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Abstract 

Breast cancer (BC) is the malignancy with the highest incidence and mortality rates among women. 
Numerous studies explored cell-free circulating (cfc) microRNAs (miRNAs) as diagnostic 
biomarkers of BC. However, their results were inconsistent with few intersecting miRNA panels. 
In a meta-analysis, we evaluated the overall diagnostic performance as well as the sources of 
heterogeneity between studies on BC detection using cfc miRNA. The findings on sources of 
heterogeneity would then be applied to our second project, which aimed to identify circulating 
miRNA ratios associated with BC in women attending mammography screening.  

On 56 studies that investigated diagnostic circulating miRNAs by utilising Real-Time Quantitative 
Reverse Transcription PCR (RT-qPCR), pooled sensitivity and specificity of 0.85 [0.81 to 0.88] 
and 0.83 [0.79 to 0.87] were obtained, respectively. Subgroup analysis revealed a comparable 
pooled diagnostic performance between studies using serum (sensitivity: 0.87 [0.81 to 0.91]; 
specificity: 0.83 [0.78 to 0.87]) and plasma (sensitivity: 0.83 [0.77 to 0.87]; specificity: 0.85 [0.78 
to 0.91]) as specimen type. Additionally, miRNA(s) based on endogenous normalisers tend to have 
a higher diagnostic performance than miRNA(s) based on exogenous ones. 

A nested case–control study was conducted on plasma samples of 65 cases and 66 controls 
(discovery) and 32 cases and 127 controls (validation). Small-RNA sequencing was carried out on 
the discovery cohort, and to overcome the normalisation issue in RT-qPCR, we computed miRNA 
ratios and those associated with BC were selected by two-sample Wilcoxon test and lasso 
penalised logistic regression. Assessment by RT-qPCR of 20 candidate miRNA ratios was carried 
out as a platform validation. To identify the most promising biomarkers, penalised logistic 
regression was further applied to candidate miRNA ratios alone or in combination with non-
molecular factors. In the resulting model, LASSO regression selected seven miRNA ratios (miR-
199a-3p_let-7a-5p, miR-26b-5p_miR-142-5p, let-7b-5p_miR-19b-3p, miR-101-3p_miR-19b-3p, 
miR-93-5p_miR-19b-3p, let-7a-5p_miR-22-3p and miR-21-5p_miR-23a-3p), together with the 
interaction term of centred BMI and menopausal status, lifestyle score and breast density. The 
ROC AUC of the model was 0.79. After applying the model to the validation cohort and 
recalibrating the predicted probabilities, an ROC AUC of 0.87 was obtained.  

In this project, we reaffirmed the ability of circulating microRNAs to diagnose BC, analysed the 
sources of heterogeneity and discussed the problems of standardisation and reproducibility of 
results. Additionally, we identified cfc miRNAs potentially useful for BC detection in a screening 
setting.
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Introduction 

Cancer is an umbrella term for diseases which involve uncontrolled cell proliferation and invasion. 
Cancer can occur in any tissue and start from any cell type, making it a very heterogeneous set of 
diseases with differing medical treatments and prognostic estimates. 

Cells with abnormal growth, also called neoplastic cells, start by acquiring several mutations or 
genomic alterations. Such cells are often under replicative stress, making their DNA even more 
susceptible to DNA changes such as genomic breaks or additional duplications or deletions [1]. 
Together with the initially acquired mutations, especially in DNA damage response, the new 
genomic changes would allow for numerous neoplastic clones to arise, which would, through 
natural selection, shape their phenotype and enable them to adapt to their microenvironment, 
leading to cancer formation [1]. However, mutations are often not enough for a malignant tumour 
to develop, as a favourable environment for tumours is also crucial for it to become a disease of 
the tissue [2,3]. A common example is an inflamed environment, under which cells that had 
previously acquired some mutations have a much larger probability of becoming cancerous [2,4,5]. 
Neoplastic cells can be malignant or benign. Malignant neoplasms generally grow much faster 
than benign neoplasms and have an invasive characteristic that the benign tumours do not have. 

In spite of the heterogeneity observed between different cancer tissues as well as between their 
subtypes, all invasive tumours share a set of hallmarks that characterise them (Figure 1), such as 
enabling replicative immortality, avoiding immune destruction, genome instability and mutation 
[6]. The cancer hallmarks are a consequence of genetic and functional changes in pathways essential 
for tumour proliferation. For example, the mutation of the Tumour Protein P53 (TP53) affects the 
p53 protein which is crucial for guiding the cell into performing DNA repair, cell-cycle arrest, 
apoptosis, etc [7]. Hence, TP53 is the most mutated gene across all cancers [8]. Further, a mutation 
on the Phosphatidylinositol 3-kinase (PIK3CA) gene deregulates the PI3K/AKT signalling 
pathway, which is involved in cancer formation, inhibition of apoptosis and angiogenesis (which 
is the ability of cancer to form additional blood vessels supplying it with nutrients) [9].  

Another important pathway for signal transduction in cells, which is also often deregulated in 
cancer, is the Janus kinase/signal transducer and activator of transcription (JAK/STAT) signalling 
pathway. Numerous cytokines and growth factors are found in this pathway, and some of its related 
downstream functions include haematopoiesis, immune fitness, tissue repair, inflammation, 
apoptosis, etc [10]. Mutations within the Janus Kinase 2 (JAK2) can cause constitutive activity of 
JAK/STAT, which means that the signalling pathway can be active even without the ligand [11]. 
Notably, there are numerous other commonly deregulated signalling pathways in cancer, including 
the TGF Beta, MAPK, mTOR, etc [12–14]. 
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Figure 1. The fourteen cancer hallmarks updated in 2022. Taken from Hanahan 2022 [6]. 

Breast cancer 

Breast cancer (BC) is the most diagnosed cancer in women and the cancer with the highest 
mortality rate. In 2020, according to the global cancer statistics, 2,260 (all ages, in thousands) new 
BC cases were reported in females worldwide, with an age-standardised rate per 100,000 of 47.8 
and a cumulative risk of 5.20% up to the age of 75 [15]. The age-standardised rate for BC mortality 
was reported at 13.6, with a 1.49% cumulative risk up to 75 years of age (Figure 2).  
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Figure 2. Incidence and mortality age-standardised rates in regions around the world. Taken from the 

Global Cancer Statistics 2020. 

Moreover, according to the Association of the Nordic Cancer Registries, based on all Nordic 
countries, the prevalence of BC is around 2% (Figure 3A), while age-standardised rates of 
incidence and mortality are 106.4 and 20.6, respectively (Figure 3B) [16]. The difference in 
incidence estimates between the world and the Nordic countries reflects the higher BC incidence 
in Europe, partly due to more prevalent screening programs or differences in risk factor levels [17]. 
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Figure 3. Prevalence estimates of BC in the Nordic countries in the last 35 years reported per 100,000 (A) 

and the age-standardised incidence and mortality per 100,000 (B). Taken from the NordCan database. 

BC tumours are usually carcinomas, which are cancers that form in the epithelial cells in the breast. 
The most common type of carcinomas in the breast are adenocarcinomas or cancers that form in 
the milk ducts or glands responsible for making milk (lobules) [18]. Further, the most common 
adenocarcinomas are also classified as no special type infiltrating ductal carcinomas (IDC-NST) 
and invasive lobular carcinomas (ILC), which make up around 70% and 10% of all invasive 
cancers, respectively [19]. Other types of BC carcinomas, which are much rarer, are mucinous, 
cribriform, micropapillary, papillary, tubular, medullary, metaplastic and apocrine [20]. These 
classifications are usually referred to as tumour histologic type and will be relevant in the later 
sections of the thesis. There are some other rare types of BC, such as Angiosarcoma or Paget 
disease of the breast, which occur in other cell types. Additionally, depending on whether the BC 
tumour has spread to nearby tissue, the tumour can also be classified as invasive or in situ (see 
below for details on BC tumour classification and staging). 

Diagnosis, prognosis and treatment 

After a suspicious lesion in the breast is detected by an imaging technique, such as mammography, 
ultrasonography or magnetic resonance imaging (MRI), a biopsy sample of the lesion is taken for 
further examination. Biopsies of nearby lymph nodes are also often taken. 

The tissue obtained from the biopsy first needs to be formalin-fixed and paraffin-embedded. Then, 
a section of the paraffin is cut, usually of thickness ranging from 3 to 5 μm. To visualise the nuclei 
and cytoplasm, the sample is dyed using haematoxylin and eosin (H&E) [21]. The sample is then 
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microscopically investigated for the presence of a tumour (Figure 4). Afterwards, if the sample is 
tumour positive, the histotype and grade of the tumour are determined. The grading (ranging from 
1 to 3) of the tumour is evaluated by assessing the differentiation of the cells. A low grade indicates 
that the cells have not substantially dedifferentiated (making them relatively similar to the normal 
cells), are growing slower and have a lower chance of spreading further. On the other hand, a high 
grade indicates that the cells have dedifferentiated and that the tumour is much more aggressive 
[22].  

The sample is also usually immunohistochemically (IHC) stained by applying antibodies to the 
tissue to identify specific antigens. Antigens of interest are usually oestrogen (ER), progesterone 
(PgR) and human epidermal growth factor 2 (HER2) receptors, as well as Ki-67 protein, which is 
often used as a cell proliferation marker [23]. 

 
Figure 4. Examples of different staining techniques. Shown are the H&E staining (A), IHC staining for 

ER (B) and IHC staining for HER2 (C). Taken from Veta et al. 2014 [21]. 

A molecular classification of the BC tumour is often performed based on the IHC markers [24]. The 
four main subtypes of BC tumours are Luminal A (75.3%), Luminal B (11.1%), HER2 positive 
(3.1%) and Triple negative (10.5%). Luminal B can also be divided into HER2 positive and HER2 
negative [25].  

A 50 gene expression signature was identified which could cluster the four subtypes from the 
molecular classification in addition to a normal-like subtype which is similar to the luminal A 
subtype [26]. The classification obtained is referred to as the “intrinsic subtyping”. Another BC 
classification method, which is based on the copy number aberrations (CNA) of tumour samples, 
identified ten integrative clusters with distinct disease-specific survival times [27]. CNAs represent 
the number of times a specific genomic segment has been duplicated and, unlike copy number 
variants, occur only in the tumour cell.  

Routine practice also involves performing tumour, node and metastasis (TNM) staging of the 
diagnosed BC tumours. Staging can be either clinical or pathological. Clinical staging relies on 
tests performed before the surgery, such as physical examinations, mammograms, ultrasounds, and 
MRI scans. On the other hand, pathological staging is based on the surgical findings during the 
removal of breast tissue and lymph nodes. Generally, the results from pathological staging are 
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available a few days after surgery, and overall, this method offers the most comprehensive 
information for assessing a patient's prognosis. 

The tumour evaluation and staging (T in TNM) is based on the size and other characteristics of the 
tumour (e.g., tumour with a direct extension to the chest wall or the skin with macroscopic 
changes). The nodal evaluation and staging (N in TNM) is based on the presence and location of 
lymph nodal metastases. Finally, the distant metastasis classification (M in TNM) is based on 
clinical or imaging evidence of distant metastases. The T, N and M classifications are then used to 
determine the overall stage of the tumour (Table 1) [28]. Details on staging can be found in [29]. 

Table 1. Breast cancer tumour pathological staging according to the TNM classification, based on the 
AJCC Cancer Staging Manual. 

Stage TNM 
Stage 0 Tis, N0, M0 
Stage IA T1, N0, M0 
Stage IB T0, N1mi, M0 

T1, N1mi, M0 
Stage IIA T0, N1, M0 

T1, N1, M0 
T2, N0, M0 

Stage IIB T2, N1, M0 
T3, N0, M0 

Stage IIIA T0, N2, M0 
T1, N2, M0 
T2, N2, M0 
T3, N1, M0 
T3, N2, M0 

Stage IIIB T4, N0, M0 
T4, N1, M0 
T4, N2, M0 

Stage IIIC Any T, N3, M0 
Stage IV Any T, Any N, M1 

The 5-year survival of BC is around 90% [30], and the prognosis usually depends on the stage at 
diagnosis, how aggressive the cancer is and the success of the treatment. Therefore, the previously 
mentioned molecular, genomic and transcriptomic subtypes have differing average survival times 
(Figure 5) [31]. For instance, luminal A has the best overall survival time with 90% survival at 5 
years, while the triple-negative subtype has the worst survival probability at 5 years with around 
30%. Importantly, patients whose BC was detected in an early stage have a much better prognosis 
than those with later BC stages [32,33]. 
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Figure 5. Breast cancer 5-year survival stratified by the St. Gallen molecular subtypes. Taken from Falck 

et al. 2013 [31]. 

Depending on the BC subtype, different genetic pathways are deregulated, and some of the 
pathways are involved in physiological mammary gland development [34]. For instance, a very 
important pathway is ER signalling, which is relevant in all ER-positive BCs. Through ERɑ and 
ERβ, which are transcription factors, the expression of various target genes can be affected. One 
gene that is affected by ER signalling and promotes BC growth is cyclin D1 (CDK1), which is 
involved in the cell cycle progression [35–37]. Additionally, HER2 signalling is another important 
pathway for BC, and is found hyperactivated in HER2-positive BCs. Deregulated HER2 
activation, through phosphorylation, leads to increased tumour cell proliferation and cancer 
progression. HER2 activation initiates other tumorigenic signalling pathways, such as the 
previously mentioned PI3K/AKT pathway [38,39]. Moreover, in the context of BC, PI3K/AKT can 
also lead to dedifferentiation of luminal or basal mammary progenitor cells, thus allowing them to 
obtain multiple lineages [40], making them more adaptable to their environment as well as to 
therapies. Lastly, another notable pathway is the Wnt/β-catenin signalling, which is involved in 
maintaining the stem cell properties of BC [34], which are important for initiation [41], self-renewal 
and resistance to apoptosis [42]. 

BC treatment is usually tailored depending on the receptor status of the cancer. Therefore, three 
types of treatment strategies exist: treatment for hormone receptor (HR) positive and HER2-
negative patients, treatment for HER2-positive patients and treatment for triple-negative patients 
[43]. Surgical operation or axillary lymph node removal, sometimes followed by postoperative 
radiation, are the initial local therapies for nonmetastatic BC. Neoadjuvant (before surgery) 
chemotherapy or immunotherapy (for triple-negative BC) may also be given [43]. Regarding the 
treatment strategies, all HR+ tumours receive endocrine therapy (inhibiting the binding of 
oestrogen to ER or inhibiting the conversion of androgens to oestrogens), and for some HR+ 
patients chemotherapy is introduced as well [43]. Trastuzumab-based HER2-directed antibody 
therapy and chemotherapy are given to all HER2+ tumours. Additionally, endocrine therapy is 
given in case of HER2+ tumours being HR+. Finally, for TNBC, chemotherapy is usually the only 
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therapy administered and a similar therapeutic strategy is used for metastatic BCs [43]. However, 
neoadjuvant chemotherapy with immunotherapy is currently the preferred approach to treat early-
stage (II or III) TNBC [44]. The average cost of treatment across all BC stages was around $85,000 
in 2016 in the United States of America, and the cost increased significantly with the TNM stage 
[45].  

The quality of life of a patient is an important aspect when it comes to BC management. Therefore, 
it is important to consider that most drugs used for BC treatment have unpleasant side effects, often 
affecting the life quality of the patient [43,46]. Additionally, women with BC can have a reduced 
body image, worsened family functioning and an increased risk of developing depression [46,47]. 
The prognostic and treatment cost advantages of detecting BC in an early stage, as well as the 
decrease in quality of life among patients further emphasise the importance of primary and 
secondary prevention. 

BC risk factors  

Like for all types of cancers and diseases, not all individuals are equally susceptible or equally 
likely to develop BC. Both intrinsic (coming from within the individual) and extrinsic (coming 
from outside the individual) risk factors have been well-documented epidemiologically in the past 
decades. More comprehensive BC risk factor reviews can be found elsewhere [34,48,49]. 

Demographic factors 

The most pronounced intrinsic risk factor of BC is sex, as men account for less than 1% of all BC 
incidences [30]. The next important risk factor is age, which is common across most cancers. BC 
incidence was shown to be much higher as age increases with the plateau being around after the 
age of menopause [50,51].  

Reproductive factors 

Reproductive factors were also found to be associated with BC risk. Namely, earlier age at 
menarche or later age at menopause were found to be risk factors for BC [52]. These factors regulate 
the number of menstrual cycles which affects the total exposure of the breast tissue to oestrogen, 
which is a risk factor for BC. Additionally, a higher number of pregnancies reduces the BC risk, 
while nulliparous or women with pregnancies at later ages have an increased BC risk [53,54].  

 



9 
 

Hormonal modulation 

Hormone-modulating drugs, such as the use of oral contraceptives or postmenopausal hormone 
therapy (HRT), were consistently found to be positively associated with BC [55–57]. The increased 
risk from using contraceptives decreases gradually to average after 5 to 10 years of cessation [58]. 
Notably, the BC risk increase when using oral contraceptives is not the same for all formulations, 
as it is believed that the relative risk is higher for contraceptives containing synthetic progesterone 
receptor agonists [59]. Similar to oral contraceptives, the increased BC risk from HRT usage 
gradually diminishes to average two years after cessation [56].  

Hereditary factors 

Numerous genetic variants or mutations are associated with BC risk. Two famous genes associated 
with hereditary BC (approximately 5% of all BCs), Breast Cancer gene 1 (BRCA1) and Breast 
Cancer gene 2 (BRCA2), account for around 40% of hereditary BC incidences [60]. BRCA1 and 
BRCA2 proteins are involved in DNA repair and cell cycle regulation. In the cases of hereditary 
BC, the individual inherits a mutated BRCA1 or BRCA2 gene from one of the parents but will still 
have one wild-type BRCA1/2 gene on the other copy of the chromosome. The cells in the human 
body constantly acquire random mutations. Therefore, it is only a matter of time before the 
BRCA1/2 copy on the other chromosome also acquires the mutation. Hence, the so-called two-hit 
hypothesis of tumour suppressors is made more likely [61]. Mutations of BRCA1 and BRCA2 can 
also cause hereditary ovarian cancer and rarely some other types of cancer, such as pancreatic or 
prostate cancer [62]. However, the tissue-specific hereditary role of BRCA1 and BRCA2 in the breast 
and ovaries is not fully elucidated yet. Nevertheless, some hypotheses on the interaction of 
BRCA1/2 genes and sex hormones, as well as the lack of compensatory proteins for DNA repair 
have been proposed [63]. 

Considering the hereditary aspects of BC, family history is one of the key risk factors associated 
with BC. Even without a BRCA1 or BRCA2 mutation, women with BC family history (two or more 
BC cases in first-degree female relatives younger than 50 years or three or more first-degree 
relatives with BC at any age) are four times more likely to develop BC than women without [64]. 
Consequently, there are numerous other genes, such as Phosphatase and tensin homolog (PTEN), 
TP53, Cadherin 1 (CDH1), etc. [65], as well as single nucleotide polymorphisms (SNPs) [66], which 
are single nucleotide variations that exist in at least 1% of the population, involved in BC 
susceptibility.  

Numerous genome-wide association studies (GWAS) analysed a large number of SNPs to identify 
those associated with BC risk [67]. Usually, these SNPs are individually not strongly associated 
with BC risk. Therefore, their cumulative effect can be combined into a single polygenic risk score 
(PRS) [68]. Importantly, PRS and family history were found to be relatively independent when it 
comes to BC risk. This indicates the importance of considering both risk factors [69]. 
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Breast factors 

Additional factors which are related to the breast are associated with BC risk. The most important 
factor is breast density, which is positively associated with BC. Breast density is usually measured 
with one of the imaging tools mentioned above, and guidelines for density classification have been 
developed [70,71]. The Breast Imaging Reporting & Data System (BI-RADS) guidelines groups the 
breast density into four categories: 

1) almost fatty 
2) scattered fibroglandular densities 
3) heterogeneously dense 
4) extremely dense 

Another breast density classification method is Tabar’s classification, which has five categories 
based on the predominance of tissue type (i.e., fibrous, fat, nodular densities, etc.). Additionally, 
having previously identified benign biopsies also increases the risk of BC [72]. However, this is 
most pronounced in premenopausal women as the risk diminishes after menopause [73]. Finally, a 
longer cumulative duration of breast lactation was found to be associated with reduced BC risk 
[74]. 

Lifestyle and other factors 

Lifestyle is an important aspect of health, and several lifestyle factors are associated with BC risk. 
Like in many cancers, obesity was found to be associated with BC [75]. However, the relationship 
between body mass index (BMI) and BC risk remains to be fully elucidated, as the association 
between BC risk and BMI is not so clear in premenopausal women but is a significant risk factor 
in postmenopausal women [76]. One hypothesis is that postmenopausal women with more body fat 
tend to have higher levels of circulating oestrogen, as oestrogen in postmenopausal women is 
mainly produced in the fat tissue [77]. Therefore, the higher oestrogen levels increase the BC risk 
[78]. In contrast, among premenopausal women, oestrogen mainly comes from the ovaries, making 
the body fat not as impactful when it comes to BC risk among premenopausal women [77]. 

Both alcohol consumption and smoking were found to be positively associated with BC risk [79,80]. 
Similarly, some dietary habits, such as red meat or saturated fat consumption, were associated with 
BC risk [81,82]. Importantly, physical activity was found to be a protective factor of BC [83]. Further, 
air pollution and previous radiations, either due to treatment or screening, are extrinsic BC risk 
factors [84,85]. Moreover, external hormone disruptors such as shift work and night work were also 
found to be associated with BC risk [86]. Lastly, endocrine-disrupting chemicals (EDCs) are also 
relevant BC risk factors [87,88]. EDCs are substances or synthetic chemical compounds that can 
deregulate pathways of the endocrine system [88]. They could be found in the human environment 
as a consequence of industry or agriculture. One example of EDCs relevant to BC risk are 
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Xenoestrogens, which are external oestrogen-like compounds that can mimic the intrinsic function 
of oestrogen (e.g., binding to the ER). Xenoestrogens can be found in some types of plastics, 
pesticides, chemicals, and water systems [89].  

Early BC diagnosis and prevention 

There is a substantially better prognosis among BC tumours detected in their early stage, which is 
true for most cancers. Consequently, the quality of life of patients with a better prognosis is 
drastically better, and the overall healthcare burden and cost are lowered. Hence, primary and 
secondary prevention are of crucial importance for overall better BC management. Primary 
prevention, in this case, refers to individuals improving their lifestyle and avoiding substances 
associated with BC risk. On the other hand, secondary prevention refers to the early detection of 
BC through self-examinations or mammography screening programs. Both self-examinations and 
mammography screening can identify suspicious lesions which will then be examined by a 
pathologist as described previously.  

Mammography is the golden standard for BC detection and is utilised in most BC screening 
programs worldwide. It is a fast, relatively cheap, and simple-to-use imaging tool based on X-rays. 
Regarding its diagnostic performance in detecting BC, it has a sensitivity and specificity of 85% 
and 90%, respectively [90]. Nevertheless, mammography screening does have certain drawbacks, 
such as radiation exposure, higher false positives in women with dense breasts (especially among 
younger women) and interval cancers [91].  

With the introduction of digital mammography (DM), radiation exposure has been reduced 
significantly over the years, making the added risk of BC when performing mammography 
minuscule (rising only from 8.8% to 8.9% in women aged 50 to 69 that undergo biannual screening 
[92,93]) and should not be a deterrent to screening [91]. However, optimising mammography 
screening scheduling and finding complementary biomarkers could further reduce radiation 
exposure. Mammography has a false positive rate of around 10%, and a false positive 
mammography result implies a recall for further investigation where the outcome is a negative 
status for BC. Notably, the probability of having one false positive result in 10 annual 
mammograms is around 50% [94]. This drawback is especially relevant in women with higher breast 
density as they are more likely to have false positive recalls. Consequently, false positive recalls 
could cause worry and fear among the screened women [95].  

Another notable drawback of mammography are interval cancers, which are cancer incidences 
which occur between the mammography screenings. They can happen either due to the inability 
to detect cancer during screening or when a fast-progressing cancer develops after the screening. 
The sensitivity of mammography can strongly be affected by increased breast density. For 
instance, due to masking, the sensitivity of mammography is only around 50% on breasts with BI-
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RADS 4 (extremely dense) density classification [96]. Moreover, BCs without microcalcifications 
(calcium deposits in breast tissue) are significantly harder to detect in breasts with higher density 
[97,98]. Additionally, lobular cancers and diffusely growing cancers strongly resemble normal breast 
tissue and are, therefore, harder to detect using mammography [91]. Therefore, there is a strong 
need to overcome the mentioned limitations and find biomarkers which could complement 
mammography. 

The screening and prevention programs for individuals with confirmed BRCA mutations are 
different from those for women without BRCA mutations [99]. In this project we focus on 
improving secondary prevention of BC in women without BRCA1 or BRCA2 mutations. 

Diagnostic and risk-assessment biomarkers in BC 

Due to the mentioned drawbacks of mammographic screening, studies have explored and assessed 
tailoring BC screening programs through different imaging technologies and combinations of risk 
factors [100–102]. The risk scores were based on some of the above-mentioned risk factors (i.e., 
reproductive history, previous breast biopsies, family history, etc.), which could be obtained 
through a questionnaire. Despite promising results, risk-stratified mammography is still not widely 
used and is mainly based on age stratifications of risk. For example, in the Italian region of 
Piemonte, women aged 45 to 49 with average risk (i.e., no BC-related mutations or close family 
members who had BC) can perform mammography once a year but are not invited (i.e., they are 
screened on their own initiative), while women older between 50 and 69 years old perform a 
mammography every two years, upon invitation. Women above 70 and below 75 are not invited 
to BC screening programs but can spontaneously adhere every two years. Women aged above 76 
and below 45 do not enter the screening programs. Similar guidelines based on age were reported 
by the European Breast Guidelines [103] and in the United States of America [104]. 

In addition to biomarkers or risk factors that can be obtained through questionnaires, molecular 
biomarkers, such as SNPs combined into PRS or DNA methylation profiles, circulating DNA or 
microRNAs (miRNAs), could also be used for early BC detection or risk stratification.  

Genetic biomarkers 

Several types of genetic biomarkers are candidates for BC detection or risk identification. Next 
generation sequencing (NGS) tools have enabled the development of multigene panels for testing 
whether an individual has a mutation on genes associated with BC onset [105,106]. The predecessor 
to the NGS for detecting single gene mutations, which are still somewhat in use, are the Sanger 
sequencing and denaturing high performance liquid chromatography [107]. The panels test for 
mutations in BRCA genes and other relevant genes such as TP53, Partner and Localizer of BRCA2 
(PALB2), CDH1, etc. However, the prevalence of known non-BRCA mutations among individuals 
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with hereditary BC is around 10%. Therefore, the guidelines for non-BRCA mutation genotyping 
are still under revision and optimisation [105]. 

Another type of genetic biomarker for identifying inherent BC risk are SNPs. Each SNP has its 
own risk estimate and is obtained by multiplying the allele of the SNP (either homozygous for the 
allele in the reference genome – wild type, homozygous for the variant allele, or heterozygous) by 
the log odds, usually obtained through logistic regression. Individual SNPs confer low risk, but 
the risk effects of the individual SNPs found by GWA studies are summed up to form a PRS [108] 
that has a stronger weight on BC risk. PRS scores in the context of BC were identified using very 
large cohorts and analysing millions of SNPs [66,109]. In this project we assessed the previously 
reported PRS on 77 SNPs [110]. 

Circulating tumour DNA (ctDNA) and whole blood mRNA expression were also found to be 
promising genetic biomarkers for BC detection. It is hypothesised that ctDNAs originate from 
cellular breakdown or active secretion by the tumour [111,112], or from circulating tumour cells 
(CTCs) [111,112]. Usually, digital droplet PCR or NGS tools are used to quantify the ctDNAs [113]. 
Several clinical trials were performed or are underway to assess the clinical utility of ctDNAs in 
the context of BC [114]. A meta-analysis on the different quantifying techniques obtained a pooled 
sensitivity and specificity of 87%, making ctDNAs promising biomarkers [115]. Precancerous and 
cancerous tumour cells usually change the gene expression and abundance profile of immune cells 
in their microenvironment. Hence, as the circulatory system is involved in pathological activities 
and defence, it is also expected that immune changes related to gene expression are observed in 
peripheral tumour cells [116,117]. Studies have identified blood gene expression signatures which 
showed potential in discriminating BC patients from healthy controls, with sensitivities and 
specificities being around 80% [118,119]. Additionally, a study that prospectively sampled the blood 
of individuals identified gene expression profiles that differed between BC cases and healthy 
controls many years (up to eight years) after diagnosis [120–122]. Finally, a Real-Time Quantitative 
Reverse Transcription Polymerase Chain Reaction (RT-qPCR) based 12-gene biomarker panel for 
early BC detection has been commercially developed and is designed for women aged 25 to 80. 
The inventors of the mentioned gene panel claim an accuracy of 92% [123]. Other commercial blood 
gene expression panels were reviewed in [124].  

Epigenetic biomarkers 

Epigenetics refers to the regulation of DNA transcripts or heritable changes on the DNA, such as 
methylation, which do not alter the DNA sequence but affect how the information on the DNA is 
used in a cell. Examples of epigenetic modulators are histone methylation or acetylation, DNA 
methylation, microRNA regulation of mRNA abundance, etc. Deregulation of the epigenetic 
profile is a key characteristic of tumour cells [125]. It is exploited by cancer in order to increase the 
transcriptional accessibility and mRNA quantity of genes necessary for proliferation and decrease 
them for tumour suppressors [125]. Additionally, changing the epigenetic profile enables the cancer 
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cells to undergo dedifferentiation [126]. Hence, a plethora of epigenetic biomarkers associated with 
tumour development, including BC, have been identified, such as the DNA methylation of various 
genes, non-coding RNAs such as long non-coding RNAs or miRNAs, etc [127–131]. 

DNA methylation 

DNA methylation is the addition of the methyl group (CH3) to the fifth carbon of the cytosine 
nucleotide ring. DNA methylation in mammals is usually found on cytosine nucleotides which 
come before the guanine nucleotide (CpG). DNA methylation is usually catalysed by a family of 
enzymes called DNA methyltransferases encoded by DNA methyltransferase (DNMT) genes (such 
as DNMT1 or DNMT3) [132,133]. These genes are often deregulated in many cancers [133,134], 
including BC [135]. Depending on their genomic location, there are different ways in which DNA 
methylation can affect the function or expression of a gene. For example, DNA methylation of 
gene enhancers or promoter regions could affect the regulation of the respective gene by affecting 
the transcription factor binding ability [136]. Further, DNA methylation sites found on the first 
intron of a gene could also have an impact on the function of the respective gene by affecting 
transcription factor binding [137]. 

The methylation of a specific DNA region or a specific CpG site can be quantified in different 
ways, and this is reflected in the various methods by which DNA methylation biomarkers were 
identified. Bisulfite conversion is a method through which unmethylated Cytosine is converted to 
Uracil by denaturing DNA and applying sodium bisulfite. After subsequent amplification, the 
Uracil is then converted to Thymine. Several DNA methylation analysis methods rely on this 
nucleotide conversion, such as microarray (e.g., EPIC Illumina Infinium BeadChip microarray), 
bisulfite sequencing or methylation-sensitive high resolution melting (MS-HRM). In bisulfite 
sequencing, the sequencing results of sodium bisulfite-treated DNA are compared to those of 
untreated DNA and the methylated sites are found [138]. In the Infinium BeadChip arrays, specific 
probes for each locus of interest are designed to determine the proportion of methylated DNA 
samples through single-base extension and light intensity [139]. Finally, the MS-HRM method 
exploits the fact that more energy is required to break the cytosine-guanine bonds than the thymine-
guanine bonds [140]. Considering the importance of DNA methylation in tumour development, 
numerous studies have tried to identify prognostic and diagnostic biomarkers for various cancers, 
including BC [128]. In the context of BC, the promoter methylation of numerous genes was 
analysed, such as Retinoic Acid Receptor Beta (RARB), APC regulator of WNT signalling pathway 
(APC), BRCA1, Death-associated protein kinase 1 (DAPK1), Ras Association Domain Family 
Member 1 (RASSF1A), etc [130,141]. Additionally, epigenome-wide association studies (EWAS) 
identified DNA methylation sites associated with BC risk [142,143] as well as DNA methylation sites 
that, in a panel, could be used for early detection of BC [144,145]. In this project, we investigated the 
promoter methylation of RARB, APC and BRCA1 in the context of BC.  
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Non-coding RNAs 

Non-coding RNAs represent the broad term for all RNAs which do not undergo translation, and 
approximately 98% of all human DNA transcripts are non-coding RNAs [146]. Their classification 
is usually based on length, with the cut-off between long and small non-coding RNAs being 200 
nucleotides [147,148]. However, some RNA species that are in the grey zone of this cut-off make the 
classification more complicated, and therefore, dividing non-coding RNAs into three categories 
was proposed [148]: 

1) Small RNAs (< 50 nucleotides) 
2) RNA Polymerase III transcripts such as tRNAs, RNA Polymerase V transcripts in plants 

and small RNA Polymerase II transcripts such as (most) snRNAs and intron-derived 
snoRNAs (~50 to 500 nucleotides) 

3) Long non-coding RNAs, which are mostly transcribed by Pol II (> 500 nucleotides) 

Long non-coding RNAs 

Long non-coding RNAs (lncRNAs) length ranges up to 100,000 nucleotides and are less conserved 
among species when compared to mRNAs [148]. Some lncRNAs are spliced and polyadenylated, 
meaning having a poly-A tail at the 3’ of the transcript. This is a property of mRNAs, which makes 
such lncRNAs “mRNA-like” [148]. However, there are lncRNAs which are not polyadenylated or 
expressed from Pol I or Pol III promoters [148]. With respect to protein-coding genes, lncRNAs can 
be ‘intergenic’, antisense or intronic, but they can also be derived from pseudogenes [148], which 
are segments of the DNA that are structurally similar to a regular gene but are not able to code for 
a protein. 

The most notable function of lncRNAs is their involvement in cell differentiation and development 
in both animals and plants [147,149–151]. However, they have been linked to numerous other functions 
such as p53-mediated response to DNA damage [152], cytokine expression [153], cholesterol 
biosynthesis and homeostasis [154,155], growth hormone and prolactin production [156], glucose 
metabolism [157,158], cellular signal transduction and transport pathways [159–161], etc [148]. 

LncRNAs are very important for cancer development as they have been linked to assisting the 
tumour cells in acquiring all hallmarks of cancer described previously [149]. Due to lncRNAs being 
regulated by several oncogenic or tumour-suppressive transcription factors, such as p53 [152,162], 
MYC [163,164], ER [165], etc. [149], they can be considered as the functional output of the oncogenic 
or tumour-suppressive pathways. 

In the context of BC, it was shown that lncRNA HOTAIR could promote BC epithelial-to-
mesenchymal transition and lung metastasis in mice via activating Cyclin-dependent kinase 5 
(CDK5) signalling. Additionally, Linc-ROR is believed to promote oestrogen-independent growth 



16 
 

of BC cells by regulating the ERK-specific DUSP7 phosphatase, thus enhancing MAPK/ERK 
signalling with potential implications for tamoxifen resistance [166,167]. 

Finally, a lncRNA biomarker, RP11-445H22.4, was identified, which could differentiate between 
BC cases and controls and was significantly upregulated in BC patients [168]. This biomarker was 
analysed in serum on a cohort of 68 BC patients and 68 controls using the RT-qPCR method. 
Despite its promising performance, to my knowledge, this lncRNA was not validated in external 
cohorts, reducing its reliability. 

Small non-coding RNAs 

There are numerous types of small non-coding RNAs (sncRNAs), all of which have differing 
average sizes and biological functions [169]. Some of the more common and well-studied sncRNAs 
are small nucleolar RNAs (snoRNAs), microRNAs (miRNAs), small interfering RNAs (siRNAs), 
small nuclear RNAs (snRNAs) and Piwi-interacting RNA (piRNAs). In this section I will briefly 
cover some of the scnRNAs. 

snoRNAs are RNAs ranging from 60 to 300 nucleotides [170]. Genomically, they are usually located 
on the intronic region of coding or non-coding genes (i.e., the snoRNA host genes) and are believed 
to form through transcription and post-transcriptional regulation (such as splicing) of the 
mentioned host genes [171]. Additionally, they can be involved in post-transcriptional regulation of 
rRNA which is involved in protein synthesis [171,172]. snoRNAs can have both oncogenic and 
tumour suppressor roles as they were found to regulate various signalling pathways in cancer [173]. 
For instance, SNORD126 activates the PI3K/AKT signalling pathways to increase tumour growth 
in liver cancer and colon cancer [174], but could also be implicated with BC or other cancers relevant 
to this pathway. Moreover, copy number deletion of two snoRNAs (SNORD50A and 
SNORD50B) can be synergistic with the K-Ras signalling pathway activation, thereby promoting 
tumorigenesis in multiple cancer types [175].  

Another type of sncRNAs are snRNAs, which are around 150 nucleotides long and are considered 
to have a function in RNA splicing [176]. Dysregulation of snRNA can increase oncogenic 
transcripts and decrease tumour suppressor transcripts in tumour cells [177]. The U1 snRNA 
expression upregulation deregulates the expression of numerous genes, some of which were 
enriched in the p53 signalling, cell cycle, and MAPK pathways [178].  

Another important type of sncRNAs are piRNAs which usually range from 20 to 30 nucleotides 
in length and are associated with gene regulatory functions [179]. In humans, piRNAs are usually 
transcribed from the piRNA genomic clusters, mediated by RNA Polymerase II, or they can be 
derived from the 3′UTR of mRNAs and lncRNAs [180]. To perform their regulatory function, a 
complex is formed by piRNA and the Piwi protein in order to be involved in gene silencing during 
gene transcription or the post-transcription process [179]. Importantly, piRNAs were shown to 
repress the expression of numerous cancer-related genes in several types of cancers, including 
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breast, lung and liver cancers [180,181]. In the context of BC, PiR-021285 was found to promote 
tumour growth and invasion in breast cancer [182]. 

Finally, a type of sncRNAs which can also be involved in post-transcriptional gene expression 
regulation are miRNAs. Due to their ability to affect numerous genes and as there is abundant 
research on them in the cancer context, especially BC, I will dedicate a separate section to describe 
them. 

miRNAs 

miRNAs are short RNAs whose length ranges from 18 to 25 nucleotides and are relatively 
evolutionarily conserved [183]. miRNA genes can be both intergenic and intragenic; however, most 
of them are intragenic and are found inside introns and exons of genes or in untranslated regions 
(UTR) and regions of the genome containing repetitive sequences [184]. miRNA genes are often 
found in clusters within the genome and are, therefore, transcribed as polycistronic transcripts with 
a single promoter. Nevertheless, some miRNAs are monocistronic and are transcribed from a 
specific promoter [185]. Some miRNAs are intronic within the host gene and are spliced from the 
mRNA transcript [186,187]. 

miRNA genes are transcribed by RNA polymerase II together with various transcriptional factors 
into primary miRNA transcript (pri-miRNA) of more than 1 kb length [188]. The pri-miRNA 
consists of a long loop structure containing the stem and the loop region (responsible for encoding 
one or more mature miRNAs) and single-stranded RNA segments at the ends. The 5′ end is capped 
with 7-methyl-guanosine (m7G) and the 3′ end is polyadenylated [183]. This pri-miRNA is 
recognized by an enzyme complex (called Microprocessor complex), consisting of Drosha and 
DGCR8, and is cleaved to produce a long precursor miRNA (pre-miRNA), usually around 70 
nucleotides long. The DGCR8 protein is responsible for recognising the pri-miRNA, while Drosha 
is responsible for specifically cleaving the pri-miRNA at specific points. These two points are 
usually between the apical junction linked to the terminal loop and the basal junction found 
between the single-stranded RNA and stem-loop structure [187]. Hence, the pre-miRNA retains the 
loop-like property observed in pri-miRNA. Then, the pre-miRNA is exported to the cytoplasm by 
exportin 5 (EXP5), which is a transporter protein [183]. The pre-miRNA is further processed in the 
cytoplasm by endoribonuclease (RNase III). Endoribonuclease is a Dicer enzyme which, in this 
context, is responsible for creating the miRNA duplex from the pre-miRNA. In mammals, Dicer 
recognizes the 5′ end of the pre-miRNA and cleaves the pre-miRNA at 22 nucleotides away from 
the 5′ end [189]. The created miRNA duplex, which is around 22 nucleotides long, is then 
phosphorylated at the 5′ end, and a 3′ overhang is formed. The whole process of miRNA 
biosynthesis is visualised in Figure 6. 

The miRNA duplex consists of two strands, the guide strand and the passenger strand, where the 
guide strand is relevant for the assembly with the Argonaute proteins. miRNAs usually exhibit 
their regulatory function as a part of the RNA Induced Silencing Complex (RISC). The RISC is 
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assembled in two steps: first, the miRNA duplex is loaded onto the Argonaute protein (Ago 1-4 in 
humans). In the second step, the miRNA duplex is unwound, and the guide strand is selected and 
anchored into the Argonaute protein, while the passenger strand is ejected and degraded [190].  

 

 
Figure 6. The pathway of biogenesis of miRNAs. Taken from Khan et al. 2019 [183]. 

The regulatory or silencing role of miRNA is manifested through the miRISC complex. The guide 
strand of the miRNA is responsible for targeting specific mRNAs. The specific mRNAs are 
recognised via the 3′ UTR region of mRNAs that have the binding sites for specific miRNAs [191]. 
The guided miRISC complex then either degrades the target mRNA or represses translation. 
Interestingly, a single mRNA can be targeted by an individual or multiple miRNAs, and a single 
miRNA can target several different mRNAs, making the interaction network between miRNAs 
and mRNAs rather complex [190]. 

Importantly, numerous miRNAs, both dysregulated and physiological, are reproducibly found in 
body fluids such as plasma, serum and saliva, where they have a role in intercellular 
communication or are exported out of cells that want to get rid of them. They are believed to be 
protected from degradation by association with secreted membrane vesicles (e.g., exosomes) or 
RNA-binding proteins [192]. This makes miRNAs highly promising candidates for becoming non-
invasive diagnostic and prognostic biomarkers for various diseases.  

There are several techniques for quantifying the expression of miRNAs in a tissue. The most 
widely used method, which is robust and relatively cheap, is the RT-qPCR platform. After RNA 
extraction (exosomal miRNA analysis will include an exosome disruption step) and reverse 
transcription to create complementary DNAs (cDNAs), fluorescence is emitted and measured after 
each synthesis of double-stranded nucleic acid by adding complementary bases to denatured 
single-stranded cDNAs [193]. Usually, this is repeated 40 times (cycles), and a cycle value is 
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obtained for a sample once the fluorescence intensity surpasses a set threshold (Figure 7). The 
downside of this technique is lower throughput compared to other methods, and it is being quite 
laborious when many miRNAs are assayed. 

 
Figure 7. Illustrated are the (A) simplified protocol for miRNA analysis using RT-qPCR platform and 

(B) an example of a resulting amplification plot from which the cycle threshold value for a specific 
miRNA in a sample is derived. 

Another commonly used technique is the microarray, where thousands of oligonucleotide probes 
are designed to be complementary to the known miRNAs and are immobilized on a solid substrate 
(usually glass) in discrete circular areas called spots [194]. Following total RNA dephosphorylation, 
denaturation and a ligation step, miRNAs in total RNA samples are fluorescently labelled and 
hybridized to complementary probes. The fluorescence intensity of labelled miRNA bound to 
microarrays is then used to derive an expression value for each miRNA. 

