
Chapter 13  
 

 

Identifying gene markers associated to cell subpopulations. 

 

Maria Luisa Ratto and Luca Alessandri 
Molecular Biotechnology Center, Turin, Turin, Italy; l.alessandri@unito.it 
 
 

Abstract 

An important point of the analysis of a single cell RNA experiment is the identification of the key elements, i.e. genes, 

characterizing each cell subpopulation cluster. In this chapter, we describe the use of sparsely-connected-autoencoder, as a 

tool to convert single cell clusters in pseudo-RNAseq experiments to be used as input for differential expression analysis, and 

the use of COMET as tool to depict cluster specific gene markers. 
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1 Introduction 

Single cell RNA sequencing (scRNAseq) offers the possibility to identify cell sub-populations, 

based on the single cell transcriptome. Clustering is the most used instrument to aggregates cells 

in groups, based on their transcription profile [1]. Notably, Yu and coworkers [1], highlight that good 

performance on cell clustering does not necessarily guarantee high accuracy in depicting different 

cell types. Furthermore, clustering algorithms can depict tiny differences among very similar cells, 

which are due to confounding factors, not necessarily linked to a functional difference among 

clusters, e.g. cell cycle, pre-apoptotic cells, etc. On the other hand, cell type annotation, based on 

previously known cell-type specific markers [2], might define different cell types within the same 



cluster, raising the possibility that annotation was imprecise. For this reason, it is useful to integrate 

basic cell type annotation with cluster-specific gene markers, depicted by the analysis of cluster-

specific transcriptomics data. In this chapter, we describe the use of two different approaches: 

SCA [3-5] (Sparsely Connected Autoencoder) and COMET [6] (COmbinatorial Marker dEtection 

from single-cell Transcriptomics). 

SCA can be used to generate cluster-specific pseudo-bulks resembling RNAseq data [3]. The 

overall idea of this approach is that genes characterizing a specific cluster will be the non-noise 

signal caught by the hidden layer of SCA.  

COMET is a statistical method, based on XL-minimal HyperGeometric test (XL-mHG test), 

depicting cluster specific genes.  

In this chapter, we show how to use the above-mentioned approaches for the analysis of 

scRNAseq clusters. 

 

2 Materials 

2.1 Minimal hardware/software requirements 

The analyses described in the present chapter required a workstation with at least 64 Gb RAM, 

2Tb SSD, 8 CPUs. All analytical steps require a UNIX-like environment (See Note 1 and 2). 

2.2 Exemplary dataset 

The exemplary dataset RNA-5c is available at the GitHub repository 

https://github.com/kendomaniac/single_cell_transcriptomics/tree/main/tian_et_al_2018. It 

includes the human lung adenocarcinoma cell lines A549, H1975, H2228, H838, and HCC827. It 

is derived from GEO repository ID: GSM3618014 [7]. The count table is associated with cell names 

and cell lines, e.g. Lib90_00000.HCC827, Lib90_00002.H838. RNA-5c includes 1242 cells of 

A549, 436 cells belong to H1975, 749 cells of H2228, 879 cells belong to H838, and 598 cells of 

HCC827 cells.  

The exemplary dataset 390c_wctype, [2], is available at the Github repository 

https://github.com/kendomaniac/single_cell_transcriptomics.git. This dataset refers to the sample 



390c of the immune-gut atlas transcriptome and, in the counts table, cell names incorporate cell 

type assignment, i.e TGACTAGGTTCCACAA.Treg. This dataset is part of 41,650 cells isolated 

from the caecum, transverse colon and sigmoid colon of 5 individuals [2], which is one of the 

datasets constituting the immune-gut atlas transcriptome (see Note 3). All data are available as 

figshare repository: 10.6084/m9.figshare.19391234. 

 

3 Methods 

3.1 rCASC installation 

rCASC [5] is a single cell analysis suite providing a computation reproducible infrastructure based 

on docker containers. The installation of rCASC is very simple. In a R session, type the code 

indicated below (see Note 4). 

