do so, the widest retrievable sample was 
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needed to get a good statistical significance. Therefore, the obtained distribution 

patterns of GM alterations are not precisely associated with one or another brain 

disorder. Future inquiries can explore more specific patterns of GM co-

alterations with regard to specific diseases. It would be particularly interesting to 

compare the co-alteration patterns detected in this meta-analysis with both those 

obtained from native single subject data stored in publicly available MRI data 

sets (e.g., ADNI, UK Biobank) and with those obtained from longitudinal 

studies. An intriguing line of research concerns the difference of GM alterations’ 

patterns within patients with fast or slow cognitive decline. Finally, a significant 

scientific advance will be to comprehend how exactly each connectivity profile 

(functional, anatomical, and genetic) contributes in influencing the development 

of structural co-alterations associated with different brain disorders. 
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2.5. Conclusion 

 

This meta-analytical study has successfully addressed the four issues raised 

in the introduction. It has highlighted that 1) GM co-alterations across the 

pathological brain are not randomly distributed but present recognizable 

network-like patterns. It has also investigated the relationship between these 

distribution patterns of morphometric neuropathological alterations and brain 

connectivity, providing evidence that 2) the development of GM co-alterations is 

influenced by the constraints of brain connectivity. Specifically, the focus of the 

study has been on whether or not three types of connectivity profiles may shape 

and account for the development of structural GM co-alterations. The prediction 

model based on these connectivity profiles has showed that 3) all the three types 

of connectivity are involved and can statistically explain a good portion of the 

pattern variance of structural GM co-alterations (72% for GM increases and 77% 

for GM decreases, respectively). However, 4) the roles played by three types of 

brain connectivity require different timings in predicting the development of the 

GM co-alteration networks. 

These findings provide valuable insights into the mechanisms underlying 

neuropathological processes. In particular, analyses carried out in this study show 

that three (i.e., nodal stress, shared vulnerability, and transneuronal spread) of the 

four hypotheses suggested so far for the diffusion of GM alterations (Saxena and 

Caroni, 2011; Zhou et al., 2012; Fornito et al., 2015) are likely to have a role 

with different timings in the formation and development of structural co-

alteration patterns. Functional connectivity seems to give the better account of 

the distribution patterns of structural co-alterations, followed by anatomic and, 

finally, by genetic connectivity. However, even though one connectivity profile 

can be predominant, it is worth noting the all these three types are significantly 

involved in the progression of GM alterations, which is to be expected, given the 

cross-diagnostic nature of the data used in this study. 
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In sum, the three brain connectivity profiles appear to be strictly entwined 

with the distribution patterns of morphometric neuropathological alterations. This 

is an exciting finding that is a further step in the quest for a better understanding 

of the pathological brain. 
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3. Study 2 

 

3.1. Introduction 

After gathering evidence from study 1 that different types of connectivity 

patterns can influence the distribution of GM alteration across the brain, study 2 

aimed to explore whether or not traces of this influence can be identified in the 

co-alteration network related to a specific brain area, specifically, the insular 

cortex. The insula was chosen because of its distinctive characteristics of being 

both an important brain hub and a preferential target for neuropathological 

processes. 

Among the brain hubs, the insula has vast and extensive connections to 

many regions of the cortex and limbic system (Cauda et al., 2011, 2013; Cauda 

and Vercelli, 2013; Chang et al., 2013; Kelly et al., 2012; Stephani et al., 2011; 

Uddin, 2015; Vercelli et al., 2016). The insular cortex has been associated with a 

variety of important functions, ranging from pain perception and speech 

production to social emotions (Cauda et al., 2012b), including the conscious 

monitoring of the body’s condition via the integration of different unconscious 

stimuli (both external and internal) with emotional processes, as well as the 

conscious detection of error (Cauda et al., 2011, 2012a; Klein et al., 2013; 

Nieuwenhuys, 2012; Vercelli et al., 2016; Wylie and Tregellas, 2010). The 

integration of external sensory stimuli with inputs coming from the limbic system 

has led to think that the insula may play a fundamental role in the generation and 

maintenance of a state of awareness related to the body’s condition (Cauda et al., 

2011; Manuello et al., 2018). These relevant roles put the insula at the interface 

between the inner and the external worlds, thus making it a pivotal center within 

the brain functional architecture (Ahmed et al., 2016; Douaud et al., 2014; Fjell 

et al., 2015; Jagust, 2013; Jones et al., 2016; Klein et al., 2013; Voytek and 

Knight, 2015). 
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Furthermore, Cauda et al. (2019) have highlighted that the insula is among 

the areas most frequently affected by brain disorders. This suggests that the 

insular cortex may have as yet an unknown role in the development of alterations 

caused by brain disorders. In light of this, study 2 aimed to investigate: 1) what 

pattern of neuronal alterations’ distribution is associated with different portions 

of the insula; 2) whether or not this pattern correlates with the insula meta-

analytic functional connectivity; and 3) the behavioral profile associated with the 

areas of the insular co-alteration networks. 

To do so, the VBM experiments stored in the BrainMap database were 

retrieved. As VBM can be applied transdiagnostically (Cauda et al., 2019; 

McTeague et al., 2016), data about all brain disorders that were present in the 

BrainMap VBM repository were used, with the aim to achieve the most 

overarching analysis of how pathological processes affect the insular cortex. 

 

 

3.2. Materials and methods 

 

3.2.1. The parcellation of the insular cortex 

It is well known that the insular cortex exhibits a marked heterogeneity both 

in functional and cytoarchitectonical aspects (Cauda et al., 2011, 2012a). For this 

reason, this brain area can be better described by adopting some kind of 

parcellation. However, no consensus has been reached on the number of parcels 

to be used (Cauda and Vercelli, 2013). As it is based on multimodal convergence 

criterion and non-hierarchical clustering, the solution proposed by Kelly et al. 

(2012) was chosen for the parcellation of the insula. Among the various 

dimensionality options (i.e., from 2 to 15 clusters), those showing the best cross-

model agreement for both the hemispheres were selected (i.e., 2, 3 and 9 

clusters), as highlighted by Cauda and Vercelli (2013). Since a number of 

clusters over 3 was not sufficient to guarantee reliable amount of data for 

statistical results, the bipartite (K2) and tripartite (K3) solutions were preferred. 
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The related regions of interest (ROIs) were downloaded from 

http://fcon_1000.projects.nitrc.org. 

 

3.2.2. Selection of studies 

An extensive meta-analytic search was conducted using the software Sleuth 

to query the VBM database of BrainMap (Fox, Laird, et al., 2005; Fox and 

Lancaster, 2002; Laird et al., 2005b). At the moment of the search (February 

2018), the BrainMap VBM database contained 994 articles, for a total of 3151 

experiments, 75727 subjects, and 21827 locations. 

In order to assess the impact of brain disorders on the insular cortex, a first 

search was performed with the following query: 

 

[Experiments Contrast is Gray Matter] AND [Experiment Context is 

Disease Effects] AND [Observed Changes is Controls > Patients] AND 

[Locations TD Label is Gyrus Insula]. 

 

The study focused on decreased values only as these effects were reported 

by all VBM studies retrieved in the search. This allowed to achieve a better 

statistical significance. Furthermore, from a theoretical point of view, there is 

general agreement in the neuroscientific literature that decreased values can be 

seen as density reduction or atrophy of GM. 

