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Abstract

This thesis work is centred around the subject of Topological Data Analysis, a
modern line of study that combines tools from algebraic and computational topology.
After the introduction, a background section introduces the basic concepts in category
theory, abstract algebra and algebraic topology to provide footing for the following,
which is split into two main chapters.
The first chapter generally deals with the topic of representative cycles for homology;
this responds to the intuitive idea of associating a shape to a homology class. Several
approaches exist to address the problem. In this chapter we present results about
minimal bases, that were employed to construct the so-called minimal scaffold, as
well as mixed approaches such as the homologically-persistent skeleton, and we
report preliminary ideas about the usage of Alexander duality to obtain canonical
representatives.
The second chapter is devoted to the exposition of work that was carried out regarding
the topic of the decomposition of persistence modules. In particular, we define a
notion of interval basis, a choice of generators whose interval modules generate the
direct-sum decomposition of the structure theorem, and which can be computed in
parallel. We provide several algorithms via different approaches for the computation
of an interval basis, and conclude the chapter with an exposition of the parallel
construction of persistent homology from a sequence of chain maps, in particular via
the Hodge Laplacian.
A brief section about future avenues of work concludes the thesis.
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Chapter 1

Introduction

Topological data analysis is a recent branch of mathematics that stemmed from the
intuition that classical tools in algebraic topology could provide valuable descriptors
for the analysis of data.
Its origins can be traced back to the late 90’s with works of Frosini, Edelsbrun-
ner and Robins, and it has witnessed a dramatic expansion within the last twenty
years, as it provides a mathematically rigorous and powerful set of tools. The key
idea of persistent homology, without question the foremost concept in TDA, is that
of studying the maps induced between homology spaces along a suitable filtered
topological space. The dynamic, evolutive, nature of this process is what made
persistent homology stand out as an unmatched instrument for shape description and
comparison. Furthermore, the broad scope of algebraic topology in terms of what
notions of space can be endowed with a description of their shape has made TDA
extremely flexible as to what types of data can be processed. The well-developed
theory of simplicial complexes is naturally suited for the analysis of discrete objects,
and real data is, in the vast majority of cases, a discrete set of measurements. At the
same time, under very reasonable hypotheses, the many different theories of shape
agree throughout a broad range of descriptions of their underlying space.
Key steps for the development of the theory were undoubtedly the formulation of the
algebraic characterization of persistence modules, and the stability results that soon
followed. A vast and mathematically intriguing theory of multiparameter persistent
homology was formulated since the early days, and is currently the subject of intense
inquiry. A large body of work was devoted to the computational aspects of TDA,
bringing about numerous libraries and software packages, that make it into a reliable
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and nearly off-the-shelf methodology for the applications.
In its maturity years, TDA has been given a rigorous footing within category theory
and algebra, and its concepts have gained mathematical status per se, even being
applied in pure mathematics. It was soon clear that methods needed to be developed
to interface TDA with classical machine inference tools. The large thread of vec-
torization methods responded to precisely that need, and indeed TDA began to find
use in a host of different applicative context. Nowadays, it interfaces with subjects
as diverse as neuroscience and random graphs, material science and cosmology,
genomics and complex networks.
The current research on TDA is active in essentially each one of the branches we
have mentioned. Multipersistence, due to its wilder mathematical nature, is being
tackled from a range of points of view. The topology of random phenomena is
an involved and interesting line of research. Many efforts are in place to interface
computational topology with statistical inference, in terms of not just using topology
as a feature but of actually inferring about the topology. Along the same line, in the
last 4 or 5 years there was a surge of works exploring the many ways in which TDA
can be interfaced with machine learning, as a method of explicating how obscure
neural networks black boxes work, or as a regularization strategy, and even as a loss
function per se.

The purpose of this thesis work is to narrate some of the avenues that I pursued during
the course of my PhD. It will contain material at different stages of development,
while many topics have, for different reasons, been left out.
The first chapter (actually chapter 2) is devoted to a brief survey of the mathematical
background that will be used in the rest of the thesis, mainly to fix the notation
and provide pointers to reference texts or papers. While starting relatively from the
basics, it has no pretence to be entirely self-contained.
The following chapter deals with the topic of homology representatives. A homology
representative for a class is a choice of a cycle belonging to that class, among
the possibly many. This choice is notoriously ambiguous, and many different
criteria can be put in place for it, but the significance of this choice can be of great
importance when the applicative information lays into the actual cycles and not in
their equivalence classes. Tracing back topological information onto the cycles then
becomes crucial for applications. In there, we will present some applications of the
algorithm by Dey concerning minimal homology bases, which are sets of cycles
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which collectively span H1 and whose total length is minimal among all possible
choices. We have implemented that algorithm and used it to define a method of
network skeletonization called the minimal scaffold. We will describe its properties
and how the method can find valuable application in neuroscience. Then, we describe
a mixed-approach for metric spaces called the homologically-persistent skeleton,
study some of its properties and propose an own version to compare with the previous
approach. Finally, we describe some preliminary ideas towards using of Alexander
duality to find canonical representatives.
The next chapter deals with the topic of persistence module decomposition. In there,
we propose the concept of an interval basis, that is a "special" choice of generators for
a persistence module, such that each generates the direct summand interval module
given by the structure theorem decomposition. We propose a sequence of approaches
to the computation of an interval basis, and compare their scope and their cost. In
particular, we propose a parallel algorithm that leads from a persistence module to
an interval basis, from which it is immediate to read off the barcode. In this sense,
the proposed approach is an extension of the computation of persistent homology.
We subsequently specialize the discussion to the topic of persistence modules arising
from the homology functor, hence setting off not from a persistence module but
from a map of chain complexes. In particular, we show the construction of a parallel
pipeline to compute persistent homology via the Hodge Laplacian.
A brief survey of future directions concludes the thesis.



Chapter 2

Background

2.0.1 Elements of Category Theory

We start by introducing a few basic notions in category theory, encompassing many
of the later concepts in an elegant framework. Categories are universes that collect
all objects of a certain kind, together with relations between them. One can then
develop a concept of relations between relations, and relations between relations of
relations, and so forth. This abstraction process leads to the concepts of functors,
natural transformations and eventually higher categories. It has been postulated that
natural transformations were the intuition that first sparked the birth of category
theory, with functors being the object onto which they could be defined, and with
categories being the ground object onto which to define functors. Good entry points
for category theory are [1, 2] (or the joy of cats),[3] for a more advanced treatment).

Definition 1. (Category [3]) A category C is a collection (in general a class) of
objects, denoted by Ob(C), such that

• ∀ a,b ∈Ob(C) there exists a collection (in general a class) HomC(a,b) whose
elements are called morphisms or arrows.

• For each a, the hom-set HomC(a,a) contains a distinguished element called
the identity Ida

• There exists a composition function ◦

◦ : HomC(b,c)×HomC(a,b) −→ HomC(a,c)
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for any triplet of objects a,b and c.

• Composition must be compatible with identities, i.e. for every f ∈HomC(a,b)
it must hold

f ◦ Ida = f and Idb ◦ f = f

• Composition must be associative, i.e. for any three composable morphisms
f ,g and h it holds

f ◦ (g◦h) = ( f ◦g)◦h

An important type of categories are the so-called small categories: those for which
objects and morphisms form a set and not a proper class. A category is at least
locally small if, for every fixed source a and target b, HomC(a,b) is a set. Many
important categories are large (that is, not small), but are locally small.

Example. The category Set, whose objects are sets and whose morphisms are
functions between sets. The category VectF, whose objects are vector spaces over
F, and whose arrows are linear maps. These categories are not small, but they are
locally small. A partial order on a set P, denoted (P,≤), is represented as a category
whose objects are the elements of P, and such that there is a morphism from p→ q
for each relation p≤ q in the poset.

The relations between categories are given in the form of functors, i.e. associations
between the objects and morphisms of one category to those of another satisfying
certain precise requirements. Functors are analogies between different universes
(different categories) made precise by the present framework.

Definition 2. (Functor, [1]) Let C and B be two categories. A covariant functor
F : C→ B is a pair of functions that assign to each object of C an object of B, to
each morphism in C a morphism in B, and such that identities are sent to identities
and each composable pair of morphisms in C is sent to a composable pair in B, with
the composition of images equal the image of the composition. In symbols

• F : Ob(C)→ Ob(B) ; a 7→ Fa

• F : f ∈ HomC(a,b) 7→ F f ∈ HomB(Fa,Fb)

• F Ida = IdFa
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• Every time that f ◦ g is defined for morphisms f ,g in C, then F f ◦Fg is
defined in B and it holds

F f ◦Fg = F( f ◦g)

We will simply say "functor" to mean a covariant functor. The notion of contravariant
functor is the same with the exception that

F : f ∈ HomC(a,b) 7→ F f ∈ HomB(Fb,Fa)

and consequently the composition Fg ◦F f is defined every time f ◦ g exists (the
functor must still commute with composition). In other words, a contravariant functor
is a functor that reverses every arrow from one category to the other.

Definition 3. (Forgetful functor, [1]) The forgetful functor, often denoted by U , is
a functor that "forgets" some or all of the additional structure on a set. As such, it
associates for example to a group its underlying set and to group morphisms the
corresponding functions; or to a ring the abelian group it contains.

Definition 4. (Diagram) The collection of all functors between two categories C
and B is often denoted as BC, and one such functor is sometimes called a diagram of
type C.

Example. Poset categories such as (R,≤) or ([n],≤) provide an important example
of diagrams of type R or [n] respectively. Diagrams of this type with value in
the category VectF of finite-dimensional F-vector spaces correspond precisely to
persistence modules.

Natural transformations are to functors what functors are to categories:

Definition 5. (Natural Transformation, [1]) Given two functors F,G : C→ B
between two fixed categories, a natural transformation τ is a function that associates
a morphism in B to each object of C, in such a way that all possible squares commute.
In symbols

• τ : a ∈ Ob(C) 7→ τa ∈ HomB(Fa,Ga)

• ∀ f ∈ HomC(a,b) it holds that the following diagram
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F(a) F(b)

G(a) G(b)

F( f )

τa τb

G( f )

is commutative, i.e. τb F( f ) = G( f ) τa.

Informally, the existence of a natural transformation between functors F and G
asserts the existence of all the required arrows in the target category to "transform"
the action of F into the action of G while respecting the composition structure.

2.0.2 Notions of algebra

Many algebraic concepts are involved in the constructions of topological data anal-
ysis. Here, we recall some of these notions to fix definitions and notations. For
module theory and linear algebra in general, we refer to [4].

Algebraically, a free object is the most general instance of an algebraic structure built
on a given set, i.e. one containing the given set and satisfying only the axioms of that
specific structure. The notion can be expressed in purely categorical terms, where a
free object on set X is built via the free functor, that informally is the most general
functor that can undo the action of the forgetful functor. First, let us introduce the
notion of full anf of faithful functors.

Definition 6. (Full and faithful functors) A functor F : C→ D is called full iff for
every morphism g in D there exists a morphism f in C such that g = F( f ). It is
called faithful iff for every pair of parallel morphisms f1, f2 in C (i.e. morphism
between the same two objects) it holds that F( f1) = F( f2) implies f1 = f2. When
both apply, we call F a fully faithful fuctor. In other words, a full functor is surjective
on Hom-sets, a faithful funtor is injective on Hom-sets, and a fully faithful functor is
a bijection of Hom-sets.

Definition 7. (Free object) Let C be a concrete category, that is a category that
admits a faithful functor U into Set, and let X be a set. A free object on X in
C is an object A with the following universal property: for every injective map
i : X ↪→U(A), for every object B in C and for any morphism of sets f : X →U(B),
there is a unique morphism of sets g : U(A)→U(B) such that f factors as f = i◦g.
Diagrammatically:
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X U(A)

U(B)

i

f
g

In words, an object A in a concrete category C is free if there exists a "subset" X of
A such that for every object B in C, any set function X → B extends uniquely to a
morphism A→ B in HomC.

Definition 8. (Monoid) A monoid is a category with a single object.

Definition 9. (Group) A group is a monoid with inverse elements. I.e. for each
morphism there is a morphism that composes to the identity on the right, and one
that composes to the identity on the left.

Maps between groups must commute with the groups’ operations, as in f : G→ H
it holds that f (g+g′) = f (g)+′ f (g′). Together with these maps, groups form the
category of groups, Grp.

Definition 10. (Abelian group) We call a group Abelian if its operation is commuta-
tive.

Definition 11. (Free Group) A free group is a free object in the category Grp of
groups.

Definition 12. (Ring) [4] A ring is a set with two operations: (R,+, ·), such that
(R,+) is an Abelian group, (R, ·) is a monoid, and × distributes over + both on the
left and on the right.

Other customs exist: notably, the definition above is sometimes called a unital ring,
or ring with identity, and a more general definition of ring would only require (R, ·)
to be a semigroup, i.e. not necessarily contain an identity element. For our purposes,
every ring will be unital, so we include the requirement of an identity element into
the definition of ring.

Example. The integers (Z,+, ·), with sum and multiplication, are the prototypical
example of a ring (in fact, they are the initial object in the category Ring of unital
rings). Another typical example is the ring of polynomials in n variables with integers
coefficients Z[x1, . . . ,xn], with pointwise sum and multiplication.
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Definition 13. (Initial, terminal and zero object) [1] An object s ∈ Ob(C) is called
initial iff for every object c ∈ Ob(C) there exists exactly one morphism s→ c.
t ∈ Ob(C) is called terminal iff for every object c ∈ Ob(C) there exists exactly one
morphism c→ t. Initial and terminal object are unique up to unique isomorphism.
An object that is both initial and terminal is called a zero object.

It is customary to call a commutative ring a ring such that multiplication is also
commutative. Again, in all of the following we will only deal with commutative
rings, so unless stated otherwise, when we write ring we actually mean (in full) a
commutative ring with identity. Notice both the examples above are also examples
of commutative rings.
Unitary, although not necessarily commutative rings whose non-zero elements form
a monoid under multiplication are called integral domains, the key being that multi-
plications of non-zero elements yields non-zero elements. In other words, there are
no zero-divisors.
If additionally the non-zero elements form a group under multiplication, the ring is
called a division ring. A division ring is a non-commutative field. An element of a
ring that admits an inverse is called a unit. So a division ring is a ring such that all
non-zero elements are units.

Definition 14. (Field) A field F is a commutative ring such that multiplication admits
an inverse for every element, except for the additive identity. In other words, it is a
commutative division ring.

Example. The reals, the rationals, the complex numbers, and notably the integers
modulo p with p a prime number are examples of fields. Z2 in particular plays a
central role in most of TDA.

Finally, let us introduce a special type of ring that will play a key role in the
following. By ideal I of a ring R we mean an additive subgroup that is stable under
multiplications by elements of R, i.e. such that ir ∈ I for every i ∈ I,r ∈ R.

Definition 15. (PID, [4]) We call Principal Ideal Domain (PID) a commutative unital
ring with no zero divisors (i.e. a commutative integral domain), such that every ideal
is principal, i.e. such that every ideal is of the form aR for some a ∈ R.

Principal ideals generalize the notion of ideals in the ring of integers, indeed a PID,
where every product-stable subgroup is the set of multiples of some integer number.
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Example. Polynomial rings over a field In the following, we will often consider the
ring of polynomials in n variables with coefficients in a field, F[x1, . . . ,xn]. This is a
unital, commutative ring. The case n = 1 is especially important, because F[x] is a
principal ideal domain.

Definition 16. (Module) [4] Let R be a ring (unital and commutative), with 1 its
multiplicative identity. A module M over R (or an R-module) is an Abelian group
(M,+), together with an action R×M→M, called scalar multiplication, with the
following properties: ∀λ ,µ ∈ R, ∀x,y ∈M

• λ (x+ y) = λx+λy

• (λ +µ)x = λx+µx

• λ (µx) = (λ µ)x

• 1x = x

Since we only deal with commutative rings, we do not define left and right modules.
Note that a ring R is an R-module over itself.

Definition 17. (Vector Space) Given a field F, a vector space V over F (or an
F-vector space) is an F-module.

So a vector space is a module over a field instead of a ring.
Modules and vector spaces are connected by linear maps. A linear map is a map
that commutes with linear combinations, i.e. one such that f (λ1v1 + · · ·+λnvn) =

λ1 f (v1)+ · · ·+λn f (vn) where the λ ’s are elements of a ring or a field, respectively.
Together with linear maps, R-modules form the category RMod, and F-vector spaces
form the category VectF.
The concept of free object also applies to R-modules.