# Open an R session and type the following commands 
library(devtools) 
install_github(“kendomaniac/rCASC”, ref=”master”) 
library(rCASC) 

 
rCASC provides an infrastructure to evaluate the overall quality of the clustering result via the cell 

stability score (CCS, see Note 5). 

3.2 Data cleanup, filtering, and clustering 

Before performing any analysis, we strongly suggest checking the overall quality of the data. 

Specifically, we suggest running the mitoRibo function implemented in rCASC. Furthermore, the 

dataset needs to be imputed using SAVER tool [8] and annotated with scannoByGtf rCASC 

function. To reduce the size of the count table under analysis, we suggest filtering the dataset, 

keeping only the subset of genes being the most expressed and characterized by the largest 

variance among cells. This filtering can be performed using the topx function available in rCASC.  

# Folder where the counts table is located. 
WD = "/mnt/cold1/calogero/5-lung_cell-lines/scRNAseq_5-lung_cell-lines" 
INPUT="saver_GSM3618014_gene_count.csv" 
SEPARATOR="," 
GTF="Homo_sapiens.GRCh38.101.gtf" 
SCRATCH="/scratch" 
 
setwd(WD) 
library(rCASC) 
#filtering, selecting 5k most expressed genes 



topx(group = "docker", file=paste(getwd(), 
paste("filtered_annotated_saver_ribomito", INPUT, sep="_"), sep="/"), 
threshold=5000, separator=SEPARATOR, type="expression") 
#filtering, selecting the 2.5k most variant genes 
topx(group = "docker", file=paste(getwd(), 
paste("filtered_expression_filtered_annotated_saver_ribomito", INPUT, 
sep="_"), sep="/"), threshold=2500, separator=SEPARATOR, type = 
"variance") 
system("mkdir VandE") 
file.rename(from=paste("filtered_variance_filtered_expression_filtered_an
notated_saver_ribomito", INPUT, sep="_"), to="VandE.csv") 
system("mv VandE.csv VandE") 
 

 

In this exemplary analysis, the Louvain modularity clustering, implemented in Seurat [9], is used 

to aggregate cells in clusters for RNA-5c and 390c samples, but the it is not mandatory the use of 

this specific clustering tool.  

library(rCASC) 
seuratPCAEval(group = "docker", scratch.folder=SCRATCH, 
file=paste(getwd(), "VandE/VandE.csv", sep="/"), separator=",", logTen = 
0, seed = 111) 
 
#Running clustering 
seuratBootstrap( 
  group = "docker", 
  scratch.folder= "/scratch", 
  file=paste(getwd(),"VandE.csv", sep="/"), 
  nPerm=40, 
  permAtTime=10, 
  percent=10, 
  separator=",", 
  logTen = 0, 
  pcaDimensions=10, 
  seed = 111, 
  sparse = FALSE, 
  format = "NULL", 
  resolution = 0.8 
)  
 

 
The above function generates the following path: ~/Results/sample_names/number_clusters. In 

the folder defined by the number of clusters, there is a pdf ending with _Stability_Plot.pdf (Fig. 1).  



 

FIG. 1 

 

The clustering in Fig. 1A shows the presence of one cluster constituted by a single cell type, 

clusters 2 (HCC827 cell line), as instead all other cells lines are split in different clusters. Cell lines 

are a typical instrument for in vitro analysis of cell biological activity. In the field of oncology, cell 

lines are frequently used to study the responsivity to a specific drug. Drugs response experiments 

are not done at single cell level usually, thus IC50 cannot be linked to a specific cell subpopulation 

response. scRNAseq offers the possibility to investigate if genes, specifically associated to cell 

subpopulations of a cell line, are different facet of the same die or represent a peculiar feature of 

the subpopulation, which might be related to a specific biological phenotype of the cell line, i.e. 

drug resistance. 

The clustering shown in Fig. 1B, show the presence of a heterogeneous organization of 

immunological cell types in the detected clusters:  

i. clusters sharing different cell types (Treg and Tcm in red cluster and Tcm, CD8_T in 

green cluster, Fig. 1B); 

ii. same cell type in different clusters (Tcm in yellow, orange, green and red clusters, Fig. 

