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Abstract 

BACKGROUND  

 

Gliomas are the most common malignant primary brain tumors. Assessment of the tumor 
volume represents a crucial point in preoperative and postoperative evaluation. 

OBJECTIVE  

 

To compare pre- and postoperative tumor volumes obtained with an automated, semi-
automatic, and manual segmentation tool. Mean processing time of each segmentation 
techniques was measured. 

METHODS  

 

Manual segmentation was performed on preoperative and postoperative magnetic resonance 
images with the open-source software Horos (Horos Project). “SmartBrush,” a tool of the IPlan 
Cranial software (Brainlab, Feldkirchen, Germany), was used to carry out the semi-automatic 
segmentation. The open-source BraTumIA software (NeuroImaging Tools and Resources 
Collaboratory) was employed for the automated segmentation. Pearson correlation 
coefficient was used to assess volumetric comparison. Subsequently deviation/range and 
average discrepancy were determined. The Wilcoxon signed-rank test was used to assess 
statistical significance. 

RESULTS  



 

A total of 58 patients with a newly diagnosed high-grade glioma were enrolled. The 
comparison of the volumes calculated with Horos and IPlan showed a strong agreement both 
on preoperative and postoperative images (respectively: “enhancing” ρ = 0.99-0.78, “fluid-
attenuated inversion recovery” ρ = 0.97-0.92, and “total tumor volume” ρ = 0.98-0.95). 
Agreement between BraTumIA and the other 2 techniques appeared to be strong for 
preoperative images, but showed a higher disagreement on postoperative images. Mean time 
expenditure for tumor segmentation was 27 min with manual segmentation, 17 min with 
semi-automated, and 8 min with automated software. 

CONCLUSION  

 

The considered segmentation tools showed high agreement in preoperative volumetric 
assessment. Both manual and semi-automated software appear adequate for the 
postoperative quantification of residual volume. The evaluated automated software is not yet 
reliable. Automated software considerably reduces the time expenditure. 

 

Gliomas are the most common malignant primary brain tumors in adults and among them 
glioblastoma multiforme represents the most frequent and lethal glial tumor, with a 5 yr 
survival rate of approximately 5%.1,2 

 

The main goal in glioma surgery is to maximize the extent of resection (EOR) and at the same 
time reduce the occurrence of neurological deficits in order to improve the patient's prognosis 
and quality of life. Indeed, several studies have demonstrated that a radical surgical resection 
positively affects prognosis.3-5 Volumetric assessment of the tumor represents a crucial 
point in preoperative evaluation and a precise determination of the EOR plays an important 
prognostic role. RANO (Response Assessment in Neuro-Oncology) criteria represent a 
standardized tool for the response assessment in neuro-oncology.6 The current response 
criteria recommend both the use of volumetric measurement of the enhancing volume, which 
is considered less operator dependent than the product of the maximum cross-sectional 
diameters (Macdonald criteria), and the signal abnormalities on fluid-attenuated inversion 
recovery (FLAIR) images as markers for tumor progression.6 

 

It is, therefore, essential to identify reliable segmentation tools that allow to measure pre- and 
postoperative tumor volume. Furthermore, 3-dimensional volumetry might play a 
complementary role to the postoperative determination of response to treatment and tumor 
progression, overcoming the current limitations of 2-dimensional assessment.7 

 

Manual segmentation tools represent the gold standard techniques for volumetric 
assessment to date; however, their use in clinical practice is limited by the intra- and inter-



rater variability. In addition, the use of manual segmentation tools in clinical practice is 
limited by the high expenditure of time that these techniques require.7 In recent years, several 
software for semi-automatic and automatic segmentation have been developed. 

 

Semi-automated software is currently applied in clinical practice because of the reliability 
and saving of time, even though they still are user dependent. Recently, fully automated 
software has been developed in order to shorten segmentation time and improve accuracy of 
the volumetric assessment by reducing the intra- and inter-rater variability. Fully automated 
segmentation tools do not have a clinical application yet.8 

 

The aim of this study was to compare pre- and postoperative tumor volumes in 58 patients 
with high-grade glioma, obtained respectively with a fully automated, a semi-automatic, and a 
manual segmentation tool. Such comparison was intended to provide information about the 
clinical applicability and utility of the different available segmentation tools. Furthermore, we 
measured the mean processing time of each segmentation tool, in order to provide data on 
their efficiency and time expenditure. 