Definition 18. (Free Module) A free R-module is a free object in the category
RMod.

Alternatively, for a free module F on set G, there exists a unique map h such that the
diagram
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G F

M

f

g h

is commutative for any R-module M and any mapping g. Intuitively, if a module is
free then maps from its underlying set can be used to fully determine maps from the
module itself.
If a module F is free (or more precisely the pair (F, f ) is a free module), then f
is injective. Furthermore, Im f is a basis of F , i.e. a linearly independent set that
generates it.
In fact, for an R-module possessing a basis is equivalent to being free. As such, every
vector space is a free module.

Given a subset G of a module M, we say that G generates M if the linear span of G,
i.e. the module of the linear combinations of elements in G, equals M. The elements
of G are called generators.

Definition 19. (Finitely generated module) We say a module is finitely generated if
it admits a finite set of generators.

Grading The concept of grading denotes the existence of a direct sum decomposi-
tion of an object into "graded" subparts. Reference also [5–7].

Definition 20. (Graded Ring) An N-graded ring is a ring R for which one has a
direct sum decomposition

R =
⊕
i∈N

Ri

as Abelian groups, such that RiR j ⊂ Ri+ j, that is, the product of an element in Ri

with an element in R j is an element of Ri+ j.

An element of R belonging to some Ri is called homogeneous. Notice 0 is a homoge-
neous element. For a non-zero homogeneous element r ∈ R, there is only one i such
that r ∈ Ri, and we say r is of degree i. The degree of 0 is not defined.
A morphism of graded rings is a ring homomorphism ϕ : R→R′ such that ϕ(Ri)⊆R′i.



12 Background

Definition 21. (Graded Module) Let R be an N-graded, unital, commutative ring,
and let M be an R-module. M is graded if one has

M =
⊕
i∈N

Mi

as Abelian groups, and it holds RiM j ⊆Mi+ j

Notice that every module can be regarded as a (trivially-) graded module by setting
above M1 = M and Mi = {0} ∀i > 1. Notice also that a graded module can be given
different gradings.
A morphism of graded modules is an R-linear map ϕ : M→ N such that ϕ(Mi)⊆ Ni.
It is also referred to as graded morphism or graded map.
A basis of a graded module is required to be homogeneous, i.e. that each basis
element is homogeneous.
Graded modules together with graded maps form the category of graded modules
GRMod.

Shifting
Graded maps between graded modules are defined to be of degree zero, i.e. such

that grading is preserved when the map is applied. Therefore ([7]), two free, rank-1,
graded modules need not be isomorphic via a graded isomorphism: this could only
be the case if their generator was the same degree for both. One could define a
map of degree n, that is a graded map that sends elements of degree i to elements
of degree i+n. Or, as is standard ([8, 5]), one could define a shifted module in the
following way: let R be any ring,

R[−n]

is the free, graded module over one homogeneous generator of degree n, i.e. such
that homogeneous elements of degree n in R[−n] are the elements of degree 0 in R
(seen as a rank-1, free module over itself).

Presentations
As we said, free modules allow for a basis, i.e. a way to specify a map from the

free module F as a map from a set B. In the following, consider a finitely generated
module M over a principal ideal domain. Then M can be specified via a surjective
map µ from a free module G, called the module of generators
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G M
µ

Intuitively, map µ specifies how the generators of G map onto the target module,
that is what the linear dependencies are between the generators in the target object.
In particular, the kernel ker µ contains (if any) the relations that fully characterize
module M. The presence of relations between the generators indicates the presence
of torsion in M
ker µ is a subobject (a submodule) of G, and in particular it fits into a short exact
sequence of the form

0 ker µ G M 0i µ
(2.1)

Notice that, for any module M, many different such sequences may exist.
A complex of R-modules ([9]) is a sequence of R-modules Mi and maps Mi→Mi−1

such that Mi→Mi−1→Mi−2 is the zero map. A free resolution of an R-module M
is a complex of free R-modules that is exact, and such that M = coker (M1→M0).
We say a free resolution has length n if the Mi are non-trivial for 0≤ i≤ n and Mn is
zero.
Hilbert’s Syzygy Theorem ensures us that, since the ground ring is a PID, a free
resolution of M has length 1, which means that, in the sequence above, map i is
injective. This is the case for polynomial rings in one variable over a field (F[x]) that
encompass the theory of one-dimensional persistence.
Notice that, for polynomial rings in several variables, that are their counterpart in
multi-dimensional persistence and which do not form principal ideal domains, this
no longer holds: one could have that the map ker µ → G is not injective, hence has a
nontrivial kernel giving rise to further relations between relations, and possibly so
on.

Definition 22. (Presentation) Giving a presentation of M amounts to specifying a
short exact sequence as in 2.1

As mentioned above, ker µ specifies how the generators of M are related, or in other
words describe the torsion part in M. This way, a module can be expressed as the
coker of map i:

M ∼=
G

Im i
= coker i (2.2)

Definition 23. (Relations or Syzygies) The generators of ker µ (as a free submodule
of G) are called syzygies.
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In the case when the ground ring is not a PID, i.e. when a free resolution of M may
have length > 1, we call the relations between relations second syzygies, and so on
with third syzygies, etcetera.

Definition 24. (Minimal Presentation) A presentation is called minimal if module G
(and hence ker µ) is the smallest possible, in terms of the number of generators.

Notice that for a free module over a PID, all bases have the same cardinality.
All of the above can be cast in the language of graded modules, by requiring that
all of M, G and ker µ be graded, finitely generated modules over a PID, and that all
maps be graded morphisms. This is the case for the modules arising from persistent
homology.

Finding a module presentation
Finitely generated modules over principal ideal domains are particularly well-

behaved. Since the ground ring is especially tame, as is the case for F[x], the structure
of their modules can be described in an explicit manner, thanks to the following
theorem.

Theorem 1. Structure Theorem for modules over F[x], [4]

M ∼=
nF⊕
i=1

F[x] ⊕
nT⊕
j=1

F[x]/(α j) (2.3)

The above theorem states that a module can be decomposed into the direct sum of
nF copies of the free, rank-1 module F[x] (again seeing the ring as a module over
itself), plus a sequence of nT cyclic modules of order α j. This is the torsion part.
Further, this decomposition cannot be refined, as each term in the direct sum is easily
seen to be indecomposable (we call an R-module indecomposable if it cannot be
expressed as a direct sum of two non-zero submodules).
This decomposition is intimately related to a matrix canonical form known as Smith
Normal Form.

Definition 25. (Smith Normal Form) Let R be a PID. Let A be an n×m matrix with
entries in R. Then, there exist two square matrices M ∈ Rm×m and N ∈ Rn×n such
that NAM is diagonal, and its non-zero diagonal entries are such that αi|αi+1. Finally,
all zero entries appear at the end.



15

The diagonal entries are unique up to a unit, an invertible element of the ring.
The Smith normal form is a central result in linear algebra, and it condenses all the
information we can gather about a module over a PID, up to isomorphism.

A corresponding theory applies to the case of graded modules over F[x], which is
graded by polynomial degree

Theorem 2. Structure Theorem for Graded modules over F[x]

M ∼=
n f⊕

i=1

xαi F[x][αi] ⊕
nt⊕

j=1

xβ j F[x][β j]/(β j + γ j) (2.4)

and this instance is of central importance for topological data analysis, as we will see
in the following. A graded theory of the Smith Normal Form has also been advanced,
see for example [10]. This framework will prove relevant for our purposes, as the
role of grading is central for persistence modules.

2.0.3 Simplicial complexes

The most fundamental building block around which applied topology is constructed
is, arguably, the concept of simplicial complex. Simplicial complexes are discrete
topological, and possibly geometrical, objects, which encode a shape much in the
same way that an adjacency matrix represents a graph, i.e. by specifying how blocks
of a certain dimension are attached to blocks of the next.
From the most basic of points of view, one can think of a simplicial complex as a
discretisation of a manifold; this point of view highlights the fact that, as discrete ob-
jects, they allow a manifold to be approximately represented on a computer machine.
One could alternatively view a simplicial complex as a decorated graph, i.e. a graph
to which one adds higher-dimensional features by the same attaching mechanism
that is commonly used for edges and vertices.
Simplicial complexes come in essentially two flavours, foreshadowed above: they
can be endowed with geometric information, by being embedded in some Rn and
built from a set of its points; this flavour mostly reminds the reader of the manifold
metaphor. Or they can be regarded as purely combinatorial objects, that do not live
in any particular space and only encode adjacency information; this is instead the
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graph-theoretic flavour.
We shall begin to describe them from the geometric point of view, and later see how
the abstract case generalises it.

Definition 26. (Geometric independence) k+1 points v0, . . . ,vk in the affine space
Rn are said geometrically independent if the vectors ¯v0vi are linearly independent.

Notice the definition does not depend upon the ordering of the points.
The convex hull of points v0, . . . ,vk is the set of their convex combinations, i.e. of
sums of the form

k

∑
i=0

λivi where λi ≥ 0 and
k

∑
i=0

λi = 1

Convex combinations generalize the concept of weighted averages.

Definition 27. (Simplex) A k-simplex is the convex hull of k + 1 geometrically
independent points.

For a k-simplex σ we write dimσ = k and say that the dimension of σ is k.
As a consequence of the property of geometric independence of points v0, . . . ,vk,
the parameters λi’s form a set of coordinates for the points belonging to a simplex,
called barycentric coordinates.
The convex hull of a single point is the point itself, and that is a 0-simplex. For two
geometrically independent (i.e. distinct) points, their convex hull is a segment, which
settles the case for 1-simplices. Geometric independence of three points amounts to
non-collinearity, therefore a 2-simplex is a triangle. Finally, four points not lying on
the same plane are geometrically independent, therefore 3-simplices are tetrahedra.
Higher-dimensional counterparts eventually fail our intuition.
So a geometric simplex σ is the convex hull of a set of points. The convex hull
of a (non empty) subset of the points of σ is another simplex, which we call a
face of σ . We write τ ⪯ σ to mean that τ is a face of σ , and conversely σ is a
coface of τ (σ ⪰ τ). Notice a face is guaranteed to be a simplex because a subset of
geometrically independent points is again geometrically independent.
Simplices are arranged together to form the landscape of applied topology, but that
arrangement requires some assumptions
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Definition 28. (Geometric simplicial complex) A (geometric) simplicial complex K
is a set of (geometric) simplices such that

1. If σ ∈ K and τ ⪯ σ , then τ ∈ σ .

2. If σ ,τ ∈ K then their intersection is either empty or a face of both.

The first property requires that no building block is left hanging, i.e. that if a block of
a certain dimension exists in the complex then all of its lower dimensional sub-blocks
are also present. The second property requires proper gluing between blocks, i.e.
that no two elements in the complex intersect along missing sub-objects.

Geometric complex are generalized by the notion of abstract simplicial complexes,
whereby we drop the assumptions about the basic building blocks being points in
a space Rn and instead assume the existence of a base set of elements that we call
vertices.

Definition 29. (Abstract Simplicial Complex) Let V be a finite set, whose elements
we call vertices. Consider its power set 2V , as a poset ordered by subset inclusion ⊆.
An abstract simplicial complex on V is a downward-closed family of subsets of 2V .

We see that in the definition of abstract simplicial complex we retain the requirement
that the complex be closed under restriction. On the other hand, we do not need to
enforce that the geometric intersections and the set-theoretic intersections agree, as
we have dropped the geometric information altogether.
The two notions are somewhat dual: given a geometric complex, it suffices to add
to V an element ṽ for each vertex v, and an abstract simplex {ṽ0 . . . ṽk} for each
geometric simplex that is the convex hull of points v0 . . .vk. That is, an abstract
simplicial complex simply forgets the geometric information.
Dually, given an abstract complex K, it suffices to embed each element of V into a
point in space, so that the image of this map is geometrically independent. Then,

Definition 30. (Geometric Realization) The geometric complex obtained by con-
sidering the convex hulls of the image of each element of K is called a geometric
realization of K, denoted by |K|.
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Definition 31. (Subcomplex) Given an abstract simplicial complex K, a subset
K′ ⊆ K which is itself a simplicial complex is called a subcomplex of K. We write
K′ ⊴ K.

Definition 32. (k-skeleton) We call the k-skeleton of a simplicial complex the set of
its k-simplices.

2.0.4 Homology

Homology is a topological tool which provides invariants for shape description and
characterization. It relies on associating an algebraic object to the topological or
possibly geometrical objects that we have seen above. This allows to recast questions
about geometry as questions involving linear algebra, a subject that is amenable to
being handled by a computing machine.

Let K be a finite abstract simplicial complex. The first step requires that we fix an
orientation on its simplices. We recall a simplex is a set σ = {v0, . . . ,vk}

Definition 33. (Orientation) An orientation on a simplex is an equivalence class of
permutations of its vertices up to parity, denoted by [v0 . . .vk].

So, for any simplex there exist only two possible orientations. An oriented simplex is
a simplex together with a specified ordering of its vertices. We will write an oriented
simplex as [v0 . . .vk], so that one can speak of positive and negative orientations,
according to the parity of the permutation with respect to the given one. Given a
simplicial complex, it is possible to fix an orientation that is compatible with the face
relations. A standard way to give such an orientation is to give a total order on the
vertices, and orient each simplex monotonically.
The existence of a positive and negative orientation on each simplex allows for the
definition of an Abelian group of oriented k-simplices, where the only relations
are given by σ + τ = 0 if and only if σ and τ are the same simplex with opposite
orientation.

Definition 34. (k-chains) Let R be a (commutative, unital) ring and K an oriented
simplicial complex. We call the module of k-chains of K the free R-module over its
oriented k-skeleton, where the Abelian group structure is given as above. We denote
it by Ck(K,R).
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We will normally fix as the standard basis of the free module the one corresponding
to each oriented k-simplex.
Throughout the rest of this work, we will have the base ring actually be a field F,
normally the finite field of integers modulo 2. Therefore, k-chain will in fact form
an F-vector space Ck(K,F), also denoted by Ck(K) when the base field is clear from
context.

The boundary operator connects each Ck(K) to Ck−1(K)

Definition 35. (Boundary operator) We call boundary operator the linear map of
free modules

∂k : Ck(K)−→Ck−1(K)

that acts on each basis element as

∂k[v0 . . .vk] =
k

∑
i=0

(−1)i [v0 . . . v̂i . . .vk]

where [v0 . . . v̂i . . .vk] denotes removing vertex vi.

Definition 36. (Chain complex) Given a finite, abstract, oriented simplicial complex
K, a chain complex is the sequence of free R-modules and morphisms

. . .
∂k+1−→Ck(K)

∂k−→Ck−1(K)
∂k−1−→ . . .

∂1−→C0(K)
∂0−→ 0

where each chain group is mapped to the next one through the boundary operator.

Again, for the remainder of our discussion all of these modules will in fact form
F-vector spaces. From now on, this assumption will be valid throughout.

Definition 37. (Cycles) The space of k-cycles is the subspace of Ck(K) given by
ker∂k, and is denoted by Zk(K).

Definition 38. (Boundaries) The space of k-cycles is the subspace of Ck(K) given
by Im ∂k+1, and is denoted by Bk(K).

Lemma 1. It holds that ∂k∂k+1 = 0.

Proof. It suffices to repeatedly apply the definition.
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Therefore, Im ∂k+1 ⊆ ker∂k as vector subspaces. It therefore makes sense to consider
their quotient.

Definition 39. (Homology) We call k-homology group of K over a field F the
quotient vector space of Zk(K) over Bk(K).

Hk(K,F) = ker∂k / Im ∂k+1

We will call two k-cycles homologous if they belong to the same homology class.
Roughly speaking, homology reveals the presence of “holes" in a shape. A non-null
element of Hk(K) is an equivalence class of cycles that are not the boundary of
any collection of (k+ 1)-simplices of K. Such classes represent, in dimension 0,
the connected components of complex K, in dimension 1, the holes punched in its
surface, in dimension 2, the voids or cavities, and so on.

