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Abstract—In this article, we present cutting-edge machine
learning-based techniques for the detection and reconstruction of
meteors and space debris in the Mini-EUSO experiment, a detector
installed on board of the International Space Station, and pointing
toward the Earth. We base our approach on a recent technique, the
STACKing method plus Convolutional Neural Network (STACK-
CNN), originally developed as an online trigger in an orbiting
remediation system to detect space debris. Our proposed method,
the refined-STACKing method plus convolutional neural network
(R-Stack-CNN), makes the STACKing method plus convolutional
neural network (STACK-CNN) more robust, thanks to a random
forest that learns the temporal development of these events in the
camera. We prove the flexibility of our method by showing that it is
sensitive to any space object that moves linearly in the field of view.
First, we search small space debris, never observed by Mini-EUSO.
Due to the limiting statistics, also in this case, no debris were found.
However, since meteors produce signals similar to space debris
but they are much more frequent, the R-Stack-CNN is adapted to
identify such events while avoiding the numerous false positives of
the Stack-CNN. Results from real data show that the R-Stack-CNN
is able to find more meteors than a classical thresholding method
and a new method of two neural networks. We also show that the
method is also able to accurately reconstruct speed and direction
of meteors with simulated data.
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I. INTRODUCTION

HOW safe is the space environment around the Earth?
This is an important question that is worrying many

space agencies and scientists in recent years. The exploration
and utilization of Earth’s orbit are no longer confined to the
realms of governmental space agencies. The rapid growth of
the commercial space sector has led to a new era of innovation
and opportunity, with private companies launching satellites for
telecommunications, Earth and space observation, and naviga-
tion, among other purposes.

Considering this evolving landscape, numerous questions and
challenges emerge, demanding careful consideration and collab-
orative action. At the forefront is the pressing need for effective
space traffic management. With an ever-increasing number of
satellites, spacecraft, and space debris (SD) sharing the same
orbital pathways, the risk of collisions and congestion poses
a significant threat to the sustainability and safety of space
activities.

In this article, we consider the problem of the detection of
small SD [1], i.e., parts of defunct satellites and rockets in
Earth orbit or re-entering the atmosphere. Debris are gener-
ated by events of fragmentation, including collisions, explosive
break-ups, wear and tear, which generate entire populations that
stagnate around the Earth. Because of their high speed, they
pose a threat to functioning satellites in orbit, requiring them to
perform dodging maneuvers.

According to ESA’s 2023 space environment report [2], Space
Surveillance Networks are tracking and maintaining in their
catalogue about 34 810 debris but the vast majority of objects still
remain unidentified. Statistical models by ESA estimate 36 500
SD objects greater than 10 cm, 1 million SD objects between
1 cm to 10 cm and 130 million SD objects between 1 mm and
1 cm. In order to avoid collisions with spacecrafts, unidentified
debris should be detected, tracked to estimate their trajectory,
and possibly removed from their orbit.
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In this article, we propose an new strategy for the detection
and tracking of SD around 10 cm-size, named refined-STACKing
method plus convolutional neural network (R-Stack-CNN). This
technique is based on the recent technique STACKing method
plus convolutional neural network (STACK-CNN) [3], devel-
oped to trigger SD on board of space telescopes. Although
the original method was effective and higher performing in
simulated data, there were some challenges to be addressed.
For example the method was not applied to real data, but only
to simple simulated data. In this work we apply the Stack-CNN
to real data, and we notice that there are many false positives
events coming from highly variable background, causing a lack
of reliability. To address this issue, we apply the R-Stack-CNN
to the offline analysis of simulated and real data, showing its
improvements in both cases.

Then we also demonstrate how this method can be adapted
for the offline data analysis of meteors as they share similar
properties as SD (similar magnitude and speed), leading to the R-
Stack-CNN outperforming standard techniques and discovering
new meteors and new events never found before.

The data come from the experiment Mini-EUSO, a telescope
on board of the International Space Station (ISS) since 27
August, 2019. The instrument observes Earth in the UV range
(290–430 nm) from a UV-transparent window in the Russian
Zvezda module, aiming at the same scientific objectives of
JEM-EUSO, among which are meteors and SD. Moreover, given
that Mini-EUSO is co-moving with the ISS, the observed back-
ground is not static and extremely variable, with light emissions
coming from cities, clouds, and moon reflections, making the
detection of SD and meteors very challenging.

This is the first work that analyzes long sessions of Mini-
EUSO data to find SD and meteors with the specific methodol-
ogy proposed by the R-Stack-CNN.

The problem of detecting, tracking and possibly even remov-
ing SD of size 1–10 cm has already been studied in the context
of JEM-EUSO collaboration [4], a future space-based detector
flying attached to the ISS at an altitude of ∼400 km or on a free-
flyer in low orbit (∼500 km) looking downward at Earth with
a wide field of view (FoV, ± 20◦–30°in the near-UV spectrum,
300–400 nm). The main operational procedure consists of online
detection and tracking by the telescope, followed by the debris
removal with laser ablation (see [5] for further information).

While the Stack-CNN was proposed to the online detection
of SD in a future space detector, as a method that should be
fast, accurate and with low memory, the R-Stack-CNN is an
offline version of it, aiming to search SD already in Mini-EUSO
data, making the method more robust to false positives and
false negatives. The main difference of the R-Stack-CNN is the
development of a random forest (RF) to distinguish the light
curves of the interested objects, e.g., SD or meteors, from other
light sources that could be triggered by the Stack-CNN, such
as cities or aircraft. The light curve of an object refers to the
variation in its brightness over time as observed from the detec-
tor. Moreover, the shape of a light curve can provide valuable
information about the object’s properties, such as its rotation
rate, variability, and physical characteristics. Since different
objects, such as debris and meteors, emit light in different ways,
they will have different light curves. The Stack-CNN method

does not consider the development of the light over the time, but
only the object in a single frame (or more frames in a stacked
image as described in the following sections), hence it loses an
important feature to identify SD. To this aim, we propose an RF
able to distinguish light curves of SD or meteors from that one
of other events. It turns out that the Stack-CNN assembled with
the RF makes the method more robust, excluding many events
that are triggered by the Stack-CNN but that are not debris-like
events. We present all the details of the RF, from the training
strategy to the evaluations, providing also an ablation study to
select the best hyperparameters of the R-Stack-CNN. Finally we
show results in terms of performances and computational time
and compare the R-Stack-CNN with the baseline Stack-CNN
and a standard threshold-based algorithm.

In summary, here we list our contributions as follows.
1) We propose the R-Stack-CNN, an improved version of the

Stack-CNN, aimed to work as an offline data analysis to
detect moving space objects, such as SD and meteor.