1B).  

In the gut immune atlas [2] cell type annotation is done using the transcription expression, at single 

cell level, of previously known cell type gene markers and not by CITE-seq [10], which would have 

produced more robust results. Thus, it is necessary to investigate if erroneous assignment of the 



cell type is the reason why different cell types are associated to the same cluster (Fig. 1B, red and 

green clusters). It is also necessary to evaluate if Tcm cells present in different clusters (Fig. 1B 

yellow, orange, and green clusters) are transcriptionally different, thus representing sub-

populations of the same cell type. 

3.3 Sparsely connected autoencoders for pseudo-bulk generation 

The function autoencoder4pseudoBulk transforms each of the clusters in a RNAseq pseudo-bulk, 

which can be used to depict cluster specific genes. The permutation parameter indicates the 

number pseudo-bulks, which are generated.  

library(rCASC) 
WD = "/mnt/cold1/calogero/5-lung_cell-lines/scRNAseq_5-lung_cell-
lines/VandE" 
SEPARATOR="," 
SCRATCH="/scratch" 
CLS=12 
PROJECTNAME="LUNG5CLS" 
 
CLSOUT="/mnt/cold1/calogero/5-lung_cell-lines/scRNAseq_5-lung_cell-
lines/VandE/Results/VandE/12/VandE_clustering.output.csv" 
 
autoencoder4pseudoBulk(group="docker",  
    scratch.folder=SCRATCH,  
    file=paste(getwd(),"VandE.csv", sep="/"),  
    separator=SEPARATOR,  
    permutation=20,  
    nEpochs=1000,  
    projectName=PROJECTNAME,  
    bN=CLSOUT 
) 
 

The output of autoencoder4pseudoBulk function is a file called total.csv, located in the folder 

permutation. As part of the output, it is also generated a tSne plot of the pseudo-bulks for the RNA-

5c dataset, Fig. 2. 



FIG. 2 

 

The pseudo-bulks tSne plot, Fig. 2A, provides a clear description of the cell line heterogeneity, i.e. 

HCC827 (cluster 2) is homogeneous, as instead all the other cell lines show a certain amount of 

heterogeneity. Similarity analysis among clusters, using Pearson correlation, Fig. 2B, indicates 

high similarity among clusters belonging to the same cell line, but in the case of cluster 12, it also 

shows a certain similarity with cluster 2, which belong to a different cell line.  

3.3 ANOVA-like on RNA-5c pseudo-bulks data 

To depict genes specific to each cluster, we can perform differential expression analysis using 

edgeR ANOVA-like [11]. Pseudo-bulk data are converted in CPM (see Note 6), to provide a better 

similarity to RNAseq expression data, but retaining sample to sample variability.  

counts2cpmAE <- function(fileIN, sep = ",", prefix){ 
 tmp <- read.table(fileIN, sep=sep, header=T) 
 tmp <- t(tmp) 
 tmp <- as.data.frame(tmp) 
 col.names <- as.character(tmp[1,]) 
 tmp <- tmp[2:dim(tmp)[1],] 
 names(tmp) <- col.names 
 tmp <- t(tmp) 
 tmp <- as.data.frame(tmp) 
 col.sum <- apply(tmp, 1, sum) 
 tmp1 <- tmp/col.sum 
 tmp1 <- t(tmp1) 
 tmp1 <- tmp1 * 1000000 
 write.table(tmp1, paste(prefix, "cpm.csv", sep="_"), sep=",", 
col.names=NA) 
 write.table(log2(tmp1 + 1), paste(prefix, "log2cpm.csv", sep="_"), 
sep=",", col.names=NA) 
}  
sample.folder="VandE" 
pbAE.folder="LUNG5CLS" 



dir(paste("./",sample.folder,"/Results/",pbAE.folder,"/permutation/",sep=
"")) 
whereis.total=paste("../",sample.folder,"/Results/",pbAE.folder,"/permuta
tion/total.csv",sep="") 
prefix=pbAE.folder 
counts2cpmAE(fileIN=whereis.total, sep=",", prefix=prefix) 

 

To perform ANOVA-like, a reference sample, is made by averaging all the clusters. 