Abstract simplicial complexes form a category Simp, whose morphisms are sim-
plicial maps. Simplicial maps (maps between simplicial complexes K and K′) are
induced by a vertex map, i.e. a map of the 0-skeleton of K such that if a set of
vertices is a simplex in K, its image is a simplex in K′. These maps induce in the
obvious way a graded homomorphism between the chain complexes of K and K′.
For every k ≥ 0, homology in degree k over a field F assigns to a simplicial complex
K an F-vector space Hk(K,F), i.e. an element of the category VectF. This assign-
ment is in fact a functor: homology in degree k is a functor Hk : Simp→ VectF,
which means that a simplicial map f : K→ K′ induces uniquely a linear map of
F-vector spaces between homology groups, denoted f ∗ : Hk(K,F)→ Hk(K′,F), in
such a way that all squares commute.

2.0.5 Complexes from Data

Applying topological methods into data analysis requires methods to build simplicial
complexes from data. Here, we overview a few of the most employed schemes.
A metric space (respectively, extended metric space) is a pair (X ,d), where X is a
set and d maps pairs of elements of X into R≥0 (respectively R≥0 ∪ {+∞}), with
the known properties: that d be symmetric, and zero only over all of the diagonal,
and satisfying the triangle inequality.
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A metric that satisfies all of the above, except possibly for the triangle inequality
is called a semi-metric. A pseudo-metric is a metric that is zero over all of, but not
necessarily only on, the diagonal of X×X .
In the following, we shall normally deal with data that comes in one of two forms: as
a discrete subset of a normed vector space Rn, therefore as a metric subspace, called
a point cloud; or as a non-negatively weighted, undirected, self-loop free graph,
which forms a (pseudo-, semi-) metric space in itself. Crucially, one is eventually
presented with a matrix di, j, encoding a dissimilarity measure between entities i and
j.
Once in possession of either a point cloud or a dissimilarity graph, several methods
exist to turn this information into topology. The nerve of a cover is the most classical
tool to turn a covering into a simplicial complex.

Definition 40. (Nerve Complex) Let S be a family of subsets of Rn. We call the nerve
of S the simplicial complex N built by introducing a k-simplex for each non-empty
k-fold intersection between elements of S.

It is immediate to see that N is indeed a simplicial complex.
Under suitable conditions on the family of subsets S, some version of the nerve
lemma applies, guaranteeing that the topology of the nerve is "close" to the topology
of the union of S.
Now assume a point cloud Q is given in Rn, let ε ≥ 0, and consider as a family Sε

the set of closed balls of radius ε centered at each point of Q.

Definition 41. (Čech Complex) We call the Čech complex of point cloud Q at scale
ε the nerve of the above cover Sε , denoted by Čε(Q).

Due to the symmetric nature of balls in Rn, the Čech complex can equally be built
just by knowing the distance matrix di, j.
Given the good properties of closed balls in Rn, the nerve lemma applies for the
Čech complex; however, in practical applications it is often too expensive to compute
the nerve of a large point cloud, as checking k-fold intersections requires a number
of distance evaluations that grows as the kth power of the number of points.
Another option, which instead requires the knowledge of an embedding of the point
cloud Q into its ambient space Rn, is the Alpha complex.

Definition 42. (Voronoi cell) [11] Given a point cloud Q in Rn and x ∈ Q, the
Voronoi cell of x is the set of points of Rn for which x is the closest among all points
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of Q.
V (x) := {y ∈ Rn / ∥y− x∥ ≤ ∥y− z∥, z ∈ Q}

The collections of the Voronoi cells of the points in Q is the Voronoi diagram of Q.

Let V (p) be the Voronoi region associated to point p in Q, and consider the closed
ε-balls around p as above. Let A :=

⋃
p∈Q Bε(p)∩V (p).

Definition 43. (Alpha Complex) The alpha complex of point cloud Q at scale ε is
the nerve of cover A, denoted Aε(Q).

Another option to simplify the association of a complex to data is the flag complex.
The issue of checking all k-fold intersections is solved by stopping at k = 2, and then
including all simplices that are compatible with that edge structure. Consider any
graph G over a set of vertices as the 0- and 1-skeleton of a simplicial complex

Definition 44. (Flag Complex) The flag complex of G is the largest simplicial
complex that is compatible with that 1-skeleton.

Now let ε ≥ 0, consider as above a point cloud Q, and the family of closed balls
S :=

⋃
p∈Q Bε(p). Consider the graph obtained by applying the nerve construction to

S, up to dimension 1. In other words, let G be the graph over the set Q considered as
vertices, and containing an edge (i, j) if and only if the distance between points i and
j does not exceed 2ε .

Definition 45. (Vietoris-Rips Complex) The Vietoris-Rips complex of Q at scale ε

is the flag complex of the above graph G.

Notice that all of the above constructions depend on the choice of a value for param-
eter ε . This property will be crucial in the next section.

2.0.6 Persistent homology

Definition 46. (Filtration) A filtration of simplicial complex is a functor F from a
poset category into the category of simplicial complexes, that assigns to every arrow
u≤ v in the poset the inclusion F(u)⊆F(v).
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By functoriality, the inclusion between step u and v factors through any intermediate
step.
The filtrations we will consider map from a totally ordered set, typically either the
real numbers (R,≤) or a finite, discrete, linearly ordered set such as a subset of the
naturals ([n],≤).
One can equivalently consider the inclusions F(u) ⊆ F(v) as injective maps i :
F(u) ↪→F(v). Calling a generic poset (P,≤), a filtration is a diagram of type (P,≤)
in the category of simplicial complexes, denoted as Simp(P,≤).

Several ways exist to construct filtrations of simplicial complexes.

Definition 47. (Filtering Function) Let K be a simplicial complex. A filtering
function f on K is a real-valued function such that if τ ⪯ σ in K, then f (τ)≤ f (σ).

Example 1. (Filtration from a filtering function) Let K be a simplicial complex,
and f a filtering function on K. For each r ∈ R, the preimage f−1((−∞,r]) is
a simplicial complex by the definition of filtering functions, and further if r ≤ s
then f−1((−∞,r]) ⊆ f−1((−∞,s]). This is a functor from the poset of inclusions
(−∞,r],⊆ (−∞,s] into simplicial complexes, mapping inclusion of intervals into
the inclusion Kr ⊆ Ks (where we denote by Kr the sublevel set f−1((−∞,r])). It
is a functor F from the poset (R,≤) into simplicial complexes, and specifically a
filtration.

Definition 48. (Sublevel set filtration) A filtration built as above is called a sublevel
set filtration.

Example 2. (Čech and Vietoris-Rips filtrations) Let Q be a point cloud, and for each
ε ≥ 0 consider the Čech complex Čε(Q) and the Vietoris-Rips complex V Rε(Q). For
each arrow in the poset of the reals ε ≤ ε ′ consider the inclusions Čε(Q)⊆ Čε ′(Q)

and V Rε(Q)⊆V Rε ′(Q). These assignments constitute a functor from (R,≤) into
Simp, i.e. filtrations, and are called respectively Čech and Vietoris-Rips filtrations.

So a filtration is a (type of) functor from a poset into simplicial complexes, and
homology can be construed as a functor from simplicial complexes into F-vector
spaces (Bubenik Categorization of PH). Combining the two yields the notion of
persistent homology.

Definition 49. (Persistence module) Let F be a filtration of simplicial complexes.
We call kth persistence module the composition of F with the kth homology functor
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Hk

PHk := Hk ◦F

A persistence module is therefore a diagram of vector spaces indexed by a poset,
such as Vect(R,≤)F or Vect([n],≤)F .
In particular, the k-homology functor induces a map i∗u,v for each inclusion iu,v :
F(u) ↪→F(v). These induced maps are what is used to define persistent homology
groups.

Definition 50. (Persistent homology groups) We call kth persistent homology group
from step u to step v the vector space

PHk(u,v) := Im i∗u,v

Space PHk(u,v) is generated by those homological features that existed at step u,
and are not mapped to zero along the path into v. We say that are still alive at v.

An N-indexed persistence module is called tame if only a finite number of in-
duced maps i∗u,v = HkF(u ≤ v) are not isomorphisms, and each HkF(u) is finite-
dimensional. For an R-indexed persistence module, we say a value u is regular
if there exists an open interval containing u where the map i∗x,y is an isomorphism
for each x,y in the interval; u is called critical otherwise. An R-valued persistence
module is tame if each step is finite-dimensional and the set of critial values is finite.
Notice that if a real-indexed persistence module is tame, then one can regard it
essentially as if it were indexed on a discrete, finite set [n]. The same applies to
N-indexed modules. We will deal in practice only with this type of objects.

The name persistence module is also employed to describe different incarnations
of the same concept. As well as a functor from posets into vector spaces, one can
equally regard a tame persistence module as a family of vector spaces connected by
morphisms, as in [12].

Definition 51. (DAPM, [12]) A discrete algebraic persistence module (DAPM for
short) is a pairM = (Mi,ϕi, j) for i, j ∈ N and i ≤ j, where ϕi, j : Mi→M j, ϕi,i is
the identity and for any three steps i, j,h the maps factor functorially.
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The two concepts of persistence module are indeed equivalent ([13]).
The fundamental theorem of persistent homology, due to Zomorodian and Carlsson,
is what allows to employ tools in representation theory to make computations about
persistence modules.

Theorem 3. (Zomorodian-Carlsson, [8]) The category of tame DAPM over a field F
is isomorphic to the category of F[x]-modules.

The correspondence is given as a functor α that associates to the DAPMM a graded
F[x]-module α(M), obtained by considering the direct sum of homogeneous com-
ponents

⊕
i Mi, and setting the action of x on any homogeneous, degree-i, element

mi as x mi = ϕi,i+1(mi). In words, multiplication by x sends each element forward
one step along the graded maps.

Corbet and Kerber ([12]) generalize this result to persistence modules over a ring R,
with the additional requirement that the persistence module be finitely presented.

This result is of primary importance, because it allows to leverage the theory of
graded module, and specifically the structure theorem (2.4). Implied by this result is
the fact that every persistence module is completely described up to isomorphism,
by a set of numbers. These pairs are either of the form (α j,+∞), which are called
essential pairs and correspond to the free generators in the decomposition theorem,
i.e. to zero elements in the Smith Normal Form of a module presentation, or of
the form (βi,βi + γi) (more frequently denoted by (bi,di)), which are instead called
regular pairs and correspond to torsion elements in the module. Their corresponding
entry in the Smith Normal Form is non-zero, and we distinguish between the cases
where it is a non-invertible element, which gives rise to a non-degenerate pair, and
the case where it is a unit, giving rise to a zero-persistence pair (bi,bi). The latter
correspond to surplus generators, and are normally discarded.

Definition 52. (Persistence diagram) We call persistence diagram the set of persis-
tence pairs as above.

It is a multiset of points in R2, lying above the main diagonal. An equivalent
representation is called the barcode, consisting of a set of horizontal bars, one for
each pair, spanning from bi to di on the x-axis.
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ε

0 0.35 0.39 0.50.34 0.650.51

H0

H1

(0,0.18)
(0,0.31)
(0,0.33)
(0,0.34)
(0,0.35)
(0,0.35)

(0,∞) (0.39,0.51)
H0 H1

(a)

(c)
(b)

Fig. 2.1 (a) An example of Vietoris-Rips filtration of simplicial complexes with parameter
ε , and the corresponding barcode for 0- and 1-dimensional persistent homology. (b) The
persistence pairs of the above filtration. (c) Two equivalent representatives of the (only)
generator of PH1.

Notice all this works k by k, but it is commonplace to consider persistence diagrams
or barcodes containing pairs coming from homology in several dimensions.

2.0.7 Interval Modules and the Krull-Schmidt decomposition

Definition 53. An interval module is a diagram II in Vect(R,≤)F of the following
form: let I be an interval in R; to each element x ∈ R the functor II associates

II(x) =

F if x ∈ I

0 otherwise
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and to each morphism x≤ y

II(x≤ y) =

IdF if x,y ∈ I

0 otherwise

A similar definition can be given for integer intervals, where we substitute for I the
set [b,d] = {b,b+1, . . . ,d}, possibly with d =+∞.

A module M is called indecomposable if no two nonzero submodules exist such that
their direct sum is M. A submodule N of M is called a summand if there exists a
nonzero submodule N′ of M such that M = N⊕N′.
Interval modules are indecomposable as persistence modules. ([14]). The structure
theorem for persistence modules entails that any persistence module can be decom-
posed into a direct sum of indecomposables, and that these indecomposables are
exactly the interval modules as above. Furthermore, by the Krull-Remak-Schmidt
theorem, this decomposition is unique up to isomorphism and up to a reordering of
the terms.
A persistence module is called of finite type if it allows for a direct sum decomposi-
tion into interval modules. For persistence modules over a totally ordered set, this is
equivalent to a persistence module being tame.



Chapter 3

Canonicity of Homology Generators

This chapter is based on work that I carried out together with my supervisor Francesco
Vaccarino, in collaboration with Alessandro de Gregorio, Ulderico Fugacci and
Giovanni Petri.
The main focus of interest is the following: within topological data analysis, a
well-developed pipeline exists to extract from data a topological summary, in the
form of a persistence module, or its numerical description such as the barcode or
persistence diagram. However, this description misses an important piece of the
puzzle; homology essentially describes a pattern of obstructions to connectivity,
and the existence of non zero homology classes points to the presence of such
obstructions.
The very nature of homology, however, is that of an equivalence class of cycles
within a simplicial structure obtained from the data. As humans, instead, we build
intuition about the data at hand based on the actual cycle, and not equivalence classes
of those. In other words, the process of computing a quotient by which homology is
constructed identifies cycles on the basis of their topological relations, but in doing
so mixes together a potentially very large number of objects that, depending on the
context, could instead convey very different meaning.
This problem is sometimes called localization of homology. It essentially boils down
to considering the preimage of the quotient map

[·] : Zk ↠ Hk
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that associates to a cycle c ∈ ker∂k its homology class [c] ∈ Hk. The cycles corre-
sponding to a homological equivalence class are called representatives, or represen-
tative cycles. Working with vector spaces, we can equally regard the above as a map
from the k-chains into homology, and therefore stating the problem as follows: how
can we choose good representatives of homology classes? That is, good (in some
sense) k-chains to depict each homology class as an actual subset of the simplicial
complex?
The problem has received attention in recent years. It is clear that not much interest
can be devoted to the zero-dimensional case, as representatives of connected compo-
nents are straightforward.
Aside from that, one first criterion that comes to mind when tackling this problem is
obtaining a set of representatives that achieves some sort of geometric minimality.
For example, for geometric simplicial complex one can associate to each cycle a
measure, like an area for cycles in the plane, or a volume for cavities in space. Even
when lacking an explicit embedding of the complex in the space, one can always
consider the pairwise dissimilarities between vertices, and associate to each cycle a
notion of length. This is possible even when lacking a dissimilarity measure, by just
considering the hop distance on a graph. Finally, without requiring knowledge of
an embedding, but with the request that our data forms a metric space, approaches
have emerged that try to leverage the concept of minimum spanning tree to build
representatives of "small" size.
The computation of a minimal "basis" (where by basis we mean a set of cycles whose
homology classes span the whole homology vector space) has been proven to be a
complicated problem. When considering dimension 2 and above, it has been shown
by Chen and Freedman that the problem is NP-complete ([15]). The case remained
open for dimension 1, until polynomial algorithms started to appear for the task.
This is the avenue that we have followed in the construction of our minimal scaffold.
Another approach that has been employed for the task of choosing generators in
a non-arbitrary manner concerns the case when data falls under the hypotheses of
Alexander duality. This result provides an isomorphism between (co)homology in
dimension 0 and n− 1; since, as already mentioned, choosing representatives in
dimension zero is trivial, this provides a principled solution for this particular case.
In the remainder of the chapter we will consider this problem, focusing especially
on the case of the bases of minimal length, while also touching on some of the
other approaches. We have begun our work by putting together a working imple-



30 Canonicity of Homology Generators

mentation of an algorithm that computes a minimal homology basis, inspired by
an applicative question: representative cycles of (persistent) homology classes had
found fruitful use in data analysis, but could we provide a principled choice for said
representatives?
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3.1 Network skeletonization via Minimal Homology
Bases

The question from which the minimal scaffold project stemmed was rooted in the
application of complex network theory to neuroscience.
Network science has long represented the cornerstone theory in dealing with com-
plex, heterogeneous multi-agent systems. Network descriptions have found wide
applications and had a significant impact on a wide range of fields ([16, 17]), in-
cluding social networks ([18, 19]), epidemiology ([20, 21]), biology ([22, 23]), and
neuroscience ([24–26]).