Lastly, an NGS method called small-RNA sequencing is a high-throughput method for quantifying 
miRNA expression [195]. Following RNA extraction, adapters are added to the 3’ and 5’ ends of 
small RNAs, which are then reverse transcribed and amplified to obtain a cDNA library. Libraries 
are sequenced and reads are aligned to the genome. The number of reads aligned to a specific 
region of the genome will indicate its expression. 

miRNAs and cancer 

miRNAs have been found to be differentially expressed between normal and tumour cells and 
have, therefore, been associated with cancer onset and progression [196–198]. More than 50% of all 
annotated miRNAs in humans are located at genomic regions that tend to be amplified, deleted or 
translocated in cancer [199,200]. Additionally, due to their mRNA silencing or degradation role, they 
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can be important players in regulating tumour suppressor genes or oncogenes in favour of tumour 
cells. The general idea is that higher expression of miRNAs tends to increase the degradation or 
translational inhibition of tumour-suppressive or oncogenic mRNAs. Hence, the miRNAs 
targeting tumour suppressors will tend to be overexpressed in tumours, while the miRNAs 
targeting oncogenes will tend to be underexpressed in cancer cells. 

The tumour cells exploit various mechanisms to dysregulate the expression of miRNAs, including 
(epi)genetic alterations (e.g., deletions or amplifications of genomic regions where a miRNA is 
encoded, increasing or decreasing accessibility of DNA for transcription factors, etc.) or defects 
within the enzymes involved in the miRNA biogenesis [201]. One important example of miRNA 
dysregulation is by the oncogene c-Myc. It is known to repress the transcriptional activity of 
tumour-suppressive miRNAs such as miR-15a, miR-26, miR-29, miR-30 and let-7 families [202]. 

Specifically, two miRNA clusters which are a part of the miR-200 family, miR-200bc/429 and 
miR-200a/141, are believed to play a role in the epithelial-to-mesenchymal transition, which is an 
important characteristic of cancers due to the acquisition of invasiveness and migratory ability by 
the cells [203]. The expression of miR-200 family was found to be dysregulated in numerous cancers 
including bladder cancer, gastric cancer, nasopharyngeal carcinomas, ovarian cancer, pancreatic 
cancer, and prostate cancer [204]. Furthermore, miR-32 is a miRNA regulated by the androgen 
receptor (AR), and it was found to promote prostate cancer cell growth and progression by 
inhibiting the expression of tumour suppressor genes (phosphoinositide-3-kinase interacting 
protein 1 (PIK3IP1) and B-cell translocation gene 2 (BTG2)) and favouring the PI3K/AKT/mTOR 
pathway [205]. 

Lastly, as they can stably be found in blood and other body fluids, miRNAs were investigated as 
prognostic and diagnostic biomarkers for various types of cancer [206]. For instance, various 
miRNAs were found as candidates for the early detection of prostate [207,208], lung [209,210], as well 
as numerous other cancers [211]. It is believed that the deregulated miRNAs found in the blood are 
mainly secreted by the tumour cells for reasons yet to be fully clarified [212], but a considerable 
proportion of the miRNAs could also be excreted by the red or white blood cells [213]. Another 
hypothesis explaining cell-free miRNAs in blood is that they are released by dying cells (both 
tumour and normal). Hence, deciphering the functional role of circulating biomarkers is a more 
complicated task than for solid tissue biomarkers. 

miRNAs and BC 

Numerous miRNAs were found to be involved in BC progression and onset [214]. Both tumour-
suppressive and oncogenic miRNAs were identified. Examples of well-studied oncomiRs are miR-
10b, miR-21, miR-155, miR-373 and miR-520c. For instance, through translational inhibition, 
miR-10b targets the tumour suppressor Homeobox D10 (HOXD10) [215], which inhibits the 
RHOC/AKT/MAPK pathways [216]. Further, miR-155 targets the tumour suppressor gene 
suppressor of cytokine signalling 1 (SOCS1). SOCS1 plays a role in several cytokine signal 



21 
 

transduction pathways [217] and is believed to regulate the JAK/STAT signalling pathway [218]. 
Hence, overexpression of miR-155 in BC cells leads to the activation of signal transducer and 
activator of transcription 3 (STAT3) through the JAK pathway [219], which could produce immune 
tolerance within the cancer cells as they will be able to release factors that block antigen presenting 
cells’ maturation or activation and inhibit the generation of antigen-specific T cells [220]. Lastly, 
miR-21, one of the most comprehensively described oncomiRs and one of the most frequently 
deregulated miRNAs in BC, targets several tumour suppressor genes, such as PTEN and TIMP 
Metallopeptidase Inhibitor 3 (TIMP3), and is associated with BC growth and progression [214,221]. 
PTEN has numerous tumour-suppressive functions, but the most notable one is that it blocks PI3K 
signalling by inhibiting PIP3-dependent processes such as the membrane recruitment and 
activation of AKT. Hence, the cell survival, growth, and proliferation are stopped [222]. 

The tumour-suppressive miRNAs that were also well studied in the context of BC are miR-125b, 
miR-205, miR-200, miR-146b, miR-126, miR-335, etc [214]. For example, miR-125b targets 
Erythropoietin (EPO), Erythropoietin Receptor (EPOR) and Erb-B2 Receptor Tyrosine Kinase 2 
(ERBB2) [214]. In addition to activating EPOR, the protein encoded by EPO was found to induce 
PI3K/AKT and MAPK pathways in human breast cancer cell lines [223]. This is of relevance as the 
knockdown of EPOR reduced human tumour cell growth, induced apoptosis and reduced the 
invasiveness of the tumour [223]. Hence, miR-125b could be responsible for inhibiting cell 
proliferation and migration. Additionally, miR-205 was found to suppress proliferation and 
invasion by targeting HMGB3 [214].  

Like many other cancers, circulating miRNAs were identified as biomarkers for diagnosis, 
prognosis and treatment of BC [224]. Some of the identified miRNAs’ expression levels would 
change before the routinely applied diagnostic tools could detect the tumour [225]. Additionally, as 
was mentioned earlier, miRNAs are abundant in body fluids, stable and relatively cheap to analyse. 
Hence, circulating cell-free (cfc) miRNAs are potentially more effective in detecting early-stage 
BC when compared to the other mentioned biomarkers. Exosomal miRNAs found in the blood are 
also promising biomarkers for BC detection [226]. However, due to simpler and more standardised 
extraction protocol for cfc miRNAs (as multiple protocols were suggested for exosome isolation 
and analysis, and it is not always clear whether exclusively RNA from exosomes is quantified) 
[227], we opted to investigate only the latter.  

A myriad of miRNAs or diagnostic models based on cfc miRNAs were reported in the context of 
BC [224]. Nevertheless, the published results were often non-intersecting or sometimes 
contradictory, as there have been many reported candidate miRNAs or panels of miRNAs, but a 
common significant panel of miRNA(s) as a clinically viable tool still needs to be identified [224]. 
One reason for this is the lack of experimental and methodological standardisation between the 
studies (e.g., normaliser or specimen type) [224,228]. Two meta-analyses from 2014 reviewed studies 
which reported diagnostic cfc miRNAs for BC and concluded that miRNAs have promising 
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diagnostic performance but also stated that a substantial degree of heterogeneity between the 
studies exists [229,230], partly due to the lack of standardisation. 

Considering the importance of early BC detection and the fact that no common circulating miRNA 
panels for BC detection have been reported, there is a need to standardise the laboratory and 
research design protocols for identifying diagnostic circulating miRNAs. Hence, in this project, 
our goal is to identify the issues with standardisation and apply the findings to our biomarker 
discovery pipeline, which aims to identify cfc diagnostic miRNAs in a BC screening setting. 
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Research objectives 

The key objective of this project was to identify robust and reliable blood circulating biomarkers, 
with the focus on cfc miRNAs, associated with BC in a screening setting. Ideally, these candidate 
biomarkers would complement or be an alternative to the current golden standard for BC detection, 
mammography. To achieve this goal, the three following research objectives were set: 

1) As inconsistent and rarely intersecting diagnostic panels of cfc miRNAs for BC detection 
have been reported in the studies published thus far, we aimed to evaluate the overall 
diagnostic performance as well as the sources of heterogeneity between studies. This would 
be done by performing a meta-analysis where we would seek to include all high-quality 
evidence on the diagnostic performance of circulating diagnostic miRNA(s) for detecting 
BC using any RT-qPCR platform. Pooled diagnostic performance, heterogeneity analysis 
in the context of lack of standardisation, publication bias and the general risk of bias in 
individual studies were the main interests of the meta-analysis. Additionally, we wanted to 
assess the within and between-study preference for sensitivity over specificity and to stress 
how factors relevant to sensitivity or specificity preference should be considered and 
discussed in research papers. Based on a thorough review of the meta-analysed studies and 
the causes of inconsistency, we would use this knowledge to adapt our own methods for 
identifying circulating microRNAs associated with BC. Finally, the most consistent 
microRNAs among the meta-analysed studies would be prioritised in the variable selection 
analyses. 
 

2) Identify cfc miRNAs associated with BC through small-RNA sequencing in a nested case–
control study within a large cohort of women attending the BC screening program. This 
would be followed by a platform validation using RT-qPCR in the same cohort. A logistic 
regression model would be created on these miRNAs validated in RT-qPCR and the model 
would then be further validated in a separate cohort. 
 

3) To functionally understand the candidate biomarkers and the limits of their applicability 
[231], we performed enrichment and network analyses, followed by extensive literature 
searches to see whether the function of the biomarker has been described before or whether 
it was found to be associated with any other disease. Finally, candidate miRNAs relevant 
to genes mapped to DNA methylation sites associated with pubertal timing or development, 
which was a research secondment project I performed in Finland, would be studied in depth 
and linked to increased risk of BC among women with earlier pubertal timing. 
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Material and Methods 

The material and methods section, as well as the results and discussion, will provide a more 
detailed description of our two peer-reviewed publications [232,233]. I will first describe all the 
methods and statistical techniques used in the meta-analysis of cfc miRNAs in BC detection, 
followed by the materials and methods used for identifying novel circulating biomarkers 
associated with BC in a screening setting. Finally, a part was dedicated to investigating CpG sites 
associated with puberty that are linked to BC and miRNAs significantly targeting the genes 
mapped to the CpG sites. The CpG sites associated with puberty were identified in a cohort of 
Finnish young adult twins and an enrichment analysis was performed to identify CpGs enriched 
in various functions and diseases [234]. 

All statistical analyses were performed in the R software version 4.1.1 or 4.1.2. The packages and 
functions used will be mentioned in the relevant sections. 

Meta-analysis on cfc miRNAs 

Despite there being many studies that have reported cfc miRNAs associated with BC onset, there 
is a lack of consistent or overlapping microRNAs between the studies. To investigate this 
phenomenon, to assess the overall diagnostic ability of miRNAs as well as to help guide some of 
the decisions relevant to the project, there was merit in performing a diagnostic meta-analysis. The 
complete R analysis script and dataset of the meta-analysis can be found in the GitHub repository 
of the project (https://github.com/saraurru/Meta-analysis-of-diagnostic-cell-free-circulating-
miRNAs-for-BC-detection). 

Search strategy and inclusion criteria 

The methodology was pre-registered in the international database of prospectively registered 
systematic reviews (PROSPERO; CRD42021229910). The workflow and methodology of the 
meta-analysis were based on the guidelines of Preferred Reporting Items for Systematic Reviews 
and Meta-Analyses of Diagnostic Test Accuracy (PRISMA-DTA) [235]. Publications were searched 
in PubMed and PubMed Central (NCBI PMC) databases as well as the Google Scholar search 
engine. The search was performed up to March 21st, 2022. The full search strategy, with the 
keywords, is documented in the pre-registration. Only peer-reviewed journal articles published in 
English were considered. Abstracts and other types of publications were excluded. Eligible articles 
for inclusion were studies which analysed the diagnostic performance of cfc miRNAs in (early 
stage) breast cancer patients compared to healthy controls or to healthy controls plus patients with 
benign breast lesions. Therefore, any prognostic studies, studies that analysed exosomal miRNAs, 

https://github.com/saraurru/Meta-analysis-of-diagnostic-cell-free-circulating-miRNAs-for-BC-detection
https://github.com/saraurru/Meta-analysis-of-diagnostic-cell-free-circulating-miRNAs-for-BC-detection
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studies that did not have a miRNA model based on RT-qPCR data and studies that did not have a 
model with healthy controls were excluded.  

The study designs included in this meta-analysis are retrospective or prospective case–control 
studies. Studies which included more than 4.5% metastatic (TNM Classification of Malignant 
Tumours stage IV- Table 1) breast cancer patients were also excluded because it is not expected 
to have more than 4.5% metastatic patients within a screening population [236]. Additionally, having 
too many metastatic patients when constructing a diagnostic model might create a bias in selecting 
and evaluating potential biomarkers due to the overall bigger biological differences between 
metastatic and healthy patients compared to non-metastatic patients and healthy controls. The 
studies were also required to report diagnostic performance data (sensitivity, specificity, area under 
the curve of the receiver operating characteristic (ROC AUC), etc.). Studies from which the 
frequencies of true positives (TP), false positives (FP), true negatives (TN) and false negatives 
(FN) could not be directly or indirectly extracted were excluded. If studies had unclear but existing 
patient data, they were included in the analysis, but the authors were contacted for clarification. 
However, studies which did not specify whether stage IV cases were included and did not specify 
their number or percentage were excluded from the study if the authors did not reply to our inquiry. 
In addition, since the Google Scholar search engine was used, we checked whether all article’s 
journals were peer-reviewed and indexed before inclusion in the full-text eligibility evaluation. 

Data extraction and synthesis 

The items and research publications obtained from the mentioned search sources were collected 
as a list in one spreadsheet. All duplicate hits were removed. The publication type, title and 
keywords were evaluated by myself (E.S) and my supervisor Giovanna Chiorino (G.C). Then, the 
abstracts of all articles not excluded in the initial evaluation were read. In case of any 
disagreements, a third reviewer, Philipp Doebler (P.D), was the arbiter. Afterwards, the articles 
that satisfied inclusion criteria based on the screening of abstracts were selected for the full-text 
evaluation, which was performed thoroughly, again by E.S and G.C, in order to decide on inclusion 
or exclusion. In all three steps, the reasons for exclusion were documented. Lastly, a list of articles 
fully eligible for this meta-analysis was compiled. 

Using the same data extraction protocol and data structure, data from the selected articles was 
independently extracted by E.S and G.C. In case disagreements occurred between the two 
reviewers, P.D was the arbiter. From each study, the country, bibliometric data (author, year and 
journal), patients’ average or median age, patients’ BC stage distribution (from stage 0 to stage 
IV), diagnostic performance data (TP, FP, TN, FN; potentially several miRNA models were 
reported and if a study had a train as well as test/validation cohort the performance data were 
extracted only for test/validation cohorts), ROC AUC value(s), normalisation method, cut-off 
value(s), sample size of all groups, miRNA(s) profiled, specimen type, platform information and 
statistical model information were extracted. In addition, from the reported ROC curves, the q-
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Point of the ROC (intersection of the anti-diagonal line on the ROC plot with the ROC curve) and 
three other points, aiming for equal distance between them, which were not on the extremities were 
extracted. As some studies only reported an ROC curve, the q-Point was extracted to obtain a 
uniform performance statistic from all the models. This enabled a complementary analysis because 
there were more studies which reported an ROC curve than studies with diagnostic performance 
data. The three additional points were extracted to fit a parametric ROC curve, which would then 
be used for analyses on sensitivity or specificity preference. The mentioned points were extracted 
from the ROC graphs using the “digitize” function from the digitize package in R software [237]. 

Risk of bias analysis 

All the included studies were evaluated independently by two reviewers, E.S and G.C, using the 
revised tool for Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) [238] in order to 
evaluate the potential risks of bias (in four key domains: patient selection; index test; reference 
standard; flow and timing). The QUADAS-2 was tailored to be more suitable for studies which 
dealt with diagnostic performance of miRNAs for early BC diagnosis (Additional file 1 – Appendix 
A). The main changes were made in Domain 2 (Index test) and Domain 4 (Flow and Timing). For 
each variable in QUADAS-2, the percentage of agreement between the two reviewers was 
determined. Discrepancies in coding or QUADAS-2 evaluations were resolved by trying to reach 
a consensus. In case no consensus could be reached, a third reviewer, P.D, was the arbiter. 

Statistical analysis 

Primary studies use a wide range of computational methods to obtain estimates of diagnostic 
performance and ROC curves, including classification methods like logistic regression and 
machine learning when the screening result depends on more than one variable. In this thesis, I 
will refer to the study-level computations as models, even if the computations are relatively simple. 
By utilising the diagnostic performance data (TP, TN, FP, FN) of the models, the sensitivity, 
specificity and diagnostic odds ratio (DOR) were calculated. In addition, other diagnostic 
performance parameters of the model, such as positive likelihood ratio (PLR), negative likelihood 
ratio (NLR), positive predictive value (PPV), negative predictive value (NPV), accuracy, etc., were 
calculated. Confidence intervals of PPV and NPV were calculated using the formula from [239] if 
sensitivity or specificity were equal to 1, otherwise logit transformation from [240] was applied. A 
formula from [241] was used to calculate the confidence intervals of PLR and NLR. 

Descriptive statistics on diagnostic performance data were calculated using the “madad” function 
from the mada package in R software [242]. The equality of sensitivities and specificities, as well 
as the DOR and their confidence intervals were calculated. In addition, the correlation of 
sensitivities and false positive rates was calculated. Forest plots of sensitivities and specificities, 
the crosshair and ROC ellipse plots were based on those models labelled as the preferred model 
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by primary study authors or, if no preferred model was specified, on the best performing model 
(from now on ‘most important model per study’). 

To estimate pooled sensitivity and specificity, two generalised bivariate linear mixed models (in 
this case referred to as statistical analysis models) were performed: one including all the models 
and one considering only one model per study. A generalised linear mixed model (GLMM) is a 
type of generalised linear model that incorporates fixed and random effects for instances where 
the data comes from different groups such as the diagnostic performance from different studies 
[243]. A bivariate GLMM model is used when the analysed variables of interest, as is the case for 
sensitivity and specificity, are not independent of each other.  

In GLMM on all reported models, random effects on models and studies were added to take into 
account the between- and within-study variance. In the model on most important models per study, 
only the random effect on study was considered, resulting in the bivariate model from [244]. The 
approach was implemented with the “glmer” function in the lme4 package [245], recommended by 
[246], and the summary receiver operating characteristic curve (SROC) was plotted for both models. 
The analyses were repeated on subgroups to detect possible differences in the performance 
measures. Subgroup analyses were based on normaliser type, specimen type, miRNA profiles 
(single or multiple miRNA panel) and presence of stage III and/or stage IV cases (< 4.5% as 
previously described). In addition, a subgroup analysis was performed on three subsets of studies 
depending on their QUADAS-2 score. Specifically, the score was determined by the number of 
“low” classifications (indicating a low probability of bias) among the seven key QUADAS-2 
questions. The cut-points of the three subsets were set at > 3, > 4 and > 5 “low” classifications. 

To assess the performance of models that did not report performance data, we used the extracted 
q-Points from the ROC graphs. From the extracted q-Points, we calculated the log-DOR on which 
we performed univariate analyses. The univariate analysis was performed on all models and the 
most important model per study. Forest plots were generated on the calculated log-DOR. The 
univariate analysis based on the log-DOR was also performed on the subgroups, both on all models 
and the most important model per study within the subgroups.  

The univariate analysis was performed using the metafor package [247], with functions “escalc”, 
“rma.mv” and “rma.uni”. The “escalc” function was used to calculate the effect sizes and sampling 
variances for the log odds ratio. Then, on the calculated effect sizes and sampling variances 
“rma.mv” was applied when analysing multiple models from one study, allowing us to account for 
this fact, while the function “rma.uni” was used when analysing the most important model from 
studies. For both functions we used the restricted maximum likelihood (REML) method. 

Sensitivity analysis 

The outlier analysis was performed on all the models that reported diagnostic performance data. It 
was calculated based on the odds ratio. After the odds ratio for all models had been calculated, the 
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z-scores were calculated and a cut-off of z-score > 2 was selected to classify outliers. Additionally, 
influence analysis was performed on all models and the most important model per study. To 
identify the most influential studies, influence analysis was performed on the study level by taking 
into account all extracted models per study. Cook’s distance of the bivariate mixed models was 
calculated using the “influence” function from the influence.ME package [248]. The z-scores were 
calculated based on Cook’s distance and models with a z-score > 2 were deemed influential. 

Imbalance of proportions 

Different research designs are also reflected in the proportion of cases to controls, which might 
have an effect on the resulting performance measurements (i.e., sensitivity and specificity). To 
compare the performance of models with the imbalance of proportions of cases to controls or 
predicted positive to predicted negative screens, all reported models were divided into three 
groups. The cut-points for imbalance of proportions were set at < 0.7, between > 0.7 and < 1.3 
and > 1.3. A graphical technique was utilised where the models were plotted on an ROC plane and 
marked according to the imbalance of proportions group they belonged to. Additionally, to further 
test the sensitivity of the mentioned graphical technique, the models were also divided into five 
groups with the cut-points for the imbalance of proportions set at ≤ 0.4, between > 0.4 and ≤ 0.8, 
between > 0.8 and ≤ 1.2, between >1.2 and ≤ 1.6 and > 1.6. 

Implicit cost of misdiagnosis 

Despite similar accuracy in terms of statistics like the ROC AUC, study-level ROC curves can 
have very different shapes. Assuming authors consciously or intuitively balance the shape of the 
study level ROC curve in accordance with the primary screening purpose, the study level ROC 
reflects a preference or compromise between sensitivity and specificity in the context of a 
population-level prevalence. Based on a method of [249], we include two statistics explained 
subsequently: (i) The shape parameter α that quantifies the (a)symmetry of the study level ROC 
curve. A value of α = 1 indicates an ROC curve symmetric around the anti-diagonal on ROC space. 
Low values of α indicate a preference for specificity over sensitivity at the same overall accuracy, 
while high values lead to a preference for sensitivity over specificity. (ii) The cost parameter c1 is 
a measure of the (implicit) author’s perceived cost of a false negative misdiagnosis in relation to 
the cost of a false positive misdiagnosis. A value of c1 = 1 indicates that for the prevalence at hand, 
authors chose a cut-off value for the primary study’s ROC curve that assumes equal cost for both 
types of misdiagnoses. Values lower/higher than 1 correspond to lower/higher cost of a false 
negative case in relation to a false positive case. To assess the preference, the shape of the ROC 
curve was analysed, adapting a parametric method of [249].  

Assuming that for every study the following relationship holds:  

𝑡!(𝑠𝑒𝑛𝑠) = 𝑡!(𝑠𝑝𝑒𝑐) + 𝜃	 
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where 

𝑡!(𝑥) = 𝛼 log(𝑥) − (2 − 𝛼) log(1 − 𝑥), 

𝑥 ∈ (0,1), 𝛼 ∈ (0,2) 

so that α is a shape parameter and θ is an accuracy parameter [249]. For a constant accuracy, the 
parameter α governs the asymmetry of the ROC curve. Hence, low values of α lead to a preference 
for specificity, while high values lead to a preference for sensitivity. We have used estimates of α 
to evaluate if an individual model has an inherent preference for sensitivity or specificity as well 
the general preference characteristics of meta-analysed models.  

The tα transformation was chosen because it has been shown to be more suitable than the logit 
transformation [250]. Based on the extracted three points from the ROC curve, three pairs of 
sensitivity and specificity values, and for a set of α values, tα and θ were calculated for each point. 
By minimising the heterogeneity statistic Q, estimates of α result for each model in each study (cf. 
Eq. 23 in [249]).  

We assume that authors base their decision about the study-level cut-off on study-specific 
(perceived) costs c1 for not detecting a BC patient and c0 for a positive screen of a healthy woman. 
The cost c1 is represented in units of c0, and by setting c0=1, we simplified the calculation to this 
one parameter. Similar to the α parameter, the c1 cost was used to evaluate if an individual model 
was affected by an inherent author preference as well as to evaluate the general author preference 
among the meta-analysed models.  

For a prevalence π the expected cost is therefore 

𝔼(𝑐𝑜𝑠𝑡) = 𝑐"𝜋(1 − 𝑝) + (1 − 𝜋)𝑞 

where p and q are short for sensitivity and false positive rate. Without loss of generality, the ROC 
curve is parametrized in q, so that p is a function of q. We can differentiate by q to obtain  

𝜕
𝜕𝑞 𝔼

(𝑐𝑜𝑠𝑡) = −𝑐"𝜋
𝜕
𝜕𝑞 𝑝

(𝑞) + (1 − 𝜋)
𝜕
𝜕𝑞 𝑞 = 	−𝑐"𝜋

𝜕
𝜕𝑞 𝑝

(𝑞) + (1 − 𝜋) 

The minimum cost is found at the q with  

𝜕
𝜕𝑞 𝔼

(𝑐𝑜𝑠𝑡) 	= 	0 

and we obtain 
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𝑐" =
1 − 𝜋
𝜋 	

1
𝑝#(𝑞) =

1 − 𝜋
𝜋 	

1
𝑔$"(𝑔(𝑞) + 𝜃)′ =

1 − 𝜋
𝜋 	

𝑔′(𝑝)
𝑔′(𝑞) 

where g represents the tα transformation. Since tα has a closed-form first derivative [251], an explicit 
formula for c1 results by plugging in the derivative. Also, note that the value of c1 depends on the 
prevalence, but when the same prevalence can be assumed for the target populations of all studies, 
the prevalence factor (1-π) / π is the same for all studies. This means c1 values can be compared 
even when there is uncertainty about the prevalence. Hence, here we ignore the prevalence factor, 
so that  

𝑐" =	
𝑡!# (𝑝)
𝑡!# (𝑞)

 

It is important to note that as we included studies from all over the world, the BC incidence rate 
was probably not the same for all target populations. This might also imply that the prevalence 
varies across the target populations of the meta-analysed studies, which could be a limitation of 
the method. Nevertheless, it was not possible to retrieve the prevalence for all the meta-analysed 
target populations, therefore we opted to assume the same prevalence for all studies. The implicit 
cost of misdiagnosis was assessed among all reported models, as well as the most important models 
for each study. 

Publication bias 

The “escalc” function from the metafor package in R was used to calculate the effect sizes and 
sample variances of the models, which were then used to generate a funnel plot. In order to test for 
publication bias, Egger’s test using the “rma.mv” function was performed. 

Identifying new cfc miRNAs associated with BC detection 

Cohort and questionnaire data 

This project was based on a prospective cohort study (ANDROMEDA) on women of the city of 
Turin and the province of Biella who attended breast cancer screening in two clinical centres. The 
target population of the study included women aged between 46 and 67 who were invited to breast 
screening. The enrolment of women started in July 2015 for the clinical centre of Turin and in May 
2016 for the clinical centre Biella, and it lasted until March 2018 for both centres. A total of 26,640 
women were included in this study, and the cohort has been followed to date through screening 
archives and hospital discharge cards to document the onset of potential new BC cases after 
enrolment. At the time of the screening appointment, all eligible women were offered to participate 
in the mentioned study. A detailed explanation of the study protocol was given to each participant, 
who signed a written informed consent form. Women with a personal history of BC, with a severe 
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disease or who were unable to give informed consent were excluded from the study. Recruited 
women were also invited to undergo anthropometric measurements (height, weight, waist 
circumference and body composition) and to provide a blood sample from which the serum, 
plasma and buffy coat would be extracted and stored. Ethical approval for the study was obtained 
from the Ethics Committee of each participating centre (Ethical and deontological institutional 
review board of the A.O.U Città della Salute e della Scienza of Turin with the protocol number 
78326 on 11.07.2013, and Ethical Committee of Novara with the protocol number 248/CE and 
study number CE 27/15). The research was performed in accordance with the Declaration of 
Helsinki guidelines, and the study was registered in ClinicalTrials.gov with the number 
NCT02618538 on November 27th, 2015. 

Women who agreed to participate were asked, immediately at the enrolment desk, to complete a 
short questionnaire on general BC risk factors such as reproductive and BC family history, 
previous breast biopsies, basic physical activity level, BMI and alcohol consumption. Additionally, 
at a later time-point, they were asked to complete a more detailed questionnaire on diet, physical 
activity, smoking habits, general state of health and psychological distress.  

Lifestyle information was gathered and employed to build a comprehensive lifestyle score, as 
proposed by Romaguera and colleagues on the EPIC cohort [252], based on the adherence to the 
World Cancer Research Fund (WCRF)/American Institute for Cancer Research (AICR) 
recommendations [253]. The lifestyle score ranges from 0 to 8 and sums up the scores of the 
following eight items, which all have a score of 0, 0.5 or 1:  

1) BMI (18.5 to 24.9 = 1; 25 to 29.9 = 0.5; < 18.5 or ≥ 30 = 0) 
2) Level of physical activity (manual/heavy manual job, or > 2 h/week of vigorous physical 

activity, or > 30 min/day of cycling/sports = 1; 15 to 30 min/day of cycling/sports = 0.5; < 
15 min/day of cycling/sports = 0) 

3) History of breastfeeding (cumulative breastfeeding: ≥ 6 month = 1; cumulative 
breastfeeding: > 0 to < 6 month = 0.5; no breastfeeding = 0)  

4) Consumption of high energy-density foods (energy density ≤ 125 kcal · 100 g−1 · day−1 = 
1; energy density > 125 to < 175 kcal · 100 g−1 · day−1 = 0.5; > 175 kcal · 100 g−1 · day−1 
= 0)  

5) Plant-based foods such as whole grains, vegetables, fruits, and beans (sum of fruit and 
vegetable intake and dietary fibre intake: F&V intake: ≥ 400 g/day = 0.5; F&V intake: 200 
to < 400 g/day = 0.25; F&V intake: < 200 g/day = 0; dietary fibre intake: ≥ 25 g/day = 0.5; 
dietary fibre intake: 12.5 to < 25 g/day = 0.25; dietary fibre intake: < 12.5 g/day = 0)  

6) Red or processed meat (red and processed meat < 500 g/week and processed meat intake 
< 3 g/day = 1; red and processed meat < 500 g/week and processed meat intake 3 to < 50 
g/day = 0.5; red and processed meat ≥ 500 g/week or processed meat intake ≥ 50 g/day = 
0)  
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7) Alcoholic drinks (standards for women: ethanol intake ≤ 10 g/day = 1; ethanol intake > 10 
to 20 g/day = 0.5; ethanol intake > 20 g/day = 0) 

8) Added salt to food (salt adding to food based on the questionnaire: never = 1; sometimes 
= 0.5; very often = 0) 

We also tested the lifestyle score based on the newer WCRF guidelines from 2020 [254] with two 
key differences compared to the previous score. One is the addition of consumption of sugar-
sweetened drinks (sugary drink intake 0 g/day = 1; sugary drink intake ≤ 250 g/day = 0.5; sugary 
drink intake > 250 g/day = 0) instead of the score of added salt to food. The other difference is that 
the BMI score was added to the circumference score (< 80 cm = 1; > 80 cm to < 88 cm = 0.5; ≥ 
88 cm = 0) and divided by 2. 

Breast density calculation 

Standard DMs were performed and read by two expert radiologists. Before the screening program, 
the radiologists took part in an internally organised workshop to homogenise their breast density 
assessments. Hence, each mammogram was read by one radiologist and there was no consensus 
protocol. Additionally, artificial intelligence was not used to read the mammograms. Breast density 
was calculated during breast examination through two different algorithms: BI-RADS [70] and 
Tabar [71]. The BI-RADS classified the breast density into category 1– almost fatty (< 25% 
glandular component), category 2– scattered fibroglandular densities (25 to 50% glandular); 
category 3– heterogeneously dense (51 to 75% glandular); and category 4– extremely dense (> 
75% glandular) [70]. Similarly, Tabar classification was adopted as follows: I (balanced proportion 
of all components of breast tissue with a slight predominance of fibrous tissue), II (predominance 
of fat tissue), III (predominance of fat tissue with retroareolar residual fibrous tissue), IV 
(predominantly nodular densities), V (predominantly fibrous tissue) [71]. For subsequent analyses, 
considering sample distribution and risk classification, the IV and V categories of Tabar’s 
classification were grouped in a unique category. 

The mean and standard deviation were calculated, and a univariate logistic regression analysis 
between cases and controls was applied on the variables of interest within the questionnaire data 
as well as on the breast density classifications. The “glm” function in R was used, with the family 
set to “binomial” to perform the univariate logistic regressions (family set to binomial). 

Cases and controls 

Incident BC cases were identified, and histopathological information was obtained through record 
linkage with screening archives, cancer registries and hospital discharge cards. From the large 
cohort of women enrolled in the ANDROMEDA study, cases and controls were selected among 
participants who agreed to provide blood samples at the time of recruitment in order to conduct a 
nested case–control study.  
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Cases in the discovery cohort were restricted to women with incident BCs diagnosed within June 
2018, for whom blood was collected before any treatment (n = 70). Moreover, due to the relatively 
short time between blood storage and cases/controls extraction, random sampling, without variable 
matching, of 70 controls from women who did not experience any BC event before June 2018 was 
performed. No interval cancers were observed among the controls. This cohort of 70 cases and 
controls was used as a discovery cohort.  

A validation cohort, also nested into the study cohort, was extracted as follows. BC cases were 
obtained from cases diagnosed after June 2018 (these were either women who were recruited in 
the later window of screening or women who were negative at the time of blood sampling and 
were diagnosed at a later point in time). Unfortunately, there was a power issue with a freezer that 
stored the Torino samples, and therefore, the number of validation cases was drastically reduced, 
relying only on cases observed from the Biella samples. Therefore, all the cases (n = 32) in the 
validation cohort came from the hospital of Biella, and their details were obtained from the 
pathology reports. The range of time to diagnosis after blood sampling was from 21 days to 4.3 
years (mean: 2.1 years; standard deviation: 1.3 years). A total of 127 healthy controls to be 
included in the validation cohort were randomly selected in the same way as in the discovery 
cohort. The validation healthy controls were made up of two subtypes:  

1) Women classified as negative for BC during the mammography screening. 
2) Women who had a suspicious mammography and underwent a biopsy for a histological 

examination of breast tissue but were in the end confirmed to be negative for BC. 

The selection and number of healthy controls were determined such that for each BC case there 
are three type 1 and one type 2 healthy controls. The reasoning behind such a selection and sample 
distribution was to resemble the screening cohort to the extent feasible in this nested case–control 
study. Intrinsic subtypes of BC in the discovery and validation cohorts were defined using the 
clinicopathologic surrogate definition reported at the 13th St. Gallen International BC Conference 
[24]. 

Missing data on selected clinical, demographic, lifestyle and other non-molecular variables was 
imputed using the mice package from R [255], which allows for selecting variables from which the 
imputation can be inferred. Imputation had to be performed, as due to the limited sample size, it is 
a reasonable trade-off to have the already characterised questionnaire data in the context of BC 
with some errors while keeping the miRNA information and sample size as high as possible within 
this study. 

Blood handling 

At the time of blood collection, 6 ml of blood was sampled in two tubes, one with 
ethylenediaminetetraacetic acid (EDTA) and one with lithium heparin. Both tubes were 
centrifuged at 2500 revolutions per minute (RPM) and 4 degrees for 10 minutes. The tube 



34 
 

containing EDTA was used for plasma and buffy coat extraction, while the other was for serum 
extraction, which will not be covered in this thesis as no analyses were performed on it. After 
centrifugation, without disrupting the part with the buffy coat, the supernatant was then carefully 
transferred to a 15 ml falcon tube (details on plasma reported below). To transfer the buffy coat, 
we used a 1000 µl tip, which had a part of its end horizontally cut off. Both tubes, including plasma 
and buffy coat, had a barcode on them and were stored at −80 °C degrees. 

In order to prevent haemolysis, plasma was isolated from EDTA blood tubes within 1h from 
collection. Blood was centrifuged at 2500 RPM (1250 g) at 4°C for 10 minutes. The supernatant 
was transferred into new tubes and was centrifuged again at 2500 RPM (1250 g) at 4°C for 10 
minutes to remove cell debris and fragments. Plasma was stored in 4.5 ml cryovials at −80°C until 
its transfer to the Cancer Genomics Lab. For each sample, we calculated the haemolysis score by 
centrifuging 10 μl of plasma at 1000 g for 5 minutes at room temperature and measuring the 
absorbance at 385 and 414 nm using the NanoDrop spectrophotometer (Thermo Fisher) with the 
UV-VIS program [256]. Lastly, 220 μl aliquots were created for each sample and stored in 1.5 ml 
tubes at −80°C. Samples with haemolysis score < 0.057 or 414 nm / 385 nm absorbance ratio 
below 2 were kept for further processing. 

RNA extraction 

Centrifuged aliquots of 220 μl at 1000 g at 4°C for 5 minutes were used for total RNA extraction. 
The extraction was performed using the miRNeasy serum/plasma kit (Qiagen) following the 
Exiqon protocol, with the bacteriophage MS2-RNA carrier (Roche Diagnostics) inserted to 
promote RNA precipitation and purification on membranes. Additionally, the Caenorhabditis 
elegans cel-miR-39-3p miRNA mimic spike-in (Qiagen) was added, although ultimately, it was 
not used for normalising purposes, as will be clear in the upcoming sections. RNA samples were 
eluted in 30 μl of nuclease-free water and stored at −80°C. 

DNA extraction 

For the purposes of PRS calculation and promoter methylation analysis, genomic DNA was 
isolated from 200 ul of buffy coat utilising the MagMAX DNA Multi-sample Ultra 2.0 kit (Thermo 
Fisher Scientific, Waltham, MA, USA). DNA concentration and purity were checked by Nanodrop 
Spectrophotometer (Thermo Fisher).  

Small-RNA sequencing 

For library preparation, the Ion Total RNA-Seq kit v2 protocol (Thermo Fisher) with the 
recommendations for low input RNA quantity was followed. First, RNA samples were enriched 
for small-RNA fraction using a magnetic bead-based technology. After hybridisation and ligation 
steps, through which 3' and 5' adaptors are directionally and simultaneously attached, reverse 
transcription was performed to obtain cDNA. cDNA was subsequently purified, size selected and 
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then amplified using barcoded primers (obtained from Ion Xpress™ RNA-Seq Barcode 01-16 Kit, 
Thermo Fisher or synthesised by Eurofins Genomics as custom oligonucleotides (barcodes 17-
24)). Finally, libraries were purified with beads. All the purification steps were performed by 
means of the Magnetic Bead Cleanup Module included in the kit. Libraries were checked for yield 
and size distribution by Bioanalyzer System and DNA 1000 Kit (Agilent Technologies), and 
differentially barcoded small-RNA libraries were pooled. Pools were checked by Bioanalyzer 
System and DNA 1000 Kit (Agilent Technologies) to determine the library dilution required for 
template preparation. Ion Chef™ System (Thermo Fisher) was used for automated templated Ion 
Sphere Particles preparation and chip loading. Ion 540 chips (Thermo Fisher) were sequenced 
using the Ion GeneStudio S5 Plus System (Thermo Fisher). Raw sequence reads were processed 
using the small-RNA plugin available within the Torrent Suite Software version 5.10 (Thermo 
Fisher). The reads were aligned to mature miRNAs using the bowtie2 alignment software [257], 
bundled with the plugin. miRNA counts were generated using the featureCounts [258] software from 
the Subread package 1.5.3.  

In order to assess the best normalisation technique for the raw count miRNA data, the DANA 
package from R was used [259]. DANA compares several normalisation methods (Total Count, 
Upper Quartile, Median, Trimmed Median of Means, DESeq, PoissonSeq, Quantile 
Normalisation, Remove Unwanted Variation) and reports which of them is the most optimal for 
the given dataset. The “Remove Unwanted Variation” method was not assessed in this case as it 
was not applicable to our data (output errors despite several debugging efforts, including 
contacting the authors of the package). In brief, this method exploits the fact that miRNAs with 
low counts (marked as interval between: tzero – tpoor) are probably due to handling effects and are 
positively correlated with each other. These miRNAs are considered negative controls. The tzero 
and tpoor values are selected manually but should usually be around 1-2 and 3-7, respectively [259]. 
Additionally, the method exploits the fact that only a subset of miRNAs are expressed in a given 
sample and that a subset of those miRNAs are often organised into polycistronic clusters that tend 
to be co-regulated and thereby co-expressed. The software uses the miRNA names and defines 
which miRNAs are found in a mutual polycistronic cluster based on the miRBase database [260] 
(hairpins separated by < 10kb on the chromosome). Such miRNAs that have a count > twell are 
considered positive controls. The twell represents the mean count cut-off above which miRNAs are 
considered well-expressed. For negative controls, the overall strength of inter-marker correlations 
is quantified, while for positive controls, the direct co-expression relation for each marker pair is 
assessed. The goal is to test the ability of the mentioned normalisation methods to remove minor 
correlations among negative controls while minimally affecting the co-expression of the positive 
control miRNA pairs located in a mutual polycistronic cluster. 

For this project, the tzero was set at 2 counts, the tpoor at 5, while twell was set at 20 counts. We used 
a histogram of the normalisation assessment to compare the relative reduction of handling effects 
and biological signal preservation among the methods. Further, a histogram of the log2 counts was 
plotted as well as a plot of mean and standard deviation of the raw counts (marking the tzero, tpoor 
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and twell). Finally, miRNAs with mean raw counts larger than 20 were selected for all further 
analyses.  

Descriptive statistics were performed on the filtered raw counts, and the variance stabilising 
transformation of the dataset was performed by the Deseq2 package in R. This included the mean, 
standard deviation (SD) and coefficient of variation (CV) of the miRNAs. Additionally, a principal 
component analysis (PCA) was performed, using the “princomp” function in R, while labelling 
the samples according to their status (tumour or normal). Moreover, using a generalised linear 
model we performed class comparison between cases and controls on filtered miRNAs using the 
Deseq2 package. 

RT-qPCR assaying 

The expression of selected miRNAs was evaluated by RT-qPCR on a Bio-Rad CFX-96 machine 
with TaqMan probes. Four µl of RNA from each sample were reverse transcribed using TaqMan 
MicroRNA Reverse Transcription kit (Thermo Fisher), with a custom pool of selected microRNA 
primers (Thermo Fisher). Then, 2.5 µl of reverse transcription reaction product was pre-amplified 
with TaqMan PreAmp Master Mix (Thermo Fisher) and a second pool of selected MicroRNA 
primers (Thermo Fisher). Preamplified samples were diluted with TE buffer and stored at -20°C 
for up to one week. A volume of 0.10 µl of diluted preamplified sample was mixed with PCR 
Master Mix (Thermo Fisher) and water and then transferred in a well of the microRNA plate (10 
µL of reaction volume). Custom 96 well plates (Thermo Fisher) with 24 miRNA assays spotted in 
triplicate were used, allowing for the analysis of one sample per plate. One of the plates for each 
run also assayed the negative control of the reverse transcription, while all the plates ran a blank 
negative control on all the miRNAs assayed. 

The mean Cycle threshold (Ct) was calculated from the obtained triplicates. Non-detects were 
replaced with the Ct value of 40. If a replicate within the triplicate was 1 standard deviation away 
from the mean, it was excluded, and a new Ct mean was calculated.  

The RT-qPCR protocol on miRNAs analysed in the validation cohort was the same as the 
discovery cohort, with the key difference being that miRNAs were assayed in duplicates instead 
of triplicates. This was done due to the assumption led by results from the discovery cohort that 
the miRNAs expression would be stable, therefore saving time and materials. Hence, the SD was 
utilised to remove one replicate, and the average Ct was calculated using all duplicates. Imputation 
was done in the same way as in the discovery cohort. 

For RT-qPCR results in the two cohorts, descriptive statistics were performed on raw Ct values. 
To investigate the raw Cts, a plot of means on the x-axis to SDs on the y-axis was created for each 
miRNA, with points coloured based on the status (case or control). 
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SNP genotyping and polygenic risk score calculation 

The SNP genotyping was done on a larger ANDROMEDA sample (384: 115 cases and 269 
controls), which included the 131 samples from our discovery cohort [261]. Libraries were prepared 
starting from 15 ng of DNA and according to the Ion AmpliSeq Library Kit 2.0 protocol for 
sequencing on the Ion PGM system. The custom panel (Ion AmpliSeq Custom Panel) that 
selectively covered 77 SNP target sequences was designed through AmpliSeq Designer 
(www.ampliseq.com). Ion Xpress Barcodes kit (1-16, 17-32 and 33-48), Ion Ampliseq custom 
Primer Pool and Ion AmpliSeq Library Kit 2.0-384LV were used in conjunction to obtain libraries. 
The Ion Library Equaliser kit was used to normalise for DNA concentration. Equalised barcoded 
libraries were pooled and sequenced using Ion PGM Hi-Q OT2 kit and Ion PGM Hi-Q Sequencing 
Kit on Ion PGM 318 chip V2 on an Ion Torrent PGM (Thermo Fisher Scientific). 

