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Abstract

This thesis work is centred around the subject of Topological Data Analysis, a
modern line of study that combines tools from algebraic and computational topology.
After the introduction, a background section introduces the basic concepts in category
theory, abstract algebra and algebraic topology to provide footing for the following,
which is split into two main chapters.

The first chapter generally deals with the topic of representative cycles for homology;
this responds to the intuitive idea of associating a shape to a homology class. Several
approaches exist to address the problem. In this chapter we present results about
minimal bases, that were employed to construct the so-called minimal scaffold, as
well as mixed approaches such as the homologically-persistent skeleton, and we
report preliminary ideas about the usage of Alexander duality to obtain canonical
representatives.

The second chapter is devoted to the exposition of work that was carried out regarding
the topic of the decomposition of persistence modules. In particular, we define a
notion of interval basis, a choice of generators whose interval modules generate the
direct-sum decomposition of the structure theorem, and which can be computed in
parallel. We provide several algorithms via different approaches for the computation
of an interval basis, and conclude the chapter with an exposition of the parallel
construction of persistent homology from a sequence of chain maps, in particular via
the Hodge Laplacian.

A brief section about future avenues of work concludes the thesis.
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Chapter 1
Introduction

Topological data analysis is a recent branch of mathematics that stemmed from the
intuition that classical tools in algebraic topology could provide valuable descriptors
for the analysis of data.

Its origins can be traced back to the late 90’s with works of Frosini, Edelsbrun-
ner and Robins, and it has witnessed a dramatic expansion within the last twenty
years, as it provides a mathematically rigorous and powerful set of tools. The key
idea of persistent homology, without question the foremost concept in TDA, is that
of studying the maps induced between homology spaces along a suitable filtered
topological space. The dynamic, evolutive, nature of this process is what made
persistent homology stand out as an unmatched instrument for shape description and
comparison. Furthermore, the broad scope of algebraic topology in terms of what
notions of space can be endowed with a description of their shape has made TDA
extremely flexible as to what types of data can be processed. The well-developed
theory of simplicial complexes is naturally suited for the analysis of discrete objects,
and real data is, in the vast majority of cases, a discrete set of measurements. At the
same time, under very reasonable hypotheses, the many different theories of shape
agree throughout a broad range of descriptions of their underlying space.

Key steps for the development of the theory were undoubtedly the formulation of the
algebraic characterization of persistence modules, and the stability results that soon
followed. A vast and mathematically intriguing theory of multiparameter persistent
homology was formulated since the early days, and is currently the subject of intense
inquiry. A large body of work was devoted to the computational aspects of TDA,

bringing about numerous libraries and software packages, that make it into a reliable



2 Introduction

and nearly off-the-shelf methodology for the applications.

In its maturity years, TDA has been given a rigorous footing within category theory
and algebra, and its concepts have gained mathematical status per se, even being
applied in pure mathematics. It was soon clear that methods needed to be developed
to interface TDA with classical machine inference tools. The large thread of vec-
torization methods responded to precisely that need, and indeed TDA began to find
use in a host of different applicative context. Nowadays, it interfaces with subjects
as diverse as neuroscience and random graphs, material science and cosmology,
genomics and complex networks.

The current research on TDA is active in essentially each one of the branches we
have mentioned. Multipersistence, due to its wilder mathematical nature, is being
tackled from a range of points of view. The topology of random phenomena is
an involved and interesting line of research. Many efforts are in place to interface
computational topology with statistical inference, in terms of not just using topology
as a feature but of actually inferring about the topology. Along the same line, in the
last 4 or 5 years there was a surge of works exploring the many ways in which TDA
can be interfaced with machine learning, as a method of explicating how obscure
neural networks black boxes work, or as a regularization strategy, and even as a loss

function per se.

The purpose of this thesis work is to narrate some of the avenues that I pursued during
the course of my PhD. It will contain material at different stages of development,
while many topics have, for different reasons, been left out.

The first chapter (actually chapter 2) is devoted to a brief survey of the mathematical
background that will be used in the rest of the thesis, mainly to fix the notation
and provide pointers to reference texts or papers. While starting relatively from the
basics, it has no pretence to be entirely self-contained.

The following chapter deals with the topic of homology representatives. A homology
representative for a class is a choice of a cycle belonging to that class, among
the possibly many. This choice is notoriously ambiguous, and many different
criteria can be put in place for it, but the significance of this choice can be of great
importance when the applicative information lays into the actual cycles and not in
their equivalence classes. Tracing back topological information onto the cycles then
becomes crucial for applications. In there, we will present some applications of the

algorithm by Dey concerning minimal homology bases, which are sets of cycles



which collectively span H; and whose total length is minimal among all possible
choices. We have implemented that algorithm and used it to define a method of
network skeletonization called the minimal scaffold. We will describe its properties
and how the method can find valuable application in neuroscience. Then, we describe
a mixed-approach for metric spaces called the homologically-persistent skeleton,
study some of its properties and propose an own version to compare with the previous
approach. Finally, we describe some preliminary ideas towards using of Alexander
duality to find canonical representatives.

The next chapter deals with the topic of persistence module decomposition. In there,
we propose the concept of an interval basis, that is a "special” choice of generators for
a persistence module, such that each generates the direct summand interval module
given by the structure theorem decomposition. We propose a sequence of approaches
to the computation of an interval basis, and compare their scope and their cost. In
particular, we propose a parallel algorithm that leads from a persistence module to
an interval basis, from which it is immediate to read off the barcode. In this sense,
the proposed approach is an extension of the computation of persistent homology.
We subsequently specialize the discussion to the topic of persistence modules arising
from the homology functor, hence setting off not from a persistence module but
from a map of chain complexes. In particular, we show the construction of a parallel
pipeline to compute persistent homology via the Hodge Laplacian.

A brief survey of future directions concludes the thesis.



Chapter 2

Background

2.0.1 Elements of Category Theory

We start by introducing a few basic notions in category theory, encompassing many
of the later concepts in an elegant framework. Categories are universes that collect
all objects of a certain kind, together with relations between them. One can then
develop a concept of relations between relations, and relations between relations of
relations, and so forth. This abstraction process leads to the concepts of functors,
natural transformations and eventually higher categories. It has been postulated that
natural transformations were the intuition that first sparked the birth of category
theory, with functors being the object onto which they could be defined, and with
categories being the ground object onto which to define functors. Good entry points

for category theory are [1, 2] (or the joy of cats),[3] for a more advanced treatment).

Definition 1. (Category [3]) A category C is a collection (in general a class) of
objects, denoted by Ob(C), such that

* YV a,b € Ob(C) there exists a collection (in general a class) Homc (a,b) whose

elements are called morphisms or arrows.