#Ordering columns, replicates of the same clusters are placed near to 
each other 
logcpm <- read.table("LUNG5CLS_log2cpm.csv", sep=",", header=T, 
row.names=1) 
tmp.n <- sapply(strsplit(names(logcpm), "\\."), function(x)x[1]) 
logcpm <- logcpm[,order(tmp.n)] 
write.table(logcpm, "LUNG5CLS_log2cpm_ordered.csv", sep=",", 
col.names=NA) 
 
cpm <- read.table("LUNG5CLS_cpm.csv", sep=",", header=T, row.names=1) 
tmp.n <- sapply(strsplit(names(cpm), "\\."), function(x)x[1]) 
cpm <- cpm[,order(tmp.n)] 
write.table(gcpm, "LUNG5CLS_cpm_ordered.csv", sep=",", col.names=NA) 
 
#building a reference groups for ANOVA-like 
tmp.n <- sapply(strsplit(names(cpm), "\\."), function(x)x[1]) 
tmp.nu <- unique(tmp.n) 
tmp.lst <- list() 
for(i in tmp.nu){ 
  if(i == "X1"){ 
    tmp.lst[[i]] <- grep('^X1$', tmp.n) 
  } else{ 
    tmp.lst[[i]] <- grep(i, tmp.n) 
  } 
} 
tmp.lst <- as.data.frame(tmp.lst) 
 
ref.cl <- list() 
for(i in 1:dim(tmp.lst)[1]){ 
  clmns <- as.numeric(unlist(tmp.lst[i,])) 
  ref.cl[[i]] <- trunc(apply(cpm[,clmns], 1, mean)) 
} 
ref.cl <- as.data.frame(ref.cl) 
names(ref.cl) <- paste("ref", seq(1,dim(tmp.lst)[1]), sep=".") 
names(ref.cl) <- paste(names(ref.cl), "Cov.0", sep="_") 
ref.cl.na <- apply(ref.cl, 2, function(x)(sum(is.na(x))/length(x))) 
ref.cl <- ref.cl[,which(ref.cl.na < 0.2)] 
 
for(i in 1:dim(tmp.lst)[2]){ 
  names(cpm)[tmp.lst[,i]] <- paste(names(cpm)[tmp.lst[,i]], "_Cov", i, 
sep="") 
} 
#Adding covariates to column names 
covar <- sapply(strsplit(names(cpm), "_"), function(x)x[2]) 
cpm <- cpm[,order(covar)] 
 
#Removing columns with more than 20% of 0s, these columns refer to low 
SCA quality models 
cpm.cl.na <- apply(cpm, 2, function(x)(sum(is.na(x))/length(x))) 
cpm <- cpm[,which(cpm.cl.na < 0.2)] 



 
#Formatting rownames to be compatible with docker4seq functions 
symb <- sapply(strsplit(rownames(cpm.new), "\\."), function(x)x[2]) 
ensembl <- sapply(strsplit(rownames(cpm.new), "\\."), function(x)x[1]) 
rownames(cpm.new) <- paste(symb, ensembl, sep=":") 
cpm.new <- data.frame(ref.cl, cpm) 
write.table(cpm.new, "cpm_new.txt", sep="\t", col.names=NA) 
#Running ANOVA-like 
library(docker4seq) 
anovaLike( 
  group = "docker", 
  file=paste(getwd(), "cpm_new.txt", sep="/"), 
  logFC.threshold = 1, 
  FDR.threshold=-0.1, 
  logCPM.threshold = 4, 
  plot = FALSE 
) 
 
anova.results <- read.table("ANOVAlike_cpm_new.txt", sep="\t", header=T, 
row.names=1) 
anova.results <- anova.results[which(anova.results$FDR <= 0.1),] 
names(anova.results) <- gsub("groupsCov", "cl",names(anova.results)) 
 
write.table(anova.results, "filtered_ANOVAlike_cpm_new.txt", sep="\t", 
col.names=NA) 
write.table(anova.results[,grep("cl", names(anova.results))], 
"filtered_ANOVAlike_cpm_new_4_clustering.txt", sep="\t", col.names=NA) 
 