METHODS 

 

In this study, pre- and postoperative tumor volumes were derived from preoperative and 
postoperative magnetic resonance imaging (MRI) using segmentation methods that integrate 
the information derived from 2-dimensional images to recreate a 3-dimensional volume. We 
considered 3 volumes: “enhancing volume” (cystic-necrotic and enhancing part of the tumor), 
“FLAIR volume” (T2/FLAIR hyperintense areas) and “total tumor volume,” represented by the 
sum of the enhancing volume and FLAIR volume. 

 

Study population: patients who received surgical treatment at our institution between April 
2014 and May 2019 were enrolled in this single center retrospective study. The exclusion 
criteria were: (i) recurrent tumor, (ii) low-grade gliomas, (iii) unavailable or low-quality 
magnetic resonance (MR) images (motion artefacts and insufficient slices), and (iv) previous 
brain tumor surgery or radiotherapy. For each patient, manual, semi-automated, and fully 
automated segmentation was performed, both on preoperative and postoperative MRI 
images. Patient records were de-identified and analyzed anonymously. Written informed 
consent was obtained from all the patients enrolled in this study. 

 

All neuroradiological and histological data were collected and retrospectively analyzed. This 
study does not require any variations in patient's treatment and no formal ethics committee 
approval is required. All procedures performed for this study were in accordance with the 
ethical standards of our institution and with the 1964 Helsinki declaration and its later 
amendments or comparable ethical standards. 



 

MR imaging protocol: preoperative and postoperative MRI scans were obtained from different 
MRI scanners with varying field strengths (1.5 or 3 Tesla). Each patient underwent the same 
MR protocol that included: (i) precontrast T1w in axial or sagittal acquisition; (ii) postcontrast 
T1w in axial or sagittal acquisition; (iii) T2w in axial or sagittal acquisition; and (iv) FLAIR in 
axial or sagittal acquisition. The protocol was applied for the acquisition of both preoperative 
and postoperative images. 

 

Manual segmentation: manual segmentation was performed by a medical student (NL) 
previously trained on medical images by a neurosurgery resident (ZP) and the segmentations 
were subsequently double-checked by a fully trained neurosurgeon (MA) to exclude errors in 
the delineation of the lesion and minimize the inter-rater variability. The manual segmentation 
was performed with the open-source software Horos (www.horosproject.org; Horos Project) 
for MacOS. Horos allows to manually delineate, slice-by-slice, the contour of the tumor by 
using a virtual drawing tool. The tool “region of interest (ROI) volume calculation” was used to 
obtain a volume starting from a ROI dataset. Manual segmentation of the abnormal signal 
detected in the postcontrast T1w sequences, which represented the necrotic (hypointense) 
and enhancing (hyperintense) areas, was carried out and the resulting volume was labeled as 
“enhancing volume.” The same method was applied to obtain the total tumor volume (TTV) on 
FLAIR images, including all the hyper intense areas indicative for edema and abnormal tissue. 
The “FLAIR volume” was defined as the difference of TTV and enhancing volume. Similarly, the 
3 volumes were also calculated on postoperative images. The resection cavity and the 
hyperintense boundary were not included, respectively, in the enhancing and FLAIR volume. 

 

Semi-automated segmentation: “SmartBrush,” a tool of the IPlan Cranial v3.0 (Brainlab, 
Feldkirchen, Germany) software, was used to carry out the semi-automated segmentation. 
The tool is based on a region-growing algorithm that permits to automatically expand the 
segmentation to adjacent areas characterized by signal alterations that are similar to the ones 
in the selected area.9 Manual changes to the segmentation were then performed by using the 
“brush” and “eraser” tools. SmartBrush has previously shown to be a reliable tool for 
volumetric segmentation of high-grade glioma.10,11 This software is routinely used for 
volumetric assessment of glial tumors in clinical practice at our institution. Semi-automated 
segmentation was performed by a medical student (NL) under the supervision of a resident 
neurosurgeon (ZP); segmentations were subsequently double-checked by a fully trained 
neurosurgeon (MA). To obtain preoperative and postoperative enhancing volume, FLAIR 
volume, and TTV, semi-automated segmentation was carried out both on postcontrast T1w 
and FLAIR images. 