2) We apply both the Stack-CNN and the R-Stack-CNN to
search new events of SD and meteors in simulated data
and Mini-EUSO data.

3) We demonstrate that the R-Stack-CNN is more robust
against false positives, preserving high performances es-
pecially for the detection of faint events and finding new
meteors events not found before.

The rest of this article is organized as follows. Section II gives
details about similar works from which we took inspiration and
highlights the advantages of our approach. Sections III and IV
are, respectively, about the Mini-EUSO detector characteristics
and the dataset we used to validate our method. In Section V,
we explain our method and in Section VI we evaluate the perfor-
mance on both real data and simulated data. Section VII presents
the discussion. Finally, Section VIII concludes this article.

II. RELATED WORK

In recent years many space agencies have been addressing
the problem of SD removal by means of new techniques. For
instance, in the work of Ruggiero et al. [8], a platform using
electric propulsion is proposed. Another method for larger SD
involves the use of adhesion properties to capture debris [9]. To
the best of the authors’ knowledge, there is no official technique
for small debris removal. This is due to their small reflective
surface and low albedo, reaching signal over noise ratio (SNR)
of ∼1, that makes the signal related to these objects very faint
and difficult to track.

The JEM-EUSO project [4] aims to detect, track and remove
these objects by using an online detection and tracking by the
telescope, followed by the debris removal with laser ablation [5].
For online detection the Stack-CNN is proposed in [3] as a trigger
system to detect faint debris. In this article, we propose the R-
Stack-CNN as an offline version to analyze data of the Mini-
EUSO detector to search for debris and meteors.

The detection of debris and more generally of space objects
has been studied for a long time through standard and advanced
techniques. For example, Mohanty [10] presented an adaptive
algorithm based on maximum likelihood ratio to reconstruct
paths and positions of space objects. Another solution is to use
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3-D filter theory [11] to match the possible trajectories of debris
with known velocity and direction. A more feasible algorithm
was proposed by Barniv [12] with a dynamic programming ap-
proach. SD are usually detected using ground-based telescopes
pointed at the sky. Depending on exposure mode and times,
debris can be seen as streak-like objects superimposed on a
static background consisting of stars, or as point-like objects
on a moving background. Given this nontrivial setup, traditional
algorithms like the ones presented before might not be complex
and powerful enough, although it is worth noting that they have
the advantage of not requiring many computational resources.

In order to increase the performance, traditional machine
learning techniques and more recent deep learning algorithms
have also been investigated. Many recent techniques are based
on this new paradigm with many applications on both meteors
and SD. Regarding debris detection, in [13], SD are detected in a
low SNR configuration and with high probability, using feature
learning to extract the candidate regions and then classify the
SD. Li et al. [14] showed how machine learning can also be
used to model the orbital prediction errors of SD, thus correcting
orbital prediction results. In [15], noisy labels in SD detection are
mitigated using a new label-noise learning paradigm comprised
of the mutual rectification of the two networks. This approach is
shown to surpass previous state-of-the-art methods. Considering
machine learning applications for meteors, an example is [16],
where a feed forward neural network denoising method is ap-
plied to near-Earth-asteroids data obtained from the Goldstone
Solar System Radar. A similar work is [17], where a deep
learning method of object detection, YOLOv5, is improved
via an attention mechanism able to detect small boulders from
planetary images.

These previously cited algorithms have the advantage of being
extremely powerful, but this comes also with a steep increase
of the computational resources required, both during training
and testing. On the contrary, given that our algorithm should
be implemented as an online trigger in a field programmable
gate arrays (FPGA), only shallow architectures (low parameters
required) can be used. Thus, in [3], a stacking procedure similar
to [18] and [19] is enhanced by a shallow CNN classifying
right and wrong combinations of speed and direction of the
moving object. CNNs are a specific type of neural networks,
mostly used in computer vision tasks, such as image classifi-
cation. The advantage with respect to classical methods is that
image features are learnt implicitly during training instead of
being hard-engineered by an human, thus increasing the overall
performance (more details will be given in Section V).

One of the main challenges that these new methods have to
address is the application to real data, since most of the works
focus on simulated data, not considering many problems that
could arrive from real data, such as pixels with outliers, weird
light sources, and variable background. In this article, we are the
first presenting a technique that has worked with real data for a
total of∼ 160min of acquisition time. The data come from Mini-
EUSO experiment on board of the ISS. Other experiments share
a similar configuration with extremely variable background.
An example is the orbital detector Tracking Ultraviolet Setup,
onboard the Lomonosov Satellite [20], which showed promising
results in meteor detection from space images. In parallel to

this work, a new approach using a CNN and a fully connected
network [21] is being investigated to find new meteors in some
sessions of the Mini-EUSO data. Their approach still imple-
ments a CNN to select meteor images, and then a fully connected
layer to classify pixels of such image containing meteor events.
While they use real data to train the network, we base our method
only on simulated data and then show the effectiveness on real
data. Besides this, another difference is that the R-Stack-CNN
finds automatically meteor pixels through the Stack-CNN clas-
sification (image classification) and then through a RF (light
curve classification). We show a comparison in terms of new
meteors found by both the methods in the Appendix.

III. MINI-EUSO DETECTOR AND ITS ACQUISITION MODES

The Mini-EUSO focal surface consists of 36 multianode
photomultiplier tubes (MAPMTs) where each MAPMT has
8 × 8 pixels resulting in a total of 2304 channels, which can
detect individual photon [see panel (c) of Fig. 1]. Given that
the optical system is made of two Fresnel lenses of 25 cm
each [see panel (b) of Fig. 1] with an FoV of 44° × 44°, each
one of these pixels corresponds to a projected spatial resolution
on Earth of ∼6.3 km, and ∼4.7 km at 100 km height where
typically the meteor tracks develop in atmosphere. Mini-EUSO
operates on three different data acquisition time scales (D1, D2,
and D3), with different exposure times (2.5 µs, 320 µs, and
40.96 ms) making it capable of addressing events of varying
duration. The D3 time scale is the one sensitive to meteor and
SD events. Along this article we will call gate time units (GTUs)
the acquisition time scales. As Mini-EUSO detects typically ∼1
photon count per GTU in D1 mode, thanks to its extremely high
photon sensitivity, very often we will renormalize the photon
counts detected in D3 mode to the D1 time scale by dividing
them by 128 × 128 time which corresponds to the ratio between
the two time frames. If not differently mentioned later on, the D3
GTU will be referred to as the nominal GTU within this article.
Fig. 1(a) shows an example of a Mini-EUSO meteor observation.
Other events and details regarding the instrument can be found
in [6]. In this framework, the need to have a fast trigger system to
find debris and possibly infer its direction and speed is crucial to
activate the further operations in order to track and then deorbit
the fragment.