* For each a, the hom-set Homc (a,a) contains a distinguished element called
the identity 1d,

* There exists a composition function o

o : Homg(b,c) x Homc(a,b) — Homc(a,c)



for any triplet of objects a,b and c.

» Composition must be compatible with identities, i.e. for every f € Homc(a,b)
it must hold

fold, = fandIdpo f=f

» Composition must be associative, i.e. for any three composable morphisms
f,g and h it holds

fo(goh)=(fog)oh

An important type of categories are the so-called small categories: those for which
objects and morphisms form a set and not a proper class. A category is at least
locally small if, for every fixed source a and target b, Homc(a,b) is a set. Many

important categories are large (that is, not small), but are locally small.

Example. The category Set, whose objects are sets and whose morphisms are
functions between sets. The category Vectr, whose objects are vector spaces over
[F, and whose arrows are linear maps. These categories are not small, but they are
locally small. A partial order on a set P, denoted (P, <), is represented as a category
whose objects are the elements of P, and such that there is a morphism from p — ¢

for each relation p < g in the poset.

The relations between categories are given in the form of functors, i.e. associations
between the objects and morphisms of one category to those of another satisfying
certain precise requirements. Functors are analogies between different universes

(different categories) made precise by the present framework.

Definition 2. (Functor, [1]) Let C and B be two categories. A covariant functor
F : C — B is a pair of functions that assign to each object of C an object of B, to
each morphism in C a morphism in B, and such that identities are sent to identities
and each composable pair of morphisms in C is sent to a composable pair in B, with

the composition of images equal the image of the composition. In symbols
e F :0b(C)—ObB); a— Fa
* F : feHomc(a,b) — Ff € Homg(Fa,Fb)

e F1d, =1dg,
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* Every time that f o g is defined for morphisms f,g in C, then F fo Fg is
defined in B and it holds

FfoFg=F(fog)

We will simply say "functor" to mean a covariant functor. The notion of contravariant

functor is the same with the exception that
F : f€Homc(a,b) — Ff € Homg(Fb,Fa)

and consequently the composition Fgo F f is defined every time f o g exists (the
functor must still commute with composition). In other words, a contravariant functor

is a functor that reverses every arrow from one category to the other.

Definition 3. (Forgetful functor, [1]) The forgetful functor, often denoted by U, is
a functor that "forgets" some or all of the additional structure on a set. As such, it
associates for example to a group its underlying set and to group morphisms the

corresponding functions; or to a ring the abelian group it contains.

Definition 4. (Diagram) The collection of all functors between two categories C

and B is often denoted as BC, and one such functor is sometimes called a diagram of
type C.

Example. Poset categories such as (R, <) or ([n], <) provide an important example
of diagrams of type R or [n] respectively. Diagrams of this type with value in
the category Vectr of finite-dimensional [F-vector spaces correspond precisely to

persistence modules.

Natural transformations are to functors what functors are to categories:

Definition 5. (Natural Transformation, [1]) Given two functors F,G : C — B
between two fixed categories, a natural transformation T is a function that associates
a morphism in B to each object of C, in such a way that all possible squares commute.

In symbols

*7:a€0b(C) — 1,€ Homg(Fa,Ga)

* Vf € Homc(a,b) it holds that the following diagram



is commutative, i.e. 7, F(f) = G(f) 4.

Informally, the existence of a natural transformation between functors F' and G
asserts the existence of all the required arrows in the target category to "transform"

the action of F' into the action of G while respecting the composition structure.

2.0.2 Notions of algebra

Many algebraic concepts are involved in the constructions of topological data anal-
ysis. Here, we recall some of these notions to fix definitions and notations. For

module theory and linear algebra in general, we refer to [4].

Algebraically, a free object is the most general instance of an algebraic structure built
on a given set, i.e. one containing the given set and satisfying only the axioms of that
specific structure. The notion can be expressed in purely categorical terms, where a
free object on set X is built via the free functor, that informally is the most general
functor that can undo the action of the forgetful functor. First, let us introduce the

notion of full anf of faithful functors.

Definition 6. (Full and faithful functors) A functor F : C — D is called full iff for
every morphism g in D there exists a morphism f in C such that g = F(f). It is
called faithful iff for every pair of parallel morphisms f1, f> in C (i.e. morphism
between the same two objects) it holds that F(f;) = F(f») implies f; = f,. When
both apply, we call F a fully faithful fuctor. In other words, a full functor is surjective
on Hom-sets, a faithful funtor is injective on Hom-sets, and a fully faithful functor is

a bijection of Hom-sets.

Definition 7. (Free object) Let C be a concrete category, that is a category that
admits a faithful functor U into Set, and let X be a set. A free object on X in
C is an object A with the following universal property: for every injective map
i : X = U(A), for every object B in C and for any morphism of sets f : X — U(B),
there is a unique morphism of sets g : U(A) — U(B) such that f factors as f =iog.
Diagrammatically:
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In words, an object A in a concrete category C is free if there exists a "subset" X of
A such that for every object B in C, any set function X — B extends uniquely to a
morphism A — B in Homc.

Definition 8. (Monoid) A monoid is a category with a single object.

Definition 9. (Group) A group is a monoid with inverse elements. l.e. for each
morphism there is a morphism that composes to the identity on the right, and one
that composes to the identity on the left.

Maps between groups must commute with the groups’ operations, asin f : G — H
it holds that f(g+g') = f(g) +' f(g'). Together with these maps, groups form the
category of groups, Grp.

Definition 10. (Abelian group) We call a group Abelian if its operation is commuta-

tive.

Definition 11. (Free Group) A free group is a free object in the category Grp of

groups.

Definition 12. (Ring) [4] A ring is a set with two operations: (R,+,-), such that
(R,+) is an Abelian group, (R,-) is a monoid, and X distributes over + both on the
left and on the right.

Other customs exist: notably, the definition above is sometimes called a unital ring,
or ring with identity, and a more general definition of ring would only require (R, -)
to be a semigroup, i.e. not necessarily contain an identity element. For our purposes,
every ring will be unital, so we include the requirement of an identity element into

the definition of ring.

Example. The integers (Z,+,-), with sum and multiplication, are the prototypical
example of a ring (in fact, they are the initial object in the category Ring of unital
rings). Another typical example is the ring of polynomials in n variables with integers

coefficients Z[xy, ..., x,|, with pointwise sum and multiplication.



Definition 13. (Initial, terminal and zero object) [1] An object s € Ob(C) is called
initial iff for every object ¢ € Ob(C) there exists exactly one morphism s — c.
t € Ob(C) is called terminal iff for every object ¢ € Ob(C) there exists exactly one
morphism ¢ — ¢. Initial and terminal object are unique up to unique isomorphism.