Recently, new approaches to the analysis of networks and, more generally, complex
interacting systems have emerged which leverage topological techniques ([27–30]),
and most notably persistent homology.

Indeed, the range of fields into which TDA has found applications spans material
science ([31, 32]), biology and chemistry ([33–39]), sensor networks ([40]), cosmol-
ogy ([41]), medicine and neuroscience ([42–50]), manufacturing and engineering
([51–53]), social sciences ([54, 55]), computer vision ([56–58]), and network science
itself ([59–65]).
The theory of persistence has recently been proposed as a framework for the topolog-
ical skeletonization of spaces, particularly weighted graphs and networks ([66–69]).
In [47], the generators of persistent homology are used to build one instance of
network skeletonization called homological scaffold. This method has a serious
drawback, consisting in the large degree of arbitrariness in the choice of one repre-
sentative cycle from the many equivalent generating cycles of the same homology
class. This pitfall is a direct consequence of the homology classes being equivalence
classes, and it affects any attempt to localize cycles ([70, 49]). Minimal homology
bases, as remarked above, have been investigated in the literature ([71, 72]), but
a real breakthrough has only come thanks to the introduction of the first efficient
algorithm for the computation of bases in dimension one ([73]). Here, we set out
to address the issue of giving a principled definition of the scaffold by searching
for a form of canonicity in the choice of generators, namely by computing minimal
representatives of homology bases.
Next, we leverage said minimal bases to propose a new approach to network skele-
tonization, the minimal scaffold, which largely overcomes the limitation of the
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previous one. While the minimal scaffold is not unique in the most general case
possible, we provide strong guarantees and caveats on when and to what degree it is
well-defined. This constitutes the main methodological contribution of this section.
Then, we capitalize on the properties of the novel framework: as remarked in the
chapter’s introduction, having reliable representatives when dealing with neuro-
science data can provide information that is actually interpretable by an expert of the
field. We will showcase as application an analysis of this type.
We finally conclude the section by addressing one last question. The construction
proposed here is provably more reliable than the previous, loose one, but this comes
at a significant computational cost. In the light of this we foresee that it could be of
value to verify whether, in some circumstance, the two constructions (the minimal
and the loose scaffolds) are statistically related, so that the easy-to-compute one
can be approximately used as a proxy of the minimal one. We provide heuristic
evidence that, for a range of popular random models, the two objects are sufficiently
well-related.

3.1.1 The homological scaffold

The homological scaffold originated from the intuition that traditional, graph-
theoretical tools in network analysis were naturally able to capture significant prop-
erties of a network ([74]), but proved not as effective in detecting multi-agent and
large-scale interactions. Interest in searching for alternative descriptors of network
relations arose, and soon works were published which leveraged invariants offered
by computational topology ([75, 29, 28]).
In proposing the scaffold ([47]), the authors pointed out that the homological de-
scription is potentially able to summarize the network’s mesoscale structure, i.e.,
features existing at a scale in between the purely local connections and the global
statistic, to which previous methodologies were blind.
Furthermore, this structure could be analyzed over the continuous, full range of
interaction intensities, without the need for ad-hoc domain-specific thresholds.
Homological cycles intuitively describe obstruction patterns. The presence of non-
trivial homology within a given region of a network highlights its structure as
non-contractible, forcing signals to flow over constrained channels, which in turn
play the role of bridges.
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To test this intuition, the homological scaffold was computed from resting-state fMRI
data for 15 healthy volunteers who were either infused with placebo or psilocybin:
the scaffold discriminated the two groups, as well as providing meaningful insight as
to the impact of the psychoactive substance onto the pattern of information flow in
the brain [47].

Consider a non-negatively weighted finite graph W = (V,E,w) where w is a weight
function on the edges w : E 7→R+), and let F be a filtration of simplicial complexes
over the reals, constructed as follows: to each ε ∈ R, consider the graph W ε :=
(V,Eε), where Eε is the set of edges e ∈ Eε if and only of w(e)≤ ε . Then, F(ε) is
the flag complex of W ε , and the maps between them are the obvious inclusions.
Notice, furthermore, that as we deal with finite point clouds, it must hold that the
image Im w⊂R is a finite set. This implies the filtration can equally be considered as
indexed on a finite poset of the form ([n],≤), with the bound n≤ |E|; consequently,
we can write F = {Kεk}n

k=1.
We can now consider PH1 =H1F of this weighted graph, that is a persistence module
in dimension 1. The finiteness hypothesis guarantees that the module is tame.
Let {bi} be a linearly independent set of generator cycles of PH1(W ), as a module.
That is, consider a set of 1-chains that belong to Z1, that form a linearly independent
system, and whose linear span in PH1(W ) is the whole persistence module.
Since we are over Z2, each of the bi’s is completely identified by its support, which
is a set of edges of E. In particular, we can depict set {bi} as a matrix whose rows
are indexed by E and having the bi’s as columns. The sums of the rows, considered
as natural numbers as opposed to Z2, form a new weighting function on the edges
of W , the new weights counting precisely in how many persistent cycles an edge
appears along the filtration.

Definition 54. (Homological Scaffold) Suppose W and F as above, and consider
a linearly independent set {bi} of 1-dimensional generator cycles of the persistent
homology. Consider the function hW : E 7→ R+

hW := ∑
i
1e∈bi (3.1)

where by 1e∈bi we denote the indicator function E 7→ R+ such that 1e∈bi(e
′) = 1 if

e′ appears in bi, and 0 otherwise.
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Then the homological scaffold of W is the weighted graphH(W ) such that

- its vertex set coincides with the vertex set of W

- its edge set EH is a subset of the edge set of W , consisting of edges with
nonzero value for hW

- its weight function is the restriction of hW to EH.

In accordance with the above definition, building the homological scaffold of a
weighted network W is a method of network compression or skeletonization. The
definition also implies that edge weights are assigned by the number of basis cycles
an edge belongs to.

We provide an example, referring to Fig. 3.1. In panel (a), a filtration of simplicial
complexes arising from a point cloud is depicted. At each step, highlighted in purple
is a representative of a persistent cycle (i.e. of a bar in the barcode), each at the scale
at which it is born.
In panel (b), the corresponding homological scaffold is represented: it amounts to
taking the union of the cycles of panel (a), i.e. stacking generators of PH1, each
contributing unitary weight.

In the following, we shall sometimes refer to the homological scaffold as the loose,
or original scaffold, to contrast it with the new definition of scaffold to follow.

As anticipated in the introduction, it is clear that there is a substantial source of
arbitrariness in this definition.
Several different representative cycles exist which form a basis of the persistent
homology (as a consequence of several different cycles belonging to the same ho-
mology class), and hence one must make a choice. For example, Fig. 3.2(a) depicts
one specific cycle whose homology class generates (part of) the persistent homology
group of the point cloud. At the same time, any other choice of edges forming a
cycle around the same hole is homologically equivalent and, in principle, a legitimate
choice for the set {bi}.
In the original paper, the authors resorted to using the cycles as output by the
JavaPlex implementation ([76]) of the persistent homology algorithm (based on the
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ε

0 0.25 0.32 0.5

(a)

(b)

Fig. 3.1 (a) A point cloud in [0,1]2 and the generators of PH1, plotted on the filtration step
they appear at (scale reported on the axis below). (b) The resulting homological scaffold.
Edges in blue have weight 1, each belonging to only one generator. The edge in green has
weight 2, as it belongs to two generators.
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original implementation of [77]), and a posteriori checked the selected cycles for
consistency. However, in principle, this means that the same simplicial complex
written with two different orderings of the simplices could lead to different choices
of generators, and therefore, to different scaffolds.
As such, we must be careful in the choice of nodes and edges output by the algorithm;
while the presence of a generator denotes undeniably that an obstruction pattern
exists, we cannot be as confident about its precise location in the network or the
constituents that provide bridges around it. The homological scaffold defined in
this way introduces noise in the localization of mesoscale patterns onto individual
nodes and edges, a process which, if accurate, could provide valuable insight as to
the functional role of single players in a network.
In this work, we try to work around the problem of cycle choice and give a stricter
definition, by requiring that, among all possible representatives, those of minimal
total length are chosen (e.g., Fig. 3.2(b)).
The original algorithm reported a computational complexity of the order O(n3) to
obtain representatives of basis cycles.
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(a) (b)

Fig. 3.2 A simplicial complex K with dimH1(K) = 1. Its homological scaffold (on a subset
of the filtration steps, for clarity) is reported in panel (a): the chosen generator meanders
around the hole. Furthermore, a different ordering of the list of simplices fed to the algorithm
could return a different cycle. In panel (b), the shortest representative cycle is chosen: this
choice is stable with respect to any ordering of the input, while at the same time endowing
the generator with some metric and geometric meaning.
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3.1.2 Minimal Bases

The search for minimality in the computation of the scaffold was made feasible by
the introduction of efficient algorithms to compute the minimal representatives of a
homology bases in dimension one.
It is known that in dimension higher than one, minimal representatives of a homology
basis will remain elusive. Indeed, Chen and Freedman ([15]) proved that the problem
of obtaining these minimal representatives is computationally intractable, being at
least as hard as the notoriously NP-Hard Nearest Codeword Problem. Furthermore,
it is even NP-Hard to approximate within any constant factor, meaning that no
polynomial-time algorithm exists to obtain an approximate minimal basis that differs
from the exact one by at most a multiplicative constant. In the light of this, we must
necessarily restrict our attention to the 1-dimensional case, i.e., computing minimal
representatives of a basis of H1.

Given a simplicial complex K, let us consider C1(K,F) the vector space generated
by the 1-simplices of K and Z1 the vector space of 1-cycles, i.e., Z1 = ker∂1. Given
a 1-cycle b ∈ Z1, let µ(b) be its length, i.e., the sum of the weights of the edges that
form it

µ(b) = ∑
e∈b

w(e)

Denote by [b] the homology class of b. Finally, let β1 := dimH1(K) be the first Betti
number of K.

We want to obtain a set of β1 1-cycles ∈ Z1

{b1, ...,bβ1}= argmin
Span{[bi]}=H1

∑
i

µ (bi) (3.2)

that is, a set of cycles of minimal length whose homology classes span H1(K). In
accordance with the literature, we call this set a minimal homology basis, with a
slight abuse of terminology, as it would be more appropriate to call it a minimally-
represented homology basis.
In 2018, Dey et al. ([73]) introduced a polynomial-time algorithm to obtain said
representatives. Building on the work of Horton ([78]), de Pina ([79]), and Mehlhorn
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et al. ([80]), the algorithm sets off to compute a basis of the space of cycles. Then, it
applies a cohomological technique called simplex annotation ([81]) to lift a basis of
cycles to a basis of the homology group H1, while at the same time enforcing the
minimal length constraint. A sketch of the algorithm follows.
ALGORITHM: MINBASIS(K)

• A basis of the cycles group Z1 is found via a spanning tree. Each edge in the
complement of the spanning tree identifies a candidate cycle ([78]).

• An annotation of the edges is computed via matrix reduction ([81]). This
yields the dimension β1 of H1, as well as an efficient tool to determine if two
cycles b1 and b2 are linearly dependent in H1 ( [b1] = [b2]).

• A set of support vectors is generated which maintains a basis of the orthogonal
complement in H1 of the minimal basis cycles.

• Iteratively for each dimension of H1, the candidate set of cycles is parsed
in search of cycles b’s that are linearly independent in homology from the
previous ones (exploiting the support vectors). Among these, the µ-shortest
one is added to the minimal basis.

• The set of support vectors is updated for the remaining dimensions to enforce
it remain a basis of the orthogonal complement of the basis.

• The last two steps above are repeated until completion of the minimal basis.

Call B = {bi} the output of MINBASIS on input K.
Theorem (3.1, [73]) Cycles in B form a minimal homology basis of H1(K).

Notice that the minimal homology basis is guaranteed to exist, as we only work with
finite simplicial complexes, which imply the existence of a finite number of bases.
However, it needs not, in general, be unique. Several different cycles of the same min-
imal length may all belong to the same homology class of a basis cycle. Heuristically,
this is especially true in case the input complex is unweighted (equivalently, has equal
weights for every edge), in which case the length of a cycle is the number of edges
that form it. Furthermore, there exist cases when different sets of cycles of minimal
length generate the same homology space, and are not even pairwise homologous.
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We will treat the problem of the uniqueness of the minimal basis in more detail in
the following, and account for it explicitly in the construction of the minimal scaffold.

The computational complexity of the above procedure is evaluated ([73]) to O(n2β1+

nω) where n is the number of simplices in K and ω is the fast matrix multiplication
exponent, which as of 2014 is bounded by 2.37 ([73, 82, 83]). This yields a worst-
case complexity of O(n3) in the number of simplices for general complexes, which
we recall is itself of order 3 in the number of points in the worst case.

3.1.3 Minimal Scaffold

In this section, we introduce an alternative definition for the homological scaffold,
which we call minimal, based on the minimal representatives obtained above, which
aims at overcoming the arbitrariness in the cycle choice of the previous definition.
After addressing the simplest case, we analyze its uniqueness properties and introduce
a second, more refined, definition.

Let F be the filtration of simplicial complexes induced by a non-negatively weighted
finite graph W . For all filtration steps ε , define, as per (3.2), Bε := {bε

i } the minimal
homology basis of H1(Kε). Take the disjoint union of minimal bases for ε varying
on all filtration steps

B∗ :=
⊔
ε

Bε

Definition 55. Suppose W , F and B∗ as above. Similarly to the loose case, define
the function hW,min : E 7→ R+ as

hW,min := ∑
b∈B∗

1e∈b (3.3)

Then, we define the minimal scaffold of W as the weighted graphHmin(W ) whose:

- vertex set coincides with the vertex set of W

- edge set Em is a subset of the edge set of W , consisting of edges with nonzero
value for hW,min

- weight function is the restriction of hW,min to Em.
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The minimal scaffold amounts, again, to the stacking of generator cycles across
a filtration. However, two differences are to be noted with respect to the loose
definition. First, we require the representative cycles to be minimal. Second, we
point out that while the loose scaffold is built by aggregating the generator cycles
of PH1(F), the minimal scaffold is built by independently computing a minimal
basis for each H1(Kε), for all ε . Notice that, since cycles are modified throughout
a filtration, it would be meaningless to talk about a minimal representative over a
certain persistence interval. This also means that its computation can be effectively
parallelized by assigning different filtration steps to different jobs, and later recom-
bining the outputs.
An interesting phenomenon that descends directly from the above peculiarity is that
the minimal scaffold of random point clouds tends to display a more pronounced
triangular structure (clustering) around cycles. Indeed, as longer (or, in non-metric
filtrations, later) edges are introduced, a cycle can be shortened (by the triangular
inequality) by a longer edge which cuts a corner. Since at each step the algorithm
records the minimal representative, upon aggregating the minimal scaffold one finds
each cycle in its progressively shorter version, and the history of the shortening is
visible as a padding of triangles around it.

Considering the example of Fig. 3.3, in panel (a) we observe an example of a
filtration of simplicial complexes. At each step, highlighted in purple we may see the
minimal representative of a homology class, together with its evolution history. At
filtration value 0.26, we observe a pentagon being reduced to a shorter, quadrilateral
cycle by the addition of a longer edge. This is an example of the phenomenon
explained above. Fig. 3.2 gives a visual description of the difference between a
minimal and generic cycle.
The union of these progressively shorter cycles for all steps (weighted according to
Definition 3.3) is the minimal scaffold, as seen in Fig. 3.3 panel (b).

We remark that, if there is no ambiguity in the construction of a filtration of simplicial
complexes from a point cloud, or from a weighted graph, we will indifferently speak
of the scaffold as a function of either of them (Hmin(C), orHmin(W ), orHmin(F)).
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ε

0 0.26 0.32 0.51

(a)

(b)

Fig. 3.3 (a) The same point cloud of Fig. 3.1. Along the filtration we show the evolution of
minimal generators, which can get progressively shorter as new edges are introduced. For
example, at ε = 0.26, the pentagonal cycle gets cut to a shorter quadrilateral, albeit with
an individual longer edge. This evolution is accounted for in the minimal scaffold, which
displays the triangle-rich structure mentioned above. (b) The resulting minimal scaffold
(weights not reported).
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We have mentioned that the scaffold amounts to a change in weighting in the input
graph

hW,min : E 7→ R+

altering the original weights of the edges. Additionally, considering node strength
(i.e. the sum of the weights of the edges incident to a given node), it can equally be
considered as a function

Hmin : V 7→ R+

assigning weights to nodes. Considering the reliability of the choice of edges in
the procedure, this explains why the minimal scaffold can be utilized to associate
mesoscopic features with single nodes and links.