IV. PHYSICS OF SD AND SIMILAR EVENTS DETECTABLE IN

MINI-EUSO

SD do not emit light by themselves, which makes them more
challenging to detect. The phenomenon through which a sensor
can detect them is known as albedo: the light coming from
the Sun (or Moon) hits the debris and is reflected, making the
object illuminated. Events that look very similar to SD are the
meteors that are visible in the Mini-EUSO data as luminous
tracks crossing the FoV. Here, we give a brief description of
these events.

A. Twilight Configuration

Since the telescope is taking data only during night sessions
(period of the ISS orbit spent behind the Earth’s shadow), the
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Fig. 1. Panel (a) displays an example of meteor track detected on Mini-EUSO focal surface. X and Y indicate the pixel coordinates and the color scale indicates
the photon counts detected by each pixel in D3 mode rescaled to D1 mode. Panel (b) displays the Mini-EUSO detector facing its front lens during pre-launch tests.
Panel (c) displays the Focal Surface of Mini-EUSO which is composed of 36 MAPMTS, each of them equipped with 64 photo-detecting pixels. Panel (d) displays
Mini-EUSO detector mounted on the UV transparent window of the ISS Zvezda module (see text for details, figure adapted from [6] and [7]).

optimal configuration is at twilight, when the SD could still
reflect sunlight and Mini-EUSO is still taking data (before
sunrise or after sunset), see Fig. 2(a).

In over 37 Mini-EUSO sessions between October 2019 and
August 2021 (∼141 h 12 min 15 s) only ∼1 h 6 min 22 s of data
(0.78%) correspond to this configuration. This is due to the fact
that, since the telescope does not have a baffle to avoid sunlight
and it is pointing nadir, the ISS is directly illuminated during the
twilight situations, increasing background and compromising
the possibility to test this approach. The observation of SD
would be possible for Mini-EUSO if it would measure in the
rare conditions in which the ISS has a roll angle of 90◦ or 180◦

opposite to the Sun. In those situations the ISS itself would shield
Mini-EUSO from direct light. In addition to the above con-
siderations and sticking to the nominal ISS orbiting condition,
Mini-EUSO has a protection mechanism which reduces the gain
of MAPMTs or turn them OFF to prevent damage to them from
the intense sunlight. In this condition the pixels are not sensitive
to the standard light levels. This procedure further decreases
the real available dataset at twilight, which becomes just the
0.1% of the 37 Mini-EUSO sessions. In addition, the background
distribution (median of data files) as visible in Fig. 2 that roughly
only half of data files have background < 5 photon counts / D1

GTU, thus significantly reducing the SNR and consequently the
possibility of identifying a debris.

B. Full Moon Albedo

An alternative albedo configuration could be full Moon re-
flection. This setup would have the advantage of an increased
statistics since it concerns several entire Mini-EUSO sessions.
On the other hand, the Moon light intensity increases signif-
icantly the atmospheric reflection and light diffusion as well
as the reflection from objects at ground, resulting in a higher
background.

Besides, the apparent magnitude of the full Moon is larger
(fainter) than the Sun, respectively Mmoon

app =−12.74 and Msun
app

= −26.74. Apparent magnitudes (indicated as M) can be used
to calculate the ratio of light intensities of Sun and full Moon
using logarithmic properties

Msun
app −Mmoon

app = −2.5 · log10

(
Isun

Imoon

)
. (1)

As a consequence, the sunlight intensity is extremely higher
than the moon light because of the logarithmic scaling

Isun ∼ 4 · 105Imoon. (2)
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Fig. 2. Figure on the left (a) shows the observation principle of SD using albedo reflection from the Sun: Reflected UV light is shown as blue–violet wave. As
can be seen, the detector itself is illuminated, causing an high background, visible on the right distribution (b) where the background is estimated as the median of
the data file.

The reflected light depends on the size (square of the debris
radius r2), the light intensity of the source Isource (Isun or Imoon)
and the distance d from the detector to the debris by the inverse
square law ( 1

d2 )

Ialbedo ∝ r2

d2
Isource. (3)

Thus, an algorithm can detect fewer debris as the distance
grows, until a certain threshold is crossed and no objects can be
detected. In [3], the performance of the Stack-CNN was tested
using several distances and radius, using the Sun as the light
source for the albedo in simulated data. It was shown that debris
objects of radius ∼4 cm reflecting sunlight can be detected by
the Stack-CNN up to a maximum distance of d ∼100 km with a
100% efficiency. A similar threshold can be adapted for Moon
albedo

(
r2I

d2

)

moon
=

(
r2I

d2

)

sun
→

(
r2

d2

)

moon
∼ 6.4 · 10−8. (4)

In other words, this means that a 10 cm-sized SD would
be detectable up to a maximum distance of ∼ 200 m. At this
altitude, the projected FoV is limited to ±80 m in both x and y
directions, which means that the debris trajectory would need to
be extremely close to the ISS.

Therefore, the probability of observing a 10-cm-sized debris
within this distance is roughly of the same order of magnitude of
the probability that the ISS is hit by the debris. ESA’s models [2]
estimate that the corresponding mean time between impact is
∼15 000 years, making this approach not suited for Mini-EUSO
observations.

Thus, the current Mini-EUSO has not shown any observa-
tional usefulness for the detection of SD because it observes
toward the Earth with high background, but if it were to ob-
serve darker directions in the sky, it would have a much higher
probability of observing smaller and more distant debris.

C. Meteors

Despite the difficulty to test the method to detect SD, thanks to
the flexibility of our approach, the Stack-CNN and the R-Stack-
CNN can be applied to any object moving linearly in the FoV
of a telescope, such as space debris, meteors, and cosmic rays.
Therefore, the method was applied for meteors detection, as they
share similar properties as SD (similar magnitude and speed) but
they do not suffer from low statistics since they do not require
albedo conditions. However, the highly variable background of
Mini-EUSO adversely impacts its performance generating a lot
of false positives. Since the telescope is pointed downwards the
Earth, the observations contain the apparent motion of cities and
clouds, hence distinguishing the meteors become challenging.
Consequently, the R-Stack-CNN method is introduced to ad-
dress such difficulties in order to be more efficient and more
robust to noise with respect to the standard Stack-CNN and a
classical thresholding method, using both real data and meteor
simulations.