The output of this analysis are two files: filtered_ANOVAlike_cpm_new.txt, which contains the 

overall result of clusters comparison with respect to the reference set (see Note 7), and the file 

filtered_ANOVAlike_cpm_new_4_clustering.txt (see Note 8), which can be used to perform a 

hierarchical clustering using online tools, e.g. Morpheus from Broad Institute 

(https://software.broadinstitute.org/morpheus/). 



 

FIG. 3 

 

In Fig. 3, are shown the results of the hierarchical clustering performed on pseudo-bulks from the 

RNA-5c analysis. Notably, cluster specific genes, Fig. 3B, show a different cluster-to-cluster 

similarity with respect to those depicted using the full transcriptome, Fig. 1A. 

3.4 DESeq2 on pseudo-bulks data from Gut Immune Atlas sample 390c. 

In sample 390c from gut immunocell atlas, Fig. 1B, we observe that central-memory T cells (Tcm) 

are spread over four clusters: red, orange, yellow and green. The task of this section is to 

understand how Tcm from different clusters are significantly transcriptionally different. 

#Editing clustering.output file to create a set of new clusters 
encompassing only Tcm derived respectively from red, orange, yellow and 
green cluster. 
cls.df <- 
read.table("/data/390c/Results/saver_390c_wctype/11/saver_390c_wctype_clu
stering.output.csv", sep=",", header=T, row.names=1) 
#red cluster cl1 
#orange cluster cl2 
#yellow cluster cl3 
#green cluster cl5 
 
#Ordering cells based on the belonging cluster. 
cls.df <- cls.df[order(cls.df$Belonging_Cluster),] 



 
#stripping cell type annotation from the rowname 
ctype <- sapply(strsplit(rownames(cls.df),"\\."), function(x)x[2]) 
cls.df$ctype <- ctype 
 
#creating fake clusters for Tcm in cluster 1, 2, 3 and 5. 
cls.df$Belonging_Cluster[which(cls.df$ctype == "Tcm" & 
cls.df$Belonging_Cluster == 1)] <- 12 
cls.df$Belonging_Cluster[which(cls.df$ctype == "Tcm" & 
cls.df$Belonging_Cluster == 2)] <- 13 
cls.df$Belonging_Cluster[which(cls.df$ctype == "Tcm" & 
cls.df$Belonging_Cluster == 3)] <- 14 
cls.df$Belonging_Cluster[which(cls.df$ctype == "Tcm" & 
cls.df$Belonging_Cluster == 5)] <- 15 
write.table(cls.df, "/data/390c/saver_390c_wctype_clustering.output.csv", 
col.names=NA, sep=",") 
 
library(rCASC) 
autoencoder4pseudoBulk( 
  group = "docker", 
  scratch.folder="/scratch", 
  file="/data/390c/saver_390c_wctype.csv", 
  separator=",", 
  permutation=20, 
  nEpochs=1000, 
  patiencePercentage = 5, 
  seed = 1111, 
  projectName="Tcm", 
  bN="/data/390c/saver_390c_wctype_clustering.output.csv", 
  lr = 0.01, 
  beta_1 = 0.9, 
  beta_2 = 0.999, 
  epsilon = 1e-08, 
  decay = 0, 
  loss = "mean_squared_error", 
  regularization = 10 
) 

The autoencoder4pseudoBulk function result table total.csv is in ~/Results 

folder/Tcm/permutation/ folder. 

To detect the presence of cluster specific genes, pseudo-bulk data are transformed in CPM. Then, 

pseudo bulk for red, orange ,yellow and green clusters are analyzed with DESeq2 [12], performing 

all possible permutations. The gene names of the differential expressed genes, depicted from each 

comparison, are then combined, and used to filter the table encompassing all the pseudo-bulks for 

the red, orange, yellow and green cell clusters. 

