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Figure 1. High precision non-perturbative evaluation of the structure constant of two protected
one non-protected operators C2

Φ⊥Φ⊥Φ||
in the defect CFT living on the Maldacena-Wilson line,

as obtained by [2] (solid line). Dashed lines represent weak and strong coupling analytic results
of [2, 18, 19].

1 Introduction

Recently, the combination of the exact techniques of integrability and the conformal
bootstrap has proven to be very powerful for the non-perturbative study of beyond-the-
spectrum observables in higher-dimensional interacting conformal field theories (CFT) such
as N = 4 SYM [1–3]. The main idea of this program, called Bootstrability, is to inject
non-perturbative spectral information — obtained using a powerful integrability-based
method called Quantum Spectral Curve (QSC) [4, 5] — into the crossing equations of
the CFT of interest. Even without knowing the spectrum, the methods of the numerical
conformal bootstrap (NCB) [6–9] allow one to obtain bounds on various observables (mainly
the spectrum but also structure constants), see e.g. for applications to AdS/CFT [10–13].
Especially at strong coupling, those bounds become very narrow allowing for analytic studies
too [14–17]. In combination with the methods of integrability, one can focus more sharply
on the structure constants, and obtain extremely narrow bounds on the latter [1, 2], as
shown on figure 1, with the leading OPE coefficient determined with the error as small
as 10−6 at the ’t Hooft coupling λ ∼ 25, and the bound rapidly shrinking at stronger and
weak coupling.

In particular, in [2] it was realised that, in addition to the spectrum of the CFT itself,
one can inject even more spectral data coming from integrable deformations of the setup.
In the setup considered here, which we review in detail below, the relevant integrable
deformation is that of a supersymmetric straight Maldacena-Wilson line (MWL) deformed
by forming a cusp. The extra spectral data pertaining to the anomalous dimension of the
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cusp impose additional constraints on the conformal data of the defect CFT, on top of the
crossing equations. These constraints manifest themselves as extra relations on integrated
multi-point functions. Including those in the bootstrap dramatically improves the bounds
on the OPE coefficients (shrinking them by 4−5 orders of magnitude for the leading one, as
compared to when the spectrum alone is included! [2]). Similar relations on the integrated
four-point function of four local operators in N = 4 SYM have recently been obtained using
localisation, rather than integrability, in [20, 21] (see also [22–24]), and have been shown
to also greatly help improving the bounds given by the NCB [13]. The advantage of the
integrability-generated constraints is that, in principle, they allow one to also constrain
correlators with non-BPS external operators. Moreover, in general they are complementary
to the information one can obtain from localisation. Hence, there is a good chance that
the combination of the two approaches could reinforce results further, even for the case of
local operators.

In [2], we found and already used two such constraints for the correlators of 4 point
correlators on top of a MWL. Recently, in [25], a specific linear combination of these
constraints was derived using general geometric arguments about the structure of the
conformal manifold. In this paper, we present a very different argument, which allowed us
to derive the remaining independent constraint. As we will show, the derivation requires
very careful treatment of the UV divergences and contains many technically involved steps
(mostly detailed in the appendices of this paper), but should allow for further generalisations.
In particular, one should be able to obtain constraints on 6-point functions, of the type
studied recently at weak coupling in [26, 27].

This paper is organised as follows. In section 2 we describe the setup of the one-
dimensional CFT together with its deformations as well as the integral constraints found
in [2] in a notation that we will use for our derivation. In section 3 we explain our main
strategy and introduce the tools of conformal perturbation theory, as well as describing our
regularisation scheme. Finally, in section 4 we present our main result, the derivation of an
integrated correlator related to the Curvature function known from integrability. Technical
details are collected in the appendices.

2 Setup

In this section we describe in detail our setup. After the definition of supersymmetric
Wilson line, we describe the properties of the one-dimensional CFT which lives on top of it.
We introduce also the deformations of this CFT and their relation to insertions of local
operators and the two crucial quantities — the Bremsstrahlung and Curvature functions.
Finally, we review the integrated correlators found initially in [2].

2.1 The 1/2 BPS Maldacena-Wilson line

We consider the one dimensional defect created by the supersymmetric Maldacena-Wilson
loop (MWL) [28] in 4D N = 4 SYM, defined as follows

WC = 1
N

Tr P exp
∫
C
dt (i Aµẋ(t)µ + |ẋ(t)| n · Φ) , (2.1)
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where the contour C is parametrised by xµ(t). The trace Tr is taken in the fundamental
representation and P stands for the path-ordering. The coupling to the scalars ~n is a
six-dimensional vector with unit norm.

In this paper we consider the case when C is a straight line (or a circle). In this case the
defect preserves half of the supercharges of the full theory. We also fix ~n = {0, 0, 0, 0, 0, 1}
and introduce the notation Φ|| = ~n · Φ = Φ6, while the remaining 5 scalars we denote as
ΦM
⊥ with M = 1, · · · , 5 (with capital Latin indexes). The full SO(6) R-symmetry of the

parent theory is thus broken to SO(5) by the MWL. Similarly, the full superconformal
symmetry PSU(2, 2|4) of N = 4 SYM is broken in the presence of the defect to OSp(4∗|4),
where the bosonic subgroups are the SO(3) rotations about the loop and the 1D conformal
group SO(1, 2) preserving the line.

Despite the fact that MWLs lying on straight lines and circles preserve the same
symmetries and are related by a conformal transformation, their expectation values are
different due to a subtle anomaly [29]. More precisely for the straight line, in some natural
conventions, 〈Wline〉 = 1 [30–32], at the same time the vev of the circular MWL depends on
the coupling constant and at large N that is given by [29, 31, 33]

〈Wcircle〉 = 1
2πg I1(4πg) , (2.2)

where g is the ’t Hooft coupling g =
√
λ

4π and In(z) is the modified Bessel function of the first
kind. Apart from this curiosity the circle and the straight line are pretty much the same,
but for technical reasons we will be working on the circle most of the time in this paper.

2.2 The defect CFT living on the 1/2 BPS MWL

The straight MWL (2.1) can be interpreted as a superconformal one-dimensional defect.
The defect theory on top of this defect possesses all the standard properties of a conformal
field theory. Its operators are realised by inserting N=4 SYM fields along the Wilson
line. Operators arrange in (super)multiplets identified by representations of the symmetry
unbroken by the defect, 2- and 3-point functions kinematics is constrained and higher point
functions can be constructed by the Operator Product Expansion (OPE). In the following
we review these general facts.

The states of the 1D defect CFT. Operators are organised in superconformal multi-
plets labelled by four quantum numbers according to the unitary representations of the
unbroken OSp(4∗|4) symmetry [34, 35]. The quantum numbers can be represented in the
form {∆, [a, b] , s} where ∆ is the scaling dimension, [a, b] are the Dynkin labels associated
with the R-symmetry and s is the spin associated with rotations about the line. At generic
values of finite coupling, the 1D CFT admits two classes of supermultiplets. The simplest
ones are the 1/2-BPS short multiplets denoted as Bk, whose superconformal primaries
have scaling dimensions protected by supersymmetry with quantum numbers {k, [0, k] , 0}
with k ∈ N. In addition to these, the defect theory admits long multiplets L∆

s,[a,b] which
in principle preserve no supercharges.1 Then, their scaling dimension is not protected by
supersymmetry which therefore is a non-trivial function of the coupling g.

1At some specific values of coupling some long multiplet could accidently shorten.
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The CFT multiplets obey OPE selection rules. The one that will be relevant in our
setup is the following [36]

B1 × B1 = I + B2 +
∑
∆>1
L∆

0,[0,0] , (2.3)

where B1 is the multiplet containing ΦM
⊥ as we discuss below. The 1/2-BPS multiplets B1

and B2 were also considered in [19, 35–38], I is the identity multiplet and L∆
0,[0,0] are the non-

protected long multiplets transforming as singlets under the global SO(5)×SO(3) symmetry.
Operators appearing in the sum of the r.h.s. of (2.3), such as for example Φ||, Φ2

||,
(Φ⊥ ·Φ⊥), . . . mix and develop anomalous dimensions that can be computed using the QSC
as shown in [1, 2, 39, 40]. By the unitarity bounds, it is known that these non-protected
operators are all irrelevant, i.e. with ∆ > 1 [41]. Importantly, while ΦM

⊥ are protected
exactly marginal operators with dimension ∆ = 1, the operator corresponding to Φ|| is
an irrelevant operator with a running dimension ∆ > 1 (except exactly at zero coupling,
where ∆→ 1).

Let us describe the structure of the B1 multiplet in more detail. It is the simplest
protected multiplet and it contains three operators with the following quantum numbers

B1 : {1, [0, 1] , 0} −→ {3
2 , [1, 0] , 1

2} −→ {2, [0, 0] , 1} , (2.4)

where arrows represent the action of supercharges on the highest weight. This multiplet
is also known as displacement multiplet. Indeed, every defect theory has a distinguished
operator called displacement operator, which captures the breaking of translation invariance
by the defect. In particular, the stress-energy tensor is no longer conserved and the usual
conservation law needs to be modified by some additional terms localised on the defect. In
our case it leads to

∂µT
µn = Dn(x||)δ3(x⊥) , (2.5)

with x|| = t the direction along the defect, x⊥ the orthogonal ones, and n is an index
denoting an orthogonal direction. The operator Dn contains the components of the field-
strength and it is protected. Given the definition (2.5), its dimension is 2 and it corresponds
to the last operator appearing in the multiplet B1 (2.4). Also the R-current can be broken
giving rise to other operators. These operators have protected dimension 1 and, in our case,
they are just the marginal operators ΦM

⊥ with M = 1, . . . , 5 corresponding to the highest
weight of the supermultiplet B1 (2.4).

Correlation functions. Correlation functions are defined as local insertions of operators
along the contour as follows [42]

〈〈O1 (t1)O2 (t2) · · ·On (tn)〉〉 ≡ 〈Tr PO1(t1)Wt1,t2 O2(t2) . . . On(tn)Wtn,t1〉
〈WC〉

, (2.6)

where Oi are composite fields transforming in the adjoint representation of the gauge group
and Wta,tb are segment of the Wilson loop WC between positions ta and tb. The double
brackets 〈〈· · · 〉〉 indicate that the vev is taken with the supersymmetric Wilson loop as the
vacuum instead of the usual one.
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The n-point functions (2.6) satisfy all the properties of a 1D conformal field theory.
Then, two- and three-point functions are completely fixed by conformal symmetry. For
instance, for scalar operators O∆i

with dimension ∆i we have

〈〈O∆i
(t1) O∆j

(t2)〉〉 = Ni
δij

x2∆i
12
≡ Niδij [P (t1, t2)]∆i ,

〈〈O∆i
(t1) O∆j

(t2) O∆k
(t3)〉〉 =

√
NiNjNk

Cijk

x
∆i+∆j−∆k

12 x
−∆i+∆j+∆k

23 x
∆i−∆j+∆k

13
,

(2.7)

with xab = |xµ(ta)−xµ(tb)| and Cijk the structure constant. We also introduced the function
P (t1, t2) = 1

|x(t1)−x(t2)|2 for convenience. We will use the two standard parametrisations:
on the line parametrised by xµ(t) = {t, 0, 0, 0}, t ∈ [−∞,+∞] and on the unit circle
parametrised by xµ(t) = {cos t, sin t, 0, 0}, t ∈ [0, 2π]. So that we have xab = |tb − ta| on
the line and xab =

√
2− 2 cos(tb − ta) for the circle. We assume that by default in the

first line of (2.7) Ni = 1, which is the standard normalisation of the operators. However,
for the operators in the displacement multiplet (2.4) it is more convenient to introduce a
non-trivial normalisation as follows

〈〈ΦM
⊥ (t1)ΦN

⊥ (t2)〉〉 = NΦ⊥ δ
MN

x2
12

, 〈〈Dn(t1) Dm(t2)〉〉 = ND δ
nm

x4
12

, (2.8)

where CΦ⊥ and CD are functions of the coupling as defined below in (2.38).
Conformal symmetry constrains also 4-point functions. Indeed, in one dimension they

can be written in terms of a single cross ratio

x = x12x34
x13x24

, (2.9)

as follows
GMNPQ(x) ≡ 〈〈Φ

M
⊥ (t1)ΦN

⊥ (t2)ΦP
⊥(t3)ΦQ

⊥(t4)〉〉
P (t1, t2)P (t3, t4) , (2.10)

where M,N,P,Q = 1, . . . , 5. Exploiting the superconformal OPE (2.3), it is possible to
parametrise the 4-point function (2.10) as

GMNPQ(x) = δMP δNQ G2(x) + δMN δPQ G1(x) + δMQ δNP G3(x) , (2.11)

with

G1(x) = (x− 1)f ′(x) +
(2
x
− 1

)
f(x) ,

G2(x) = F x2 − (x− 1)xf ′(x)− f(x) ,

G3(x) = f(x)− xf ′(x) ,

(2.12)

and, in case of identical protected operators polarised in the same direction i.e. M = N =
P = Q as

G(x) = G1(x) +G2(x) +G3(x)

= F x2 + (2x−1 − 1)f(x)−
(
x2 − x+ 1

)
f ′(x) ,

(2.13)
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where the reduced correlator f(x) appearing in (2.12) and (2.13) is a function of the cross
ratio containing the OPE decomposition

f(x) = FI(x) + C2
BPS FB2(x) +

∑
n

C2
n F∆n(x) , (2.14)

with superconformal blocks given by

FI(x) = x , (2.15)

FB2(x) = x− x 2F1(1, 2, 4;x) , (2.16)

F∆(x) = x∆+1

1−∆ 2F1(∆ + 1,∆ + 2, 2∆ + 4;x) , (2.17)

and OPE coefficients
Cn ≡ CΦi⊥, Φi⊥, L

∆n
0,[0,0]

, (2.18)

for the non-protected states. Several orders of the reduced correlator are known in pertur-
bation theory, at strong coupling in [19] and at weak coupling in [2, 18].