In order to describe the co-alteration of the insula subsections (i.e., K2 and 

K3), an additional search was performed using the following criteria: 

 

[Experiments Contrast is Gray Matter] AND [Experiment Context is 

Disease Effects] AND [Observed Changes is Controls > Patients] AND 

[Locations MNI image is *] 

 

where the MNI images represent each of the parcels selected from the work 

of Kelly et al. (2012). In order to improve the statistical power and the reliability 
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of analyses, as well as to avoid performing ALE on small sets of experiments, the 

left and right homologous clusters were merged in a same ROI. Hence, the query 

was repeated twice to retrieve the data related to the K=2 segmentation and 3 

times for what concerns the K=3 segmentation. 

 

3.2.3. Anatomical likelihood estimation and comparison between functional 

connectivity and alteration patterns 

The VBM data retrieved were statistically elaborated with the method of the 

ALE (Eickhoff et al., 2012; Eickhoff et al., 2009; Turkeltaub et al., 2012), so as 

to obtain modelled anatomical effect maps representing the overall distribution of 

gray matter co-alterations within the target seed area (Insulae). 

ALE maps showed the brain areas in which multiple studies reported 

statistically significant alteration peaks (i.e., foci of interest). The ALE map 

derived from the analysis of the whole insula was thresholded at a voxel-level 

(FWE p < 0.05) (Eickhoff et al., 2016, 2017), while the remaining maps were 

thresholded at a cluster-level (FWE p < 0.01). Since locations with morphologic 

alterations (and not functional activations) were analyzed, ALE maps revealed 

the brain regions that were likely to be altered together (Cauda et al., 2018a; 

Manuello et al., 2018; Tatu et al., 2018). 

Finally, a meta-analytic connectivity modeling (MACM) was performed on 

data derived from the BrainMap functional repository, so as to construct the 

meta-analytic functional connectivity pattern of each of the five bilateral parcels 

of the insula (Robinson et al., 2010). According to MACM, brain areas 

exhibiting common activation patterns are considered to be connected. Then the 

co-alteration patterns and the functional connectivity patterns were compared to 

inspect their similarity. To do so, Pearson’s r was used to calculate the degree of 

correlation between ALE values of both the insula MACM maps and the co-

alteration patterns. 
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3.2.4. Behavioral profile analysis 

To associate specific psychological functions with the areas forming the co-

alteration networks related to the five bilateral parcels, an analysis of behavioral 

profile was carried out using the behavioral analysis plug-in for the software 

Mango (Lancaster et al., 2012). This tool is based on the BrainMap functional 

database and provides a quantitative association between a user defined ROI (i.e., 

each on the ALE maps) and 51 behavioral sub-domains, organized in 5 classes: 

action, cognition, emotion, interoception, and perception. In accordance with 

Lancaster et al. (2012), only sub-domains with a z-score ≥ 3 were maintained. 

An average value was obtained for each of the 5 classes by computing the mean 

of the related sub-domains with above threshold z-score. 

 

3.2.5. Construction of the morphometric co-alteration networks 

The anatomical co-alteration networks of the bilateral insulae were 

constructed in order to describe in detail the statistical relationship between the 

insula and the co-altered regions. This type of analysis (Cauda et al., 2018; 

Manuello et al., 2018) can determine whether or not the alteration of a specific 

area (in this case, the insula) is statistically related to the alteration of other brain 

areas. In the produced output the nodes represent altered regions, while edges 

link couples of nodes which are more likely to be altered together than one 

independently from the other. This particular dependency was computed using 

the Patel’s k index (Patel et al., 2006). 

From this complete network one sub-network was extracted for each of the 

selected unilateral parcels. This was achieved with a three-steps procedure. First, 

the nodes anatomically located inside the given parcel of interest were identified 

and considered as roots. Second, only the first neighbors of the root nodes (i.e., 

nodes directly linked with at least one node located in the parcel) were preserved. 

Third, all the edges between non-roots nodes were eliminated. For each of the 

obtained sub-networks, the total number of nodes and edges was calculated. In 

order to describe the spatial pattern of co-alterations of each parcel at macro-
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level, the location of the non-root nodes were divided in 7 groups: frontal lobe, 

parietal lobe, temporal lobe, occipital lobe, midbrain, subcortical areas, and 

insula. Of note, non-root nodes located in the insulae were counted separately 

from the other lobes, in order to highlight the co-alteration between them. The 

repartition of the nodes was based on the Talairach Client tool (Lancaster et al., 

2000). To estimate the strength of co-alteration of each cluster with every lobe, 

the values of the edges connecting a given cluster with a given node were 

summed, and then divided for the sum of all the edges of the cluster. This 

measure was expressed as the percentage of the strength of the co-alteration of 

each lobe with a given cluster. 

 

 

3.3. Results 

 

3.3.1. Results from the queries 

The first search retrieved a total of 207 papers, 277 experiments, 4213 foci, 

for a total of 14916 subjects (see Figure 10 and Table 10). Experiments were 

distributed as follows: schizophrenia (46), multiple sclerosis (24), Alzheimer’s 

disease (19), epilepsy (14), depression (12), Huntington’s disease (9), 

frontotemporal lobe degeneration (8), multiple system atrophy (7), post-traumatic 

stress disorder (7), migraine (7), psychosis (7), bipolar disorder (7), 

frontotemporal dementia (6), supranuclear palsy (6), mild cognitive impairment 

(6), Parkinson’s disease (4), obsessive-compulsive disorder (3), Lewy body 

dementia (3), autism spectrum disorder (3), olfactory disorders (3), alcohol (3), 

spinocerebellar ataxia (2), panic/anxiety disorder (2), narcolepsy (2), corticobasal 

degeneration system (2), at-risk mental state (2), and amyotrophic lateral 

sclerosis (2). Other papers (61) were classified as “Others” if they investigated 

more than one brain disorder or if the study was the only one retrieved in the data 

set on a certain neuropathology (Fig. 11). 
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Figure 10. PRISMA flow diagram illustrating the selection of experiments. 
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Table 10. List of studies selected from the first query. 

 

 1st Author Year Journal Medline 
Number of 

experiments 

1 Adleman N E 2012 Journal of Child Psychology and Psychiatry 22650379 1 

2 Agosta F 2010 European Journal of Neuroscience 20597976 2 

3 Agosta F 2011 Radiology 21177393 1 

4 Alcauter S 2011 NeuroImage 21147232 1 

5 Antonova E 2005 Biological Psychiatry 16039619 1 

6 Arnone D 2009 European Neuropsychopharmacology - 1 

7 Asami T 2009 Psychiatry Research 19560907 1 

8 Ash S 2011 Brain and Language 21689852 1 

9 Ash S 2009 Journal of Neurolinguistics 22180700 2 

10 Aubert-Broche B 2011 NeuroImage 21414412 1 

11 Audoin B 2007 Multiple Sclerosis 17463071 1 

12 Barbeau E 2008 Neuropsychologia 18191160 1 

13 Baron J C 2001 NeuroImage 11467904 4 

14 Bassitt D P 2007 
European Archives of Psychiatry and Clinical 

Neuroscience 
16960651 1 

15 Baxter L C 2006 Journal of Alzheimer’s Disease 16914835 1 

16 Bell-McGinty S 2005 Archives of Neurology 16157746 2 

17 Bendfeldt K 2009 NeuroImage 19013533 1 

18 Bernasconi N 2004 NeuroImage 15488421 1 

19 Bertsch K 2013 
European Archives of Psychiatry and Clinical 

Neuroscience 
23381548 2 

20 Bitter T 2010 Brain Research 20553879 2 

21 Bitter T 2011 Neuroscience 21241781 1 

22 Boccardi M 2005 Neurobiology of Aging 15585344 1 

23 Boddaert N 2004 NeuroImage 15325384 1 

24 Bodini B 2009 Human Brain Mapping 19172648 1 

25 Boghi A 2011 Psychiatry Research 21546219 1 

26 Bonavita S 2011 Multiple Sclerosis 21239414 1 

27 Bonilha L 2004 Archives of Neurology 15364683 1 

28 Borgwardt S J 2007 Biological Psychiatry 17098213 1 
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29 Borgwardt S J 2007 British Journal of Psychiatry 18055941 1 