V. R-STACK-CNN METHOD

The proposed method for meteor detection and tracking is an
offline version of the Stack-CNN, which is improved by means
of a RF. The R-Stack-CNN is based on the Stack-CNN, with
the additional implementation of a RF to make the method more
robust, and to be used in offline data analysis of Mini-EUSO
experiment. The R-Stack-CNN is comprised of three main tech-
niques, a stacking procedure and a CNN (already presented in
the Stack-CNN) and a final RF. Here, we describe the main
components.

A. Stacking Method

The stacking method is applied to objects, e.g., SD or meteor,
moving linearly in the FoV of the telescope with fixed apparent
speed ṽ and direction θ. The speed and direction are apparent as
the telescope is affected by the speed and azimuth of the platform
on which is mounted (in case of Mini-EUSO, the ISS). The
method can be described by two main operations, the shifting



OLIVI et al.: REFINED STACK-CNN FOR METEOR AND SPACE DEBRIS DETECTION IN HIGHLY VARIABLE BACKGROUNDS 10437

and the adding procedures. Considering n frames, each of them
named I , of raw data depending on pixel position (x, y) and
time t, I(x, y; t), t= {0, . . ., n− 1}, the shifting is used to shift
pixels in the opposite direction of the moving object’s trajectory
to match the further positions of the object in the initial position
of the detector. The movement (dx, dy) depends on the time,
speed and direction and it is used to roll the image back in the
starting position (x0, y0).

In other words, the shifting operation is equivalent to as-
suming a constant optical flow with fixed speed and direction
(opposite to the motion of the signal) over all the pixels of the
image, and moving the whole image according to such flow
to bring back the signal to its original starting position. This
operation is repeated n times, where n is the number of frames.
In our case, the n time frames correspond to the D3 GTUs of
Mini-EUSO, the nominal GTUs in this article. The shift along
x- and y-axes, corresponding to the intensity of the flow applied
over each frame, is defined as follows:

{
dx = ṽ · cos(θ) · t
dy = ṽ · sin(θ) · t. (5)

Considering the object starts at the center of the pixel (x0, y0)
and the xy grid is discrete, dx and dy are transformed into their
closest integer value through the int() function (e.g., dx = 0.4,
dy = 1.7 → dx = 0, dy = 2)

Ishift(x, y; t) = I(int(x− dx), int(y − dy); t). (6)

At this point the adding method is used to sum all the shifted
images, to recover the moving signal in its starting position

Istack(x, y) =
n−1∑

t=0

Ishift(x, y; t). (7)

The main advantage of using Istack(x, y) is that it enhances
the signal with respect to a single image. The SNR is defined as
follows:

SNR =
Signal
σbkg

=
Signal
√
µbkg

(8)

where the signal is meant to be the difference between the num-
ber of counts in a pixel and the average background level µbkg .
If we consider the background to be Poissonian, its fluctuation
(in terms of standard deviation) σbkg is equal to the square root
of the background mean √

µbkg . The ideal average background
value in the Mini-EUSO dataset is considered to be 1 photon
count / D1 GTU, which corresponds to 128 × 128 counts / D3
GTU. The D3 counts are then rescaled by a factor 128 × 128, to
avoid dealing with large numbers. However, observations also
include dynamic background sources, such as cities and cloud
reflections, which cause an increase in the average background
value as well as its complexity, because it no longer can be
modeled as Poissonian.

Nevertheless, we chose to consider a Poissonian background
for the SNR estimation for the sake of simplicity. The stacked
image exhibits an enhanced SNR due to the background that
fluctuates between both positive and negative values, while the
signal always remains positive, which makes the stacked signal

Fig. 3. SNR comparison between single image and stacked image using a
simulated meteor of absolute magnitude Mabs = +6.

√
n times brighter than the one in the single image

SNRstack =
Signal · n
√
µbkg · n

=
√
n · SNR (9)

wheren is the number of frames corresponding to the duration of
the event that is assumed to emit constant light. According to the
physics of the object this factor could variate. The denominator
scales by a factor of

√
n regardless of the object’s presence.

Therefore, it is crucial that the number of frames is as close
as possible to the track’s duration, otherwise the numerator
will not scale with a factor of n and there would be only
partial improvement on the SNR. Typical numbers for n are
20 (0.8192 s, the average meteor duration) and 40 (1.6384 s) for
SD (a longer track since it is assumed that the debris crosses the
entire FoV).

Fig. 3 shows the difference between the stacked image and the
single image for a simulated meteor of Mabs = +6, for which
the intensity of each pixel has been normalized from 0 to 1 for
demonstration purpose. The single image is the one with the
maximum signal in the meteor track, whereas the stacked one
has been stacked with the true simulated speed, direction and
duration of NGTU = 13 GTUs. In the single image the meteor
is barely visible and the SNR = 0.9, while in the stacked image
the SNR is increased by a factor of 3.1 (SNR = 2.8) which is
close to

√
13 GTUs ∼ 3.6. Since the (ṽ, θ) combination for a

triggered object is not known, a significant sample of possible
combinations are computed and a classifier is needed in order
to distinguish the right combinations from the wrong ones.
Here, is where the CNN comes into the game. The network is
trained as a binary classifier for right (1) and wrong combination
(0).

B. Convolutional Neural Network

CNNs are a class of artificial neural networks most commonly
used in computer vision (image classification, video analysis,...).
Their advantage with respect to other algorithms is that the
network is computationally efficient (due to the convolutional
operations involving shared weighted sum with small kernel size
of the filter) and they extract image features most relevant to the
relative objective, in our case the classification. The CNN imple-
ments filters (or kernels) that are optimized through automated
learning and captures the spatial dependencies in an image. In
the pre-deep learning era these filters were hard-engineered with
human intervention and difficult to build. The name CNN is
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Fig. 4. R-Stack-CNN algorithm for SD and meteor detection (source: [3]).

originated with the design of LeNet-5 by Yann LeCun [22]
in 1998, built for handwritten digit classification and it is the
first architecture to implement backpropagation for automated
learning in a CNN.

Newer architectures developed in the 2000 s thanks to the
ImageNet large scale visual recognition challenge (ILSVRC) and
to the usage of GPU during training, which strongly decreased
computing time. ImageNet is a common dataset on which re-
searchers tested new algorithms and the first GPU-based CNN
to win the competition is AlexNet (2012) [23], which introduced
ReLU activation functions and dropout layers for regularization.
Similar but deeper architectures are called VGGNets [24], which
prove that increasing the number of layers and parameters can
yield an higher performance.

In 2015, Google presented GoogLeNet [25], winning
ILSVRC by introducing the inception module, whose key idea
is to parallelize pooling and convolutional layers.

Then, skip connections between layers were introduced by
the ResNet architecture [26], addressing the gradient vanishing
problem and achieving even higher performance. The concept
was extended by DenseNets [27] with skip connections also
between nonconsecutive layers.