An object that is both initial and terminal is called a zero object.

It is customary to call a commutative ring a ring such that multiplication is also
commutative. Again, in all of the following we will only deal with commutative
rings, so unless stated otherwise, when we write ring we actually mean (in full) a
commutative ring with identity. Notice both the examples above are also examples
of commutative rings.

Unitary, although not necessarily commutative rings whose non-zero elements form
a monoid under multiplication are called integral domains, the key being that multi-
plications of non-zero elements yields non-zero elements. In other words, there are
no zero-divisors.

If additionally the non-zero elements form a group under multiplication, the ring is
called a division ring. A division ring is a non-commutative field. An element of a
ring that admits an inverse is called a unit. So a division ring is a ring such that all

non-zero elements are units.

Definition 14. (Field) A field I is a commutative ring such that multiplication admits
an inverse for every element, except for the additive identity. In other words, it is a

commutative division ring.

Example. The reals, the rationals, the complex numbers, and notably the integers
modulo p with p a prime number are examples of fields. Z, in particular plays a

central role in most of TDA.

Finally, let us introduce a special type of ring that will play a key role in the
following. By ideal I of a ring R we mean an additive subgroup that is stable under

multiplications by elements of R, i.e. such that ir € [ for every i € I,r € R.

Definition 15. (PID, [4]) We call Principal Ideal Domain (PID) a commutative unital
ring with no zero divisors (i.e. a commutative integral domain), such that every ideal

is principal, i.e. such that every ideal is of the form aR for some a € R.

Principal ideals generalize the notion of ideals in the ring of integers, indeed a PID,

where every product-stable subgroup is the set of multiples of some integer number.
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Example. Polynomial rings over a field In the following, we will often consider the
ring of polynomials in n variables with coefficients in a field, F|xy,...,x,]. Thisis a
unital, commutative ring. The case n = 1 is especially important, because F[x] is a

principal ideal domain.

Definition 16. (Module) [4] Let R be a ring (unital and commutative), with 1 its
multiplicative identity. A module M over R (or an R-module) is an Abelian group
(M,+), together with an action R x M — M, called scalar multiplication, with the
following properties: VA, € R, Vx,y € M

* A(x+y) =Ax+Ay
e A+u)x=Ax+ux

© Alpx) = (Ap)x

o lx=x

Since we only deal with commutative rings, we do not define left and right modules.
Note that a ring R is an R-module over itself.

Definition 17. (Vector Space) Given a field [, a vector space V over I (or an
[F-vector space) is an [F-module.

So a vector space is a module over a field instead of a ring.

Modules and vector spaces are connected by linear maps. A linear map is a map
that commutes with linear combinations, i.e. one such that f(Av; + -+ A,v,) =
Af(vi)+ -+ Anf(vy) where the A’s are elements of a ring or a field, respectively.
Together with linear maps, R-modules form the category RMod, and [F-vector spaces
form the category Vectp.

The concept of free object also applies to R-modules.

Definition 18. (Free Module) A free R-module is a free object in the category
RMod.

Alternatively, for a free module F on set G, there exists a unique map 4 such that the

diagram



11

f F

—
\ :
I
8 <+

M

G

=

is commutative for any R-module M and any mapping g. Intuitively, if a module is
free then maps from its underlying set can be used to fully determine maps from the
module itself.

If a module F is free (or more precisely the pair (F, f) is a free module), then f
is injective. Furthermore, Im f is a basis of F, i.e. a linearly independent set that
generates it.

In fact, for an R-module possessing a basis is equivalent to being free. As such, every

vector space is a free module.

Given a subset G of a module M, we say that G generates M if the linear span of G,
i.e. the module of the linear combinations of elements in G, equals M. The elements
of G are called generators.

Definition 19. (Finitely generated module) We say a module is finitely generated if
it admits a finite set of generators.

Grading The concept of grading denotes the existence of a direct sum decomposi-

tion of an object into "graded" subparts. Reference also [5-7].

Definition 20. (Graded Ring) An N-graded ring is a ring R for which one has a

R=PR;

ieN

direct sum decomposition

as Abelian groups, such that R;R; C R;, j, that is, the product of an element in R;
with an element in R; is an element of R; ;.

An element of R belonging to some R; is called homogeneous. Notice 0 is a homoge-
neous element. For a non-zero homogeneous element r € R, there is only one i such
that » € R;, and we say r is of degree i. The degree of 0 is not defined.

A morphism of graded rings is a ring homomorphism ¢ : R — R’ such that ¢(R;) C R..
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Definition 21. (Graded Module) Let R be an N-graded, unital, commutative ring,
and let M be an R-module. M is graded if one has

M=EPM;

ieN
as Abelian groups, and it holds R;M; C M, ;

Notice that every module can be regarded as a (trivially-) graded module by setting
above M| =M and M; = {0} Vi > 1. Notice also that a graded module can be given
different gradings.

A morphism of graded modules is an R-linear map ¢ : M — N such that ¢(M;) C N;.
It is also referred to as graded morphism or graded map.

A basis of a graded module is required to be homogeneous, i.e. that each basis
element is homogeneous.

Graded modules together with graded maps form the category of graded modules
GRMod.

Shifting

Graded maps between graded modules are defined to be of degree zero, i.e. such
that grading is preserved when the map is applied. Therefore ([7]), two free, rank-1,
graded modules need not be isomorphic via a graded isomorphism: this could only
be the case if their generator was the same degree for both. One could define a
map of degree n, that is a graded map that sends elements of degree i to elements
of degree i +n. Or, as is standard ([8, 5]), one could define a shifted module in the
following way: let R be any ring,

R[—n]

is the free, graded module over one homogeneous generator of degree n, i.e. such
that homogeneous elements of degree n in R[—n]| are the elements of degree 0 in R

(seen as a rank-1, free module over itself).

Presentations

As we said, free modules allow for a basis, i.e. a way to specify a map from the
free module F as a map from a set B. In the following, consider a finitely generated
module M over a principal ideal domain. Then M can be specified via a surjective
map U from a free module G, called the module of generators
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G5 M
Intuitively, map u specifies how the generators of G map onto the target module,
that is what the linear dependencies are between the generators in the target object.
In particular, the kernel ker u contains (if any) the relations that fully characterize
module M. The presence of relations between the generators indicates the presence
of torsion in M
ker i is a subobject (a submodule) of G, and in particular it fits into a short exact

sequence of the form

0 — kert —— G N ) (2.1)

Notice that, for any module M, many different such sequences may exist.

A complex of R-modules ([9]) is a sequence of R-modules M; and maps M; — M;_
such that M; — M;_| — M;_» is the zero map. A free resolution of an R-module M
is a complex of free R-modules that is exact, and such that M = coker (M| — Mj).
We say a free resolution has length # if the M; are non-trivial for 0 <i < n and M,, is
zero.