The constant F appearing in (2.14) and the structure constant corresponding to the
B2 block are related as F(g) = 1 + C2

BPS(g). They can be computed exactly both using
supersymmetric localisation [36, 37] or, alternatively, by making contact with integrability
with arguments similar to those of this paper, see [2].2 The result is

F(g) = 1 + C2
BPS(g) = 3 〈Wcircle〉 〈Wcircle〉′′

(〈Wcircle〉′)2

= 3I1(4gπ)
((

2π2g2 + 1
)
I1(4gπ)− 2gπI0(4gπ)

)
2g2π2I2(4gπ)2 ,

(2.19)

where the first expression refers to the expectation value of the circular Wilson loop given
in (2.2).

Finally, given the invariance under the cyclic relabelling of the 4-point function (2.10),
the quantities G(x) and f(x) satisfy the following crossing equations

x2G(1− x)− (1− x)2G(x) = 0 ,
x2f(1− x) + (1− x)2f(x) = 0 .

(2.20)

The main goal of this paper is to relate the deformation of this CFT with the integrability
data. We discuss the deformations in the next section.

2.3 The defect deformations

The displacement deformations. The Ward identity (2.5) fixes the variation of an
arbitrary correlation function when the contour of the defect undergoes a small deformation.
Let us consider the deformation of a linear defect parametrised by x|| = t by a profile δxn⊥(t).

2See appendix F of the arXiv version.
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Figure 2. The WL deformed by introducing a point-like parameter changing defect is integrable.
We utilise this fact to deduce further constraints on the correlation functions of the 1D CFT on the
straight line.

Then, the correlation function 〈〈O〉〉 of an arbitrary operator O taken in presence of the
deformed Wilson loop, at first order in the deformation reads [43–45]

〈〈O 〉〉x+δx =
∫
dt 〈〈O Dn(t) 〉〉 δxn⊥(t) +O(δx2) , (2.21)

where we assume that δx(t) vanishes at the locations of the operators O. Similarly for the
vev of the Wilson loop itself, with the difference that the first order variation vanishes since
it corresponds to a one-point function on the defect CFT. The first non-trivial contribution
appears at second order in the deformation and it is given by

δx log〈WC 〉 =
∫
t1>t2

dt1dt2 〈〈Dn(t1) Dm(t2) 〉〉 δxn⊥(t1)δxm⊥ (t2) +O(δx3
⊥) . (2.22)

For the supersymmetric Wilson loop (2.1) there is also an internal angle displacement
operator corresponding to ΦN

⊥ , N = 1, . . . , 5, the highest weights of the displacement
multiplet. These operators are sometimes referred to as tilt operators. One can see these
operators arising when the coupling to the scalars in the Wilson loop connection (2.1) is
deformed as n+ δn, with n · δn = 0, leading to

δn log〈WC 〉 =
∫
t1>t2

dt1dt2 〈〈ΦN
⊥ (t1) ΦM

⊥ (t2) 〉〉 δnN (t1)δnM (t2) +O(δn3) . (2.23)

Integrability data for the WL deformations. A particular deformation of the defect
CFT is given by introducing a cusp along the contour as in figure 2, which can be considered
as a point-like parameter changing defect inside WL or also as a particular case of a colour-
twist operator introduced in [46]. The resulting operator is composed of two semi-infinite
lines connecting in the origin as follows

Wcusp = 1
N

Tr
[
W 0
−∞(0, 0)W+∞

0 (φ, θ)
]
, (2.24)

where the second infinite segment is rotated both in space-time with angle φ forming the
cusp, as well as in the space of scalar couplings with the internal angle θ. Choosing planes
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Figure 3. Another conformally equivalent representation of the cusped WL. The expectation value
of this object depends on the distance between the cusps in the standard way as a two point function
of two operators of dimension Γcusp.

for the rotations, the two rays can be written as follows

W t2
t1 (φ, θ) = P exp

∫ t2

t1
dt

[
i Aµẋ

µ(t) + (Φ|| cos θ + Φ1
⊥ sin θ) |ẋ(t)|

]
, (2.25)

with the contour parametrised by x(t) =
(
t cosφ, t sinφ, 0, 0

)
.

The cusped Wilson line is no longer finite and it develops an anomalous dimension
known as cusp anomalous dimension. This quantity is defined through the divergence of
the vev of Wcusp as follows [47]

〈Wcusp 〉 ∼ (εUV)Γcusp(g,φ,θ) , (2.26)

where εUV is the UV cutoff near the cusp. Perhaps a more transparent way of defining the
cusp anomalous dimension is by mapping the two lines to two intersecting arcs of circles,
meeting at the external angle φ as on figure 3. The two arcs have two intersection points
(one is the image of 0, another is the image of ∞), then the expectation value will scale as
the distance between these two intersection points (in 4D) to the power −2Γcusp(g, φ, θ).

The cusp anomalous dimension Γcusp(g, φ, θ) was introduced and studied at weak and
strong coupling in [48]. Moreover, since the configuration introduced in (2.24) was discovered
to be integrable, a set of TBA equations for it was introduced in [49, 50] and reformulated
in terms of the QSC in [51] allowing for its non-perturbative analysis.

In the near-BPS limit φ→ ±θ, the first few orders of the cusp anomalous dimension
are given by

Γcusp(g, φ, θ) = cosφ− cos θ
sinφ

2φ
1− φ2

π2

B(g, φ) +
(cosφ− cos θ

sinφ

)2
φ2C(g, φ) + . . . , (2.27)

where the dots represents higher orders in cosφ−cos θ
sinφ . The function B(g, φ) is known as

Bremsstrahlung function originally computed in [45, 52] exploiting the supersymmetric
localisation techniques [29, 31, 33, 53]. The same result was later reproduced and further
generalised from integrability in [54, 55] and checked at strong and weak coupling in [56, 57].
The function C(g, φ) appearing in (2.27) was computed analytically in [51] using the QSC
formalism. We will refer to it as Curvature function.
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For what follows it is useful to consider the cusp anomalous dimension in the case in
which the Euclidean angle φ is set to zero and θ is small. This corresponds to study a small
deformation of the 1/2-BPS Wilson line, leading to the following expansion

Γcusp(g, φ = 0, θ → 0) = B(g) sin2 θ + 1
4 (B(g) + C(g)) sin4 θ +O(sin6 θ) . (2.28)

Finally, let us write the expression for the Bremsstrahlung and Curvature functions

B(g) = g

π

I2(4πg)
I1(4πg) , (2.29)

C(g) = −4B2(g)− 1
2

∮
dux
2πi

∮
duy
2πiK0(ux − uy)F [x, y] , (2.30)

where we use the shorthand notation B(g, φ = 0) ≡ B(g) and C(g, φ = 0) ≡ C(g). Here
both integrals run clockwise around the cut [−2g, 2g] and ux = g(x+ 1/x) is the Zhukovsky
parametrisation. The kernel K0 and the integrand F are given in appendix A.

Curiously, the function F appearing in the correlator (2.19) could be written in terms
of the B as follows

F(g) = 3(g2 − B(g))
π2B(g)2 . (2.31)

The integral (2.30) was solved perturbatively in [2]. At weak coupling it gives

C = 4g4 −
(

24ζ3 + 16π2

3

)
g6 +

(
64π2ζ3

3 + 360ζ5 + 64π4

9

)
g8

−
(

112π4ζ3
5 + 272π2ζ5 + 4816ζ7 + 416π6

45

)
g10

+
(

3488π6ζ3
135 + 2192π4ζ5

9 + 9184π2ζ7
3 + 63504ζ9 + 176π8

15

)
g12 +O

(
g14
)
.

(2.32)

At strong coupling, the coefficients of the series in g were deduced by evaluating the integral
with very high numerical precision and then fitting with Riemann zeta values ζn obtaining
the following expansion

C =
(
2π2 − 3

)
g

6π3 + −24ζ3 + 5− 4π2

32π4 + 11 + 2π2

256π5g
+ 96ζ3 + 75 + 8π2

4096π6g2

+ 3
(
408ζ3 − 240ζ5 + 213 + 14π2)

65536π7g3 + 3
(
315ζ3 − 240ζ5 + 149 + 6π2)

65536π8g4 +O
( 1
g5

)
.

(2.33)

For the next 3 coefficients we were only able to find their numerical values

3.044012903724157826× 10−7

g5 + 8.008516278599531× 10−8

g6 + 2.125834835083× 10−8

g7 .

In the supplementary material attached to this paper, we included the Mathematica notebook
Curvature.nb containing the implementation we used to numerically compute the curvature
function with high precision.
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From cusp anomalous dimension to two-point function. Let us relate the following
two quantities: the normalisation of the two-point function of the deformation operators,
and the cusp anomalous dimension at the leading non-trivial order in the deformation
parameter following [45]. The rest of the paper will be dedicated to generalising this
consideration to the higher order in the deformation parameter, so this example, while
simple, is very useful to demonstrate the general idea. Consider, first, the deformation by θ
while keeping φ = 0. We introduce non-zero θ in the interval [−T/2, T/2], which can be
interpreted as a two-point function of two defects and thus we should have

WC ' (T/ε)−2Γcusp ' 1− 2θ2B log T
ε
, (2.34)

where ε is a UV cut-off and we used that from (2.27) Γcusp = θ2B. Our starting point
is (2.23) with δn(t) = (0, 0, 0, 0, θ, 0) for t ∈ [−T/2, T/2] and zero otherwise

δx log〈WC 〉 =
∫ T/2−ε

−T/2
dt1

∫ T/2

t1+ε
dt2

NΦ⊥
(t1 − t2)2 θ

2 +O(θ3) . (2.35)

Above we introduced the UV cut-offs ε. The integration can be evaluated exactly

δx log〈WC 〉 =
(
T

ε
− log T

ε
− 1

)
CΦ⊥θ

2 . (2.36)

In the section 4 we will introduce a more precise treatment of the linear divergence, but for
now we can just drop it and comparing the log terms with (2.34) to obtain NΦ⊥ = 2B.

Similarly, we can analyse the deformation by φ. The small deformation by φ is equivalent
to introducing a tiny bump in the line between (−T/2, T/2), which can be written at the
linear order as a parabolic deformation δx(t) = φ

T

(
T 2

4 − t
2
)
, approximating a tiny arc

of a circle inclusion. One can check that indeed the slope of this line at t = ±T is ±φ.
From (2.22) we get

δx log〈WC 〉 =
∫ T/2−ε

−T/2
dt1

∫ T/2

t1+ε
dt2

ND
(t1 − t2)4 δx(t1)δx(t2) +O(φ3) , (2.37)

the log-divergent part of the integral is 1
6CDφ

2 log T
ε again comparing with Γcusp = −φ2B, as

follows from (2.27) we get ND = 12B(g). To summarise we get the following normalisations
of the 2-point functions

ND = 12B(g) and NΦ⊥ = 2B(g) . (2.38)

Next, we remind the form of the integrated correlators initially found in [2] with the goal
to derive a combination of them in the rest of the paper.