Variant calling was performed utilising the Variant Caller plugin within the Torrent Suite Software 
version 5.10 (Thermo Fisher). The polygenic risk score (PRS) was calculated by adding the 
multiplications of the log odds ratio of each of the 77 SNPs [109] by the genotype at respective loci 
(0 for wild type, 1 for heterozygous variant and 2 for homozygous variant). Details on the SNP 
genotyping, imputation and additional analyses can be found elsewhere [261]. For the PRS on four 
samples which were not successfully genotyped, we imputed the PRS by taking the mean of the 
PRS (from the larger cohort) in the respective case or control group. 

Methylation profiling of gene promoters 

On the 70 cases and 70 controls, we performed methylation-sensitive high resolution melting (MS-
HRM) analysis on promoters of three genes: BRCA1, RARB and APC. This was done to determine 
if any of the methylation profiles were different between cases and controls and whether they could 
be used in the final logistic regression model (with miRNAs and non-molecular variables). The 
three genes were selected according to information from the literature on promoter methylation 
associated with BC diagnosis. 

The MS-HRM method exploits the fact that it takes more energy to break the cytosine-guanine 
bonds than the thymine-guanine bonds, which would happen on loci where the cytosine was not 
methylated, as the bisulfite treatment of DNA preserves methylated cytosine and converts 
unmethylated cytosine to uracil which will then be replaced by thymines after the replication by 
PCR. During the PCR, after the heteroduplex formation, the temperature will gradually be 
increased, and the bound fluorescent dye will be released, creating an overall decrease in 
fluorescence. Hence, amplicons from samples with high methylation will melt at higher 
temperatures than those with lower methylation [140]. 

The experiment on MS-HRM was performed in the Laboratory of Genomics at the Department of 
Medical Sciences of Turin and at the Italian Institute for Genomic Medicine in Candiolo by Dr. 
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Alessia Russo. Briefly, aliquots of the extracted DNA used for the SNP analysis were used for 
MS-HRM. The DNA integrity was assessed using agarose electrophoresis gel and quantity was 
measured using a fluorometric method (Qubit broad range assay, Thermo Fisher). A total of 500 
ng of DNA was bisulfite converted using EZ-96 DNA Methylation-Gold™ Kit, Zymo. 

In each MS-HRM run, a series of six methylation standards (0%, 10%, 25%, 50%, 75%, 100%) 
were included to estimate the methylation levels in the samples together with an unconverted 
control DNA sample to check primers specificity for bisulfite converted DNA. This was done by 
mixing 100% and 0% methylated DNA in different proportions. For each gene, due to the sample 
size, the analysis was performed on two plates. Further, in the second plate of each gene, an 
additional methylation standard was added (5%) for a more precise characterisation of smaller 
methylation values, as we observed relatively low methylation in the first plates. MS-HRM was 
performed on a 7900HT Fast Real-Time PCR System (Applied Biosystems). Each sample was run 
in triplicate. Primer sequences were chosen as reported in [262] and the MeltDoctor HRM. Master 
Mix guide was followed for PCR reactions and conditions. The temperature values at which the 
fluorescence was measured were the same for all the samples and standards. Hence, the only 
parameter changing was the aligned relative fluorescence unit (RFU). Data quality analysis was 
performed using SDS and HRM software (Applied Biosystems). 

As the melting data was obtained in triplicates, the average of the triplicates was calculated for 
both standards and samples. Descriptive plots and statistics (including the melting point) were 
performed on the replicates using the “meltcurve” function from qpcR package [263]. If the melting 
point of the replicates is 0.2 °C away from the other 2, then it was excluded, and the average was 
calculated on the other two replicates [264]. From the melting curve data, the triplicate derivative 
curves were plotted on methylation 0% and methylation 100% standards, to assess the difference 
in melting curve and melting point between them. Further, a difference plot was created where the 
fluorescence at each temperature point of methylation standard 0% was subtracted from all other 
standards. The variability of fluorescence at each temperature point was assessed for standards and 
samples using the “MFIerror” function from MBmca package [265].  

Interpolation of methylation 

In order to derive the methylation level of a sample it was compared to the methylation standards. 
First, splines were computed on the standards, to which the samples’ values were compared, using 
the “spline” function in R with the method set to “natural” at 1000 equally spaced points. The 
splines were then used to generate an interpolation curve. The splines were obtained in two ways, 
depending on which approach was better for a given dataset:  

1) Interpolation based on the maximum relative fluorescence difference of a standard to 0% 
methylation standard.  

2) Interpolation based on the unweighted average fluorescence value across all temperature 
points.  
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After obtaining the interpolation curve for the standards, the methylation values for the samples 
were estimated by either calculating the maximum difference between fluorescence on a given 
sample and 0% methylation standard or the average fluorescence value. The methylation estimates 
were then calculated by determining the position of each patient sample’s average or maximum 
RFU among the methylation standard splines. This was done using the “findInterval” function. 
Then, by dividing this value by the number of interpolations and multiplying by 100, we would 
get the methylation percentage for that specific sample. 

Biomarker screening and validation strategy 

In this section, I will report the statistical analyses and research strategies employed to obtain 
candidate biomarkers associated with BC detection. I will also describe the initial selection 
procedure in the discovery cohort and the subsequent assessment in the validation cohort. 

Discovery cohort 

This section will cover the methods used to select the most promising minimally invasive 
biomarkers within the discovery cohort. 

PRS analysis 

The normality of the distribution of PRS on the 77 SNPs was tested using the Shapiro–Wilk test 
(“shapiro.test” function). Summary statistics were calculated, and a density plot of the PRS was 
created on all samples, as well as samples stratified by BC status. We also tested whether the PRS 
means significantly differ between cases and controls using a two-sample t-test. In addition, we 
tested the variance and distribution of PRS using an F-test and Kolmogorov–Smirnov test, 
respectively. Finally, a logistic regression, using the “glm” function in R (family set to binomial), 
was created on the PRS score with the BC status as the dependent variable. An ROC AUC was 
also created based on an apparent validation within the discovery cohort. 

MS-HRM analysis 

The methylation estimates from the MS-HRM plates were merged for further analyses, and general 
descriptive statistics were performed. To test for normality, we performed the Shapiro–Wilk test. 
Class comparison between cases and controls was performed using the Mann–Whitney U test. In 
order to complement the class comparison, using the “glm” function and setting the family to 
binomial, we evaluated the classification performance of the methylation data using logistic 
regression. The performance was estimated by inspecting the model coefficient of the predictor 
(in this case methylation estimate) or by inspecting the ROC AUC of the prediction for which we 
separated the original dataset in train (70%) and test set (30%). Bootstrap (n = 2000) was 
performed on the coefficient and AUC estimates, and their respective histogram depicting values 
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at each n, as well as the quantiles of standard normal were plotted. Package boot was used for all 
bootstraps with default settings unless specified otherwise [266].  

In cases where data contained many zeroes, or in this case many samples with an estimated 0% 
methylation on a given gene promoter, we employed additional statistical analyses. The two-part 
statistic separates the non-zero from zero data, performs separate statistical analyses on them and 
finally merges them for a combined p-value that determines whether the cases and controls differ 
based on this data [267,268]. Firstly, we compared the proportion of zeros in cases versus controls 
using the following equation [267]:  
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where n1 and n2 the number of samples in cases and controls and p1 = m1/n1, p2 = m2/n2 and p 
= (m1+m2)/(n1+n2). M1 and m2 represent the number of zero values in the two groups. 

Since this statistic follows the chi-squared distribution, we used the “pchisq” function in R at one 
degree of freedom to obtain the p-value for only this test. Additionally, the continuous part can be 
analysed using the Wilcoxon rank sum test, Student's t-test, and the Kolmogorov–Smirnov test. In 
this study we used the Wilcoxon two-sample test using the “wilcox.test” function. However, for 
the two-part analysis method, we needed to extract the standardised rank sum statistic (W), which 
is done as follows: 
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where R1 is the rank sum, i.e., the sum of the ranks in group 1. Details on the method can be found 
in [268]. 

After calculating W, we squared it and added it to the previously obtained B2 to obtain X2, which 
is the statistic for the two-part test. X2 also follows a chi-squared distribution at 2 degrees of 
freedom. Hence, we employed the “pchisq” function in R at 2 degrees of freedom to obtain the p-
value of the two-part test. We also performed a permutation on the same test statistic and obtained 
the p-value by counting the number of results as large or larger than the observed X2 and dividing 
by the number of permutations. Finally, we also computed a zero-inflated regression model (which 
fits a generalised additive model for location, scale and shape model for the positive value part, 
and a logit model for the zero part versus the non-zero part) and tobit regression model (which 
assumes the data is normally distributed but that the values get censored at 0). The zero-inflated 
model was created using the “gamlssZadj” function from the gamlss.inf package [269], while the 
tobit regression model was created using the censReg package [270]. A bootstrap was also performed 
on the predictor coefficient for both models.  
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miRNA analysis 

The chief goal of this study was to find potential miRNAs associated with BC onset that could be 
utilised in the clinics via RT-qPCR, and as there are no optimal RT-qPCR normalisers for small 
non-coding RNAs [271], we decided to focus on miRNA ratios which will eliminate all laboratory 
systematic biases (Figure 8). Since the initial discovery of miRNAs as biomarkers was carried out 
utilising small-RNA sequencing, to make the two platforms comparable, we computed the 
pairwise ratios of filtered miRNAs already within the small-RNA sequencing data.  

For any miRNA pairs with identical count profiles (either due to being clustered or to one miRNA 
having two different names), one was removed, and a unique identifier was assigned to represent 
the two miRNAs. Some miRNAs with the same name but different chromosomal origin showed 
different count profiles and were therefore considered as separate. Nevertheless, because the 
mature sequences of the same miRNA originating from different genomic loci are the same, in the 
RT-qPCR validation, such occurrences were considered as one single mature miRNA. In order to 
calculate the ratio between miRNA X and miRNA Y using RT-qPCR data, the following equation 
was used as explained by Deng and colleagues in 2019 [271]: Ctmean(Y) - Ctmean(X). 

 

 
Figure 8. Ratio computation of individual miRNAs to eliminate experimental systematic biases. 

miRNA ratios computed based on small-RNA sequencing and RT-qPCR data were descriptively 
investigated in the same way as the individual small-RNA sequencing miRNAs (see last paragraph 
of Small-RNA sequencing section in the methods). Additionally, the association between 
demographic, lifestyle, anthropometric and reproductive factors, as well as cancer characteristics 
and the RT-qPCR computed ratios, were performed using the Mann–Whitney U test or the Kruskal 
Wallis test, as appropriate, for categorical covariates and using the Spearman correlation 
coefficient for continuous covariates. Continuous variables were reported by mean ± SD or median 
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and I and III quartiles, as appropriate, whereas categorical variables were reported as natural 
frequency and percentage. 

On miRNA ratios computed from small-RNA sequencing raw counts, two-sample Wilcoxon test 
was performed, using the “wilcox.test” function, to compare miRNA ratios between cases and 
controls and p-values were corrected using the Benjamini–Hochberg method. The fold-change was 
calculated based on the median in cases and controls. Ratios significantly different between cases 
and controls (two-sample Wilcoxon test adjusted p-value ≤ 0.01) with a fold change > 2 or < 0.5 
were selected as strategy 1. In contrast, ratios with a coefficient of variation < 0.5 within controls 
and significantly different between cases and controls, without setting any criteria on fold change, 
were selected as strategy 2. The ratios from the two strategies were further analysed, and the most 
promising were selected by a Least Absolute Shrinkage and Selection Operator (LASSO) logistic 
regression. Five-fold cross-validation was used to preliminarily assess the performance of the 
model-selected ratios, separately for the two strategies defined above. Thus, the sample was 
randomly divided into five groups, called folds, and the LASSO logistic model was trained on five 
minus one folds using the “cv.glmnet” function from the glmnet package [272]. Then, the 
performance of the resulting model was evaluated in the remaining part of the data. This procedure 
was repeated for each fold, and the performances were averaged across folds. The following 
performance measures were considered in the five-fold cross-validation: calibration intercept, 
Cox’s measure of spread (often called “calibration slope”) [273], scaled Brier score, and ROC AUC. 
The first three measures mainly relate to the agreement between the observed outcomes and the 
outcomes predicted from the model. For the intercept and scaled Brier, ideal values should be as 
close to zero as possible, whereas for the Cox calibration slope, as close to one as possible. The 
AUC refers to the model’s ability to discriminate between individuals with a different outcome 
and the ideal values should be close to one. 

For exploratory purposes, we also employed the hierarchical shrinkage model (HSM) method 
based on the horseshoe priors, using the hsstan package in R [274]. The horseshoe priors are 
implemented to obtain a reduced list of informative predictive biomarkers. Four chains and 2000 
iterations were performed for each HSM run. This was performed on all computed ratios and ratios 
in strategy 1 and strategy 2. This approach could be considered a useful alternative when the event-
to-variable ratio in a study is low, as is the case in this project. The performance measures 
explained above were also used on the set of ratios selected by the horseshoe priors. 

Biomarker panels 

On RT-qPCR data (i.e., the selected miRNA ratios from small-RNA sequencing analysis), 
univariate odds ratios (OR) and corresponding 95% confidence intervals (CIs) were obtained using 
standard logistic regression. The linearity assumption between a continuous predictor and the logit 
of risk was inspected through the Locally Weighted Scatterplot Smoothing (LOWESS) and 
restricted cubic splines, whereas for ordinal variables the Cochran–Armitage trend test was used 



43 
 

to assess the presence of a linear trend. To derive a ratio-based signature as well as to preliminarily 
investigate the potential added value of miRNA ratios over more conventional BC risk factors and 
their potential independent role in predicting BC risk, the LASSO logistic regression was used. 
Three models were then fitted: one using miRNA ratios only, one combining the ratios with other 
potential BC risk factors and one on BC risk factors alone. To select BC-associated factors for 
inclusion in the model together with the miRNA ratios, we assessed the association between BC 
detection and other factors such as PRS, methylation profile of RARB, APC and BRCA1 promoters, 
demographic, family, reproductive and screening history, lifestyle, and breast density information, 
as well as any interaction between them relevant to BC. The discriminatory ability of the models 
was assessed using ROC AUC (with reported 95% CIs), whereas the Youden index was used as 
the criterion to derive a cut-off point on the predicted probabilities and compute sensitivity and 
specificity. The paired Delong test was used to compare the discrimination among different 
models. 

The correlation of the same ratio between platforms was estimated using the Spearman correlation 
within the “cor.test” function. We also compared the class comparison and OR results for each 
ratio between the platforms. 

Validation cohort 

The LASSO logistic regression coefficients of the selected variables obtained from the discovery 
cohort were applied in the validation cohort. Notably, the RT-qPCR miRNA ratios in the validation 
cohort were computed in the same way as in the discovery cohort. This was performed on the 
model including non-molecular variables only, the model with only miRNA ratios and the 
combined model. To obtain the probability of BC diagnosis for each sample in the validation 
cohort, the coefficients were applied using the following sigmoid function used for calculating the 
probability of an event. For a number of predictors in the model with a coefficient: 

𝑦 =
1
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where y is the predicted probability, B0 is the intercept and B1Xn is the coefficient of the nth 
predictor. To evaluate the calibration of the model, we computed a logistic calibration curve, which 
is obtained by creating a new logistic regression model where the dependent variable is the 
outcome and the independent variable is the log odds of the predicted probabilities. This was done 
using the “val.prob.ci.2” function in the CalibrationCurves package [275–277]. We then investigated 
the calibration intercept (‘calibration-in-the-large’) and the calibration slope as explained in the 
vignette of the package. Additionally, just as in the discovery cohort, we assessed the ROC AUC 
and the Brier score of the predictions. 

To calibrate any potentially miscalibrated models, we used the so-called closed-testing procedure 
to select the optimal model updating method [278]. This approach is based on a series of likelihood 
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ratio tests of updated models compared to the original model. After selecting a p-value for the 
hypothesis that the model we are assessing does not need updating, complete model revision (i.e., 
the coefficients are re-estimated) is tested against the original model. If the model revision is 
significantly better than the original model, we proceed to test the model revision against only 
recalibrating the intercept. If this test is not significant, intercept calibration will be selected. 
However, if it is, the model revision will be selected and compared against calibrating both the 
intercept and slope. If it is significant, model revision is the final selected updating procedure, and 
if not, then the recalibration of intercept and slope is selected. The reason for performing such a 
closed testing approach is to avoid increasing the Type I error if all the model updating options 
were assessed separately. To determine the best model calibration approach based on the closed-
testing approach, a function was created in R, as reported in the appendix of Vergouwe and 
colleagues [278]. For complete model re-evaluation (including the coefficients, intercept and slope), 
we used the ridge regression to reduce some of the overoptimism and overfitting that would arise 
from a regular logistic regression. The function used was “cv.glmnet” from the glmnet package, 
with alpha set at 0. Further, to additionally assess overfitting, we performed a bootstrap on the 
ROC AUC of the ridge regression to gain insight into the performance range on the re-evaluated 
model.  

The alternative model calibration method, in this case used as a comparison to the frequentist ridge 
regression, was the Bayesian approach where the coefficients of the discovery would be used as 
means of prior probabilities and a constant of log(4)/2 would be used for the standard deviation of 
the priors [279,280]. The Bayesian approach is especially recommended for smaller sample sizes [281].  

Finally, we used the internal-external cross-validation (IECV) approach to merge the discovery 
and validation cohort data to identify generalisable predictors and to identify whether a model 
constructed on the merged cohorts would be more informative. IECV merges the individual 
participant data and then trains the model on K-1 cohorts and validates it on the remaining one 
[282]. This is done iteratively until the most optimal model characteristics have been obtained for 
the given data. Heterogeneity between the cohorts (based on the Brier score) of the IECV model 
was assessed, and in case of large heterogeneity, it is not advisable to merge the cohorts for a 
combined model. Nevertheless, the same approach also allows for reducing the heterogeneity 
between the cohorts by starting from an intercept-only model and iteratively adding predictors 
until the heterogeneity is optimised. Additionally, for the IECV we used the restricted maximum 
likelihood (REML) random effect meta-analysis, with the model being estimated in the first stage 
using Firth’s correction (similar to a generalised linear model in performance but recommended 
by authors in cases of small sample size). 

Subgroup and sensitivity analyses 

As there are many different subgroups within the analysed cohort of this study (such as different 
molecular subtypes, differences based on the PRS score or family history), the identified 
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biomarkers are assumed to be generalisable across these subgroups. To test this, I analysed the 
distribution and variances of the identified biomarkers. When only two subgroups were compared, 
this was done using the Kolmogorov–Smirnov test (“ks.test” function), Mann–Whitney U test, and 
F test (“var.test” function). When more than two subgroups were tested, I used the Levene test 
(“leveneTest” function in R) for testing the equality of variances, the Kruskal–Wallis 
(“kruskal.test” function) for testing the mean ranks between the groups and Anderson–Darling 
(“ad.test” function). Lastly, I performed various sensitivity analyses by removing variables and 
testing the performance of the underlying models. The sensitivity and subgroup analyses were 
performed on both the discovery and validation cohorts.  

Validation in TCGA 

We downloaded the TCGA processed raw counts of microRNAs on BC tissue samples and 
adjacent healthy tissue (in February 2023). This was done using the “gdcRNADownload” function 
from the GDCRNATools package [283]. The project.id was set to “TCGA-BRCA” and the data.type 
to “miRNAs”. Metadata was then obtained and merged using “gdcParseMetadata” and 
“gdcRNAmerge” functions, respectively. The metastatic samples and duplicate replicates from 
Formalin-Fixed Paraffin-Embedded (FFPE) blocks were excluded from all analyses, for a total of 
1,078 cases and 104 controls. There were 103 paired tumour and healthy tissue samples. 
Additionally, we filtered out all miRNAs with a raw mean count of ≤ 20 across the samples. 

On the filtered list of miRNAs, using the Deseq2 package, we performed a paired class comparison 
with the focus on the miRNAs which were selected in the discovery cohort. Then, we computed 
pairwise ratios to obtain the same list of ratios selected in the discovery cohort and performed a 
paired Wilcoxon two-sample test on the paired tumour and adjacent healthy tissues. Additionally, 
we computed a conditional logistic regression, used for paired samples, on the selected ratios using 
the "clogit” function from the survival package [284,285]. The function “strata” is used within the 
formula of the “clogit” function to indicate the variable which determines the paired samples. 

Target enrichment and network analysis 

Target enrichment and functional enrichment analyses were performed on miRNAs of interest 
using the Mienturnet online software [286]. The miRTarBase was used to obtain the list of targets 
and for the functional enrichment as it is based on experimental validation. The functional 
enrichment output included the KEGG and WikiPathways databases as well as the Reactome and 
disease enrichments.  

The network analysis on miRNAs of interest was performed utilising the MetaCore database from 
Clarivate. Through the MetaCore software we looked at the transcription factors, canonical 
pathways as well as significant network (z-score > 60) interactions of the input miRNAs/genes 
and related molecules added by the software. 
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Puberty-associated CpGs linked to BC and miRNAs 

Since early pubertal timing is a risk factor for BC [287], in this section I report the methods of 
investigating DNA methylation sites (CpG sites) associated with puberty and linked to BC 
processes or BC risk. This was a part of my secondment project at FIMM, where we identified 
DNA methylation sites associated with puberty and tried to functionally describe them through 
enrichment analyses. Additionally, we employed twin modelling techniques to identify heritable 
CpG sites or CpG sites whose association with puberty was non-genetically driven [234].  

I investigated which microRNAs are relevant to the genes mapped on the CpGs associated with 
puberty that are linked to BC. This would result in a set of epigenetic biomarkers associated with 
puberty and BC. Additionally, a comprehensive analysis, in the context of genetics and 
epigenetics, was performed on DNA methylation sites to elucidate how they are relevant to breast 
cancer in the context of puberty and if some of them are linked to BC risk, onset or progression. 
The CpG sites which were investigated here were retrieved in two ways: 

1) A total of 2,711 CpG sites associated with puberty which were linked to BC processes 
through the Ingenuity Pathway Analysis (IPA) knowledgebase [234], referred to from now 
on as set 1. 

2) CpGs which were associated with puberty and BC risk, referred to from now on as set 2: 
a) CpGs associated with risk based on the EPIC study [143].  
b) CpGs which are differentially methylated between monozygotic twins discordant 

for BC – non-genetic drivers of BC risk manifested on those CpG sites [288]. 

miRNAs targeting genes mapped to CpGs linked to BC 

To determine which miRNAs significantly target the genes mapped to CpGs of set 1 or set 2, the 
Mienturnet software, introduced above, was used. The miRTarBase database was used, and the 
number of minimum interactions was set at 2, with a false discovery rate (FDR) cut-off for target 
enrichment set at 0.05 and 0.2 for set 1 and set 2, respectively. The downloaded output file included 
the miRNA, p-value as well as FDR of target enrichment, OR, number of targeted genes and the 
list of genes.  

Datasets used 

Two datasets were used to assess the methylation status of the CpG sites associated with BC in 
tissue and blood: TCGA and EPIC methylation data. The TCGA tissue DNA methylation data was 
downloaded (in February 2023) using the “GDCquery” followed by the “GDCdownload” 
functions (project = “TCGA-BRCA” and data.type = “Methylation Beta Value”) from the 
TCGAbiolinks package [289] and the dataset consisted of tumour tissue and adjacent healthy tissue 
samples. The summarised experiment object was obtained using the “GDCprepare” function, 
followed by the assay function which gave us the methylation Beta values for the mentioned 
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samples. Metadata was obtained from the initial object obtained from the “GDCquery” function. 
We removed FFPE sample duplicates and metastatic samples for a total of 784 cases and 97 
controls. There were a total of 57 tumour and adjacent healthy tissue pairs.  

The EPIC data was obtained from the gene expression omnibus database (GSE51057) and 
consisted of 152 cases and 177 controls, all of which were prospectively sampled with a follow-
up until diagnosis. Like the TCGA dataset, the EPIC methylation data consisted of pre-processed 
Beta-values. 

We were also interested in the gene expression of the genes mapped to CpG sites of interest. 
Therefore, the TCGA tissue gene expression data was downloaded (in February 2023) using the 
GDCquery followed by the GDCdownload functions (project = “TCGA-BRCA” and data.type = 
“Gene Expression Quantification”) from the TCGAbiolinks package, and the dataset consisted of 
tumour tissue and adjacent healthy tissue samples. The summarised experiment object was 
obtained using the “GDCprepare” function, followed by the assay function which gave us the raw 
mRNA counts for the mentioned samples. Metadata was obtained from the initial object obtained 
from the “GDCquery” function, and we removed FFPE sample duplicates and metastatic samples 
for a total of 1,095 cases and 113 controls. The downloaded data included raw gene counts, and 
there were 58 tumour and adjacent healthy tissue pairs.  

We also explored relevant mature miRNAs, in both tissue and blood, to the identified CpG sites 
and their genes. For tissue miRNAs, we used the already described TCGA miRNA data (see 
section Validation in TCGA), and for plasma miRNA data, we used our small-RNA sequencing 
data, which was also described above. 

Dataset analysis 

miRNAs found to significantly target genes mapped to either of the two CpG sets were tested for 
differential expression in tissue and blood. For miRNAs in tissue, a paired class comparison design 
was created using the Deseq2 package, while for miRNAs in blood we used the regular class 
comparison design using the Deseq2 package, which was described in the sections above.  

Using a paired Wilcoxon two-sample test, we determined the differentially methylated CpG sites 
in TCGA tissue data, which included tumour tissue and adjacent healthy tissue samples. On the 
other hand, we tested for differential methylation in blood CpGs using a regular two-sample 
Wilcoxon test, as the samples were not paired. The p-values were corrected for multiple testing 
using the Benjamini–Hochberg method. 

For count data of miRNAs and genes, using the Deseq2 package, we performed paired class 
comparisons between tumour and adjacent healthy tissues. In all analyses, the p-values were 
corrected for multiple testing using the Benjamini–Hochberg method and the significance 
threshold was set at adjusted p-value < 0.05. 
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Since some samples available on TCGA have data on small-RNA sequencing, RNA sequencing 
and methylation, we performed a correlation analysis (using the Pearson method) between 
differentially expressed genes and miRNAs significantly targeting the list of genes which are 
mapped to CpGs associated with puberty and linked to BC processes. Further, for all CpG sites 
associated with puberty and linked to BC processes (set 1) or associated with BC risk (set 2), we 
tested the correlation (using the Pearson method) between their methylation value and gene 
expression of their respective mapped gene. The correlation p-values were corrected for multiple 
testing using Benjamini–Hochberg method.  

Super-enhancers 

Enhancers are genomic elements, usually regulated by numerous transcription factors, that can 
activate gene transcription regardless of its orientation on the DNA strand [290]. Super-enhancers, 
on the other hand, are usually made up of multiple “stitched” enhancers, for which transcriptional 
coactivators, most commonly Mediator (Med1), have a strong binding affinity [290,291]. Due to their 
importance for gene regulation, I aimed to identify which CpG sites associated with puberty and 
BC are located within super-enhancers. Super-enhancers were obtained from a super-enhancer 
database (SEdb 2.0) and were based on one breast epithelium sample [292]. According to the 
database, the sample’s data source is ENCODE. After downloading the list of super-enhancers, 
their genomic coordinates were converted from GRCh38/hg38 to GRCh37/hg19, and I checked 
which CpG sites have their genomic locations within one of the super-enhancers of the breast 
epithelium sample. We then matched those CpG sites with the corresponding super-enhancer ID. 

Network Analysis 

The network analysis on genes mapped to CpG sites of interest was also performed using the 
MetaCore database from Clarivate. In addition to the parameters explained in the network analysis 
on miRNAs, due to the larger number of input parameters (genes), we also looked at the direct 
interaction networks. 

Regulatory functions of CpG sites of interest 

The identified lists of CpG sites were filtered based on their relevance to regulatory elements or 
super-enhancers, as well as being located on exons of a gene or having a high correlation between 
CpG methylation and respective gene expression. The potential regulatory elements of a locus 
were determined using the “SCREEN: Search Candidate cis-Regulatory Elements by ENCODE” 
[293]. The genomic locations of the CpGs had initially to be converted from GRCh37/hg19 to 
GRCh38/hg38 utilising the “Lift Genome Annotations” within the UCSC genome browser 
website. The DNase, H3K4me3, H3K27ac and CTCF max z-scores were explored as an average 
across all tissues, as well as in breast epithelium and peripheral blood. The chromatin states of the 
HMEC and GM12878 cell lines were also assessed using the “Chromatin State Segmentation by 
HMM from ENCODE/Broad”. The HMEC and GM12878 cell lines were of focus as they were 
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supposed to represent the mammary and blood cells relevant to this project, respectively. Further, 
the intron or exon location of the CpG and the potential expression of the underlying transcript (in 
transcripts per million – TPM) in mammary tissue was identified utilising the UCSC genome 
browser (Human genome GRCh37/hg19). The subset of CpGs or genomic loci, deemed to be more 
likely to have functional relevance, were selected based on the following criteria (minimum one 
needs to be satisfied):  

1) If the CpG is found within a super-enhancer. 
2) If the locus at both HMEC and GM12878 cell lines has a relevant regulatory function 

(active promoter, strong enhancer, transcriptional elongation or insulator), and the mapped 
gene has a significant correlation with the DNA methylation of the found CpG (adjusted p 
< 0.01) in TCGA data. 

3) If the underlying CpG is found on the exon of the mapped gene and the mapped gene has 
a significant correlation with the DNA methylation of the found CpG (adjusted p < 0.01) 
in TCGA data.  

4) If all four regulatory markers are found across the average of all tissues as well as breast 
epithelium, and one of the markers has a z-score > 1.64 (that is the cut-off for high presence 
of that marker). According to ENCODE, if all four markers are available, it is possible to 
infer the group of the candidate cis-Regulatory Elements (cCREs). 

We performed an additional network analysis on this final list of filtered genes for potentially more 
specific results. Additionally, a comprehensive literature search (using PubMed, Google Scholar 
and GeneCards) was performed on the filtered lists of loci with the focus on their mapped genes. 
The keywords in the search were: “Gene name” AND puberty or “Gene name” AND breast cancer. 
This was done to identify the genes already associated with puberty and BC onset or progression. 
The GeneCards database was investigated for functional description and identifying relevant SNP 
associations at the target genes. We also used the Harmonizome gene knowledgebase to identify 
genes associated with precocious puberty [294]. Lastly, these genes were also examined in the 
human protein atlas [295,296] (https://www.proteinatlas.org), within which the following information 
was obtained: 

1) Protein and RNA expression in breast tissue. 
2) Cell types expressing the mRNA in breast tissue or peripheral blood mononuclear cells 

(PBMC) based on single-cell RNA sequencing data.  

https://www.proteinatlas.org/
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Results 

Diagnostic meta-analysis on cfc miRNAs 

A total of 1,165 publication hits were obtained after performing a search in two databases (PubMed 
and NCBI PMC) and the Google Scholar search engine (Figure 9). PubMed and NCBI databases 
yielded 449 and 235 publications, respectively. The Google Scholar engine yielded 481 hits. After 
removing duplicates (n = 443), 722 unique publications were obtained. The type of publication, 
title and keywords were evaluated in the initial eligibility assessment, while the abstract was 
evaluated in the secondary eligibility assessment. In the initial and secondary eligibility 
assessment, 397 and 145 publications were excluded, respectively. The final, full-text, eligibility 
evaluation was performed on 180 articles, of which 124 were excluded. Hence, a total of 56 articles 
remained eligible for the meta-analysis. A generalised summary of the exclusion reasons for all 
three eligibility evaluation steps is shown in Table 2. The supplementary table with the complete 
list of reasons and their frequencies can be found in the published meta-analysis [232]. 

 
Figure 9. Flow diagram of the selection procedure for the inclusion of studies in the meta-analysis. 
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Table 2. Summary of the exclusion reasons for all three eligibility evaluation steps. 

Reason for exclusion Number 
Abstracts/Comments/Letters 60 
Metastatic focus 17 
Dubious article/Language/Not found 45 
Different method/Goal 162 
No performance data 54 
Too specific subtype of BC 11 
Unclear stage data 33 
> 4.5% stage IV samples 31 
Review/Meta-analysis 86 
Prognostic 68 
Not related to BC 3 
Exosomal miRNAs 23 
Therapeutic 47 
Not biomarker focused 26 
Total excluded publications 666 

Included studies 

Within the 56 studies that analysed the performance of circulating miRNAs in diagnosing BC 
using RT-qPCR, a total of 3,894 cases, 2,948 controls and 647 benign patients were included. The 
sample size range of BC patients in the studies was from 15 to 180 with a mean of 69.5 (median = 
58), while the range of controls was from 10 to 199 with a mean of 52.6 (median = 40). 
Additionally, the range of benign patients was from 0 to 196, with a mean of 11.6 (median = 0).  

The recorded case and control number of each study is based on the model within each study with 
the largest case/control number. The studies were conducted in 15 different countries: Belgium (n 
= 1), China (n = 21), Egypt (n = 7), Germany (n = 3), Indonesia (n = 1), Iran (n = 6), Iraq (n = 1), 
Kazakhstan (n = 1), Lebanon (n = 1), Mexico (n = 2), Rwanda (n = 1), Singapore (n = 1), South 
Korea (n = 2), Spain (n = 4), USA (n = 3) and one included samples from multiple institutions. 
Hence, 8 studies were conducted in Africa, 34 in Asia, 8 in Europe, 5 in North America and one 
study was multicontinental. The publishing date for the studies ranged from 2010 to 2022, with 
the majority of the studies published in 2021 (Figure 10).  
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Figure 10. Frequencies of years of publication within the meta-analysed studies. 

Seven of the 56 studies included stage IV breast cancer patients, with a proportion of 4.5% or less 
of the total cancer patient cohort. The remaining 49 studies did not include any stage IV cases. The 
proportion of stages for all the studies, also stratified based on the inclusion of stage IV cases, can 
be seen in Table 3. More than 75% of the cases were stage 0, I or II. Ten of the 56 studies did not 
report diagnostic performance data but reported ROC graphs with AUC values, while three studies 
did not report ROC graphs with AUC values but reported only diagnostic accuracy in terms of 
sensitivity and specificity. Key information about the included studies can be seen in 
Supplementary Table 1 (Appendix A). The 56 studies reported a total of 173 different models. 
Among them, 121 analysed single miRNA performance, which covered a total of 68 unique 
miRNAs. On the other hand, 52 models analysed panels of miRNAs and their performance, 
covering 55 unique miRNAs. Moreover, 82 models had plasma as the specimen type, 81 had 
serum, and 10 had whole blood. It is worth restating that, in addition to the analyses performed on 
all the reported models, this meta-analysis also evaluates one model per study (n = 56), the most 
important model per study. 

Table 3. Average percentage of TNM stages within the meta-analysed studies. Stages 0, I and II were 
grouped together because they are commonly referred to as early stages. 

 
  Stage 0-I-II % Stage III % Stage IV % 

 N Mean Missing Mean Missing Mean Missing 
Overall 56 77.36 15 20.67 15 0.15 1 
With stage IV 7 76.35 2 17.34 2 1.14 0 
Without stage IV 49 77.50 13 21.13 13 0 1 

QUADAS‑2 risk of bias assessment 

The QUADAS-2 assessment was performed on the 56 included studies. More than 75% of studies 
had a low probability of having an index test and patient selection applicability concern, while 
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82.1% of studies had a low probability of having a reference standard applicability concern. On 
the other hand, 41.1% of the studies had a low risk of bias within the patient flow and timing 
category. Despite the low probability of applicability concern for the index tests in most of the 
meta-analysed studies, only 44.6% of studies had a low probability of risk of bias coming from the 
index test. Nevertheless, in the index test category, only 16.1% of the studies had a high probability 
of bias (Figure 11A). Interestingly, only 8.9% of the studies performed or explicitly stated that 
prospective sampling was performed. This is also associated with the fact that in most meta-
analysed studies, blood was collected after the biopsy was performed on the patient. Additionally, 
50% of studies explicitly stated that blood collection was performed before surgery (Figure 11B). 

 

 
Figure 11. Summary of the QUADAS-2 evaluation performed on 56 articles. Proportions of Low risk of 
bias (Yes), Unclear and High risk of bias (No) are shown for A) key questions on applicability and bias 

and B) most important signalling questions. 

Descriptive statistics 

Both sensitivity and specificity reports were heterogeneous across models (sensitivity: X2 = 
1171.8, p < 0.001; specificity: X2 = 1019.3, p < 0.001). The X2 estimate of equal proportions 
describes whether the observed differences in sensitivity or specificity are only due to chance. For 
both sensitivity and specificity, the X2 was statistically significant, indicating that factors such as 
miRNA tested, population, research design, etc., were the cause for the differences in the observed 
sensitivities and specificities. In addition, in the same group of models, a negligible positive 
correlation r = 0.09 [-0.08 to 0.25] of sensitivities and false positive rates (FPRs) was found. Forest 
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plots of sensitivity and specificity were based on the most important models per study and can be 
seen in Figure 12A and Figure 12B, respectively. 

 
Figure 12. Forest plot of A) sensitivities and B) specificities of the most important model from each 
study. The respective values and their confidence intervals can be seen on the right side of each plot. 

Bivariate analysis 

A pooled estimate of 0.85 was obtained for sensitivity and 0.83 for specificity on all the reported 
models with performance data (146 models). For the most important model per study (46 models), 
slightly better pooled sensitivity (0.88) and specificity (0.88) were obtained. Confidence intervals, 
variances of logit transformed sensitivity and FPR as well as the correlation estimates for both 
bivariate models can be found in Table 4. The SROCs of the two models are shown in Figure 
13A and Figure 13B. 
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Figure 13. SROCs of the bivariate models. A) SROC of all reported models. Points with the same colour 

in the graph represent models originating from the same study. B) SROC of the most important model 
from each study. 

 
Table 4. Summary of the bivariate analyses on all reported models and on the most important  

model per study. 

  Fixed Effects Random Effects 
 Model Study 
  Estimates CI SD Corr. n SD Corr. n 
All reported 
models 

Sens. 0.85 [0.81, 0.88] 0.85 -0.17 146 0.70 0.06 46 
Spec. 0.83 [0.79, 0.87] 0.60 -0.17 146 0.74 0.06 46 

Most important 
models 

Sens. 0.88 [0.85, 0.91] 0.86 0.23 46    
Spec. 0.88 [0.84, 0.91] 1.00 0.23 46    

To account for the experimental and study-design differences among studies, fixed effects were 
added to the bivariate mixed models (specimen type, normaliser, single or multiple miRNA panel 
and inclusion of stage III and/or stage IV cases). The significant fixed effects for all models were 
the single or multiple panel type as well as the normaliser type, whereas for the most important 
models there were no significant fixed effects. Details on the fixed effect models can be found in 
Table 5 and Table 6. 

  



56 
 

Table 5. Bivariate generalised linear mixed effect model on all reported models adjusted for covariates. 

Fixed effects Estimate SE* Z p-value 
Sensitivity 2.01 0.34 5.86 < 0.001 
Specificity 2.03 0.33 6.18 < 0.001 
Specimen type: Serum 0.14 0.27 0.52 0.60 
miRNA panel: Single -0.61 0.18 -3.48 < 0.001 
Normaliser: Exogenous -0.68 0.26 -2.58 0.01 
Inclusion of stage III: True 0.07 0.20 0.33 0.74 
Inclusion of stage IV: True 0.03 0.32 0.10 0.92 

  *Standard error 
 

Table 6. Bivariate generalised linear mixed effect model on the most important model of each study 
adjusted for covariates. 

Fixed effects Estimate SE Z p-value 
Sensitivity 1.89 0.49 3.88 < 0.001 
Specificity 1.94 0.49 3.99 < 0.001 
Specimen type: Serum -0.05 0.33 -0.16 0.87 
miRNA panel: Single -0.40 0.33 -1.21 0.23 
Normaliser: Exogenous -0.22 0.50 -0.43 0.67 
Inclusion of stage III: True 0.38 0.34 1.14 0.25 
Inclusion of stage IV: True -0.08 0.44 -0.18 0.86 

Influence analysis and outliers 

Outlier analysis was performed on the complete set of models and was based on the odds ratio. 
Models with an odds ratio of 2 SDs away from the mean were considered outliers. A total of five 
models were identified as outliers. In order to detect influential models in the two generalised 
linear multilevel models mentioned above, Cook’s distances of the included models were 
calculated (Figure 14A and Figure 14B). Models with a Cook’s distance more than 2 SDs away 
from the mean were deemed as very influential.  

On all reported models, eight of them were influential. Interestingly, none of the models from the 
outlier analysis matched the ones obtained from the influence analysis. Generalised linear 
multilevel models without the influential models were fit to determine statistical robustness; a 
pooled estimate of 0.84 [0.80 to 0.87] was obtained for sensitivity and 0.84 [0.80 to 0.88] for 
specificity. On the most important model per study, three models were found to be influential. 
After repeating the generalised linear multilevel model, pooled sensitivity and specificity were 
0.87 [0.84 to 0.90] and 0.86 [0.82 to 0.89], respectively. A very modest discrepancy was observed 
between the bivariate analyses with and without the influential models. This was observed for 
estimates on all and most important models, indicating the robustness of the pooled estimates.  
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Figure 14. The calculated influence analysis (represented in Cook's distance units) on the included 

models. A) Influence analysis of the most important models from each study. B) Influence analysis of all 
reported models where the points with the same colour represent models originating from the same study. 

We also identified the most influential studies while accounting for all reported models. There 
were three highly influential studies, as can be seen in Figure 15. 

 
Figure 15. The calculated influence analysis (represented in Cook’s distance units) of the included 

studies by taking into account all reported models. 
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Publication bias 

Publication bias was evaluated for all the reported models. A funnel plot was generated on the log 
odds ratio and standard error (Figure 16). Egger’s test, in which a random effect on the studies 
was added, was used to test for publication bias. A p-value of < 0.001 indicated a potential 
publication bias. 

 
Figure 16. Publication bias was performed on all reported models. Points with the same colour in the 

graph represent models originating from the same study. The cluster of grey points on the left-hand side 
of the graph represents the missing models which would be required in order not to have a publication 

bias. 

Subgroup bivariate analysis 

In order to determine performance differences between methodological variations in the studies as 
well as to evaluate some potential candidate sources of between-study heterogeneity, subgroup 
analyses were performed. The main subgroups considered were single vs. multiple (panel) 
miRNAs, plasma vs. serum specimen type, studies including stage III and/or IV BC cases vs. 
studies not including stage III and/or IV BC cases, exogenous vs. endogenous normaliser and 
stratification of studies by QUADAS-2 performance. The subgroup analyses based on all reported 
models were performed utilising generalised linear multilevel models with random effects on the 
study and model. Pooled sensitivity and specificity on plasma models were 0.83 [0.77 to 0.87] and 
0.85 [0.78 to 0.91], respectively, while for serum, the pooled sensitivity and specificity were 0.87 
[0.81 to 0.91] and 0.83 [0.78 to 0.87], respectively (Figure 17A).  
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On average, models based on miRNA panels perform better than models based on a single miRNA. 
The former subgroup had a pooled sensitivity and specificity of 0.90 [0.86 to 0.93] and 0.86 [0.80 
to 0.90], respectively, while the latter subgroup had a pooled sensitivity and specificity of 0.82 
[0.77 to 0.86] and 0.83 [0.78 to 0.87], respectively (Figure 17B). 

 
Figure 17. SROCs of the subgroup bivariate models based on all reported models. A) Plasma vs. serum 
B) single vs. multiple panel miRNAs C) endogenous vs. exogenous normaliser D) with vs. without stage 

III and stage IV cases. 