Hilbert’s Syzygy Theorem ensures us that, since the ground ring is a PID, a free
resolution of M has length 1, which means that, in the sequence above, map i is
injective. This is the case for polynomial rings in one variable over a field (F[x]) that
encompass the theory of one-dimensional persistence.

Notice that, for polynomial rings in several variables, that are their counterpart in
multi-dimensional persistence and which do not form principal ideal domains, this
no longer holds: one could have that the map ker 4 — G is not injective, hence has a
nontrivial kernel giving rise to further relations between relations, and possibly so
on.

Definition 22. (Presentation) Giving a presentation of M amounts to specifying a
short exact sequence as in 2.1

As mentioned above, ker u specifies how the generators of M are related, or in other
words describe the torsion part in M. This way, a module can be expressed as the

coker of map i:

G
M = —— = cokeri 2.2)
Im i

Definition 23. (Relations or Syzygies) The generators of ker 1t (as a free submodule
of G) are called syzygies.
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In the case when the ground ring is not a PID, i.e. when a free resolution of M may
have length > 1, we call the relations between relations second syzygies, and so on

with third syzygies, etcetera.

Definition 24. (Minimal Presentation) A presentation is called minimal if module G

(and hence ker 1) is the smallest possible, in terms of the number of generators.

Notice that for a free module over a PID, all bases have the same cardinality.

All of the above can be cast in the language of graded modules, by requiring that
all of M, G and ker u be graded, finitely generated modules over a PID, and that all
maps be graded morphisms. This is the case for the modules arising from persistent

homology.

Finding a module presentation

Finitely generated modules over principal ideal domains are particularly well-
behaved. Since the ground ring is especially tame, as is the case for [F[x], the structure
of their modules can be described in an explicit manner, thanks to the following

theorem.

Theorem 1. Structure Theorem for modules over F|x], [4]
nr nr
M = PFix] & PFi]/(o)) (2.3)
i=1 j=1

The above theorem states that a module can be decomposed into the direct sum of
nr copies of the free, rank-1 module F[x] (again seeing the ring as a module over
itself), plus a sequence of ny cyclic modules of order ;. This is the torsion part.
Further, this decomposition cannot be refined, as each term in the direct sum is easily
seen to be indecomposable (we call an R-module indecomposable if it cannot be
expressed as a direct sum of two non-zero submodules).

This decomposition is intimately related to a matrix canonical form known as Smith

Normal Form.

Definition 25. (Smith Normal Form) Let R be a PID. Let A be an n x m matrix with
entries in R. Then, there exist two square matrices M € R™* and N € R"*" such
that NAM is diagonal, and its non-zero diagonal entries are such that o]0 1. Finally,
all zero entries appear at the end.
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The diagonal entries are unique up to a unit, an invertible element of the ring.
The Smith normal form is a central result in linear algebra, and it condenses all the

information we can gather about a module over a PID, up to isomorphism.

A corresponding theory applies to the case of graded modules over F|x|, which is
graded by polynomial degree

Theorem 2. Structure Theorem for Graded modules over FF|x]

ny ny
M = Px% Flx][a] & PP FIX[B]/(B;+ 7)) 2.4)

i=1 j=1

and this instance is of central importance for topological data analysis, as we will see
in the following. A graded theory of the Smith Normal Form has also been advanced,
see for example [10]. This framework will prove relevant for our purposes, as the
role of grading is central for persistence modules.

2.0.3 Simplicial complexes

The most fundamental building block around which applied topology is constructed
is, arguably, the concept of simplicial complex. Simplicial complexes are discrete
topological, and possibly geometrical, objects, which encode a shape much in the
same way that an adjacency matrix represents a graph, i.e. by specifying how blocks
of a certain dimension are attached to blocks of the next.

From the most basic of points of view, one can think of a simplicial complex as a
discretisation of a manifold; this point of view highlights the fact that, as discrete ob-
jects, they allow a manifold to be approximately represented on a computer machine.
One could alternatively view a simplicial complex as a decorated graph, i.e. a graph
to which one adds higher-dimensional features by the same attaching mechanism
that is commonly used for edges and vertices.

Simplicial complexes come in essentially two flavours, foreshadowed above: they
can be endowed with geometric information, by being embedded in some R" and
built from a set of its points; this flavour mostly reminds the reader of the manifold
metaphor. Or they can be regarded as purely combinatorial objects, that do not live

in any particular space and only encode adjacency information; this is instead the
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graph-theoretic flavour.
We shall begin to describe them from the geometric point of view, and later see how

the abstract case generalises it.

Definition 26. (Geometric independence) k + 1 points vy, ...,V in the affine space

R" are said geometrically independent if the vectors vgv; are linearly independent.

Notice the definition does not depend upon the ordering of the points.
The convex hull of points vy, ...,V is the set of their convex combinations, 1.e. of

sums of the form

k k
Z Av; where A4, >0 and Z Ai=1
i=0 i=0

Convex combinations generalize the concept of weighted averages.

Definition 27. (Simplex) A k-simplex is the convex hull of k+ 1 geometrically
independent points.

For a k-simplex ¢ we write dim o = k and say that the dimension of o is k.

As a consequence of the property of geometric independence of points vy, ..., Vg,
the parameters A;’s form a set of coordinates for the points belonging to a simplex,
called barycentric coordinates.

The convex hull of a single point is the point itself, and that is a O-simplex. For two
geometrically independent (i.e. distinct) points, their convex hull is a segment, which
settles the case for 1-simplices. Geometric independence of three points amounts to
non-collinearity, therefore a 2-simplex is a triangle. Finally, four points not lying on
the same plane are geometrically independent, therefore 3-simplices are tetrahedra.
Higher-dimensional counterparts eventually fail our intuition.

So a geometric simplex o is the convex hull of a set of points. The convex hull
of a (non empty) subset of the points of ¢ is another simplex, which we call a
face of 6. We write T < 0 to mean that 7 is a face of o, and conversely o is a
coface of T (0 = 7). Notice a face is guaranteed to be a simplex because a subset of
geometrically independent points is again geometrically independent.

Simplices are arranged together to form the landscape of applied topology, but that

arrangement requires some assumptions
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Definition 28. (Geometric simplicial complex) A (geometric) simplicial complex K

is a set of (geometric) simplices such that

1. fcoeKand 7T <0, then 7 € 0.

2. If 0,7 € K then their intersection is either empty or a face of both.

The first property requires that no building block is left hanging, i.e. that if a block of
a certain dimension exists in the complex then all of its lower dimensional sub-blocks
are also present. The second property requires proper gluing between blocks, i.e.
that no two elements in the complex intersect along missing sub-objects.