2.4 Integrated correlators

In the previous section we discussed how the deformation of the line by a cusp at the
leading order produces a normalisation of the two point function. Already at the next
order we get a nontrivial relation which involves an integrated four-point function. We will
consider the simplest four-point function of four identical protected operators ΦN

⊥ introduced
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in (2.10), which will be related to the R-symmetry deformation of the Wilson loop operator
at next-to-leading order (2.28). At this order, one can write the following independent
constraints [2], expressed in terms of the reduced correlator f(x) defined in (2.14),

Constraint 1:
∫ 1

δx
δf(x)

(1
x

+ 1
x3

)
dx− 1

2(F− 3) log δx − F + 3 = 3C− B
8 B2 , (2.39)

Constraint 2:
∫ 1

0

δf(x)
x

dx = C
4 B2 + F− 3 , (2.40)

where δx → 0+ is a cutoff regulator and δf(x) ≡ f(x) − ftree(x) with ftree the zero-
coupling value

ftree(x) = 2x+ x

x− 1 . (2.41)

Notice that the expression in the l.h.s. of (2.39) is finite since δf(x) ∼ 3−F
2 x2 for x → 0.

The Bremsstrahlung B and Curvature functions C are defined in (2.29) and (2.30).
For completeness, it is worth mentioning that one of the integrals appearing in (2.39)

and (2.40) can be further simplified by∫ 1

0

δf(x)
x

dx =
∫ 1

0
δf(x) dx , (2.42)

as follows immediately from the crossing relation (2.20), which implies that f(x)(1− 1/x)
is an odd function under crossing and thus vanishes under the integral.

Exploiting the relation between the 4-point function G(x) and the reduced correlator
f(x) given in (2.13), the first integrated constraint (2.39) can also be written as follows

Constraint 1:
∫ 1

0
δG(x)1 + log x

x2 dx = 3C− B
8 B2 , (2.43)

where δG(x) ≡ G(x)−Gtree(x) and Gtree is the zero-coupling value:

Gtree(x) = 2(x− 1)x+ 1
(x− 1)2 . (2.44)

The integral relations (2.39) and (2.40) were tested for several orders at weak and
strong coupling in [2]. Recently, the authors of [25] managed to derive a linear combination
of these constraints by using a general argument on the geometry of the conformal manifold.
The combination derived in [25] can be written as

− 2
∫ 1

δx
δf(x)

(1
x

+ 1
x3

)
dx+ (F− 3) log δx + 3

∫ 1

0

δf(x)
x

dx = 1
4B + F− 3 , (2.45)

and is independent from the Curvature function. In [25] it was derived by studying the
Riemann tensor of the defect conformal manifold generated by the marginal operator Φ⊥.
The aim of this paper is to provide the proof of the other independent linear combination
of the constraints.

3 Strategy and technicalities

In this section we describe the main strategy of our derivation, and then proceed to describe
in detail the conformal perturbation theory setup we use for the calculation. The most
technical parts of the derivation will be described in the next section.
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3.1 The main strategy

Our main goal is relating the cusp anomalous dimension to the integrated correlator of the
four scalar operators Φ⊥. The latter, as has been already discussed, are the “tilt operators”
controlling deformations of the internal angle along the MWL. Therefore, we will consider
the “cusp” defined purely in R-space, i.e. we only consider the deformation by the angle θ in
the notation of section 2.3. In this case, Γcusp can be viewed as a scaling dimension of two
point-like parameter-changing defects, see the right panel of figure 3. Namely, we consider a
straight (or circular) MWL, where the polarisation of the scalars is modified in an interval
between points t1 and t2. This configuration has an expectation value of the form:

W(t1, t2; θ) ≡
〈W t1
−∞(0, 0)W t2

t1 (0, θ)W∞t2 (0, 0)〉
〈W∞−∞(0, 0)〉 ∝

(
ε2UV/x

2
12

)Γcusp(0,θ)
, (3.1)

where εUV is a UV cutoff controlling the neighbourhood of the points t1 and t2, as we
discussed around (2.26). This formula follows from the definition of Γcusp and conformal
invariance in the SYM theory, see e.g. [58, 59].

The above expression is written in terms of quantities in N=4 SYM. Our first goal is
to rewrite the small θ expansion of this observable in terms of internal quantities of the
1D defect CFT living on the straight Wilson line. We first explain the main intuition in
a treatment suitable at weak coupling, and later we will explain the proper CFT setup
suitable to keep the ’t Hooft coupling finite.

3.1.1 From deformations of the MWL to integrated correlators

It is a general expectation that deformations of a Wilson line can be realised in terms of a
series of integrated operator insertions on the undeformed contour [38, 42].

In our case, this can be seen easily from the definition (2.25), which we repeat here
for convenience in the case φ = 0 and assuming a straight MWL along the direction 4
in spacetime

W t2
t1 (0, θ) = P exp

∫ t2

t1
dt

[
i A4(t) + (Φ||(t) cos θ + Φ1

⊥(t) sin θ)
]
. (3.2)

Considering s ≡ sin θ a small expansion parameter, expanding (3.2) up to the s4 we find

W t2
t1 (0, θ) ∼ P e

∫ t2
t1
dt(i A3(t)+Φ||(t)) × exp

∫ t2

t1
dt δL , (3.3)

with δL =
[
s Φ1
⊥(t)− s2

2 Φ||(t)−
s4

8 Φ||(t) + . . .

]
.

We found that in order to get a finite result we have to add divergent counter-terms given
by insertions of the identity operator.3 So, in practice we should use

δL =
[
s Φ1
⊥(t) + s2

(
b2
ε
− 1

2 Φ||(t)
)

+ s4
(
b4
ε
− 1

8 Φ||(t)
)

+O(s6)
]
,

where ε is the UV regularisation, which will be described in detail in the next section.
3Note that, the identity is the only relevant operator of the 1D CFT, i.e. with ∆ < 1 [41].
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For the left hand side of (3.1) we get

W(t1, t2;θ)∼ 1+s2
[ ∫
t1<s1<s2<t2

ds1 ds2 〈〈Φ1
⊥(s1)Φ1

⊥(s2)〉〉+ b2
ε

∫ t2

t1
ds1〈〈1(s1)〉〉

]

+ s4

4

[ ∫
t1<s1<s2<t2

ds1 ds2 〈〈Φ||(s1)Φ||(s2)〉〉+ 4b4
ε

∫
t1<s<t2

ds〈〈1(s)〉〉

+ 4b22
ε2

∫
t1<s1<s2<t2

ds1ds2 〈〈1(s1)1(s2)〉〉
]

− s4

2

∫
t1<s1<s2<s3<t2

ds1 ds2 ds3
(
〈〈Φ||(s1)Φ1

⊥(s2)Φ1
⊥(s3)〉〉+cyclic

)
(3.4)

+ b2s4

ε

∫
t1<s1<s2<s3<t2

ds1 ds2 ds3
(
〈〈1(s1)Φ1

⊥(s2)Φ1
⊥(s3)〉〉+cyclic

)
+s4

∫
t1<s1<s2<s3<s4<t2

ds1 ds2 ds3 ds4 〈〈Φ1
⊥(s1)Φ1

⊥(s2)Φ1
⊥(s3)Φ1

⊥(s4)〉〉+O
(
s6
)
,

where we have already set to zero all correlators appearing in the expansion which vanish
for R-symmetry reasons.

As reviewed in section 2.4, the order O(s2) of this equation, compared with the
expansion of Γcusp, fixes the normalisation of the 2-point function of ΦN

⊥ in terms of the
Bremsstrahlung function B, defined in (2.28). At the O(s4) order the last term gives an
integrated 4-point function, which by comparing with the r.h.s. of (3.1) should be related
to the curvature function C.

Going to higher orders requires to be consistent and careful about regularisation, see
e.g. [38] for studies at weak coupling. In order to deal with the regularisation scheme
consistently at finite coupling, in the next section we describe a more abstract formalism of
conformal perturbation theory.

3.1.2 Conformal perturbation theory framework

In this section we describe a more abstract point of view about the deformation by the angle
θ, using exclusively the 1D CFT language rather than referring to fields in N=4 SYM.

Namely, we view the s = sin θ-deformation as a deformation (locally) by a marginal
operator Φ1

⊥ at the leading order, which is also accompanied with a perturbation by relevant
(such as the identity 1) and irrelevant (such as Φ|| and possibly others) operators at higher
orders. We then constrain the way the irrelevant operators appear by requiring that the
deformation is a symmetry or rotation in R-space when extended to the whole line. As
at the higher orders in the deformation parameter the regularisation has to be applied
consistently, we also give in this section the detailed description of our regularisation scheme.
Our consideration follows closely the general conformal perturbation theory framework (see
e.g. [60–69] for examples of the method and its many applications).
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The deformation. The abstract action of the 1D CFT at θ = 0 will be denoted as
ACFT. Then we write the θ-deformed action as a local action in terms of the operators of
the undeformed CFT.

Since θ does not break conformal invariance locally, the perturbation at leading order
in s should be driven by an exactly marginal operator (i.e. with ∆ = 1). The only such
operators in the 1D CFT are the “tilt operators”, and, compatible with the symmetries of
the problem, we should have:

ACFT(θ) ∼ ACFT(0) + s
∫
dt OΦ1

⊥
(t) +O(s2) , (3.5)

where we use notations such as OΦ1
⊥

(t) to denote the primary operator of in the 1D CFT
corresponding to the insertion of the field Φ1

⊥ at weak coupling. We use this notation to
make clearer the distinction between internal 1D CFT quantities and the N = 4 SYM fields.
At this order, clearly this is the same as (3.3).

The normalisation of the operator can be fixed to be related to the Bremsstrahlung
function:

〈OΦ1
⊥

(t1)OΦ1
⊥

(t2)〉1D = 2BP(t1, t2) , (3.6)

namely, this will ensure that the deformation parameter s is correctly identified with sin θ,
up to O(θ2) order. This could be done exactly as described before in 2.4, and here we
incorporate it from the beginning to simplify the following steps in the derivation.

At higher orders in s, the deformed action may also include relevant and irrelevant
operators, as in general happens for exactly marginal deformations considered in conformal
perturbation theory, see e.g. [65]. Fixing the couplings of all these coefficients, which can
be expected to be heavily regularisation scheme-dependent, is in general complicated, but
we will find a way to constrain them to the order that we are interested in.

We start by being completely agnostic and assume that the action at generic order in s
takes the form

ACFT(θ) ∼ ACFT(0) + δACFT , (3.7)

with
δACFT = s

∫
dt OΦ1

⊥
(t) +

∞∑
k=2

sk
∑
n

bn,k ε
∆n−1

∫
dt On(t). (3.8)

Above, On(t) are all local operators in the initial CFT and ∆n their scaling dimensions. The
prefactor ε∆n−1, where ε is a dimensional parameter, has to be introduced for dimensional
reasons. As described in the next section, in our regularisation scheme ε will be identified
with the UV cutoff.

For convenience, let us also define the “Lagrangian density”

δL(t) = s OΦ1
⊥

(t) +
∞∑
k=2

sk
∑
n

bn,k ε
∆n−1 On(t). (3.9)

We assume that the perturbation s can in general be a function of t or at least piecewise
constant, such as for the case of the cusp. Comparing with (3.3), we can make the following
assumptions: 1) OΦ1

⊥
(t) only appears at the linear order in s = sin θ, which defines the
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coupling and prevent it from possible redefinitions of the type s→ s +αs3 + . . . . Therefore,
the sum on the r.h.s. of the equation will not include OΦ1

⊥
(t) or any of the other marginal

operators OΦi⊥
(t), but only the identity and irrelevant operators; 2) from N = 4 SYM

considerations, it is natural to expect that in the sum (3.9) only the operator OΦ||(t) appears.
However, we will lift this restriction, which may appear to be scheme dependent. As we
will see, the possible existence of other operators in the sum does not affect our derivation,
which requires only the assumption of point 1) above.

Notice that, as discussed above, the identity operator will appear into the sum (3.9) as
a counterterm, allowing us to remove consistently all power-like divergences, like those in
the example at the end of section 2.3.

Finally, let us fix the following convention for the normalisation of the operators: we
incorporate from the beginning the normalisation for the tilt operators:

〈OΦi⊥
(t1)OΦj⊥

(t2)〉1D = 2Bδij
t212

, (3.10)

while all other operators are normalised canonically:

〈On(t1)Om(t2)〉1D = δmn

t2∆n
12

. (3.11)

Observables. The coefficients bn(s) = ∑∞
k=2 bn,ksk are called Wilson coefficients and we

will discuss later how to constrain them. Assuming we knew all of them, observables in the
θ-deformed CFT are defined by the formal expansion

〈. . . 〉θ = 〈P . . . e
∫
δL(t)dt〉1D (3.12)

=
∫
dt 〈P . . . δL(t)〉1D +

∫
s1<s2

〈P . . . δL(s1)δL(s2)〉1D + . . . ,

where . . . indicates possible operator insertions. This gives an expansion in terms of
integrated correlators in the original CFT. The time/path ordering in this context is the
standard prescription of the perturbation theory.