Considering the sample size disparity between models that used exogenous and endogenous 
normalisers, the performance between the two groups is quite similar, with the models based on 
endogenous normalisers having a higher specificity (Figure 17C). For models with an exogenous 
normaliser, the pooled sensitivity and specificity were 0.82 [0.60 to 0.93] and 0.76 [0.63 to 0.86], 
respectively, while the pooled sensitivity and specificity for models with an endogenous 
normaliser were 0.82 [0.77 to 0.86] and 0.83 [0.78 to 0.87], respectively. Expectedly, models 
without stage IV BC samples and models with < 4.5% stage IV BC samples performed similarly 
when the pooled sensitivities and specificities were compared. The models without stage IV cases 
had a pooled sensitivity of 0.85 [0.81 to 0.88] and specificity of 0.84 [0.80 to 0.88], while models 
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with stage IV cases had a slightly better pooled estimate where the sensitivity was 0.87 [0.61 to 
0.97] and specificity was 0.86 [0.80 to 0.90]. This slight difference could be attributed to the 
difference in model numbers analysed in the two groups, as seen from the confidence interval for 
the sensitivity estimate for models with stage IV cases. Thus, since low between-study 
heterogeneity was observed in this subgroup analysis, the total cohort of models, which includes 
both with (< 4.5%) and without stage IV BC samples, can be considered reliable for assessing the 
general ability of circulating miRNAs to diagnose BC, with the condition that the models assessed 
do not have a higher percentage of stage IV cases than would be observed in community screening 
for BC.  

To further investigate the impact of stages on diagnostic performance, a subgroup analysis of the 
models with and without stage III and IV samples was performed. Pooled sensitivity and 
specificity of 0.84 [0.80 to 0.88] and 0.85 [0.80 to 0.88], respectively, were obtained for the former 
group, while 0.86 [0.77 to 0.91] and 0.82 [0.74 to 0.88], respectively, for the latter (Figure 17D). 
As observed in the previous subgroup analyses, models that include later BC stages (III and IV) 
have slightly better diagnostic performance than models that include only earlier stages (0, I and 
II). The SROCs of the same subgroup analyses were performed on the most important model of 
each study, as can be seen in Figure 18.  
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Figure 18. SROCs of the subgroup bivariate models based on the most important model of each study. A) 
Plasma vs. serum B) single vs. multiple panel miRNAs C) endogenous vs. exogenous normaliser D) with 

vs. without stage III and stage IV cases. 

The results are concordant with the subgroup analyses on all reported models, with slightly more 
pronounced differences between endogenous and exogenous normalisers and between with and 
without stage III/IV cases. Interestingly, when studies were stratified based on the QUADAS-2 
performance cut-points (no cut-point, > 3, > 4 and > 5 “low” on the seven key questions), 
increasing QUADAS-2 score corresponded to decreasing pooled diagnostic performance, chiefly 
reflected in specificity. This was observed on all reported models as well as on the most important 
model per study. Details on the results of subgroup analysis on all reported models and on the most 
important model per study can be found in Supplementary Table 2 and Supplementary Table 3, 
respectively (Appendix A). Lastly, we estimated the pooled sensitivity and specificity on all 
reported models for each year to assess if there was a diagnostic performance trend throughout the 
years. A linear regression was performed on pooled sensitivities and specificities, and no 
significant linear association was found (Figure 19). 
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Figure 19. Pooled estimates of sensitivity and specificity were calculated on all models of studies 

stratified by year of publication. Linear regression was performed on both sensitivity and specificity 
across the years, and no significant linear trend was observed. For both sensitivity and specificity, the 

linear regression estimates were around 0. 

miRNA‑21‑5p 

miRNA-21-5p is the most analysed miRNA among the included studies in this meta-analysis and 
is a miRNA that was often reported as dysregulated in the breast but also in many other cancers. 
Therefore, we performed a bivariate analysis using the generalised linear multilevel model to meta-
analyse the diagnostic ability of circulating cell-free miRNA-21-5p in BC. The pooled sensitivity 
and specificity for models evaluating only miRNA-21-5p were 0.74 [0.64 to 0.83] and 0.81 [0.70 
to 0.89], respectively. The SROCs are shown in Figure 20, while the details on the model are 
found in Supplementary Table 2 and Supplementary Table 3 (Appendix A). 

 
Figure 20. SROCs on miRNA-21-5p bivariate models. A) miRNA-21-5p SROC of all reported models. 
Points with the same colour in the graph represent models originating from the same study. B) miRNA-

21-5p SROC of the most important model from each study. 
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Univariate analysis on log‑DOR 

In order to include studies that did not report diagnostic accuracy in terms of sensitivity and 
specificity we performed a univariate analysis on log-DOR using the q-Point data from the 
reported ROC graphs. The q-Point was extracted for all models with an ROC curve. A pooled log-
DOR based on all reported models of 2.48 [2.15 to 2.81] resulted. Significant heterogeneity was 
observed in the model (Cochran’s Q = 978.9, p < 0.001). For the most important models, a pooled 
log-DOR of 2.99 [2.56 to 3.41] was observed with a significant heterogeneity (Cochran’s Q = 
402.6, p < 0.001).  

As there was a large difference in the number of models that used endogenous and exogenous 
normalisers, we complemented the bivariate subgroup analysis on endogenous versus exogenous 
models with the log-DOR univariate analysis, where the difference in model numbers was smaller. 
The estimate of pooled log-DOR for endogenous models was 2.58 [2.22 to 2.94], while for the 
exogenous models it was 1.45 [0.86 to 2.04], confirming the discrepancy in diagnostic accuracy 
found with bivariate models. The log-DOR estimate details of all reported models and most 
important models per study, as well as all their subgroups, are found in Table 7 and Table 8, 
respectively. 

Table 7. Summary of the univariate (log-DOR) analysis on all the reported models and its 
corresponding subgroup analysis. 

Subgroup Pooled log-DOR Cochran's Q (p-value) 
All models 2.48 [2.15, 2.81] 978.91 (< 0.001) 
Plasma 2.48 [1.82, 3.14] 412.48 (< 0.001) 
Serum 2.64 [2.22, 3.06] 496.29 (< 0.001) 
Single miRNA panel 2.16 [1.80, 2.53] 669.47 (< 0.001) 
Multiple miRNA panel 3.20 [2.76, 3.64] 126.68 (< 0.001) 
Endogenous normaliser 2.58 [2.22, 2.94] 501.87 (< 0.001) 
Exogenous normaliser 1.45 [0.86, 2.04] 115.10 (< 0.001) 
With stage III & IV cases 2.52 [2.16, 2.88] 866.86 (< 0.001) 
Without stage III & IV cases 2.33 [1.69, 2.97] 111.92 (< 0.001) 
With stage IV cases 2.22 [1.39, 3.06] 210.43 (< 0.001) 
Without stage IV cases 2.54 [2.19, 2.89] 767.49 (< 0.001) 
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Table 8. Summary of the univariate analysis (log-DOR) on the most important model of each study and 
its corresponding subgroup analysis. 

Subgroup Pooled log-DOR Cochran's Q (p-value) 
Most important models 2.99 [2.56, 3.41] 402.58 (< 0.001) 
Plasma 2.82 [1.98, 3.67] 153.72 (< 0.001) 
Serum 3.13 [2.61, 3.66] 208.05 (< 0.001) 
Single miRNA panel 2.64 [2.07, 3.21] 248.10 (< 0.001) 
Multiple miRNA panel 3.51 [2.96, 4.06] 109.27 (< 0.001) 
Endogenous normaliser 3.08 [2.58, 3.58] 229.96 (< 0.001) 
Exogenous normaliser 1.86 [0.89, 2.84] 70.38 (< 0.001) 
With stage III cases 3.18 [2.68, 3.67] 327.56 (< 0.001) 
Without stage III cases 2.36 [1.61, 3.11] 60.71 (< 0.001) 
With stage IV cases 2.87 [1.79, 3.95] 50.92 (< 0.001) 
Without stage IV cases 3.01 [2.54, 3.47] 347.02 (< 0.001) 

Preference for sensitivity or specificity 

To investigate whether a preference of a model for sensitivity or specificity is related to an 
imbalance of proportions between cases and controls or to predicted positive (TP + FP) and 
predicted negative (TN + FN) samples, a graphical technique was employed: models were divided 
into three groups according to the proportion of cases to controls or of predicted positive to 
predicted negative samples, coloured and plotted on an ROC plane (Figure 21). Differences in 
model designs based on the proportion of cases to controls are mainly reflected in the FPR (Figure 
21A), as models with fewer cases than controls tend to have a larger FPR.  

Overall, models with a balanced case–control design or a design with more cases than controls are 
far more abundant than models with fewer cases than controls. A clearer performance trend can 
be seen when the proportion of the positive screens and negative screens is taken into account 
(Figure 21B). Models with fewer positive screens than negative usually tend to have a smaller 
FPR and sensitivity. Conversely, models with more positive screens than negative have the 
tendency for a larger FPR and sensitivity. Those models with balanced positive and negative 
screens have more balanced FPR and sensitivity when compared to the previous two groups.  
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Figure 21. Comparison of diagnostic performance of models to their imbalance of proportions of A) 

cases to controls or B) predicted positive to predicted negative screens, represented by a colour 
corresponding to one of the three imbalance of proportions cut-point groups. Diagnostic performance 
means (with confidence intervals) of the three ratio groups are represented by diamonds. Mean points 

without confidence intervals indicate very narrow ranges. 

An alternative plot was also created by dividing models into five groups instead of only three 
(Figure 22) and the same conclusions can be drawn as in the previous figure. In sum, sample 
composition, i.e., the ratio of cases to controls, seems to influence diagnostic accuracies, probably 
via study-level model tuning. Moreover, the predicted positive and predicted negative ratio is most 
likely influenced by the compromise or preference between sensitivity and specificity. 
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Figure 22. Comparison of diagnostic performance of models to their imbalance of proportions of A) 

cases to controls or B) predicted positive to predicted negative screens, represented by a colour 
corresponding to one of the five imbalance of proportions cut-point groups. Diagnostic performance 
means (with confidence intervals) of the five ratio groups are represented by diamonds. Mean points 

without confidence intervals indicate very narrow ranges. 

Quantifying the author or model preference for sensitivity or specificity 

By utilising the α parameter from the ROC shape, we assessed whether the meta-analysed models 
preferred sensitivity or specificity (Figure 23A). A general trend of preference can be seen in the 
plot with all reported models. However, since the trend is not strong enough, only the models with 
an α z-score > 0.8 SDs away from the mean were considered as studies with some kind of 
preference. Based on the cut-off value, 25 of the 117 analysed models had a preference for 
sensitivity, while 24 had a preference for specificity. The preference is derived from ROC curve 
shape, so a preference in shape does not necessarily imply that the pair of sensitivity and specificity 
at the authors’ preferred cut-off value reflects this preference: 22 out of the 25 models considered 
to prefer sensitivity had a higher sensitivity than specificity, while 18 out of the 24 models 
considered to prefer specificity had a higher specificity.  
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Figure 23. Preference estimates based on log (sensitivity/specificity) for all reported models using A) 

alpha for minimum Q and B) relative perceived cost of misdiagnosis (c1). Points with the same colour in 
the graph represent models originating from the same study. 

Based on the plot on the most important models, the α for Q(min) is not able to catch a direct trend 
of preference (Figure 24). We do observe, however, that the α for Q(min) is not evenly distributed 
and that, based on the ROC shape, there tends to be an overall preference for sensitivity, which 
does not necessarily have to be reflected in the outcome values due to different factors (e.g., 
biology of the predictor, measurement tools, statistical modelling, population, etc.). 

 
Figure 24. Preference estimates based on log (sensitivity/specificity) for all reported models using alpha 

for minimum Q in the most important models for each study. 
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In addition to the assessment of preference of the model by the α parameter, we assumed that in 
all the models, the study authors base their decision about the cut-off value on a perceived cost c1 
for not detecting a BC patient and a cost c0 for a positive screen on a healthy person. Recall that 
the perceived cost c1 is calculated in units of c0 = 1 (Figure 23B) and note that the prevalence 
factor was omitted. The strength of the preference trend is similar to that of the previous plot. 
Hence, models with a c1 z-score of > 0.8 SDs away from the mean were considered as studies with 
some kind of author preference.  

Based on the c1 value, 10 of the 117 analysed models had a preference for sensitivity, while 80 
had a preference for specificity. Of the 80 models considered to prefer specificity, 41 had a higher 
specificity than sensitivity. Interestingly, most of the models with a high c1 value (> 0.8 SD) did 
not have a higher sensitivity than specificity, a consequence of the underlying ROC curve shapes. 
In this sense, most of the ten models did not have a preference for sensitivity in the naive sense. 
Until the c1 starts surpassing the value of 1, the plot seems to be linear and in concordance with 
the plot in Figure 23A. Importantly, for the models that did not report the sensitivity and specificity 
measures but reported an ROC curve, we chose the cut-offs and obtained a sensitivity and 
specificity pair using the q-Points, which might have affected the robustness of the mentioned 
preference quantification methods.  

When investigating the c1 plot on the most important models (Figure 25), as in the α (at Q min) 
plot, we cannot observe a clear trend of preference, but we can see that the distribution of c1 tends 
to be centred below 1, which could indicate that authors tend to give more importance in reducing 
false negatives. Nevertheless, due to the non-linear trend of preference using the c1 statistic, the α 
parameter preference method has shown more robust results, while the c1 metric could be more 
successful in adequately designed models due to its better ability to catch preference in individual 
models. By “adequately designed models”, we refer to diagnostic models with a large enough 
sample size as well as the reported reasoning why the chosen sample size was selected and a clear 
predictor selection strategy. Having said that, it is worth noting that between the two preference 
assessment methods, there were 12 common models (from all reported models) which preferred 
specificity and 23 common models which did not have a significant preference. No common 
models were found for sensitivity preference.  
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Figure 25. Preference estimates based on log (sensitivity/specificity) for all reported models using 

relative perceived cost of misdiagnosis (c1) in most important models for each study. 
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Circulating biomarkers for early BC detection 

Population characteristics 

The discovery cohort on which we performed targeted SNP and methylation analysis or miRNA 
profiling included 70 cases and 70 controls. All samples had successful DNA extraction from the 
buffy coat, while after RNA extraction from plasma of 70 cases and 70 controls and library 
preparation, nine samples were excluded due to poor quality. Thus, the final discovery cohort for 
cfc miRNA analysis consisted of 65 cases and 66 controls. The general characteristics of the study 
population, including the samples available for all analyses (i.e., miRNAs, SNPs and methylation), 
are reported in Supplementary Table 4 (Appendix B). The only variables that showed a significant 
association with BC detection in this cohort were: BMI, breast density (Tabar’s scale) and WCRF 
lifestyle score. The characteristics of cases are reported in Supplementary Table 5 (Appendix B), 
separately for invasive and in situ tumours. Cases were diagnosed on average 3 ± 2 months after 
blood collection. Fifty-five women were diagnosed with invasive breast tumours and eight with in 
situ lesions. The most frequent histotype was ductal (56.0% of invasive and 37.5% of in situ BCs), 
and the majority of cancers were stage IA (87.5%), ER positive (84.9%), PgR positive (69.9%), 
Her2 negative (86.5%) and Ki-67 negative (76.5%).  

The cohort on which we validated the biomarkers selected in the discovery cohort included 32 
cases (all from the Biella hospital) and 127 controls. All of the samples had good RNA quality. 
The general characteristics of the validation sample can be seen in Supplementary Table 6 
(Appendix B). The variables which were found to be associated with BC in the validation cohort 
were the presence of previous benign biopsies (OR: 3.28, P: 0.04), breast density based on Tabar 
scale (Tabar 3 vs. reference – OR: 16.67, P: 0.00004) and breastfeeding status (OR: 0.23, P: 0.01). 

The tumour characteristics of the 32 samples can be seen in Supplementary Table 7 (Appendix B). 
Unlike the discovery cases, the cases in the validation cohort were diagnosed on average 2.1 ± 1.3 
years after blood collection. This implies that, in a way, we were also testing the predictive ability 
of the selected biomarkers. Most of the tumour samples were invasive, with only one in situ 
sample. The most frequent histotype was ductal (67.7% of invasive tumours). Like in the discovery 
cohort cases, the majority of invasive tumours were stage IA (45.1%), ER positive (74.2%), PgR 
positive (67.6%) and Her2 negative (74.2%). The key difference between the cases in the discovery 
and validation cohort was in the Ki-67 status where the majority of validation cohort cases were 
Ki-67 positive (74.2%). 

Polygenic risk score 

We examined the PRS score on the 131 samples from the discovery cohort. The PRS score was 
normally distributed according to the Shapiro–Wilk normality test (p-value = 0.289). The PRS 
average across all 131 samples was 0.98, with a standard deviation of 0.41. The PRS did not differ 
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significantly between cases and controls based on the mean (two-sample t-test p-value = 0.784), 
variance (F-test p-value = 0.923) or distribution (two-sample Kolmogorov–Smirnov test: p-value 
= 0.464). The density plot of the PRS across all samples, as well as stratified by BC status, can be 
seen in Figure 26. 

 
Figure 26. Density plots of PRS scores in all samples and stratified by cases and controls. 

We also performed a logistic regression with the status as dependent and PRS as independent 
variable. PRS on the 77 SNPs is not associated with BC in our cohort Table 9. After computing 
the predictions based on the PRS, a poor AUC of 0.52 was obtained (Figure 27). Considering that 
the PRS calculated in this project could not differentiate between cases and controls, we did not 
include it as a predictor in the final model consisting of miRNA and other variables.  
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Figure 27. The ROC curve of the PRS score used to discriminate between BC cases and controls. 

Table 9. Logistic regression on PRS based on 77 SNPs to discriminate between cases and controls. 

 Estimate SE Z p-value 
Intercept -0.13 0.45 -0.29 0.773 
PRS (77 SNPs) 0.12 0.42 0.28 0.782 

Methylation of promoter regions 

The methylation of promoter regions of the RARB, APC and BRCA1 genes was measured using 
the MS-HRM method. Across two plates for each gene there were 140 (70 cases and 70 controls), 
100 (54 cases and 46 controls) and 135 (67 cases and 68 controls) successfully evaluated samples 
for RARB, APC and BRCA, respectively. The smaller number of samples for APC genes was due 
to a mistake in the MS-HRM instrument setup. The MS-HRM results are affected by the 
methylation of CpG sites within the region and are measured in a collective/additive manner. The 
derivative curves and their melting points at 0% and 100% methylation standards can be seen for 
all genes on both plates in Figure 28.  
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Figure 28. Derivative curves of methylation 0% and methylation 100% standards for the three gene 

promoters at each of the two plates (except for BRCA1 plate 2, which had a methylation 75% standard). 
The peaks of the curves represent the melting points. 

Differing melting points between the methylation 0% and methylation 100% standards, indicated 
by curve peaks at different temperatures, can be seen in all genes and for all plates except for plate 
2 of the BRCA1 gene, which had a technical issue with the methylation standards. Additionally, 
for some plates, the standard replicates were not successful, and therefore, in the derivative plots 
for some of them there were less than three curves. Nevertheless, for all plates except the BRCA1 
plate 2, a clear difference in melting points between the standards was observed. 

A difference plot was created for each plate where we subtracted the relative fluorescence at each 
temperature point at methylation 0% from the other methylation standards. A clear separation 
between the standards can be seen in all genes and all plates (Figure 29). 
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Figure 29. Difference plots where the relative fluorescence at each time point from methylation 0% 

standard was subtracted from the other methylation standards. 

We then investigated at which temperature points the highest variability of RFU occurs, which in 
this case indicated the highly informative points. We observed that the standards tend to vary the 
most in the temperature range from 75°C to 79°C (Figure 30). On the other hand, the samples had 
low variability across the whole temperature range, indicating a small degree of methylation 
difference in the three genes between the samples (data not shown). 
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Figure 30. Variability of RFU at different temperature units. Results for all three genes are shown. 

To infer the methylation values of each sample on the three genes, an interpolation curve was 
performed on each plate (n = 1000) and based on where the samples would fall in the curve, they 
would be assigned a methylation value. The interpolation curves for all three genes and their plates 
are shown in Figure 31.  
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Figure 31. Interpolation curves based on the methylation standards for the three gene promoters. 

The optimal interpolation curve would have a slope of 1, and as can be seen in Figure 31, the 
interpolation was suboptimal for some of the plates. The histograms of methylation values of the 
samples for the three genes and their two plates can be seen in Figure 32.  
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Figure 32. Histogram plots of the methylation estimates for the three gene promoters. 

The overall methylation of the gene promoters in the three genes is very low and contains a large 
proportion of samples with an estimated methylation of 0%. A slightly higher proportion of non-
zero methylation values can be seen for the samples analysed for the APC gene. This is because 
for this gene we had to use the maximum RFU difference between the methylation 0% standard 
and the other standards or samples. The methylation values are still very close to zero. The 
summary statistics of the methylation values for each gene on both plates can be seen in Table 10.  

Table 10. Summary statistics of the methylation estimates for the three gene promoters. 

Gene Min. Median Mean Max. SD 
RARB – Pt.1 0 0.1 0.82 3.6 1.08 
RARB – Pt.2 0 0 0.32 4.1 0.77 
APC1 – Pt.1 0.1 1 1.19 3.5 0.92 
APC1 – Pt.2 0.3 0.5 0.54 1 0.29 
BRCA1 – Pt.1 0 1.2 1.81 15.7 2.17 

 

After combining the methylation values from the two plates, we assessed the distribution of 
methylation estimates, and none of the three genes had a normal distribution. Thereafter, we 
performed a class comparison, using the Mann–Whitney U test, between tumour and healthy 
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control samples. None of the genes had a significantly different methylation profile in cases 
compared to controls (Figure 33). 

 
Figure 33. Boxplots of the methylation estimates of the promoters of the three genes stratified by BC 

status. 

To correct for the samples’ plate of origin, we complemented the class comparison with a logistic 
regression analysis where the class was the dependent variable, while estimated methylation and 
plate were the independent variables. A bootstrap (n = 2000) was performed on the Beta 
coefficients of the mentioned logistic regressions, and no evidence was found that the methylation 
of the three genes was different between cases and controls (Figure 34).  

 
Figure 34. Bootstrap frequencies of the logistic regression coefficients of association with BC status for 

the three gene promoters. 
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Additionally, we also calculated the ROC AUC of the genes by training the model on 70% of the 
data and testing the AUC in 30% of the data. This analysis was bootstrapped as well and expectedly 
the AUC scores were quite poor (Figure 35).  

 
Figure 35. Bootstrap frequencies of the ROC AUCs for three gene promoters. 

A proportion analysis of the zero data, using the B2 statistic and Wilcoxon rank sum exact test on 
the non-zero data was performed in a two-part analysis to determine whether there is a difference 
in methylation between cases and controls among the three genes. The combined X2, statistic 
which sums the B2 statistic and W2 from the Wilcoxon test, was computed and could be an 
alternative to the Mann–Whitney U test when there are many zero data points, as is the case here. 
Based on the chi-squared distribution at two degrees of freedom, for all three genes, there was no 
significant difference in methylation between cases and controls. The X2 p-value was 0.959 and 
0.531 for RARB and BRCA1, respectively. The X2 statistic could not be computed for the APC1 
gene as we used the maximum RFU across the temperature ranges for interpolation, and hence, 
there were no zero values. The results using the permutation method on the X2 showed highly 
similar values to the p-values obtained by looking at the chi-squared distribution (Figure 36).  
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Figure 36. Permutation of the X2 statistic which was used to determine whether there was a difference in 
methylation between cases and controls among the three genes. The red line represents the X2 value in the 

original sample. 

We also performed a zero-inflated model, which is also a two-part statistical analysis method, in 
which we can account for the plate of origin for the analysed samples. Again, this type of analysis 
could not be applied to the methylation data of APC1 for the reasons mentioned above. 
Nevertheless, neither BRCA1 nor RARB had a significantly different methylation between cases 
and controls. The same outcome was achieved when we performed the tobit regression analysis, 
which assumes that the data is normally distributed but that the values are censored at 0. Results 
of the tobit regression and zero-inflated regression model are reported in Table 11.  

Table 11. Zero-inflated (ZI-model) and tobit regression model results for the RARB and BRCA1 gene 
promoters. 

Model Parameters Estimate SE t-value p-value Gene 
ZI-model (Intercept) -0.28 0.25 -1.10 0.275 

R
A

R
B

 Methylation 0.11 0.18 0.60 0.551 
Plate 0.74 0.38 1.95 0.054 

Tobit (Intercept) 0.30 0.13 2.38 0.018 
Methylation -0.06 0.09 -0.64 0.523 
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Model Parameters Estimate SE t-value p-value Gene 
Plate -0.38 0.19 -1.99 0.046 
logSigma -0.10 0.10 -0.96 0.338 

ZI-model (Intercept) -0.36 0.26 -1.40 0.164 

B
R

C
A

1 

Methylation 0.08 0.08 0.94 0.349 
Plate 0.73 0.38 1.94 0.055 

Tobit (Intercept) 0.35 0.13 2.73 0.006 
Methylation -0.04 0.04 -1.02 0.308 
Plate -0.37 0.19 -1.99 0.047 
logSigma -0.11 0.10 -1.05 0.296 

Like the PRS score, the methylation values on promoters of the three analysed genes were not 
found to be associated with BC and were hence not included among the predictors in the models. 

Small-RNA sequencing 

Before generating the raw counts of miRNAs, we performed a quality control of the small-RNA 
sequencing chips. The small-RNA sequencing was performed on 8 IonTorrent Chips, and the 
number of samples included on each chip ranged from 18 to 24. The percentage of chip wells that 
contained the Ion Sphere Particle (ISP) ranged from 75% to 94% (Figure 37). The percentage of 
reads which passed all the filters and were recorded for future processing ranged from 14% to 
32%. Overall, the results were good for all chips with minor coverage issues on chip 4.  
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Figure 37. Quality metrics report of small-RNA sequencing reads based on the Ion Torrent Software. 

Results are shown for all eight chips on which the 131 samples were analysed. 

 



83 
 

Individual miRNA analysis 

From the seven normalisation methods evaluated, the Deseq normalisation performed the best for 
the miRNA data, while the Poisson and Quantile normalisations were quite close in performance 
as well (Figure 38). Hence, the Deseq normalisation was chosen for the miRNA analysis. 

 
Figure 38. Summary metrics of the DANA normalisation assessment tool where the reduction of 

handling effects and biological signal preservation are plotted. 

To visually inspect our miRNA raw count data and the cut-offs selected for poor/well expressed 
miRNAs used for normalisation assessment, the log expression histogram plot as well as the mean 
of the log counts and their standard deviation are shown in Figure 39. We utilised the Deseq 
normalisation provided by the DESeq2 R package for all the analyses on individual miRNAs. 
Additionally, all miRNAs with raw counts < 20 were excluded for a total of 104 unique miRNAs. 
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Figure 39. Histogram of log2 miRNA counts as well as the mean and SD of the log2 counts are shown. 
The blue vertical lines indicate the lower and upper cut-off for the poorly expressed miRNAs while the 

red vertical line represents the cut-off for the well-expressed miRNAs. 

The descriptive statistics of individual miRNAs were performed on the variance stabilising 
transformation output which we will refer to as variance stabilised data (vsd) from now on. The 
coefficient of variation is relatively stable, ranging from 0 to 0.4, with the most frequent CV being 
around 0.28 (Figure 40).  
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Figure 40. Density plots of mean and CV of vsd miRNAs. 

Unsupervised hierarchical clustering on the analysed miRNAs did not create any apparent sample 
subdivisions associated with BC status, while the miRNAs were grouped according to their 
expression levels (Figure 41). 

 
Figure 41. Heatmap on the complete set of clustered individual miRNAs (vsd). The vertical column on 

the far left indicates BC cases in red and controls in blue. 

In the PCA of the variance stabilised miRNAs, PC 1 and PC 2 explained 26.4% and 10.9% of the 
variance, respectively. These two principal components were visualised in Figure 42, and a 
separation of cases and controls was observed to some extent. 
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Figure 42. PC1 and PC2 plot from the PCA on individual miRNAs. 

In order to investigate and compare the ranges and variability between the miRNAs, a boxplot of 
all miRNAs was also plotted and the outlying miRNA (miR-451) can be seen on the far right of 
the plot (Figure 43). 

 
Figure 43. Boxplots of all analysed individual miRNAs. 

To determine which cfc miRNAs are differentially expressed between cases and controls, we 
performed a class comparison on the filtered miRNA counts using the DESeq2 package. Within 
the package pipeline, the data would be Deseq normalised followed by a class comparison. Of 104 
miRNAs, 27 were differentially expressed between healthy and tumour samples (Figure 44 and 
Supplementary Table 8 – Appendix B). 
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Figure 44. Volcano plot of the plasma miRNA differential expression analysis results between BC cases 
and controls. The p-value shown in the plot is the Benjamini–Hochberg adjusted p-value. Vertical dotted 
lines indicate 1.5 log2 fold deregulation. The red points indicate miRNAs above the log2 fold deregulation 
cut-off and below the p-value cut-off, the blue points indicate miRNAs below the log2 fold deregulation 
cut-off and below the p-value cut-off, the green points are miRNAs above the log2 fold deregulation cut-
off and above the p-value cut-off, while the grey points indicate miRNAs that do not meet either of the 

criteria. 

Some of the miRNAs, such as let-7f-1 and let-7f-2, which are located at different chromosomes 
and have a highly correlated count profile, have identical 5p mature sequences. When comparing 
invasive vs normal samples, there were 28 differentially expressed miRNAs. All 27 miRNAs that 
were differentially expressed in tumour vs normal were also differentially expressed in invasive 
vs normal patients. The added miRNA in the latter comparison was mir-15b-5p, which was also 
close to being significant in the analysis on all tumour vs normal samples (log2 fold change: -0.65 
and adjusted p= 0.0102). No differentially expressed miRNAs were found when comparing in situ 
to either invasive or normal samples. 

miRNA ratios 

Since there are no suitable normalisers for small non-coding RNAs when using the RT-qPCR 
technique, for the discovery of potential biomarkers associated with BC detection, we computed 
ratios on miRNAs followed by the filtering and biomarker discovery techniques. The reasoning 
was that all potential biomarkers that would be usable in clinics should be based on the cheap and 
well-known RT-qPCR platform. Therefore, the miRNA ratios were first computed based on small-
RNA sequencing data, and promising ratios were then tested using RT-qPCR.  
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From the 104 miRNAs with a mean count larger than 20 across the 131 samples, 97 miRNAs with 
unique count profiles remained. From these 97 miRNAs, we computed 4,656 miRNA ratios. In 
hindsight, following the ratio computation, log2 transformation would have been optimal for the 
optimal comparison with RT-qPCR data ratios obtained subsequently. Finally, the flowchart of the 
miRNA selection in the discovery cohort can be seen in Figure 45. 

 
Figure 45. Flowchart of the discovery cohort pipeline. * The let-7f-5p-2_miR-103a-3p-2 ratio was 
removed as miR-103a-3p-2 and miR-103a-3p-1, found in the let-7f-5p-1_miR-103a-3p-1 ratio, had 

almost identical counts and their ratio partners had identical mature miRNA sequences. ‡ One sample had 
to be excluded in the RT-qPCR step due to insufficient plasma volume. 

Descriptives statistics 

The mean and coefficient of variation density plots of the computed miRNA ratios can be seen in 
Figure 46. Compared to individual miRNAs, the range of the CV within the ratios is much larger, 
with the most commonly observed CV being around 1.  
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Figure 46. Density plots of mean and CV of miRNA ratios computed from small-RNA sequencing data. 

To investigate the miRNA ratio data, a PCA was created on the total matrix of miRNA ratios and 
30.1% and 9.6% variance was explained by PC 1 and PC 2, respectively. A separation of cases 
and controls was observed when plotting the PC 1 and PC 2. Additionally, the top 50 ratios with 
highest absolute loading values in PC1 had an overall high correlation (Figure 47), which might 
somewhat explain the low variance rates explained by the PCs.  

 
Figure 47. A plot of PC1 and PC2 from the PCA on miRNA ratios can be seen on the left, while on the 
right is shown the correlation plot of the top 50 miRNA ratios with the highest loading values in PC1. 
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Variable selection 

As most ratios were not normally distributed, we performed the Mann–Whitney U test between 
cases and controls. This was the initial variable filtering step. Based on the Benjamini–Hochberg 
adjusted p-value < 0.01 cut-off, 886 miRNA ratios were significantly different between cases and 
controls (Figure 48). We filtered these differentially expressed miRNA ratios based on two 
distinct strategies for obtaining candidate biomarkers associated with BC. The first strategy filtered 
the miRNA ratios based on the fold change (FC > 2 or FC < 0.5) and resulted in 246 ratios, while 
the second strategy only included the differentially expressed miRNA ratios which had a 
coefficient of variation < 0.5 in controls for a total of 67 ratios. The second strategy was supposed 
to represent the more stable miRNA ratios. 

 
Figure 48. Volcano plot of the Mann–Whitney U test results on the miRNA ratios. The p-value shown in 
the plot is the Benjamini–Hochberg adjusted p-value. The red points indicate miRNAs above the log2 fold 
deregulation cut-off and below the p-value cut-off, the blue points indicate miRNAs below the log2 fold 

deregulation cut-off and below the p-value cut-off, the green points are miRNAs above the log2 fold 
deregulation cut-off and above the p-value cut-off while the grey points indicate miRNAs that do not 

meet either of the criteria. 

To select candidate miRNA ratios associated with BC detection, we performed penalised logistic 
regression analysis. The optimal penalty parameter (λ) was selected by a cross-validation LASSO 
logistic regression performed on the ratios from the two strategies separately. From strategy 1, 
nine miRNA ratios were selected, while from strategy 2, twelve miRNA ratios were selected. The 
log(λ) from the two cross-validation LASSO logistic regressions can be seen in Figure 49, while 
the coefficients of the two miRNA ratio sets can be seen in Table 12.  
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Figure 49. The log(λ) plots for variable selection of strategies 1 and 2 using cross-validation LASSO 

logistic regression. Lambda minimum and 1 standard error from minimum lambda are represented by the 
left and right vertical lines, respectively. 

For descriptive purposes, a univariate logistic regression was performed on these 21 miRNA ratios, 
the ROC AUC was calculated, and the results are reported in Supplementary Table 9 (Appendix 
B). All the ratios were significantly associated with BC, where 16 ratios had an OR less than 1 and 
five had an OR larger than 1. The individual miRNA ratio ROC AUC ranged from 0.66 to 0.88. 
These 21 miRNA ratios were chosen to be validated using the RT-qPCR platform.  

Table 12. LASSO logistic regression coefficients of the selected miRNA ratios with non-zero coefficients 
in strategy 1 and strategy 2. 

Strategy 1 Strategy 2 
Intercept 1.124 Intercept 2.950 
miR-335-5p_let-7f-5p-2 0.002 miR-26b-5p_miR-142-5p -0.129 
miR-199a-3p-2_let-7a-5p-2 0.259 let-7a-5p-2_miR-106b-5p -0.816 
miR-199a-3p-2_let-7f-5p-2 0.001 let-7f-5p-1_miR-103a/b*1 -1.107 
let-7a-5p-2_miR-22-3p -0.535 let-7f-5p-2_miR-103a/b*2 -0.652 
let-7a-5p-2_miR-320a -0.373 miR-93-5p_miR-19b-3p-1 -2.803 
let-7f-5p-1_miR-19b-3p-1 -5.019 miR-22-3p_miR-19b-3p-2 2.360 
miR-27a-3p_miR-122-5p -0.473 miR-101-3p-2_miR-19b-3p-1 -3.031 
let-7f-5p-2_miR-146a-5p -0.199 miR-30d-5p_miR-20a-5p 0.147 
miR-15b-5p_miR-16-5p-1 -0.067 let-7b-5p_miR-19b-3p-1 -0.836 
  miR-15a-5p_miR-16-5p-2 -0.073 
  miR-20a-5p_miR-19b-3p-1 -2.085 
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Strategy 1 Strategy 2 
  miR-21-5p_miR-23a-3p -0.271 

Finally, boxplots stratified by BC status and a heatmap together with the correlation plot of the 21 
ratios were created and are shown in Figure 50 and Figure 51, respectively. Notably, the plots 
were made on the log2 transformed ratios from Table 12. Based on the selected miRNA ratios, the 
clustering of samples based on their BC status can be observed. 

 
Figure 50. Boxplot of the log2 transformed miRNA ratios selected by the LASSO logistic regression in 

strategy 1 and strategy 2. Plotted are the 20 miRNA ratios that were validated in RT-qPCR (see the 
legend of Figure 45 above, with the study flowchart). 
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Figure 51. Heatmap of the 21 selected miRNA ratios based on small-RNA sequencing data (left) and 

their correlation plot (right). 

To evaluate the performance of the two strategies and their selected ratios, a five-fold cross-
validation was performed on the whole procedure starting from a Mann–Whitney U test followed 
by a LASSO regression. For both strategies, we evaluated the prediction error, ROC AUC, 
calibration of the intercept and slope based on the calibration-in-the-large as well as the scaled 
brier score (Table 13). It is important to mention that the selected miRNA ratios were not exactly 
the same across the cross-validation folds, but that the most impactful ratios (i.e., with the largest 
absolute beta coefficient) were consistently selected across folds and were found in the original 
list of ratios based on the complete sample. 

Table 13. Performance of the two strategies for selecting miRNA ratios based on averaged values from 
the cross-validation. 

Statistic Strategy 1 Strategy 2 
Pred. Error 0.30 0.30 
AUC 0.80 0.77 
Intercept 0.12 0.08 
Slope 1.13 0.96 
Scaled Brier 0.02 0.04 

Bayesian variable selection 

As an alternative to the frequentist variable selection and evaluation approach, we performed 
biomarker selection using hierarchical shrinkage models based on the horseshoe priors. This 
Bayesian approach was performed on the total set of ratios (n = 4656), as well as the ratios from 
strategy 1 and strategy 2, although this method is best used in high-dimensional contexts. In all 
three instances, three miRNA ratios were selected. In Table 14, summarised are the Kullback–
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Leibler (KL) divergence between the full model and the submodel as well as the explanatory power 
of predictors (ELPD) among the three runs (all ratios, strategy 1 and strategy 2). Across the three 
runs, eight unique ratios were selected.  

Table 14. Model characteristics on variable selection using hierarchical shrinkage model. The Kullback–
Leibler divergence and explanatory power of predictors are shown for all miRNA ratios as input or 

miRNA ratios from the two strategies mentioned above. 

Model KL ELPD 
All miRNA ratios   
Intercept only 0.24 -91.11 
let-7f-5p-2_miR-22-3p 0.13 -71.57 
miR-1260b_miR-20a-5p 0.11 -67.49 
miR-3529-7_miR-26a-5p-1 0.10 -66.12 
Strategy 1 (246 ratios)   
Intercept only 0.17 -91.15 
let-7f-5p-2_miR-22-3p 0.05 -71.33 
miR-122-5p_miR-21-5p 0.04 -69.90 
miR-15b-5p_miR-122-5p 0.03 -68.47 
Strategy 2 (67 ratios)   
Intercept only 0.09 -91.23 
miR-425-5p_miR-20a-5p 0.07 -86.25 
let-7a-5p-2_miR-106b-5p 0.06 -83.07 
miR-26b-5p_miR-19b-3p-1 0.05 -82.43 

A ridge logistic regression cross-validation was performed on these sets of ratios (grouped as in 
the outputs of the three runs), and we evaluated all the parameters in the cross-validation mentioned 
above (Table 15). A cross-validation on the whole Bayesian procedure was not possible due to 
extremely high computational time. Additionally, we averaged the coefficients and intercept of the 
ridge regression models across the folds, which are reported in Table 16 for each of the three sets.  

Table 15. Performance based on cross-validation of the ridge regression on miRNAs selected by the three 
hierarchical shrinkage models. 

 Pred. Error AUC Intercept Slope Scaled Brier 
All miRNA ratios 0.25 0.85 -0.03 1.86 0.11 
Strategy 1 (246 ratios) 0.23 0.84 -0.81 4.42 0.19 
Strategy 2 (67 ratios) 0.22 0.81 0.05 1.35 0.05 

 
Table 16. Averaged ridge logistic regression coefficients based on the 5-fold cross-validation on the 

miRNA ratios selected by the three hierarchical shrinkage models. 

All miRNA ratios 
Intercept 0.126 
let-7f-5p-2_miR-22-3p -2.161 
miR-1260b_miR-20a-5p 3.854 
miR-3529-7_miR-26a-5p-1 0.117 
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Strategy 1 (246 ratios) 
Intercept 1.444 
let-7f-5p-2_miR-22-3p -2.272 
miR-122-5p_miR-21-5p 0.065 
miR-15b-5p_miR-122-5p -0.547 

Strategy 2 (67 ratios) 
Intercept 1.182 
miR-425-5p_miR-20a-5p 3.162 
let-7a-5p-2_miR-106b-5p -2.276 
miR-26b-5p_miR-19b-3p-1 -14.755 

Not all the miRNAs found in the ratios obtained with the Bayesian approach were tested by RT-
qPCR; however, as will be seen later, there were some common ratios between the hierarchical 
shrinkage model and the frequentist approach. 

RT-qPCR assaying of miRNAs 

By combining the miRNA ratios from the two above-mentioned strategies, a total of 20 ratios, 
which included 24 unique miRNAs, were further analysed by RT-qPCR on 130 samples. This was 
done because RT-qPCR is more robust and more clinically used than small-RNA sequencing. One 
ratio (let-7f-5p-2_miR-103a-3p-2) was removed as miR-103a-3p-2 and miR-103a-3p-1, found in 
the let-7f-5p-1_miR-103a-3p-1 ratio, had identical counts in all but two samples (with a negligible 
difference) and their ratio partners had identical mature miRNA sequences. In addition, one control 
sample had to be excluded from the RT-qPCR step due to insufficient plasma volume. 

For each sample, the miRNAs were analysed in triplicates. The mean Ct and SD across the 
replicates for each miRNA, stratified by BC status, can be seen in Figure 52. Most of the miRNAs 
were rather stably expressed with a relatively small overall SD across replicates, as the majority 
of SDs were around or below 1. Furthermore, most of the Cts were within the 20 to 35 range.  

The miRNAs that had poor RT-qPCR results were miR-15a-5p and miR-22-3p due to their high 
variability within the triplicates. Importantly, in a large percentage of samples, miR-16-5p had a 
mean Ct below 20, which is a low Ct value and could be explained by the fact that miR-16 is highly 
and consistently abundant in blood. Considering the precautions we undertook regarding 
haemolysis, we believe that it played a minor role in affecting the expression values of the analysed 
miRNAs.  
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Figure 52. Mean and SD of Cts for each miRNA assayed by RT-qPCR in the discovery cohort. The red 
points represent BC cases, while the blue points represent controls. The SD ranges from 0 to 5 in every 

miRNA subplot. 

The miRNA ratios identified as candidates for discriminating between BC cases and controls using 
small-RNA sequencing were then computed using RT-qPCR data by Ct miRNA(Y) - Ct miRNA(X), 
where miRNA(Y) and miRNA(X) are the denominator and numerator of the original NGS ratios, 
respectively. The mean, SD and coefficient of variation were calculated for each miRNA ratio 
constructed from the RT-qPCR data and their density plots can be seen in Figure 53. Due to the 
extremely wide range of CV, we only plotted the standard deviation. Additionally, a boxplot of 
the 20 ratios assayed in the qPCR platform is shown in Figure 54.  
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Figure 53. Density plot of mean and SD of the 20-miRNA ratio signature based on RT-qPCR data. 

 
Figure 54. Boxplot of the 20-miRNA ratio signature based on RT-qPCR data. 

A PCA was constructed on the 20 miRNA ratios, and 40.1% of the variance was explained in PC 
1 and 15.1% in PC2. The PC1 and PC2 axes are visualised in Figure 55 and the separation of cases 
and controls was not as clear as in the previously shown instances.  
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Figure 55. PC1 and PC2 of the PCA on 20-miRNA ratio signature based on RT-qPCR data. 

We then created a heatmap and correlation plot of the mentioned ratios to determine how the 
miRNA ratio expression clusters and if any of the ratios are correlated. Several miRNA ratios were 
correlated, but the correlation among the predictors was not as prevalent as in the NGS data 
(Figure 56). No apparent clustering based on BC status was observed. 