Geometric complex are generalized by the notion of abstract simplicial complexes,
whereby we drop the assumptions about the basic building blocks being points in
a space R" and instead assume the existence of a base set of elements that we call

vertices.

Definition 29. (Abstract Simplicial Complex) Let V be a finite set, whose elements
we call vertices. Consider its power set 2, as a poset ordered by subset inclusion C.

An abstract simplicial complex on V is a downward-closed family of subsets of 2.

We see that in the definition of abstract simplicial complex we retain the requirement
that the complex be closed under restriction. On the other hand, we do not need to
enforce that the geometric intersections and the set-theoretic intersections agree, as
we have dropped the geometric information altogether.

The two notions are somewhat dual: given a geometric complex, it suffices to add
to V an element v for each vertex v, and an abstract simplex {vy...V;} for each
geometric simplex that is the convex hull of points vy...v¢. That is, an abstract
simplicial complex simply forgets the geometric information.

Dually, given an abstract complex K, it suffices to embed each element of V into a
point in space, so that the image of this map is geometrically independent. Then,

Definition 30. (Geometric Realization) The geometric complex obtained by con-
sidering the convex hulls of the image of each element of K is called a geometric
realization of K, denoted by |K]|.
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Definition 31. (Subcomplex) Given an abstract simplicial complex K, a subset
K’ C K which is itself a simplicial complex is called a subcomplex of K. We write
K <K.

Definition 32. (k-skeleton) We call the k-skeleton of a simplicial complex the set of
its k-simplices.

2.0.4 Homology

Homology is a topological tool which provides invariants for shape description and
characterization. It relies on associating an algebraic object to the topological or
possibly geometrical objects that we have seen above. This allows to recast questions
about geometry as questions involving linear algebra, a subject that is amenable to

being handled by a computing machine.

Let K be a finite abstract simplicial complex. The first step requires that we fix an

orientation on its simplices. We recall a simplex is a set ¢ = {vq, ..., v}

Definition 33. (Orientation) An orientation on a simplex is an equivalence class of

permutations of its vertices up to parity, denoted by [vg...vg].

So, for any simplex there exist only two possible orientations. An oriented simplex is
a simplex together with a specified ordering of its vertices. We will write an oriented
simplex as [vg...vg], so that one can speak of positive and negative orientations,
according to the parity of the permutation with respect to the given one. Given a
simplicial complex, it is possible to fix an orientation that is compatible with the face
relations. A standard way to give such an orientation is to give a total order on the
vertices, and orient each simplex monotonically.

The existence of a positive and negative orientation on each simplex allows for the
definition of an Abelian group of oriented k-simplices, where the only relations
are given by 0 + 7 =0 if and only if ¢ and 7 are the same simplex with opposite

orientation.

Definition 34. (k-chains) Let R be a (commutative, unital) ring and K an oriented
simplicial complex. We call the module of k-chains of K the free R-module over its
oriented k-skeleton, where the Abelian group structure is given as above. We denote
it by Ct(K,R).
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We will normally fix as the standard basis of the free module the one corresponding
to each oriented k-simplex.

Throughout the rest of this work, we will have the base ring actually be a field F,
normally the finite field of integers modulo 2. Therefore, k-chain will in fact form
an [F-vector space Cy(K,F), also denoted by Cy(K) when the base field is clear from

context.

The boundary operator connects each Ci(K) to Cy_1(K)

Definition 35. (Boundary operator) We call boundary operator the linear map of
free modules
O 1 Ce(K) — Cr1(K)

that acts on each basis element as

where [vg...7;...vy] denotes removing vertex v;.

Definition 36. (Chain complex) Given a finite, abstract, oriented simplicial complex

K, a chain complex is the sequence of free R-modules and morphisms

o) Oj—
L2 K) 2 (K) 2L e (k) s 0

where each chain group is mapped to the next one through the boundary operator.

Again, for the remainder of our discussion all of these modules will in fact form

[F-vector spaces. From now on, this assumption will be valid throughout.

Definition 37. (Cycles) The space of k-cycles is the subspace of C(K) given by
ker d, and is denoted by Z;(K).

Definition 38. (Boundaries) The space of k-cycles is the subspace of Ci(K) given
by Im Jj, 1, and is denoted by By (K).

Lemma 1. It holds that 001 = 0.

Proof. 1t suffices to repeatedly apply the definition. 0
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Therefore, Im d; | C ker d;, as vector subspaces. It therefore makes sense to consider

their quotient.

Definition 39. (Homology) We call k-homology group of K over a field I the
quotient vector space of Z(K) over By (K).

Hk(K,F) = ker&k / Im 8k+1

We will call two k-cycles homologous if they belong to the same homology class.
Roughly speaking, homology reveals the presence of “holes" in a shape. A non-null
element of H(K) is an equivalence class of cycles that are not the boundary of
any collection of (k+ 1)-simplices of K. Such classes represent, in dimension 0,
the connected components of complex K, in dimension 1, the holes punched in its

surface, in dimension 2, the voids or cavities, and so on.

Abstract simplicial complexes form a category Simp, whose morphisms are sim-
plicial maps. Simplicial maps (maps between simplicial complexes K and K') are
induced by a vertex map, i.e. a map of the 0-skeleton of K such that if a set of
vertices is a simplex in K, its image is a simplex in K’. These maps induce in the
obvious way a graded homomorphism between the chain complexes of K and K.
For every k > 0, homology in degree k over a field [F assigns to a simplicial complex
K an F-vector space Hi(K,F), i.e. an element of the category Vecty. This assign-
ment is in fact a functor: homology in degree & is a functor H; : Simp — Vecty,
which means that a simplicial map f : K — K’ induces uniquely a linear map of
[F-vector spaces between homology groups, denoted f* : H(K,F) — Hi(K',F), in
such a way that all squares commute.

2.0.5 Complexes from Data

Applying topological methods into data analysis requires methods to build simplicial
complexes from data. Here, we overview a few of the most employed schemes.

A metric space (respectively, extended metric space) is a pair (X,d), where X is a
set and d maps pairs of elements of X into R> (respectively R>g U {+oo}), with
the known properties: that d be symmetric, and zero only over all of the diagonal,

and satisfying the triangle inequality.
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A metric that satisfies all of the above, except possibly for the triangle inequality
is called a semi-metric. A pseudo-metric is a metric that is zero over all of, but not
necessarily only on, the diagonal of X x X.