 

Automated segmentation: the open-source Brain Tumor Image Analysis (BraTumIA) v.1.2. 
(www.nitrc.org/projects/bratumia; NeuroImaging Tools and Resources Collaboratory) 
software was employed for the fully automated tumor segmentation. The software requires 



the user to upload the MRI sequences (T1w, postcontrast T1w, T2w, and FLAIR) to the program 
interface. The four different MRI modalities are used to delineate the tumor and its 
subregions. BraTumIA allows not only to segment the brain into healthy and pathological 
tissue, but also subdivides healthy tissue into white matter, grey matter and cerebrospinal 
fluid and the tumor tissue into four sub-compartments (edema, necrosis, enhancing, and 
nonenhancing). The images initially undergo a preprocessing pipeline that include the 
alignment of the images, the extraction of the brain tissue from the images and the removal of 
the noise from the signal. Subsequently, the preprocessed images undergo feature extraction, 
that includes for every voxel the delineation of different features for distinguishing pathologic 
and healthy tissue. Classification is done using a Support Vector Machine classifier, which 
determines, based on the features of each voxel, to allocate it in one of the sub-
compartments considered through a probability distribution. Finally, spatial regularization 
using a Conditional Random Fields method on the generated label map allows to enforce the 
spatial consistency of classified voxels with respect to the neighboring voxels. The functioning 
of the software has previously been described elsewhere.12-14 The edema and nonenhancing 
sub-compartments were considered together as “FLAIR volume,” whereas the “enhancing 
volume” was given by the sum of the enhancing and the necrotic sub-compartments. The 
processing of the tumor volume is user independent. 

 

Statistical analysis: volumetric comparison between manual, semi-automated, and fully 
automated segmentation was determined with the Pearson correlation coefficient (ρ), which 
was calculated both on preoperative and postoperative images for all the considered tumor 
sub-compartments (enhancing, FLAIR, and TTV). The techniques were compared 2 by 2. It is 
important to emphasize that the main limit of the Pearson coefficient is the strong sensibility 
to outliers. In order to quantify and analyze the different trend of the 3 segmentation 
techniques, the deviation/range for each considered volume was calculated. Subsequently, 
we determined the average discrepancy to determine a potential under- or overestimation of 
one of the 3 techniques. The Wilcoxon signed-rank test was used to determine the statistical 
significance due to the non-normal distribution of the data. Statistical significance level was 
set at α = 0.05. 

 

Finally, we calculated the mean processing time for each technique in order to highlight a 
potential discrepancy between the considered techniques. The processing time was 
measured on a randomly chosen sample that included 10 preoperative images and 10 
postoperative images for each segmentation software. 

RESULTS 

 

Study population: 58 patients (mean age: 62 y) with a newly diagnosed high-grade glioma (54 
WHO grade IV; 4 WHO grade III) were enrolled. The diagnosis of high-grade glioma was 
histologically confirmed at the local neuropathology department. 

 



Mean volumes and standard deviations are shown in Table 1. 

 

Scatter plots that illustrate the volume correlation out of preoperative and postoperative 
images are shown respectively in Figures 1 and 2. 

 

Volumetric comparison on preoperative MR images: Pearson correlation coefficient (ρ) and 
Wilcoxon signed-rank test (T) for each comparison are shown in Table 2. 

 

 

The comparison of the volumes calculated with Horos (Horos Project) and IPlan (Brainlab, 
Feldkirchen, Germany) showed a very strong agreement between the 2 segmentation 
techniques. Indeed, the comparison of the preoperative volumes showed a very high Pearson 
correlation coefficient for the enhancing (ρ = 0.99), FLAIR (ρ = 0.97), and TTV volume (ρ = 
0.98). Scatter plots that illustrate the volume correlation are shown in Figure 1A-1C. After 
analyzing the average discrepancies, we found a small underestimation of the volumes 
measured with semi-automated technique compared to the manual volumes, but it did not 
turn out to be statistically significant. Results are shown in Figure 3A-3C. 

 

The volumetric agreement between BraTumIA (NeuroImaging Tools and Resources 
Collaboratory) and Horos appeared to be strong. The comparison of the preoperative 
enhancing, FLAIR, and TTV volume showed a high Pearson correlation coefficient, 
respectively ρ = 0.88, ρ = 0.86, and ρ = 0.89. BraTumIA, however, showed a statistically 
significant overestimation of the volumetric measurements of the tumor components, as can 
be seen from Figure 1D-1F. 

 

The Pearson correlation coefficient between BraTumIA and IPlan was ρ = 0.87 for the 
enhancing volume, ρ = 0.86 for the FLAIR volume, and ρ = 0.89 for the TTV volume. However, 
again, we noticed a statistically significant overestimation of the volumes measured with 
BraTumIA (Figure 1G-1I). 

 

Volumetric comparison on postoperative MR images: Pearson correlation coefficient (ρ) and 
Wilcoxon signed-rank test (T) for each comparison are shown in Table 2. 

 

The volumetric comparison between the three segmentation techniques showed a greater 
disagreement on postoperative MR images, particularly regarding the enhancing volume. 