Connection with the cusp. As explained above, we will obtain a nontrivial constraint
on the CFT data by considering the deformation switched on only on the segment between
two-points t1 and t2:

W(t1, t2; θ) ∼ 〈Pe
∫ t2
t1
δL(t)dt〉1D ∝

(
ε2UV/x

2
12

)Γcusp(0,θ)
, (3.13)

which connects us to the cusp anomalous dimension as in (3.1).
In the following section we explain in more detail the rules of conformal perturbation

theory giving the details of our regularisation scheme. Then we proceed to discuss how we
constrain the action, and introduce the concrete calculations which will be then presented
in the next section.
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3.2 Regularisation scheme

Regularisation scheme. The integrals arising from the expansion (3.12) will present
short-distance as well as IR divergences. The IR divergences are easy to deal with: we will
simply consider the theory on the circle of the circumference 2π, i.e. in the 1D CFT internal
terms we introduce finite temperature with the corresponding modification of the correlators
with t−2

12 → P(t1, t2) = 1
2−2 cos(t1−t2) . To regularise the UV divergences we introduce a hard

point-splitting cutoff ε as follows

• In all iterated integrals, we restrict integration variables si, sj so that |si − sj | > ε.
To be more explicit, we will enforce this by introducing integration measures

µn(s1, . . . , sn) ≡
n∏
i<j

Θ(|si − sj | − ε), (3.14)

(where Θ is the Heaviside step function), so that the n-fold iterated integral is
computed as ∫

s1<s2<···<sn
ds1 . . . dsn µn 〈δL(s1) . . . δL(sn)〉1D . (3.15)

• When we consider operator insertions in non-integrated points ti, we also restrict all
integration variables to a distance ε from all operators. This can be recast into the
following integration measure

µn,m(s1, . . . , sn; t1, . . . , tm) ≡ µn (s1, . . . , sn)
n∏
i=1

m∏
j=1

Θ(|si − tj | − ε). (3.16)

Again, explicitly, the integrals with insertions are computed as∫
s1<s2<···<sn

ds1 . . . dsnµn,m 〈O(t1) . . . δL(s1) . . . δL(sn) . . . Om(tm)〉1D. (3.17)

In the rest of the paper, in order to lighten the notation, we drop the explicit
dependence on the points of the measures (3.14) and (3.16).

• ε is identified with the dimensional parameter appearing in the action (3.8). This
fixes the convention for the Wilson coefficients bn,k.

• The regularised value of observables is defined keeping all terms up to O(1) for ε→ 0.
In particular, we will tune the couplings so that divergences cancel and we are left
with a finite result. Notice that we should first keep ε finite (but much smaller than
2π) both in the action and in the cutoffs, and that we send ε→ 0 only on the final
result for the correlator.

As a result of the above rules, we will see that we cannot throw away the terms corresponding
to irrelevant operators in the action, which naively are suppressed in the action (3.8)
because they have ∆ > 1. In fact, it will happen that, after integration inside correlation
functions, these terms produce divergences that balance with the prefactor ε∆−1, giving a
finite contribution.
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Figure 4. The figure illustrates one of the main conditions imposed in our derivation, where the
thick orange line represents the line with the deformation switched on (θ 6= 0), and the thin dark
line represents the original 1D CFT with θ = 0. The inserted operators are 1

2 -BPS tilt operators
with polarisation orthogonal to the plane of the θ-rotation. We demand that such 2-point function
should be invariant.

3.3 Constraints on the Wilson coefficients

Rather than fixing completely the higher-order coefficients, we will impose some physical
conditions that will result into sum rules. The conditions we will exploit descend from
the fact that θ parametrises a symmetry of the CFT (when the parameter is switched on
uniformly on the whole line). In particular, provided we properly redefine the operators, all
correlation functions should not depend on θ.

For our purposes, it will be enough to use two particularly simple cases. For example,
the expectation value of the circular Wilson loop does not depend on θ. This means that
the vacuum expectation value of the deformed action should be invariant, in other words

〈Pe
∫ 2π

0 δL(t)〉1D = 1 . (3.18)

This condition is the simplest way to fix the coupling of the identity operator at order
O(s2), as we show in the next section.

Secondly, we will impose the invariance of certain 2-point functions, as illustrated
in figure 4. We consider 2-point functions involving two identical operators ΦM

⊥ , where
M ∈ {2, 3, 4, 5} is a direction orthogonal to θ-deformation. We impose that this 2-point
function should not depend on the deformation parameter,

〈Pe
∫ 2π

0 δL(t)OΦM⊥
(t1)OΦM⊥

(t2)〉1D = 〈OΦM⊥
(t1)OΦM⊥

(t2)〉1D = Pr(t1, t2) . (3.19)

Studying the latter condition we will deduce a sum rule which constrains all the
coefficients bn,2, for the operators On in our OPE.

We will combine this information with the relation with the cusp anomalous dimension
given by the defect configuration of figure 3, and we will see that this leads us to the
constraint we are after which is the main result of this paper. For convenience, we list here
the key relation we are going to use, transforming the variables of (3.1) to the thermal circle:

〈Pe
∫ t2
t1
δL(t)dt〉1D ∝ [ε2 P (t1, t2)]Γcusp(θ) , (3.20)
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where ε is the UV cutoff around the points ti, and there is an unfixed, regularisation-
dependent proportionality constant. We will see in the next section how we can easily
remove such ambiguities and focus on the physical content of the equation.

As a final comment, let us notice that, in principle, the operators should also be
redefined (rotated in R-space) with θ to ensure invariance of correlation functions. In
general, operators would need to be redefined with an expression of the form,

Om(t)→ Om(t, θ) = Om(t) +
∞∑
k=1

sk
∑
n

M (k)
m,n ε

∆n−∆nOn(t), (3.21)

which certain coefficients Mm,n. The expectation drawn from the N = 4 SYM picture is
that for operators taken orthogonal to the deformation, such redefinition is not necessary.

In the next section we will obtain the constraint originating from this invariance and
then impose (3.13) to obtain the main result for the integrated correlator in closed form,
independent on the Wilson coefficients.

3.4 Extra comments on the operators in the deformed action

Let us make some additional comments on the operators present in the deformed action.
The N=4 SYM formalism suggests that the only operators present beyond the leading order
are OΦ|| and 1. However, in our conformal perturbation theory setup the symmetries of the
original theory are somewhat obscured, and we cannot definitively exclude that something
more general might happen in our regularisation scheme. Here, we briefly discuss what these
operators might possibly be and how one could try to fix them. We emphasise, however,
that these considerations are not needed for the derivation presented in the next section.

First, there are certainly some restrictions on the extra operators based on global
symmetry considerations. In particular, the θ-rotation on the whole line is a special case
of a general symmetry on the conformal manifold, which preserves supersymmetry. We
could consider a rotation by angle θ in a generic plane among the orthogonal directions in
R-space, and this should be a natural covariant generalisation of our deformed action. At
the leading order, such generic θ-deformation would couple to a tilt operator δL = δ~niOΦi⊥

,
with δni specifying a direction in R-space, with δni · (0, 0, 0, 0, 0, 1) = 0 and ||δ~n|| = s. At
next-to-leading order, the deformed action would need to couple to the two possible tensor
structures built with δ~niδ~nj , indicating that the operators in the action can only be either
neutral under R-symmetry, or in the symmetric traceless representation [2, 0].

Another natural expectation is that, in any scheme, the only operators which can
appear at higher orders in the deformation are the ones which can be built through the
subsequent OPE’s of operators at lower orders. For example, at next-to-leading order O(s2)
we would expect only operators in the OPE Φ1

⊥Φ1
⊥ → On (2.3).

Further, the θ-deformation on the whole line obviously preserves conformal symmetry.
Therefore, the beta function for the coupling of every operator in the action should vanish,
and remain vanishing as we move θ. This should severely constrain the form of the Wilson
coefficients.4 We did not tackle a computation of the beta functions in our scheme. However,

4It should in principle fix them completely, apart for possible rearrangements corresponding to
reparametrizations of θ at higher orders.
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we can make some contact with a well-known result of Cardy for the beta functions in
conformal perturbation theory with a point-splitting cutoff [60], which is usually applied to
the case of marginal and relevant operators. For perturbations SCFT +∑

i bi
∫
dsOi(s), the

result of Cardy, specialised to D = 1, reads

βi = ε∂εbi = (1−∆i)bi +
∑
k,l

bkblC
i
kl +O(|b|3), (3.22)

where C’s are the OPE coefficients.
We can see how this result applies to our situation, where the Wilson coefficients bi

additionally scale with θ, bi = ∑
k bi,ksk. Consider the case of the marginal operator OΦ1

⊥
.

Since by assumption bΦ1
⊥
≡ s and there is no OPE coefficient CΦ1

⊥Φ1
⊥Φ1
⊥

= 0, (3.22) simply
confirms that βΦ1

⊥
vanishes up to order O(s2).

In the case of the identity operator 1, relation (3.22) expanded up to the same
order yields

β1 = b1,2s2 + (2B)CΦ1
⊥Φ1
⊥1

s2 +O(s3), (3.23)
with CΦ1

⊥Φ1
⊥1

= 1, therefore from the vanishing of the beta function we get

b1,2 = −2B. (3.24)

This is indeed what we will find, by an independent calculation, in the next section, see (4.3).
One would be tempted to apply (3.22) also to fix the couplings for the irrelevant

operators. However, this does not seem to be consistent with our results, in particular
with the sum rules deduced in the next section. We were also not able to reproduce the
arguments of (3.22) in application to our specific regularisation scheme. A careful analysis
would be needed in order to compute the beta functions for the irrelevant operators in our
action, and we will not study this problem here.

In our derivation, we are fixing part of the couplings (or more precisely, sum rules
for them5) by computing some observables and imposing that they satisfy the physical
invariances of the θ-deformation. We have imposed such conditions only for a couple of
special observables. We can imagine that imposing more constraints, in addition to the
vanishing of the beta functions, would help fix the Wilson coefficients and clarify whether
more operators on top of 1 and OΦ|| should be included in the action. Fixing precisely the
couplings might be useful in some applications. In particular, we could use them to compute
some physical observables — for example, one could consider “multi-cusp” correlators where
different θ’s are switched on different segments of the line. Clarifying these points could
be a fruitful potential direction for future studies, which, however is not critical for the
derivation of this paper as we discuss in the next section.

4 Derivation of the integrated correlator involving the curvature
function

We will use the formal approach described in the previous section to relate the curvature
function with an integrated 4-point correlator. The derivation will be done in two steps:

5As we show in the next section, we can compute bΦ||,2, but only under the assumption that the coefficients
for other irrelevant operators are zero.

– 19 –



J
H
E
P
0
4
(
2
0
2
3
)
0
2
6

first we deduce a constraint on the Wilson coefficients bn,k from the requirement that the
deformation by θ applied to the whole space should be a symmetry. More precisely we
impose the properties (3.18) and (3.19). Second, we use the relation between the cusp
anomalous dimension and the deformation applied to a part of the space (3.13) expanded to
the forth order in s. By using these two equations, we will be able to derive our final result:
the linear combination of the two integrated correlators (2.39) and (2.40), complementary
to the one derived in [25] completing the derivation of the two relations found in [2].

4.1 Constraining the b1,2 coupling

We begin by considering the constraint (3.18) at the O(s2) order, which gives

s2
[∫ 2π

ε
ds2

∫ s2−ε

max(0,s2−2π+ε)
ds1〈OΦ1

⊥
(s1)OΦ1

⊥
(s2)〉1D + b1,2

ε

∫ 2π

0
ds

]
= 0 , (4.1)

where we have written explicitly the regularisation of the integrals with the measure
µ2 (3.14), that introduces a cutoff preventing the coordinates s1 and s2 coming closer
than ε to each other. The first term in (4.1) is the integrated two-point function of the
marginal operator OΦ1

⊥
while the second one is the contribution of the identity. Using the

definition (2.8) and the normalisation (2.38), one can solve the integration, which gives∫ 2π

ε
ds2

∫ s2−ε

max(0,s2−2π+ε)
ds1

2B
2− 2 cos(s1 − s2) = 4πB

ε
+O(ε) , (4.2)

thus we obtain
b1,2 = −2 B , (4.3)

which is in agreement with the argument in (3.24). We will use this relation in the
next section.