 
Figure 56. Heatmap and correlation plot of 20 miRNA ratio signature based on RT-qPCR data, where the 

squares without x refer to significantly positively (red) or negatively (blue) correlated pairs. 
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Based on the median ratio values, small-RNA sequencing and RT-qPCR had concordant values in 
cases and controls. Nevertheless, four ratios did show an opposite trend (Table 17). Seven ratios 
had a significantly positive Spearman rank correlation coefficient (p-value < 0.01) between the two 
platforms (miR-26b-5p_miR-142-5p, miR-101-3p_miR-19b-3p, let-7b-5p_miR-19b-3p, let-7f-
5p_miR-19b-3p, let-7a-5p_miR-320a, miR-27a-3p_miR-122-5p, miR-199a-3p_let-7a-5p), with 
the coefficients ranging from 0.23 to 0.34 (Table 17). Albeit not significantly correlated, nine 
ratios had positive correlation coefficients < 0.20 and four had negative coefficients between the 
compared platforms.  

Univariable logistic regression and AUC of the 20 ratios based on RT-qPCR data are reported in 
Supplementary Table 10 (Appendix B). Overall, the individual ROC AUC ranged from 0.48 to 
0.65, and three ratios were associated with BC at a nominal 5% level of significance: miR-26b-
5p_miR-142-5p, let-7a-5p_miR-22-3p, and miR-199a-3p_let-7a-5p. Additionally, boxplots of the 
20 ratios can be seen in Figure 57.  

Table 17. Spearman correlation of the same miRNA ratio when comparing the NGS and RT-qPCR data. 

miRNA ratio Coefficient p-value 
let-7a-5p_miR-106b-5p 0.09 0.294 
let-7a-5p_miR-22-3p 0.09 0.337 
let-7a-5p_miR-320a 0.24 0.006 
let-7b-5p_miR-19b-3p 0.25 0.005 
let-7f-5p_miR-103 -0.08 0.380 
let-7f-5p_miR-146a-5p 0.12 0.164 
let-7f-5p_miR-19b-3p 0.24 0.006 
miR-101-3p_miR-19b-3p 0.28 0.001 
miR-15a-5p_miR-16-5p 0.07 0.457 
miR-15b-5p_miR-16-5p -0.12 0.168 
miR-199a-3p_let-7a-5p 0.23 0.009 
miR-199a-3p_let-7f-5p 0.07 0.417 
miR-20a-5p_miR-19b-3p 0.15 0.087 
miR-21-5p_miR-23a-3p -0.11 0.210 
miR-22-3p_miR-19b-3p 0.13 0.150 
miR-26b-5p_miR-142-5p 0.35 < 0.001 
miR-27a-3p_miR-122-5p 0.24 0.007 
miR-30d-5p_miR-20a-5p 0.18 0.041 
miR-335-5p_let-7f-5p 0.14 0.106 
miR-93-5p_miR-19b-3p -0.15 0.085 
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Figure 57. Boxplots of the 20-miRNA ratio signature on RT-qPCR stratified by BC status. 

To identify the most promising miRNA ratios among the initial 20 in the RT-qPCR setting, a cross-
validation penalised LASSO logistic regression was performed. Then, a cross-validation LASSO 
was performed on a set of predictors which included the 20 miRNA ratios and non-molecular 
variables associated with BC in our cohort. Those non-molecular variables were BMI (centred 
BMI was included in the model), breast density as classified by Tabar and WCRF lifestyle score. 
Additionally, menopause and the interaction term with centred BMI were included due to the 
known different effects of BMI in pre- and post-menopausal women. Finally, a cross-validation 
LASSO logistic regression was performed on only the non-molecular variables associated with 
BC in our cohort. The cross-validation log(λ) plots for the three models can be seen in Figure 58.  
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Figure 58. The log(λ) plot of the cross-validation LASSO logistic regression on miRNA ratios + non-
molecular predictors, miRNA ratios only and non-molecular predictors only. Lambda minimum and 1 

standard error from minimum lambda are represented by the left and right vertical lines, respectively. In 
the cv LASSO run with miRNA ratios and non-molecular variables we used a slightly higher λ cut-off 
(vertical line labelled in red) to obtain a more parsimonious model with at most 10 predictors selected. 

The penalised LASSO logistic regression on miRNA ratios selected seven non-zero coefficient 
ratios, while the LASSO logistic regression on miRNAs and non-molecular variables selected the 
same seven miRNA ratios in addition to breast density (Tabar’s scale), interaction term between 
BMI and menopause and WCRF lifestyle score. Finally, LASSO logistic regression on only non-
molecular variables selected breast density, the interaction term between BMI and menopause and 
WCRF lifestyle score. The intercept and coefficients of the selected variables from the three 
models are found in Table 18.  
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Table 18. Predictors with non-zero coefficients from the three penalised LASSO logistic regressions. 

 Combined miRNA only NM only 
Intercept 0.958 1.089 -0.230 
miR-199a-3p_let-7a-5p 0.173 0.157 - 
miR-26b-5p_miR-142-5p -0.103 -0.164 - 
miR-101-3p_miR-19b-3p -0.061 -0.077 - 
miR-93-5p_miR-19b-3p 0.442 0.447 - 
miR-21-5p_miR-23a-3p 0.0002 0.018 - 
let-7b-5p_miR-19b-3p -0.195 -0.184 - 
let-7a-5p_miR-22-3p -0.034 -0.034  
Breast density (Tabar) 0.304 - 0.398 
BMI*Menopause 0.236 - 0.410 
WCRF lifestyle score -0.156 - -0.141 

Since the same cohort was used as in small-RNA sequencing, we performed an apparent validation 
(i.e., applying the coefficient to the original dataset) to assess the previously mentioned parameters 
(i.e., calibration, ROC AUC, Brier score, etc.). The ROC curves, calibration assessment and scaled 
Brier score can be seen in Figure 59. 
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Figure 59. ROC AUC and calibration plots for the three LASSO logistic regression models are shown. 

Within the ROC AUCs the Youden’s cut-off, AUC and Brier score are reported, while within the 
calibration plots, the intercept and slope of the calibration curve are reported. 

The best performing model was the model on miRNA ratios together with non-molecular 
variables. Overall, the models created on RT-qPCR data were not optimally calibrated, with all 
predictions being slightly underestimated. Notably, the intercept of the calibration plot was usually 
on the optimal 0 point, whereas the slope was suboptimal. Finally, based on the paired DeLong 
test, the model on miRNA ratios together with non-molecular variables had a significantly better 
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AUC than non-molecular variables alone (Table 19), demonstrating the biomarker potential of the 
found miRNA ratios. 

Table 19. DeLong test comparing the AUCs of the three LASSO logistic regression models. 

Comparison Z p-value 
miRNA only vs miRNA + NM -1.44 0.150 
miRNA only vs NM only 0.29 0.774 
miRNA + NM vs NM only 2.80 0.005 

Five of the seven miRNA ratios in the final model had significant associations with 
clinicopathological characteristics based on the RT-qPCR data (Figure 60). Namely, miR-93-
5p_miR-19b-3p was lower in ER+ compared to ER− invasive BC patients (p = 0.037). miR-26b-
5p_miR-142-5p was lower in Ki-67+ compared to Ki-67− invasive BCs (p = 0.048). Interestingly, 
miR-21-5p_miR-23a-3p was higher in ER+ than in ER− invasive BC patients (p = 0.030), in 
PgR+ versus PgR− (p = 0.036) as well as in Ki-67− in contrast to Ki-67+ BC invasive patients 
(p = 0.033). Lastly, let-7a-5p_miR-22-3p was lower in ductal compared to other BC histotypes 
(p = 0.050). 

 
Figure 60. Expression values for ratios associated with clinicopathological BC cases characteristics. 

Panels A-E refer to invasive tumours whereas panel F to in situ ones. 
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We then evaluated the ratios selected by the hierarchical shrinkage models, which could be 
assembled using the miRNAs assayed by RT-qPCR (one of the ratios was the one found in the 
reported frequentist approach: let-7a-5p_miR-106b-5p). These were the ratios selected from 
strategy 1 and two of the ratios selected from strategy 2. Out of the selected three, only one ratio 
could be assembled based on a hierarchical shrinkage model on all 4656 ratios. This was the ratio 
let-7f-5p_miR-22-3p and was included in the strategy 1 selection. We performed a univariate 
logistic regression on each of the five ratios and the results are shown in Table 20.  

Table 20. Univariate logistic regression results of the five ratios selected by hierarchical shrinkage 
models on discovery cohort RT-qPCR data. 

miRNA ratio Cases Controls Univariate LR 
Median IQ* range Median IQ range OR 95% CI P 

let-7a-5p_miR-
106b-5p -0.13 [-0.67, 0.65] -0.36 [-0.36, 0.76] 0.93 [0.70, 1.20] 0.561 

miR-15b-
5p_miR-122-5p 0.41 [-0.53, 2.15] -0.66 [-0.66, 1.42] 1.06 [0.87, 1.28] 0.586 

miR-26b-
5p_miR-19b-3p -2.17 [-2.50, -1.80] -2.45 [-2.45, -1.50] 0.71 [0.48, 0.97] 0.053 

miR-122-
5p_miR-21-5p -2.93 [-4.09, -1.60] -3.50 [-3.50, -1.80] 0.95 [0.76, 1.18] 0.627 

let-7f-5p_miR-
22-3p 4.95 [1.68, 7.06] 2.20 [2.20, 7.76] 0.91 [0.81, 1.01] 0.071 

*Interquartile 

None of the statistical tests yielded significant results; however, two ratios were close to having a 
significant odds ratio. These ratios were miR-26b-5p_miR-19b-3p and let-7f-5p_miR-22-3p with 
OR of 0.71 [0.48 to 0.97] and 0.91 [0.81 to 1], respectively. Next, the ridge logistic regression was 
created on all five ratios combined from the two lists of selected ratios. An ROC AUC of 0.607 
was obtained, which is inferior to the AUC obtained from the miRNA ratios yielded by the 
frequentist approach. It is important to stress that ratios included in this approach were not all 
selected using the same hierarchical model and that, overall, there were fewer predictors than in 
the frequentist approach. Thus, there is a lower probability of overfitting and less optimistic results, 
as well as a higher chance that miRNA ratios are correlated, reducing their overall discriminating 
ability. The ROC curve and the calibration plots of the model can be seen in Figure 61. 
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Figure 61. ROC AUC and calibration plot of the five combined ratios obtained using hierarchical 

shrinkage modelling. Within the ROC AUCs the Youden’s cut-off, AUC and Brier score are reported 
while within the calibration plot, the intercept and slope of the calibration curve are reported. 

Target enrichment and network analysis 

The functional target enrichment analysis was performed on the miRNAs comprising the 7-ratio 
signature. Due to the software limitation of the possible number of miRNAs in a single functional 
enrichment analysis, we excluded let-7b-5p as it has a very similar mature sequence and function 
to let-7a-5p, which was included in the analysis. Based on the Wikipathways database, functional 
enrichment on the ten experimentally validated miRNA targets revealed their general involvement 
in cancer and breast cancer pathways, PI3K/AKT signalling pathway as well as the ATM-
dependent DNA damage response. Additionally, they were involved in AR signalling and 
EGF/EGFR signalling pathways (Figure 62).  
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Figure 62. Wikipathways database enrichment results for the experimentally validated targets of the ten 

miRNAs making up the 7-miRNA ratio signature. 

The KEGG database showed generally concordant results to the Wikipathways database (Figure 
63). Interestingly, enrichment in cellular senescence was also observed.  

 
Figure 63. KEGG database enrichment results for the experimentally validated targets of the ten miRNAs 

making up the 7-miRNA ratio signature. 

In the Reactome pathway database results (Figure 64), some of the notable pathways which were 
overrepresented in the majority of the experimentally validated targets of the ten miRNAs were 
cellular response to stress, Interleukin−4 and 13 signalling, PTEN regulation and deubiquitination. 
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Validated targets were also enriched in many other cancer diseases, indicating that these miRNAs 
could be pan-cancer biomarkers.  

 
Figure 64. Reactome database enrichment results for the experimentally validated targets of the ten 

miRNAs making up the 7-miRNA ratio signature. 

Finally, based on the Mienturnet software, messenger RNAs of 12 genes were commonly targeted 
by at least 5 of the 10 analysed miRNAs. The most targeted genes were the tumour suppressor 
phosphatase and tensin homolog (PTEN) (7 miRNAs) and Nuclear FMR1 Interacting Protein 2 
(NUFIP2) (6 miRNAs). 

We performed a network analysis using the MetaCore software on the 11 miRNAs comprising the 
seven miRNA ratios. The output of the software were small subnetworks containing relevant genes 
and miRNAs (those of interest and others if relevant to the pathway/network). The pathway maps 
of the involved genes in the networks, with an FDR lower than 0.05, among other processes, were 
the following: regulation of microRNAs in colorectal cancer, anti-inflammatory and 
cardioprotective adiponectin signalling as well as TGF-beta signalling via microRNAs in BC 
(Figure 65). A total of 30 transcription factors were found that interact with the ten miRNAs or 
their targeted genes (Table 21). The transcription factors with the highest number of interactions 
were RelA, EGR1, HIF1A, and p53.  
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Figure 65. Pathway maps result of the 11 miRNAs making up the 7-miRNA ratio signature. 

Table 21. Transcription factors with the highest number of interactions with the 11 miRNAs. 

TF Actual R Expected Ratio p-value z-score 
RelA  8 2373 1.83 4.37 < 0.001 4.68 
EGR1 7 681 0.53 13.31 < 0.001 9.00 
HIF1A 6 1225 0.95 6.34 < 0.001 5.27 
p53 6 1935 1.50 4.02 0.003 3.77 
EPAS1 5 291 0.23 22.25 < 0.001 10.11 
c-Fos 5 496 0.38 13.05 < 0.001 7.50 
c-Jun 5 1029 0.80 6.29 0.001 4.77 
STAT3 5 1453 1.12 4.46 0.005 3.72 
E2F3 4 240 0.19 21.58 < 0.001 8.89 
SMAD4 4 446 0.35 11.61 < 0.001 6.26 
STAT1 4 618 0.48 8.38 0.001 5.14 
NRSF 4 622 0.48 8.33 0.001 5.12 
KLF4 4 15040 11.62 0.34 0.003 -2.74 
MYOD 3 226 0.18 17.19 < 0.001 6.78 
TWIST1 3 382 0.30 10.17 0.003 5.00 
NF-kB1  3 507 0.39 7.66 0.007 4.19 
C/EBPalpha 3 609 0.47 6.38 0.011 3.72 
GATA-1 3 12317 9.51 0.32 0.007 -2.48 
NF-AT4 2 67 0.05 38.65 0.001 8.57 
CREM 2 82 0.06 31.58 0.002 7.71 
GFI-1 2 102 0.08 25.39 0.003 6.86 
ETS2 2 153 0.12 16.92 0.006 5.49 
Max 2 171 0.13 15.14 0.008 5.15 
MITF 2 215 0.17 12.04 0.012 4.51 
GATA-2 2 10400 8.03 0.25 0.007 -2.43 
NANOG 2 12923 9.98 0.20 < 0.001 -2.99 
MTA1 1 10 0.01 129.50 0.008 11.30 
GCR 1 7912 6.11 0.16 0.010 -2.28 
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TF Actual R Expected Ratio p-value z-score 
ETS1 1 8154 6.30 0.16 0.008 -2.33 
HNF3-alpha 1 9363 7.23 0.14 0.003 -2.60 

Actual: number of network objects in the activated dataset(s) which interact with the chosen object 
R: number of network objects in the complete database or background list which interact with the chosen 
object 
Expected: mean value for hypergeometric distribution (n*R/N); N in this case represents total number of 
gene-based objects in the complete database or background list (45315) 
Ratio: connectivity ratio (Actual/Expected) 

Seven networks were created from the 11 miRNAs with a z-score larger than 60 (Table 22).  

Table 22. Results of the network analysis on 11 miRNAs making up the 7-miRNA ratio signature. Shown 
are the miRNAs included in each subnetwork, the associated GO processes as well as the network 

statistics. 

Network p-value Z g-score 
miR-21-5p, miR-26b-5p, miR-23a-3p, microRNA 21, miR-21-3p < 0.001 202.34 202.34 
miR-93-5p, microRNA let-7a-1, miR-142-5p, microRNA let-7b, 
miR-23a-3p 

< 0.001 184.89 184.89 

miR-23a-3p, miR-93-5p, microRNA 21, miR-26b-5p, miR-let-7b-
5p 

< 0.001 158.91 158.91 

miR-22-3p, miR-23a-3p, miR-142-5p, miR-93-5p, miR-let-7b-5p < 0.001 140.06 140.06 
miR-let-7a-2-3p, miR-93-5p, miR-21-3p, microRNA 21, miR-142-
5p 

< 0.001 78.59 78.59 

microRNA let-7°-1, microRNA 23°, microRNA 19b-1, miR-23°-5p, 
STAT1 

< 0.001 68.02 68.02 

microRNA 199°-1, miR-22-5p, microRNA 22, SP1, Mn(‘3+) + 
Apotransferrin = Mn(III)-Apotransferrin 

< 0.001 48.68 48.68 

The g‐score is a statistic modifying the Z‐score based on the number of linear canonical pathway units 
within the network. 

In network 1 (Figure 66), PTEN was the central gene and was inhibited by several miRNAs found 
among the seven miRNA ratios. Additionally, a gene which interacts with PTEN, neuron-
restrictive silencer factor (NRSF), more commonly known as RE1 Silencing Transcription Factor 
(REST), was found to inhibit miR-199a and miR-93. In the second network, Sirtuin 1 (SIRT1) was 
the central gene which was inhibited by miR-23a-3p, miR-142, miR-22 and miR-93. In addition 
to SIRT1, miR-93 also inhibited the Estrogen Receptor 1 (ESR1) gene. SIRT1 might be relevant to 
epigenetic gene silencing and promotes the formation of breast cancer through modulating Akt 
activity. Cyclin Dependent Kinase 4 (CDK4) was found to be inhibited by two miRNAs and a 
miRNA which also inhibited SIRT1, while ERK2 was found to activate miR-101 and was 
functionally associated with let-7a and miR-26b.  
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Figure 66. Graphical representation of network 1 from Table 22. The miRNAs with a red circle next to 

them were the input miRNAs. 

Network 3 can be divided into three hubs: the protein kinase JAK1, transcription factor BLIMP1 
and receptor ligand CTGF (Figure 67). JAK1 was inhibited by miR-93, which also inhibited 
Nuclear Receptor Coactivator 3 (NCOA3). Additionally, JAK1 was inhibited by miR-23a, which 
inhibited the BLIMP1 transcription factor. BLIMP1 was also inhibited by four other miRNAs of 
interest (miR-21, let-7b, let-7a and miR-22. The connection of the second and third hubs was 
reflected in the activation of both BLIMP1 and CTGF by the transcription factor SP1. The CTGF 
receptor ligand was found to be inhibited by miR-26b, miR-19, miR-21 and miR-19b. 
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Figure 67. Graphical representation of network 3 from Table 22. The miRNAs with a red circle next to 

them were the input miRNAs. 

Model application in the validation cohort 

The miRNAs making up the seven miRNA ratios selected by the penalised LASSO logistic 
regression in the discovery cohort were assessed in the previously described validation cohort with 
127 controls and 32 cases. The key differences between the discovery and validation cohorts are 
the inclusion of controls which went for a second-level investigation after the mammography, and 
the inclusion of BC cases which were diagnosed several months after blood sampling. Importantly, 
as both of them are found among the seven miRNA ratios and their Cts were highly correlated (ρ 
= 0.96), let-7b-5p was replaced by let-7a-5p in the one ratio it was a part of. Another reason for 
this decision was that the mature sequences of the two miRNAs are very similar, with only two 
nucleotides being different, and, in both miRNAs, the differing bases were purines. This enabled 
an overall much more cost-efficient RT-qPCR run. The flowchart of the biomarker analysis in the 
validation cohort can be seen in Figure 68. 
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Figure 68. Validation cohort pipeline in which we assessed the discrimination power and predicted risk 
calibration of the miRNA ratio signature. *let-7b-5p was replaced by let-7a-5p in the ratios due to the 

high correlation of Cts between the two miRNAs within the discovery cohort. 

The mean Ct and SD for each of the ten miRNAs across the RT-qPCR duplicates, stratified by BC 
status, can be seen in Figure 69. Almost all miRNAs had high-quality Ct values from RT-qPCR, 
as they were within the expected Ct value range and had generally small SD across replicates. Like 
in the discovery cohort, miR-22-3p was again the only exception as its SD was higher, and it had 
several samples with the Ct approaching 40. Interestingly, although not normalised, visually the 
Ct values tend to be lower in cases when compared to controls, indicating a tendency of higher 
expression of most analysed miRNAs in cases. 
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Figure 69. Mean and SD of Cts for each of the ten miRNAs assayed by RT-qPCR in the validation 

cohort. The red points represent BC cases, while blue points represent controls. 

The mean, SD and coefficient of variation were calculated for each of the seven miRNA ratios 
analysed in the validation cohort. The density plots of mean and CV can be seen in Figure 70 (CV 
was plotted instead of SD due to a more stable distribution of CV in this particular data).  

 
Figure 70. Density plots of mean and CV of the seven miRNA ratios. 
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Importantly, the value ranges of the individual miRNA ratios, as well as the other mentioned 
statistics (i.e., overall mean and SD) were comparable between the RT-qPCR data in the discovery 
and validation cohort. Additionally, four of the seven miRNA ratios were differentially expressed 
(p < 0.05) between BC cases and controls (Figure 71). 

 
Figure 71. Boxplot of seven miRNA ratios computed in the validation cohort stratified by BC status. 

We then created a heatmap and correlation plot of the mentioned ratios to determine how the 
miRNA ratio expression clusters and if any of the ratios are correlated (Pearson correlation). 
Eleven pairs of ratios were significantly correlated (Figure 72). It is important to stress that the 
sample clustering in the heatmap was influenced by the different proportions of cases and controls 
within the validation cohort. 
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Figure 72. Heatmap of the seven miRNA ratios analysed in the validation cohort (left) and their 
correlation plot (right) where the squares without x refer to significantly positively (red) or negatively 

(blue) correlated pairs. 

We performed univariate logistic regression on the individual seven ratios, and four of them were 
significantly associated with BC (p < 0.05) (Supplementary Table 11 – Appendix B). From the 
significantly associated ratios, let-7a-5p_miR-22-3p had a discordant OR compared to the 
discovery cohort; in the validation cohort the OR was above 1, while in the discovery, it was < 1. 
All non-significantly associated ratios had discordant ORs between the discovery and validation 
set. 

The multivariate model from the discovery cohort included seven miRNA ratios and three non-
molecular variables (breast density, interaction of centred BMI and menopausal status and WCRF 
lifestyle score). The coefficients of the variables obtained from the discovery cohort were applied 
to the validation cohort using the sigmoid function for logistic regression. After applying the 
coefficients, we obtained 0.71 [0.61 to 0.80] ROC AUC. The relatively poor performance could 
be attributed to the differences between the discovery and validation cohorts with respect to time 
to diagnosis in cases or differences between controls as a subset of controls in the validation cohort 
underwent biopsy due to suspicion of a positive diagnosis. However, even after applying the 
coefficients to subgroups of cases (depending on their time of diagnosis) or subgroups of controls, 
we still obtained suboptimal prediction results without any significant improvement compared to 
the model on all samples (Table 23). 
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Table 23. ROC AUCs and their confidence intervals on models including all predictors, only miRNA 
ratios and only non-molecular predictors. Results for various subgroups are also shown. 

 All predictors miRNA ratios Non-molecular 
predictors 

Sample subgroup AUC 95% CI AUC 95% CI AUC 95% CI 
All samples 0.71 [0.61, 0.80] 0.51 [0.39, 0.62] 0.74 [0.64, 0.82] 
Without controls with 
additional biopsy 0.73 [0.62, 0.81] 0.52 [0.40, 0.65] 0.75 [0.64, 0.83] 

Without controls with negative 
mammography result 0.66 [0.52, 0.78] 0.45 [0.31, 0.60] 0.72 [0.58, 0.83] 

Without cases diagnosed more 
than 2 years after blood 
sampling 

0.71 [0.58, 0.81] 0.55 [0.38, 0.71] 0.70 [0.56, 0.81] 

Without cases diagnosed less 
than 2 years after blood 
sampling 

0.72 [0.56, 0.83] 0.47 [0.31, 0.63] 0.77 [0.63, 0.87] 

Notably, the time passed after blood sampling until diagnosis was not associated with the predicted 
risk (Figure 73). 

 

Figure 73. Scatter plot of time from blood sampling to diagnosis and predicted probability after applying 
the coefficients to the validation cohort (based on the seven miRNA ratios and non-molecular variables). 

Finally, we ordered the 159 samples based on predicted risk and investigated the distribution of 
true positives, false positives, true negatives and false negatives at Youden's optimal cut-off 
(0.614) (Figure 74). A substantial miscalibration of the predicted probabilities and a large 
proportion of false positive classifications was observed. 
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Figure 74. Validation cohort samples ordered by the predicted probability of being BC positive (based on 
the model combining miRNA ratios and non-molecular predictors). The samples were then classified into 
predicted case or control based on Youden’s cut-off and the resulting prediction was labelled as TP, FP, 

TN or FN. 

We then tested whether the distributions and variances of the predictors in the mentioned model 
differ significantly between the two healthy control subgroups. Out of the 12 tested predictors (we 
also included centred BMI and menopausal status as they made up the interaction term in the 
model), three miRNA ratios had significantly different variances (miR-199a-3p_let-7a-5p, let-7b-
5p_miR-19b-3p, let-7a-5p_miR-22-3p) at the p-value < 0.01 cut-off. No other significant 
differences based on the three tests were found between the subgroups (Supplementary Table 12 
– Appendix B). 

When applying the coefficients from the miRNA ratio only model on the validation cohort data, 
we obtained an ROC AUC of 0.51 [0.39 to 0.62], while for the non-molecular variables model, we 
obtained an ROC AUC of 0.74 [0.64 to 0.82], indicating that the non-molecular variables are more 
homogenous between the discovery and validation cohort (Table 23). For the models on miRNA 
ratios alone and on non-molecular variables alone, we also tested whether the time from blood 
collection until diagnosis was associated with the predicted risk (Supplementary Figure 1 – 
Appendix B) and, as in the model with all predictors, no significant association was found. The 
distribution of true positives, false positives, true negatives and false negatives at Youden’s 
optimal cut-off (0.656 for the model on miRNA ratios and 0.464 for the model on non-molecular 
predictors) for the two models were also investigated (Supplementary Figure 2 – Appendix B). 

An important aspect of every model is the calibration of its prediction estimates. Therefore, we 
generated a logistic calibration curve and investigated its intercept and slope. We only assessed 
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the calibration of the model with all samples and not the subgroups, as there was no evidence that 
any subgroups performed better than the complete cohort. The model on miRNA ratios and non-
molecular variables applied to the validation cohort data was not calibrated, as seen in Figure 75. 
Consequently, there was a substantial overestimation of risk within the predictions (calibration 
plot metrics1: intercept was -2.45 [-2.84 to -2.06] and the slope was 1.31 [0.33 to 2.29]). The 
predicted risks of miRNA ratios only and non-molecular predictors only were also miscalibrated. 

 

Figure 75. Calibration curve plots of the predicted probabilities of the three models (miRNA ratios 
together with non-molecular variables, miRNA ratios alone and non-molecular variables alone) applied to 

the validation cohort. The intercept and slope of the calibration curves are shown. 

Since clear miscalibration was observed in all applied models, the next step was to recalibrate the 
predicted probabilities. To do so, we employed the closed testing method, which evaluated 
different recalibration approaches while striving to maintain the type I error: calibration of the 
intercept, calibration of intercept and the overall slope, or to have a complete model revision where 

 
1 All subsequent brackets of such format where we report the intercept and slope, refer to the respective 
calibration plots. 
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the coefficients and the intercept are re-evaluated. Based on the closed testing approach, we 
performed a complete model revision (re-estimated the coefficients and intercept) for all the 
mentioned models on miRNA ratios and non-molecular variables as well as miRNA ratios alone. 

In order to perform model revision but avoid overfitting as much as possible, we used penalised 
ridge regression modelling. On the model on miRNA ratios together with non-molecular variables 
we obtained an ROC AUC of 0.90 [0.83 to 0.94] and a more calibrated model (intercept: 0.00 [-
0.45 to 0.45] and slope: 1.43 [0.92 to 1.94]).  

After performing ridge regression on the seven miRNA ratios alone, we obtained a more calibrated 
model (intercept: 0.00 [-0.41 to 0.41] and slope: 1.49 [0.88 to 2.11]) with an ROC AUC of 0.81 
[0.72 to 0.87]. Finally, the ridge regression on non-molecular variables (WCRF lifestyle score, 
breast density and interaction term between centred BMI and menopause status) showed relatively 
good performance (ROC AUC = 0.78) and model calibration (intercept: 0.00 [-0.41 to 0.41] and 
slope: 1.23 [0.70 to 1.76]).  
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Figure 76. ROC AUC and calibration plots of the ridge regression models (model recalibration). Within 
the ROC AUCs, the Youden’s cut-off, AUC and Brier score are reported, while within the calibration 

plots, the intercept and slope are reported. 

After model revision, based on the DeLong test, the model with miRNA ratios and non-molecular 
variables performed significantly better than the other two models (Table 24). The new 
coefficients and intercepts of the three models can be seen in Table 25. Importantly, all revised 
coefficients in the validation cohort are concordant with the miRNA ratios in the discovery cohort 
except for let-7a-5p_miR-22-3p and miR-101-3p_miR-19b-3p. 
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Table 24. DeLong test on AUCs of the three recalibrated models in the validation cohort. 

Comparison Z p-value 
miRNA only vs miRNA + NM -2.54 0.011 
miRNA only vs NM only 0.49 0.625 
miRNA + NM vs NM only 3.06 0.002 

 

Table 25. Recalibrated coefficients in the validation cohort of the predictors included in the three models. 

 All miRNA only NM only 
Intercept -11.637 -6.988 -3.140 
miR-199a-3p_let-7a-5p 1.527 1.178 - 
miR-26b-5p_miR-142-5p -0.015 -0.029 - 
miR-101-3p_miR-19b-3p 0.210 0.292 - 
miR-93-5p_miR-19b-3p 0.191 -0.133 - 
miR-21-5p_miR-23a-3p 1.157 0.912 - 
let-7b-5p_miR-19b-3p -0.409 -0.304 - 
let-7a-5p_miR-22-3p 0.235 0.203 - 
breast density 1.290 - 1.101 
BMI*Menopause 0.677 - 0.566 
WCRF lifestyle score -0.043 - -0.100 

After model revision, the predicted probabilities were more evenly distributed in all three models, 
although still not fully optimal (in terms of underestimating the overall risk). This could be 
attributed to the sample size and lower event rate (Figure 77). 
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Figure 77. Violin plots of the calibrated predicted probabilities based on the three models. 

Additionally, after calibrating the models, the time after blood sampling until diagnosis remained 
without significant association with the predicted risk (Supplementary Figure 3 – Appendix B). 
The confusion matrix at Youden’s optimal cut-off was labelled over ordered samples based on 
predicted probability (Supplementary Figure 4 – Appendix B). 

To additionally account for overfitting and overoptimism, we performed an ordinary bootstrap (n 
= 2000) on all the ridge regression models. The ROC AUC distributions of the models can be seen 
below. The 95% CI of the AUC based on the bootstrap is quite satisfactory for the model on 
miRNA ratios and non-molecular variables (0.785 to 0.903), indicating that these variables, when 
calibrated, could be useful biomarkers for early BC detection. Bootstrap results of this model as 
well as the miRNA ratio-only and non-molecular variables-only models can be seen in Figure 78. 
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Figure 78. Histogram of bootstrapped ROC AUCs based on the ridge regression on the three models in 
the validation cohort. 

To test the robustness of the frequentist ridge regression estimates and compare then to other 
methods, we also performed model updating using the Bayesian approach. We performed the 
Bayesian updating by setting the coefficients reported from the discovery cohort as prior means, 
while the standard deviation was set as the constant ln(4)/2 [280]. We obtained an ROC AUC of 
0.87 [0.80 to 0.92], with only a slight miscalibration of the model (intercept: -0.21 [-0.65 to 0.22] 
and slope: 1.47 [0.93 to 2.01]). The Bayesian model updating was also performed on miRNA ratio-
only and non-molecular variables-only models. The former model had an ROC AUC of 0.74 and 
was relatively well calibrated (intercept: -0.21 [-0.65 to 0.22] and slope: 1.47 [0.93 to 2.01]), while 
the latter showed similar results (ROC AUC = 0.78). Detailed plots on the calibration of Bayesian 
models can be seen in Figure 79. 

In summary, the Bayesian model updating is comparable to the ridge regression reported 
previously, based on the discriminatory statistic and calibration. However, the miRNA ratio-only 
model performed better with the ridge regression. 
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Figure 79. Calibration plots of the models calibrated using Bayesian model updating. The intercept and 
slope of the calibration plots are also shown. 

The individual patient data (IPD) across different cohorts with the same predictors can be merged 
to create a new model while accounting for the cohorts. This can be done by utilising the IECV 
method. The IECV develops a model based on data from K-1 studies and tests it on the remaining 
study. Hence, in our case, we merged the discovery and validation cohort and, based on the 
heterogeneity estimate (of the Brier score), evaluated whether the mentioned models should be 
constructed in separate or combined cohorts. Additionally, since IECV can also be used to expand 
an intercept-only model by iteratively adding predictors common between cohorts, we used it to 
identify the set of predictors with the highest generalisability between our discovery and validation 
cohort. Importantly, since we only merged two cohorts, the IECV method has limited reliability.  

Due to the relatively large heterogeneity (tau2 = 0.052), combining the cohorts on all the predictors 
to create one prediction model would not create a more informative model than the ones obtained 
from individual cohorts. Nevertheless, the IECV can improve the generalizability and reduce the 
heterogeneity by finding the most generalisable predictors. After performing this on the two 
merged cohorts, a model with relatively low heterogeneity (tau2 = 0.002), which included four 
predictors was created (miR-26b-5p_miR-142-5p, miR-21-5p_miR-23a-3p, interaction term of 
centred BMI and menopausal status, breast density). This model had a reduced discriminatory 
ability with an ROC AUC of 0.80 [0.74 to 0.84] but much higher generalisability compared to the 
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model utilising all predictors (the generalisability corresponds to the meta-analysed estimate of 
Brier score and was 0.43 in model with all predictors and 0.2 in the model with selected predictors). 

The IECV on miRNA only selected two miRNA ratios (miR-199a-3p_let-7a-5p and miR-21-
5p_miR-23a-3p), again with low heterogeneity (tau2 = 0.002), reduced discriminatory ability 
(ROC AUC of 0.70 [0.64 to 0.77]) and higher generalisability compared to when using all miRNA 
ratios. This higher generalisability reflects the OR concordance of the two selected miRNA ratios 
between the two cohorts. Furthermore, the IECV was done on the non-molecular variables only, 
and the model on all predictors had a slightly lower heterogeneity (tau2 = 0.001) than the model 
with filtered predictors (tau2 = 0.002). This could be explained by the fact that non-molecular 
variables were very similar between the two cohorts. The ROC AUC of the model on all three non-
molecular predictors was 0.74 [0.68 to 0.80]. Overall, the AUCs using the IECV generalisable 
predictors were lower but had superior calibration metrics compared to other recalibration methods 
(i.e., ridge regression or Bayesian model updating), as seen in Figure 80. 

 

Figure 80. Calibration plot of the generalisable predictors of the three IECV models on the combined 
data from the discovery and validation cohort. The intercept and slope of the calibration plots are also 

shown. 



127 
 

Lastly, we tested the association of the miRNA ratios analysed in the validation cohort with 
clinicopathological parameters. Two miRNA ratios were associated with the ER status. Namely, 
miR-199a-3p_let-7a-5p was higher in ER+ compared to ER- cases (p-value: 0.049), while the 
opposite was found for miR-26b-5p_miR-142-5p (p-value: 0.027). Additionally, miR-93-5p_miR-
19b-3p was lower in PgR− compared to PgR+ cases (p = 0.036), and let-7b-5p_miR-19b-3p was 
found to be associated with Tabar’s classification of breast density (p = 0.025). The expressions 
of these miRNA ratios stratified by the clinicopathological variables they are associated with can 
be seen in Figure 81. 

 
Figure 81. Expression values for miRNA ratios associated with clinicopathological BC cases 

characteristics in the validation cohort. 

Subgroup and sensitivity analyses 

As the sample size of our cohort was too small to perform biomarker discovery on subgroups, such 
as identifying miRNA ratios among different molecular subtypes of BC, we performed a set of 
analyses on the RT-qPCR data and non-molecular variables, which aimed to identify whether the 
variances and distributions of the predictors were the same between subgroups. Additionally, when 
the sample size allowed (i.e., when there were only two subgroups), we applied the previously 
reported model on the subgroups. These analyses were performed on both the discovery and 
validation cohorts. The set of subgroups we analysed were: 
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1) Family history status 
2) Invasive vs in situ tumours 
3) PRS stratification 
4) Intrinsic molecular subtype 
5) Lateral location of tumour 

In the discovery cohort, no significant differences in variance or distribution were found between 
the 20 miRNA ratios and five non-molecular variables when comparing individuals with BC 
family history and those without. In the validation cohort, the same results were found except for 
miR-199a-3p_let-7a-5p, which had a significantly different variance between the two subgroups 
(F-statistic: 4.7, adjusted p = 0.0002). When comparing the predictors between in situ and invasive 
patients in the discovery cohort2, three miRNA ratios were found to have significantly different 
variance (miR-101-3p_miR-19b-3p, miR-26b-5p_miR-142-5p and miR-20a-5p_miR-19b-3p). 
The PRS score based on the 77 SNPs was available only in the discovery cohort, and for the 
subgroup analysis, the individuals were stratified based on PRS > 1 and PRS ≤ 1. There were no 
significantly different predictors based on any of the mentioned statistics, and the PRS data was 
not available in the validation cohort. Importantly, none of the predictors were significantly 
different between the intrinsic molecular tumour subtypes in the discovery cohort and only 
menopausal status was found to be different between some of the molecular subtypes in the 
validation cohort (Kruskal-Wallis test). These findings indicate that the identified miRNA ratios 
could be generalisable across all BC molecular subtypes. Finally, no differences in predictors were 
observed when comparing left to right breast tumour location in both the discovery and validation 
sets. We tried performing a LASSO logistic regression on the discovery cohort or applying the 
coefficients obtained on the total sample in the validation cohort subgroups, but due to a low event 
number, the results were not very conclusive or reliable. 

We performed sensitivity analyses by rerunning the LASSO penalised logistic regression model 
on the discovery cohort (RT-qPCR miRNA data + non-molecular variables) and excluding various 
predictors to assess the performances. 

To assess their utility without Tabar’s breast density classification, the two models with non-
molecular variables (miRNA ratios + non-molecular variables and non-molecular variables alone) 
were generated without the breast density variable. Without breast density, the model with miRNA 
ratios and non-molecular variables performed better than miRNA ratios alone, although not 
significantly (z = 0.987, p-value = 0.324). Just like in the models that included breast density, the 
model on miRNA ratios and non-molecular variables had a significantly better ROC AUC 
compared to non-molecular variables alone (z = 2.862, p-value = 0.004). In the model with miRNA 
ratios and non-molecular variables, the same 7 out of 20 miRNA ratios were selected, together 
with the interaction of BMI and menopause and WCRF lifestyle score. An ROC AUC of 0.77 

 
2 The validation cohort had only one in situ case so this comparison could not be made. 
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[0.68 to 0.84] was obtained, which is quite comparable to the model with breast density (Figure 
82). 

Next, the BMI, menopause status and their interaction were excluded, and a model was generated. 
The model selected eight miRNA ratios, breast density and WCRF lifestyle score with an ROC 
AUC of 0.79 [0.71 to 0.86]. The additional miRNA ratio selected was miR-335-5p_let-7f-5p with 
a relatively low coefficient (-0.022), which did appear multiple times when running the penalised 
LASSO logistic regression 100 times on different seeds. The model without WCRF lifestyle score 
selected the same miRNAs as the model without BMI and menopause status and their interaction. 
The non-molecular variables were breast density and the interaction between BMI and menopausal 
status. An ROC AUC of 0.78 [0.70 to 0.85] was obtained. Importantly, the predicted probabilities 
of all the models reported in this section were similarly calibrated (all had slight underestimations 
of risk).  

 
Figure 82. ROC AUC and calibration plots of the LASSO logistic regression models in the discovery 
cohort without specific predictors. Within the ROC AUCs, Youden’s cut-off, AUC and Brier score are 

reported while within the calibration plots, the intercept and slope are reported. 
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To further test the discriminatory ability of the models without the breast density measurement, 
for which mammographic screening would be required, the model coefficients without the breast 
density predictor from the discovery cohort were applied to the validation cohort, and the results 
are shown in Table 26. Compared to the complete model, much poorer results without breast 
density were obtained. Furthermore, miscalibration of predicted probabilities was observed in the 
applied model without breast density.  

After complete model revision, the performance and calibration improved significantly in the 
model with all predictors with an ROC AUC of 0.81. On the other hand, the model on non-
molecular variables only needed the intercept to be recalibrated, and the resulting ROC AUC was 
0.61 (Figure 83). The predicted probabilities of the recalibrated model on miRNA ratios and non-
molecular variables without breast density had an optimal intercept but a slightly higher slope than 
optimal (1.49), while the predicted probabilities of the model based on non-molecular predictors 
had both the intercept and slope miscalibrated, indicating that the model on non-molecular 
variables without breast density was suboptimal. 

Table 26. Model performance in validation cohort when applying the coefficients from the discovery 
cohort of models without the breast density predictor. The performances of the models within case and 

control subgroups were analysed as well. 

 All predictors Non-molecular 
predictors 

Sample subgroup AUC 95% CI AUC 95% CI 
All samples 0.59 [0.48, 0.69] 0.61 [0.50, 0.71] 
Without controls with 
additional biopsy 0.61 [0.49, 0.71] 0.62 [0.51, 0.72] 

Without controls without 
additional biopsy 0.53 [0.39, 0.67] 0.57 [0.43, 0.71] 

Without cases diagnosed more than 
2 years after blood sampling 0.54 [0.38, 0.69] 0.54 [0.39, 0.68] 

Without cases diagnosed less than 2 
years after blood sampling 0.63 [0.49, 0.75] 0.68 [0.54, 0.78] 
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Figure 83. Calibration plots of the calibrated models on miRNA ratios and non-molecular predictors as 
well as non-molecular predictors only without breast density. 

Candidate miRNA ratios in TCGA data 

TCGA microRNA expression data (via small-RNA sequencing) was downloaded to evaluate the 
ability of the ratios to discriminate between healthy and tumour tissues. The dataset included 1,078 
primary tumour samples and 104 adjacent healthy tissue, but we focused on the paired tumour and 
adjacent healthy tissue samples (103 pairs). The age at diagnosis for the analysed samples ranged 
from 30 to 90 years, with an average of 57.86 ± 14.7. We investigated which of the seven candidate 
miRNA ratios are differentially expressed between tumours and their adjacent normal tissues. 
From the seven miRNA ratios assessed in the validation cohort, six were differentially expressed 
(p < 0.05). The only non-differentially expressed ratio was let-7a-5p_miR-22-3p.  