Computational Complexity

For large input sizes, the cost of assembling the minimal basis cycles into the scaffold
is negligible with respect to the cost of computing such minimal basis.

We know that each run of Dey’s algorithm costs O(|K|3) in the worst case ([73]),
and in the worst case |K| is itself O(n3) where n is the number of points.
The number of filtration steps has an upper bound of O(n2) (i.e., the number of
edges) in the worst case, as in general every edge may carry a different weight.
Hence Dey’s algorithm has to be run once for each edge in the worst case.
This yields a theoretical worst-case complexity of order O(n9n2) = O(n11). There-
fore, while the minimal scaffold is undeniably a polynomial-time algorithm, its
practical computation is often hindered by its dire lack of scalability, especially if
compared against the loose version, which has a far more favourable complexity.
A comparison of running times is carried out in Fig. 3.4, which clearly shows
that computing the minimal scaffold on an ordinary machine can quickly become
troublesome.
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Fig. 3.4 The running times of computing the minimal and loose scaffolds for Watts-Strogatz
weighted random graphs. For all instances, number of nodes N is indicated on the x-axis.
Number of stubs k is N/2, and rewiring probability is p = 0.025.

3.1.4 Uniqueness of the minimal scaffold

The uniqueness of the minimal scaffold depends on the uniqueness of the minimal
basis. Indeed, if there exists only one possible set B∗ of cycles forming a minimal
basis, then the scaffold is uniquely determined. Two issues affect the uniqueness of
set B∗.

Draws

The first one arises when two or more different and homologous basis cycles are of
the same minimal length. This case is relatively simple to work around: we modify
the definition of minimal scaffold to keep track of all variants of minimal basis
cycles, dividing the weight equally among them.
Specifically, to account for this issue we have slightly modified Dey’s algorithm.
In its last step described above, one is concerned with finding all cycles whose
annotation is not orthogonal to the given support vector: among these, the one with
minimal length is chosen as a basis cycle. Instead, we keep track of all such cycles
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with the same minimal length. This does not alter the complexity, as one needs to
check all possible cycles anyway. We call this case a draw.

Therefore, we modify set B to become a set of sets of cycles. Given complex K, we
define a minimal basis with draws

B̃ :=
β1(K)⋃
i=1

{bi,1, ...,bi,ni}

where for all i = 1, ...,β1(K), the cycles bi, j with j = 1, ...,ni are homologous and
have the same minimal length. Furthermore, for every choice of ji ∈ {1, ...,ni},
Spani{bi, ji} = H1(K). Call Vi := {bi,1, ...,bi,ni} each set of draws, i.e., variants of
the ith minimal basis cycle, ∀i = 1, ...,β1(K).
In the example of Fig. 3.5(a) and (b), we have set B̃ = { {b1,1,b1,2} }, whereas set B
might have indifferently been equal to {b1,1} or to {b1,2}, whichever happened to
come first in the search.
The minimal scaffold is modified accordingly. Given the usual filtration F , let B̃ε

be the minimal basis with draws of H1(Kε). Again, we aggregate all variants of
minimal basis cycles along the filtration

B̃∗ :=
⊔
ε

B̃ε

Then, we define the weighting function with draws h̃W,min : E 7→ R+

h̃W,min := ∑
V⊂B̃∗

1
|V | ∑b∈V

1e∈b (3.4)

and the resulting minimal scaffold with draws H̃min(W ) is built from h̃W,min as in
Definition 3.3.

The meaning of the above definition is that all variants of all minimal basis cycles are
taken into account when building the scaffold, and the weights are assigned dividing
each variant’s contribution by its cardinality, for each filtration step. In the example
of Fig. 3.5(c), the two cycles forming the variant of the only generator are multiplied
by a factor of 1

2 and then summed: therefore, common edges outside the diamond are
assigned weight 1, consistently with the minimal scaffold in definition (3.3), whereas
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the four edges forming the perimeter of the diamond each get assigned weight 1
2 .

With the introduction of draws, we settle the case when ambiguity arises among
individual cycles, without interactions. As an example, we can state the following
result.
Proposition If F is such that, for all ε in the filtration, each basis cycle belongs to a
different connected component of Kε , then the minimal scaffold with draws H̃min(F)
is unique.

Pathological cases

The other issue arises when there exist sets of minimal cycles that are not linearly
independent. Suppose that three different cycles generate a homology group of di-
mension two, i.e., when three minimal cycles are pairwise independent in homology,
but threewise dependent. In this case, two generators are sufficient to span H1 and, if
their lengths are arranged pathologically, there is no principled way to choose two
out of the three.
Suppose for example that three cycles b1,b2 and b3 are such that

µ(b1)< µ(b2) = µ(b3) and [b1] = [b2]+ [b3]

In this case, both bases {b1,b2} and {b1,b3} span the same homology space, and
are of equal minimal length. The minimality criterion fails in this case.
One could believe that such a configuration can only happen in the most general
spaces, and that by imposing some mild hypotheses on the input data one could rule
the pathology out. In fact the opposite is true, this degeneracy being possible even
after enforcing very strong conditions on the data.
Counterexample Even if W is planar and an isometric embedding W ↪→ R2 exists
(i.e., the input planar weighted graph can be accurately drawn onto the plane), the
minimal scaffold H̃min(W ) needs not be unique.
In fact, consider complex K arising from the geometric, planar graph in Fig. 3.5(d).
Its homology H1(K) is generated by two cycles; possible generators are depicted
in Fig. 3.5(e). Since the outer cycle b1 is the shortest, and the two inner ones b2

and b3 are of equal length, the minimality criterion can not solve between {b1,b2}
and {b1,b3}, as both are acceptable minimal bases. The minimal scaffold (with or
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without draws) is not unique in this case.

Clearly, the same could happen with more than three cycles, with a larger number
of possibly ambiguous configuration. Therefore, if we allow for a high degree of
symmetry in the input, this pathology could arise even in the rather tame context of
planar graphs on R2. This issue is rather delicate, in the sense that not only the algo-
rithm is unable to make a principled choice; it is not even capable of detecting when
such a configuration takes place. In fact, this is more of a feature of homology than a
flaw in the skeletonization framework: what our eyes see as different cycles are in
fact homologically equivalent, and it is impossible to use homology to tell them apart.

We however remark that, for complexes arising from real-world data, this type of
configuration is actually pathological. Indeed, the following generality result holds

Proposition Assume a point cloud C = {Xi} such that Xi ∼U([0,1]d) independently.
Then, almost surely, the minimal scaffoldHmin(W ) (either with or without draws) is
unique.

If the input point cloud is sampled uniformly at random in some Rd , then edge
lengths are distributed according to an absolutely continuous probability law. There-
fore, given two edges e1 and e2, P[µ(e1) = µ(e2)] = 0. The same holds for any two
non-identical cycles, and any two homology bases (being but finite sets of edges):
the probability of them sharing the exact same length is zero. By finiteness of
the input, at least one minimal homology basis exists and, by the above reasoning,
almost surely this basis is unique for each filtration step. Then, with probability 1
the minimal scaffold is unique.

This result is actually quite general: whenever we can assume our input data to be
subject to noise, then we are in principle allowed to rule out pathological same-length
cycles. In these cases, the minimal scaffold is unique.

We remark that this uniqueness result is compatible with the phenomenon of the
concentration of measure: while for a very high-dimensional space or a very large
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number of points we know from theory that the distribution of length of edges
concentrates towards its mean value, the probability of two edges (and hence two
cycles) having the same length is still zero. One needs to be careful, however, that
the probability of two cycles differing in length by less than some ε > 0 could grow
very rapidly with ε .

In summary, the minimal scaffold with draws H̃min is well-defined up to some patho-
logical circumstances, where it may depend on the ordering of the input.

Implementation

Alessandro de Gregorio and myself have built an implementation of the compu-
tational pipeline above, including Dey’s algorithm and libraries to construct the
minimal scaffold, with or without draws. The code is freely available on GitHub at
[84], with some usage examples. It is built to allow both serial and shared-memory,
multi-threaded parallelism across the filtration steps to improve efficiency. It can
significantly benefit from a parallel execution, but can as equally run on a vanilla,
serial environment.
Another trick we suggest that can sometimes make a dramatic difference in com-
putation time is the following: if there exist intervals along the filtration where no
homology in dimension 1 appears, it is definitely worth it to exclude them from
the computation, as the algorithm a priori constructs some expensive combinatorial
structures before it can eventually realize that no homology exists. Therefore, it is
recommended to obtain such information via a fast algorithm for persistent homology
such as Ripser [85], and use it as a prior to expedite computations for the minimal
scaffold.
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Fig. 3.5 Top panel: (a) A simplicial complex K. (b) Two homologous and equally minimal
generators of H1(K). (c) The minimal scaffold with draws H̃min(K). The weight is equally
divided among the variants of the minimal representative. Bottom panel: (d) A simplicial
complex K on the represented point cloud. H1(K) has dimension 2. (e) µ(b1)< µ(b2) =
µ(b3). A minimal basis can either be composed of {b1,b2} or {b1,b3}, hence it is not
unique.
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3.1.5 Applications

As illustrative examples, we show here a few applications of the minimal scaffold.
Through it, we obtain meaningful subsets of known networks in neuroscience, and
rank their constituents by their “topological importance".

The C. Elegans dataset is a correlation network of neural activations of the nematode
worm Caenorhabditis Elegans. C. Elegans has become a model organism due to
the unique characteristic of each individual sharing the exact same nervous system
structure.
The input consists of a symmetric weighted adjacency matrix over 297 nodes, each
representing a neuron. Edge weights represent (quantized) time correlations between
the firing of neurons, ranging from 1 to 70.
The minimal homological scaffold of its brain map highlights the geometry of the
obstruction patterns, i.e., the precise areas where nervous stimuli are less likely to
flow. We stress the improvement obtained by the minimal scaffold over the loose
one, in that it is not only able to identify the presence of a “grey area" in the network,
but it can as well provide a reliable boundary for it, and identify which neurons and
inter-neuron links are responsible for information flowing around the obstruction.
As an interesting example, we see in Fig. 3.6 the top 25 neurons ranked in descending
order of relative node strength (sum of weights of incident edges) with respect to
the average node strength. We can identify four nodes, labeled 81, 260, 36, and 37,
which hold a significantly higher relative strength than the rest. This implies their
presence in many minimal cycles across several scales, hence suggesting that they
play a crucial role in the fabric of information flow within the nematode’s brain.
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Fig. 3.6 The top 25 neurons by relative node strength in the minimal scaffold over average
strength in C. Elegans (mean 36.41). Four neurons show a significantly higher relative
strength than the others.
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The same type of analysis was repeated on the correlation network of brain activities
in an 88-parcel atlas of the human brain, obtained through fMRI imaging at resting
state. The data is courtesy of the Human Connectome Project ([86]).
Again, the minimal scaffold identifies which regions and links in the human brain
are key bridges for the flow of information. Two parcels stand out (Fig. 3.7(a)) as
particularly relevant for network topology.
For a relatively small network such as this, we can visualize the scaffold as a proper
subnetwork by a chord diagram (Fig. 3.7(b)), with edge weight represented by color
intensity and node strength by the size and color of the vertex. We stress that, starting
from a virtually complete graph over 88 nodes, we reduce the size from 3828 edges
to just 191, while preserving the topological structure.
We can, as well, leverage libraries in computational neuroscience ([87]) to embed the
scaffold in the actual human brain, with regions correctly located, projected on the
three coordinated planes. In Fig. 3.7(c), for visualization purposes color intensities
represent log-weight in the scaffold.
To better highlight the value of the scaffold in signalling brain network function, we
constructed a suitable null model of the functional network, as was done in [88].
The technique consists in reshuffling the correlation matrix subject to the constraint
of keeping a fixed spectrum, i.e. applying a random rotation, which guarantees the
matrix remains positive semidefinite and hence a proper correlation matrix. An
implementation of such a procedure can be found in [89].
The resulting randomized adjacency matrix is characterized by a vastly larger number
of homological cycles than the original; so much so in fact that the computation
of its minimal scaffold becomes cumbersome. However, even without computing
them explicitly, we know for sure that the scaffolds of the original and randomized
networks are totally different, specifically because they are built by aggregating two
completely different persistence structures, i.e. the minimal scaffold does indeed
highlight the functional information in the original dataset.

The possible applications in which the minimal scaffold could provide novel insight
into the structure of brain data are many: any relatively small correlation matrix
could be either compressed or its patterns analyzed, as is often the case in EEG
[90, 48, 91, 50] or neuronal [44] studies, and in fMRI ones when using rather coarse
atlases (e.g. [92, 93]).
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(a)

(c)

(b)

Fig. 3.7 (a) The top 25 brain regions in the human brain by relative node strength in the
minimal scaffold over average strength (mean 546.7). Two neurons show significantly higher
importance. (b) The chord diagram of the minimal scaffold. Node size represents node
strength, edge color intensity represents weight in the scaffold. (c) The minimal scaffold
embedded in the human brain, with regions accurately located, projected on the three
coordinated planes. Edge color represents log-weight in the minimal scaffold (Log-scale for
visualization purposes).
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3.2 Comparison of Scaffolds

As the last contribution for this work, we consider a comparison between the minimal
and loose scaffolds.
We have already pointed out that the minimal scaffold in general offers superior
guarantees as a tool, both for network analysis and network skeletonization. On the
other hand, the loose scaffold clearly has an advantage in terms of computational
complexity: while it is in principle viable for most of the applications where persistent
homology has been employed, the minimal scaffold, even adopting filtration-wise
parallelization, requires a vastly larger amount of computational power, which
effectively limits its range of application, unless run on dedicated, high-performance
infrastructures.
A reasonable question to ask is the following. If one is interested not in the exact
structure of the scaffold, but only in its statistical behaviour, could the loose scaffold
provide a sufficient approximation of the minimal one? In a more concrete example,
if instead of wondering exactly which nodes in a network are the most topologically
important one is interested in the distribution of the degree sequence of the minimal
scaffold, could the loose one come to one’s help?
To answer this question, we have performed comparisons of several graph metrics in
the two scaffolds of C. Elegans. Further, to gain insight into the general case, we
have sampled two families of random graphs at different parameter values, one for
geometric graphs (Random Geometric Graph), and one for non-geometric graphs
(Weigthed Watts-Strogatz).

C. Elegans

For the C. Elegans dataset, we have compared the following graph metrics of the
minimal and loose scaffolds:

1. Degree Sequence

2. Node Strength

3. Betweeness Centrality

4. Closeness Centrality

5. Eigenvector Centrality

6. Clustering Coefficients

7. Edge weights
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Results (reported in the Table of Fig. 3.8(c)) indicate that, for metrics 1 to 5, the
two scaffolds are very well correlated. So for example the cheap, loose scaffold is a
reliable proxy of the distribution of the “true" degree sequence (scatterplot in Fig.
3.8(d)).
We instead observe poor correlation of edge weights and clustering coefficients.
The first one is not unexpected, since the edge weighting procedure is conceptually
different in the two scaffolds: while in the minimal one we consider a different basis
for each filtration step, the loose scaffold considers bases of the persistent homology
space, drastically reducing the number of cycles considered. To make it clearer, in
general set B∗ has cardinality much larger than the dimension of PH1. It is therefore
explicable that the distributions of edge weights do not generally agree.
Clustering coefficients, on the other hand, are a measure of how “triangular" a graph
is around a given node. As remarked in Section 3.1.3, another consequence of
assembling the scaffold from the minimal bases of the H1’s is that a large number
of artificial triangles appear around cycles. In this case too, therefore, the poor
correlation is easily explained.