# Transforming total.csv autoencoder4pseudoBulk result. 
setwd("/data/390c/Results/Tcm/permutation") 
counts2cpmAE <- function(fileIN, sep = ",", prefix){ 
 tmp <- read.table(fileIN, sep=sep, header=T) 
 tmp <- t(tmp) 
 tmp <- as.data.frame(tmp) 
 col.names <- as.character(tmp[1,]) 
 tmp <- tmp[2:dim(tmp)[1],] 



 names(tmp) <- col.names 
 tmp <- t(tmp) 
 tmp <- as.data.frame(tmp) 
 col.sum <- apply(tmp, 1, sum) 
 tmp1 <- tmp/col.sum 
 tmp1 <- t(tmp1) 
 tmp1 <- tmp1 * 1000000 
 write.table(tmp1, paste(prefix, "cpm.csv", sep="_"), sep=",", 
col.names=NA) 
 write.table(log2(tmp1 + 1), paste(prefix, "log2cpm.csv", sep="_"), 
sep=",", col.names=NA) 
}  
counts2cpmAE(fileIN="total.csv", sep=",", prefix="tcm") 
cpm <- read.table("tcm_cpm.csv", sep=",", header=T, row.names=1) 
cpm <- trunc(cpm) 
#setting rownames compatibile with docker4seq 
cpm.embl <- sapply(strsplit(rownames(cpm), "\\."), function(x)x[1]) 
cpm.symb <- sapply(strsplit(rownames(cpm), "\\."), function(x)x[2]) 
rownames(cpm) <- paste(cpm.symb, cpm.embl, sep=":") 
 
red <- cpm[,grep("X12\\.", names(cpm))] 
names(red) <- sub("^X", "red",names(red)) 
orange <- cpm[,grep("X13\\.", names(cpm))] 
names(orange) <- sub("^X", "orange",names(orange)) 
yellow <- cpm[,grep("X14\\.", names(cpm))] 
names(yellow) <- sub("^X", "yellow",names(yellow)) 
green <- cpm[,grep("X15\\.", names(cpm))] 
names(green) <- sub("^X", "green",names(green)) 
 
#Calculating cluster-specific differentially expressed genes, |log2FC|³2 
and adjusted p-value £ 0.1. The thresholds used for differential 
expression must be defined by the user. (see Note 9) 
library(docker4seq) 
de.pair <- function(dataset.ref, dataset.query, prefix){ 
  names(dataset.ref) <- paste(names(dataset.ref), "Cov.1", sep="_") 
  names(dataset.query) <- paste(names(dataset.query), "Cov.2", sep="_") 
  #DE 
  tmp <- data.frame(dataset.ref, dataset.query) 
  write.table(tmp, "comparison.txt", sep="\t", col.names=NA) 
 
  wrapperDeseq2( 
    output.folder=getwd(), 
    group = "docker", 
    experiment.table="comparison.txt", 
    log2fc = 2, 
    fdr = 0.1, 
    ref.covar = "Cov.1", 
    type = "gene", 
    batch = FALSE 
  ) 
  file.rename("log2normalized_counts.txt", 
paste(prefix,"log2normalized_counts.txt", sep="_")) 
  file.rename("DEfiltered_gene_log2fc_2_fdr_0.1.txt", 
paste(prefix,"DEfiltered_gene_log2fc_2_fdr_0.1.txt", sep="_")) 
  file.rename("genes2GO.txt", paste(prefix,"genes2GO.txt", sep="_")) 
  file.rename("DEfull.txt", paste(prefix,"DEfull.txt", sep="_")) 
} 
#detecting genes differentially expressed among clusters pairs threshold 
|log2FC| >= 2, adj.pval <= 0.1 
de.pair(dataset.ref=red, dataset.query=orange, prefix="red_orange") 
de.pair(dataset.ref=red, dataset.query=yellow, prefix="red_yellow") 