4.2 Constraining a combination of bn,2 couplings

Now we impose the constraint (3.19). We take equal indices N = M from the beginning
with M ∈ {2, 3, 4, 5} and expand to the order O(s2) to obtain for the coefficients of s2

0 = b0,2
ε

(∫ 2π

0
ds µ1,2(s; t1, t2)

)
〈OΦM⊥

(t1)OΦM⊥
(t2)〉1D︸ ︷︷ ︸

identity contribution ≡ I1−pt

+
∑

∆n>1
ε∆n−1bn,2

∫ 2π

0
ds µ1,2(s; t1, t2) 〈OΦM⊥

(t1)On(s)OΦM⊥
(t2)〉1D︸ ︷︷ ︸

integrated 3-point ≡ I3−pt

(4.4)

+
∫

0<s1<s2<2π
ds1ds2 µ2,2(s1, s2; t1, t2) 〈OΦM⊥

(t1)OΦ1
⊥

(s1)OΦ1
⊥

(s2)OΦM⊥
(t2)〉1D︸ ︷︷ ︸

integrated 4-point ≡ I4−pt

,

where the integration measure µn,m enforce the hard-sphere cutoffs as defined in section 3.2.
The contribution of the first line of (4.4) is given by the trivial integral of the measure µ1
and it reads

I1−pt = (2π − 4ε)
ε

b1,2 (2B)P(t1, t2), (4.5)
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with b1,2 = −2B given by (4.3) and another 2B coming from the special normalisation of
the tilt operator OΦM⊥

. The remaining two terms are more involved and they are computed
explicitly in appendix C.1. Integrated 3-point functions appearing in the second line can be
obtained assuming a generic spectrum with ∆n > 1 at finite coupling. Taking into account
the kinematics (2.7) and normalisation (2.18), we find that such integrals gives a divergence
that, combined with the ε∆n−1 prefactors, yields a finite contribution. All together such
terms give

I3−pt = (2B) P(t1, t2)
∑

∆n>1
bn,2

4Cn
∆n − 1 . (4.6)

The final contribution is given by the 4-point functions in the last line of (4.4). In order
to solve this integral it is convenient to use the parametrisation for G(x) given in (2.11).
Details of this calculation are described in appendix C and lead to the following result

I4−pt =(2B)2

(
2π−6ε
ε

+
∫ 1

2

0
dx

[
δG3(x)
x2 log x+ δG1(x)

x2 log x2

1−x + δG2(x)
x2 log x

1−x

])
P(t1, t2),

(4.7)

where δGi(x) = Gi(x) − Gi,tree(x) with Gi(x) are given in (2.12) and their tree-level
values are

G1,tree(x) = 1 , G2,tree(x) = 0 , G3,tree(x) = x2

(x− 1)2 . (4.8)

Notice that the integration in (4.7) goes in the domain [0, 1/2] and, unfortunately, there is
no way to extend it to the whole interval [0, 1] using crossing (2.20) in a smooth way. This
is a manifestation of the scheme dependence of the Wilson coefficients. However, we will
see, that in the final result, which only contains physical quantities, the integration can be
extended to the whole range naturally.

Once all pieces are combined, from I1−pt + I3−pt + I4−pt = 0 we find

∑
∆n>1

bn,2
Cn

∆n−1 + B
∫ 1

2

0
dx

[
δG3(x)
x2 log x+ δG1(x)

x2 log x2

1−x + δG2(x)
x2 log x

1−x

]
=B. (4.9)

This can be seen as a constraint on the weighted sum of the couplings bn,2 in terms of the
CFT data. At the same time, if we assume that only OΦ|| contributes, the above relation
completely fixes the value of the only coefficient bΦ||,2! We will use this assumption to
analyse this Wilson coefficient in section 4.4.

Finally, let us rewrite the main result of this section (4.9) in terms of the reduced
amplitude δf(x) = f(x)− ffree(x), as defined in (2.12) and (2.41),

1
B
∑

∆n>1
bn,2

Cn
∆n − 1 =

∫ 1
2

δx
dx

(x−2)δf(x)
x3 − (3− F) log(δx) + (F− 2) log(2) + 1. (4.10)

Note that the r.h.s. of (4.10) is finite in the limit in which the cutoff δx → 0+ since
δf(x) ∼ 3−F

2 x2 for x→ 0.
In order to get a closed expression for the integrated correlator, in the next section we

make another calculation involving deformation only on a part of the thermal circle of the
1D CFT.
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4.3 Matching with the cusp anomalous dimension

So far we obtained the nontrivial equation (4.10) involving the Wilson coefficients bn,2
relating them to the OPE coefficients Cn and B and to an integral of the reduced correlator
f(x). In this section we exploit the cusp deformation introduced in section 2.3 to conclude
our derivation. We start from the equation (3.20), which can be written in the form

〈Pe
∫ t2
t1
δL(t)dt〉1D = K [P (t1, t2)]Γcusp(θ) , (4.11)

where K is a non-physical renormalisation constant (e.g. depending on the UV cutoffs),
while Γcusp(θ), independent on the scheme, is the cusp anomalous dimension discussed in
section 2.3. In order to get rid of the constant K we consider the following expression

ł∂t1∂t2 log 〈Pe
∫ t2
t1
δL(t)dt〉1D

P(t1, t2) = −2Γcusp(θ) , (4.12)

as follows from (4.11). Notice that now both l.h.s. and r.h.s. are finite quantities. Next we
expand both sides in powers of s. It is useful to denote the expansion coefficients as follows

〈Pe
∫ t2
t1
δL(t)dt〉1D = 1 +A(t1, t2) s2 +B(t1, t2) s4 +O(s6), (4.13)

where A(t1, t2) and B(t1, t2) are defined explicitly in appendix B and contain contributions
from various integrated correlation functions, schematically

A(t1, t2) = (1-pt) + (2-pt), B(t1, t2) = (1-pt) + (2-pt) + (3-pt) + (4-pt) . (4.14)

Those terms can also be seen from (3.4). The only difference is that we allow now for
multiple On and not only Φ||.

Even though we only have the action (3.9) at the order s2, it is easy to convince
ourselves that only the identity operator at order s4 can contribute (which we do take into
account), but nothing else which could appear in the action at higher orders. The function
A(t1, t2) takes contributions from the integrated 1-point functions (of the identity operator),
as well as 2-point function of the line-deformation operator OΦ1

⊥
, while B(t1, t2) contains

contributions from: integrated 1-point function of the identity operator at the next order,
integrated 2-point functions of generic operators in the action, integrated 3-point functions
involving two OΦ1

⊥
and a third generic operator and integrated 4-point correlators of the

line-deformation scalars. From the above expansion it follows

log 〈Pe
∫ t2
t1
δL(t)dt〉1D = A(t1, t2) s2 +

[
B(t1, t2)− A2(t1, t2)

2

]
s4 +O(s6) . (4.15)

In the following we compute the two combinations appearing in (4.15) in terms of the
Bremsstrahlung (2.29) and Curvature functions (2.30) arising from the expansion of the
cusp anomalous dimension.
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First order. At leading order in s, (4.12) becomes
∂t1∂t2A(t1, t2)

P(t1, t2) = −2B . (4.16)

As from (B.12) we have

∂t1∂t2A(t1, t2) = −〈OΦ1
⊥

(t1)OΦ1
⊥

(t2)〉1D , (4.17)

the equation (4.16) does indeed hold as a consequence of the 2-point function normalisa-
tion (2.38).

Next-to-leading order. The next-to-leading order constraint deriving from (4.12) reads

∂t1∂t2

(
B(t1, t2)− A2(t1,t2)

2

)
P(t1, t2) = −B + C

2 . (4.18)

The evaluation of the l.h.s. in our regularisation scheme is rather long, and is spelled out
in appendices (the final result is deduced in (B.26), relying on explicit calculations which
are stored in appendix C). The main nontrivial contributions, as in the calculation of the
previous section, come from the integrated 3-point functions of the type 〈OΦ1

⊥
OΦ1
⊥
On〉1D as

well as from the integrated 4-point function 〈OΦ1
⊥
OΦ1
⊥
OΦ1
⊥
OΦ1
⊥
〉1D. After the dust settles,

the divergences cancel and (4.18) becomes

−1
2 (C + B) = −(2B)

∑
∆n>1

bn,2
4Cn

∆n − 1 − (2B)2(2− F) (1 + log 4) + 4 B2

− (2B)2
[∫ 1

2

δx
dx

(2x− 3)((x− 1)x+ 1)δf(x)
(x− 1)x3 dx+ 3

2(3− F) log δx
]
.

(4.19)

Notice that the sum, containing the Wilson coefficients, appearing in (4.19) is exactly the
same as in (4.10). Thus we can exclude them completely obtaining a closed expression for
the integrated correlator.

A new linear combination of integrated correlators. Substituting in (4.19) the sum
over the Wilson coefficients bn,2 given by (4.10), we obtain

− C + B
8B2 = −3 + F + 1

2(3− F) log δx +
∫ 1

2

δx
dx δf(x)

( 1
x3 −

3
x

+ 1
x− 1

)
, (4.20)

which is a constraint involving only CFT data. This is the main result of our derivation. It
is simple to verify that (4.20) is a linear combination of the two constraints (2.39) and (2.40)
originally found in [2]. Indeed, using crossing symmetry (2.20) to rearrange the integration
domain, they can be rewritten as follows

Constraint1:
∫ 1

2

δx
δf(x)

( 1
x3−

2
x2 + 1

x
+ 1
x−1

)
dx+ 3−F

2 log δx+3−F = 3C−B
8B2 , (4.21)

Constraint2:
∫ 1

2

0
δf(x)

(1
x
− 1− x

x2

)
dx = C

4B2 + F− 3. (4.22)

Combining (4.21) and (4.22) with coefficients 1 × Constraint1 − 2 × Constraint2, it is
simple to verify that (4.20) is perfectly reproduced. This, together with the combination −2×
Constraint1+3×Constraint2 (2.45) derived in [25], concludes the proof of those relations.
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4.4 Normalisation of Φ||

Assuming that only the operator OΦ|| contributes to the sum in (3.8), it is possible to link
our conformal perturbation theory setup with the usual N = 4 SYM expression for the
MWL computing the only remaining Wilson coefficient b1,2 ≡ bΦ||,2. In order to evaluate
it, we can exploit the constraint (4.10). Using it we can evaluate b1,2 analytically both at
weak and strong coupling, from the known expression for f(x) [2, 18, 19].

Weak coupling. At weak coupling, the integral of f(x) has to be treated carefully.
Indeed, it contains an anomalous term given by the divergence of the superconformal
block of the long-multiplet at x ∼ 0 for ∆1 = 1. Following the same logic of [2], we can
quantify the “anomaly” term to be 2C2

1/(∆1− 1)2 (in the terminology of [2]). Details of the
computation are given in appendix D. Using the regularisation given in (D.5), the integral
appearing in (4.10) is computed using the representation of f(x) in terms of harmonic
polylogarithms (HPL) implemented in the Mathematica package [70]. Using the HPL’s
properties, the integral can be solved recursively using integration by parts. Plugging it in
the constraint (4.10) and solving for b1,2 we have

b1,2 = g√
2
− g3 (π2 − 6

)
3
√

2
+ g5 (−108(ζ3 + 3) + 12π2 + 5π4 + 576 log 2

)
18
√

2
+ . . . , (4.23)

where . . . stand for higher orders in the coupling. An additional order is presented in
appendix D. Notice that, the sign of the result (4.23) depends on the choice of the one of
the square root of C2

1 , while the sign of the product b1,2C1 is fixed. We chose the positive
sign for the square root.

Strong coupling. In this regime the integral in (4.10) does not have any additional
divergences. Strong coupling data are given in [19]. Similarly to the weak coupling case, the
integral is computed using the representation of f(x) in terms of Harmonic polylogarithms.
The integral is divergent for δx → 0, but all the divergences are nicely cancelled by the
(3− F) log δx regulator as expected. We obtain

b1,2 = 1+log 2√
2/5π

g−149−8π2+17 log 2
96
√

2/5π2 +5616ζ3+21003−1232π2+45 log 2(256 log 2−129)
18432

√
2/5π3g

+. . . ,

(4.24)

where . . . stand for higher orders in 1/g. Two additional orders are included in appendix D.

Comparison with field normalisation. Now comparing (3.3) and (3.9) at the order s2

we conclude that we should impose, in the case when only one marginal operator contributes,

Φ|| = −2b1,2ε∆1−1OΦ|| . (4.25)

The operator OΦ|| has the standard unit normalisation in our conventions, from where we
can conclude that the scalar of N = 4 SYM has to be normalised as follows

〈〈Φ||(t1) Φ||(t2)〉〉 = 4b21,2ε2∆1−2 δij

x2∆i
12

. (4.26)
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As from above we know b1,2, this would then give us the normalisation of the non-protected
scalar Φ|| in our regularisation scheme. We can now quickly test this relation at weak
coupling: at the leading order there should be no difference between normalisation of Φ|| and
Φ⊥ as at tree level there is no interaction with the MWL, thus 4b21,2ε2∆1−2 should coincide
with 2B ' 2g2 at the leading order, which is indeed the case as one case see from (4.23).
Furthermore, we notice that

√
B/2 ' g√

2 −
π2g3

3
√

2 + 5π4g5

18
√

2 + O
(
g6) reproduces all terms in

b21,2 with maximal power of π, but otherwise there is no reason for the scalars to have the
same normalisation beyond the leading order, as one is protected and the other is not in
the interacting case.