Random Graphs

Drawing inspiration from [65], we repeat the analysis on random graph samples. [65]
divides random networks into two categories: those created from edge weighting
schemes and those created from points in the Euclidean space. We have chosen
to analyze the weighted Watts-Strogatz (WS) model as representative of the first
class, and the geometric random model as representative of the second. We remark
that weighting needs to be introduced in order to compute persistence; while for
geometric graphs this simply requires computing the Euclidean distance, for the
Watts-Strogatz model it requires an ad-hoc procedure that is described in detail in
the supplemental material of [65].
We briefly recall that a WS graph is parametrized by the number of nodes, by the
number of stubs to rewire, and by the rewiring probability. A random geometric
graph is instead parametrized by the number of points to sample (uniformly) in
[0,1]d , and by a cutoff value that acts as distance threshold, beyond which no edge is
introduced.
In both cases, we observe good agreement on key statistics, as reported in Fig. 3.8(a)
and (b). Each bar is obtained by computing the correlation of the reported statistic on
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Random Geometric Model

PearsonSpearman

Watts-Strogatz Model
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Metric Corr p-val Corr p-val
Node Degree 0.953148 3.1842e-155 0.975559 3.4463e-196
Node Strength 0.772330 4.3712e-60 0.700653 3.7250e-45
Betw. Centrality 0.952098 7.7348e-154 0.986412 1.8813e-233
Closeness Centrality 0.921274 5.1143e-123 0.960413 8.7695e-166
Eigenvector Centrality 0.880711 9.5943e-98 0.858564 1.3911e-87
Clustering Coe�cients 0.412889 1.1778e-13 0.358577 1.9337e-10
Edge Weights 0.226321 1.3586e-09 0.086226 0.0224
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Fig. 3.8 Correlations between the minimal and loose scaffold. (a) Comparison in the weighted
Watts-Strogatz model. Degree sequence and betweenness centrality in the two scaffolds
are compared, using Pearson and Spearman correlation coefficients. Each box is computed
over a sample of 30 weighted Watts-Strogatz random graphs, with parameters as reported
on the x-axis: the pair (N,k) indicates a WS model on N nodes, with k stubs to rewire. The
rewiring probability is 0.025. The cyan crosses and the green diamonds represent the average
correlation value against the loose and minimal null models, respectively. (b) Comparison
in the random geometric model. Again, Pearson and Spearman correlation coefficients of
the degree sequence and betweenness centrality in the two scaffolds are compared. Each
box is computed over a sample of 30 random geometric graphs, with parameters as reported
on the x-axis: the pair (N, t) indicates a graph on N nodes sampled uniformly at random
in the [0,1]2 square. t is the connectivity distance threshold. The cyan x’s and the green
diamonds represent the average correlation value against the loose and minimal null models,
respectively. The darker boxes in panels (a) and (b) report, for their respective model and
for each metric and parameter values, the fraction of the sampled instances for which the
Kolmogorov-Smirnov test was inconclusive (p value > 0.05). (c) Correlation tests for several
network metrics show significant capabilities of the standard scaffold to reproduce certain
statistical properties of the minimal one in C. Elegans. At the same time, due to different
construction mechanisms, others are unreliable. (d) Scatterplot of the degree sequence of
neurons of C. Elegans in the minimal scaffold versus in the loose one.
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a sample of 30 random graphs of the reported model, with parameters as indicated
on the x-axis.
For comparison, two null models are built for each instance of the minimal and
loose scaffolds in the sample, by constructing an Erdős-Rényi random graph on
the same vertex set, one with the same number of edges as the minimal scaffold,
and one with the same number as the loose one. The correlation is computed of
each statistic between the minimal scaffold and the loose null model and between
the loose scaffold and the minimal null model. The average of these correlations
is reported on the boxplots to act as a baseline value, highlighting that the two
scaffolding procedures agree with each other by more than just statistical noise.
For a finer analysis, we have performed a two-sample Kolmogorov-Smirnov test
comparing the distribution of the given metrics in the minimal and loose scaffolds,
for all parameter values of the two random models. We consider the Kolmogorov-
Smirnov test to be inconclusive if its p value exceeds a threshold of 0.05, in which
case one cannot confidently reject the null hypothesis that the samples are drawn
from the same distribution. In Fig. 3.8 panels (a) and (b), the darker boxes report
for each parameter choice and metric the fraction of samples for which the test was
inconclusive: in all cases except one, the KS test could not distinguish between
the distribution of the graph statistic between the minimal and loose scaffolds,
strengthening the indication of a good agreement between the two.

nPSO Random Graph Model

A modern random graph model, which has recently gained traction in network sci-
ence for its ability to concurrently tune several parameters of interest in modeling
real networks, is the Nonuniform Popularity-Similarity model. Introduced in [94],
it builds upon a sequence of increasingly refined generative models to provide all
the key structural properties of real-world graphs, such as scale-freeness, small-
worldness and community structure. We therefore set out to employ it as benchmark
in our comparison of the minimal and loose scaffolds.
In general, networks which display hyperbolic geometries tend to have a rather
tree-like structure, with a certain scarcity of cycles. It is straightforward that, in
the absence of a significant structure of persistent homology, the loose and minimal
scaffolds will agree to high degree for at least two reasons: the low number of cycles
forces the loose scaffold to localize onto the few available holes, hence resembling
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the minimal, and secondly the scarcity of homology makes for a comparison between
two mostly empty sets.
Following the lead of [95], we tuned the nPSO model parameters in order to empir-
ically maximize the persistent homology structure, so as to make the comparison
the most significant possible. As reported in Fig. 3.9, we observe again good
ability of the scaffolds to proxy each other across the metrics analyzed, signif-
icantly higher than with respect to a null model, for a sample with parameters
N = 50,m = 2,T = 5,γ = 3 and uniform distribution. A Kolmogorov-Smirnov test
was also performed, as in the previous section, where a p-value higher that 0.05
indicates that the distribution of degrees and betweeness centralities in the minimal
and loose scaffold cannot be confidently distinguished. This was the case for all the
samples we tested.
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Fig. 3.9 Comparison of the minimal and loose scaffold for nPSO random model. (a) Degree
sequence and betweenness centrality in the two scaffolds are compared using Pearson and
Spearman correlation coefficients. Each box is computed over a sample of 30 nPSO instances,
with the following parameters: 50 nodes, average degree 10 (m = 5), 0 temperature, power-
law exponent γ = 3, and uniform distribution of angular coordinates. The cyan crosses and
green diamonds represent the average correlations against the loose and minimal null models
respectively, as in Fig. 3.8. In panel (b), the table reports, for the degree and betweenness
centrality distributions, the fraction of Kolmogorov-Smirnov test that could not reject the
hypothesis of the two samples coming from the same distribution. This has always been the
case for each sampled instance and both metrics. (c) A graphical depiction of an instance of
the nPSO model with parameters N = 150,m = 2,T = 5,γ = 3 and uniform distribution on
the left. On the right, the corresponding minimal scaffold.
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Conclusions

We provided a new method of network analysis and skeletonization, based on the
computation of minimal homology bases. This new construction fills a significant
gap in previous literature, in that it yields, in all but some rare pathological cases, a
well-defined and unique subgraph, acting as a reasonable ground truth for comparison
with the previous construction. It can be employed in a range of applications, both
to identify crucial and weak links in a network, and to obtain compressed and
topologically sound representations of the input. It also allows to evaluate the
reliability of other scaffolding procedures with respect to said ground truth: we have
observed that, for some applications, the loose scaffold can be deemed a sufficiently
accurate tool, while not incurring in as cumbersome a computational load.
We foresee that the subject of homological skeletonization is not yet concluded.
As mentioned, other approaches to finding canonical generators of homology are
possible, One question that could spark from the present approach is the following:
could one construct a sensible "entropy" functional on the space of cycles, so as to
obtain by probabilistic methods a strictly unique, minimally-represented basis?
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3.3 Homologically Persistent Skeleton

In the previous section we discussed extensively how one can apply the notion of
minimal bases of homology towards the applications. In particular, we came to the
conclusion that a skeletonization approach such as the minimal scaffold provides
arguably the most refined information on the localization of (persistent) 1-cycles, but
at the same time incurs in an often intractable computational cost.
Maintaining the notion of geometric minimality as a goal, we can approach the
problem with different tools that compromise between accuracy in terms of ho-
mology localization and cost. In this setting we studied the work of Kurlin and
various collaborators on the topic of homologically-persistent skeletons, shortened in
HoPeS. These constructions were first developed for the 1-dimensional case and later
generalized to arbitrary dimension d, and leverage the notion of minimum spanning
tree, in particular the crucial properties of trees with respect to cycles. They sparked
a series of papers on the topic, stemming from the work contained in [66].
We have provided a Python implementation of the 1-dimensional version of HoPeS.
Further, in order to make this construction more conceptually similar to that of the
minimal scaffold, we have proposed a modified version of HoPeS that more closely
mimics the results of skeletonization via a homology basis, which we called pruned
HoPeS.
Next comes a section where we study the behaviour of HoPeS as defined in the
mentioned paper, when the point cloud under study is highly symmetrical. We
show that some care must be taken when computing persistent homology in that
circumstance.
Finally, we have applied this method in a similar fashion to the previous section,
sketching a statistical comparison between the pruned HoPeS and the minimal scaf-
fold. This part is work that I conducted jointly with Nicola Porru, a master student
whose work I co-superivised and whom I thank.

HoPeS

The Homologically-Persistent Skeleton was first introduced in [66]. The construction
is sketched as follows. Let C be a finite subset of a metric space. In the following
we will consider C ⊂ Rn, although the method is not limited to this circumstance.
For example, we could equally work with a metric graph, that is a non-negatively
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Fig. 3.10 A point cloud C ⊂ R2

weighted graph as in the previous section, with the additional requirement that weight
obey the triangular inequality.
Let di j be the distance matrix of cloud C. Let F0 be the usual filtration of flag
complexes induced by di j as in section (3.1.3), that is a Vietoris-Rips filtration built
by considering the graph induced by (di, j)i, j and, for each ε , computing the flag
complex of the subgraph obtained by thresholding out edges of length higher than ε .
Again inclusion maps are the obvious ones. In Figure 3.10 we can see an example
point cloud in R2.

Finally, let MST(C) be a minimum spanning tree of the point cloud C.

Definition 56. (Minimum spanning tree) Let W be a weighted metric graph (that is,
a graph whose weights form a metric). We call minimum spanning tree a subgraph
MST (W ) of W that contains all vertices of W and such that

• MST (W ) is connected

• For any other such subgraph, the total length of its edges is ≥ than the total
length of the edges of MST (W ).

Notice that by definition a tree is connected and contains no cycle. Then the mini-
mum spanning tree is guaranteed to be a tree, as is has to be connected by definition,
and the presence of any cycle would violate the requirement of minimality (since
the graph is metric and therefore contains no zero-length edges). Since we assume
to work with a point cloud C ⊂ Rn, and this naturally induces a metric structure
on C, we will equivalently write MST (C) to mean the minimum spanning tree of
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Fig. 3.11 The minimum spanning tree of point cloud C.

the corresponding metric graph. In Figure 3.11 we can see MST (C), the minimum
spanning tree of the point cloud in the example above.

We say a filtration is simplex-wise if it defines an injective map from the critical
parameter values {εk}n

k=1 into the simplices. In other words, if each step of the
filtration amounts to adding exactly one simplex, therefore defining a strict total
order on these. Notice that since the filtration is built from data, it is not restrictive to
assume the persistence module is tame and the critical parameter values are a finite
set.
The classical algorithm to compute persistent homology proceeds simplex by sim-
plex, and therefore requires a strict total order on the simplices. In general filtrations
computed from data need not be simplex-wise, as several simplices may be in-
troduced at the same scale. One such filtration, as is F0, must be refined into a
simplex-wise one, which we denote here by FSW , and assume that FSW is a diagram
of type ([n],≤), regardless of the type of F0. We write that

F0 ⪯FSW

and say that F0 is refined by FSW , to mean that every complex F0(ε) appears as
some FSW (i), but not necessarily the other way around.
In order to execute the persistent homology algorithm, the choice of this refinement
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Fig. 3.12 The homologically persistent skeleton (HoPeS) of the point cloud C. Critical edges
are highlighted in orange.

is irrelevant. However, we will see that for HoPeS, we must pay attention to the
choice of refinement if several edges in C are the same length, to avoid pathological
behaviour.
The reason we want a simplex-wise filtration is so that we can invert the function
from parameter values to simplices into a function from simplices to parameter
values. A Mayer-Vietoris-type argument guarantees that for a simplex-wise filtration,
every step corresponds to either creating homology in dimension k or destroying
homology in dimension k− 1, and as the algorithm determines the effect of each
simplex in creating or destroying homology, this association is necessary to obtain
persistent pairs. When pairs are converted from being indexed over FSW to being
indexed over the original filtration F0, the arbitrary choice of a refinement comes
undone and we revert to the appropriate values.
This being said, denote by E∗(C) the set of edges in the point cloud C whose
introduction generates a persistent homology class of dimension 1. As per [66], these
are called critical edges, and it is a well-known fact that a minimum spanning tree
of C contains none of them. To each critical edge, one can associate the persistence
interval of the class of PH1 that it generates.

Definition 57. (HoPeS, [66]) HoPeS(C) is defined as MST (C)∪E∗(C). Each ele-
ment of E∗ is decorated with its persistence interval.

In Figure 3.12 we see the HoPeS of C as in the previous examples. Critical edges are
highlighted in orange.
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Remark 1. The theoretical computational complexity of the HoPeS algorithm is
dominated by the persistence algorithm, which has a theoretical running time of
O(n3) in the number of simplices, whereas computing a minimum spanning tree
costs no more than O(n logm) where n and m are the number of edges and vertices
respectively. It is known that in practice the persistence algorithm often runs in
slightly more than linear time, leaving us with a conservative estimate of a complexity
that is less than quadratic, vastly more efficient than the minimal scaffold.

By definition, HoPeS consists of the (disjoint) union of a tree and a set of edges,
one for each persistent homology class that exists throughout the filtration. By
construction, it is clear that HoPeS is always a connected graph, and in particular we
notice that it contains a set of cycles, connected by linear bridges, and with a branch-
like structure expanding towards each node that does not participate into cycles. In
other words, HoPeS has an arborescent structure mixing cyclic components with
tree-like components.
If we think of the skeletonization approaches as the ones in the previous section,
instead, these were built based only on the cyclic structure given by homology
generators. Indeed, the scaffolds need not be connected graphs in general, as nodes
that never participate into representative cycles of homology are in fact disconnected
from the rest of the graph.
If we are keen on utilizing HoPeS as a less costly alternative to the minimal scaffold,
the tree-like arborescent structure is actually superfluous, and this is the reason
behind the modified definition of the pruned HoPeS that we give in the following.
Let C, F0 as before. Consider the following procedure:
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Algorithm 3.1: Pruned HoPeS
Input: point cloud C ;
Result: Pruned HoPeS of C

PrunedHoPeS(C) := the empty graph on C ;
Compute E∗(C) and MST (C) as above ;
for e ∈ E∗(C) do

Add edge e to the MST of C: Ce := MST (C) ∪ e ;
while Ce contains a vertex v of degree 1 do

Remove from Ce the only edge coming into vertex v ;
end
PrunedHopes(C) := PrunedHoPeS(C) ∪Ce ;

end
return PrunedHoPeS(C)

It works as follows: firstly, one computes the minimum spanning tree MST (C) of the
point cloud and the critical edges E∗(C). Then one adds to the MST (C) the critical
edges one at a time, and at each time prunes the resulting structure. Adding one
critical edge results in a graph that has exactly one cycle. The pruning is performed
by identifying leaves, i.e. vertices with degree 1. Each time a leaf is found, the edge
coming into it is deleted, and the operation is repeated until one is left with only the
cycle. One saves this cycle, moves to adding to the MST (C) the following critical
edge, and prunes again, finding the next cycle. In the end, the union of these cycles
is the PrunedHoPeS.

Definition 58. (Prune HoPeS) Given C as above, the output of algorithm 3.1 is the
PrunedHoPeS of C.

In Figure 3.13 we can see the PrunedHoPeS of point cloud C as in the previous
examples, with critical edges highlighted in orange. It more closely resembles the
skeletonization approaches based on generator cycles of persistent homology; for
example, we see it is disconnected.