30 Borgwardt S J 2010 Biological Psychiatry 20006324 1 

31 Borroni B 2008 Archives of Neurology 18541800 1 

32 Boxer A L 2006 Archives of Neurology 16401739 1 

33 Bozzali M 2006 Neurology 16894107 3 

34 Brambati S M 2004 Neurology 15326259 1 

35 Brambati S M 2009 Neurobiology of Aging 17604879 3 

36 Brenneis C 2004 
Journal of Neurology, Neurosurgery, and 

Psychiatry 
14742598 1 

37 Brenneis C 2007 Journal of Neurology 17334661 1 

38 Brenneis C 2003 Movement Disorders 14534916 1 

39 Brenneis C 2006 Movement Disorders 16161039 2 

40 Brenneis C 2003 NeuroReport 14534423 1 

41 Brenneis C 2004 NeuroReport 15257132 2 

42 Brys M 2009 Journal of Alzheimer's Disease 19221425 1 

43 Burton E J 2002 NeuroImage 12377138 1 

44 Burton E J 2004 Brain 14749292 2 

45 Cascella N 2010 Schizophrenia Research 20452187 2 

46 
de Castro-Manglano 

P 
2011 Bipolar Disorders 21316203 2 

47 Ceccarelli A 2009 Human Brain Mapping 19172642 1 

48 Chang C C 2009 European Journal of Neurology 19486137 2 

49 Chanraud S 2007 Neuropsychopharmacology 17047671 1 

50 Chen S 2006 Psychiatry Research 16371250 2 

51 Chen S 2009 BMC Psychiatry 19538748 1 

52 Chua S E 2007 Schizophrenia Research 17098398 1 

53 Cordato N J 2005 Brain 15843423 1 

54 Critchley H D 2003 NeuroImage 12725766 1 

55 de Araujo-Filho G M 2009 Epilepsy & Behavior 19303459 1 

56 de Oliveira-Souza R 2008 NeuroImage 18289882 1 

57 Di Paola M 2007 Journal of Neurology 17404777 1 

58 Douaud G 2007 Journal of Neurology 17698497 1 

59 Farrow T F D 2005 Biological Psychiatry 15993858 2 
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60 Feldmann A 2008 Psychiatry Research 18945600 1 

61 Frisoni G B 2002 
Journal of Neurology, Neurosurgery, and 

Psychiatry 
12438466 1 

62 Fusar-Poli P 2011 Journal of Psychiatric Research 20580022 1 

63 Gale S D 2005 
Journal of Neurology, Neurosurgery, and 

Psychiatry 
15965207 2 

64 Garcia-Marti G 2008 
Progress In Neuro-Psychopharmacology & 

Biological Psychiatry 
17716795 1 

65 Garrido L 2009 Brain 19887506 1 

66 Gavazzi C 2007 Journal of Computer Assisted Tomography 17882035 1 

67 Ghosh B C 2012 Brain 22637582 1 

68 Giuliani N R 2005 Schizophrenia Research 15721994 1 

69 Gobbi C 2014 Academic Radiology 23812284 5 

70 Gong Q 2011 NeuroImage 21134472 1 

71 Gregory S 2012 Archives of General Psychiatry 22566562 1 

72 Grieve S M 2013 NeuroImage 24273717 1 

73 Guo X 2010 Neuroscience Letters 19879920 1 

74 Ha T H 2010 Neuroscience Letters 19429131 1 

75 Ha T H 2004 Psychiatry Research 15664796 1 

76 Han X 2017 Neural Regeneration Research 28616036 1 

77 Henley S M 2009 Journal of Neurology 19266143 1 

78 Herringa R 2012 Psychiatry Research 23021615 1 

79 Hoeft F 2008 Archives of General Psychiatry 18762595 1 

80 Hoeft F 2007 
Proceedings of the National Academy of 

Sciences 
17360506 1 

81 Honea R A 2008 Biol Psychiatry 17689500 1 

82 Honea R A 2009 Alzheimer's Disease and Related Disorders 19812458 1 

83 Horn H 2009 British Journal of Psychiatry 19182174 1 

84 Huang W 2011 Journal of Neuroradiology 22200974 1 

85 Huey E D 2009 Archives of Neurology 19822784 1 

86 Hulshoff Pol H E 2001 Archives of General Psychiatry 11735840 1 

87 Hulshoff Pol H E 2004 NeuroImage 14741639 1 

88 Ille R 2011 Journal of Psychiatry and Neuroscience 21406159 1 

89 Ivo R 2013 European Spine Journal 23392554 1 

90 Jang D P 2007 Neuroscience Letters 17951002 1 
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91 Janssen J 2008 
Journal of the American Academy of Child 

and Adolescent Psychiatry 
18827723 1 

92 Jayakumar P N 2005 
Progress In Neuro-Psychopharmacology & 

Biological Psychiatry 
15866362 1 

93 Kasai K 2008 Biol Psychiatry 17825801 1 

94 Kasparek T 2010 Human Brain Mapping 19777553 1 

95 Kassubek J 2004 
Journal of Neurology, Neurosurgery, and 

Psychiatry 
14742591 1 

96 Kassubek J 2007 
Journal of Neurology, Neurosurgery, and 

Psychiatry 
17332050 1 

97 Kaufmann C 2002 Neurology 12084891 1 

98 Kawachi T 2006 
European Journal of Nuclear Medicine and 

Molecular Imaging 
16550383 1 

99 Kawada R 2009 
Progress In Neuro-Psychopharmacology & 

Biological Psychiatry 
19625009 1 

100 Kawasaki Y 2007 NeuroImage 17045492 1 

101 Kawasaki Y 2004 
European Archives of Psychiatry and Clinical 

Neuroscience 
15538599 2 

102 Kesler S R 2008 The Journal of Pediatrics 18346506 2 

103 Kim J H 2008 Cephalalgia 17689105 1 

104 Kim S 2011 Journal of Clinical Neuroscience 21570296 1 

105 Kim S J 2009 Acta Neurologica Scandinavica 18624787 1 

106 Koprivova J 2009 Neuroscience Letters 19666084 1 

107 Kosaka H 2010 NeuroImage 20123027 1 

108 Koutsouleris N 2008 NeuroImage 18054834 4 

109 Kubicki M 2002 NeuroImage 12498745 2 

110 Kuchinad A 2007 Journal of Neuroscience 17428976 1 

111 Lai C H 2015 Journal of Affective Disorders - 1 

112 Lee J E 2013 
Journal of Neurology, Neurosurgery, and 

Psychiatry 
23828835 2 

113 Leung K K 2009 Psychological Medicine 18945378 1 

114 Libon D J 2009 Neurology 19687454 2 

115 Lin C H 2013 Frontiers in Human Neuroscience 23785322 2 

116 Lin K 2009 Epilepsy Research 19570650 2 

117 Lochhead R A 2004 Biological Psychiatry 15184034 1 

118 Lui S 2009 Psychiatry Research 18981063 2 

119 Lyoo I K 2004 Biological Psychiatry 15013835 1 
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120 Maneru C 2003 Journal of Neuroimaging 12593134 1 