5 Discussion

In this paper, we completed the proof of the integral constraints presented in [2]. A linear
combination of those relations was already derived in [25] using a geometrical approach.
Here, exploiting the invariance of the defect CFT under R-space rotation and relating
it to the generalised cusp anomalous dimension, we provided the derivation of a second
independent relation, thereby completing the proof.

A possible future direction is to derive constraints on multi-point correlation functions
e.g. 6-point functions, which should be related to the higher orders in expansion of the
generalised cusp anomalous dimension with respect to the θ and φ deformations. Finding
a shortcut method for deriving such relations between the correlation functions and the
spectrum of the deformations would generate, in principle, an infinite amount of additional
constraints on the 1D CFT, which could be sufficient for its complete solution. We also
expect that at each order there should be an increasing number of such constraints — like
we found 2 of them for 4-point function, one could speculate that there should be at least 3
non-trivial constraints for 6-point functions. We also note that the data coming from the
integrability side become richer with each order in θ or φ: the Bremsstrahlung function
contains only powers of π in its perturbation theory, the Curvature function already brings
in zeta functions, and we expect MZV’s to come from the next order as well. The higher
point correlation functions in the current context were studied recently in [26, 27] at weak
coupling, which could give a starting point in this investigation.

Furthermore, one can use the integrability data for the cusp anomalous dimension with
arbitrary operators sitting at the cusp, to constrain more complicated correlators with
non-BPS external legs.

Another interesting direction is to extend our derivation to other integrable gauge
theories. The most natural choice would be the three-dimensional ABJM theory where
1D superconformal defect theories supported by Wilson loops were defined in [71, 72] and
recently studied in [73, 74]. The cusp anomalous dimension was studied in [75, 76] and
the Bremsstrahlung function is known exactly [72, 77–79] (see also [80]). The curvature
function is still not known since an integrability formulation for the cusped Wilson line is
still lacking.6 However, all the conformal perturbation theory approach we have described

6However, based on the N=4 SYM example it seems very likely that this could be obtained by deforming
the QSC for local operators in ABJM theory. The latter is known [81, 82].
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seems ready for application in this context, and also the geometrical argument of [25] should
lead to a new non-trivial constraint for the line defect in ABJM theory.

We also stress that the core of the method used in this paper is applicable in theories
with no supersymmetry at all but just the breaking of a global symmetry by a defect (e.g.,
as studied in [90, 91]). In that context, we expect integrated correlators constraints such
as the ones studied here to also exist, although in general there will be no integrability to
provide data on the Bremsstrahlung and Curvature functions.

As an important case of a non-supersymmetric but integrable theory, it would be
interesting to investigate the fishnet limit [83–89] and integrated operators in this simpler
theory, where one can hope to advance analytically more easily and in particular to get the
answer to the fundamental question if integrability for the spectrum in combination with
conformal symmetry is sufficient to solve this type of beyond-the-spectrum observables.
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A The curvature function

The Curvature function was computed by means of QSC in terms of a double contour
integral in [51]. In the φ→ 0 limit, it reduces to (2.30) where the kernel is given by

K0(u) = ∂u log Γ(iu+ 1)
Γ(−iu+ 1) , (A.1)

and the integrand F is

F [x, y] = −8i sinh (2πux)uxuyx2S0(y)
I1(4gπ)2 (A.2)

+ S0(y)2
[ 8ixyI2(4gπ)uxuy
gπ (x2 − 1) I1(4gπ)3 −

8ixyI2(4gπ)uxuy
gπ (y2 − 1) I1(4gπ)3 + 32ixyuxuy

I1(4gπ)2

]
+ sinh2 (2πuy)

[ 4ixyI2(4gπ)uxuy
gπ (x2 − 1) I1(4gπ)3 + 16ixyuxuy

I1(4gπ)2

]
+ sinh (2πuy)

[
4ixuxuyy2

(x2 − 1) I1(4gπ) −
8ix sinh (2πu)uxuyy

I1(4gπ)2 − 8iuxuyS1(x)y
gI1(4gπ)2

− 16ixuxuy
(y2 − 1) I1(4gπ) +

(
− 8ixyI2(4gπ)uxuy
gπ (x2 − 1) I1(4gπ)3 −

32ixyuxuy
I1(4gπ)2

)
S0(y)

]
+ S1(y)

[ 8ixyuxuy
g (x2 − 1) I1(4gπ) −

8ixyuxuy
g (y2 − 1) I1(4gπ)

]
+ S0(x)

[
S0(y)

(
16iuxuy
I1(4gπ)2 −

16iy2uxuy
I1(4gπ)2

)
− 4ixI2(4gπ)uxuyS1(y)
g2π (x2 − 1) I1(4gπ)3

]

+ S0(y)
[

8ixuxuyy2

(x2 − 1) I1(4gπ) + 8ixuxuy
I1(4gπ) −

8ixuxuy
(x2 − 1) I1(4gπ) + 32ixuxuy

(y2 − 1) I1(4gπ)

+S1(x)
(
− 4ixI2(4gπ)uxuy
g2π (x2 − 1) I1(4gπ)3 −

16ixuxuy
gI1(4gπ)2

)
+S1(y)

( 4ixI2(4gπ)uxuy
g2π (x2 − 1) I1(4gπ)3 + 16ixuxuy

gI1(4gπ)2

)]
,

with

S0(x) =
∞∑
n=1

I2n+1(4πg)
x2n+1 , S1(x) =

∞∑
n=1

2nI2n(4πg)
πx2n . (A.3)

These are functions of x, y that are related to ux, uy by the usual Zhukovsky map

x+ 1
x

= ux
g
, |x| ≥ 1 , (A.4)

(same for y, uy), which resolves the cut [−2g, 2g] around which the integrals in (2.30) run.
We attach with this paper, a Mathematica notebook “Curvature.nb” which computes the
curvature function numerically for a given value of the coupling g.
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B Expansion of the segment

The quantities A, B appearing in (4.13) are defined through the following expansion〈
Pexp

[∫ t2

t1
dt

(
s OΦ1

⊥
(t) +

∑
∆n>1

ε∆n−1On(t)
∞∑
k=2

bn,k sk
)] 〉

1D

≡ 1 + s2 A(t1, t2) + s4 B(t1, t2) + . . . .

(B.1)

The leading order receives contributions from integrated 1- and 2-point functions such that

A(t1, t2) = K1-pt
1 +K2-pt, (B.2)

with the explicit integrals given by

K1-pt
1 ≡ b0,2

ε

∫ t2

t1
ds µ1,2 〈1(s)〉1D, (B.3)

K2-pt ≡
∫
t1<s1<s2<t2

ds1 ds2 µ2,2 〈OΦ1
⊥

(s1)OΦ1
⊥

(s2)〉1D , (B.4)

where the integration measures µn,m enforcing the cutoff is given in (3.16).
The next-to-leading order B(t1, t2) is defined by the sum

B(t1, t2) = L1-pt
1 + L2-pt

1 + L3-pt
1 +

∑
∆n>1

(
L2-pt
On

+ L3-pt
On

)
+ L4-pt. (B.5)

The contributions involving the identity are given by

L1-pt
1 ≡ b0,4

ε

∫ t2

t1
ds µ1,2 〈1(s)〉1D , (B.6)

L2-pt
1 ≡

b20,2
ε2

∫
t1<s1<s2<t2

ds1 ds2 µ2,2 〈1(s1)1(s2)〉1D , (B.7)

L3-pt
1 ≡ b0,2

ε

∫
t1<s1<s2<s3<t2

ds1 ds2 ds3 µ3,2
[
〈1(s1)OΦ1

⊥
(s2)OΦ1

⊥
(s3)〉1D (B.8)

+ 〈OΦ1
⊥

(s1)1(s2)OΦ1
⊥

(s3)〉1D + 〈OΦ1
⊥

(s1)OΦ1
⊥

(s2)1(s3)〉1D
]
.

The contributions involving On are given by

L2-pt
On
≡ b2n,2 ε2∆n−2

∫
t1<s1<s2<t2

ds1 ds2 µ2,2 〈On(s1)On(s2)〉1D , (B.9)

L3-pt
On
≡ bn,2 ε∆n−1

∫
t1<s1<s2<s3<t2

ds1 ds2 ds3 µ3,2
[
〈On(s1)OΦ1

⊥
(s2)OΦ1

⊥
(s3)〉1D (B.10)

+ 〈OΦ1
⊥

(s1)On(s2)OΦ1
⊥

(s3)〉1D + 〈OΦ1
⊥

(s1)OΦ1
⊥

(s2)On(s3)〉1D
]
.

Finally, the 4-point contribution of OΦ1
⊥
is

L4-pt ≡
∫
t1<s1<s2<s3<s4<t2

ds1 ds2 ds3 ds4 µ4,2 〈OΦ1
⊥

(s1)OΦ1
⊥

(s2)OΦ1
⊥

(s3)OΦ1
⊥

(s4)〉1D . (B.11)
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Rather than evaluating this contribution directly, we note that what enters our derivation
is the expression differentiated w.r.t. the endpoints t1, t2. These parameters enter the
expression as integration limits, and differentiating removes two integrations. We then find

∂t2∂t1A(t1, t2) = −〈OΦ1
⊥

(t1 + ε)OΦ1
⊥

(t2 − ε)〉1D

= −2BP(t1 + ε, t2 − ε) = −2BP(t1, t2) + o(ε). (B.12)

Plugging this expression into the first order expansion (4.16), we see that we get a match.
Next, we need the two combinations in (4.18). Let us start with the term involving A(t1, t2).
We get

1
2∂t2∂t1A

2(t1, t2) = 1
2∂t2∂t1

[
K

1-pt
1

]2
+ 1

2∂t2∂t1
[
K2-pt

]2
+ ∂t2∂t1

[
K

1-pt
1 ×K2-pt

]
,

(B.13)
where the differentiated kernels are given by

∂t2∂t1

[
K

1-pt
1

]2
= −2

b20,2
ε2

, (B.14)

∂t2∂t1

[
K2-pt

]2
= ∂t2∂t1

[ ∫ t2−2ε

t1+ε
ds1

∫ t2−ε

s1+ε
ds2 〈OΦ1

⊥
(s1)OΦ1

⊥
(s2)〉1D

]2
, (B.15)

∂t2∂t1

[
K

1-pt
1 ×K2-pt

]
= −b0,2

ε

∫ t2−2ε

t1+ε
ds1 〈OΦ1

⊥
(s1)OΦ1

⊥
(t2 − ε)〉1D (B.16)

− b0,2
ε

∫ t2−ε

t1+2ε
ds2 〈OΦ1

⊥
(t1 + ε)OΦ1

⊥
(s2)〉1D

− b0,2
ε

(t2 − t1 − 2ε) 〈OΦ1
⊥

(t1 + ε)OΦ1
⊥

(t2 − ε)〉1D .

The integral (B.15) will be evaluated in combination with the four-point function (B.24). On
the other hand, integral (B.16) can be computed easily by itself. Indeed, Taylor expanding
in ε and discarding terms O(ε), we get

∂t2∂t1

[
K

1-pt
1 ×K2-pt

]
= −4B b0,2

ε2
+ B b0,2

3

− 2B b0,2
ε

[(
t2 − t1 − 2ε− 2 sin(t2 − t1 − 2ε)

)
P(t1 + ε, t2 − ε)

]
+O(ε) . (B.17)

Next, we evaluate the derivative with respect to t1 and t2 of B(t1, t2). We display the
result term by term. Let’s consider first the contributions involving the identity operator.
Integrated one- and two-point functions are simply given by

∂t1∂t2L
1-pt
1 = 0 , ∂t1∂t2L

2-pt
1 = −

b20,2
ε2

, (B.18)
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while the three-point one is

∂t1∂t2L
3-pt
1 = −b0,2

ε

∫ t2−2ε

t1+2ε
ds2

[
〈OΦ1

⊥
(t1 + ε)OΦ1

⊥
(s2)1(t2 − ε)〉1D

+ 〈OΦ1
⊥

(t1 + ε)1(s2)OΦ1
⊥

(t2 − ε)〉1D + 〈1(t1 + ε)OΦ1
⊥

(s2)OΦ1
⊥

(t2 − ε)〉1D

]
.

(B.19)

Integrating (B.19), Taylor expanding in ε, and discarding terms O(ε), we get

∂t1∂t2L
3-pt
1 = −4B b0,2

ε2
+
[
8B b0,2 P(t1 + ε, t2 − ε) + B b0,2

3

]
− 2B b0,2

ε

[(
t2 − t1 − 2ε− 2 sin(t2 − t1 − 2ε)

)
P(t1 + ε, t2 − ε)

]
+O(ε) .