de.pair(dataset.ref=red, dataset.query=yellow, prefix="red_green") 
de.pair(dataset.ref=orange, dataset.query=yellow, prefix="orange_yellow") 
de.pair(dataset.ref=orange, dataset.query=green, prefix="orange_green") 
de.pair(dataset.ref=yellow, dataset.query=green, prefix="yellow_green") 
 
files <- dir() 
de.set <- files[grep("DEfiltered_gene_log2fc_2_fdr_0.1.txt", files)] 
de.genes <- NULL 
for(i in de.set){ 
  tmp.de <-read.table(i, sep="\t", header=T,row.names=1) 
  de.genes <- c(de.genes, rownames(tmp.de)) 
} 
de.genes <- unique(de.genes) 
de.df <- data.frame(red, orange, yellow, green) 
de.df <- de.df[which(rownames(de.df) %in% de.genes),] 
write.table(de.df, "cluster_specific_genes.txt", sep="\t", col.names=NA) 
write.table(log2(de.df + 1), "log2_cluster_specific_genes.txt", sep="\t", 
col.names=NA) 
 

 

In Fig. 4, it is shown the hierarchical clustering of the gene subset of Tcm pseudobulks 

encompassing only differentially expressed genes. The analysis, using enrichR [13] and the 

Panglao database [14], of the gene signature in the black frame, Fig. 4, assign the red and green 

cluster to Treg cells. Thus, using the above-described approach, cell type assignment of red and 

green clusters could be refined. 



 

FIG. 4 

 

3.5 COMET a tool to identify cluster specific genes 

COMET is a statistical method designed to select panels of gene markers from single-cell RNA-

seq data [6]. COMET uses the minimal Hypergeometric test to rank gene marker panels 

characterizing predefined cell populations (clusters) using single-cell RNA-seq data. COMET is 

available as standalone tool and it is implemented in rCASC [5], or as web application 

(http://www.cometsc.com/index). COMET is particularly effective in depicting few genes, from 1 to 

4, which efficiently label a cell cluster. Thus, it results particularly interesting to identify set of genes 

to be used to further study and isolate cells belonging to a specific cluster. 



WD = "/mnt/cold1/calogero/5-lung_cell-lines/scRNAseq_5-lung_cell-
lines/VandE" 
SEPARATOR="," 
SCRATCH="/scratch" 
CLS=12 
CC="/mnt/cold1/calogero/5-lung_cell-lines/scRNAseq_5-lung_cell-
line/annotated_GSM3618014_gene_count_cellCycle.csv" 
CLSOUT="/mnt/cold1/calogero/5-lung_cell-lines/scRNAseq_5-lung_cell-
lines/VandE/Results/VandE/7/VandE_clustering.output.csv" 
 
setwd(WD) 
library(rCASC) 
cometsc( 
        group="docker",  
        file=paste(getwd(), "VandE.csv", sep="/"), 
        scratch.folder=SCRATCH, 
        threads=CLS, X=0.15, K=1, counts="True",  
        skipvis="False", nCluster=CLS, separator=SEPARATOR 
) 

The main output of COMET are two folders: outputdata and outputvis. Outputdata contains comma 

separated files with the genes ranked as the most important for characterizing the cluster under 

analysis. Outputvis, provides images for the 100 top most representative cluster-marker genes. In 

outputdata tables the most interesting columns are TP and TN, which ranks from 0 to 1. The best 

markers are those showing values near 1 for both TP and TN. TP equal to 1 means that the gene 

can discriminate very efficiently the cells in the cluster, under analysis, from the other cells. TN 

equal to 1 mean that the gene marker does not associate any cell outside the cluster to the cluster 

under analysis. Examples of COMET outputs are shown in Fig. 5 (see Note 10). 