121 Marcelis M 2003 Psychiatry Research 12694890 2 

122 Marti-Bonmati L 2007 Radiology 17641373 1 

123 Matsuda H 2002 Journal of Nuclear Medicine 11884488 1 

124 McAlonan G M 2008 Journal of Child Psychology and Psychiatry 18673405 2 

125 McIntosh A M 2004 Biological Psychiatry 15476683 1 

126 Meda S A 2008 Schizophrenia Research 18378428 3 

127 Meisenzahl E M 2008 Schizophrenia Research 18378428 4 

128 Mesaros S 2008 Archives of Neurology 18272867 1 

129 Mezzapesa D M 2007 American Journal of Neuroradiology 17296989 1 

130 Milham M P 2005 Biological Psychiatry 15860335 1 

131 Minnerop M 2007 NeuroImage 17512219 1 

132 Molina V 2011 
European Archives of Psychiatry and Clinical 

Neuroscience 
21188405 1 

133 Moorhead T W 2005 NeuroImage 16085427 1 

134 Morgen K 2006 NeuroImage 16360321 1 

135 Muhlau M 2007 Journal of Neural Transmission 17024326 1 

136 Muhlau M 2013 Multiple Sclerosis 23462349 1 

137 Nardo D 2010 Journal of Psychiatric Research 23113800 2 

138 Narita K 2011 
Progress In Neuro-Psychopharmacology & 

Biological Psychiatry 
21115089 1 

139 Neckelmann G 2006 International Journal of Neuroscience - 1 

140 Nestor P J 2003 Brain 12902311 1 

141 O'Daly O 2007 Psychiatry Research 17720459 1 

142 Obermann M 2013 NeuroImage 23485849 2 

143 Padovani A 2006 
Journal of Neurology, Neurosurgery, and 

Psychiatry 
16306152 1 

144 Paillere-Martinot M 2001 Schizophrenia Research 11378311 1 

145 Peinemann A 2005 Journal of the Neurological Sciences 16185716 3 

146 Pell G S 2008 NeuroImage 18042496 1 

147 Peng J 2010 European Journal of Radiology 20466498 1 

148 Pereira J B 2009 Movement Disorders 19349926 1 

149 Pereira J M 2009 Neurology 19433738 5 

150 Petrie E C 2014 Journal of Neurotrauma 24102309 1 
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151 Preziosa P 2016 Human Brain Mapping 26833969 1 

152 Price G 2010 NeuroImage 19632338 1 

153 Prinster A 2006 NeuroImage 16203159 1 

154 Prinster A 2010 Multiple Sclerosis 20028706 1 

155 Pujol J 2004 Archives of General Psychiatry 15237084 1 

156 Quarantelli M 2006 NeuroImage 16806975 1 

157 Rabinovici G D 2007 
American Journal of Alzheimer's Disease and 

Other Dementias 
18166607 1 

158 Riccitelli G 2012 Multiple Sclerosis 22422807 4 

159 Riederer F 2008 Neurology 18678824 1 

160 Riederer F 2012 The World Journal of Biological Psychiatry 22746999 1 

161 Riva D 2011 American Journal of Neuroradiology 21700792 1 

162 Rocca M A 2006 Stroke 16728687 3 

163 Rossi R 2006 Journal of Neurology 16502217 1 

164 Rossi R 2012 Psychiatry Research NeuroImaging 23146251 2 

165 Rowan A 2007 NeuroImage 17462915 1 

166 Salmond C H 2007 Cortex 17710821 1 

167 Santana M 2010 Epilepsy Research 20223639 3 

168 Saykin A J 2006 Neurology 16966547 1 

169 Scheuerecker J 2010 Journal of Psychiatry and Neuroscience 20569645 1 

170 Schiffer B 2013 Schizophrenia Bullettin 23015687 3 

171 Schmidt-Wilcke T 2010 Headache 20236343 1 

172 Schmidt-Wilcke T 2008 Cephalalgia 17986275 1 

173 Schmidt-Wilcke T 2005 Neurology 16275843 1 

174 Schwartz D L 2010 NeuroImage 20096794 1 

175 Seeley W W 2008 Archives of Neurology 18268196 3 

176 Senda J 2011 Amyotropic Lateral Sclerosis 21271792 1 

177 Serra-Blasco M 2013 British Journal of Psychiatry 23620451 2 

178 Shad M U 2012 
Journal of Child and Adolescent 

Psychopharmacology 
22537357 1 

179 Shapleske J 2002 Cerebral Cortex 12427683 2 

180 Shiino A 2006 NeuroImage 16904912 1 

181 Shin S 2012 
Journal of Neurology, Neurosurgery, and 

Psychiatry 
22933812 1 
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182 Sowell E R 2001 NeuroReport 11234756 1 

183 Spanò B 2010 Multiple Sclerosis 20007429 1 

184 Stratmann M 2014 PLoS One 25051163 2 

185 Sydykova D 2007 Cerebral Cortex 17164468 1 

186 Takahashi R 2011 Dementia and Geriatric Cognitive Disorders 22187545 2 

187 Tang L R 2014 Psychiatry Research NeuroImaging 25218414 1 

188 Tiihonen J 2008 Psychiatry Research 18662866 1 

189 Tir M 2009 Movement Disorders 19194988 1 

190 Tregellas J R 2007 Schizophrenia Research 17890058 1 

191 Tzarouchi L C 2010 Journal of Neuroimaging 19187475 1 

192 Wang F 2011 Brain 21666263 1 

193 Wei W 2016 Medicine 26962820 1 

194 Whitwell J L 2005 Archives of Neurology 16157747 1 

195 Whitwell J L 2013 European Journal of Neurology 23078273 1 

196 Wolf R C 2008 European Psychiatry 18434103 1 

197 Wolf R C 2009 Human Brain Mapping 18172852 1 

198 Xie S 2006 Neurology 16801648 1 

199 Xu L 2009 Human Brain Mapping 18266214 1 

200 Yamada M 2007 NeuroImage 17240165 1 

201 Yang F C 2013 Pain 23582154 1 

202 Yasuda C L 2010 NeuroImage 19683060 2 

203 Yasuda C L 2010 Neurology 20350980 1 

204 Yoo S Y 2008 Journal of Korean Medical Science 18303194 1 

205 Zamboni G 2008 Neurology 18765649 1 

206 Zhang T 2009 Journal of Affective Disorders 19211150 1 

207 Zhang X 2016 International Journal of Molecular Sciences 28035997 1 
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Figure 11. Repartition of the 277 experiments across disorders. 
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3.3.2. The co-alteration pattern of the insula 

 

K2-anterior 

The related search retrieved 122 experiments and 2080 foci. The density of 

alteration in this parcel was the 207% of the density of the whole brain. Along 

with the insula, alterations were mainly localized in the superior and inferior 

frontal gyri, anterior cingulate gyrus, superior temporal gyrus, caudate, thalamus, 

and claustrum (Fig. 12). 