(B.20)

Secondly, we focus on the terms involving operators in the long multiplet with dimension
∆n. The two-point contribution is given by

∂t1∂t2L
2-pt
On

= −b2n,2ε2∆n−2〈On(t1 + ε)On(t2 − ε)〉1D . (B.21)

At finite coupling, i.e. when ∆n > 1, this integral is proportional to a positive power of ε,
and is therefore zero in the limit ε→ 0. It drops out from our derivation. The three-point
integral contribution is

∂t1∂t2L
3-pt
On

= −bn,2ε∆n−1
∫ t2−2ε

t1+2ε
ds2

[
〈OΦ1

⊥
(t1 + ε)OΦ1

⊥
(s2)On(t2 − ε)〉1D

+ 〈OΦ1
⊥

(t1 + ε)On(s2)OΦ1
⊥

(t2 − ε)〉1D + 〈On(t1 + ε)OΦ1
⊥

(s2)OΦ1
⊥

(t2 − ε)〉1D

]
,

(B.22)

and is evaluated piece by piece in equation (C.30), we report the final result here:

∂t1∂t2L
3-pt
On

= −(2B) bn,2
4Cn

∆n − 1 P(t1, t2) + o(ε) . (B.23)

Finally, the last contribution is given by the integrated four-point function that reads

∂t1∂t2L
4-pt = −

∫ t2−2ε

t1+3ε
ds3

∫ s3−ε

t1+2ε
ds2〈OΦ1

⊥
(t1 + ε)OΦ1

⊥
(s2)OΦ1

⊥
(s3)OΦ1

⊥
(t2 − ε)〉1D .

(B.24)

The evaluation of this integral is explained in the next appendix, in particular see equa-
tion (C.40) which gives the relevant combination of ∂t1∂t2L4-pt − 1

2∂t1∂t2 [K2-pt]2 appearing
in our calculation.

At the end of these painstaking calculations, summing all together to reconstruct

∂t2∂t1

[
B(t1, t2)− 1

2A
2(t1, t2)

]
,
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all the divergences cancel. Indeed, the only divergent contributions appear in (B.20)
and (B.17) that combined together give the following simple result

∂t2∂t1

[
L3-pt
1 −K1-pt

1 ×K2-pt
]

= −16B2 P(t1, t2) +O(ε) . (B.25)

Then, summing up all the remaining terms, we get

∂t2∂t1

[
B(t1, t2)− A2(t1,t2)

2

]
P(t1, t2) (B.26)

= −(2B)
∑

∆n>1
bn,2

4Cn
∆n − 1 − (2B)2

(
−1 +

∫ 1
2

0
dx
δG(x)
x2 log

(
x3

1− x

))
dx+ o(ε).

The previous expression can also be written in terms of the reduce correlator f(x). Indeed,
using (2.13) and integrating by parts, we obtain

∂t2∂t1

[
B(t1, t2)− A2(t1,t2)

2

]
P(t1, t2)

= −2B
∑

∆n>1
bn,2

4Cn
∆n − 1 − (2B)2(2−F) (1+log 4)+4B2

− (2B)2
[∫ 1

2

δx
dx

(2x− 3)((x− 1)x+ 1)δf(x)
(x− 1)x3 dx+ 3

2(3− F) log(δx)
]

+ o(ε) ,

(B.27)

where the integral in x is finite in the limit δx → 0+ since δf(x) ∼ 3−F
2 x2 for x→ 0.

C Useful integrals

Cross ratio on the circle. In the following, to simplify some integrals over 4-point
functions, it will be useful to recall the way the cross ratio is related to four points on
the circle:

X(s1, s2, s3, s4) =
√

P(s2, s4)P(s1, s3)
P(s3, s4)P(s1, s2)

= (ei s1 − ei s2)(ei s3 − ei s4)
(ei s1 − ei s3)(ei s2 − ei s2) .

(C.1)

C.1 Integrals on the circle with two insertions

Here we collect and compute the integrals used in the arguments of section 4.2.

Integrated 3-point function. The contribution of the 3-point functions in (4.4) is
proportional to the following one-dimensional integral

IOn =
∫ 2π

0
ds µ1,2 P(t1, s)

∆n
2 P(t2, s)

∆n
2 P(t1, t2)1−∆n

2

=
(∫ t2−ε

t1+ε
+
∫ t1+2π−ε

t2+ε

)
ds P(t1, s)

∆n
2 P(t2, s)

∆n
2 P(t1, t2)1−∆n

2 ,

(C.2)
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where the integration measure µ1,2 enforcing the cutoff is defined in (3.16). This integral
can be evaluated easily at leading order in the cutoff considering ∆n > 1 a generic real
number and it gives

IOn = 4 ε1−∆n

∆n − 1 P(t1, t2) +O
(
ε2−∆n

)
. (C.3)

While this result is divergent, it combines with the prefactor ε∆n−1 in the action to produce
the following finite contribution

I3−pt =
∑

∆n>1
Cn (2B) ε∆n−1IOn ' (2B) P(t1, t2)

∑
∆n>1

bn,2
4Cn

∆n − 1 . (C.4)

Integrated 4-point function. We also encountered the integral

I4−pt ≡
∫

0<s1<s2<2π
ds1ds2 µ2,2〈ΦM

⊥ (t1)Φ1
⊥(s1)Φ1

⊥(s2)ΦM
⊥ (t2)〉1D, (C.5)

with the integration measure defined in (3.14). Taking into account different orderings,
I4−pt can be rewritten as a sum of three terms

I4−pt =
[ ∫

t2<s1<s2<2π+t1
ds1ds2 µ2,2G1(t1, t2, s1, s2) P(t1, t2) P(s2, s1)

+
∫
t1<s1<t2, t2<s2<2π+t1

ds1ds2 µ2,2G2(t1, s1, t2, s2) P(t1, s1) P(s2, t2) (C.6)

+
∫
t1<s1<s2<t2

ds1ds2 µ2,2G3(t1, s1, s2, t2) P(t1, s1) P(t2, s2)
]

(2B)2 ,

where G1, G1 and G3 are defined in (2.12). It is convenient to split the G functions as
Gi(x) = Gi,tree(x) + δGi(x). Correspondingly we redefine (C.6) as

I4−pt ≡ (2B)2(Tree + Loops) , (C.7)

where Tree and Loops are (C.6) with the substitutions Gi → Gi,tree and Gi → δGi
respectively.

Tree level contribution is the most singular, then we evaluate it separately. It can
be easily computed using the values of Gi,tree given in (4.8). It boils down to elementary
integrals and, for small cutoffs, it gives

Tree =
[2π
ε

+ log
(
ε2P(t1, t2)

)
− 6

]
P(t1, t2) + O(ε) . (C.8)

The remaining part containing δGi can be rewritten in terms of integrals over the cross
ratio x. To do this, we change variables from {s1, s2} to {s1, x} with

x ≡ X(t1, s1, s2, t2) , (C.9)

where X is defined in (C.1). Explicitely, inverting the above relation we have

s2(s1, x) = −i log
[
−−xe

i(s1+t1) + ei(s1+t2) + ei(t1+t2)(x− 1)
eis1(x− 1)− eit2x+ eit1

]
. (C.10)

– 32 –



J
H
E
P
0
4
(
2
0
2
3
)
0
2
6

Figure 5. The integration range in the (s1, s2) plane, (C.11), is denoted by the shaded upper
triangular region in blue. For a given fixed value of the cross ratio x, (s1, s2) trace a curve Cx,
denoted by the pink arcs in the panels above. The intersection points of Cx with the triangular
region (C.11) determine the limits of the s1 integral for fixed x, and are denoted by pink circles.

Next, we need to work out the range of integration in the new variables. The original
integration domain for s1 and s2 is the triangular region given by

s1 ∈ [t1 + ε, t2 − 2ε] , and s2 ∈ [t1 + 2ε, t2 − ε] , with s2 > s1 + ε , (C.11)

see figure 5. In the new variables {s1, x}, this region (C.11) is charted in a rather non-trivial
way. We will do first the s1-integration, so we need the range in s1 for fixed x. In figure 5,
we depict the curve Cx in the (s1, s2) plane given by s2 = s2(x, s1). The integration limits
for s1 are the projections on the s1-axis of the two points where Cx enters and exits the
triangular integration region (C.11).

Depending on the values of x, Cx intersects the boundaries of the triangle on different
sides (or lie completely outside of it). Accordingly, we need to split the (x, s1) integration
in the following way (cf. figure 5):

• Region 1: here, xc ≤ x ≤ xe. The point x = xc is the point such that Cx intersects
the upper-left corner of the triangle, (s1, s2) = (t1 + ε, t2 − ε), while xe is the point
where Cx intersects the lower-left corner of the triangle (s1, s2) = (t1 + ε, t2 + 2ε). In
this range, Cx enters the triangle through its left side and exits through the top side.
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• Region 2: here, xe ≤ x ≤ xt, where xe is defined as above and xt is the point where
Cx is tangent to the line s2 = s1 + ε. In this range, Cx enters and exits the triangle
through the diagonal side.

The values of xt, xe, xc are easy to obtain explicitly. We will need only their expansion for
small ε:

xc = ε2

2− 2 cos (t1 − t2) +O
(
ε3
)
∼ 0 , (C.12)

xe = 1
2 + ε

4

(
cot t1 − t22

)
+ ε2

4 cos (t1 − t2)− 4 + O
(
ε3
)
∼ 1

2 , (C.13)

xt = 1 + ε

(
cot t1 − t24

)
+ ε2

2

(
cot2 t1 − t2

4

)
+ O

(
ε3
)
∼ 1. (C.14)

The region of integration is thus split naturally in two. For xc ≤ x ≤ xe (Region 1), we
have s ∈ [ši, šf], where ši and šf are given by the intersection points of Cx, with the lines
s1 = t1 + ε and s2 = t2 − ε, respectively. These are given by

ši = t1 − ε , (C.15)

šf = t2 −
ε

x
+ ε2

(
x− 1
2x2 cot t1 − t22

)
+ O

(
ε3
)
. (C.16)

For xe ≤ x ≤ xt (Region 2), we have s1 ∈ [ŝi, ŝf], with these points defined by the
intersections of Cx, with the line s2 = s1 + ε. These are given by

ŝi = t1 + ε

(
x

1− x

)
− ε2

(
x

2 (x− 1)2 cot t1 − t22

)
+ O(ε3) , (C.17)

ŝf = t2 + ε

( 1
x− 1

)
+ ε2

(
x

2 (x− 1)2 cot t1 − t22

)
+ O(ε3) . (C.18)

Putting all together, the original integration over the domain (C.11) rewrites as∫ t2−ε

t1+2ε
ds2

∫ s2−ε

t1+ε
ds1 =

[∫ xt

xe

dx

∫ ŝf

ŝi

ds1J (s1, x)
]

+
[∫ xe

xc

dx

∫ šf

ši

ds1J (s1, x)
]
, (C.19)

where J (s1, x) is the Jacobian of the transformation, given by

J (s1, x) =
∣∣∣∣∂s2(s1, x)

∂x

∣∣∣∣ (C.20)

= − sin (s1 − t1)− sin (s1 − t2) + sin (t1 − t2)
(x− 1) (x cos (s1 − t2)− cos (s1 − t1)) + x cos (t1 − t2)− x2 + x− 1 .

Armed with this change of variables formula, we are now able to simplify the various
four-point integrals in (C.6). Notice that the expressions for xc, xe and xt go to 0, 1/2 and
1 respectively, as ε→ 0. As we compute the various integrals that enter (C.6) in the small-ε
limit, these values will naturally appear as limits on the x-integration.

Let us list the result for the three terms in (C.6). Starting from the third line, after
removing the tree-level part, we get the integral∫ t2−ε

t1+2ε
ds2

∫ s2−ε

t1+ε
ds1 δG3(t1, s1, s2, t2) P(t1, s1) P(t2, s2).
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Reverting to the (x, s1) coordinates and doing the s1 integration, the finite and divergent
parts are∫ t2−ε

t1+2ε
ds2

∫ s2−ε

t1+ε
ds1 δG3(t1, s1, s2, t2) P(t1, s1) P(t2, s2)

= P(t1, t2)
[∫ 1

2

0
dx
δG3(x)
x2 log

(
x

ε2 P(t1, t2)

)
−
∫ 1

1
2

dx
δG3(x)
x2 log

(
xε2P(t1, t2)

(x− 1)2

)]
+ O(ε) .