In our work, the architecture also needs to be suitable for an
on-board implementation in a SD remediation system. Hence,
the CNN must be shallow because an higher number of param-
eters would require higher computational time and expensive
resources. The number of total parameters is 16 825, divided

across convolutional and fully connected layers, with ReLU
activations in the hidden layers and a sigmoid function in the
output layer. Regarding the training dataset, a total of 80 SD were
simulated with ESAF [28], a software that generates point-like
moving sources in the Mini-EUSO framework. The simulated
background is Poissonian with mean value equal to 1 count / D1
GTU. See [3] for details about the event simulation, training,
validation, and the architecture.

C. Stack-CNN

The Stack-CNN (see Fig. 4) combines the stacking procedure
and the CNN in a detailed framework. The stacked combinations
and the number of frames are chosen depending on the physics
of the object (SD and meteor in this work), making this approach
extremely versatile as it allows to use the neural network trained
on SD even for meteors, and in principle to anypoint-like object
moving linearly in the detector, e.g., cosmic rays. In this last
example the method could be applied only offline due to the
light-speed of such particles and the requirement to use D1
data. The Stack-CNN is divided in two processing levels. The
former performs a rough track reconstruction, by generating 96
combinations of speed and direction. If the object is detected,
the second level is implemented to fine-tune the reconstruction
and suppresses false positives. For SD, the first level stacks 12
GTUs, where the considered directions go from 0° to 345° with
steps of 15° while speed ranges from 5 to 11 km/s with steps of
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2 km/s. It is assumed that the reference height is 370 km, which is
below the International Space Station (∼420 km), but still in low
Earth orbit. The range of the speed has been chosen depending
on the typical order of the SD orbital speed in low Earth orbit,
which is about∼7–9 km/s, and to account for the relative motion
of the ISS, which travels at ∼7.66 km/s. Then, the trained CNN
is applied to each combination, which is positively classified if
the output, indicated by y, is greater than 50%. The second level
is used to fine-tune the triggered combination with ± 0.5 km/s
and ± 5°steps. The number of stacked GTUs is increased to
40 to exploit the longer movement of a SD with respect to a
background event. Finally, if the event is still positively classified
by the neural network and the two triggered pixels overlap in a
neighborhood of 2 pixels the SD event is triggered.

In our work, the Stack-CNN was adapted to meteors by
modifying stacked frames and speed combinations, according to
the meteor physics. The number of stacked GTUs in the first and
second levels was changed to 8 GTUs (∼0.33 s) and 20 GTUs
(∼0.82 s), respectively, because the duration of the event is
shorter compared with SD. Meteor entry speed in the atmosphere
is usually estimated using a reference height of 100 km, which
is where the light emission starts [29]. Besides, the speed range
is bounded by 11 and 72 km/s [30]. Thus, speed combinations
have been chosen within a range from 10 to 70 km/s with step
of 20 km/s. The fine-tuning steps have also been changed to
5 km/s. The advantage of using meteor events to test the Stack-
CNN is that, unlike SD, the light emission phenomenon does
not require any reflection of other light sources, making their
observation more frequent in Mini-EUSO. Besides, the study
of meteors in Mini-EUSO [31] could be useful because meteor
observations are usually performed at visible wavelengths, while
Mini-EUSO, operating in the UV range, could detect meteors
in UV up to Mabs ≥ +5. Another advantage is that space
observations are not affected by weather conditions like the
ground observations and high statistics can be collected in a
short time.

However, the CNN was trained using a simulated Poissonian
background, which is a strong simplification with respect to
real background from Mini-EUSO data. Hence, preprocessing is
needed in order to recreate a configuration as similar as possible
to the one used during the training procedure.

The background map is affected by the passage of the ISS over
cities and clouds. The algorithm suppresses these contributions
thanks to the normalization of each pixel by means of a moving
median. The median is computed for each pixel and GTU,
starting from GTU−4 to GTU+4. Then, the count of each pixel is
divided by this value and the resulting background is normalized
between 0 and 1. This is useful for discarding slow events (i.e.,
events that move at the apparent speed of the detector, which is
the same of the ISS, i.e., ∼7.7 km/s), but it does not affect fast
objects, such as meteors or SD. An example of a preprocessed
background sample is given in Fig. 5. The threshold of the
neural network was also increased to 90%, instead of the default
value of 50%, in order to suppress as many false positives
as possible. To improve the performance and lower the false
positive rate coming from challenging background conditions
and noisy pixels, the Stack-CNN is improved by adding a RF

Fig. 5. Example of preprocessed light curve on cities observed by Mini-EUSO:
raw light curve (on the left) is flattened to values close to 1 by a mobile median
correction (on the right).

Fig. 6. RF training dataset: Binary classification of meteor light curves with
output 1 (left) and background light curves with output 0 (right). The time range
of each light curve is a portion of a complete data acquisition file, which lasts
3200 GTUs.

Fig. 7. RF, used in the R-Stack-CNN, processing meteor light curves. Each
decision tree outputs a probability score for the recognition or not of a meteor,
then the scores are randomly averaged across trees.

classifier, analyzing meteor light curves. We prove in the next
chapter how the proposed method reaches better performance
than the baseline Stack-CNN.

D. Random Forest

The RF is essential for the offline analysis of Mini-EUSO data
to avoid many false positives coming from moving light sources
(e.g., cities, ships, and lightning), while keeping a true positive
rate as good as the original Stack-CNN. An illustration of the
RF used in this article is in Fig. 7.

The classification is binary, i.e., an output of 0 for background
light curves and 1 for meteor light curves. In astronomy, a light
curve is a curve describing light intensity of celestial objects, in
a particular frequency band, over a period of time. In the case
of Mini-EUSO, the frequency band is UV, and light intensity is
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expressed as photon counts and time as GTUs. In this case the
light curve can be considered as a time-series over the pixels
illuminated by the signal. The fast movement of meteors (or
SD) in the FoV generates an excess of signal counts in pixels
hit by the track (see Fig. 6). In our framework, light curves are
represented as univariate time series, i.e., series of time-ordered
data of length T. With time series, features correspond to data
values at each time frame, which means photon counts at every
GTU for light curves.

We chose the RF for its robustness to limited train data and
for its fast convergence during the train. RFs are an extension
of decision trees, i.e., tree-like structures, where each internal
node represents a decision on a feature, based on which the tree
splits in branches.