 

K2-posterior 

The related search retrieved 80 experiments and 1330 foci. The density of 

alteration in this parcel was the 209% of the density of the whole brain. Along 

with the insula, alterations were mainly localized in the precentral and 

postcentral gyri, inferior frontal gyrus, anterior cingulate gyrus, left 

hippocampus, caudate, and thalamus (Fig. 12). 

 

K3-anterior 

The related search retrieved 76 experiments and 1433 foci. The density of 

alteration in this parcel was the 242% of the density of the whole brain. Along 

with the insula, alterations were mainly localized in the medial frontal gyrus, 

anterior cingulate gyrus, right central opercular cortex, right precuneus, left 

hippocampus, claustrum, amygdala, thalamus, and caudate (Fig. 13). 

 

K3-middle 

The related search retrieved 87 experiments and 1317 foci. The density of 

alteration in this parcel was the 178% of the density of the whole brain. Along 

with the insula, alterations were mainly localized in the left middle and inferior 

frontal gyri, right hippocampus, right claustrum, left amygdala, thalamus, and 

caudate (Fig. 13). 
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K3-posterior 

The related search retrieved 40 experiments and 664 foci. The density of 

alteration in this parcel was the 206% of the density of the whole brain. Along 

with the insula, alterations were mainly localized in the left inferior frontal gyrus, 

right middle frontal gyrus, left anterior cingulate cortex, thalamus, and caudate 

(Fig. 13). 

 

 

3.3.3. Comparison between co-alteration pattern and functional connectivity 

of the insula 

 

K2-anterior 

The degree of correlation between the co-alteration pattern and the MACM of the 

insula was r = 0.5611, which suggests a relevant overlap between the two 

patterns. Brain areas with peaks of high degree of overlap were the right 

paracentral lobule, right superior, middle, and inferior frontal gyri, left inferior 

and medial frontal gyri, right anterior cingulate gyrus, right medial dorsal nucleus 

of the thalamus, and left fusiform gyrus (Fig. 14). 

 

K2-posterior 

The degree of correlation between the co-alteration pattern and the MACM of the 

insula was r = 0.6062, which suggests a relevant overlap between the two 

patterns. Brain areas with peaks of high degree of overlap were the left precentral 

and postcentral gyri, left medial and middle frontal gyri, right superior and 

inferior frontal gyri, right middle cingulate gyrus, right precentral gyrus, left 

parahippocampal gyrus, and left amygdala (Fig. 14). 

 

K3-anterior 

The degree of correlation between the co-alteration pattern and the MACM of the 

insula was r = 0.5347, which suggests a relevant overlap between the two 
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patterns. Brain areas with peaks of high degree of overlap were the right superior 

frontal gyrus, left precentral gyrus, bilateral inferior parietal lobule, bilateral 

anterior cingulate gyrus, bilateral inferior frontal gyrus, right middle frontal 

gyrus, bilateral precuneus, bilateral caudate, right medial dorsal nucleus of the 

thalamus, left putamen, right inferior occipital gyrus, and left fusiform gyrus 

(Fig. 14). 

 

K3-middle 

The degree of correlation between the co-alteration pattern and the MACM of the 

insula was r = 0.6220, which suggests a relevant overlap between the two 

patterns. Brain areas with peaks of high degree of overlap were the right anterior 

cingulate gyrus, bilateral paracingulate gyrus, bilateral precentral gyrus, bilateral 

parietal and central operculum cortex, bilateral thalamus, right pallidum, left 

inferior temporal gyrus, bilateral amygdala (Fig. 14). 

 

K3-posterior 

The degree of correlation between the co-alteration pattern and the MACM of the 

insula was r = 0.5577, which suggests a relevant overlap between the two 

patterns. Brain areas with peaks of high degree of overlap were the bilateral 

medial frontal gyrus, left inferior frontal gyrus, right precentral and postcentral 

gyri, left precentral gyrus, bilateral anterior cingulate gyrus, bilateral middle 

frontal gyrus, bilateral superior temporal gyrus, left inferior temporal gyrus, right 

caudate, right red nucleus, left thalamus, right culmen, bilateral hippocampus, 

and left fusiform gyrus (Fig. 14). 
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Figure 12. The co-alteration networks of the anterior and posterior parcels of the K2 solution. 
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Figure 13. The co-alteration networks of the anterior, middle, and posterior parcels of the K3 solution. 
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Figure 14. Overlap between the patterns of co-atrophy (red) and of functional MACM (blue). 
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3.3.4. Behavioral profile analysis 

 

K2 

The behavioral profile of the co-alteration pattern related to the anterior parcel 

produced a score of 7.1 for “Emotion”, 7 for both “Interoception” and 

“Perception”, 6.6 for “Cognition”, and 4.7 for “Action”. In turn, the co-alteration 

pattern related to the posterior parcel scored 8 for “Emotion”, 6.9 for 

“Cognition”, 5.9 for “Perception”, 4.9 for “Action”, and 4.5 for “Interception” 

(Fig. 15). 

 

K3 

The behavioral profile of the co-alteration pattern related to the anterior parcel 

produced a score of 6.5 for “Cognition”, 6.4 for “Emotion”, 5.6 for “Action”, 5.5 

for “Perception”, and 5.2 for “Interoception”. Scores of the co-alteration pattern 

related to the middle parcel were 6.2 for “Emotion”, 5.9 for “Perception”, 5.7 for 

“Interoception”, 5.3 for “Cognition”, and 4.2 for “Action”. Finally, the 

behavioral decoding of the co-alteration pattern related to the posterior parcel 

scored 7.7 for “Emotion”, 4.9 for “Perception”, 4.7 for “Cognition”, 3.8 for 

“Action”, and 3.3 for “Interoception” (Fig. 15). 

 

3.3.5. The co-alteration network of the insula 

The complete bilateral network counts 14 nodes in the right insula and 6 in 

the left insula, for a total of 20 nodes. Of note, none of the nodes was localized in 

the middle parcel of left insula when using the tripartite subdivision. Therefore, it 

was not possible to create the K3_mid_L network. Coherently, K2_ant_L and 

K2_post_L were identical to K3_ant_L and K3_post_L, respectively. When 

moving from the bipartite partition to the tripartite one, all but one of the nodes 

that become part of the right middle partition were previously in the posterior one 

(for the Talairach coordinates of the nodes as well as their membership to Kelly’s 

parcels, see Table 11). 
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K2-left anterior 

The network originating from the 2 root-nodes in the left anterior insula 

(K2_ant_L) was composed of 449 edges and 268 nodes. The Patel’s k was 

distributed as follows: 31.96% for the 145 edges linking the insula to the frontal 

lobe, 23.13% for the 93 edges to the temporal lobe, 16.70% for the 98 edges to 

the parietal lobe, 12.80% for the 53 edges to the occipital lobe, 9.36% for the 35 

edges to the subcortical regions, 5.34% for the 19 edges to the insulae, and 

0.63% for the 4 edges to the midbrain (Fig. 16). 