In the following, we shall normally deal with data that comes in one of two forms: as
a discrete subset of a normed vector space R”, therefore as a metric subspace, called
a point cloud; or as a non-negatively weighted, undirected, self-loop free graph,
which forms a (pseudo-, semi-) metric space in itself. Crucially, one is eventually
presented with a matrix d; ;, encoding a dissimilarity measure between entities i and
J-

Once in possession of either a point cloud or a dissimilarity graph, several methods
exist to turn this information into topology. The nerve of a cover is the most classical

tool to turn a covering into a simplicial complex.

Definition 40. (Nerve Complex) Let S be a family of subsets of R”. We call the nerve
of S the simplicial complex N built by introducing a k-simplex for each non-empty

k-fold intersection between elements of S.

It is immediate to see that NV is indeed a simplicial complex.

Under suitable conditions on the family of subsets S, some version of the nerve
lemma applies, guaranteeing that the topology of the nerve is "close" to the topology
of the union of S.

Now assume a point cloud Q is given in R”, let € > 0, and consider as a family S¢

the set of closed balls of radius € centered at each point of Q.

Definition 41. (Cech Complex) We call the Cech complex of point cloud Q at scale
¢ the nerve of the above cover S, denoted by Ce(Q).

Due to the symmetric nature of balls in R”, the Cech complex can equally be built
just by knowing the distance matrix d; ;.

Given the good properties of closed balls in R", the nerve lemma applies for the
Cech complex; however, in practical applications it is often too expensive to compute
the nerve of a large point cloud, as checking k-fold intersections requires a number
of distance evaluations that grows as the k™ power of the number of points.
Another option, which instead requires the knowledge of an embedding of the point

cloud Q into its ambient space R”, is the Alpha complex.

Definition 42. (Voronoi cell) [11] Given a point cloud Q in R" and x € Q, the

Voronoi cell of x is the set of points of R” for which x is the closest among all points
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of 0.
V) :={yeR"/[y—x| <|y—zl, z€ 0}

The collections of the Voronoi cells of the points in Q is the Voronoi diagram of Q.

Let V(p) be the Voronoi region associated to point p in Q, and consider the closed
¢-balls around p as above. Let A := o Be(p) NV (p).

Definition 43. (Alpha Complex) The alpha complex of point cloud Q at scale € is
the nerve of cover A, denoted A¢(Q).

Another option to simplify the association of a complex to data is the flag complex.
The issue of checking all k-fold intersections is solved by stopping at k = 2, and then
including all simplices that are compatible with that edge structure. Consider any
graph G over a set of vertices as the 0- and 1-skeleton of a simplicial complex

Definition 44. (Flag Complex) The flag complex of G is the largest simplicial
complex that is compatible with that 1-skeleton.

Now let € > 0, consider as above a point cloud Q, and the family of closed balls
S:=UpepBe (p). Consider the graph obtained by applying the nerve construction to
S, up to dimension 1. In other words, let G be the graph over the set Q considered as
vertices, and containing an edge (i, j) if and only if the distance between points i and

Jj does not exceed 2€.

Definition 45. (Vietoris-Rips Complex) The Vietoris-Rips complex of Q at scale €
is the flag complex of the above graph G.

Notice that all of the above constructions depend on the choice of a value for param-

eter €. This property will be crucial in the next section.

2.0.6 Persistent homology

Definition 46. (Filtration) A filtration of simplicial complex is a functor F from a
poset category into the category of simplicial complexes, that assigns to every arrow
u < v in the poset the inclusion F(u) C F(v).
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By functoriality, the inclusion between step u and v factors through any intermediate
step.

The filtrations we will consider map from a totally ordered set, typically either the
real numbers (R, <) or a finite, discrete, linearly ordered set such as a subset of the
naturals ([n], <).

One can equivalently consider the inclusions F(u) C F(v) as injective maps i :
F(u) — F(v). Calling a generic poset (P, <), a filtration is a diagram of type (P, <)

in the category of simplicial complexes, denoted as Simp(P <),

Several ways exist to construct filtrations of simplicial complexes.

Definition 47. (Filtering Function) Let K be a simplicial complex. A filtering
function f on K is a real-valued function such that if 7 < o in K, then f(7) < f(0).

Example 1. (Filtration from a filtering function) Let K be a simplicial complex,
and f a filtering function on K. For each r € R, the preimage f~!((—oo,r]) is
a simplicial complex by the definition of filtering functions, and further if r <'s
then f~!((—oo,7]) € f~'((—o0,s]). This is a functor from the poset of inclusions
(—oo,r],C (—oo,s] into simplicial complexes, mapping inclusion of intervals into
the inclusion K" C K* (where we denote by K" the sublevel set f~!((—oo,])). It
is a functor F from the poset (R, <) into simplicial complexes, and specifically a
filtration.

Definition 48. (Sublevel set filtration) A filtration built as above is called a sublevel

set filtration.

Example 2. (Cech and Vietoris-Rips filtrations) Let Q be a point cloud, and for each
& > 0 consider the Cech complex C¢(Q) and the Vietoris-Rips complex VR (Q). For
each arrow in the poset of the reals & < &’ consider the inclusions C¢(Q) C C¢/(Q)
and VR (Q) C VR.(Q). These assignments constitute a functor from (R, <) into
Simp, i.e. filtrations, and are called respectively Cech and Vietoris-Rips filtrations.

So a filtration is a (type of) functor from a poset into simplicial complexes, and
homology can be construed as a functor from simplicial complexes into F-vector
spaces (Bubenik Categorization of PH). Combining the two yields the notion of

persistent homology.

Definition 49. (Persistence module) Let F be a filtration of simplicial complexes.
We call k& persistence module the composition of F with the k™ homology functor



24 Background

PHk = Hko]:

A persistence module is therefore a diagram of vector spaces indexed by a poset,
such as Vect](FR’S) or Vect]%[n]’g).

In particular, the k-homology functor induces a map i, for each inclusion iy, :
F(u) — F(v). These induced maps are what is used to define persistent homology

groups.

Definition 50. (Persistent homology groups) We call k™ persistent homology group
from step u to step v the vector space

PH(u,v) := Im i,

Space PH;(u,v) is generated by those homological features that existed at step u,

and are not mapped to zero along the path into v. We say that are still alive at v.

An N-indexed persistence module is called tame if only a finite number of in-
duced maps iy, , = HyJF (u < v) are not isomorphisms, and each H;JF (u) is finite-
dimensional. For an R-indexed persistence module, we say a value u is regular
if there exists an open interval containing u where the map iy ,, is an isomorphism
for each x,y in the interval; u is called critical otherwise. An R-valued persistence
module is tame if each step is finite-dimensional and the set of critial values is finite.
Notice that if a real-indexed persistence module is tame, then one can regard it
essentially as if it were indexed on a discrete, finite set [n]. The same applies to
N-indexed modules. We will deal in practice only with this type of objects.