The mean fold change for each ratio was calculated by taking the mean of the fold changes across 
the paired samples (Table 27). Additionally, we performed a univariate conditional logistic 
regression on each ratio to account for the paired samples. Based on the conditional logistic 
regression, all ratios but let-7a-5p_miR-22-3p were significantly associated with BC (p < 0.05). 
The largest fold change and OR was observed for the ratio miR-21-5p_miR-23a-3p, which is 
expected as miR-21 is one of the most commonly dysregulated miRNAs in breast cancers but also 
across other types of cancer. Additionally, six of the seven ratios showed concordant OR when 
comparing the RT-qPCR miRNA ratio data from the discovery cohort to TCGA data (let-7a-
5p_miR-22-3p was discordant). However, two ratios had an OR close to 1 (miR-21-5p_miR-23a-
3p and miR-101-3p_miR-19b-3p). 
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Table 27. Univariate conditional logistic regression and paired Mann–Whitney U test on the seven 
candidate miRNA ratios in the tissue TCGA dataset. 

miRNA ratio OR 95% CI P* FC log2FC P** 
miR-199a-3p_let-7a-5p 2.23 [1.50, 3.32] < 0.001 0.86 -0.22 1.14E-05 
miR-26b-5p_miR-142-5p 0.39 [0.27, 0.57] < 0.001 0.78 -0.35 5.38E-11 
let-7b-5p_miR-19b-3p 0.73 [0.58, 0.92] 0.008 0.95 -0.08 4.48E-03 
miR-101-3p_miR-19b-3p 0.71 [0.54, 0.94] 0.016 0.96 -0.06 1.95E-02 
miR-93-5p_miR-19b-3p 2.35 [1.60, 3.44] < 0.001 1.20 0.26 4.57E-07 
let-7a-5p_miR-22-3p 1.17 [0.87, 1.56] 0.300 1.55 0.63 6.12E-01 
miR-21-5p_miR-23a-3p 10.04 [3.44, 29.27] < 0.001 1.72 0.78 5.82E-18 

*P-value of the univariate logistic regression 
**P-value of the Mann–Whitney U test 
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Puberty-associated CpG sites linked to BC 

In this section, I analysed the CpG sites associated with pubertal timing or development from 
Sehovic et al. 2023 [234] in the context of BC, because early pubertal timing is a risk for BC in 
women. These CpG sites could be important biomarkers linking puberty and BC onset or risk. In 
addition, miRNAs significantly targeting the genes mapped to the CpGs of interest were identified.  

From the mentioned study, based on the diseases and functions enrichment using the IPA tool, 
2,711 CpG sites were enriched in BC processes as well as associated with puberty (standardised 
effect size > |0.13|). Furthermore, eight CpG sites associated with puberty, the same cut-off as the 
one above, were also found to be associated with BC risk based on peripheral blood samples. Six 
of the eight (Table 28) were found by a group from FIMM through twin discordance analyses on 
monozygotic twin pairs, indicating an environmental driver for the association between BC and 
methylation. All six were negatively associated with BC status. The two remaining CpGs were 
found to be associated with BC risk by a study on a prospectively sampled cohort (n = 162) of 
women where the CpG sites in peripheral blood were analysed. Both CpGs had a negative effect 
size. 

I investigated the methylation of these CpG sites in blood and breast tissue, gene expression of the 
mapped genes as well as the miRNAs significantly targeting the underlying genes. The two sets 
of CpGs (based on IPA and those associated with risk) were analysed through two separate 
pipelines.  

Table 28. List of CpG sites associated with puberty and BC risk which were investigated in this project. 

CpG Effect size or hazard ratio* Source Mapped Gene 
cg00195561 0.16 Twin modelling CHRM4 
cg02079421 0.14 Twin modelling PCNT 
cg06579481 0.07 Twin modelling  
cg14018434 0.31 Twin modelling SLC2A8 
cg14038259 0.23 Twin modelling RNF213 
cg19212550 0.10 Twin modelling DNMBP 
cg00124920 -0.03 EPIC cohort C1orf220 
cg26772788 -0.02 EPIC cohort  

*Effect sizes from the conditional logistic regression performed on the EPIC cohort and hazard 
ratios from the paired Cox proportional hazard modelling on the Finnish twins. 

Relevant miRNAs 

To gain further epigenetic context for BC risk and puberty, I sought to understand which miRNAs 
play a role in regulating genes associated with puberty through DNA methylation sites. To do that, 
I performed a target enrichment analysis on the genes mapped to the 2,711 CpG sites associated 
with BC processes (from now on CpG set 1) as well as to the genes mapped to the eight CpG sites 
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associated with BC risk (from now on CpG set 2). Based on 1,990 identified genes (mapped to 
CpGs from set 1) by the Mienturnet software, 63 miRNAs were found to significantly target those 
genes (FDR < 0.05). On the other hand, the six genes mapped to CpG set 2 were significantly 
targeted by five miRNAs (FDR < 0.2). Due to the lower number of input genes, I increased the 
FDR cut-off. Four out of five miRNAs targeted the same two genes (SLC2A8 and C1orf220) from 
the initial six in the input. 

After obtaining the list of relevant miRNAs for both CpG set 1 and 2, I evaluated their expression 
in both breast tissue and blood. The blood data included the small-RNA sequencing on the 131 
nested case–control cohort mentioned earlier, while the breast tissue data included the paired 
tumour and adjacent healthy tissue samples (n = 103 pairs from TCGA) on which small-RNA 
sequencing was performed. Forty miRNAs, targeting the genes mapped to CpGs in set 1, were 
found to be differentially expressed between BC tumour tissue and adjacent normal samples 
(Figure 84). While in plasma, four miRNAs (miR-21-5p, miR-22-3p, miR-19b-3p, miR-16-5p) 
which significantly targeted the genes mapped to CpGs in set 1 were differentially expressed. 
Three of the four microRNAs differentially expressed in plasma were also differentially expressed 
in tissue (all four but miR-19b-3p).  

 

Figure 84. Volcano plot of paired class comparison of miRNAs in tumour and adjacent normal tissue 
(TCGA). The p-value shown in the plot is the Benjamini–Hochberg adjusted p-value. The red points 

indicate miRNAs above the log2 fold deregulation cut-off and below the p-value cut-off, the blue points 
indicate miRNAs below the log2 fold deregulation cut-off and below the p-value cut-off, while the grey 

points indicate miRNAs that do not meet either of the criteria. 

Among the five miRNAs targeting the genes mapped to CpGs in set 2, miR-26b-5p was 
differentially expressed in both tissue and plasma (Figure 85). The volcano plot was not shown 
due to the small number of input miRNAs. 
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Figure 85. Density plots of miR-26b-5p stratified by BC status in plasma and tissue. The vertical dashed 
lines represent the mean expression. 

Two genes, Cyclin Dependent Kinase 6 (CDK6) and Sp1 Transcription Factor (SP1), were 
commonly targeted by the three miRNAs differentially expressed in blood and tissue from set 1 
analysis (Figure 86). On the other hand, the two genes targeted by miR-26b-5p, from set 2, were 
Dynamin Binding Protein (DNMBP) and PCNT. 

 

Figure 86. Venn diagram of the number of commonly targeted genes associated with puberty and BC by 
the miRNAs differentially expressed in both plasma and tissue. 
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Differentially expressed genes 

Next, we looked at differential gene expression of the genes mapped to CpG sets 1 and 2. This was 
performed on RNA sequencing data on paired tumour and adjacent healthy breast tissues obtained 
from TCGA (n = 58 pairs). There were 50 differentially expressed genes between tumour and 
adjacent normal tissue (adjusted p < 0.05) in set 1 (Figure 87) and only one gene in set 2 
(DNMBP). 

 

Figure 87. Volcano plot of paired differential expression analysis on TCGA tissue data of genes mapped 
to the CpGs associated with puberty and BC. The p-value shown in the plot is the Benjamini–Hochberg 

adjusted p-value. The red points indicate miRNAs above the log2 fold deregulation cut-off and below the 
p-value cut-off, the blue points indicate miRNAs below the log2 fold deregulation cut-off and below the 
p-value cut-off, the green points are miRNAs above the log2 fold deregulation cut-off and above the p-

value cut-off, while the grey points indicate miRNAs that do not meet either of the criteria. 

The two genes commonly targeted by the three miRNAs mentioned above were not differentially 
expressed, while the gene targeted by miR-26b-5p, DNMBP, was differentially expressed. 
Thereafter, I explored Pearson's correlation in expression, based on variance-stabilised counts, 
between miRNAs that significantly target genes mapped to CpGs and differentially expressed 
genes they significantly target. Hence, for the CpG set 1, a matrix with 44 microRNAs, as the rest 
were filtered out based on count mean, and 50 differentially expressed genes was created. Overall, 
a high correlation between miRNAs and target genes was observed (Figure 88). 
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Figure 88. Correlation heatmap between miRNAs significantly targeting the genes mapped to the CpGs 
associated with puberty and BC and the gene expression of the targeted differentially expressed genes. 

The values range from -1 (blue) to 1 (red). 

For the second set of CpGs, a matrix of one miRNA (miR-26b-5p), as the other miRNAs were 
filtered out due to low mean count, and six genes was created. Only one gene, DNMBP, had a 
correlation coefficient larger than |0.20| with the miR-26b-5p. In addition, from the 44 miRNAs 
on which we had correlation data, I selected the three that were differentially expressed in blood 
and tissue for further investigation. A slightly higher correlation across the 50 genes was observed 
for miR-21-5p compared to the other two miRNAs, indicating a more direct or prevalent role in 
regulating the mRNAs of the 50 genes (Figure 89). 

 

Figure 89. Correlation heatmap between three differentially expressed miRNAs in tissue and blood 
significantly targeting the genes mapped to the CpGs associated with puberty and BC and the gene 
expression of the targeted differentially expressed genes. The values range from -1 (blue) to 1 (red). 



138 
 

Additionally, I summed up the absolute correlation coefficients across the miRNAs for each gene, 
and a correlation sum cut-off > 1.2 was considered to select genes that were considered positively 
or negatively correlated with all three microRNAs. The reason 1.2 was chosen as the cut-off was 
that it was assumed to represent an average correlation coefficient of 0.4 with each miRNA. There 
were 22 genes that correlated with all three miRNAs.  

Differentially methylated CpG sites 

I studied the methylation differences of CpG set 1 and CpG set 2 between BC cases and controls 
in blood and breast tissue. To identify differentially methylated CpG sites in tissue, I used 57 pairs 
of tumour and adjacent healthy breast tissue from the TCGA methylation dataset. From CpG set 
1, only one CpG was found to be differentially methylated (adjusted p < 0.05), cg23553576 to 
which the gene SYTL2 is mapped (p-adjusted: 0.005; log2FC: -0.323). None of the CpGs were 
differentially methylated in breast tissue from CpG set 2. Within the Italian prospective cohort 
(EPIC), which included BC cases and controls and had DNA methylation data on peripheral blood, 
67 differentially methylated CpGs from set 1 were found (adjusted p < 0.05) (Figure 90). 

 

Figure 90. Volcano plot of the differential methylation analysis (in peripheral blood) of CpGs associated 
with puberty and BC (set 1). The p-value shown in the plot is the Benjamini–Hochberg adjusted p-value. 
The blue points indicate miRNAs below the log2 fold deregulation cut-off and below the p-value cut-off, 

while the grey points indicate miRNAs that do not meet either of the criteria. 

Additionally, all eight CpGs from set 2 were significantly differentially methylated in blood 
between cases and controls. Notably, all eight CpGs had higher methylation in controls compared 
to cases (Table 29). 
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Table 29. Differential expression results of the CpGs from set 2 in peripheral blood. The log2 fold change 
is also reported. 

CpG p-value Mean  
Tumour 

Mean  
Normal 

log2 FC 

cg00124920 7.69E-10 0.74 0.77 -0.07 
cg00195561 2.70E-07 0.86 0.88 -0.03 
cg02079421 2.49E-05 0.88 0.89 -0.01 
cg06579481 3.20E-04 0.76 0.80 -0.07 
cg14018434 2.64E-02 0.94 0.94 -0.01 
cg14038259 3.06E-04 0.88 0.88 -0.01 
cg19212550 3.40E-05 0.70 0.74 -0.06 
cg26772788 8.15E-10 0.76 0.79 -0.05 

Finally, I evaluated the Pearson correlation of CpG set 1 and CpG set 2 with their mapped gene. 
For this, I used the TCGA samples which had both the methylation and gene expression data (n = 
866). The correlation was performed between normalised Deseq counts (variance stabilising 
transformation) for gene expression and Beta values for methylation values. A total of 1,066 
unique CpGs significantly correlated with their underlying gene in set 1 (adjusted p < 0.05). 
Conversely, in CpG set 2, out of the six CpGs with a mapped gene, four had a statistically 
significant correlation. The CpG differentially methylated in tissue was not significantly correlated 
with its mapped gene Synaptotagmin Like 2 (SYTL2) (ρ = -0.15, p = 0.165). The correlation results 
were merged with the annotated CpG data frame for future filtering.  

Network analysis 

In order to obtain a list of CpG sites on which to perform a network analysis, but which would also 
be studied more functionally and genomically, the parameters of the previously mentioned 
analyses were used to create a filtered list of CpGs: 

1) CpGs associated with BC risk (n = 8) 
2) CpGs mapped to the two common genes targeted by the three significantly differentially 

expressed miRNAs in blood and tissue (n = 4) 
3) CpGs differentially methylated in tissue and CpGs differentially methylated in blood with 

a log2 fold change > 0.25 or < -0.25 (n = 6) 
4) CpGs mapped to differentially expressed genes with a log2 FC > 2 or < -2 (n = 5) 
5) CpGs mapped to genes which are correlated with all three miRNAs of interest mentioned 

earlier (n = 32) 

Firstly, a network analysis using MetaCore was performed on the combined list of genes (number 
of unique genes = 42) mapped to CpGs/loci from the five subcategories. Based on the pathway 
map analysis in MetaCore, the genes involved in the networks were enriched in metaphase 
checkpoint, progesterone-mediated oocyte maturation and some pathways more directly related to 
breast cancer, such as PDGF signalling via PI3K/AKT and NFkB pathways (Figure 91).  
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Figure 91. Pathway map results on the 42 unique genes mapped to CpGs associated with puberty and BC, 
which were the input for the network analysis. 

Furthermore, a total of 166 unique transcription factors were found to interact with the 42 genes 
linked to puberty and BC. The transcription factors with the highest number of interactions were 
LBP9, KLF4, GATA-1, FBI-1 (Table 30). Additionally, there were nine subnetworks, out of the 
21 created by the software, based on the 42 unique genes, which had a z-score larger than 60 
(Table 31).  

Table 30. Transcription factors with the highest number of interactions with the 42 genes linked to 
puberty and BC. 

Transcription factor Actual R Expected Ratio Z 
LBP9 33 12762 13.09 2.52 6.48 
KLF4 33 15047 15.43 2.14 5.46 
GATA-1 32 12405 12.72 2.52 6.33 
FBI-1 31 11928 12.23 2.53 6.24 
KLF17 29 11762 12.06 2.40 5.66 
NANOG 29 12938 13.27 2.19 5.10 
GATA-2 28 10404 10.67 2.63 6.04 
c-Myc 27 12453 12.77 2.11 4.67 
SOX2 26 7389 7.58 3.43 7.31 
HNF3-alpha 25 9373 9.61 2.60 5.57 
ETS1 24 8166 8.37 2.87 5.96 
TAL1 23 9489 9.73 2.36 4.78 
CTCF 22 6962 7.14 3.08 6.04 
E2F1 21 5368 5.51 3.82 7.03 
GCR 21 8316 8.53 2.46 4.72 
CREB1 20 7400 7.59 2.64 4.92 
SOX17 20 9346 9.58 2.09 3.77 
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Transcription factor Actual R Expected Ratio Z 
RXRA 20 9544 9.79 2.04 3.67 

Note: all p-values were lower than 0.0001 and because the z-score is reported they were omitted from the 
table. 
Actual: number of network objects in the activated dataset(s) which interact with the chosen object 
R: number of network objects in the complete database or background list which interact with the chosen 
object 
Expected: mean value for hypergeometric distribution (n*R/N); N in this case represents the total number 
of gene-based objects in the complete database or background list (45,315) 
Ratio: connectivity ratio (Actual/Expected) 

 

Table 31. Results of the network analysis on 42 genes linked to puberty and BC. The genes included in 
each subnetwork and the network statistics are shown. 

Network Seed nodes p-value Z g-score 
CDK1 (p34), HOXB13, CDCA1, OTR, GRO-2 11 < 0.001 152.69 152.69 
TOP2 alpha, MMP-13, BUB1, SP1, UHRF1 7 < 0.001 95.17 95.17 
CDK6, UHRF1, SP1, CDK1 (p34), PBK 6 < 0.001 81.57 81.57 
SP1, C2orf48, ID4, BUB1, TPX2 5 < 0.001 72.45 72.45 
MYH11, Desmuslin, ACM4, GRO-3, GRO-2 5 < 0.001 67.96 70.46 
CGI-116, TNNT1, PPAPDC1A, CLCA4, 
DAND5 

5 < 0.001 70.10 70.10 

RRM2, MMP-13, E2F8, CDK1 (p34), HOXB13 5 < 0.001 68.65 68.65 
PAQR4, DPP6, GABA-A, SLC2A8, DNMBP 5 < 0.001 68.65 68.65 
DAZ2, DAZ 1 < 0.001 68.02 68.02 
SLC2A8, 2-Deoxy-D-glucose 1 < 0.001 55.53 55.53 
CNTN6, Connexin 26, Kinase MYT1,  
Beta-catenin,Actin cytoskeletal 

3 < 0.001 43.95 43.95 

E2F8, CDK6, CDK1, CDC18L, AKT1 3 < 0.001 42.03 42.03 
ZNF687, CENP-F, UBE2C, LBP9, LBH 3 < 0.001 40.75 40.75 
CDK1 (p34), Claspin, E2F1, MAOA 2 < 0.001 28.00 29.25 
Kinase MYT1, CDK1 (p34), LBP9 2 < 0.001 27.70 28.95 
Kendrin, ZNF687, LBP9, SLC41A1, C8orf37 2 < 0.001 27.14 27.14 
UBE2C, LBP9, APOA4, ARP2, p53 1 0.003 17.51 18.76 
E2F8, Rad51, RBBP4 (RbAp48), LBP9, AKT1 1 0.003 18.46 18.46 
ZNF664, LBP9, RAMP1, UGT1A9 1 0.005 14.12 14.12 
ANCO-2, LBP9, CRLR, Rab8B, F264 1 0.005 13.82 13.82 

The g‐score is a statistic modifying the Z‐score based on the number of linear canonical pathway units 
within the network. 
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In network 1 (Figure 92), the key hub of interest is the one with the TF YY1, which interacts with 
several transcription factors, some of which are among the 42 genes (e.g., HOXB13) as well as the 
protein kinase CDK1 which activates PBK.  

 

Figure 92. Graphical representation of network 1 from Table 31. The genes with a red circle next to them 
were the input genes. 

In network 2 (Figure 93), there is one central hub around binding protein Vimentin, which are 
class-III intermediate filaments, and is activated by SP1 and TOP2A. TOP2A is also a part of a 
small gene hub and is activated by UHRF1 and has an unspecified interaction with E2F8. Two 
additional gene hubs around E2F2 and Sin3A were created, however, none of the genes were a part 
of the 42 input genes.  
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Figure 93. Graphical representation of network 2 from Table 31. The genes with a red circle next to them 
were the input genes. 

In network 3, the main gene hub was created around the binding protein Cyclin D1. Cyclin D1 is 
activated by E2F8 and SP1 transcription factors, which were part of the input gene list. 
Additionally, UHRF1 and PBK indirectly interact with Cyclin D1 through STAT5 and MAF 
transcription factors, respectively (Figure 94). 
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Figure 94. Graphical representation of network 3 from Table 31. The genes with a red circle next to them 
were the input genes. 

In the direct interactions network, there were three main hubs around the transcription factor SP1, 
protein kinase CDK1 and transcription factor HOXB13 (Figure 95). Notably, UHRF1 is inhibited 
by CDK1 and activated by the transcription factor SP1. Additionally, it activates TOP2 and inhibits 
Calponin-1 and MYH11. CDK6 and ID4 both activate GRO-2. CDK6 also activates GRO-3 and is 
functionally associated with ANCO-2. PBK is activated by CDK1 and inhibits PTEN. The protein 
kinase BUB1 is activated by CDK1 and HOXB13, which also activates CDCA1 and interacts with 
UBE2C and TNNT1.  
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Figure 95. Graphical representation of the direct interaction network between the 42 unique input genes. 

CpGs located on regulatory loci 

The next step was to understand functionally and genomically the most important CpGs and their 
respective loci, genes or related miRNAs. Firstly, I examined the overlap of the super-enhancers 
in the human mammary epithelium (obtained from SEdb 2.0) with the genomic loci of the CpG 
sites found. A total of 190 unique super-enhancers were found across 247 CpGs from set 1, while 
only one super-enhancer was found in set 2 on CpG cg06579481. This CpG is not mapped to any 
gene and was not found to be differentially methylated in tissue but was differentially methylated 
in blood (Table 29). These super-enhancer mapping results were then annotated to the complete 
CpG data frame and were used as factors indicating a higher probability of regulatory function. 

On the five filtered subsets of CpGs mentioned above, I then checked various genomic properties, 
described in detail in the methods section, as additional factors indicating CpG loci which could 
have regulatory functions or other functions affecting the underlying mapped gene. A total of 26 
genomic loci with 21 unique genes, on which the CpG sites of interest were found, were classified 
as having a high probability of having a genomic regulatory function. The specific criteria met for 
the 26 CpG sites can be seen in Table 32. For some CpG sites, more than one criterion was met. 
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Table 32. CpG sites associated with puberty and BC that met one of the previously mentioned five 
criteria and have a high probability of being on a genomic regulatory site. 

CpG Gene Chr. Position* Criteria met‡ cCRE signature§ 
cg00543329 CLSPN 1 36235839 4 promoter-like 
cg01579019 PBK 8 27695516 4 promoter-like 
cg01619846 UHRF1 19 4911475 2  
cg02079421 PCNT 21 47851545 3  
cg05951351 SYNM 15 99658349 1  
cg06258179 CDK6 7 92463261 4 promoter-like 
cg06579481  7 104621597 1  
cg07085895 E2F8 11 19262124 2  
cg08892705 SYNM 15 99646202 1  
cg09593767 ZNF664 12 124457669 4 promoter-like 
cg11823214 NUF2 1 163291487 4 promoter-like 
cg11823214 NUF2 1 163291487 4 promoter-like 
cg12695586 OXTR 3 8810077 2  
cg13510262 SP1 12 53774037 1  
cg15345369 RRM2 2 10262827 2 and 4 promoter-like 
cg17305436 ID4 6 19837319 4 proximal enhancer-like 
cg19048863 WASHC3 12 102455840 4 promoter-like 
cg19347576 ANKRD12 18 9136711 1 and 4 promoter-like 
cg19594360 ZNF687 1 151255303 4 proximal enhancer-like 
cg20712426 CDK6 7 92464980 2 and 4 proximal enhancer-like 
cg23097686 TMPO-AS1 12 98910128 4 promoter-like 
cg19212550 DNMBP 10 101767908 2  
cg22288637 CDK6 7 92464428 2  
cg09863659 TPX2 20 30328246 2  
cg22041712 CENPF 1 214834360 2  
cg14038259 RNF213 17 78311557 2  

*hg19 genome position 
‡Criteria on higher likelihood of being related to genomic regulatory site – refer to methods 
§cCRE signature based on the aggregated cell types and human breast epithelium 

The genomic location of 13 out of 26 CpGs had all four regulatory marker data available for breast 
epithelium in the ENCODE database. Therefore, for those CpG sites it was possible to infer the 
regulatory group of the candidate cCREs. In the breast epithelium cell type, ten of the cCREs were 
classified as having promoter-like signatures, while three were classified as having proximal 
enhancer-like signatures. All 13 cCREs had a concordant cCRE characterisation between 
aggregated cell types and breast epithelium. An extensive literature search in the context of BC 
and puberty was performed on the CpGs/genes classified as having a high probability of having a 
genomic regulatory function. Additionally, on the same set of genes, I also investigated the protein 
and RNA expression in breast tissue as well as the cell types expressing the RNA in breast or 
peripheral blood mononuclear cells (single-cell RNA sequencing data) using the Human Protein 
Atlas. 
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A total of 21 genes were thoroughly investigated in the literature using the PubMed database or 
Google Scholar search engine. The relevance of the genes in BC development and puberty was 
investigated, and the results are summarised in Table 33. Several genes were associated with 
puberty and BC, but five genes were found to have particularly relevant functions to BC risk and 
onset. Those five genes are UHRF1, CDK6, PCNT, SP1 and Oxytocin Receptor (OXTR). UHRF1 
was found to be essential for germ cell development in males and females via regulation of several 
epigenetic pathways [297], and was associated with precocious puberty. In addition, several SNPs 
(rs12185519, rs12974635, rs16992771, rs2307209, rs2656924, rs3786941, rs4807665) on or close 
to the UHRF1 gene were found to be associated with body height. When it comes to BC, UHRF1 
was found to modulate BC cell growth via oestrogen signalling and plays a role in the development 
of invasive ductal BC [298,299]. 

Twenty SNPs on CDK6 were found to be associated with height. A study found two SNPs related 
to CDK6 and C6orf106 to be associated with pubertal growth spurt timing, and based on the 
Harmonizome knowledgebase, CDK6 was associated with precocious puberty. When within the 
D-CDK6 complex, CDK6 was found to be important for tumour initiation. Additionally, it has 
been found to be relevant in mammary epithelial proliferation and BC initiation and maintenance. 

Next, the PCNT gene has been linked to central precocious puberty [300], and mutations on this 
gene have been linked to Microcephalic Osteodysplastic Primordial Dwarfism, possibly linking 
precocious puberty and MOPDII [301]. A missense SNP on PCNT (rs7279204) was found to be 
associated with an increased risk of BC. Since eQTL analysis demonstrated that the SNP also 
correlated with other nearby genes, implying its potential role in regulating some cancer 
susceptibility genes, the authors argued it might play a role in regulating some cancer susceptibility 
genes [302]. Additionally, we found that PCNT gene expression correlated highly with the 
underlying puberty-associated CpG based on the TCGA samples. 

The SP1 gene also has several SNPs associated with height (rs10876469, rs11170394, rs12422555, 
rs191643352, rs1971762, rs2293059, rs574708537, rs7134628, rs7310771) and was found to be 
associated with precocious puberty. Moreover, it was found to play a role in folliculogenesis [303]. 
SP1 regulates a number of cancer-related genes, and in the context of BC, it controls its 
proliferation via interaction with the insulin-like growth factors I receptor [304,305]. 

Finally, the OXTR gene is linked to precocious puberty and has SNPs that are associated with 
height. Furthermore, it can also be linked to puberty due to its associations with social affiliation, 
attachment, social support, trust, empathy, and other social or reproductive behaviours [306,307]. 
Although the exact effect does not seem to be linear, studies have linked OXTR to BC development 
and pathogenesis [308,309]. One study in mice found that the overexpression of OXTR induced cancer 
through prolactin or p-STAT5 pathways, which creates a microenvironment suitable for 
tumorigenesis [310].  
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Table 33. Genes mapped to the CpG sites which met the criteria mentioned in Table 32. Literature 
findings were summarised based on the gene’s association with puberty and BC as well as the appropriate 

references. 

Gene 
Puberty Breast  

cancer§ 
References 

Precocious  
puberty‡ 

Height  
(SNPs) Other* 

ANKRD12 Yes 0 No Yes [311] 
CDK6 Yes 19 Yes Yes [312–316] 
CENPF Yes 0 No Yes [317,318] 
CLSPN No 0 Yes Yes [319–321] 
DNMBP No 6 No No - 
E2F8 Yes 0 No Yes [322,323] 
ID4 No 12 Yes Yes [324–327] 
NUF2 Yes 3 No Yes [328,329] 
OXTR Yes 3 Yes Yes [308–310] 
PBK Yes 6 Yes NC [330,331] 
PCNT Yes 0 NC Yes [300–302] 
RNF213 No 0 No NC [332] 
RRM2 Yes 4 NC Yes [333–335] 
SP1 No 9 Yes Yes [303–305] 
SYNM No 3 Yes Yes [336–338] 
TMPO-AS1 No 0 Yes Yes [339,340] 
TPX2 Yes 1 No Yes [341,342] 
UHRF1 Yes 7 Yes Yes [297–299,343,344] 
WASHC3 No 11 No No - 
ZNF664 No 0 Yes NC [345,346] 
ZNF687 No 0 Yes No [347] 

‡ Harmonizome gene knowledgebase was used to check whether a gene was associated with precocious 
puberty 
*Studies which have shown relevance of the analysed genes in pubertal development 

§Studies which have shown relevance of the analysed genes in BC onset and progression 
NC: Not conclusive 

The final step in linking puberty-associated genes with BC risk involved assessing the expression 
of these genes in breast and blood tissues, using single cell and mass data available on the Human 
Protein Atlas. The UHRF1 gene is relatively low expressed in bulk breast tissue compared to other 
tissues such as the thymus or bone marrow (Supplementary Figure 5 – Appendix C). Nevertheless, 
it does have its protein expressed in breast tissue, unlike many other tissues with similar gene 
expression levels. In breast tissue single-cell data, UHRF1 was mainly expressed in breast 
glandular cells, while in PBMC, it was mainly expressed in dendritic cells. 

Probably due to its involvement in cell-cycle progression, CDK6 protein was expressed across all 
tissue and cell types. A similar result was found for PCNT, with the exception that it had overall 
low RNA expression across tissue types (except for skeletal muscle, tongue and heart muscle), 
indicating the presence of protein despite the low TPM value. More interesting were the single-
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cell data results of transcription factor SP1, which showed high expression in breast glandular cells 
and adipocytes, while in PBMC it was primarily expressed in macrophages and monocytes 
(Supplementary Figure 6 – Appendix C). 

Interestingly, as seen in Supplementary Figure 7 (Appendix C), the mRNA of the OXTR gene had 
the highest expression in breast tissue and in the single cell data it was only expressed in breast 
myoepithelial cells (breast tissue) and platelets (PBMC). This might indicate a more specific 
function of OXTR related to BC development and puberty. 

Another notable gene was ID4, which had a relatively low TPM in bulk breast tissue but was found 
to have a high expression in breast glandular and myoepithelial cells as well as smooth muscle 
cells. It was not expressed in PBMC. Despite its low TPM in bulk breast tissue, SYNM protein was 
highly expressed in breast tissue. Upon investigation of single-cell data, we found that SYNM is 
mostly expressed in breast myoepithelial, endothelial, smooth muscle and breast glandular cells. 
In the PBMC single-cell data it was mostly expressed in platelets. With a relatively high TPM 
across all bulk tissues, including the breast, the gene ZNF664 was found to be mainly expressed 
in breast glandular cells within the single-cell data. Not all figures were shown for the reported 
genes as they are readily available in the Human Protein Atlas. 
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Discussion 

BC remains one of the highest incident cancers in women and its primary, and secondary 
prevention are essential to reducing mortality [348–351], improving the quality of life of women at 
risk [352,353] as well as reducing the health care costs associated with disease treatment [354]. 
Implementation of lifestyle awareness-raising campaigns or socially inclined activities could be a 
way of improving primary prevention for numerous diseases, including breast cancer. Early cancer 
detection through secondary prevention enables a much better prognosis due to the tumour having 
less time to evolve into different clonal expansions and to adapt to its environment or therapy 
[355,356]. The secondary prevention of BC is quite effective and includes breast self-examination 
and population screening [357]. Nevertheless, the tools used in the screening programs, such as 
mammography, which is the golden standard, do have room for improvement due to relatively 
high false positive reads or interval cancers that occur during routine BC screening [358]. Hence, 
early BC detection could be improved with accurate, non-invasive and cost-effective biomarkers 
that would complement or tailor the currently employed mammographic screening. 

Numerous types of non-invasive biomarkers associated with BC risk or diagnosis were analysed 
in the past decade. Some examples of such biomarkers are polygenic risk scores [67] or methylation 
patterns of gene promoters [141,359], both assayed on germline DNA, or circulating DNAs [114,360], 
mRNAs [124] and non-coding RNAs such as miRNAs [224,232]. Circulating cell-free miRNAs are of 
special focus in this project as they are relatively stable in blood [361], and many of them were found 
to be candidates for early BC detection [224]. However, there are few commonly reported miRNAs 
or miRNA panels, possibly due to a lack of standardised experimental procedure and a scarcity of 
prospective studies [232]. In this project, we meta-analysed the most important studies concerning 
cell-free miRNAs for BC detection and developed a biomarker discovery pipeline within a 
prospective cohort study in a screening context to identify the most promising non-invasive 
biomarkers associated with BC.  

Meta-analysis of cfc miRNAs 

As cfc miRNAs are the most extensively studied type of non-coding RNAs in the diagnostic 
context and have been found to be promising biomarkers for the (early) detection of BC [224], 
through our meta-analysis, we evaluated the overall diagnostic performance capability of the thus-
far reported circulating miRNA-based tools. We also investigated the lack of standardisation 
between the studies as well as other factors that might be causing discordant results and a lack of 
commonly appearing miRNAs that could be clinically viable diagnostic biomarkers. The observed 
pooled sensitivity (0.85) and specificity (0.83) obtained on all the reported models was quite 
satisfactory, especially since models with relatively poor performance were also included in the 
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pool. The obtained estimate of the pooled sensitivity is quite robust and reliable: after repeating 
the bivariate analysis without the influential models, a similar pooled sensitivity (0.84) and 
specificity (0.84) were obtained. However, it is important to note that a highly significant 
publication bias was observed based on Egger’s test, which might also suggest the tendency of 
primary report authors to report the best-performing models instead of all a priori plausible models. 
In addition, studies tend to have slightly worse diagnostic performance, mainly reflected in 
specificity, when having a lower probability of bias or a lower probability of poor applicability 
(based on our tailored QUADAS-2 assessment). This indicates that studies without rigorous 
methodological practices and transparent reporting tend to overestimate the results, which should 
be considered when estimating the overall diagnostic ability of miRNAs. 

Moreover, single or multiple miRNA panel and normaliser type were significant fixed effects in 
the bivariate model on all reported models. The subgroup analyses also confirmed the significance 
of the fixed effects model as we see a significantly better performance, especially in sensitivity, of 
multiple miRNA panels compared to single, as well as a superior performance of models utilising 
endogenous compared to exogenous normalisers. Considering that in the bivariate analysis there 
was a sample disparity between the models that used endogenous and exogenous normalisers, the 
issue was less severe in the univariate analysis based on the log-DOR. Nevertheless, in the 
univariate analysis, we also observed that models based on endogenous normalisers perform better 
than exogenous normalisers. 

Various endogenous and exogenous normalising miRNAs or genes have been used in the meta-
analysed studies and in studies working with circulating miRNAs in other fields. However, none 
were found to be an optimal solution for normalising RT-qPCR miRNA data [271]. This may be due 
to the absence of housekeeping circulating miRNAs and due to heterogeneity caused by differing 
batches or manufacturers of exogenous normalisers. Hence, the selection of the normalising 
molecule is one of the most important factors that contribute to the heterogeneity of results. One 
solution to the normaliser issue, which might produce more consistent results, as proposed by [271], 
is to compute ratios and compare them between cases and controls. Only one study [362] out of the 
56 which we meta-analysed used the ratio-based values. Mimics of miRNAs and the mean 
threshold cycle of 50 miRNAs with the highest mean expression were two other types of 
normalisation methods found within three distinct meta-analysed studies [363–365]. However, we 
believe that the lack of experimental practicality and efficiency of the former and the lack of 
between-study comparability of the latter method may limit the use of such normalisation methods 
in a standardised way. Although not significant in the fixed effect model, a slight diagnostic 
performance difference between models with and without stages III and IV was observed. The 
same is true for models with and without stage IV. This indicates that the stage distribution could 
play a role in the between-study bias. Two other important factors could contribute to the increase 
of more consistent results: the use of validation cohorts and random selection of cases and controls 
with prospective sampling [366]. As shown in Figure 11, only about 40% of the studies used a 
validation cohort, while few studies performed or explicitly stated that they performed prospective 
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sampling without knowing the status of cases and controls. Independent internal and external 
cohorts are a fundamental requirement in the process of biomarker validation, while prospective 
random sampling and sampling of blood before biopsy would enable a non-biased and 
generalisable biomarker evaluation [366]. Blood sampling before biopsy would minimise the 
influence of biopsychological or physical effects that could also influence the level of circulating 
miRNAs [367]. Despite not being significant in this meta-analysis, differences in specimen type 
might influence the heterogeneity of the obtained results. Utilising plasma as specimen type runs 
the risk of having haemolysed samples which affects the miRNA content of the samples [368–370], 
as plasma contains cellular components that may contribute miRNAs from apoptotic or lysed cells 
(e.g., red blood cells, platelets). Therefore, studies using plasma as the specimen type need to check 
for haemolysed samples and exclude them [371] or to evaluate the influence of potential haemolysis 
on candidate miRNAs before their analysis in plasma samples [372]. On the other hand, during 
coagulation of serum samples, RNA molecules are released and may change the true profile of 
circulating miRNAs [370]. Hence, these issues are crucial in standardising the circulating miRNA 
detection procedure. Taken together, to obtain clinically viable diagnostic miRNAs that could be 
applied on the target population (women eligible for routine mammographic screening), a 
standardised laboratory protocol should be created. Moreover, future studies with random case–
control selection from a prospective sample of women undergoing routine screening will allow for 
a standardised stage distribution and higher applicability of novel diagnostic biomarkers to the 
target population. 

Among the meta-analysed models, there were slightly more models with a balanced case–control 
ratio than models with significantly more cases than controls. Models with significantly fewer 
cases were less common than the previous two groups. Sensitivity across the three groups seemed 
consistent, while the group with significantly fewer cases tends to have a larger FPR. Thus, the 
ratio of cases and controls has an effect on diagnostic accuracies, while the ratio of positive to 
negative predicted screens is influenced by or is a similarity of model preference for sensitivity or 
specificity. This was visualised in Figure 21, where we used the three cut-points for the 
case/control ratio, and Figure 22, where we used five cut-points. It is important to consider the 
effect of the case/control ratio when designing a diagnostic biomarker study, as it could have a 
major effect on the relationship between sensitivity and FPR. Hence, the reasoning behind a 
study’s case/control ratio should be thought out in advance and reported to the readers. In our 
validation cohort, there were about four times fewer cases than controls because we wanted to 
study the performance of identified biomarkers in situations with more controls than cases, such 
as in the context of BC screening. When applying the model with miRNA ratios and non-molecular 
variables, using Youden’s cut-off, we observed a relatively large FPR. There were no other 
deliberate statistical modelling or research design decisions that affected the preference for 
sensitivity and specificity. As will be discussed in detail below, the main objective of our project 
was to identify new biomarkers in a BC screening context. A model that can be applied more 
confidently on external cohorts and for which decision-making that affects the preference for 
sensitivity or specificity is more impactful needs to be developed on a much larger sample size. 
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For such models, the probability cut-off should be determined according to how the model would 
be applied (e.g., if it would be used to assist mammography, specificity would be preferable). 

Either due to the model designs or authors’ perceived costs of misdiagnosis, a slight preference for 
sensitivity or specificity was observed for some models. We tried to capture the trend of preference 
for specificity or sensitivity using the alpha at Q minimum and author’s relative perceived cost (c1) 
methods. On all reported models, a preference trend was seen using the alpha method, while for 
the c1 method, the trend started being inconsistent around value 1. On the most important model 
per study, a trend was only visible using the c1 method, which again broke down around the value 
of 1. Importantly, the underlying sensitivity and specificity depend on a plethora of factors, such 
as the biology behind the predictor, measurement tools, statistical modelling, population, etc. 
Therefore, the proportion of sensitivity to specificity is not fully robust and cannot be the only 
metric evaluated when assessing these methods. After further investigation of the models and 
studies labelled as having c1 > 1, no association with QUADAS-2 reporting bias was found. 
Nevertheless, overfitting of some of the models could be causing a bias and noise within the alpha 
and c1 preference estimates. Therefore, it is recommended to use these methods on out-of-sample 
performance results (i.e., ROC AUC). One reason why the c1 method might be more optimal for 
the ideal scenario where we have out-of-sample results is that the alpha may vary for multiple 
analyses of the same dataset, whereas c1 is based on the (implicit) “optimal” pair in the context of 
the study. In a nutshell, the recommendation for future preference evaluation methods would be to 
use c1 only on models with out-of-sample performance results, for which it is deemed to be the 
most optimal for a study and for which the reasoning behind the design (regarding sample size, 
selection of predictors, etc.) has been reported, while the alpha metric could always accompany 
the c1 metric as a check on correctness. 

Prior to our meta-analysis, two meta-analyses on BC diagnostic circulating miRNAs were 
performed in 2014 [229,230]. The two studies meta-analysed a total of seventeen unique studies. 
Seven out of the previously meta-analysed 17 studies were included in this meta-analysis. This 
difference in included studies is reflected in the fact that we excluded studies with > 4.5% stage IV 
cases, while the previous studies did not. The reason for excluding these studies was the 
expectation of an overestimation of diagnostic performance in studies that include a higher 
proportion of stage IV cases than expected in BC community screening [236]. The pooled sensitivity 
and specificity obtained in our meta-analysis are in agreement with [229]. However, [230] have 
obtained a slightly lower pooled sensitivity and slightly higher specificity. This suggests that the 
overall diagnostic performance of circulating miRNAs on detection of BC has not significantly 
improved over the years. On the other hand, the pooled diagnostic performance obtained from the 
most important model of each study has shown an improvement in both sensitivity and specificity. 
Interestingly, the percentage of studies with high, low and unclear evaluations on the four key 
domains of QUADAS-2 were very similar between this study and [230]. As it is the most commonly 
analysed miRNA among the meta-analysed studies, we have evaluated the pooled sensitivity and 
specificity of miRNA-21-5p. A study in 2014 performed a meta-analysis on BC diagnostic serum 
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miRNA-21 [373]. Marginally lower pooled sensitivity and specificity of miRNA-21 were obtained 
in our meta-analysis compared to the estimates of [373]. 

The key strengths of our meta-analysis are the evaluation of all the reported models from each 
study (as opposed to singling out one model per study), exploration of the model or author 
preference for sensitivity or specificity and robust, comprehensive results obtained from bivariate 
analyses, complemented by univariate analyses when necessary. The main limitation is uncertainty 
due to unmodeled factors: laboratory and experimental differences, differences in stage 
composition of analysed cases within the studies, as well as different levels of statistical robustness 
of the models reported in primary studies. Another limitation is the relatively low number of 
databases assessed. Although we cannot exclude the possibility that we may have overlooked some 
studies in the research phase, based on the suggestions in the current literature regarding the choice 
of databases [374,375], we believe that the potential for systematic bias is low. Due to their 
complementarity, the databases chosen for this study have around 90% median recall rate when 
compared to the most elaborate approach with four databases (EMBASE, MedLine, Google 
Scholar and Web of Science) [376]. 

Some of the findings and conclusions from the meta-analysis regarding standardisation were used 
to improve the methods of our miRNA biomarker discovery study. For instance, we decided that 
utilising ratio-based computation could have the highest chance of removing laboratory bias and 
increasing study reproducibility. Considering that no significant difference in performance was 
observed between serum and plasma specimens, we decided to analyse the non-coding RNAs in 
plasma. Furthermore, we discussed how prospective sampling and sampling before biopsy or 
treatment are essential for reliable diagnostic models. Therefore, in our biomarker discovery study 
we adhered to these important details. Finally, we discussed and reported how our sample size 
might affect the model preferences for sensitivity or specificity.  

Identifying novel biomarkers in a screening setting 

There is an urgent need for non-invasive, easily reproducible and cost-effective biomarkers for BC 
detection. Moreover, to our knowledge, no study has focused on the potential role of circulating 
miRNAs in asymptomatic women undergoing general mammographic screening. Therefore, in the 
second part of the project we sought to identify novel and reliable non-invasive circulating 
biomarkers that could be used for early detection of BC in a screening setting. This was performed 
on a discovery cohort (70 cases and 70 controls) and a validation cohort (32 cases and 127 
controls). The main differences between the cohorts are that in the validation cohort the cases had 
a longer average time between blood sampling and diagnosis (3 months in the discovery and 2.1 
years in the validation cohort) and that the validation cohort included some controls that underwent 
biopsy due to a false-positive mammography result. Due to the much larger time window between 
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blood sampling and diagnosis in the validation cohort, the biomarkers analysed in the validation 
cohort can be considered somewhat predictive. 