 



The correlation between Horos and IPlan appeared to be strong for all the considered tumor 
sub-components. The Pearson correlation was ρ = 0.78 for the enhancing volume, ρ = 0.92 for 
the FLAIR volume, and ρ = 0.95 for the TTV. No statistically significant trend discrepancies 
were found (Figure 2A-2C). 

 

The comparison between BraTumIA and the other two segmentation techniques showed a 
higher disagreement. 

 

The comparison between the fully automatic and the manual technique showed a Pearson 
correlation coefficient of ρ = 0.62 for the enhancing volume, ρ = 0.72 for the FLAIR volume, 
and ρ = 0.75 for the TTV. 

 

When we compared the fully automatic with the semi-automatic technique, the Pearson 
correlation coefficient was ρ = 0.42 for the enhancing volume, ρ = 0.70 for the FLAIR volume, 
and ρ = 0.76 for the TTV (Figure 2G-2I). 

 

The comparison between BraTumIA and the other segmentation software (IPlan and Horos), 
highlighted a systematic overestimation of the tumor volumes by the automatic segmentation 
software. The overestimation appeared to be statistically significant for all the considered 
volumes, as shown in Figure 3D-3F. 

 

Processing time analysis: the mean time expenditure for tumor segmentation with the manual 
segmentation was 27 min (range: 24-29 min). The user-dependent IPlan required a mean time 
expenditure of 17 min (range: 15-22 min) to complete the segmentation. BraTumIA, being fully 
automated, required only 2 min to upload the images on the program interface and it took a 
mean time of 6 min (range: 5-8 min) to complete the segmentation. 

DISCUSSION 

 

In the context of glioma segmentation and volumetry, it is possible to employ three different 
segmentation techniques that differ from one another for the user dependency and the time 
expenditure: (i) manual segmentation; (ii) semi-automated segmentation; and (iii) fully 
automated segmentation. 

 

In clinical practice, only manual and semi-automatic software packages have so far found an 
application, even though they are limited in particular by inter- and intraobserver variability 
and time expenditure. Previous studies pointed out the importance of minimizing user 



interaction to reduce possible errors due to the interobserver and intraobserver variability, 
which appeared to be especially relevant on postoperative images.15,16 

 

The emerging involvement of computational science in daily clinical practice has led to the 
development of new software that aid and supplements the user in the interpretation of 
medical images. 

 

The MICCAI-Brain Tumor Segmentation Challenge (BRATS) has been organized since 2012 in 
order to yearly update the state-of-the-art in automated brain tumor segmentation and 
compare the performances and accuracy of the newly developed segmentation algorithms.8 

 

The decision to employ BraTumIA (NeuroImaging Tools and Resources Collaboratory) as fully 
automated segmentation program was taken because of its encouraging performances in 
terms of agreement between fully automatic and manual tumor volume assessment that has 
led the software to be awarded as one of the top performing at the MICCAI-BRATS 2012 and 
2013.8,12 

 

This study aimed to compare three different segmentation techniques, including a manual, a 
semi-automatic, and a fully automatic software, in terms of volumetric agreement and time 
expenditure. The volumetric measurement was carried out both on preoperative and 
postoperative images. 

 

The results obtained by the comparison of the segmentation techniques on the preoperative 
images showed a high agreement between the 3 software, particularly between Horos (Horos 
Project) and IPlan (Brainlab, Feldkirchen, Germany). Accordingly, it is possible to claim that 
both the manual and semi-automated segmentation techniques appear reliable and accurate 
for the determination of the preoperative tumor volume. On the other hand, BraTumIA is 
characterized by a slight, statistically significant overestimation of the tumor sub-
compartments. 

 

It is, however, important to consider that fully automated tools are not user dependent, 
therefore are not characterized by interobserver variability. In addition, BraTumIA allows to 
obtain a segmentation in a short amount of time. Therefore, it can be considered as a 
complementary technology in clinical practice. 

 

Porz et al12 have previously highlighted a possible application of BraTumIA for complex data 
analysis, tumor growth modelling, and radiomic/radiogenomic analyses due to the rater 
independence of the segmentation tool. 



 

The volumetric agreement on postoperative images resulted not as strong as for preoperative 
ones. Despite the fact that the Pearson correlation coefficient appeared to be high, when we 
compared the volumes obtained with IPlan and Horos, we noticed differences in the 
detection of the residual enhancing volume. A possible reason that could explain the 
difference is the inter-rater variability in the discrimination between pathological alteration 
and postoperative blood-brain barrier alteration. Further studies on the role of inter-rater and 
intrarater variability are therefore necessary. BraTumIA, on the other hand, showed systematic 
errors in the detection of residual tumor. This implied that volumetric agreement between the 
automatic segmentation and the other 2 segmentation techniques was not strong, 
particularly for the enhancing volume. 

