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Benchmarking Federated Learning Frameworks
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Abstract. This paper presents a comprehensive benchmarking study of
various Federated Learning (FL) frameworks applied to the task of Med-
ical Image Classification. The research specifically addresses the often
neglected and complex aspects of scalability and usability in off-the-shelf
FL frameworks. Through experimental validation using real case deploy-
ments, we provide empirical evidence of the performance and practical
relevance of open source FL frameworks. Our findings contribute valuable
insights for anyone interested in deploying a FL system, with a particular
focus on the healthcare domain—an increasingly attractive field for FL
applications.

Keywords: Federated Learning · Medical Image Classification · Scala-
bility · Usability · FL Frameworks · Benchmark · Real Case Deployment
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1 Introduction

Federated Learning (FL) [18] has emerged as a crucial area of research in the
field of Machine Learning (ML) in response to growing concerns surrounding
data privacy [2, 15]. This is especially relevant in the healthcare domain, where
data is typically managed by hospitals and medical centers that must adhere to
ethical and legal regulations, such as the General Data Protection Regulation
(GDPR). Consequently, alternative approaches are necessary to address these
data restrictions.

In this context, FL offers a valuable solution by enabling diverse data stake-
holders to collaboratively train ML algorithms, overcoming the challenge of de-
centralized datasets. The core concept of FL involves training ML algorithms
by aggregating clients’ models without sharing the underlying data. A central
server (referred to as Centralized FL) receives the local models and broadcasts
the aggregated model at each iteration. The strength of FL lies in its ability to
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ensure data privacy, which aligns with the requirements of the healthcare do-
main. Moreover, FL proves highly effective for Deep Neural Networks (DNNs),
particularly when models need to adapt to complex, non-linear patterns found
in images or text. In fact, such DNNs often demand large quantities of data,
making it challenging to aggregate multiple sources due to privacy concerns. FL
facilitates the creation of shared models without compromising the privacy of
local datasets, thus addressing this limitation.

However, deploying an FL system in a real-case scenario is not straight-
forward. Many Federated Learning Frameworks (FLF) are available and open-
source, but they differ in many aspects: communication protocol, security, FL
tools available, customization, and many others. The two main characteristics
explored in this study are scalability and usability. At the best of our knowledge,
literature lacks of works that compare FLFs regarding these two aspects. This
gap hinders the research towards high-performing FLFs.

In this work, scalability refers to how computational time varies as the num-
ber of clients grows for a fixed problem size. As the number of clients grows,
the time to complete the task is supposed to decrease, since the data volume
for each party is smaller (strong scalability). On the other hand a growing num-
ber of clients usually brings more communication costs, which impacts on the
performances of the FLF. Scalability is indeed regarded as an important future
direction [3, 14,26] for the design of FLFs.

Usability in the context of Federated Learning (FL) refers to the convenience
and ease of deploying an FL system. However, a systematic literature review
conducted by Witt et al. [26] highlights a significant limitation in the existing
research. Among the 34 reviewed papers, only a small fraction (11 out of 34)
considered a non-iid (non-independent and identically distributed) setting, while
the majority focused on experiments with MNIST or CIFAR-10 datasets for
classification tasks. This narrow focus suggests that FL frameworks may be
optimized for specific datasets, making it challenging to adapt them to new
datasets. It is essential to address this issue to ensure that FL frameworks can
be effectively applied to a wide range of real-world scenarios. For this reason, the
customization of FLF is a key aspect, and in the design of the architecture is often
taken into account. We aim to provide valuable insights into the adaptability of
FL frameworks, shedding light on this crucial usability concern.

To summarize, the contribution of this work is threefold, we:

1. study the scalability of FLFs;

2. provide insights about the usability of FLFs;

3. conduct experiments by deploying multiple FLFs in a realistic environment
for the task of Medical Image Classification.

These contributions collectively enhance our understanding of FLFs, address-
ing the critical aspects of scalability, usability, and practical application in the
healthcare domain.
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2 Related works

There are already different benchmarks and surveys for the application of FL
to the healthcare domain [14, 17, 20], but they usually concentrate on the De-
centralized Federated Learning. In our case, we deal with Centralized Federated
Learning, which uses a trusted server to deal with the clients. At the best of
our knowledge, there aren’t works treating the scalability of the FLFs, so we ex-
tend the insights suggested by the cited literature review providing experimental
results on scalability for the centralized case.

For the specific task of Image Classification there are many studies available
regarding FL approaches in general [24] [1] [6] [7] and for specific tasks: Brain
tumor segmentation [16], Prediction of SARS-COV2 from Chest X-Ray [10],
multi-desease X-Ray classification [18], Breast density classification [22]. Our
work does not focus on performances of different FL algorithms, but we enrich
the performance evaluation with results on scalability.