RFs [32] minimize the tendency of decision trees to overfit,
by averaging the output on a forest of bagged decision trees,
with low correlation between each other, as they are trained
on randomly extracted subsamples of the original dataset. The
training and validation procedures were done using real data
from an analysis performed on session 11 of Mini-EUSO. This
session was chosen for the large statistics of detected meteors.
First, a list of 553 events was obtained through the application
of the standard trigger, which will be used as a baseline for
all the results in this article. The standard trigger [33] does
not implement machine learning techniques, it scans 25 virtual
elementary cells, defined as 16 × 16 pixels, searching for an
excess in neighboring pixels lasting five consecutive GTUs. The
threshold for each pixel is 3σ above the mean background µbkg

computed at every GTU (µbkg + 3σ). Then, each event was
visually inspected by an expert who verified if meteors were
indeed moving objects hitting many pixels. Finally, the results
consisted of 416 meteors, divided in two categories, 309 M and
107 M?. The former class is used to classify objects with bright
and long-duration movements. On the contrary, short-duration
and fainter tracks are usually grouped in the latter class, labeled
as M? with “?” indicating uncertain meteors. The reason for
this distinction is that even if shorter tracks could come from
real meteors, the physics reconstruction of speed and azimuth
would be challenging and affected by high uncertainty. As for the
positive events of the training dataset (output = 1), only certain
meteors M were chosen, along with the two of the closest and
most significant pixels in the meteor track. The meteor track
is affected by blurring in the neighboring pixels, as described
by the point spread function (PSF). Hence, the inclusion of
light curves from closest pixels allows the correct classification
of fainter events affected by the PSF, while also having the
positive effect of increasing the training set size. Background
events (see Fig. 6) were randomly chosen in the S11 dataset.
In this way, events include both Poissonian fluctuations and
cities, which would have been difficult to simulate. Finally,
after visually inspecting the complete set of light curves, the
size of the training dataset became 1384, equally distributed
between positives and negatives (692 each). The preprocessing
was limited to a normalization between 0 to 1 of the time series.
Then, the dataset was split between training set Strain (60%),
validation set Sdev for best model evaluation (20%) and test set
Stest to quantify the performance in unseen data (20%). First, a

TABLE I
RF PERFORMANCE ON TEST SET

validation set was used to tune the RF main hyperparameters,
including the length of the time series, the number of decision
trees and the maximum depth. Then, the model was trained with
Strain + Sdev and tested in Stest using the F1 metric, defined as the
harmonic mean of precision and recall. The advantage compared
to a symmetric metric like Accuracy is that F1 is used when true
positives (TPs) are more important than true negatives (TNs),
which means that an higher F1 tends to minimize false negatives
(FNs). That makes it more suitable for this application, as it’s
crucial that the meteors found by the Stack-CNN must not be
lost by the RF. The performance on the test set is summarized in
Table I (FPs indicate false positives). The results are extremely
promising as only an extremely low percentage of meteors are
lost (3.4%) generating an high F1 score. Besides, most of the
background events are correctly classified (97.7%) making the
method robust to noise and background fluctuations.

More details about the training and ablation of the RF along
with definitions of used metrics are given in Appendix.

VI. APPLICATIONS OF STACK-CNN AND R-STACK-CNN TO

REAL AND SIMULATED DATA

The R-Stack-CNN method was tested on both real data ac-
quired by Mini-EUSO and simulated ones to study its per-
formance in comparison with the original Stack-CNN and the
standard trigger algorithm.

A. Real Data: Search for SD and Meteors

First, a dataset of 13 files from the Mini-EUSO session
6, which corresponds to roughly ∼28 min, has been used to
quantify the improvement of the R-Stack-CNN with respect to
the Stack-CNN.

Then, the entirety of Mini-EUSO session 14 has been used to
compare the R-Stack-CNN results to the standard trigger. It is
worth noting that because of the protection mechanism discussed
in Section IV-A, the real available dataset is roughly ∼129 min,
corresponding to ∼ 2× 105 frames.

The Stack-CNN (see Table II) was able to find 89 new meteor
candidates than the standard algorithm (32 M + 57 M?), while
losing only 13 meteors (2 M + 11 M?) detected by the standard
approach. However, the main problem is that 878 FPs were
also triggered, making the final Precision (13) very low, 16.8%.
The standard algorithm had an higher precision (85.6%) than
the Stack-CNN (16.8%), making it more reliable even if fewer
meteors were triggered. On the other hand, the R-Stack-CNN
was able to find a total of 79 additional meteor candidates than
the standard trigger (30 M + 49 M?), while losing only 15
events (3 M + 12 M?). The final precision was 88.2%, which is
much better than the model without the RF (16.8%) and also an
improvement on the standard algorithm (85.6%).
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TABLE II
R-STACK-CNN ABLATION PERFORMANCE WITH MINI-EUSO DATASET FROM SESSION 6

TABLE III
R-STACK-CNN PERFORMANCE WITH MINI-EUSO DATASET FROM SESSION 14

We evaluated also the computing time required to process
these data files by each algorithm. As Table II shows, introducing
the RF in the Stack-CNN increases the CPU time with a factor
of 3.8. However, the increase in the precision is much higher,
i.e., a factor of 5.25, meaning that using the RF is the optimal
solution for tradeoff between time and performance.

Then, the R-Stack-CNN was tested using the complete Mini-
EUSO session 14 (see Table III): the model R-Stack-CNN found
136 new meteor candidates (see Table III) than the standard
algorithm (85 M + 51 M?) while losing 56 meteors (26 M
+ 30 M?). The model also detected 119 FPs, with an overall
precision of 69.9%, which is slightly better than the correspond-
ing 66.2% of the standard trigger. These results showed that,
even for an extended set of data, our method outperformed
standard techniques finding a larger number of meteors. It is also
worth noting that, although our method proved to be the most
powerful and accurate one, the standard algorithm remains a
valid faster solution. In addition, we provide a comparison with
another neural network-based method, and we show that the
R-Stack-CNN finds more meteors than this. Further details are
provided in the Appendix.

B. Simulated Data: Detection and Tracking of Meteors

In order to investigate the detection limit and true efficiency of
the model, meteor events were also simulated. Considering that
the Stack-CNN was originally planned for the online detection
and tracking of SD, it is crucial that the speed and direction
combination is as precise as possible. Hence, meteor simulations
are also used to quantify the goodness of the speed and azimuth
reconstruction.

An important feature of the simulations is that they involve
a dynamical model, implementing analytical solutions [34] to
the differential equations describing the physical problem of the
meteor body deceleration in the atmosphere [35]. The simulated
parameters were sampled from their known distributions [36]
and the background maps were generated using a Poissonian
distribution with an average of µbkg photon counts per GTU in
D1 mode. An example of a simulated event of µbkg = 0.572
and absolute magnitude Mabs = +4 is given in the Appendix,
Fig. 12. From now on the indicated magnitudes are meant to be
positive even though the “+” sign is not explicitly indicated.