Different types of circulating biomarkers, as well as non-molecular variables (such as BMI, 
lifestyle score, etc.), were first assessed in the discovery cohort, and promising biomarkers were 
used to construct a diagnostic model that was applied in the validation cohort. Both the discovery 
and validation cohorts originate from a large BC screening study (ANDROMEDA), which 
screened 26,640 women of which 13,323 agreed to blood sample collection [377]. Importantly, all 
blood samples were collected immediately at the time of enrolment, thus before diagnosis and 
consequently before any treatment or intervention. Such an approach increased the chance of 
obtaining unbiased and reproducible results [378]. The biomarkers analysed in blood were 
methylation of RARB, APC and BRCA1 promoters (using the MS-HRM method), PRS based on 
the 77 SNPs reported by Mavaddat et al. [109], all analysed on genomic DNA from the buffy coat, 
and cfc miRNAs analysed in the plasma. 

Very few non-molecular variables were associated with BC in our discovery or validation cohort. 
For some variables, such as the recruiting hospital, an association was not expected to be observed. 
BMI, lifestyle according to WCRF guidelines and breast density were the significantly associated 
non-molecular variables in the discovery cohort. BMI has been confirmed to be a risk factor in 
numerous cancers, including postmenopausal BC [379]. Notably, BMI has a different effect on risk 
depending on the menopausal status, where a risk ratio (RR) of 0.94 [0.80 to 1.11] and 1.33 [1.20 
to 1.48] was estimated for pre- and post-menopausal women, respectively [76]. Therefore, as will 
be discussed in more detail below, in spite of not being significantly associated with BC in our 
cohort, menopausal status was considered in the modelling phase, as well as its interaction with 
BMI. Furthermore, the WCRF/AICR lifestyle guidelines were found to be associated with the risk 
of various cancer types, including BC [380]. Some studies did not find it to be associated with BC 
[381], which could be related to the way of conducting the questionnaire or the underlying 
population. Our lifestyle score was calculated as in the Romaguera and colleagues [252] and was 
based on adherence to the WCRF recommendations from 2007. A newer guideline was published 
[382], and we have tested it on our cohort, but it performed slightly worse than the older version. 
Lastly, higher breast density is known to be a risk factor for BC [383].  

In the validation cohort, the non-molecular variables associated with BC were previous benign 
biopsies, breastfeeding, waist circumference and breast density. The differing associations 
between the discovery and validation cohorts are probably an artefact of the relatively small size 
of the cohorts. The variables associated with BC in the validation cohort were previously described 
in the literature. For instance, women with a previous benign diagnosis had a 1.77 times increased 
risk compared to women without [384], while breastfeeding was found to reduce the risk of BC with 
a relative risk reduction of 4.3% for every 12 months of breastfeeding [74]. Through its effect on 
BMI, waist circumference has also been found to be associated with BC [385]. 
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DNA methylation is an important mechanism when it comes to cancer risk and carcinogenesis in 
general as well as in BC [386]. Cancer cells can evolve to exploit it in numerous ways, such as 
hypermethylation at promoters of tumour suppressors and hypomethylation or methylation 
alterations at intergenic or intragenic regions [387]. Additionally, DNA methylation alterations in 
enhancers are also important for cancer, including BC [388]. Using the MS-HRM method we 
evaluated the methylation of RARB, APC and BRCA1 promoters in the discovery cohort samples. 
MS-HRM is a fast and robust method for quantifying methylation at specific loci and has 
successfully been used with various specimen types [140]. Since not all samples could fit on one 
plate, they were split across two PCR plates, and the plate was included as a covariate in the 
analyses. The methylation estimates were very low across all samples, and no significant 
difference in methylation was observed between cases and controls. Moreover, due to the high 
frequency of zero methylation estimates, we performed a two-part analysis using the B2 statistic 
on the zero data and the Wilcoxon rank sum exact test on the non-zero data [268]. Additionally, 
zero-inflated regression models were performed, but in neither test, for all three gene promoters, 
was methylation different between cases or controls or associated with cases or controls. The three 
gene promoters analysed have already been studied in the context of BC, both in blood and tissue. 
In a 2015 meta-analysis, RARB was found to be more methylated in cases than controls in both 
blood and tissue, with an OR of 7.27 [359]. Stratified by the source material, the OR in blood was 
12.47 and 4.01 in tissue [359]. Nevertheless, some studies were unable to find a significant 
association between RARB methylation and BC [389]. In a meta-analysis from 2016, the APC gene 
promoter was also found to be associated with BC in both blood and tissue, with an OR of 8.92 
[390]. Stratified by material, the OR was 9.93 and 9.44 in tissue and blood, respectively [390]. Finally, 
in another meta-analysis, BRCA1 was also previously analysed in the same context of promoter 
methylation and an OR of 3.15 was reported [141]. Stratified by material, the OR in blood was 1.87 
and 4.75 in tissue [141]. Furthermore, the three gene promoters were also associated with BC 
prognosis [391–393]. Unfortunately, we could not reproduce the mentioned results, possibly due to 
differences in cohort and study design (e.g., prospective or retrospective) and different approaches 
to obtaining methylation data.  

We calculated the PRS on the samples from the training cohort based on the 77 SNPs from 
Mavaddat et al [109]. With an AUC of 0.5 and a non-significant OR of 0.98, PRS could not 
differentiate BC cases from controls in our cohort. The mentioned study reported a significant 
association of the PRS score based on 77 SNPs and BC with an OR of 1.55 [1.52 to 1.58]. The 
non-significant PRS result in our cohort could be due to population and sample size differences. 
The same group published another study in 2019 on 94,075 cases and 75,017 controls, which 
reported a PRS for predicting BC based on a novel signature of 313 SNPs. The study reported an 
OR of 1.65 [1.59 to 1.72], highlighting the potential of PRS for the detection or risk stratification 
of BC [67]. Nonetheless, its AUC is relatively low, indicating that PRS should ideally be used in 
combination with other biomarkers.  
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Several types of non-coding RNAs found in blood and tissue were previously found to be 
associated with BC risk and BC prognosis [172,394–396]. In this project we focused on cfc miRNAs 
in a BC screening setting. The initial high-throughput screening of the miRNAs was performed by 
small-RNA sequencing on extracted RNA from plasma. The miRNAs were first analysed 
individually, but the main biomarker pipeline involved ratio computation in NGS data, RT-qPCR 
assaying and testing the promising biomarkers in a validation cohort. 

When analysed individually, based on small-RNA sequencing data, we found 27 miRNAs 
differentially expressed between BC cases and controls. The three miRNAs with the largest 
positive log fold change were miR-122, miR-3591 and miR-7, while the miRNAs with the largest 
negative log fold change were let-7f, let-7a and miR-26a. miR-122 plays a role in various cancers 
such as liver, gastric, breast and several others [397] and is a candidate circulating diagnostic and 
prognostic biomarker in numerous cancers [398–400], including BC [401]. In BC, depending on the 
cancer stage, miR-122 can play both tumour-suppressive [397,402] and pro-metastatic roles [403]. miR-
3591 is involved in various signalling pathways associated with BC progression, such as IGF1-
AKT or PI3K/AKT [404–406]. miR-7 plays a role in tumour suppression in BC [407,408] but was found 
to be overexpressed in the plasma of tumour samples in our study, implying the possible existence 
of mechanisms that export this miRNA outside the tumour cells and blood microenvironment as 
an adaptive mechanism. The same could also be true for miR-122. On the other hand, from the 
miRNAs overexpressed in healthy controls, miR-26a is believed to inhibit the proliferation and 
migration of BC by targeting the MCL-1 [409] or FAM98A [410] genes.  

The candidate biomarkers differentiating between BC cases and healthy controls were designated 
to be validated using the RT-qPCR platform. As mentioned above, since there is no optimal 
normaliser for small non-coding RNAs when using RT-qPCR, we decided to calculate miRNA 
pairwise ratios from small-RNA sequencing data and perform a biomarker discovery analysis [271]. 
Candidate ratios obtained based on NGS data could then be compared directly with the ratios from 
the RT-qPCR platform, and the problem of normalisation and reproducibility of RT-qPCR data 
would be avoided. 

A total of 20 miRNA ratios, consisting of 24 unique miRNAs, were obtained as potential 
biomarker candidates based on small-RNA sequencing data in the discovery cohort. The 24 
miRNAs were then further tested with RT-qPCR on the same cohort. To assess the diagnostic 
ability of the candidate miRNA biomarkers and make a comparison to other non-molecular 
variables associated with BC in our cohort, three diagnostic models were built: a model based only 
on non-molecular variables, a model based only on miRNA ratios and a model with miRNA ratios 
and non-molecular variables combined. The multivariable model, which included three non-
molecular variables, identified a signature of seven miRNA ratios consisting of 11 unique 
miRNAs. Four of the seven ratios were found to be associated with clinicopathological features of 
the cases, such as ER status or Ki-67, implying a possible direct function of the miRNAs 
comprising the ratios in cancer formation and progression. The target enrichment analysis of the 
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miRNAs that make up the seven ratios revealed that their target genes are involved in cancer 
pathways, including BC. Importantly, all 10 analysed miRNAs (one was excluded due to software 
limitations) were enriched in the PI3/AKT signalling pathway, which is relevant to tumour 
progression and endocrine resistance in BC [406]. The genes commonly targeted by the majority of 
the 10 miRNAs were PTEN and NUFIP2. PTEN is a known tumour suppressor blocking the PI3K 
signalling [411], while NUFIP2 is an RNA-binding protein [412]. 

As mentioned in a previous section, performing variable selection on the log2-transformed 
miRNAs would have been better. Nevertheless, variable selection on the log2-transformed 
miRNAs showed similar results compared to the ratios of the raw miRNAs.  

Five of the unique 11 miRNAs identified in the discovery cohort, from the model including 
miRNA ratios and non-molecular variables, were previously detected as potential diagnostic 
circulating biomarkers in other BC studies whose TNM stage distribution of cases also roughly 
matched the distribution of stages observed in BC screening programs [236]. These five miRNAs 
are: let-7a-5p [413], miR-19b-3p [363,414,415], let-7b-5p [401,414], miR-93-5p [414,416] and miR-21-5p [417]. 
With the exception of miR-19b-3p and miR-21-5p, the mentioned miRNAs are believed to be 
tumour suppressors or to have a protective role in BC tissue [418–420]. For instance, let-7a is believed 
to suppress BC cell migration by downregulating the CC chemokine receptor 7 [421]. Moreover, 
through IL-8 regulation, let-7b suppresses the cancer-promoting nature of BC-associated 
fibroblasts [418]. Additionally, circulating miR-21-5p was the most commonly found miRNA 
studied in the context of BC diagnosis. The discriminatory diagnostic capability of miRNA ratios 
(both alone and when combined with non-molecular variables) showed promising results in the 
discovery cohort (AUCs of 0.73 and 0.79, respectively) and was comparable to those obtained in 
previous studies [230,362,363,422,423]. For example, Fang et al. 2019, who also used a plasma-based 
miRNA ratio model (five ratios) with multi-platform validation on 131 samples, obtained a 
sensitivity and specificity of 71.7% and 78.2%, respectively [362]. The five ratios used by Fang et 
al. 2019 consisted of seven unique miRNAs, none of which correspond to the miRNAs in our final 
model. This could, in part, be due to the different reference populations or variations in 
experimental and analytical methods. For instance, in Fang et al. 2019, miRNA ratios were 
calculated using RT-qPCR data only. Another study performed in 2015 [363], using a profiling 
(n = 86) and validation cohort (n = 196), reported an 8-miRNA model (miR-16, let-7d, miR-103, 
miR-107, miR-148a, let-7i, miR-19b, miR-22-5p) with a 91% sensitivity and 49% specificity and 
an AUC of 0.81. One of the miRNAs in their model, miR-19b, was included in three ratios obtained 
in our final models. 

Due to the small sample size, the models we created are only indicative of which biomarkers are 
promising, and their characteristics (e.g., logistic regression coefficients or calibration curve 
intercept and slope) should be optimised on a large cohort. Therefore, we did not create agnostic 
models that would perform variable selection on all available molecular and non-molecular 
biomarkers, but only on those which seemed to be associated with BC in our cohort.  
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The three models (miRNA ratios and non-molecular predictors, miRNA ratios only and non-
molecular predictors only) developed in the discovery cohort were applied to our validation cohort 
of 32 cases and 127 controls. Performance was relatively poor after applying the model 
coefficients, where the model on miRNA ratios alone had an ROC AUC of 0.51 and the model on 
miRNA ratios and non-molecular predictors had an ROC AUC of 0.71. The poor discriminatory 
performance was probably due to the miscalibration of the models, as all three models were 
suboptimal when considering calibration-in-the-large [424]. The model based on non-molecular 
predictors had the best calibration and performance (ROC AUC: 0.74), indicating greater stability 
and generalisability of non-molecular predictors between the discovery and validation cohorts than 
miRNA ratios. 

We performed model revision of all three models using ridge regression and applied the new 
coefficients to the validation cohort. As in the discovery cohort, the model with miRNA ratios and 
non-molecular predictors was the best-performing model, with a significantly better ROC AUC 
(0.89) than the model on non-molecular predictors alone, highlighting the discriminatory power 
added by including miRNA ratios. As an alternative to the frequentist ridge regression, in order to 
check the consistency of the results, the three models mentioned above were also updated using 
the Bayesian model updating approach. It was described and proposed as an alternative in several 
studies [281] and was recommended, especially in cases where the sample size is relatively low [279]. 
Importantly, the ROC AUC and predicted probabilities of the models were highly comparable to 
the ones obtained using the frequentist method. As mentioned earlier, due to the large time lag 
between diagnosis and blood sampling in the cases of the validation cohort, the predictive ability 
of biomarkers was somewhat tested. This could partly explain the initial miscalibration of the ratio 
predictors and could indicate a possible predictive potential of these biomarkers in addition to the 
discriminatory one at the time of diagnosis. 

In another study, a panel of eight miRNAs validated and developed on a relatively sizeable 
prospective cohort achieved an ROC AUC of 0.915 [425], and one of these miRNAs is included in 
our ratio signature of seven miRNAs (miR-19b-3p). It was not possible to compare the model 
calibration between our and the mentioned study, as the study cited did not report the necessary 
data. However, considering that our study was based on a screening cohort and considering the 
limited sample size, further validation of these miRNA ratio sets on larger screening cohorts is 
desirable. 

To evaluate whether a model could be constructed on the merged data of the discovery and 
validation cohort, as well as to identify the most generalisable predictors between the two cohorts, 
the IECV method was employed [282]. Due to the considerable heterogeneity between the cohorts 
when using all common predictors, modelling on merged cohorts is not optimal. Nevertheless, we 
exploited this method to identify the most generalisable predictors across the cohorts and obtained 
two miRNA ratios (miR-26b-5p_miR-142-5p and miR-21-5p_miR-23a-3p), the interaction 
between centred BMI and menopausal status and breast density. In the IECV on miRNA ratio 
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predictors, again there were two generalisable miRNA ratios, but instead of miR-26b-5p_miR-
142-5p, miR-199a-3p_let-7a-5p was selected. These two miRNA ratios had the largest coefficients 
in the validation cohort after model updating, indicating their potential as diagnostic biomarkers.  

The biomarkers identified in this project were based on cohorts that included various types of 
molecular and histological BC tumours, with the aim of identifying a biomarker signature that 
would be able to discriminate most, if not all, BC tumours from healthy controls. Unfortunately, 
due to the sample size limitations, it was not possible to accurately assess the biomarkers’ 
performance and applicability among the different BC subtypes. In any case, for each of the 
candidate biomarkers (miRNA ratios or selected non-molecular predictors), we tested whether 
there were differences in distribution and variance between the BC subtypes or differences 
between other patient characteristics. For almost all the cohort characteristics, the selected 
predictors did not have significantly different distributions or variances. This suggests a possible 
generalisability of the diagnostic biomarkers we have identified to various subtypes of BC. It is 
paramount to further validate these biomarkers in a screening setting on a much larger sample size 
and investigate their actual applicability across various BC subtypes. 

To evaluate the robustness of our model on miRNA ratios and non-molecular predictors, we 
performed various sensitivity analyses in the discovery cohort. We evaluated the performance of 
the model without some of the non-molecular predictors, and in all instances, the models were 
relatively stable, and their performance did not decline significantly. Additionally, the models with 
non-molecular predictors but without breast density were applied to the validation cohort, and a 
much worse performance was obtained than that of the models with breast density. The ROC AUC 
in miRNA ratios and non-molecular predictors was 0.59, while in non-molecular predictors only, 
it was 0.61. As in the models with breast density, the predicted probabilities were highly 
miscalibrated. After recalibration, the performance of miRNA ratios and non-molecular predictors 
improved (ROC AUC = 0.81). These results demonstrate the potential of the identified miRNA 
ratios to be used as a diagnostic or risk-stratifying tool before women undergo mammography 
screening and breast density is not yet known. 

Finally, six of the seven candidate miRNA ratios were associated with BC when analysed on paired 
tumour and adjacent normal tissue samples from TCGA. Furthermore, these miRNA ratios were 
concordant based on the OR between the TCGA data and RT-qPCR data in the discovery cohort. 
Hence, these results provide additional evidence that the miRNAs that make up the miRNA ratios 
play a role in BC progression or onset. For a holistic understanding of the miRNA ratios as 
biomarkers, it is crucial to understand why a concordant result between blood and tissue was 
observed and whether it was a coincidence. One hypothesis is that cancers can affect the miRNA 
expression profile by releasing miRNAs into the bloodstream (for cell communication, response 
to various stimuli etc.) and, in that way, create relative miRNA proportions similar to those 
observed in the cancer cells [426,427]. Additionally, dead cancer cells could also be a source of the 
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miRNAs in the bloodstream [426,427]. Nevertheless, it is important to further investigate these 
hypotheses for a better understanding of the found cfc biomarkers. 

As was observed in our meta-analysis, in most similar studies that have analysed cfc miRNAs in 
the context of early diagnosis of BC, the controls usually come from healthy donors recruited in a 
separate setting from the cases, which were generally diagnosed prior to blood sampling. 
Therefore, the main strength of our study is that all samples came from a similar screening setting 
and were taken prospectively, with the limitation of a relatively small sample size [428]. Moreover, 
most published studies on diagnostic cfc miRNAs are based on endogenous or exogenous miRNA 
normalisers [224]. As mentioned, an essential aspect of the standardisation of cfc miRNA analysis 
is the normalisation method [224,228], and utilising values based on the ratio of miRNAs is a good 
step to overcome the lack of optimal endogenous or exogenous normalisers [271]. In addition, taking 
blood prior to biopsy and before knowing BC status could offer a better chance of obtaining a non-
confounded circulating miRNA profile. 

DNA methylation sites associated with BC and puberty 

Gene expression can be epigenetically regulated through various mechanisms, such as DNA 
methylation, histone modification, RNA-induced silencing complex based on miRNAs, etc [429–

431]. Like other epigenetic mechanisms, DNA methylation is an important aspect of the formation 
and progression of most tumours, including BC. DNA methylation can also be associated with 
development [432], puberty [433,434] as well as lifestyle factors [435], and can be used as an ageing 
clock [436]. Therefore, with the group from the Finnish Institute of Molecular Medicine, I identified 
DNA methylation sites associated with puberty among young adult Finnish twins and assessed 
their potential function or involvement in associated pathologies. [234]. Because blood sampling 
occurred several years after the completion of puberty, the identified CpG sites should mainly be 
considered as biomarkers for pubertal development. Since early puberty is a risk factor for BC 
[287], I further investigated the puberty-associated CpG sites that were linked to BC processes (set 
1) via IPA or linked to BC risk (set 2). I then identified miRNAs that significantly target genes 
mapped to the above-mentioned CpG sites and CpG sites that are located at potential genomic 
regulatory points, such as enhancers and super-enhancers. 

Forty miRNAs identified as differentially expressed in BC tissue and four in blood significantly 
targeted the genes mapped to the CpG sites associated with puberty and BC. Three miRNAs (miR-
21-5p, miR-22-3p and miR-16-5p) commonly targeted CDK6 and SP1, mapped to CpG sites from 
set 1. Importantly, these three miRNAs were found in the 21 miRNA ratios identified as candidate 
biomarkers for BC detection in small-RNA sequencing. Two of the three miRNAs (miR-21-5p 
and miR-22-3p) also made up the ratios in the model built in the discovery cohort and tested in the 
validation cohort. miR-21 is consistently upregulated in BC cases relative to controls in both tissue 
and blood [437,438]. It is considered to be an oncomiR [439], and one of its described functions 
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involves regulating the expression of STAT3 and being linked to cell proliferation, colony 
formation, migration and invasion [440]. On the other hand, miR-22 is a protective miRNA as it has 
been found to suppress tumorigenesis in BC [441] and some other cancers [442]. Additionally, miR-
22 is involved in oestrogen signalling by inhibiting ERα expression [443], which makes it also 
relevant for puberty due to the importance of oestrogen signalling during puberty [109]. 
Furthermore, miR-26b-5p significantly targeted DNMBP and PCNT, mapped to CpGs from set 2. 
miR-26b-5p is also a protective miRNA as it inhibits proliferation in triple-negative BC [444] as 
well as some other cancers, such as thyroid cancer [445]. 

We found 50 differentially expressed genes between BC tumour and healthy adjacent tissue 
mapped to CpG sites from set 1 and one differentially expressed gene mapped to CpG sites from 
set 2. Additionally, one and 67 CpG sites from set 1 were differentially methylated in tissue and 
blood, respectively. Regarding CpG sites from set 2, none were differentially methylated in tissue, 
while all eight were differentially methylated in blood. Since a high overall correlation was 
observed between the genes mapped to CpGs of set 1 and the miRNAs that significantly target 
them, it is plausible that these miRNAs are important for pubertal development and the onset or 
progression of BC. Furthermore, 22 genes were selected based on their high correlation with the 
three miRNAs differentially expressed in blood and tissue. Methylation of 1,066 and 4 CpG sites 
correlated with the gene expression of their underlying gene in CpG set 1 and set 2, respectively. 
The identified differentially expressed genes and differentially methylated CpG sites could be 
biomarkers linking puberty and BC onset.  

Network analysis provided further information on the genes associated with puberty and BC. From 
the input gene list, several smaller highly significant networks were generated, which usually have 
a main node around an external gene or protein that interacts with the input gene list. Some notable 
central hub genes are the transcription factor YY1 and binding proteins Cyclin D1 and Vimentin. 
YY1 is a transcription activator and repressor expressed in numerous cell types and has been 
associated with cell cycle progression [411]. It was found to be an oncogene in BC, and p27 was 
one of its targets [446]. Eleven genes, such as CDK1 and HOXB13, associated with puberty and BC 
were found to interact directly or indirectly with YY1. The other central gene, Cyclin D1, is also 
related to the cell cycle and is activated by E2F8, SP1 and STAT5, which also interacts with 
UHRF1. Lastly, Vimentin is a part of the intermediate filament protein family and was found to 
be overexpressed in various cancers [447]. In BC, it is believed to play a role in tumour migration 
and invasion [448,449]. The network analyses on genes associated with puberty and BC have shown 
some general cell-cycle and developmental gene interactions, indicating the possible relevance of 
these genes to BC risk. However, further experimental and bioinformatic analyses should be done 
to clarify whether and how these genes are related to both BC and puberty.  

Through literature search (Table 33) and the Human Protein Atlas database, we investigated the 
functions and expression patterns of genes mapped to CpG sites associated with puberty and BC 
that are found on gene regulatory sites or exons. Therefore, these genes represent the list of genes 
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whose expression or function, without claiming causality, could be associated with DNA 
methylation underlying the identified CpG sites. In the literature, a considerable number of genes 
were linked to both puberty and BC (Table 33); in particular, four of them (UHRF1, CDK6, SP1 
and OXTR) appear to be directly involved in the onset and progression of BC and have also been 
found to be directly or indirectly associated with puberty. UHRF1 protein regulates gene 
expression through binding to certain DNA sequences and recruiting histone deacetylases [450]. It 
has an important role in the cell cycle, as it regulates topoisomerase IIα and retinoblastoma gene 
expression, both crucial to the cell cycle [343]. It is also involved in DNA damage checkpoints. 
UHRF1 is believed to regulate breast cancer cell growth through oestrogen signalling [298] and was 
found to play a role in the development of invasive ductal BC [299]. Based on the Human Protein 
Atlas, UHRF1 mRNA has the highest expression in the thymus and has a low expression in the 
breast. The single-cell data has shown that, within the breast tissue, UHRF1 is most expressed in 
breast glandular cells. Finally, considering its low mRNA expression in the breast, the UHRF1 
protein is relatively abundant. Within the D-CDK6 complex, CDK6 is ubiquitously important for 
tumour initiation [313]. Additionally, it is important for mammary epithelial proliferation and BC 
initiation and maintenance [314]. The protein encoded by SP1 is a transcription factor that binds to 
GC-rich motifs of numerous promoters and regulates cellular processes such as differentiation, 
cell growth, immune response, etc [451]. It regulates a plethora of cancer-associated genes [305] and 
is believed to control the proliferation of BC via interactions with insulin-like growth factors-I 
receptor (IGF-I) [304]. SP1 mRNA is expressed in all tissue types and has an expression of around 
25 TPM in breast tissue. It is expressed in numerous cell types within the breast, including 
glandular cells, adipocytes and fibroblasts. In blood, it has the highest expression in macrophages 
and monocytes. Finally, OXTR could be involved in BC development and progression [308,309], 
where one of the suggested mechanisms is through the prolactin/p-STAT5 pathway [310]. 
Interestingly, OXTR mRNA was low in all tissues but BC, where it was around 55 TPM. In the 
breast tissue, OXTR is mainly expressed in breast myoepithelial cells, while in peripheral blood it 
is mainly expressed in platelets. 

The CpG sites, miRNAs and genes that have been identified in the context of puberty and breast 
cancer cannot be causally associated with the progression and onset of breast cancer. The main 
reason is that CpG sites have been identified in peripheral blood. Therefore, the potential effect of 
CpG sites and genes on the risk of BC has to be studied in the breast, endocrine system or other 
relevant tissues. Blood could still be used as a medium for the transport of miRNAs or as a medium 
where cancer cells export unwanted molecules. The identified CpG sites, miRNAs and genes are 
mainly biomarkers linking puberty and BC, and future investigations should clarify their function. 
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Conclusions 

Breast cancer is the malignancy with the highest incidence and mortality among women. It is a 
disease with a significant healthcare burden, and due to its high incidence, the quality of life of 
many women is negatively affected. The problems of mortality, health burden and decreased 
quality of life related to BC can be mitigated through primary and secondary prevention. Breast 
self-examination and BC screening programs are the core secondary prevention methods. 
Nonetheless, mammography, which is the gold standard tool used in BC screening programs, has 
some disadvantages, such as a relatively higher false positive rate, especially in women with denser 
breasts, interval tumours, inflexible scheduling and radiation exposure. 

To overcome the drawbacks of current BC screening, it is necessary to identify and implement 
non-invasive and cost-effective diagnostic biomarkers for early BC detection. In this project we 
first evaluated the diagnostic performance of circulating cell-free miRNAs in the thus far published 
studies, as they are one of the most studied types of non-invasive biomarkers. In our meta-analysis 
we presented reliable diagnostic performance estimates of cfc miRNAs and showed that they are 
promising biomarkers for (early) detection of BC. The subgroup analysis revealed that single 
miRNAs perform worse on average compared to multiple miRNA panels. In addition, differences 
in performance were also observed between models based on exogenous and endogenous RT-
qPCR normalisers.  

Using novel methods to evaluate model or author preference for sensitivity or specificity, we have 
determined that overall, the meta-analysed studies tend to prefer specificity. Additionally, the 
case–control ratio likely has an impact on diagnostic accuracy, while the preference for sensitivity 
or specificity influences the ratio of predicted positive to predicted negative screens. For this 
reason, we emphasised the importance of the authors disclosing their motivations for the research 
design and the possible implications they might have on the preference for sensitivity or 
specificity. Furthermore, we concluded that prospective random sampling of cases and controls, 
independent validation cohorts as well as standardisation of studies, especially on normalising 
methods, patient flow and specimen type, are paramount in achieving consistent and homogeneous 
results across studies. This would discover reliable miRNA candidate models for the diagnosis of 
BC that would have to be independently validated by several laboratories. 

In the second part of the project, we identified non-invasive plasma biomarkers which could assist, 
together with non-molecular parameters, in early BC detection. This was done on discovery and 
validation case–control cohorts nested in a large screening cohort of BC, and we followed the 
conclusions from our meta-analysis to obtain reliable and reproducible circulating biomarkers. 
Seven miRNA ratios were identified as promising biomarkers for early BC detection that can be 
measured through a widespread and low-cost technique (RT-qPCR). The miRNAs showed a 
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certain degree of heterogeneity between the discovery and validation cohorts, but after 
recalibration, we demonstrated their potential as biomarkers for early diagnosis of BC. The miR-
21-5p, also found to be the most promising miRNA in our meta-analysis, was found to make up 
one of the seven ratios, further demonstrating its potential as a BC diagnostic biomarker. The 
lifestyle score was among the non-molecular variables found to differentiate between cases and 
controls. Hence, in addition to optimising secondary prevention, it is vital to raise awareness and 
organise social initiatives that would improve people’s lifestyles. This would contribute to the 
increase of overall quality of life and health among the population as well as decrease healthcare 
costs. 

We identified the DNA methylation sites associated with puberty and BC, which are mapped to 
genes targeted significantly by two of the miRNAs among the seven-miRNA ratio signature. In 
addition, a subset of DNA methylation sites located in regulatory regions or exons was also 
identified, as they may be more likely to influence gene expression of the mapped genes. However, 
since they were identified in blood, the actual functional relevance of the identified CpG sites, 
genes and miRNAs for the onset and progression of BC has yet to be established. 

Finally, considering the small sample size in this project, further evaluation and reconstruction of 
the model using the seven miRNA ratios on a much larger cohort is required. This would be a 
challenging task due to the extensive time required by the screening programme to obtain a 
sufficient number of events, as prospective samples are required. However, collaboration between 
hospitals and research centres could make this feasible.  
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Appendix 

Appendix A 

Additional file 1. QUADAS-2 tailored for diagnostic cfc miRNAs for early BC detection using RT-
qPCR. 

Title:  

Phase 1: State the review question: 
 
Patients: The study needs to report the type of sampling that was performed which optimally should be 
random or consecutive sampling of the patients/controls. In addition, information on whether the patients 
were matched to the controls or not needs to be disclosed. The institution responsible for giving out the 
ethical approval as well as the clinic or institution the samples were obtained from needs to be disclosed.  
 
Index test(s): The index test(s) reported by the study must be circulating cell-free microRNAs. The 
expression of the index test(s) must be performed by RT-qPCR. In addition, a detailed protocol of RNA 
extraction, reverse transcription (and if performed, pre-amplification) must be described. Moreover, the 
RT-qPCR evaluation of the miRNAs requires a normalizing method, which needs to be disclosed by the 
study. The method of calculating and analysing the Delta Cts or other methods of quantifying the relative 
expression of miRNAs (i.e., miRNA ratios) need to be disclosed. 
 
Reference standard and target condition: The primary target condition needs to include patients with 
malignant breast cancer. The reference standard is usually a histopathological analysis of the cancer tissue 
which is obtained by performing a biopsy. However, since the biopsy is invasive it is usually not 
performed on healthy controls. Nevertheless, a mammographic screening of the healthy individuals 
should be performed to have any kind of confirmation that the individual does not have breast cancer. The 
studies need to report whether the mammographic screening was performed on the healthy controls and 
which institution performed the histopathological analysis on included cases (or potential benign samples) 
and when with respect to the sampling (before or after). The histopathological analysis needs to confirm 
that the patient indeed has malignant breast cancer as well as the stage to which the cancer has 
progressed. This is relevant information to evaluating the index test(s) applicability to clinical setting. 
 
Phase 2: Draw a flow diagram for the primary study 

 
PDF of the hand-drawn flow diagram. 

Phase 3: Risk of bias and applicability judgments 

0. DOMAIN 1: PATIENT SELECTION Risk of Bias 

Describe the methods of patient selection: 
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Signalling questions:  

- Was random case/control selection from a prospective cohort performed? Yes/No/Unclear 
- Did the study avoid inappropriate exclusions?      Yes/No/Unclear 

Could the selection of patients have introduced bias?  RISK: LOW/HIGH/UNCLEAR 

B. Concerns regarding applicability 

Describe included patients (prior testing, presentation, intended use of index test and setting): 

Is there concern that the included patients do not match the review question? 
CONCERN: LOW/HIGH/UNCLEAR 

DOMAIN 2: INDEX TEST(S) 
0. If more than one test was used, please complete for each test (in this case for each model). 

Risk of Bias 
 
Describe the index test and how it was conducted and interpreted:  

Signalling questions:  

- Was a validation cohort included in the study?   Yes/No/Unclear 
- If a threshold was used, was it pre-specified?   Yes/No/Unclear 
- Was a normalizing method utilized?    Yes/No/Unclear 
- Was the experiment methodologically sound?   Yes/No/Unclear 
- Was the performance of the index test(s) properly reported? Yes/No/Unclear 

Could the conduct or interpretation of the index test have introduced bias? RISK: 
LOW/HIGH/UNCLEAR 

B. Concerns regarding applicability 

Is there concern that the index test, its conduct, or interpretation differ from the review question?
 CONCERN: LOW/HIGH/UNCLEAR 

0. DOMAIN 3: REFERENCE STANDARD Risk of Bias 

Describe the reference standard and how it was conducted and interpreted: 

Signalling questions: 

- Is the reference standard likely to correctly classify the target condition? Yes/No/Unclear 
- Were the reference standard results interpreted without knowledge of the results of the index test?
         Yes/No/Unclear 
- Did all BC patients receive a reference standard?    Yes/No/Unclear 
- Did patients receive the same reference standard?   Yes/No/Unclear 
 

Could the reference standard, its conduct, or its interpretation have introduced bias? 
RISK: LOW /HIGH/UNCLEAR 

B. Concerns regarding applicability 
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Is there concern that the target condition as defined by the reference standard does not match the 
review question?  CONCERN: LOW /HIGH/UNCLEAR 

0. DOMAIN 4: FLOW AND TIMING Risk of Bias 

Describe any patients who did not receive the index test(s) and/or reference standard or who were 
excluded from the 2x2 table (refer to flow diagram): 
 
Describe the time interval and any interventions between index test(s) and reference standard: 
 
Signalling questions: 
 
- Were patients who undergone treatment removed?   Yes/No/Unclear 
- Were all patients included in the analysis?    Yes/No/Unclear 
- Was the sampling performed before the biopsy?   Yes/No/Unclear 
- Was the sampling performed before the surgery?   Yes/No/Unclear 
 
Could the patient flow have introduced bias? RISK: LOW /HIGH/UNCLEAR 
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Supplementary Table 1. General information about the studies included in the meta-analysis. 

Authors Year Country§ Source 

Sample size 
(Healthy 
controls 

 + benign)† 

Index test (model) Diagnostic  
Performance‡ 

Swellam et al. 
[452] 

2019 Egypt  Serum  182 (39 + 47)  - miR-21 0.86 
- miR-126 1 
- miR-155 1 

111 (39 + 
47)# 

- miR-21 0.40/0.93 
- miR-126 0.76/1 
- miR-155 0.96/0.97 

Zhang et al. 
[453] 

2017 China  Whole 
Blood  

28 (13)  - miR-30b-5p 0.93 
- miR-96-5p 0.77 
- miR-182-5p 0.76 
- miR-374b-5p 0.83 
- miR-942-5p 0.81 

Mar-Aguilar 
et al. [454] 

2013 Mexico  Serum  71 (10)  - miR-10b 0.95 
- miR-21 0.95 
- miR-125b 0.95 
- miR-145 0.98 
- miR-155 0.99 
- miR-191 0.79 
- miR-382 0.97 
- miR-145/miR-155/miR-382 0.99 

Wu et al. [455] 2012 China  Serum  100 (50)  - miR-222-3p 0.67 
Diansyah et 
al. [456] 

2021 Indonesia  Plasma  42 (16)  
- miR-21 0.92 

Hosseini 
Mojahed et al. 
[457] 

2020 Iran  Serum  72 (36)  

- miR-155 
0.89 

Pena-Cano et 
al. [423] 

2019 Mexico  Serum  100 (50)  
- miR-195-5p 0.88 

Kim et al. [458] 2020 South Korea  Plasma  60 (30)  - miR-202 0.95 
Heydari et al. 
[422] 

2018 Iran  Serum  80 (40)  
- miR-140-3p 0.66 

Motamedi et 
al. [437] 

2019 Iran  Plasma  47 (24)  
- miR-21 0.83 

Swellam et al. 
[459] 

2019 Egypt  Serum  150 (30 + 40)  - miR-17-5p 0.87 
- miR-155 0.99 
- miR-222-3p 0.86 

103 (30 + 
40)# 

- miR-17-5p 1/0.76 
- miR-155 0.94/0.94 
- miR-222-3p 1/0.79 

Matamala et 
al. [460] 

2015 Spain  Plasma  230 (116)  - miR-505-5p 0.72 
- miR-96-5p 0.72 
- miR-125b-5p 0.64 
- miR-21 0.61 
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Authors Year Country§ Source 

Sample size 
(Healthy 
controls 

 + benign)† 

Index test (model) Diagnostic  
Performance‡ 

Li et al. [401] 2019 China  Plasma  226 (113)  - let-7b-5p/miR-122-5p/ 
miR-146-5p/miR-210-3p/ 
miR-215-5p 

0.97 

Han et al. [461] 2017 China  Serum  120 (21)  - miR-21 0.79 
71 (21) - miR-125b 0.56 
120 (21)  - miR-145 0.59 
70 (21) - miR-155 0.75 
120 (21)  - miR-365 0.80 
70 (21) - miR-21/miR-155 0.87 
70 (21) - miR-21/miR-155/miR-365 0.92 
120 (21)  - miR-21/miR-365 0.87 

Zhao et al. [462] 2010 USA  Plasma  30 (15)  - let-7c 0.78 
30 (15)  - miR-589 0.85 
20 (10) - miR-425 0.83 
20 (10) - let-7d 0.99 

Pastor-
Navarro et al. 
[463] 

2020 Spain  Serum  90 (45)  - miR-21/miR-205 0.77 
- miR-21 0.77 
- miR-205 0.65 

Si et al. [464] 2013 China  Serum  120 (20)  - miR-92a 0.92 
- miR-21 0.93 

Freres et al. 
[363] 

2015 Belgium  Plasma  196 (88)  - miR-16/let-7d/miR-
103/miR-107/miR-148a/let-
7i/miR-19b/miR-22*/ 

0.81 

- miR-16/let-7d/miR-103/ 
miR-181a/miR-107/miR-142- 
3p/miR-148a/let-7f-1/miR-
199a-5p/miR-590-5p/miR-32 

0.80 

Schrauder et 
al. [465] 

2012 Germany  Whole 
Blood  

48 (24)  
- miR-202 0.68 

Ng et al. [466] 2013 China  Plasma  120 (50)  - miR-145/miR-451a 0.93 
Li et al. [415] 2018 China  Plasma  292 (146)  - miR-106a-3p/miR-106a-5p/ 

miR-20b-5p/miR-92a-5p 0.83 

Serum  298 (148)  - miR-106a-5p/miR-19b-3p/ 
miR-20b-5p/miR-92a-3p 0.97 

Shen et al. [467] 2014 USA  Serum  100 (50)  - miR-133a/miR-148b 0.86 
Antolin et al. 
[468] 

2015 Spain  Whole 
Blood  

64 (20)  - miR-200c 0.85 
37 (20)  - miR-200c 0.82 

Soleimanpour 
et al. [469] 

2019 Iran  Plasma  60 (30)  - miR-21 0.99 
- miR-155 0.92 

Nashtahossein
i et al. [470] 

2021 Iran  Serum  72 (38)  - miR-660-5p 0.77 
62 (38)# - miR-660-5p 0.82 
72 (38)  - miR-210-3p 0.72 
62 (38)# - miR-210-3p 0.65 

Han et al. [471] 2020 China  Serum  182 (38)  - miR-1204 0.82 
Chen et al. 
[472] 

2016 USA  Plasma  102 (49)  - miR-21 0.61 
- miR-152 0.69 
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Authors Year Country§ Source 

Sample size 
(Healthy 
controls 

 + benign)† 

Index test (model) Diagnostic  
Performance‡ 

Yu et al. [417] 2018 China  Serum  160 (47)  - miR-21-5p/miR-21-3p/ 
miR-99a-5p 0.90 

Zou et al. [414] 2021 China  Serum  246 (122)  - let-7b-5p/miR-106a-5p/ 
miR-16-5p/miR-19a-3p/miR-
19b-3p/miR-20a-5p/miR-223-
3p/miR-25-3p/miR-425-
5p/miR-451a/miR-92a-
3p/miR-93-5p 

0.96 

Fang et al. [362] 2019 China  Plasma  131 (38 + 40)  - miR-324-3p/miR-382-5p/ 
miR-21-3p/miR-324-3p/ 
miR-30a-5p/miR-30e-5p/ 
miR-221-3p/miR-324-3p 

0.90 

- miR-324-3p/miR-382-
5p/miR-21-3p/miR-324-
3p/miR-30a-5p/miR-30e-5p/ 
miR-221-3p/miR-324-3p 

0.82 

An et al. [473] 2018 China  Serum  109 (24)  - miR-24 0.72 
- miR-103a 0.72 

Hu et al. [474] 2012 China  Serum  152 (76)  - miR-16/miR-25/ 
miR-222/miR-324-5p 0.93 

Zhang et al. 
[475] 

2015 China  Serum  151 (93)  
- miR-205 0.84 

Eichelser et 
al. [416] 

2013 Germany  Serum  160 (40)  - miR-34a 0.64 
- miR-93 0.70 
- miR-373 0.88 

Wang et al. 
[476] 

2018 China  Serum  102 (44)  - miR-130b-5p/miR-151a-5p/ 
miR-206/miR-222-3p 0.93 

- miR-130b-5p 0.73 
- miR-151a-5p 0.80 
- miR-206 0.86 
- miR-222-3p 0.89 

Zhang et al. 
[477] 

2017 China  Plasma  125 (50)  - miR-200c 0.56 
- miR-141 0.58 

Feliciano et 
al. [478] 

2020 Spain  Serum  80 (60)  - miR-125b/miR-29c/miR-16/ 
miR-1260/miR-451a 1/0.82 

188 (92)  - miR-125b/miR-29c/miR-16/ 
miR-1260/miR-451a 0.96/0.92 

Ibrahim et al. 
[479] 

2020 Egypt  Plasma  50 (20)  - miR-10b 0.73 
- miR-21-3p 0.78 
- miR-181a 0.70 
- miR-145 0.70 

Swellam et al. 
[480] 

2021 Egypt  Serum  94 (20 + 30)  
- miR-27a 0.82/0.92 

Jang et al. [481] 2021 South Korea  Plasma  136 (56)  - miR-1246 0.96 
- miR-206 0.94 
- miR-24 0.97 
- miR-373 0.94 
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Authors Year Country§ Source 

Sample size 
(Healthy 
controls 

 + benign)† 

Index test (model) Diagnostic  
Performance‡ 

- miR-1246/miR-206 0.99 
- miR-1246/miR-206/miR-
373 0.99 

- miR-1246/miR-206/ 
miR-24/miR-373 0.99 

Guo et al. [482] 2020 China  Plasma  79 (40)  - miR-21 0.66 
- miR-1273g-3p 0.63 

Huang et al. 
[413] 

2018 China  Serum  235 (107)  - let-7a 0.68 
- miR-155 0.64 
- miR-574-5p 0.89 

Ashirbkekov 
et al. [483] 

2020 Kazakhstan  Plasma  68 (33)  - miR-16-5p 0.66 
- miR-210-3p 0.71 
- miR-222-3p 0.76 
- miR-29c-3p 0.74 
- miR-145-5p 0.93 
- miR-191-5p 0.90 
- miR-21 0.71 
- miR-145-5p/miR-191-5p 0.98 
- miR-145-5p/miR-21-5p 0.93 
- miR-191-5p/miR-21-5p 0.92 
- miR-145-5p/miR-191-5p/ 
miR-21-5p 0.98 

Guo et al. [364] 2018 China  Serum  60 (30)  - miR-1915-3p 0.88 
- miR-455-3p 0.78 