Consistency of refinements

As we mentioned above, running the persistent homology algorithm normally re-
quires refining a filtration to a simplex-wise one. For the purposes of computing
persistence pairs, how one breaks the ties is essentially immaterial, because this
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Fig. 3.13 Our proposed construction of a pruned homologically persistent skeleton.

operation is then reversed when returning the result.
Here, instead, we are interested in identifying the critical edges, and for the whole
algorithm to be correct we must be sure that these edges are not contained in the
minimum spanning tree. If we assume that all edges in the point cloud are of different
length, then the filtration is automatically simplex-wise and we need not worry about
this fact. If instead we have a point cloud that is highly symmetrical, this could cause
a problem due to the MST not being unique.

Example. Consider for example the set of four points arranged in a square. Four
MST ’s are possible, corresponding to each of the four perimeter edges that can be
left out. At the same time, since the four edges enter into F0 at the same time, we
have many possible refinements of F0 into FSW , and the choice of which edge is
taken as the critical one depends on which is introduced last into FSW .
If the choice of the refinement FSW is made randomly and independently of the
construction of the MST , one has a three out of four chance to end up in a situation
where the last edge to enter FSW is contained into MST . The result is catastrophic,
because the resulting HoPeS contains no cycle.

The choice of a MST for C can be used to construct a refinement FMST ⪰ F0,
where edges that belong to the MST appear before edges of the same weight that do
not. When the choice of an MST is not unique because more than one exists, this
refinement is strict.

Lemma 2. If F0 ⪯FMST ⪯FSW , then no critical edge for FSW belongs to the MST .
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Proof. Suppose otherwise, so there exists e ∈MST that is critical for FSW . We must
show that FMST ̸⪯ FSW . Let µ(e) be the length of edge e, and consider F0(µ(e)),
the complex containing all simplices of diameter ≤ µ(e). By the construction of
FMST , there exists an integer i ∈ N such that FMST (i) is a sub-complex of F0(µ(e))
containing all simplices of diameter < µ(e), and only those edges of length µ(e)
that belong to the MST . It will suffice to show that there is no j ∈ N such that
FMST (i) = FSW ( j).
First, notice that by construction FMST (i) must contain edge e. Then, notice that
since e is critical for FSW , if FSW ( j) contains e is must contain a cycle (in the sense
of a 1-chain) through e with birth time µ(e). So if it were that FMST (i) = FSW ( j),
then FMST (i) must contain a cycle through e. In other words, e does not kill a
connected component in FMST (i) = FSW ( j). But then MST \ e is another spanning
tree with length strictly less than MST , and this is a contradiction.

If instead F0 ⪯FMST and F0 ⪯FSW but FMST ̸⪯ FSW , i.e. the simplex-wise filtra-
tion implicitly built by the persistence algorithm is not informed by the choice of
tree- and non-tree-edges, then pathological configurations such as the one described
in the example may appear.

To ensure that FMST ⪯FSW , one must first produce any MST and then reorder FSW

so that within any weight class (i.e. fibre of the map that assigns a weight to every
simplex), first come the edges that belong to the MST, then come the non-tree edges,
and finally all triangles. One such list of simplices induces a simplex-wise filtration
that obeys the required constraint FMST ⪯ FSW , and therefore produces a correct
output.

Comparison with the minimal scaffold

We finally ran the pruned HoPeS model to compare it against the minimal scaffold
presented above. We must firstly observe that while the minimal scaffold only
requires a semi-metric space to be defined, [66] requires that the space on which
to compute the persistence skeleton be metric. Therefore, many of the data sets
or graph models presented above cannot be applied. The Human Connectome and
the C.Elegans data sets are correlation networks, and as such do not normally form
metric spaces (although they could be transformed into one). The Watts-Strogatz
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Fig. 3.14 Comparison of running times between pruned HoPeS and the Minimal Scaffold
over Random Geometric Graphs on N nodes, with a threshold value of 0.4.

and nPSO models also do not enjoy a metric structure. Therefore, we limit our
comparisons to the Random Geometric Graphs.

As a first step, we compare the computational complexity in terms of computation
time between pruned HoPeS and the minimal scaffold, on a family of Geometric
Random Graphs on N nodes, with a fixed threshold of 0.4. We can see the result in
Figure 3.14, where it is apparent that while for very small graphs the computational
overhead dominates the difference between the two models, as soon as the number of
nodes (hence edges) increases slightly the minimal scaffold sharply becomes much
more difficult to compute.

Then, we have performed an exploratory analysis of the correlation between certain
graph statistics of the minimal scaffold and of the pruned HoPeS, in the same spirit
as done in Section 3.1. We present results in Figure 3.15, where we can see the
boxplots of the correlation values ρ over a family of 30 geometric random graphs
whose parameters are reported on the x-axis. The first panel reports results for the
correlation of the degree sequences, and the second for betweenness centralities.
We report a generally positive correlation between the two models, although the
magnitude of this correlation varies widely from instance to instance, thereby sug-
gesting that further and larger experiments are needed to cope with the variance.
Additionally, it would be beneficial to perform a significance test onto the correla-
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tions obtained.
We foresee to explore these avenues in subsequent work.
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(a)

(b)

Fig. 3.15 (a) Boxplot of the correlation coefficients of the degree sequences of the pruned
HoPeS and of the minimal scaffold computed on a family of 30 RGG instances, with
parameters reported on the x-axis. For each boxplot. the first parameter on the x-axis reports
the number of nodes in the graph, and the second reports the threshold value. (b) Boxplot
of the correlation coefficients of the betweenness centrality of the pruned HoPeS and of the
minimal scaffold computed on a family of 30 RGG instances, with parameters reported on
the x-axis. For each boxplot. the first parameter on the x-axis reports the number of nodes in
the graph, and the second reports the threshold value.
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3.4 Canonical representatives via Alexander duality

In this section we present some material pertaining a research line that is ongoing
work between myself, Alessandro De Gregorio and Sara Scaramuccia. As a whole,
it is at a preliminary level and mostly contains a review of the literature about the
topic of searching for canonical representatives of homology cycles by leveraging
the correspondence between zero-homology and d−1 homology given by the fa-
mous theorem by Alexander. Alongside those, we present a few ideas, results and
conjectures of our own.
The main point is an algorithm to compute tight homology representatives under the
hypotheses of Alexander duality. The idea was already present in the PhD thesis
[96] by Benjamin Schweinhardt, and has also been touched upon in [71].

Related Works

Several works have historically touched on the topic of homology localization ([97–
100]).
Here, we mention in particular the PhD thesis [96] by Benjamin Schweinhardt. It
already contains the idea of having a canonical representative by relating codimension
1 object to connected components in the complement via Alexander duality. Then, it
leverages the properties of zero-dimensional homology, namely the ability to identify
a 0-homology class with a set of points, to define a canonical representative. In
doing so, however, it assumes the knowledge on a triangulation of the sphere and
of a subcomplex of that triangulation. Our approach, on the other hand, works
without the assumption of having a triangulation of the sphere of which our data is a
subcomplex. In other words, it saves the need to extend a given simplicial complex
to a triangulation of a sphere.
In the work [71] by Obayashi, the author has the same goal as [96], but tries to
extend it to the case of codimension > 1, for which duality no longer holds. It works
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by relaxing the "exact" problem

minimize |z|0 s.t.

z = zi +∂ω

ω ∈C2(K,Z2)

into the linear problem (l1):

minimize |z|1 s.t.

z = z1 +∂ω

ω ∈C2(K,R)

It is heuristically known that this should approximate the solution, but it is not an
exact algorithm.

Alexander duality

Let Hk(·,F) (respectively Hk(·,F)) be the k-homology functor (respetively the k-
cohomology functor) with coefficients in a field F. Consider the d-dimensional
sphere Sd .
It is famous that

Theorem 4. (Alexander duality, [101])
Let X be a proper, non empty subset of Sd , and assume that (Sd,X) is triangulable.
Then there is an isomorphism

H̃k(X ,F)∼= H̃d−k−1(Sd \X ,F)

The theorem states an isomorphism between the reduced cohomology in degree k
of X and the reduced homology in degree d− k−1 of the complement of X in the
sphere Sd . As mentioned above, we are especially interested in the case k = 0, as
zero (co)homology enjoys special properties in terms of class representatives, and
this yields the isomorphism

H̃0(X ,F)∼= H̃d−1(Sd \X ,F)
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We see, therefore, that homological features in dimension d− 1 (for a subset of
the d-sphere, which we often call codimension 1 features) are also amenable to
especially nice properties. Specifically, 0-dimensional homology is particularly
convenient, in that it has canonical representatives for each class (i.e. component).
This is due to the fact that cycles in dimension zero are 1-to-1 with vertices as ∂0 = 0,
so Z0 := ker∂0 =C0. This entails that a basis of H0 is a subset of the standard basis
of C0.

In the following, the requirement that the spaces be triangulable will be thoroughly
enforced. In fact, as we are mostly interested in applying the method to data, we will
only deal with finite simplicial complexes, without ever considering the singular or
homology manifolds for which the theorem is actually valid.
As such, let L denote a d-dimensional, finite simplicial complex that is a triangulation
of the d-sphere, i.e such that we have a homeomorphism

L∼= Sd

Recall we write ⊴ to denote a simplicial subcomplex. Let K ⊴ L, and call L\K
the closure (in L) of L \K, i.e. the smallest subcomplex of L that contains L \K.
Alexander duality specializes into

H̃0(K,F)∼= H̃d−1(L\K,F)

Now, since we consider reduced (co)homology with coefficients in F, and since we
assumed all simplicial complexes to be finite, by the universal coefficients theorem
and the properties of finite-dimensional vector spaces the above translates into the
isomorphism

H̃0(K,F)∼= H̃d−1(L\K,F) (3.5)

between 0-dimensional reduced homology and d−1-dimensional reduced homology.
This is the version that we will be interested in, as it allows us to leverage the
canonical representatives for H0, that is a good choice for a preimage of the homology
map [·] : C0→ H0, to form a map

H̃d−1
∼=−→ H̃0 −→C0
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where elements of H̃0 are connected components up to one "framing" component.

We will mostly consider the case d = 2. In fact, we will assume that the data we are
given is in the form of a planar simplicial complex, in the following sense. Assume
we are given a triangulation of a compact subset D of R2, i.e. a set homeomorphic
to the 2-disk. For brevity, we will again call D the simplicial complex given by this
triangulation. Consider the boundary of D, which is a 1-chain ∂D, introduce a virtual
point at infinity x∞ and consider the cone of ∂D with x∞. This is homeomorphic to
the 2-sphere S2.

S2 ∼= D ∪ ∂D∗ x∞

where ∗ denotes the coning operation. The cone of a point x∞ with a simplicial
complex K is defined as the set of simplices [x∞σ0 . . .σp] for every [σ0 . . .σp] that is
a p-simplex in K, plus all their faces ([101]).
So normally our data is of the form L := D ∪ ∂D ∗ x∞, and we will consider a
subcomplex K ⊴ L. Moreover, we will assume that the subcomplex K does not
contain x∞, i.e. it is a planar subcomplex of D.
This whole setting allows us to talk about the homology classes in dimension 1 of K
in terms of the connected components (up to the framing component) of L\K.

Canonical representatives

Assume K ⊴ L as above are given. Consider a class [c] ∈ Hd−1(K), whose represen-
tative is any cycle c ∈ Zd−1. The power of Alexander duality lies in the fact that it
allows us to canonically identify a set of vertices in the complement. Namely, call Al
the isomorphism in Alexander duality. Then [c] is mapped to a connected component
γ of L\K:

[c] Al7−→ γ ∈ H̃0(L\K)

For 0-dimensional homology, there is a natural way to define a correspondence
between 0-chains and vertices. Call this supp(:)C0 → K0. Now, γ is uniquely
represented by the subset of all vertices of L\K whose chain is mapped to γ by the
quotient map H0. Denote this subset by vC. In formulae,

vC := supp
(
H−1

0 (Al([c]))
)



76 Canonicity of Homology Generators

where by H−1
0 we mean the preimage of the homology map.

Now, call sC the full subcomplex of L\K induced by the vertices belonging to vC.
That is, a p-simplex σ = [v0, . . . ,vp] belongs to sC iff all its v0, . . . ,vp belong to vC.
Call τ[c] the d-chain

τ[c] := ∑
σ∈sC

dimσ=d

σ (3.6)

This is, the sum of chains of all top-dimensional simplices contained in the full
subcomplex corresponding to a connected component. We are now ready to define
the notion of canonical cycle.

Definition 59. (Canonical cycle)
The (d−1)-cycle ∂dτ[c] is the canonical cycle of class [c] ∈ Hd−1(K).

Uniqueness of the canonical cycle is automatic by the uniqueness of τ , which is
guaranteed by duality and by the properties of H0. We remark that formally the
canonical cycle is an element of Cd−1(L\K). Since in the above we postulated
explicit knowledge of the inclusion K ↪→ L, it is immediate to construe the canonical
cycle as an element of the desired space Cd−1(K).
At the same time, this represents a limitation to concretely using this approach
in practice. If one is only given data in the form of a d-dimensional triangulated
manifold K, to construct the canonical cycle in this way one must first extend K to L,
that is construct a compatible triangulation of Sd from K.

Tight representatives

Now assume we are given a complex K that is a triangulation of a subset of a compact
D as above, i.e. D ∪ ∂D∗ x∞

∼= Sd . In particular, L is a d-manifold. We must define
a notion of simplices being "inside" or "outside" of a cycle. The precise definition of
a point being inside or outside of a cycle is the key problem that we wish to address
in order to make the following into a precise definition. For now, let us assume that
we have an agreed notion of inside and outside, or equally, of containment. We will
say more about it in the following, but its solution is ongoing work.
Let us define

Definition 60 (tight cycle). A (d− 1)-cycle c in K as above is called tight if no
d-simplex of K is "inside" of c.
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Definition 61 (tight cycle with geometric realization). A (d−1)-cycle in K as above
is called tight if it does not contain any point in the interior of a d-simplex of K.

We have given two definitions of a tight cycle, one leveraging the geometric con-
tainment, and one the abstract notion of inside. We remark that in both cases it is
not trivial to give a precise meaning the these terms. For a cycle that is a simple
plane curve the distinction is clear, but cycles that have self intersections are more
complicated.
One approach that we are investigating is as follows: a simplicial cycle decomposes
into a number of polygons. If the cycle is self-intersecting, this number is greater
than 1. A method called ray-tracing allows to define a suitable concept of inside:
given a point, consider a half-infinite ray centered at the point. For each polygon,
if the ray intersects the polygon an even number of times then the point is called
outside the polygon, otherwise it is called inside. Finally, the point is inside the cycle
if it is inside an odd number of its polygons, outside otherwise.
One problem with this approach is that a decomposition into simple polygons is not
unique, and it is not even always formed by the same number of polygons. Then one
first hurdle is to ensure that this definition is consistent independently of the choice
of polygonal decomposition.

Tightening is in fact an operation on cycles. Indeed, given any cycle c, one can easily
obtain a tight representative, specifically

tc := c+ ∑
dimσ=d

σ "inside" c

∂dσ (3.7)

Proposition 1. tc is tight and homologous to c

Proof. The two cycles differ only by boundaries.

Proposition 2. The tight representative is unique

Proof. If c1 and c2 are homologous cycles, so that

c1 = c2 + ∑
σ∈I

∂σ

then for each σ in I exactly one of the following claims is true:
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• σ is inside c1 and outside c2;

• σ is inside c2 and outside c1.

Let us denote with #(c,σ) the number of polygons of c that contain σ . Consider
c2 and c2 + ∂σ . Suppose that ∂σ and c2 have no edge in common. If σ is inside
c2, then #(c2,σ) is odd. When we add ∂σ to c2, we have that #(c2 + ∂σ ,σ) =

#(c2,σ)+1.

Theorem 5. Each homology class h of H1(K) has a unique tight representative.

Proof. Suppose to have two homologous tight cycles, t1 ̸= t2. Since they are homolo-
gous, it must be t1 = t2 +∑σ∈J ∂σ . But then by the previous claim, if J is not empty
there must be a σ inside t1 and outside t2 or vice versa, but this is impossible, since
by construction, t1 and t2 do not contain any simplex inside themselves. Therefore,
t1 = t2 and the tight representative is unique.

Theorem 6. Every canonical cycle as given by Alexander duality is tight ( in K)

Proof. Since the canonical cycle is in Cd−1(L \K), it contains no d-simplices of
K

We have sketched some concepts regarding canonical representatives via Alexander
duality. Most of this material needs further analysis, and we foresee to work on it in
the future.