TABLE IV
SUMMARY OF SIMULATED ABSOLUTE MAGNITUDE Mabs AND MEAN

BACKGROUND CONFIGURATIONS

TABLE V
SUMMARY OF THE R-STACK-CNN RESULTS WITH METEOR

SIMULATED EVENTS

Fig. 8. Residual distribution of Stack-CNN reconstructed variables: Meteor
azimuth is shown on the left and horizontal speed on the right. The green
distribution refers to meteors with inclination 0°≤ γ ≤ 90°, while the red
distribution refers to events with 0°≤ γ ≤ 30°.

A total of 300 events have been simulated for meteors of
Mabs = {4, 5, 6} (100 each). Each event has been simulated
with a random sampling of µbkg ranging from 0.5 to 1 photon
counts per GTU in D1 mode.

The results using meteor simulations have been summarized
in Table V and compared with the standard trigger results. The
R-Stack-CNN found 32 additional meteors in 300 simulated
events with respect to the standard trigger. However, only six
meteors ofMabs = +6 were triggered by the algorithm, defining
the detection limit. These events are indeed very faint and their
tracks are often difficult to observe because of the background
fluctuations. Fig. 9 shows, as an example, a lost event of Mabs

= +6, with a horizontal purple line defining the 3σbkg range of
background fluctuations, where σbkg =

√
µbkg.

Then, the performance of the speed v and azimuth φ recon-
struction has been estimated by using the standard deviations of
the residual distributions of the triggered events.



10442 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

Fig. 9. Example of a meteor not found by R-Stack-CNN due to the low
magnitude of Mabs = +6, µbkg = 0.716. The plot shows a collection of light
curves associated with the same meteor event, with signals hitting different
pixels. The horizontal purple line shows the 3σ value of background fluctuations.

The azimuth is defined as the direction from the true North,
whereas the speed refers only to the horizontal component of
the meteor true speed. Since Mini-EUSO does not have a stereo-
scopic view, it would be impossible to estimate the transversal
direction of speed.

Besides, it is important to note that since Mini-EUSO is
mounted on the ISS, its variables (speed and direction) are
affected by the position and speed of the ISS, that travels at
∼7.66 km/s with an azimuth of ∼51.6°. Therefore, both meteor
horizontal speed and azimuth, i.e., the clockwise direction from
the true North, were corrected. Moreover, the R-Stack-CNN
often triggers the same meteor event more than once with
different speed, direction and even starting GTU. Considering
that images are processed sequentially, sometimes long tracks
can surpass the 20 frames used in the stacking method, causing
the event to be triggered more than once. Therefore, the best
combination was chosen as the one with the highest number
of counts in the maximum pixel of the stacked image. The
residual distribution of the azimuth showedµφ = (−3± 4)°and
σφ = (46± 3)°(Fig. 8), whereas the longitudinal speed residual
distribution had µv = (0± 1) km/s and σv = (17± 1) km/s
(see Fig. 8). However, these results refer to meteors with any
value of inclination γ, which also means having vertical tra-
jectories with few hit pixels. Hence, given that the goal is to
investigate the precision of the Stack-CNN reconstruction of SD
through meteors, the residual distributions were evaluated using
mostly horizontal tracks, which resemble SD more accurately.
Each meteor event has been simulated with a different inclination
γ, with γ = 0°indicating an horizontal track and γ = 90°a
completely vertical trajectory with respect to the Mini-EUSO
focal surface. Thus, 0°≤ γ ≤ 30°has been set as the range used
to define mostly horizontal tracks.

The results showed a great improvement, withµφ = (1± 4)°,
σφ = (15± 3)°for the azimuth and µv = (0± 3) km/s, σv =
(10± 2) km/s for the horizontal speed. These results show that
the Stack-CNN could indeed be implemented in a SD remedi-
ation system with a reliable estimation of speed and direction.
Besides, there is no bias in the reconstruction since both average
values are compatible with 0.

VII. DISCUSSION

Although the R-Stack-CNN has shown improvements with
respect to the Stack-CNN, a standard thresholding method and
another machine learning-based technique, it has some limita-
tions. For example, our method, even if it suppressed the extreme

number of FPs coming from the Stack-CNN, it lost some meteors
that were detected by the latter. In future we want to study
new strategies to avoid this loss, such as developing a recurrent
neural network for the recognition of light curves. Another way
to improve the whole framework could be training also the
CNN with real data, but this would require a large amount of
balanced and preprocessed data. Finally, even if we presented
the R-Stack-CNN as an offline trigger we do not exclude the
possibility to test it online with an FPGA and compare with the
Stack-CNN.

VIII. CONCLUSION

In this article, we presented the R-Stack-CNN, a refined
version of the Stack-CNN that serves as an offline data analysis
to detect and track space objects that move linearly in the FoV
of a telescope. In particular we applied the method to data of
the experiment of Mini-EUSO, a UV telescope on board the ISS
pointing on the Earth. With this configuration, the space objects
that can be detected are meteors or SD. Unfortunately, the SD
generally does not emit light themselves, therefore finding such
events with a small aperture telescope at satellite orbit, such as
Mini-EUSO described in this article, has turned out to be very
difficult at the moment. However, similar phenomena to SD, but
more luminous and more frequent, are meteors. We have shown
that the R-Stack-CNN is an effective data analysis method for
finding these events with higher precision than other methods.
Specifically, the R-Stack-CNN found almost as many meteors
as the Stack-CNN (which is the method that finds more meteors
than the other methods), but with a FP rate much lower than that,
avoiding to manually look at these events and discard them.
With the development of a lightweight recurrent architecture,
it is expected that the R-Stack-CNN can be improved to have
even higher capabilities. The ability of the R-Stack-CNN to find
events in real data, even though most of them are trained on
simulated data, offers interesting prospects for applying this
technique to other data, such as ground-based telescopes that
point on the sky and can detect different space objects, e.g., SD,
asteroids and meteors. Such an improved R-Stack-CNN could
also be useful for the SD observations from the satellite orbit in
future.

APPENDIX

In this section, we provide the Supplementary Material re-
garding our implementation of RF, the specific metrics we used,
ablation and sensitivity studies.

A. RF Definitions

The RF is a traditional machine learning algorithm consisting
of an ensemble of M decision trees, with M defining the forest
size. The final output, indicated as ȳ, is defined as the average of
each output yi of each single decision tree. A sketch is shown in
Fig. 7. As a consequence, the variance associated with the output
depends on the correlation, indicated as ρ, between decision
trees, as described by the following formula:

Variance [ȳ] = ρ · Variance [y] + (1− ρ) · Variance [y]

M
.