 

K2-left posterior 

The network originating from the 4 root-nodes in the left posterior insula 

(K2_post_L) was composed of 871 edges and 259 nodes. The Patel’s k was 

distributed as follows: 43.23% for the 384 edges linking the insula to the frontal 

lobe, 21.66% for the 192 edges to the temporal lobe, 19.43% for the 195 edges to 

the parietal lobe, 6.20% for the 28 edges to the occipital lobe, 5.13% for the 45 

edges to the insulae, 2.93% for the 19 edges to the subcortical regions, and 

0.91% for the 2 edges to the midbrain (Fig. 16). 

Of note, both the K2-left anterior and K2-left posterior networks remained 

unchanged when moving to the 3 parcels solution. This meant that K2_ant_L was 

identical to K3_ant_L, and that K2_post_L was identical to K3_post_L. 

 

K2-right anterior 

The network originating from the 11 root-nodes in the right anterior insula 

(K2_ant_R) was composed of 2084 edges and 312 nodes. The Patel’s k was 

distributed as follows: 33.71% for the 164 edges linking the insula to the frontal 

lobe, 21.65% for the 149 edges to the parietal lobe, 18.13% for the 53 edges to 

the temporal lobe, 12.68% for the 45 edges to the occipital lobe, 8.61% for the 21 

edges to the subcortical regions, 1.63% for the 4 edges to the insulae, and 0.65% 

for the edge to the midbrain (Fig. 16). 
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K2-right posterior 

The network originating from the 3 root-nodes in the right posterior insula 

(K2_post_R) was composed of 437 edges and 218 nodes. The Patel’s k was 

distributed as follows: 38.98% for the 703 edges linking the insula to the frontal 

lobe, 33.78% for the 527 edges to the parietal lobe, 11.63% for the 343 edges to 

the temporal lobe, 9.41% for the 226 edges to the occipital lobe, 5.48% for the 

168 edges to the subcortical regions, 0.35% for the 26 edges to the insulae, and 

0.11% for the 8 edges to the midbrain (Fig. 16). 

 

K3-right anterior 

The network originating from the 6 root-nodes in the right anterior insula 

(K3_ant_R) was composed of 1041 edges and 235 nodes. The Patel’s k was 

distributed as follows: 36.09% for the 369 edges linking the insula to the frontal 

lobe, 25.24% for the 304 edges to the parietal lobe, 14.35% for the 141 edges to 

the temporal lobe, 12.97% for the 123 edges to the occipital lobe, 7.35% for the 

75 edges to the subcortical regions, 1.61% for the 12 edges to the insulae, and 

0.64% for the 3 edges to the midbrain (Fig. 17). 

 

K3-right middle 

The network originating from the 6 root-nodes in the right middle insula 

(K3_mid_R) was composed of 1184 edges and 312 nodes. The Patel’s k was 

distributed as follows: 31.22% for the 383 edges linking the insula to the frontal 

lobe, 22.29% for the 222 edges to the temporal lobe, 17.86% for the 262 edges to 

the parietal lobe, 12.13% for the 148 edges to the occipital lobe, 10.67% for the 

107 edges to the subcortical regions, 3.73% for the 41 edges to the insulae, and 

0.65% for the 6 edges to the midbrain (Fig. 17). 

 

K3-right posterior 

The network originating from the 2 root-nodes in the right posterior insula 

(K3_post_R) was composed of 296 edges and 177 nodes. The Patel’s k was 
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distributed as follows: 40.28% for the 114 edges linking the insula to the frontal 

lobe, 34.60% for the 105 edges to the parietal lobe, 11.53% for the 35 edges to 

the occipital lobe, 10.59% for the 34 edges to the temporal lobe, and 2.68% for 

the 7 edges to the subcortical regions. No edge linked the insulae or the midbrain 

(Fig. 17).  

 

Table 11. Talairach coordinates of the nodes and their membership to Kelly’s parcels. 

 

Node 

(Name) 

TAL coordinates Kelly’s parcels 

x y z K=2 K=3 

Insula_R 28 12 -20 K2_ant_R K3_mid_R 

Insula_R_1 40 2 -14 K2_ant_R K3_mid_R 

Insula_R_2 42 -6 -10 K2_ant_R K3_mid_R 

Insula_R_3 40 0 -10 K2_ant_R K3_mid_R 

Insula_R_4 48 14 -6 K2_ant_R K3_ant_R 

Insula_R_5 44 4 -4 K2_ant_R K3_mid_R 

Insula_R_6 44 14 -4 K2_ant_R K3_ant_R 

Insula_R_7 38 22 -2 K2_ant_R K3_ant_R 

Insula_R_8 38 12 2 K2_ant_R K3_ant_R 

Insula_R_9 40 14 2 K2_ant_R K3_ant_R 

Insula_R_10 42 14 2 K2_ant_R K3_ant_R 

Insula_R_11 44 -8 4 K2_post_R K3_post_R 

Insula_R_12 34 -24 10 K2_post_R K3_post_R 

Insula_R_13 42 -24 -2 K2_post_R K3_mid_R 

Insula_L -36 16 -12 K2_ant_L K3_ant_L 

Insula_L_1 -34 16 -12 K2_ant_L K3_ant_L 

Insula_L_2 -46 -14 -10 K2_post_L K3_post_L 

Insula_L_3 -42 -14 -10 K2_post_L K3_post_L 

Insula_L_4 -32 -12 -10 K2_post_L K3_post_L 

Insula_L_5 -50 4 -4 K2_post_L K3_post_L 
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Figure 15. Results of the behavioral analysis for the K2 (top), and K3 (bottom) 

solutions. Blue = anterior; orange = posterior; green = middle. 
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Figure 16. Distribution of the edges’ values for each lobe/group, for the K2 solution. Only lobes/groups accounting at least for the 2% 

of the total Patel’s k were visualized. Blue = frontal lobe, green = insula (non-root), red = midbrain, yellow = occipital lobe, purple = 

parietal lobe, pink = subcortical regions, brown = temporal lobe. 
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Figure 17. Distribution of the edges’ values for each lobe/group, for the K3 solution. Only lobes/groups accounting at least for the 2% 

of the total Patel’s k were visualized. Blue = frontal lobe, green = insula (non-root), red = midbrain, yellow = occipital lobe, purple = 

parietal lobe, pink = subcortical regions, brown = temporal lobe. 
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3.4. Discussion 

 

3.4.1. The co-alteration network of the insula 

The analysis provides further evidence for what has been showed by Cauda 

et al. (2019): the insular cortex is often and variously altered by a wide range of 

brain disorders. Of note, the insula, along with some subcortical nuclei, appears 

to be one of the most altered cerebral areas (Cauda et al., 2019). Both K2 and the 

K3 clusters present a density of alteration which is almost twice the alteration of 

the whole brain. Furthermore, the variety of diseases causing alterations in the 

insula is highly diversified, including both neurological and psychiatric 

conditions. All these types of disorders impact on the insula, albeit in different 

ways. 

Both the insula co-alterations networks based on the K2 and K3 solutions 

include cortical and subcortical sites. Frontal regions (particularly the inferior 

frontal gyrus) are included in both K2 and K3 parcellations, as well as 

subcortical areas such as thalamus and caudate. Interestingly, the amygdala and 

parietal areas appear to be co-altered in the K3 parcellation but not in the K2 

parcellation, which may imply that K3 parcellation is the solution which is more 

specific. 