 

FIG.5 

 

It is important to note that, in some clusters, many of the top ranked marked are defined as 

“NEGATION” indicating that the expression of that genes is higher in all clusters, but in the cluster 

under consideration. Usually, the presence of many expression negation genes is an indication 

that the cluster is not so different from the other clusters, since it is not possible to identify marker 

genes specifically expressed in the cluster under analysis. In these cases, it would be useful to 

perform autoencoder analysis (see Paragraph. 3.4) to identify which are the most similar clusters. 

  



 
 
4 Note 
 
1. The installation of docker is required. Docker is available for Windows, Mac and UNIX 

infrastructures at https://docs.docker.com/get-docker/. 

2. R installation is required (https://cran.r-project.org/). Specifically, it is required the installation 

of devtools library. 

3. The gut atlas datasets are available at https://www.gutcellatlas.org/. 

4. The description of all rCASC functions is available at 

https://kendomaniac.github.io/rCASC/reference/index.html. The execution of the 

“downloadContainers()” command is not mandatory, since the first time a new docker 

container is required for an analysis it is downloaded from the repbioinfo docker.io repository. 

The first time a rCASC function is used, it retrieves from docker.io/repbioinfo repository the 

docker image required for the analysis. Thus, internet connection is required. 

5. CSS (cell stability score) describes cluster stability, by estimating the persistence of a cell in 

a specific cluster upon jackknife resampling. A detailed description of the CSS metric is 

available in rCASC paper supplementary data [5].  

6. Usually, CPM are not used as input to estimate differential expression, however, in this 

specific case we are using CPM transformation to convert the output of the sparsely-

connected-autoencoder in a measure that is more like to what is expected to be a gene 

expression dataset. 

7. The reference dataset is at the denominator of the fold change, thus, genes that have a 

positive fold change are the genes that are representative of a specific cluster with respect to 

the average reference cluster. 

8. After having loaded to Morpheus the dataset, do not perform any transformation, since the 

data is already representing variation of each cluster with respect to the reference set. 

9. We suggest testing combination of adjusted p-values (0.1, 0.05. 0.001) and absolute log2FC 

(1, 1.5, 2). Ideally the combination of adjusted p-values and |log2FC|, should produce less 

than 100 genes in total, to depict the main players for each cluster. 



10. Detailed description of COMET algorithm can be found at 

https://hgmd.readthedocs.io/en/latest/ 
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Figures legend 

Fig. 1 Seurat clustering of scRNAseq data. A) RNA-5c dataset at 0.8 resolution for RNA5c. Clusters belonging to a specific cell 

line are delimited by a black continuous line. B) sample 390c at 0.6 resolution. The Figure contains the main type of immunological 

cells constituting each cluster. In case there are two or more cell types, associated to a cluster, bold indicates the most represented 

cell type. Cell types: B cells producing IgA (B IgA), delta/gamma T cell (dgT), CD8 T cells (CD8_T), central memory T cells (Tcm), T 

regulatory cells (Treg), monocytes (M), B memory cells (Bm), follicular B cells (follB). 

 

Fig. 2 Pseudo bulks. A) tSne plot of RNA-5c pseudo-bulks generated by sparsely-connected-autoencoder. Pseudo-bulks 

belonging to a specific cell line are delimited by a black continuous line. B) Pearson-based similarity score of RNA-5c Z-score 

log2CPM pseudo-bulks. 

 

Fig. 3 Hierarchical clustering for ANOVA-like perfomed on RNA-5c pseudobulk. A) Hierarchical clustering performed on the log2 

fold change generated comparing each RNA-5c pseudo bulks with respect to a reference dataset given by means of the overall 

pseudobulks, Clustering parameters: Euclidean distance and average linkage. B) Zoom on the top of the clustering results. 

 

Fig. 4 Hierarchical clustering for genes detected a differentially expressed comparing to each other the pseudobulks for Tcm in 

red, orange, yellow and green cluster for sample 390c. Clustering parameters: Euclidean distance and average linkage.  

 

Fig. 5 Examples of COMET outputs. A) Example of a top ranked genes with optimal TP and TN scores. B) Example of expression 

negation, the gene is expressed at higher level in all sample, but the cluster under consideration. 

  



 