The name persistence module is also employed to describe different incarnations
of the same concept. As well as a functor from posets into vector spaces, one can
equally regard a tame persistence module as a family of vector spaces connected by
morphisms, as in [12].

Definition 51. (DAPM, [12]) A discrete algebraic persistence module (DAPM for
short) is a pair M = (M;,¢; ;) for i,j € Nand i < j, where @; ; : M; — M;, ¢;; is
the identity and for any three steps i, j, h the maps factor functorially.
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The two concepts of persistence module are indeed equivalent ([13]).
The fundamental theorem of persistent homology, due to Zomorodian and Carlsson,
is what allows to employ tools in representation theory to make computations about

persistence modules.

Theorem 3. (Zomorodian-Carlsson, [8]) The category of tame DAPM over a field F

is isomorphic to the category of F[x]-modules.

The correspondence is given as a functor « that associates to the DAPM M a graded
[F[x]-module a(M), obtained by considering the direct sum of homogeneous com-
ponents @, M;, and setting the action of x on any homogeneous, degree-i, element
m; as x m; = @; i+1(m;). In words, multiplication by x sends each element forward

one step along the graded maps.

Corbet and Kerber ([12]) generalize this result to persistence modules over a ring R,

with the additional requirement that the persistence module be finitely presented.

This result is of primary importance, because it allows to leverage the theory of
graded module, and specifically the structure theorem (2.4). Implied by this result is
the fact that every persistence module is completely described up to isomorphism,
by a set of numbers. These pairs are either of the form (o;, o), which are called
essential pairs and correspond to the free generators in the decomposition theorem,
i.e. to zero elements in the Smith Normal Form of a module presentation, or of
the form (B;, B; + 7;) (more frequently denoted by (b;,d;)), which are instead called
regular pairs and correspond to torsion elements in the module. Their corresponding
entry in the Smith Normal Form is non-zero, and we distinguish between the cases
where it is a non-invertible element, which gives rise to a non-degenerate pair, and
the case where it is a unit, giving rise to a zero-persistence pair (b;,b;). The latter

correspond to surplus generators, and are normally discarded.

Definition 52. (Persistence diagram) We call persistence diagram the set of persis-

tence pairs as above.

It is a multiset of points in R?, lying above the main diagonal. An equivalent
representation is called the barcode, consisting of a set of horizontal bars, one for
each pair, spanning from b; to d; on the x-axis.
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Fig. 2.1 (a) An example of Vietoris-Rips filtration of simplicial complexes with parameter
€, and the corresponding barcode for 0- and 1-dimensional persistent homology. (b) The
persistence pairs of the above filtration. (¢) Two equivalent representatives of the (only)
generator of PH|.

Notice all this works k by £, but it is commonplace to consider persistence diagrams

or barcodes containing pairs coming from homology in several dimensions.

2.0.7 Interval Modules and the Krull-Schmidt decomposition

Definition 53. An interval module is a diagram Z; in Vect!"=) of the following

form: let / be an interval in R; to each element x € R the functor Z; associates

() F ifxel
1\X) =
0 otherwise
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and to each morphism x <y

Idp ifx,yel
Li(x<y)= .
0 otherwise

A similar definition can be given for integer intervals, where we substitute for / the
set [b,d] = {b,b+1,...,d}, possibly with d = 0.

A module M is called indecomposable if no two nonzero submodules exist such that
their direct sum is M. A submodule N of M is called a summand if there exists a
nonzero submodule N’ of M such that M = N & N'.

Interval modules are indecomposable as persistence modules. ([14]). The structure
theorem for persistence modules entails that any persistence module can be decom-
posed into a direct sum of indecomposables, and that these indecomposables are
exactly the interval modules as above. Furthermore, by the Krull-Remak-Schmidt
theorem, this decomposition is unique up to isomorphism and up to a reordering of
the terms.

A persistence module is called of finite type if it allows for a direct sum decomposi-
tion into interval modules. For persistence modules over a totally ordered set, this is

equivalent to a persistence module being tame.



Chapter 3
Canonicity of Homology Generators

This chapter is based on work that I carried out together with my supervisor Francesco
Vaccarino, in collaboration with Alessandro de Gregorio, Ulderico Fugacci and
Giovanni Petri.

The main focus of interest is the following: within topological data analysis, a
well-developed pipeline exists to extract from data a topological summary, in the
form of a persistence module, or its numerical description such as the barcode or
persistence diagram. However, this description misses an important piece of the
puzzle; homology essentially describes a pattern of obstructions to connectivity,
and the existence of non zero homology classes points to the presence of such
obstructions.

The very nature of homology, however, is that of an equivalence class of cycles
within a simplicial structure obtained from the data. As humans, instead, we build
intuition about the data at hand based on the actual cycle, and not equivalence classes
of those. In other words, the process of computing a quotient by which homology is
constructed identifies cycles on the basis of their topological relations, but in doing
so mixes together a potentially very large number of objects that, depending on the
context, could instead convey very different meaning.

This problem is sometimes called localization of homology. It essentially boils down

to considering the preimage of the quotient map

[+ Zk — Hy
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that associates to a cycle ¢ € ker dg its homology class [c] € Hy. The cycles corre-
sponding to a homological equivalence class are called representatives, or represen-
tative cycles. Working with vector spaces, we can equally regard the above as a map
from the k-chains into homology, and therefore stating the problem as follows: how
can we choose good representatives of homology classes? That is, good (in some
sense) k-chains to depict each homology class as an actual subset of the simplicial
complex?

The problem has received attention in recent years. It is clear that not much interest
can be devoted to the zero-dimensional case, as representatives of connected compo-
nents are straightforward.

Aside from that, one first criterion that comes to mind when tackling this problem is
obtaining a set of representatives that achieves some sort of geometric minimality.
For example, for geometric simplicial complex one can associate to each cycle a
measure, like an area for cycles in the plane, or a volume for cavities in space. Even
when lacking an explicit embedding of the complex in the space, one can always
consider the pairwise dissimilarities between vertices, and associate to each cycle a
notion of length. This is possible even when lacking a dissimilarity measure, by just
considering the hop distance on a graph. Finally, without requiring knowledge of
an embedding, but with the request that our data forms a metric space, approaches
have emerged that try to leverage the concept of minimum spanning tree to build
representatives of "small" size.