These findings reflect the widespread anatomical connections of the insula 

with many cerebral regions (Cauda et al., 2011, 2012a; Dosenbach et al., 2007; 

Mesulam and Mufson, 1982; Taylor et al., 2009; van den Heuvel et al., 2009). 

Portions of these connections are long-range projections, as the insular cortex has 

been found to be rich of Von Economo’s neurons (VENs), large spindle-shaped 

cells that are supposed to be involved in processes regarding the monitoring of 

the state of the body, such as proprioception and interoception (Allman et al., 

2005; Cauda et al., 2013, 2014; Medford and Critchley, 2010; Seeley et al., 

2007). In particular, the anterior cingulate cortex (ACC) seems to be often co-

altered with the insula. These two regions are essential parts of the salience 

network, a dysfunction of which might explain the deficits of salience detection 
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and self-monitoring that can be observed transdiagnostically in many 

neurological and psychiatric conditions. 

 

3.4.2. Distribution analysis of edges 

It worth noting that edges link the insula with areas tending to be not below 

the z coordinate of the insula node itself, with no co-alteration with the 

cerebellum and only few with the midbrain and subcortical areas. This may 

indicate that the insular cortex is co-altered by brain disorders only together with 

higher-order areas, especially with cortical ones. As the insula is related to 

functions integrating lower- and higher-order cognitive processes, evaluating 

sensory and limbic stimuli, monitoring the body and the environment in order to 

perform error detection (Ahmed et al., 2016; Cauda et al., 2011, 2012a, 2012b; 

Douaud et al., 2014; Fjell et al., 2015; Jagust, 2013; Jones et al., 2016; Klein et 

al., 2013; Nieuwenhuys, 2012; Vercelli et al., 2016; Voytek & Knight, 2015; 

Wylie & Tregellas, 2010), it should be surprising to find it not much co-altered 

with limbic and subcortical sites. As the co-activation map reveals that the 

insular cortex is functionally connected with several extracortical regions (for 

example, the cerebellum), the co-alteration patterns of every insular parcel 

indicate that the insula exhibits a characteristic pathoconnectivity profile. In other 

words, this region seems to be co-altered mainly with the cortical areas with 

which it is functionally connected rather than with those lower-order areas whose 

information is supposed to be the inputs for insular integration. 

Interestingly, every cluster is extensively connected with many cortical 

regions, but their co-alteration edges are not equally distributed across the 

cortical lobes. The most co-altered lobe with every insular cluster is the frontal 

lobe, which indicates again that the insula tends to be altered along with higher-

order and philogenetically recent areas. This finding may also be accounted for 

by the anatomical closeness between the frontal cortices and the insula. 

Accordingly, the occipital lobe, which is relatively distant from the insula and is 
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principally involved in sensory processes, is one of the less co-altered areas with 

the insula. 

The edges’ distribution across the lobes is also different between clusters. 

The left posterior cluster is the most co-altered with the frontal lobe. Within the 

right insula, the posterior K2 cluster is slightly more co-altered than the anterior, 

and the posterior K3 cluster, even though it has less edges than the others, 

presents a 40% of the strength of its co-alteration toward the frontal lobes. 

Counterintuitively, posterior clusters are less connected with the occipital lobe 

than the anterior ones. These results are quite unexpected, as Kelly and 

colleagues (2012) found that the posterior clusters are principally involved in 

motor and perceptual functions, while the anterior ones are principally involved 

in cognition. It should be noted that all the insular clusters have been found to be 

involved in cognition, both in this analysis and in the one carried out by Kelly 

and colleagues (2012). However, the findings of this study indicate that the co-

alteration network of the posterior insula may be more related to brain areas 

which are characterized by higher-order functions. 

Another interesting point is that the right insula exhibits more nodes and 

edges of co-alterations than the left one. This finding might suggest that the right 

insular cortex may be more vulnerable to pathological processes than the left one, 

an intriguing aspect that deserves to be further investigated and confirmed. 

 

3.4.3. The co-alteration networks and functional connectivity of the insula 

With the exception of the subcortical sites (i.e., the cerebellum), which are 

functionally associated but not co-altered with the insula, the insular co-alteration 

networks correlate well with the patterns of the MACM of this region. This result 

shows that the cerebral regions that are co-altered with the insula are not 

randomly affected; on the contrary, they tend to be altered on the basis of their 

functional connectivity. This result significantly corroborates the deep 

relationship between anatomical and functional connectivity profiles (Abdelnour 

et al., 2014) and is consistent with the hypothesis that brain connectivity might 



146 

 

play an important role in the development and distribution of GM alterations 

(Cauda et al., 2018; Iturria-Medina and Evans, 2015; Raj et al., 2012; Zhou et al., 

2012). For instance, structural and functional connectivity patterns have been 

related to the spatial distribution of GM alterations caused by Alzheimer’s 

disease, the behavioral variant of frontotemporal dementia, and amyotrophic 

lateral sclerosis (Buckner et al., 2009; Du et al., 2007; Ravits, 2014; Zhou et al., 

2010). A relationship between neurodegenerative diseases and intrinsic 

connectivity network has been proposed (Seeley et al., 2009), and functional 

abnormal patterns of the default mode network have been related to deficits of 

semantic memory in patients with mild cognitive impairment (Gardini et al., 

2015). 

These results provide evidence for the hypothesis that large-scale functional 

networks might be selectively more susceptible to the assault of pathology and, 

consequently, might favor the development of alterations more quickly than 

region-specific functional circuits. Furthermore, dysfunction in functional hubs 

and/or pathways may contribute with neurophysiological, metabolic, and genetic 

factors of neuronal biology to enhance the impact of the alteration process 

(Iturria-Medina and Evans, 2015; Saxena and Caroni, 2011). As we have seen in 

study 1, functional and anatomical connectivity correlate with each other not 

only in the normal and healthy brain (Cauda et al., 2011; Honey et al., 2009) but 

also in the pathological brain (Crossley et al., 2016b; Gardini et al., 2015; Iturria-

Medina and Evans, 2015; Iturria-Medina et al., 2014; Seeley et al., 2009). 

The findings of this study highlight that when the insular cortex is altered 

the co-alteration networks likely reflect the functional connectivity patterns of 

this region, thus supporting the nodal stress hypothesis in the development and 

distribution of GM alterations (Crossley et al., 2016a; Crossley et al., 2014). An 

impaired insula may lead to hyperexcitability to its functionally connected areas 

and, consequently, produce metabolic stress and dysfunction. 

If the relationship between the co-alteration networks and functional 

connectivity of the insula is examined in more detail, it can be observed that 
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peaks of correlation between the K2 network and MACM are mostly located in 

frontal and subcortical regions. On the other hand, peaks of correlation between 

the K3 network and MACM are not only largely located in frontal and 

subcortical regions, but also in temporal and parietal areas. This suggests that the 

solution based on the K3 parcellation may be more specific than the solution 

based on the K2 parcellation. However, the lack of correlation between 

functional connectivity and co-alterations with regard to subcortical and lower 

cortical areas points out that other factors might play a role in the distribution of 

co-alterations. For instance, a shared vulnerability mechanism based on genetic 

influences (Zhou et al., 2012) may be involved in the development of 

pathological alterations. 