(10)
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Fig. 10. Number of TPs and FPs on the left figure and precision on the right as a function of increasing RF threshold. Horizontal lines indicate the performance
of the standard trigger.

Fig. 11. Visualization of F1 metric computed on training (blue) and validation
(green) datasets by iteratively removing decision trees from the RF. The best
parameter is shown in red.

Therefore, the main objective of this algorithm is to decrease
the correlation ρ, while also increasing the forest size M , so that
the averaged variance is better than the single one. The technique
is called bagging, it consists on training each decision tree with
bootstrap samples, randomly chosen from the training dataset
and replaced so that data can be used more than once. Besides,
RF also decrease correlation by considering only a fraction of
randomly selected features in each split node. The bias-variance
tradeoff in RF is reflected by the fact that the chance of underfit-
ting slightly increases because subsamples are smaller than the
full dataset. Therefore, it is crucial to train RF with big enough
datasets. Another disadvantage is that forests are less easy to
visualize and interpret than single decision trees, but they are
much more powerful.

We can also define the probability associated with its output
as binomial (p1 is the probability of having prediction equal to
1), with M being the forest size and N1 the number of decision
trees associated with output equal to 1

p1 =
N1

M
. (11)

In Supplementary Material, we will also provide sensitivity
analysis on this parameter, showing how it can deeply affect the
performance of the R-Stack-CNN.

Given that our task was a classification task, i.e., time-series
binary classification, we used a set of metrics suitable for our

goal. In particular, accuracy is the baseline metric used to mea-
sure performance for finding positive and negative labels, pre-
cision is used to quantify the tradeoff between finding TPs and
FPs, recall measures how many positive instances are detected
from all the actual positive samples and finally F1 is defined as
harmonic mean of precision and recall, giving a more complete
and exhaustive view on the model performance. We provide the
explicit definitions (TP, FP, TN, and FN)

Accuracy =
TP + TN

TP + TN + FP + FN
(12)

Precision =
TP

TP + FP
(13)

Recall =
TP

TP + FN
(14)

F1 =
2

1
Precision + 1

Recall

=
TP

TP + FP+FN
2

. (15)

B. Ablation Study

In addition, an ablation study was performed to determine
whether removing decision trees during training could drasti-
cally reduce the performance. The number of decision trees in
the RF has been reduced iteratively from a maximum of 2000
to a minimum of 1, corresponding to a traditional decision tree.
For each iteration, the performance has been estimated both in
training dataset and validation dataset using the cross-validated
F1 score on ten folds.

As can be seen from Fig. 11, the performance reaches a plateau
with 1000 decision trees. Training with more iterations would
be pointless as the model would preserve the same accuracy at
the cost of an higher computational time.

Another study has been performed regarding the probability
of the RF algorithm. The default value is set to 50%, meaning that
if more than half of the decision trees have outputs 1, the overall
output is also 1 (and vice versa). We investigated other possible
values, by increasing and decreasing its value and estimating the
R-Stack-CNN performance on real data.

The optimal performance of the R-Stack-CNN in session 6
(see Table II) has been achieved by increasing the RF threshold to
78%, meaning that at least 78% of decision trees have outputs 1.
The threshold has been set by maximizing the F1 metric, which is
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Fig. 12. Example of a simulated meteor event of Mabs = +4. The three plots on the top represent height, meteor speed and absolute magnitude as a function of
time. The three plots on the bottom show the pixels hit by the meteor event (left), the respective photon counts per D3 GTUs (center) and the sum of the photon
counts per D3 GTU (left), which have been indicated by the red curve. The black curve represents the expected meteor counts on the focal surface in the absence
of dead spaces among MAPMTs.

TABLE VI
R-STACK-CNN PERFORMANCE WITH MINI-EUSO DATASET FROM SESSION 14

equal at its maximum to 90.7%. The study was completed using
session 14 of Mini-EUSO data: the R-Stack-CNN precision was
estimated using different values of the RF probability threshold.
Table VI and Fig. 10 show that by increasing the threshold more
meteors are found with respect to the standard trigger. Using
78% threshold, the model found 193 new meteor candidates
than the standard algorithm (115 M + 78 M?) and lost only 27
meteors (10 M + 17 M?) detected by the standard approach.
Unfortunately, because of higher background configurations,
352 FPs were also triggered. Thus, an higher RF threshold has
been set to eliminate as many FPs as possible and a study has
been performed to estimate the optimal threshold: the precision,
the number of TPs and the number of FPs were evaluated
using increasing RF thresholds. The results in the left panel
of Fig. 10 show that there is a strong decrease in the number
of the R-Stack-CNN FPs with an increasing RF probability of
95%. On the other hand, the number of the R-Stack-CNN true
positives decreases with a weaker slope, causing an increment in
the precision as shown in the right panel. The optimal threshold
has been set to 93% because with higher thresholds too many
meteors would be lost. This setup has been used also to compare
our method to another one, developed in parallel in the Mini-
EUSO collaboration. This method implements a CNN trained

to detect chunks of meteors in the FoV of the detector. Then,
the algorithm searches for meteor light curves in meteor chunks
and implements a multilayer perceptron (MLP) to classify them.
We will refer to it by the acronym CNN + MLP. See [21] for
more details. The overall structure is extremely similar to our
method, as both algorithms implement CNNs to classify images,
and then a light curve classifier is used to suppress FPs. In the
alternative method the algorithm is a MLP while in our case it
is a RF. A substantial difference, however, is that our CNN was
trained on simulated data while in their case on the real data.

The results (see Table VI) show that the R-Stack-CNN was
still the most performing method to find new meteor events
(95 more meteors M were found). However, the CNN + MLP
method was more precise (80% versus 69.9% of R-Stack-CNN).
This behavior was probably caused by the different training
dataset, which generates fewer FPs as data from Mini-EUSO
sessions is more noisy and complex. An improvement of our
method would probably fine-tune our CNN using real data,
making it more robust to noise.

C. Illustration of a Simulated Meteor

An illustration of a simulated event with a background rate of
µbkg = 0.572 and an absolute magnitude of Mabs = +4 can
be found in Fig. 12. Henceforth, the magnitudes mentioned are
assumed to be positive, although the “+” sign is not explicitly
stated. A total of 300 events have been simulated for meteors
with absolute magnitudes of Mabs = 4, 5, 6 (100 events for
each magnitude). Each event has been simulated with a random
sampling of background rates, ranging from 0.5 to 1 photon
counts per GTU in D1 mode.
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