For a real-case deployment, there are many possible choice of FLF: OpenFL
[21], NVFlare [23], FedML [12], FedScope [27], Flower [4], SecureBoost [8], Sub-
stra [11] and in particular for the healthcare domain [9]. In this work we compare
only some of them: OpenFL, NVFlare, FedML and Flower. In future works ex-
tending this list is a key point to find similarities and differences that impacts
on the communication cost.

3 Experiments

In this section we are going to present the experiments which are the core con-
tribution of the proposed study. The task we choose is Image Classification on
MedMNIST [28], and in particular on the organAMNIST dataset [5]. It consists
of 58,850 images (MNIST-like, 28x28, grayscale) labeled with 11 classes, split
into 34.581 for training, 6.491 for validation and 17.778 for test (available to all
the clients). The transformations used for data augmentation are normalization,
random flip and random rotation. The real case deployment was experimented
on a cluster with 10 nodes (each node provided with a Tesla T4 GPU) and a
frontend node (with no GPU). The frontend node was used as aggregator and/or
administrator (for the frameworks that required it), and other nodes were used
as clients of the FL system. This experimental setting mimics a realistic sce-
nario where all clients and the aggregator are on different machines that can
only communicate via network requests.

The FL algorithm used is FedAvg [18], with an iid split of data among the
clients. As backbone network we chose ResNet18 [13] trained from scratch using
the Adam optimizer with an initial learning rate set to 0.0001. A total of 100 FL
rounds were performed, with 1 epoch of local training performed by each client
using a batch size of 64. The communication protocol used is gRPC [25].
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Table 1: Execution times with different frameworks and different numbers of
clients.

Number of clients Frameworks

OpenFL NVFlare Flower FedML

2 01:11:24 00:55:43 00:51:08 00:45:38

4 01:07:55 00:40:27 00:38:52 00:36:48

6 01:21:22 00:35:30 00:34:30 00:33:44

8 01:40:13 00:34:18 00:33:07 00:34:15

10 02:12:43 00:33:30 00:29:27 00:28:33

The results obtained are reported in Table 1 and displayed in Fig. 1. There
are plenty of architectural details that impact on the performance and usabil-
ity of a FLF. We are going to discuss about them highlighting the similarities
and differences among FLFs that may impact on the performances in terms of
scalability and usability.

Fig. 1: Execution times for different number of clients.

As we can see, OpenFL does not scale efficiently after 4 clients. On the
contrary, the computational time increases when the number of clients goes
beyond 4. As highlighted by [19], changing the code at a very low level provided
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some improvements in the time performances, but the scaling behavior remains
inefficient with a growing number of clients.

Because of these low performances we decided to deepen the investigation
for OpenFL.

Fig. 2: Execution time with OpenFL for completing windows of 10 rounds along
the experiment (blue line) and average training time for each client in each
window (red line).

In Fig. 2 we plot the execution time for completing 10 rounds along the
experiment and the average training time in the examined window of rounds.
It’s clear that the training time is almost constant, showing that the problem
stands in the communication cost. In fact, we can see that the time needed for
completing the first 10 rounds is way less than the time needed for completing
the last ones. This behavior was investigated for 4 and 10 clients. This latter
scenario shows a linear trend, which clearly indicates the presence of commu-
nication overhead. The structure of OpenFL is clear and simple, using gRPC
for connecting aggregators and collaborators and transport layer security (TLS)
for network connection. A task based programming interface is used, focusing
on the whole workflow design rather than the single client customization. We
will see in the following that a similar approach is used by NVFlare, but with
different results. As a consequence, the detected communication overhead must
be investigated properly to see what is the reason of the low performances. An
effort has already been done by [19], but more studies are needed to avoid this
behavior in the future FLFs.

On the contrary, Flower shows a very good scaling behavior. In fact, ex-
ecution time decreases with a growing number of clients, highlighting a good
implementation for the communication system. With these results, we confirm
the good scaling behavior of this FLF, which has been presented in [4] as one of
the goal in its design. Comparing Fig. 3 and 2 we can see that the execution time
every ten rounds does not increases, as expected by an efficient scaling. From an
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architectural perspective, this is probably due to the Virtual Client Engine: a
tool that virtualizes the Flower client in order to maximize the utilization of its
hardware capacities. This decision helps to address the resource consumption,
which is the bottleneck when large-scale experiments are conducted. In addition,
they developed the Strategy module for describing the FL workflow chosen, which
makes the customization of the experiments straightforward. From this analysis,
we may advocate that having resource-aware agents improves the scalability of
a FLF.