 

3.4.4. Behavioral profile analysis 

The analysis of the behavioral profile reveals a predominance of labels 

associated with emotional and cognitive spheres, an aspect that is consistent with 

the evidence that emotional and cognitive functions are often disrupted in many 

neurological and psychiatric conditions. As we have seen, the insula is involved 

in important cognitive and interoceptive functions, such as the processing of 

salience, attention, emotions, and the integration of sensory and interoceptive 

stimuli. 

Furthermore, the insula is a fundamental part of the salience network, 

together with the dorsal anterior cingulate cortex and other subcortical and limbic 

structures (Seeley et al., 2007; Uddin, 2015). This network has an essential role 

in processing the perception of behaviorally significant stimuli as well as in 

coordinating the use of brain resources (Uddin et al., 2013; Uddin et al., 2011). 

Being a fundamental hub of the salience network, the insula (particularly the 

right one) is involved in coordinating dynamically two other important brain 

networks, the default mode network and the central executive network (Chen et 

al., 2013; Goulden et al., 2014; Sridharan et al., 2008; Supekar and Menon, 

2012). Independently of the nature of the stimuli (homeostatic, emotional or 
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cognitive), the insula appears to be involved in a variety of functions related to 

subjective salience (Bartra et al., 2013; Craig, 2002). Disruption of the salience 

network can occur in many diseases, including schizophrenia, psychosis, anxiety, 

bipolar disorder, depression, addiction, autism spectrum disorder, obsessive-

compulsive disorder, chronic pain, and dementia (Di Martino et al., 2009; Etkin 

et al., 2009; Goodkind et al., 2015; Hamilton et al., 2012; Kapur, 2003; Klin et 

al., 2003; Li et al., 2010; Palaniyappan and Liddle, 2012; Schroeter et al., 2008; 

Seeley et al., 2012; Simons et al., 2014). Moreover, the insula is essential in 

evaluating the emotional feature of bodily states. In particular, the organized 

activity of the insula, prefrontal cortex and amygdala is crucial for modulating 

and regulating emotions, both in normal and pathological conditions (Foland et 

al., 2008; Lee et al., 2012). 

Finally, as to the solution based on two parcels, the anterior sub-network 

appears to be more involved in the processing of interoception and perception, 

while the posterior sub-network seems to be more involved in the processing of 

emotions. These two sub-networks have comparable scores for the functions of 

cognition and action. On the other hand, as to the solution based on three parcels, 

the anterior sub-network seems to be more involved in the processing of 

cognition and action, the middle sub-network seems to be more involved in the 

processing of perception and interoception, and the posterior sub-network in 

emotional functions. 

 

3.4.5. Limitations and future directions 

A limitation of this study is that it is not possible to differentiate the impact 

of brain disorders on the insular cortex. Findings point out that a number of 

conditions affect this area but what parts of the insula are the most affected and 

by which disorders remain as yet unknown. This is also due to the methodology 

applied in this study, which carried out analyses on a variety of brain disorders 

stored in the BrainMap database with the aim to achieve an overarching research 

about the pathological processes affecting the insula. There was also the 
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methodological need of analyzing the most abundant sample of studies to get a 

better statistical outcome. In any case, a more fine-grained parcellation could not 

be used, since otherwise the amount of data to obtain reliable results would not 

be sufficient. Future studies are needed to explore the directionality (spatial and 

temporal) of GM alterations throughout the brain when a key hub, like the insula, 

is initially affected. 
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3.5. Conclusion 

 

This second study carried out a pathoconnectivity network analysis of the 

insula, a very important hub of the brain. Findings provide evidence that the 

insular cortex is altered by a range of brain diseases. This result is in accordance 

with recent research that found the insular cortex to be among the most affected 

brain regions by a number of brain disorders, both neurological and psychiatric 

(Cauda et al., 2019). This second study provides further evidence for that finding, 

suggesting that the central and intense activity of the insula might make it more 

vulnerable to GM alterations. 

The analysis of the insular pathoconnectivity network shows: 1) that the 

distribution pattern of GM alterations within areas that are co-altered with the 

insular cortex mainly extends to cortical rather than to subcortical sites; that 2) 

the insular co-alteration networks based on the K2 and K3 parcellations correlate 

well with the patterns of functional meta-analytic connectivity of this cerebral 

region; and that 3) these patterns of co-alterations might involve the dysfunction 

of cognitive (i.e., salience) and emotional processes. The fact that higher-order 

regions result in contributing more to the co-alteration network of the insula than 

lower-order areas is indicative that other mechanisms (perhaps biological ones, 

such as cytological and genetic factors), in association with functional 

connectivity constraints, might play a role in the development of co-alterations 

patterns. 

The hypothesis of the nodal stress, therefore, receives further support, as 

findings indicate that the cerebral regions which are altered together with the 

insular cortex are not randomly affected but tend to be altered on the basis of 

their functional connectivity. Finally, the substantial overlaps shown by the 

correlation analysis between the insular co-alteration networks and the patterns 

of the MACM reveal that GM alterations caused by brain diseases present a 

distribution according to the logic of the organization of functional networks. 

This might be particularly the case when brain hubs are involved in the alteration 
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process. According to this perspective, brain hubs might be at the center of 

pathological networks constituted by co-altered areas. If confirmed by future 

investigations, this aspect will help to better understand how brain connectivity 

can influence the regional alteration profiles as well as the severity of symptoms 

both in neurological and in psychiatric conditions. 
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4. Epilogue 

 

The first meta-analytical study has addressed four important issues of 

pathoconnectomics, providing evidence that GM co-alterations are distributed 

across the brain in recognizable network-like patterns. These distribution patterns 

of morphometric neuropathological alterations present a strong association with 

brain connectivity, as the development of GM co-alterations has found to be 

influenced by the constraints of functional, anatomic and genetic connectivity 

profiles. These findings help assess the contributions of different mechanisms 

underlying neuropathological processes, as they show that the hypotheses of the 

nodal stress, shared vulnerability, and transneuronal spread are all supposed to 

influence the diffusion of GM alterations. 

In turn, the second meta-analytical study has showed that the insula, which 

is among the most important functional hubs of the brain, appears to be altered 

by a wide range of neurological and psychiatric diseases. Of note, GM co-

alterations with the insula mainly affect cortical rather than subcortical areas, and 

the distribution patterns of these co-alterations, which particularly involve the 

dysfunction of cognitive (i.e., salience) and emotional processes, correlate well 

with the patterns of functional meta-analytic connectivity of the insula. In line 

with the first study, these findings provide a further evidence of the intimate 

relationship between brain connectivity and the development of GM co-

alterations. In fact, cerebral areas that are altered together with the insula are not 

randomly affected but tend to be altered on the basis of functional connectivity.  

These results pave the way for a new understanding of the pathological 

brain. A pathoconnectivity perspective is in fact able to give a picture that can 

have profound implications for clinical and treatment purposes. On the one hand, 

research in the field of pathoconnectomics can improve the diagnostic power by 

providing more precise and accurate descriptions of the morphological alterations 

patterns that are distinctive for each brain disorder. On the other hand, this type 

of research is able to produce models for predicting the future development of 
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co-alterations and for identifying the most vulnerable areas to the pathological 

assault. And this information is crucial for achieving a better care of the 

pathological brain. 
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