 

The automatic segmentation showed an evident overestimation of the 3 volumes considered 
as well as gross accuracy errors in the delineation of the tumor. The main explanation for 
these errors is that BraTumIA has been developed only for preoperative images. A new version 
of the fully automated software has been presented recently. Further comparative analysis 
that investigate the reliability of BraTumIA v.2.0. for the postoperative volumetric assessment 
should be carried out. 

 

In terms of time expenditure, the manual tool resulted significantly more time consuming 
compared to the other segmentation tools. BraTumIA, on the other hand, considerably 
reduces the segmentation time expenditure. 

Limitations 

 

A limitation to our study is that the volumetric comparison between the 3 technique was not 
carried out by using the Dice similarity coefficient (DSC), a standard evaluation metric that is 
routinely used to evaluate the performance, reproducibility, and spatial overlap accuracy of 
MRI image segmentation algorithms.17-19 DSC was not calculated as image segmentation 
was not always recordable; tumor volume was therefore chosen as a surrogate measure of 
segmentation agreement. 

 

A further limitation is represented by the impossibility to determine the inter-rater agreement 
of manual and semi-automated volume assessment because only one rater carried out the 
segmentation. A previous study has showed that the inter-rater agreement on manual 
segmentation of high-grade glioma appears to be comparable between experts and novices, 
whereas it is poor when postoperative images are considered.15 A further study that aimed to 
investigate the inter-rater agreement on semi-automated segmentation of glioblastoma 
showed an excellent concordance between experts and novices.11 

 



Fully automated segmentation algorithms are not user dependent, therefore are not subject 
to inter-rater variability and lack of reproducibility. 

CONCLUSION 

 

In this study, the 3 considered segmentation tools showed high agreement in terms of 
preoperative volumetric assessment. Despite the slight overestimation of the segmented 
volume, BraTumIA (NeuroImaging Tools and Resources Collaboratory) considerably reduced 
the time expenditure and was not characterized by inter-rater and intrarater variability. Both 
IPlan (Brainlab, Feldkirchen, Germany) and Horos (Horos Project) appear adequate for the 
postoperative quantification of the EOR of high-grade gliomas, whereas BraTumIA is not yet 
reliable. 
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Notes 

 

Part of the results of this study were presented as a poster at the 2019 AINO (Associazione 
Italiana di Neuro Oncologia) Annual Meeting on November 10-12, 2019, in Udine, Italy. 
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TABLE 1. Mean Volumes and Standard Deviation for FLAIR, Enhancing, and TTV Obtained by 
the Different Segmentation Techniques out of Preoperative Images and Postoperative Images 



 
 
FIGURE 1. Scatter plots representing the correlation between volumes obtained by different 
segmentation software out of preoperative images. Horos (Horos Project) and SmartBrush 
(Brainlab, Feldkirchen, Germany) show a very strong correlation for the FLAIR volume A, 
Enhancing volume B, and TTV C. The correlation between BraTumIA (NeuroImaging Tools and 
Resources Collaboratory) and the other two segmentation techniques D-I shows a larger 
dispersion of the data compared to A-C, despite the strong Pearson correlation coefficient. 

 

 

 

 

 

 



 

 

 

 

FIGURE 2. Scatter plots representing the correlation between volumes obtained by the three 
segmentation software out of postoperative images. The charts show a strong correlation 
between the manual and the semi-automated software for the FLAIR volume A, enhancing 
volume B, and the TTV C. The fully automated software tends to overestimate the three tumor 
sub-compartments D-I, particularly the enhancing volume E-H. 

 

 

 



 

TABLE 2. Comparison of the Different Segmentation Techniques in Terms of Pearson 
Correlation Coefficient (P) and Wilcoxon Signed-Rank Test (T) on Preoperative Images and 
Postoperative Images 

 

 

 

 

FIGURE 3. Box plot showing the distribution of the preoperative A-C and postoperative D-F 
FLAIR volume A and D, enhancing volume B and E, and TTV C and F. The Wilcoxon signed-rank 
test shows a statistically significant difference between volumes obtained with BratumIA and 
with the other 2 segmentation techniques for all of the tumor sub-compartments considered. 
Particularly, BraTumIA is characterized by a statistically significant overestimation of the 
postoperative tumor sub-compartments D-F. 

 