Fig. 3: Execution time with Flower for completing windows of 10 rounds along
the experiment (blue line) and average training time for each client in each
window (red line).

In a similar manner, FedML relies on a worker-oriented architecture, avoid-
ing the description of the entire training procedure. In order to do so they intro-
duced the WorkerManager class, which utilizes an API system to manage the
communication, instead of using a training procedure-oriented programming. In
particular FedML-API and FedML-core are the main innovative modules of this
framework. The first module is responsible to provide the customization of the
algorithms, making the implementation of new FL scenarios straightforward.
The second module separates the training engine and the communication sys-
tem, enabling the customization of the whole procedure at many levels. This
architectural choice makes the framework flexible and robust, providing good
results for what concerns the scalability. In addition, it is the only one among
the FLFs presented that provides different communication backends: MPI, mqtt,
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tRPC, gRPC. The analysis of FedML enforces the idea that a worker-oriented
architecture is useful to make the FLF scalable. The use of APIs and the sep-
aration between communication and training may be considered as a winning
strategy for the design of FLFs both in terms of scalability and usability.

We conclude with NVFlare. This FLF presents a very good scaling behavior.
Their architectural focus is on the controller-worker interaction rather than a
worker-oriented structure. Similarly to FedML, they implemented an API con-
troller interface, which supports the typical controller-client interaction making
the configuration of the workflow very practical. However, the central concept of
collaboration stands in the notion of task, similar to OpenFL. On the contrary,
they use a Shareable object to store a different information (like the model
weights) and API at an architectural level. As highlighted with FedML, this
seems to be a key aspect to take into account for developing scalable and flex-
ible FLFs, and it may shed light on the different performances with respect to
OpenFL.

4 Results

With these experiments we provided empirical evidence of the performance of
open source FLFs for what concerns the strong scalability, proposing a com-
parison that is new in the literature. In addition, all along the experiments we
provided insights about the design of the FLFs which impacts on scalability and
usability and may help in developing and deploying FL systems in a real world
scenario.

In particular we can recognized two possible patterns in designing FLFs:
client-oriented programming and training procedure-oriented programming. The
former is developed by Flower and FedML in different fashions, obtaining in both
cases good results of scalability. The training procedure-oriented results effective
for the customization of the workflow, but some architectural choices may impact
heavily on the scalability of the framework, as highlighted by the difference in
performances between NVFlare and OpenFL. A more detailed study is needed
to understand what hinders the performances of OpenFL.

For what concerns usability, the implementation of an API system makes the
framework very functional, and its customization straightforward. However, the
same result can be obtained using particular abstractions like Flower does with
the Strategy module. In addition, the sharp separation between communication
system and training procedure developed by FedML results to be effective both
for scalability and usability.

5 Conclusions

In conclusion, we have presented a study that compares different Federated
Learning Frameworks (FLFs) when accomplishing the task of Medical Image
Classification. The task, which may initially appear simple, has been challenging
in multiple aspects. In the end our contribution is threefold:
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i) we have provided insights about the usability of open-source FLFs. We
examined their implementations and discussed key aspects that make a FLF
flexible.

ii) We have tested the scalability of FLFs, which is a crucial aspect of their
future development, through detailed experiments. In addition, we highlighted
possible key features for designing scalable FLFs.

iii) We conducted a real-case deployment, which makes this study useful also
from a practical perspective.

To conclude, scalability remains a critical focus for further advancements in
FLFs. Our research provides empirical results on the performances of some of
the main open-source FLFs available, with an additional focus on the usability
that gives a practical impact to this work. This proposed study represents a
starting point in an unexplored area and has the potential to provide valuable
insights leading to FLFs improvement.

6 Future works

This work represents a preliminary research for deepening our knowledge of
FLFs. In particular the empirical results are useful when it comes to choosing
which FLF suits the best for the task needed. However there are many aspects
that we did not touch and may have relevance in the future.

First of all, a bigger number of clients should be considered, as much as a
detailed study of the architectures both from empirical and theoretical points of
view. In fact, recording the time needed for every computational step may shed
lights on the positive and negative design choices of an FLF. If this is matched
with a theoretical treatment of the FLF, then the study would bring important
advancements to FLFs’ development.

Furthermore, we have considered only the strong scalability, which provides
an analysis when the amount of operations needed decreases with an increasing
number of clients. On the other hand the weak scalability provides results when
the amount of work is constant and the number of clients increases. Treating
both strong and weak scalability would result in a more complete evaluation of
the FLFs.

To conclude, a broader selection of FLFs would bring more comparisons
between architectural choices in designing FLFs enabling a broader view on the
possible directions towards more performative FLFs.
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