The computation of a minimal "basis" (where by basis we mean a set of cycles whose
homology classes span the whole homology vector space) has been proven to be a
complicated problem. When considering dimension 2 and above, it has been shown
by Chen and Freedman that the problem is NP-complete ([15]). The case remained
open for dimension 1, until polynomial algorithms started to appear for the task.
This is the avenue that we have followed in the construction of our minimal scaffold.
Another approach that has been employed for the task of choosing generators in
a non-arbitrary manner concerns the case when data falls under the hypotheses of
Alexander duality. This result provides an isomorphism between (co)homology in
dimension 0 and n — 1; since, as already mentioned, choosing representatives in
dimension zero is trivial, this provides a principled solution for this particular case.
In the remainder of the chapter we will consider this problem, focusing especially
on the case of the bases of minimal length, while also touching on some of the

other approaches. We have begun our work by putting together a working imple-
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mentation of an algorithm that computes a minimal homology basis, inspired by
an applicative question: representative cycles of (persistent) homology classes had
found fruitful use in data analysis, but could we provide a principled choice for said

representatives?
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3.1 Network skeletonization via Minimal Homology

Bases

The question from which the minimal scaffold project stemmed was rooted in the
application of complex network theory to neuroscience.

Network science has long represented the cornerstone theory in dealing with com-
plex, heterogeneous multi-agent systems. Network descriptions have found wide
applications and had a significant impact on a wide range of fields ([16, 17]), in-
cluding social networks ([18, 19]), epidemiology ([20, 21]), biology ([22, 23]), and

neuroscience ([24-26]).

Recently, new approaches to the analysis of networks and, more generally, complex
interacting systems have emerged which leverage topological techniques ([27-30]),

and most notably persistent homology.

Indeed, the range of fields into which TDA has found applications spans material
science ([31, 32]), biology and chemistry ([33-39]), sensor networks ([40]), cosmol-
ogy ([41]), medicine and neuroscience ([42-50]), manufacturing and engineering
([51-53]), social sciences ([54, 55]), computer vision ([56-58]), and network science
itself ([59-65]).

The theory of persistence has recently been proposed as a framework for the topolog-
ical skeletonization of spaces, particularly weighted graphs and networks ([66—69]).
In [47], the generators of persistent homology are used to build one instance of
network skeletonization called homological scaffold. This method has a serious
drawback, consisting in the large degree of arbitrariness in the choice of one repre-
sentative cycle from the many equivalent generating cycles of the same homology
class. This pitfall is a direct consequence of the homology classes being equivalence
classes, and it affects any attempt to localize cycles ([70, 49]). Minimal homology
bases, as remarked above, have been investigated in the literature ([71, 72]), but
a real breakthrough has only come thanks to the introduction of the first efficient
algorithm for the computation of bases in dimension one ([73]). Here, we set out
to address the issue of giving a principled definition of the scaffold by searching
for a form of canonicity in the choice of generators, namely by computing minimal
representatives of homology bases.

Next, we leverage said minimal bases to propose a new approach to network skele-
tonization, the minimal scaffold, which largely overcomes the limitation of the
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previous one. While the minimal scaffold is not unique in the most general case
possible, we provide strong guarantees and caveats on when and to what degree it is
well-defined. This constitutes the main methodological contribution of this section.
Then, we capitalize on the properties of the novel framework: as remarked in the
chapter’s introduction, having reliable representatives when dealing with neuro-
science data can provide information that is actually interpretable by an expert of the
field. We will showcase as application an analysis of this type.

We finally conclude the section by addressing one last question. The construction
proposed here is provably more reliable than the previous, loose one, but this comes
at a significant computational cost. In the light of this we foresee that it could be of
value to verify whether, in some circumstance, the two constructions (the minimal
and the loose scaffolds) are statistically related, so that the easy-to-compute one
can be approximately used as a proxy of the minimal one. We provide heuristic
evidence that, for a range of popular random models, the two objects are sufficiently

well-related.

3.1.1 The homological scaffold

The homological scaffold originated from the intuition that traditional, graph-
theoretical tools in network analysis were naturally able to capture significant prop-
erties of a network ([74]), but proved not as effective in detecting multi-agent and
large-scale interactions. Interest in searching for alternative descriptors of network
relations arose, and soon works were published which leveraged invariants offered
by computational topology ([75, 29, 28]).

In proposing the scaffold ([47]), the authors pointed out that the homological de-
scription is potentially able to summarize the network’s mesoscale structure, i.e.,
features existing at a scale in between the purely local connections and the global
statistic, to which previous methodologies were blind.

Furthermore, this structure could be analyzed over the continuous, full range of
interaction intensities, without the need for ad-hoc domain-specific thresholds.
Homological cycles intuitively describe obstruction patterns. The presence of non-
trivial homology within a given region of a network highlights its structure as
non-contractible, forcing signals to flow over constrained channels, which in turn

play the role of bridges.
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To test this intuition, the homological scaffold was computed from resting-state fMRI
data for 15 healthy volunteers who were either infused with placebo or psilocybin:
the scaffold discriminated the two groups, as well as providing meaningful insight as
to the impact of the psychoactive substance onto the pattern of information flow in
the brain [47].

Consider a non-negatively weighted finite graph W = (V,E,w) where w is a weight
function on the edges w : E — R™), and let F be a filtration of simplicial complexes
over the reals, constructed as follows: to each € € R, consider the graph W¢ :=
(V,E?), where E¥ is the set of edges e € E® if and only of w(e) < €. Then, F(¢€) is
the flag complex of W€, and the maps between them are the obvious inclusions.
Notice, furthermore, that as we deal with finite point clouds, it must hold that the
image Im w C R is a finite set. This implies the filtration can equally be considered as
indexed on a finite poset of the form ([n], <), with the bound n < |E|; consequently,
we can write F = {K%}7_,.

We can now consider PH| = HF of this weighted graph, that is a persistence module
in dimension 1. The finiteness hypothesis guarantees that the module is tame.

Let {b;} be a linearly independent set of generator cycles of PH; (W), as a module.
That is, consider a set of 1-chains that belong to Z;, that form a linearly independent
system, and whose linear span in PH; (W) is the whole persistence module.

Since we are over Zj;, each of the b;’s is completely identified by its support, which
is a set of edges of E. In particular, we can depict set {b;} as a matrix whose rows
are indexed by E and having the b;’s as columns. The sums of the rows, considered
as natural numbers as opposed to Z;, form a new weighting function on the edges
of W, the new weights counting precisely in how many persistent cycles an edge

appears along the filtration.

Definition 54. (Homological Scaffold) Suppose W and F as above, and consider
a linearly independent set {b;} of 1-dimensional generator cycles of the persistent

homology. Consider the function Ay : E + R™

hw =Y Loy, (3.1)
i

where by 1,¢), we denote the indicator function E — R™ such that 1,¢p,(¢') =1 if
¢’ appears in b;, and 0 otherwise.
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Then the homological scaffold of W is the weighted graph H (W) such that

- its vertex set coincides with the vertex set of W

- its edge set Ey is a subset of the edge set of W, consisting of edges with

nonzero value for Ay

- its weight func