(C.21)
With the same method we evaluate the integral in the second line of (C.6), after subtracting
the tree level contribution. This gives∫ t2−ε

t1+ε
ds1

∫ t1+2π−ε

t2+ε
ds2 δG2(t1, s1, t2, s2) P(t1, s1) P(t2, s2)

= P(t1, t2)
[∫ 1

2

0
dx
δG2(x)
x2 log

(
xε2 P(t1, t2)

1− x

)
−
∫ 1

1
2

dx
δG2(x)
x2 log

(
xε2 P(t1, t2)

1− x

)]
+ O(ε) ,

(C.22)
while the integrals coming from the first line of (C.6) evaluate to
∫ t1+2π−ε

t2+2ε
ds2

∫ s2−ε

t2+ε
ds1 δG1(t1, t2, s1, s2) P(t1, t2) P(s2, s1)

= P(t1, t2)
[∫ 1

2

0
dx
δG1(x)
x2 log

(
x2

(1− x)ε2 P(t1, t2)

)
+
∫ 1

1
2

dx
δG1(x)
x2 log

(
1− x

ε2P(t1, t2)

)]
+ O(ε) .

(C.23)
So in total, summing (C.21)–(C.23), we have

Loops =
[
−log

(
ε2P(t1, t2)

)]
P(t1, t2) (C.24)

+
∫ 1

2

0
dx

[
δG3(x)
x2 logx+ δG1(x)

x2 log
(
x2

1−x

)
+ δG2(x)

x2 log
(

x

1−x

)]
P(t1, t2)+O(ε) ,

where we now used the crossing properties of the Gi(x) amplitudes to map all the x
integrations to the interval [0, 1

2 ]. Altogether, therefore we find

I4−pt = (2B)2 2π − 6ε
ε

P(t1, t2) (C.25)

+ (2B)2
∫ 1

2

0
dx

[
δG3(x)
x2 log x+ δG1(x)

x2 log
(

x2

1− x

)
+ δG2(x)

x2 log
(

x

1− x

)]
P(t1, t2)

+ O(ε) .

Using these explicit integrals, the constraint (4.4) in the main text becomes the sum-
rule (4.9).

C.2 Integrals on the segment

We now discuss the explicit integrals entering the derivation in section 4.3.
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Integrated 3-point function. The first integral to compute is the 3-point contribu-
tion (B.22), we display it below for convenience:

∂t1∂t2L
3-pt
On

= −bn,2ε∆n−1
∫ t2−2ε

t1+2ε
ds2

[
〈OΦ1

⊥
(t1 + ε)OΦ1

⊥
(s2)On(t2 − ε)〉1D

+ 〈OΦ1
⊥

(t1 + ε)On(s2)OΦ1
⊥

(t2 − ε)〉1D + 〈On(t1 + ε)OΦ1
⊥

(s2)OΦ1
⊥

(t2 − ε)〉1D

]
.

(C.26)
It is a sum of three terms. The individual integrals are computed below. The first term
of (C.26), gives

ε∆n−1
∫ t2−2ε

t1+2ε
d s2 P(t1 + ε, s2)1−∆1

2 P(s2, t2 − ε)
∆1
2 P(t1 + ε, t2 − ε)

∆1
2

= 1
∆n − 1P(t1 + ε, t2 − ε) +O

(
ε2∆n−2

)
. (C.27)

The second term of (C.26), gives

ε∆n−1
∫ t2−2ε

t1+2ε
d s2 P(t1 + ε, s2)

∆1
2 P(s2, t2 − ε)

∆1
2 P(t1 + ε, t2 − ε)1−∆1

2

= 2
∆n − 1P(t1 + ε, t2 − ε) +O

(
ε2∆n−2

)
, (C.28)

while the third term gives

ε∆n−1
∫ t2−2ε

t1+2ε
d s2 P(t1 + ε, s2)

∆1
2 P(s2, t2 − ε)1−∆1

2 P(t1 + ε, t2 − ε)
∆1
2

= 1
∆n − 1P(t1 + ε, t2 − ε) +O

(
ε2∆n−2

)
. (C.29)

For their combination, we get

∂t1∂t2L
3-pt
On

= −(2B) bn,2
4Cn

∆n − 1 P(t1, t2) + o(ε) . (C.30)

Integrated 4-point function. Our starting point is the integral (B.24), which we repeat
below for convenience

∂t1∂t2L
4-pt ≡ −

∫ t2−2ε

t1+3ε
ds3

∫ s3−ε

t1+2ε
ds2〈OΦ1

⊥
(t1 + ε)OΦ1

⊥
(s2)OΦ1

⊥
(s3)OΦ1

⊥
(t2 − ε)〉1D .

More explicitly, we have

∂t1∂t2L
4-pt ≡ −(2B)2

∫ t2−2ε

t1+3ε
ds3

∫ s3−ε

t1+2ε
ds2 G(x) P(t1 + ε, s3) P(t2 − ε, s2) . (C.31)

Again it is convenient to separate the contribution of the tree level part (which is divergent).
Moreover it is convenient on top of the tree level part to also include and subtract an extra
pice. This piece corresponds to the non-planar diagram shown last in the second line in
figure 6. Namely, we define

∂t1∂t2L
4-pt ≡ (2B)2 ×

(
Tree′ + Loops′

)
, (C.32)

where

Loops′ ≡ −
∫ t2−2ε

t1+3ε
ds3

∫ s3−ε

t1+2ε
ds2

(
δG(x)− x2

)
P(t1 + ε, s2) P(t2 − ε, s3) , (C.33)
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and

Tree′ ≡ −
∫ t2−2ε

t1+3ε
ds3

∫ s3−ε

t1+2ε
ds2

(
Gtree(x) + x2

)
P(t1 + ε, s2) P(t2 − ε, s3) . (C.34)

The extra x2 term is particularly convenient to recombine Tree′ with another contribution,
as we will see shortly.

The most complicated part can be computed by the same method illustrated in the
previous section, i.e. we trade one of the integration variables for an integral over the cross
ratio x defined by (C.9). This results in

Loops′ = −P(t1, t2)
(∫ 1

2

0
dx

δG(x)− x2

x2 log
(

x3

1− x

))
+O(ε)

= −P(t1, t2)
(
−
∫ 1

2

0
dx log

(
x3

1− x

)
+
∫ 1

2

0
dx

δG(x)
x2 log

(
x3

1− x

))
+O(ε)

= −P(t1, t2)
(

1 + log 4 +
∫ 1

2

0
dx

δG(x)
x2 log

(
x3

1− x

))
+O(ε) . (C.35)

The tree level part is defined explicitly as

Tree′ ≡ −
∫ t2−2ε

t1+3ε
ds3

∫ s3−ε

t1+2ε
ds2 [P(t1 + ε, s1) P(t2 − ε, s2)

+P(t1 + ε, t2 − ε) P(s1, s2) + P(t1 + ε, s2) P(t2 − ε, s1)] . (C.36)

This contribution can be evaluated explicitly with Mathematica and then expanded in the
cutoffs. It is a complicated and divergent expression, however all divergences are cancelled
by other terms coming from the expansion of −1

2∂t1∂t2A
2(t1, t2) defined in (B.13). What

will be relevant for us is the combination:

Tree′ − 1
2∂t1∂t2

[∫ t2−2ε

t1+ε
ds2

∫ t2−ε

s2+ε
ds3 P(s2, s3)

]2

︸ ︷︷ ︸
≡Subtraction

, (C.37)

where the second term comes from −1
2∂t1∂t2 [K2-pt]2 ≡ −(2B)2 (Subtraction) in (B.13),

and can be rewritten as

Subtraction = −P(t1 + ε, t2 − ε)
∫ t2−2ε

t1+ε
ds2

∫ t2−ε

s2+ε
ds3 P(s2, s3) (C.38)

−
(∫

t1+2ε<s2<t2−ε
ds2 P(t1 + ε, s2)

)
×
(∫

t1+ε<s3<t2−2ε
ds3 P(t2 − ε, s3)

)
.

As can be seen most easily graphically, see figure 6, the combination Tree′ − Subtraction
almost perfectly cancels. Notice however that the integration regions are slightly different,
by an infinitesimal amount. This combines with the divergences of the integrals to give a
finite result for the difference. Evaluating the integrals explicitly, we can compute

Tree′ − Subtraction = P(t1, t2) (6 + log 4) + o(ε). (C.39)
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Figure 6. Here we illustrate schematically some terms appearing in the calculation (with purple
squares ' fixed variables, and green circles ' integrated variables). The term Tree′ is given by the
tree-level 4-point function, integrated in the two middle variables, plus an extra term given by two
propagators crossed in a non-planar fashion. Superficially, these terms have the same form as the
terms of the Subtraction, which are also given in the first line in terms of products of integrated
2-point functions integrated in some of the variables. The only mismatch comes from the range of
the integrated variables, cf. (C.36) vs (C.38). The tiny ε-dependent mismatch, combined with the
divergence of the integrals, produces a finite result in our calculation, cf. (C.39).

All in all we have a finite result

∂t1∂t2L
4-pt− 1

2∂t1∂t2 [K2-pt]2 = (2B)2 (Tree′+Loops′−Subtraction
)

=−(2B)2 P(t1, t2)
(
−5+

∫ 1
2

0
dx
δG(x)
x2 log

(
x3

1−x

))
+o(ε) .

(C.40)

D Normalisation of Φ||: details

Weak coupling. The anomalous term in (4.10) arise from the divergence of the super-
conformal block of the long-multiplet at x ∼ 0 for ∆1 = 1. The divergent contribution is
given by the following integral ∫ 1/2

δx

x− 2
1−∆1

x∆1−2dx . (D.1)

At finite coupling ∆1 > 1, the integral is convergent and it gives

Ifinite = 2−∆1(3∆1 + 1)
(∆1 − 1)2∆1

. (D.2)

At weak coupling ∆1 = 1 + γ1, we expand first for small γ1 and then integrate. Choosing
the prescription in which log δx → 0, we can resum order by order in γ1 obtaining

Iweak = 1
2(∆1−1) +

∞∑
k=1

[(1−∆1)k−1

2

(
1 + 4 logk 2

(1−∆1)k!

)
+ logk 2

2k!

∞∑
n=k−1

(1−∆1)n
]

=
2−∆1

(
1−

(
2∆1+1 − 3

)
∆1
)

(∆1 − 1)2∆1
. (D.3)
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The anomaly is proportional to the discrepancy of the two previous results

δI = Ifinite − Iweak = 2
(∆1 − 1)2 . (D.4)

Since the integral (D.1) comes from the OPE, it is multiplied by C2
1 leading to the follow-

ing identity∫ 1/2

δx

(x− 2)δf(x)
x3 dx

∣∣∣∣∣
small g

∼
∫ 1

2

δx
dx

(x− 2)∑M
`=1 g

2`f
(`)
weak(x)

x3︸ ︷︷ ︸
regularised, log(δx)→0

+
[

2 C2
1

(∆1 − 1)2

]
︸ ︷︷ ︸

“anomaly”

+O(g2M+2),

(D.5)
where f (`)

weak(x) is the weak coupling reduced correlator at ` loops given in [2] together with
the perturbative expansions of C2

1 and ∆1.
Using equation (D.5) together with (4.10), we can compute the Wilson coefficient b1,2

up to order g7, obtaining the following expansion

b1,2 = g√
2
− g3 (π2 − 6

)
3
√

2
+ g5 (−108(ζ3 + 3) + 12π2 + 5π4 + 576 log 2

)
18
√

2

+ g7

270
√

2

[
60π2

(
132ζ3 + 399 + 8 log3 2− 8(36 + 3 log 2) log 2

)
− 71π6 − 138915ζ5

+ 6π4(91− 188 log 2)− 72
(
−15

(
32Li4

(
1
2

)
− 16Li5

(
1
2

)
+ 16S3,2

(
1
2

)
+ 33ζ3 − 271

)
+ 60 log 2

(
4Li4

(
1
2

)
+ ζ3(2 log 2− 7)− 4

)
+ (6 log 2− 20) log4 2

)]
+O

(
g9
)
,

(D.6)

where Lin(x) are polylogarithms and Sn,m(x) are Nielsen generalised polylogarithms
(or hyperlogarithm).

Strong coupling. At strong coupling we obtain the following expansion

b1,2 = g(1+log2)√
2/5π

− 149−8π2+17log2
96
√

2/5π2
+ 5616ζ3+21003−1232π2+45log2(256log2−129)

18432
√

2/5π3g

+ 477631log2−864ζ3(515+76log2)−1039805+65496π2+2304log2 2(216log2−673)
1769472

√
2/5π4g2

+ 1
679477248

√
10π5g3

[
5
(

53747712Li5
(1

2
)
−71663616S3,2

(1
2
)
+183253536ζ3+8024832ζ5

+223558211−96292333log2
)

+32
(

108log2(77760Li4
(1

2
)
+204295ζ3+4log2(14850ζ3

+175355+16log2(log2(2890+27log2)−10480)))−5π2
(

324864ζ3+420965+46656log3 2
)

−15552π4 log2
)]

+O
( 1
g4

)
. (D.7)
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