Cuk et al. [484] 2013 Germany Plasma 180 (60) - miR-127-3p 0.65 
- miR-148b 0.70 
- miR-376a 0.59 
- miR-376c 0.59 
- miR-409-3p 0.62 
- miR-652 0.75 
- miR-801 0.72 
- Panel of 7 miRs above 0.81 

Raheem et al. 
[485] 

2019 Iraq  Serum  60 (30)  
- miR-34a 0.67 

Zhu et al. [486] 2020 China  Serum  120 (60)  - miR-1908-3p 0.84 
Ahmed 
Mohmmed et 
al. [487] 

2021 

Egypt Serum 

80 (30) 

- miR-106a 
0.95 

Sadeghi et al. 
[488] 

2021 Iran Whole 
Blood 

130 (60) - miR-145 0.65/0.61 
- miR-106b-5p/miR-126-3p/ 
miR-140-3p/miR-193a-5p/ 
miR-10b-5p 

0.79/0.86 

Itani et al. [489] 2021 Lebanon Plasma 73 (32) - miR-21 0.76 
- miR-155 0.70 
- miR-23a 0.74 
- miR-130a 0.78 
- miR-145 0.81 
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Authors Year Country§ Source 

Sample size 
(Healthy 
controls 

 + benign)† 

Index test (model) Diagnostic  
Performance‡ 

- miR-425-5p 0.83 
- miR-139-5p 0.83 
- miR-451 0.73 
- miR-145/miR-425-5p 0.83 
- miR-21/miR-23a 0.80 
- miR-21/miR-130a 0.82 
- miR-21/miR-23a/miR-130a 0.82 
-miR-145/miR-139-5p/mir-
130a 0.96 

- miR-145/miR-139-5p/mir-
130a 
/miR-425-5p 

0.97 

Mahmoud et 
al. [490] 

2021 Egypt Serum 95 (25) - miR-185-5p 0.84 
- miR-301a-3p 0.90 

Zou et al. [425]  2022 Multiple Serum 374 (197) - miR-133a-3p/miR-497-
5p/mir-24-3p/miR-125b-
5p/miR-377-3p/ 
miR-374c-5p/miR-324-
5p/miR-19b-3p 

0.92 

379 (199) - miR-133a-3p/miR-497-
5p/mir-24-3p/miR-125b-
5p/miR-377-3p/ 
miR-374c-5p/miR-324-
5p/miR-19b-3p 

0.92 

325 (199)# - miR-133a-3p/miR-497-
5p/mir-24-3p/miR-125b-
5p/miR-377-3p/ 
miR-374c-5p/miR-324-
5p/miR-19b-3p 

0.92 

210 (199)¶ - miR-133a-3p/miR-497-
5p/mir-24-3p/miR-125b-
5p/miR-377-3p/ 
miR-374c-5p/miR-324-
5p/miR-19b-3p 

0.95 

Zou et al. [491] 2021 Singapore Serum 369 
(100+196) 

- miR-451a/miR-195-5p/miR-
126-5p/miR-423-3p/miR-192-
5p/miR-17-5p 

0.87 

Li et al. [492] 2022 China Serum 98 (49) - miR-9-5p 0.85/0.94 
- miR-17-5p 0.71/0.65 
- miR-148a-3p 0.87/0.88 

Shaker et al. 
[493] 

2021 Egypt Serum 450 
(150+120) 

- miR-29 0.92 
- miR-182 0.97 

Uyisenga et 
al. [365] 

2021 Rwanda Plasma 45 (18) - let-7a-5p/miR-150-5p/miR-
940/miR-32-5p/miR-342-
3p/miR-33a-5p/miR-130a-
3p/let-7i-5p/miR-328-3p/miR-

0.87 
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Authors Year Country§ Source 

Sample size 
(Healthy 
controls 

 + benign)† 

Index test (model) Diagnostic  
Performance‡ 

29b-3p/miR-146a-5p/miR-
29a-3p/miR-126-3p 
- let-7a-5p/miR-150-5p/miR-
940/miR-32-5p/miR-33a-
5p/miR-130a-3p/miR-185-
5p/let-7i-5p/miR-328-3p/miR-
29b-3p/miR-146a-5p/miR-
210-3p/miR-126-3p 

0.87 

- let-7a-5p/miR-150-5p/miR-
940/miR-32-5p/miR-33a-
5p/miR-130a-3p/let-7i-
5p/miR-328-3p/miR-29b-
3p/miR-210-3p/miR-126-3p 

0.87 

- let-7a-5p/miR-150-5p/miR-
940/miR-32-5p/miR-342-
3p/miR-33a-5p/miR-130a-
3p/let-7i-5p/miR-328-3p/miR-
29b-3p/miR-146a-5p/miR-
210-3p/miR-126-3p 

0.87 

- let-7a-5p/miR-150-5p/miR-
940/miR-32-5p/miR-33a-
5p/miR-130a-3p/miR-185-
5p/let-7i-5p/miR-328-3p/miR-
29b-3p/miR-146a-5p/miR-
29a-3p/miR-126-3p 

0.86 

- let-7a-5p/miR-150-5p/miR-
940/miR-32-5p/miR-33a-
5p/miR-130a-3p/let-7i-
5p/miR-328-3p/miR-29b-
3p/miR-146a-5p/miR-210-
3p/miR-126-3p 

0.86 

- let-7a-5p/miR-150-5p/miR-
940/miR-32-5p/miR-33a-
5p/miR-130a-3p/let-7i-
5p/miR-29b-3p/miR-146a-
5p/miR-210-3p/miR-126-3p 

0.86 

- let-7a-5p/miR-150-5p/miR-
940/miR-33a-5p/miR-130a-
3p/miR-328-3p/miR-29a-
3p/miR-126-3p 

0.86 

- let-7a-5p/miR-150-5p/miR-
940/miR-32-5p/miR-33a-
5p/miR-130a-3p/let-7i-
5p/miR-328-3p/miR-29b-
3p/miR-29a-3p/miR-126-3p 

0.86 

- let-7a-5p/miR-150-5p/miR-
940/miR-32-5p/miR-33a- 0.86 



175 
 

Authors Year Country§ Source 

Sample size 
(Healthy 
controls 

 + benign)† 

Index test (model) Diagnostic  
Performance‡ 

5p/let-7i-5p/miR-29b-3p/miR-
146a-5p/miR-29a-3p/miR-
126-3p 
- let-7a-5p/miR-150-5p/miR-
940/miR-32-5p/miR-130a-
3p/miR-185-5p/let-7i-5p/miR-
29b-3p/miR-146a-5p/miR-
126-3p 

0.86 

- let-7a-5p/miR-150-5p/miR-
940/miR-130a-3p/miR-328-
3p/miR-29a-3p/miR-210-
3p/miR-126-3p 

0.86 

§Country from which the cases and controls of the reported model were sampled. 
†Sample size (cases, controls and benign) of the reported model. 
‡For each reported model, its ROC AUC is shown. If not available, then the sensitivity and specificity 
pair are reported. 
#Model with cases up to TNM stage II. 
¶Model with TNM stage III and IV cases. 
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Supplementary Table 2. Summary of the bivariate analysis on all the reported models and its 
corresponding subgroup analyses. Subgroups marked with an asterix (*) do not have a large enough 

model sample size in order for the result to be reliable. 

Subgroup  Fixed Effects Random Effects 
Model Study 

  Estimates  CI  SD  Corr.  n  SD  Corr.  n  

All models Sen 0.85 [0.81, 0.88] 0.85 -0.17 146 0.70 0.06 46 
Spe 0.83 [0.79, 0.87] 0.60 -0.17 146 0.74 0.06 46 

Plasma Sen 0.83 [0.77, 0.87] 0.75 -0.09 64 0.49 -0.09 15 
Spe 0.85 [0.78, 0.91] 0.47 -0.09 64 0.86 -0.09 15 

Serum Sen 0.87 [0.81, 0.91] 0.94 -0.29 73 0.84 0.25 29 
Spe 0.83 [0.78, 0.87] 0.63 -0.29 73 0.71 0.25 29 

Single miR 
panel 

Sen 0.82 [0.77, 0.86] 0.80 -0.28 96 0.73 0.08 34 
Spe 0.83 [0.78, 0.87] 0.67 -0.28 96 0.75 0.08 34 

Multiple miR 
panel 

Sen 0.90 [0.86, 0.93] 0.55 0.09 50 0.65 0.11 20 
Spe 0.86 [0.80, 0.90] 0.35 0.09 50 0.77 0.11 20 

Endogenous 
normaliser 

Sen 0.82 [0.77, 0.86] 0.80 -0.28 96 0.73 0.08 34 
Spe 0.83 [0.78, 0.87] 0.67 -0.28 96 0.75 0.08 34 

Exogenous 
normaliser* 

Sen 0.82 [0.60, 0.93] 1.38 -0.63 9 0.51 -1 4 
Spe 0.76 [0.63, 0.86] 0.88 -0.63 9 0.13 -1 4 

With stage III 
& IV cases 

Sen 0.85 [0.80, 0.88] 0.85 -0.19 125 0.69 0.09 38 
Spe 0.84 [0.80, 0.88] 0.65 -0.19 125 0.75 0.09 38 

Without stage 
III & IV cases 

Sen 0.86 [0.77, 0.91] 0.95 0.04 21 0.55 -0.14 13 
Spe 0.82 [0.74, 0.88] 0.47 0.04 21 0.73 -0.14 13 

With stage IV 
cases* 

Sen 0.87 [0.61, 0.97] 0.98 0.22 17 1.35 -1 4 
Spe 0.86 [0.80, 0.90] 0.68 0.22 17 0.16 -1 4 

Without stage 
IV cases 

Sen 0.85 [0.81, 0.88] 0.83 -0.23 129 0.62 0.06 43 
Spe 0.84 [0.80, 0.88] 0.60 -0.23 129 0.76 0.06 43 

miRNA-21-
5p* 

Sen 0.74 [0.64, 0.83] 0.52 1.00 10 0.46 -1 9 
Spe 0.81 [0.70, 0.89] 0.11 1.00 10 0.81 -1 9 

QUADAS-2: 
> 3 "LOW" 

Sen 0.82 [0.78, 0.86] 0.85 -0.11 109 0.51 -0.09 39 
Spe 0.82 [0.78, 0.86] 0.63 -0.11 109 0.76 -0.09 39 

QUADAS-2: 
> 4 "LOW" 

Sen 0.82 [0.77, 0.85] 0.83 -0.02 78 0.43 -0.08 29 
Spe 0.80 [0.74, 0.85] 0.56 -0.02 78 0.78 -0.08 29 

QUADAS-2: 
> 5 "LOW" 

Sen 0.79 [0.73, 0.84] 0.78 -0.13 41 0.43 -0.11 20 
Spe 0.77 [0.69, 0.83] 0.58 -0.13 41 0.69 -0.11 20 
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Supplementary Table 3. Summary of the bivariate analysis on the most important model of each study 
and its corresponding subgroup analyses. Subgroups marked with an asterix (*) do not have a large 

enough model sample size in order for the result to be reliable. 

Subgroup  
Fixed Effects Random Effects 

Model 
 Estimates CI SD Corr. n 

Most important 
models 

Sen 0.88 [0.85, 0.91] 0.86 0.23 46 
Spe 0.88 [0.84, 0.91] 1.00 0.23 46 

Plasma Sen 0.89 [0.83, 0.93] 0.84 0.04 14 
Spe 0.90 [0.82, 0.95] 1.16 0.04 14 

Serum Sen 0.87 [0.83, 0.91] 0.91 0.31 29 
Spe 0.86 [0.81, 0.90] 0.96 0.31 29 

Single miR panel Sen 0.85 [0.80, 0.89] 0.76 0.14 26 
Spe 0.87 [0.80, 0.92] 1.12 0.14 26 

Multiple miR panel Sen 0.90 [0.86, 0.94] 0.89 0.28 20 
Spe 0.89 [0.83, 0.92] 0.87 0.28 20 

Endogenous 
normaliser 

Sen 0.85 [0.80, 0.89] 0.76 0.14 26 
Spe 0.87 [0.80, 0.92] 1.12 0.14 26 

Exogenous 
normaliser* 

Sen 0.93 [0.81, 0.97] 0.87 1 3 
Spe 0.75 [0.63, 0.84] 0.45 1 3 

With stage III & IV 
cases 

Sen 0.88 [0.84, 0.91] 0.90 0.27 37 
Spe 0.89 [0.85, 0.92] 1.02 0.27 37 

Without stage III & IV 
cases 

Sen 0.88 [0.81, 0.92] 0.65 0.12 9 
Spe 0.77 [0.67, 0.84] 0.63 0.12 9 

With stage IV cases Sen 0.87 [0.63, 0.97] 1.37 0.52 4 
Spe 0.89 [0.71, 0.96] 1.10 0.52 4 

Without stage IV  
cases 

Sen 0.88 [0.85, 0.91] 0.79 0.19 42 
Spe 0.88 [0.83, 0.91] 0.99 0.19 42 

miRNA-21-5p Sen 0.75 [0.66, 0.83] 0.58 -0.43 9 
Spe 0.81 [0.70, 0.89] 0.83 -0.43 9 

QUADAS-2: > 3 
"LOW" 

Sen 0.86 [0.82, 0.89] 0.77 0.13 39 
Spe 0.86 [0.81, 0.90] 1.06 0.13 39 

QUADAS-2: > 4 
"LOW" 

Sen 0.85 [0.80, 0.88] 0.77 0.18 29 
Spe 0.84 [0.77, 0.89] 1.04 0.18 29 

QUADAS-2: > 5 
"LOW" 

Sen 0.84 [0.78, 0.89] 0.84 0.1 20 
Spe 0.80 [0.73, 0.86] 0.91 0.1 20 
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Appendix B 

Supplementary Table 4. Demographic, family, reproductive and screening history, lifestyle, 
anthropometric measurements, education, breast density and PRS are reported for the discovery cohort. 

Results of univariate logistic regression for each variable are also reported. 

 Cases (n = 65) Controls (n = 66) Cases vs controls P  Mean/N SD/% Mean/N SD/% OR [95% CI] 
Age at enrolment (years) 
 Mean ± SD 59.15 6.00 57.82  5.92 1.04 [0.98, 1.10] 0.201 
Centre 
 Biella 16 24.62 20 30.3 1 (ref)  
 Torino 49 75.38 46 69.7 1.33 [0.62, 2.91] 0.467 
Previous negative second-level screening rounds  
 0 59 90.77 62 93.94 1 (ref)  
 ≥ 1 6 9.23 4 6.06 1.58 [0.43, 6.43] 0.497 
Previous benign biopsies 
 0 49 77.78 57 86.36 1 (ref)  
 ≥ 1 14 22.22 9 13.64 1.81 [0.73, 4.69] 0.207 
Missing 2      
Education  
 Low 22 34.38 21 32.31 1 (ref)  
 Medium 28 43.75 31 47.69 0.86 [0.39, 1.90] 0.712 
 High 14 21.88 13 20 1.03 [0.39, 2.71] 0.955 
 Missing 1  1    
Nr. of first-degree relatives with BC  
 0 56 88.89 58 87.88 1 (ref)  
 ≥ 1 5 7.94 8 12.12 0.65 [0.19, 2.06] 0.469 
 Missing 2      
Age at menarche (years) 
 ≤ 11 19 29.69 22 33.33 1 (ref)  
 12–13 33 51.56 33 50 1.16 [0.53, 2.54] 0.713 
 ≥ 14 12 18.75 11 16.67 1.26 [0.45, 3.55] 0.654 
 Missing 1      
Age at first full pregnancy (years) 
 Nulliparous 11 16.92 19 28.79 0.39 [0.13, 1.13] 0.087 
 ≤ 19 1 1.54 3 4.55 0.22 [0.01, 2.02] 0.219 
 20–24 15 23.08 11 16.67 1 (ref)  
 25–29 16 24.62 21 31.82 0.51 [0.18, 1.41] 0.198 
 ≥ 30 22 33.85 12 18.18 1.39 [0.47, 4.13] 0.545 
Contraceptive therapy 
 No OR use < 1 year 31 48.44 29 45.31 1 (ref)  
 1–4 years 5 7.81 10 15.62 0.47 [0.13, 1.48] 0.210 
 ≥ 5 years 28 43.75 25 39.06 1.04 [0.50, 2.20] 0.902 
 Missing 1  2    
Breastfeeding  
 Nulliparous OR no breastf. 
OR breastf. < 6 months 39 60.94 42 63.64 1 (ref)  

 ≥ 6 months 25 39.06 24 36.36 1.12 [0.55, 2.29] 0.751 
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 Cases (n = 65) Controls (n = 66) Cases vs controls P  Mean/N SD/% Mean/N SD/% OR [95% CI] 
 Missing 1  0    
Menopausal status  
 Not in menopause 12 18.75 12 18.18 1 (ref)  
 Menopause 52 81.25 54 81.82 0.74 [0.30, 1.78] 0.504 
 Missing 1  0    
HRT use  
 Not in menopause 12 18.75 12 18.18 1 (ref)  
 No HRT use OR HRT 
use < 1 year 45 70.31 43 65.15 1.04 [0.42, 2.60] 0.921 

 ≥ 1 year 7 10.94 11 16.17 0.63 [0.18, 2.18] 0.475 
 Missing 1  0    
Measured BMI (kg/m2) 
 Mean ± SD 28.02 6.24 25.76  5.15 1.07 [1.01, 1.15] 0.029 
Waist circumference (cm) 
 Mean ± SD 92.69 17.55 88.00  11.83 1.02 [1.00, 1.05] 0.087 
 Missing 2  2    
Level of occupational physical activity at age 30–39 years  
 Exclusively/mainly sitting 23 35.9 17 25.8 1 (ref)  
 Standing or average 34 53.1 43 65.2 0.58 [0.27, 1.26] 0.172 
 Heavy or very heavy 7 10.9 6 9.1 0.86 [0.24, 3.12] 0.817 
 Missing 1  0    
Level of leisure time physical activity at 30–39 years  
 < 2 h/week 34 53.1 35 53 1 (ref)  
 ≥ 2 h/week 30 46.9 31 47 1.00 [0.50, 1.99] 0.991 
 Missing 1  0    
Alcohol habit  
 Never or ex drinker 19 29.69 16 24.24 1 (ref)  
 Drinker (incl. occasionally) 45 70.31 50 75.76 0.76 [0.35, 1.65] 0.485 
 Missing 1  0    
Smoking habit  
 Never smoker 26 41.94 31 47.69 1 (ref)  
 Ex-smoker 25 40.32 19 29.23 1.57 [0.71, 3.50] 0.265 
 Occasionally/Smoker 11 17.74 15 23.08 0.87 [0.34, 2.22] 0.779 
 Missing 3  1    
BI-RADS breast density  
 1 21 32.31 21 31.82 1 (ref)  
 2 27 41.54 34 51.52 0.79 [0.36, 1.75] 0.566 
 3 or 4 17 26.15 11 16.67 1.55 [0.59, 4.15] 0.379 
Tabar breast density  
 1 10 15.38 22 33.33 1 (ref)  
 2 23 35.38 25 37.88 2.02 [0.80, 5.32] 0.141 
 3 7 10.77 6 9.09 2.57 [0.69, 10.01] 0.162 
 4 or 5 25 38.46 13 19.7 4.23 [1.59, 11.97] 0.005 
WCRF/AICR lifestyle score  
 Mean ± SD 5.12 1.11 5.52  0.98 0.68 [0.47, 0.96] 0.034 
PRS 
 Mean ± SD 1.00  0.41 0.98 0.43 1.09 [0.47, 2.51] 0.842 
 Missing 0  4    
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Supplementary Table 5. Histological and molecular subtype characteristics of invasive and in situ breast 
cancer cases of the discovery cohort. 

Invasive (n = 57) In situ (n = 8) 
 N %  N % 

Histotype Histotype 
 Ductal NOS 30 58.82  Ductal NOS 3 37.5 
 Lobular 8 15.69  Solid 1 12.5 
 Tubular 4 7.84  Micropapillary 1 12.5 
 Other 9 17.65  Papillary 1 12.5 
 Missing 6   Other 2 25 
Grade Grade 
 I 18 36.73  I 2 25 
 II 25 51.02  II 2 25 
 III 6 12.24  III 4 50 
 Missing 8  Tumour size (mm)  
pT  1–10 4 50 
 1a-1b-1mic 25 46.3  11–20 2 25 
 1c 24 44.44  21 +  2 25 
 2 +  5 9.26       
 Missing 3        
Tumour size (mm)       
 1–10 25 46.3       
 11–20 24 44.44       
 21 +  5 9.26       
 Missing 3        
Stage       
 IA 42 87.5       
 IIA 3 6.25       
 IIIC 2 4.17       
 IV 1 2.08       
 Missing 9        
Molecular subtypes       
ER        
 Negative 8 15.09       
 Positive (> 10%) 45 84.91       
 Missing or undetermined 4        
PgR        
 Negative 17 32.08       
 Positive (> 10%) 36 69.92       
 Missing or undetermined 4        
Her2        
 Negative 45 86.54       
 Positive 7 13.46       
 Missing or undetermined 5        
Ki-67       
 Negative 39 76.47       
 Positive (> 20%) 12 23.53       
 Missing or undetermined 6        
Intrinsic subtype       
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Invasive (n = 57) In situ (n = 8) 
 N %  N % 

 Luminal A-like 27 52.94       
 Luminal B-like (HER2 negative) 13 25.49       
 Luminal B-like (HER2 positive) 5 9.8       
 HER2 positive (non-luminal) 2 3.92       
 Triple negative 4 7.84       
 Missing 6        

 
 

Supplementary Table 6. Demographic, family, reproductive and screening history, lifestyle, 
anthropometric measurements, education and breast density are reported for the validation cohort. Results 

of univariate logistic regression for each variable are also reported. 

 Cases (n = 32) Controls (n = 127) Cases vs. controls 
 Mean/N SD/% Mean/N SD/% OR [95% CI] P 

Age at enrolment (years) 64.7 6.33 63.11 5.89 1.04 [0.98, 1.12] 0.193 
Previous benign biopsies 
 0 24 75 118 92.91 1 (Ref)  
 ≥ 1 6 18.75 9 7.09 3.28 [1.02, 9.98] 0.038 
 Missing 2 6.25 0    
Education 
 Low 13 40.63 55 45.08 1 (Ref)  
 Medium 12 37.5 55 45.08 0.92 [0.38, 2.21] 0.857 
 High 2 6.25 12 9.84 0.71 [0.10, 3.02] 0.671 
 Missing 5 15.63 5    
Nr. of first-degree relatives with BC 
 0 25 78.13 106 83.46 1 (Ref)  
 ≥ 1 7 21.88 21 16.54 1.41 [0.51, 3.57] 0.480 
 Missing 0 0 0    
Age at menarche (years) 
 ≤ 11 7 21.88 27 21.26 1 (Ref)  
 12-13 16 50 66 51.97 1.02 [0.34, 3.19] 0.971 
 ≥ 14 9 28.13 34 26.77 0.94 [0.36, 2.66] 0.895 
 Missing 0 0 0    
Age at first full pregnancy (years) 
 Nulliparous 12 37.5 25 19.69 1.82 [0.69, 4.95] 0.229 
 ≥ 19 2 6.25 12 9.45 0.63 [0.09, 2.85] 0.588 
 20-24 10 31.25 38 29.92 1 (Ref)  
 25-29 3 9.38 29 22.83 0.39 [0.08, 1.42] 0.184 
 ≥ 30 5 15.63 23 18.11 0.83 [0.23, 2.64] 0.753 
 Missing 0 0 0    
Contraceptive use 
 None OR < 1 year 27 84.38 100 80.65 1 (Ref)  
 1-4 years 0 0 0 0   
 ≥ 5 years 3 9.38 24 19.35 0.46 [0.10, 1.46] 0.236 
 Missing 2 6.25 3    
Breastfeeding 
 Nulliparous OR no breastf. 
OR breastf. < 6 months 28 87.5 78 61.42 1 (Ref)  
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 Cases (n = 32) Controls (n = 127) Cases vs. controls 
 Mean/N SD/% Mean/N SD/% OR [95% CI] P 

 ≥ 6 months 4 12.5 49 38.58 0.23 [0.06, 0.62] 0.009 
 Missing 0 0 0    
Menopausal status 
 Not in menopause 8 25 22 17.32 1 (Ref)  
 Menopause 24 75 105 82.68 0.63 [0.26, 1.66] 0.324 
 Missing 0 0 0    
HRT 
 Not in menopause 8 25 22 17.32 1 (Ref)  
 No HRT use OR HRT 
use < 1 year 19 59.38 93 73.23 0.56 [0.22, 1.51] 0.233 

 ≥ 1 year 3 9.38 12 9.45 0.69 [0.13, 2.90] 0.625 
 Missing 2 6.25 0    
Measured BMI (kg/m2) 26.3 4.31 25.06 4.88 1.05 [0.97, 1.14] 0.194 
Waist circumference (cm) 89.8 12.1 84.82 12.35 1.03 [1.00, 1.06] 0.047 
Level of occupational physical activity at age 30–39 years 
 Exclusively/mainly sitting 10 31.25 33 25.98 1 (Ref)  
 Standing or average 13 40.63 57 44.88 0.75 [0.30, 1.94] 0.549 
 Heavy or very heavy 7 21.88 37 29.13 0.62 [0.21, 1.81] 0.390 
 Missing 2 6.25 0    
Level of leisure time physical activity at 30–39 years 
 < 2 h/week 16 50 67 52.76 1 (Ref)  
 ≥ 2 h/week 14 43.75 60 47.24 0.98 [0.44, 2.17] 0.955 
 Missing 2 6.25 0    
Alcohol habit 
 Never drinker or ex drinker 6 18.75 39 30.71 1 (Ref)  
 Drinker, also occasionally 24 75 88 69.29 1.77 [0.71, 5.09] 0.248 
 Missing 2 6.25 0    
Smoking habit 
 Never smoker 17 53.13 77 60.63 1 (Ref)  
 Ex-smoker 6 18.75 26 20.47 1.05 [0.35, 2.82] 0.933 
 Occasionally/Smoker 9 28.13 24 18.90 1.7 [0.65, 4.25] 0.264 
 Missing 0 0 0    
TABAR breast density 
 1 4 12.5 50 39.37 1 (Ref)  
 2 14 43.75 63 49.61 2.78 [0.93, 10.27] 0.087 
 3 12 37.5 9 7.09 16.67 [4.72, 71.36] <0.001 
 4 or 5 2 6.25 5 3.94 5 [0.59, 33.66] 0.102 
 Missing 0 0 0    
WCRF lifestyle score 5.08 1.34 5.37 1.19 0.83 [0.61, 1.13] 0.229 
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Supplementary Table 7. Histological and molecular subtype characteristics of invasive and in situ breast 
cancer cases of the validation cohort. 

Invasive (n = 31) In situ (n = 1) 
  N (%)  N (%) 
Histotype Histotype 
 Ductal NOS 21 75  Ductal NOS 0 0 
 Lobular 4 14.29  Solid 1 100 
 Tubular 0 0  Micropapillary 0 0 
 Other 3 10.71  Papillary 0 0 
 Missing 3   Other 0 0 
Grade Grade  
 I 3 10.34  I 0 0 
 II 16 55.17  II 1 100 
 III 10 34.48  III 0 0 
 Missing 2  Tumour size (mm) 
pT  1–10 0 0 
 1a-1b-1mic 7 25.00  11–20 1 100 
 1c 12 42.86  21 +  0 0 
 2 +  9 32.14       
 Missing 3        
Tumour size (mm)       
 1–10 7 25.93       
 11–20 12 44.44       
 21 +  8 29.63       
 Missing 4        
Stage       
 IA 14 50       
 IIA 6 21.43       
 IIB 4 14.29       
 IIIA 3 10.71       
 IIIC 1 3.57       
 IV 0 0       
 Missing 3        
Molecular subtypes       
ER        
 Negative 4 14.81       
 Positive (> 10%) 23 85.19       
 Missing or undetermined 4        
PgR        
 Negative 6 22.22       
 Positive (> 10%) 21 77.78       
 Missing or undetermined 4        
Her2        
 Negative 23 88.46       
 Positive 3 11.54       
 Missing or undetermined 5        
Ki-67       
 Negative 5 17.86       
 Positive (> 20%) 23 82.14       
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Invasive (n = 31) In situ (n = 1) 
  N (%)  N (%) 
 Missing or undetermined 3        
Intrinsic subtype       
 Luminal A-like 4 17.39       
 Luminal B-like (HER2 negative) 15 65.22       
 Luminal B-like (HER2 positive) 2 8.7       
 HER2 positive (non-luminal) 0 0       
 Triple negative 2 8.7       
 Missing 8        

 

Supplementary Table 8. Differentially expressed miRNAs between BC cases and controls in plasma 
based on small-RNA sequencing (n = 131). 

miRNA Base mean log2 FC SE (log2 FC) p-adjusted 
hsa-let-7f-1_hsa-let-7f-5p 25.57 -0.86 0.14 4.07E-08 
hsa-let-7f-2_hsa-let-7f-5p 27.43 -0.87 0.14 6.73E-08 
hsa-let-7a-2_hsa-let-7a-5p 24.50 -0.80 0.13 8.49E-08 
hsa-let-7a-3_hsa-let-7a-5p 24.98 -0.68 0.13 3.69E-06 
hsa-mir-22_hsa-miR-22-3p 67.71 0.55 0.11 1.38E-05 
hsa-mir-423_hsa-miR-423-5p 47.52 0.48 0.10 1.80E-05 
hsa-mir-3184_hsa-miR-3184-3p 47.52 0.48 0.10 1.80E-05 
hsa-let-7a-1_hsa-let-7a-5p 25.81 -0.64 0.13 1.81E-05 
hsa-let-7g_hsa-let-7g-5p 60.93 -0.47 0.11 2.18E-04 
hsa-mir-3591_hsa-miR-3591-3p 200.89 0.77 0.19 3.78E-04 
hsa-mir-122_hsa-miR-122-5p 200.92 0.77 0.19 3.78E-04 
hsa-mir-21_hsa-miR-21-5p 162.05 -0.42 0.11 5.34E-04 
hsa-let-7b_hsa-let-7b-5p 80.50 -0.35 0.09 7.15E-04 
hsa-mir-320a_hsa-miR-320a 65.74 0.50 0.13 7.53E-04 
hsa-mir-20a_hsa-miR-20a-5p 115.48 -0.36 0.09 8.17E-04 
hsa-mir-7-1_hsa-miR-7-5p 31.87 0.72 0.19 1.04E-03 
hsa-mir-26a-1_hsa-miR-26a-5p 28.60 -0.60 0.16 1.25E-03 
hsa-mir-7-3_hsa-miR-7-5p 32.76 0.71 0.20 1.74E-03 
hsa-mir-221_hsa-miR-221-3p 44.42 0.40 0.11 2.21E-03 
hsa-mir-26b_hsa-miR-26b-5p 14.92 -0.46 0.13 3.40E-03 
hsa-let-7d_hsa-let-7d-5p 20.67 -0.44 0.13 4.01E-03 
hsa-mir-7-2_hsa-miR-7-5p 36.10 0.69 0.21 4.38E-03 
hsa-mir-3529_hsa-miR-3529-3p 36.10 0.69 0.21 4.38E-03 
hsa-mir-339_hsa-miR-339-5p 14.86 0.52 0.16 5.27E-03 
hsa-mir-26a-2_hsa-miR-26a-5p 32.18 -0.49 0.15 5.53E-03 
hsa-mir-146a_hsa-miR-146a-5p 36.46 0.36 0.11 5.78E-03 
hsa-mir-126_hsa-miR-126-5p 148.36 -0.34 0.11 6.50E-03 
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Supplementary Table 9. Results of univariable logistic regression and AUCs performed on the 21 
miRNA ratios based on discovery cohort NGS data. 

miRNA ratio Cases Controls Univariate LR 
Median IQ range Median IQ range OR 95% CI P AUC 

let-7a-5p-2_miR-
106b-5p -1.59 [-2.32, -1.26] -0.86 [-1.22, -0.38] 0.39 [0.24, 0.59] < 0.001 0.77 

let-7a-5p-2_miR-
22-3p -2.00 [-2.92, -1.29] -0.76 [-1.36, -0.03] 0.38 [0.24, 0.54] < 0.001 0.81 

let-7a-5p-2_miR-
320a -2.00 [-2.89, -1.04] -0.61 [-1.02, -0.08] 0.45 [0.31, 0.62] < 0.001 0.80 

let-7b-5p_miR-
19b-3p-1 -2.22 [-2.92, -1.77] -1.70 [-2.03, -1.38] 0.33 [0.18, 0.55] < 0.001 0.74 

let-7f-5p-1_miR-
103-1 -1.59 [-2.12, -1.11] -0.81 [-1.33, -0.50] 0.40 [0.24, 0.61] < 0.001 0.76 

let-7f-5p-1_miR-
19b-3p-1 -4.30 [-4.89, -3.76] -3.20 [-3.78, -2.75] 0.41 [0.26, 0.59] < 0.001 0.79 

let-7f-5p-1_miR-
103-2 -1.53 [-2.32, -1.08] -0.76 [-1.19, -0.42] 0.38 [0.23, 0.58] < 0.001 0.76 

let-7f-5p-2_miR-
146a-5p -1.00 [-2.00, -0.07] 0.15 [-0.35, 0.74] 0.40 [0.27, 0.57] < 0.001 0.78 

miR-101-3p-
2_miR-19b-3p-1 -2.39 [-2.76, -2.19] -2.11 [-2.46, -1.82] 0.25 [0.11, 0.51] < 0.001 0.68 

miR-15a-
5p_miR-16-5p-2 -1.33 [-1.87, -0.54] -0.72 [-1.19, -0.20] 0.55 [0.36, 0.81] 0.004 0.66 

miR-15b-
5p_miR-16-5p-1 -2.22 [-3.43, -1.37] -0.95 [-2.10, -0.35] 0.65 [0.50, 0.81] < 0.001 0.71 

miR-199a-3p-
2_let-7a-5p-2 -0.42 [-1.34, 0.00] -1.59 [-2.31, -0.79] 2.50 [1.72, 3.81] < 0.001 0.75 

miR-199a-3p-
2_let-7f-5p-2 -0.60 [-1.52, 0.00] -1.81 [-2.48, -1.03] 2.48 [1.72, 3.72] < 0.001 0.76 

miR-20a-
5p_miR-19b-3p-
1 

-1.71 [-2.40, -1.45] -1.15 [-1.42, -0.92] 0.21 [0.10, 0.40] < 0.001 0.77 

miR-21-5p_miR-
23a-3p -0.57 [-0.87, -0.24] -0.14 [-0.65, 0.15] 0.33 [0.16, 0.63] 0.001 0.68 

miR-22-3p_miR-
19b-3p-2 -2.09 [-2.59, -1.66] -2.58 [-3.01, -2.13] 2.69 [1.57, 4.88] < 0.001 0.67 

miR-26b-
5p_miR-142-5p -0.55 [-1.00, 0] 0.02 [-0.59, 0.46] 0.55 [0.35, 0.81] 0.004 0.68 

miR-27a-
3p_miR-122-5p -2.54 [-3.48, -1.45] -1.34 [-2.21, -0.73] 0.59 [0.43, 0.77] < 0.001 0.71 

miR-30d-
5p_miR-20a-5p -0.45 [-1.00, -0.09] -0.88 [-1.32, -0.50] 2.37 [1.32, 4.46] 0.005 0.68 

miR-335-5p_let-
7f-5p-2 -1.00 [-1.97, 0.00] -2.32 [-2.85, -1.41] 2.31 [1.66, 3.36] < 0.001 0.76 

miR-93-5p_miR-
19b-3p-1 -3.84 [-4.15, -3.04] -3.16 [-3.51, -2.84] 0.39 [0.22, 0.64] < 0.001 0.69 

IQ: Interquartile 
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Supplementary Table 10. Results of univariable logistic regression and AUCs performed on the 20 
miRNA ratios based on discovery cohort RT-qPCR data. 

miRNA ratio Cases Controls Univariate LR 
Median IQ range Median IQ range OR 95% CI P AUC 

let-7a-5p_miR-
106b-5p -0.17 [-0.68, 0.38] 0.07 [-0.36, 0.70] 0.78 [0.50, 1.20] 0.270 0.59 

let-7a-5p_miR-
22-3p 5.48 [3.54, 7.81] 6.94 [4.08, 9.89] 0.85 [0.73, 0.98] 0.026 0.63 

let-7a-5p_miR-
320a  -4.30 [-4.94, -3.49]  -4.08 [-4.63, -3.16] 0.88 [0.65, 1.17] 0.399 0.57 

let-7b-5p_miR-
19b-3p -3.19 [-3.61, -2.69]  -2.83 [-3.38, -2.54] 0.74 [0.47, 1.13] 0.176 0.59 

let-7f-5p_miR-
103a-3p  -1.23 [-1.88, -0.79]  -1.19 [-1.66, -0.82] 0.86 [0.61, 1.20] 0.390 0.53 

let-7f-5p_miR-
146a-5p -7.82 [-8.60, -7.42]  -7.57 [-8.41, -6.71] 0.83 [0.62, 1.10] 0.210 0.59 

let-7f-5p_miR-
19b-3p  -7.79 [-8.36, -7.08]  -7.49 [-8.16, -6.66] 0.87 [0.64, 1.16] 0.355 0.57 

miR-101-
3p_miR-19b-3p  -8.09 [-8.63, -7.65]  -8.17 [-8.64, -7.69] 0.99 [0.70, 1.41] 0.969 0.49 

miR-15a-
5p_miR-16-5p  -19.10 [-20.43, -16.51]  -17.41 [-18.50, -16.96] 0.82 [0.65, 1.02] 0.087 0.63 

miR-15b-
5p_miR-16-5p -10.13 [-10.92, -8.80]  -10.12 [-10.88, -9.32] 1.12 [0.92, 1.38] 0.276 0.52 

miR-199a-
3p_let-7a-5p 1.66 [1.08, 2.21] 1.24 [0.92, 1.90] 1.64 [1.05, 2.63] 0.033 0.61 

miR-199a-
3p_let-7f-5p 3.65 [2.97, 4.15] 3.2 [2.74, 3.93] 1.41 [0.97, 2.08] 0.077 0.58 

miR-20a-
5p_miR-19b-3p  -0.50 [-0.69, -0.14]  -0.48 [-0.76, -0.21] 0.78 [0.45, 1.28] 0.351 0.48 

miR-21-
5p_miR-23a-3p 4.34 [3.93, 4.91] 4.30 [3.80, 4.95] 1.02 [0.66, 1.58] 0.917 0.52 

miR-22-
3p_miR-19b-3p  -11.04 [-13.85, -9.74]  -12.53 [-15.49, -10.03] 1.12 [0.98, 1.30] 0.113 0.6 

miR-26b_miR-
142-5p 5.84 [5.08, 6.08] 6.05 [5.61, 6.44] 0.48 [0.28, 0.77] 0.005 0.65 

miR-27a-
3p_miR-122-5p 0.78 [-0.75, 2.06 0.65 [-0.80, 1.48] 1.12 [0.93, 1.36] 0.241 0.54 

miR-30d-
5p_miR-20a-5p  -4.27 [-4.79, -4.04]  -4.29 [-4.62, -4.03] 0.97 [0.63, 1.50] 0.905 0.5 

miR-335-
5p_let-7f-5p 1.44 [0.78, 2.27] 1.03 [0.46, 2.03] 1.18 [0.86, 1.64] 0.319 0.58 

miR-93-
5p_miR-19b-3p -3.07 [-3.45, -2.79]  -3.29 [-3.52, -3.04] 2.05 [1.00, 4.50] 0.059 0.61 

IQ: Interquartile 
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Supplementary Table 11. Univariate logistic regression results on the seven miRNA ratios analysed in 
the validation cohort. Interquartile ranges and medians of the ratios stratified by BC status were also 

reported. 

 Cases Controls Univariate LR 
miRNA ratio Median IQ range Median IQ range OR 95% CI P 
let-7a-5p_miR-
22-3p 1.91 [1.47, 2.18] 1.68 [1.40, 1.89] 1.17 [1.03, 1.33] 0.016 

let-7a-5p_miR-
19b-3p 6.62 [5.99, 6.96] 6.42 [5.97, 6.72] 0.52 [0.30, 0.87] 0.016 

miR-199a-
3p_let-7a-5p -5.86 [-6.22, -5.52] -5.48 [-5.91, -5.11] 2.96 [1.23, 7.57] 0.019 

miR-21-5p_miR-
23a-5p -8.37 [-8.79, -8.00] -8.44 [-8.80, -8.20] 1.98 [1.03, 3.92] 0.044 

miR-93-5p_miR-
19b-3p -2.78 [-2.96, -2.61] -2.71 [-2.87, -2.59] 0.39 [0.07, 2.19] 0.286 

miR-26b_miR-
142-5p 4.75 [1.49, 7.18] 2.68 [0.86, 4.43] 1.26 [0.64, 2.53] 0.504 

miR-101-
3p_miR-19b-3p 3.89 [3.50, 4.52] 3.62 [3.27, 3.96] 1.18 [0.56, 2.66] 0.671 

IQ: Interquartile 

 

Supplementary Table 12. Testing the distribution and variance differences on the 12 predictors analysed 
in the validation cohort between controls which underwent a biopsy due to a suspicious mammography 

result and controls with a negative mammography result. 

Predictor F-statistic F (p-value) W-statistic W (p-value) D-test D (p-value) 
BMI*MS 1.78 0.074 1476 0.948 0.16 0.477 
Breast density (TABAR) 1.20 0.577 1380 0.504 0.09 0.507 
Centred BMI 1.64 0.124 1416 0.686 0.18 0.377 
let-7a-5p_miR-22-3p 0.39 0.001 1689 0.260 0.17 0.469 
let-7a-5p_miR-19b-3p 0.21 0.000 1347 0.430 0.16 0.549 
Menopausal status 0.74 0.271 1592 0.378 0.07 0.416 
miR-101-3p_miR-19b-3p 1.22 0.551 1541 0.768 0.14 0.714 
miR-199a-3p_let-7a-5p 0.05 0.000 1061 0.017 0.30 0.025 
miR-21-5p_miR-23a-5p 0.99 0.923 1581 0.604 0.14 0.718 
miR-26b_miR-142-5p 0.53 0.020 1782 0.099 0.25 0.087 
miR-93-5p_miR-19b-3p 0.79 0.384 1701 0.233 0.19 0.310 
WCRF lifestyle score 0.61 0.071 1732 0.171 0.19 0.203 
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Supplementary Figure 1. Scatter plot of time from blood sampling to diagnosis and predicted 

probability after applying the coefficients to the validation cohort (miRNA ratios and non-molecular 
predictors assessed separately). 

 

 
Supplementary Figure 2. Validation cohort samples ordered by the predicted probability of being BC 

positive (based on miRNA ratios and non-molecular predictors separately). The samples were then 
classified into predicted case or control based on the Youden’s cut-off and the resulting prediction was 

labelled as TP, FP, TN or FN. 
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Supplementary Figure 3. Scatter plot of time from blood sampling to diagnosis and predicted 

probability after recalibrating the coefficients of the three models in the validation cohort. 
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Supplementary Figure 4. Validation cohort samples ordered by the calibrated predicted probabilities of 
being BC positive (on all three models). The samples were then classified into predicted case or control 

based on the Youden’s cut-off and the resulting prediction was labelled as TP, FP, TN or FN.  



191 
 

Appendix C 

 
Supplementary Figure 5. UHRF1 data obtained from the Human Protein Atlas. Shown are the bulk 
tissue (A) gene expression, breast (B) and PBMC (C) single cell gene expression as well as the tissue 

protein expression (D). 
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Supplementary Figure 6. SP1 data obtained from the Human Protein Atlas. Shown are the bulk tissue 
(A) gene expression, breast (B) and PBMC (C) single cell gene expression as well as the tissue protein 

expression (D). 
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Supplementary Figure 7. OXTR data obtained from the Human Protein Atlas. Shown are the bulk tissue 

(A) gene expression, breast (B) and PBMC (C) single cell gene expression as well as the tissue protein 
expression (D). 
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