Chapter 4

Interval Bases and persistence
module decomposition

This chapter is based on work that I carried out jointly with my advisor Francesco
Vaccarino and Alessandro De Gregorio and Sara Scaramuccia.
The focus in this chapter drifts away from the topic of homology representatives, that
is choosing a good preimage for the homology quotient map, and towards the goal
of choosing good (in a sense that will be discussed) generators within the persistent
module.
A prototypical example of this problem appeared in the previous chapter, when
discussing the uniqueness of the minimal scaffold, namely when considering three
homology classes connected by a linear relation of the form [A] = [B]+ [C]. The
same situation appears a fortiori when considering persistence modules as opposed
to "single" homology vector spaces, with the due modification that one does not
consider linear relations over an F-vector space, but rather over an F[x]-module. This
type of relation encodes homology classes
In that setting, the existence of such a relation proved troublesome to the task of
defining a unique homological skeleton; however, it relates directly to the problem
of choosing a criterion for picking basis for a vector space, a problem that is known
to be fickle and can essentially only be tackled by enforcing some extrinsic criterion.
This is even more true in the case of modules. The topic of choosing generators, or
giving a presentation, is in itself a vast one. Considering that, in general, modules
do not even admit a basis, the problem is larger than for the case of vector spaces.
However, we will see that the structure maps in a persistence module do provide
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criteria to operate such a choice, and this is indeed the goal of the work exposed
here.
The central part this chapter deals with the decomposition of persistence modules. It
necessarily stems from the fundamental theorem linking topological data analysis to
representation theory, namely the theorem by Zomorodian and Carlsson establishing
the equivalence of categories between one-parameter, equioriented, finitely-presented
persistence modules over a ring R and R[x] modules. This result lays the ground for
the application of the Krull-Schmidt-Remak theorem, guaranteeing that a persistence
module admits an essentially unique (up to isomorphism and reordering) structure of
direct-sum indecomposables.
For the goal of computing persistence, obtaining such a decomposition is enough, as
it allows to read off the persistence diagram, which is usually what one is interested in.
Hence, the classical algorithm for persistent homology, for efficiency, performs a left-
to-right, simplex by simplex reduction of the boundary matrix which pairs simplices
identifying persistence pairs. Additionally, the reduced matrix contains generating
cycles in the form of suitable k-chains whose boundary is zero, corresponding to
homology classes which generate the persistence modules.
The output of this algorithm, however, does not take into account the structure of
the relations between the computed generators. The chosen cycles, or rather their
corresponding persistent homology classes, generate the whole persistence module
through the action of the structure maps. However, the behaviour at their death points
does not enjoy any particular property.
We have started from this consideration when searching for a different type of
generator set, that we call an interval basis. These vectors not only generate the
persistence module, but additionally enjoy injectivity properties along the structure
maps, or in other words take into account the structure of the relations between them,
so as to make them as simple as possible. That is, diagonal.
In the following, largely based on the preprint [102], we describe the concept of
interval basis, and propose a parallel algorithm to compute one from a DAPM.
We compare it to the previous constructions in the literature, namely studying its
relationship with the primary decomposition of a module and with the graded Smith
Normal Form. We then show that our step-wise parallel algorithm obtains an average
computational advantage over the SNF version.
We conclude the study by showing a full parallel pipeline for the computation of
persistent homology over the reals, by leveraging the Hodge decomposition and
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the isomorphism between harmonic representatives and homology. This allows to
compute an interval basis simultaneously over each homogeneous component of the
persistence module, starting from a filtered chain complex, replicating the traditional
TDA pipeline.

4.1 Parallel decomposition of persistence modules through
interval bases

Consider a (discrete, algebraic) persistence moduleM= {Mi,ϕi : Mi→Mi+1}i over
a field F (DAPM), indexed over the natural numbers. In this section we will call each
Mi the ith step and each ϕi the ith structure map. Assume, as per the background,
that the module is tame or equivalently of finite type, i.e. that each F-vector space
Mi is finite dimensional and only a finite number of maps among the ϕi’s are not
isomorphisms.
We remark that the underlying structure is that of an equioriented quiver, in par-
ticular we do not consider zigzag modules in the following. By the fundamental
representation theorem above, each {Mi,ϕi} can be decomposed, up to ordering, into
a direct sum of interval modules so thatM is completely described by its persistence
diagram or barcode. Furthermore, this decomposition is stable with respect to noise
if the PM is made of the homology groups of a geometric sampling.
More explicitly, a persistence module can be written uniquely, up to reorderings of
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Fig. 4.1 A 3-step filtration by sublevel sets, with respect to the the z coordinate, of a half
torus.
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summands, as a direct sum of persistence (sub)modules

M∼=
⊕

m
I[bm,dm], (4.1)

where each term I[bm,dm], called interval, is an indecomposable persistence submodule
depending on the indexes bm ≤ dm. The multiset of pairs {(bm,dm)} forms the
barcode.
Under the isomorphism in Eq.(4.1), for each m, one might search for an element vm

inM which, through the application of the structure maps, generates the submodule
I(vm) corresponding to I[bm,dm].

In this work, we call a set of generators {vm}m ofM an interval basis if it satisfies

M=
⊕

m
I(vm)∼=

⊕
m

I[bm,dm]. (4.2)

The classical algorithm to construct the barcode of a finite type persistence module
([8]) works at the level of the chain complexes and thus is limited to persistence
modules induced by homology. The algorithm yields the pairs {(bm,dm)}, and can
be used to extract a set of homology generators, as done in [103]. However, the
extracted set of generators does not generally satisfy eq. (4.2).
For example, consider a filtration of the half torus such as the one depicted in fig. 4.1,
which will be our running example throughout the paper. The classical algorithm
correctly identifies the persistence pairs, but returns the generators depicted in fig. 4.2,
in accordance with the so-called elder rule. These generators do not induce a de-
composition such as the one in eq. (4.2), because their images in the final step of the
filtration become homologous. Algebrically, this entails a linear relation between
non-zero elements ofM and thus the sum of interval modules in eq. (4.2) is not
direct.
The principal contribution of this chapter is to provide a procedure to build an interval
basis. From an interval basis, it is trivial to compute the persistence pairs. As an
example, for the case of 1-homology of the half torus, a set of generators forming an
interval basis is depicted in fig. 4.3.

With the classical approach one is only allowed to compute the decomposition of
a persistence module that is the homology of a filtration of simplicial complexes.
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Moreover, the algorithm intrinsically works with objects (chain groups and chain
maps) whose dimension is typically much larger than that of their homology module.
Our proposed method, instead, addresses the case of finding a decomposition of a
general, i.e. not necessarily a homology, persistence module. As such, we work
directly at the level of {Mi,ϕi}. As a consequence, the bulk of our algorithm can be
performed independently for each Mi, i.e. is largely parallelizable.

We can summarize the main contribution with the following result

Theorem. Given a finite-type F-persistence module, the output of alg. 4.3 provides
an interval basis.

After giving a specific instance of our algorithm for the case of k-persistent homol-
ogy modules, i.e., persistence modules obtained through the k-homology functor
applied to a filtration, we specialize our procedure to the case where the chain spaces
are Euclidean, i.e. have a scalar product. For example, we address the case of
k-persistent homology modules with coefficients in R, which can be built from the
kernel of the k Hodge Laplacian operator with respect to a filtration of simplicial
complexes. We construct the induced maps between kernels and, by the known
properties of the Hodge Laplacian, prove it to be equivalent to the k-persistent ho-
mology module. We then apply our decomposition to obtain an interval basis, which
is shown in fig. 4.4. This furthers the recent trend of exploring the interplay be-
tween topological data analysis and the properties of the Hodge Laplacian [104–106].
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Fig. 4.2 Generators, classical algorithm.
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Fig. 4.3 Interval basis generators for the k-persistent homology module.
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Fig. 4.4 Interval basis generators for the harmonic persistence module

Contributions and related work

We sketch the original contents of this chapter and provide a framing within the
literature on the subject:

1. An algorithm for the decomposition of any DAPM over any field. We do not
assume the module is induced by homology. For example, the module might
derive from any sequence of simplicial maps.

2. The generators we provide are such that a decomposition of the persistence
module is given by the interval modules they each generate. We call this an
interval basis.

3. Our algorithm is parallelizable for each step of the module.

4. A framing of the topic of interval bases within the literature on the primary
decomposition of a module. Specifically, we expand on the existing literature,
and provide computational guarantees.

We further provide a parallel algorithm to construct a persistence module from a
general collection of simplicial maps. In the special case of real coefficients, we
use the Hodge Laplacian as a construction method for homology groups and maps
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between them. We therefore specialize the decomposition algorithm.

The original approach to the decomposition of persistence modules arising from
filtrations of simplicial complexes was introduced in [107], based on the simplex
pairing approach of [108]. These algorithms were limited to working with Z2 co-
efficients and simplicial maps deriving from inclusions of simplicial complexes.
Later, this framework was extended to arbitrary coefficient fields in [109], which
established the notorious correspondence between persistence modules and graded
modules over a PID. It is immediate to construct a set of generators from the output of
these algorithms. However, they do not induce an interval basis decomposition of the
module. A different approach to attempt a principled choice of homology generators
is to introduce a notion of geometric minimality, as was done in [73, 67, 110].
The distributed computation of the persistence pairs has been addressed in [111],
where arguments from discrete Morse theory are employed to observe that the re-
duction of a boundary matrix obtained from a filtration of simplicial complexes can
be performed in chunks. The chunk algorithm can, like the one proposed here, be
run in parallel for each filtration step, and is incremental in that it only considers
cells that are born within the step itself. Its objective, however, is to compute the
persistence pairs of a filtration, whereas our proposal works, for general (albeit
monotone) simplicial maps, does not need to consider the (typically much larger)
space of k-chains, and computes an interval basis.
Subsequently, the case of a monotone sequence of general simplicial maps was
addressed in [112], which relies on the notion of simplex annotation. In this way, and
by interpreting each simplicial map as a sequence of inclusions and vertex collapses,
a consistent homology basis can be maintained efficiently. Later, in [113], a variation
of the coning approach of [112] is proposed, which takes a so-called simplicial tower
and converts it into a filtration, while preserving its barcode, with asymptotically
small overhead. Our approach to the problem is different in that we do not need to
work at the level of simplicial complexes or maps, and in fact our decomposition is
independent from the persistence module being induced by a filtration of simplicial
complexes.
To our knowledge, the first paper to deal with persistence module decompositions
without assuming it arises from a family of inclusion maps was an instance of topo-
logical persistence whose underlying structure is not monotone: the so-called zigzag
persistence([114]). Zigzag persistence is based on a sequence of structure maps
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whose direction is not necessarily left to right. Its authors provide an incremental
algorithm which computes a decomposition of the zigzag module, without focusing
on its generators. Our proposal differs in that we are restricted to the case of mono-
tone persistence, but in turn our focus is on the construction of an interval basis, and
on a parallel algorithm.
An analogous point of view is taken in a recent paper by Carlsson et al. ([115]). The
decomposition of the general zigzag module is tackled from the matrix factorization
viewpoint. Starting from a type-A quiver representation, their goal is to compute a
basis for each homogeneous component of a persistence module in such a way that
the structure maps are represented as echelon form matrices. In other words, the
matrix associated to the quiver representation is in canonical form. Our algorithm
can decompose the module while avoiding the change of basis operations that are
needed for the construction of the echelon form. Furthermore, by specializing to
monotone persistence modules we can avoid the divide and conquer approach and
instead perform computations in parallel across all steps in the persistence module.

A method to compute an interval basis can also be found in the literature via an
apparently rather different path. As mentioned in the above, an interval basis
corresponds to a special choice of generators in a minimal presentation of the F[x]-
module. In the corresponding section below, we piece together work by Corbet and
Kerber [12], where one is shown how to translate the structure maps within a DAPM
into a presentation matrix of the corresponding persistence module, with work by
Skraba and Vejdemo-Johannson [10] regarding the computation of a graded Smith
Normal Form, that allows us to derive an interval basis.

Structure of the chapter

The first section reviews some concepts about persistence modules, not necessarily
made by the homology of some space, and introduce our notion of interval basis
in connection with the Structure Theorem. The following section introduces the
main algorithm (alg. 4.3) to compute an interval basis of a general persistence
module. Next, we provide a specialized algorithm to deal with real coefficients,
where characteristic is zero and we can leverage scalar products. The treatment then
moves to an improved version of the general algorithm, with a reduced computational
complexity. The following section presents the interplay between interval bases
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and the primary decomposition of a module, where we provide another approach,
more algebraic in flavour, to the computation of said bases. Then, we move to a
detailed evaluation of the computational complexity of what presented so far. In
what follows, we give a constructive method, acting independently over each step
(alg. 4.8) and structure map (alg. 4.9), for constructing a k-persistent homology
module. Moreover, we see how our constructive method can be adapted to the case
of harmonic persistence module where each step is obtained as the kernel of the
Hodge Laplacian operator, and each structure map is easily obtained via alg. 4.10.

Preliminaries

Recall that we define a (discrete, algebraic) persistence moduleM as pair {Mi,ϕi}i∈N
consisting of, for any i ∈ N:

• a finite-dimensional F-vector space Mi called ith−step

• a linear map ϕi : Mi −→Mi+1 called ith−structure map, such that there exists
n ∈ N for which ϕi is an isomorphism for all i≥ n.

We denote by ϕi, j : Mi→M j with i < j the composition ϕ j−1 ◦ . . .ϕi.
Our definition corresponds to what is normally referred to as finite type persistence
module [116].

By the fundamental theorem, any persistence module M can be thought of as a
graded module

⊕
i Mi over the ring of polynomials F[x], or a graded F[x]-module,

for short. Indeed, the homogeneous part of degree i is the step Mi and the action
over Mi under the indeterminate x is given by applying the structure map ϕi. Being
that correspondence an equivalence of categories, we can transpose to persistence
modules some notions which apply to graded modules, such as isomorphisms,
homogeneous elements, direct sums, generators, and submodules.

Let I(v) = {Ii(v),ψi(v)}i∈N be the submodule ofM generated by v ∈Mb (i.e., v is
homogeneous in Mb of degree b). Observe that we have

Ii(v) =

⟨ϕb,i(v)⟩ if i≥ b,

0 otherwise,
ψi(v) =

ϕi|⟨ϕb,i(v)⟩ if i≥ b,

0 otherwise,

where the brackets ⟨·⟩ denotes the F-linear space spanned by their argument.
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Now, define an (integer) interval [b,d] with b ≤ d to be the limited set {b,b+
1, . . . ,d} and [b,∞] to be the unlimited set {b,b+ 1, . . .}. The interval module
I[b,d] relative to the interval [b,d], possibly with d = ∞, is the persistence module
{Ii,ψi}i∈N such that

Ii =

F if b≤ i≤ d,

0 otherwise,
ψi =

idF if b≤ i < d,

0 otherwise.

Remark 2. Fix a degree b. For each v ∈Mb, there exists d ∈ N or d = ∞ such that

I(v)∼= I[b,d].

Indeed, each step in I(v) is either isomorphic to the vector space F or to 0 and the
structure maps are either isomorphisms or the null map. If there exists an integer
r, such that Ir(v) = 0, we take d to be the minimum of such r’s. Otherwise, we set
d = ∞.

Definition 62. Given a persistence moduleM= {Mi,ϕi}i∈N, a finite family {v1, . . . ,vN}⊆⊕
i Mi of homogeneous elements is an interval basis forM if and only if

N⊕
m=1

I(vm) =M

.

Proposition 3. Every persistence moduleM= {Mi,ϕi}i∈N admits an interval basis
{v1, . . . ,vN} ⊆

⊕
i Mi.

Proof. The existence of an interval basis for each M follows from the interval
decomposition corresponding to the Structure Theorem [109] for finitely generated
graded F[x]-modules. Indeed, the interval decomposition implies thatM decomposes
into a direct sum of interval modules of the form

M∼=
N⊕

m=1

I[bm,dm], (4.3)

where the intervals [bm,dm] with bm ≤ dm ≤ ∞ are uniquely determined up to re-
orderings. Let Ψ = {Ψi}i∈N : ⊕N

m=1I[bm,dm] −→M be the graded isomorphism of
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the interval decomposition in 4.3. Then, for each summand I[bm,dm], the map Ψbm

detects a vector vm ∈ Mbm . By Remark 2, we have that I(vm) ∼= I[bm,rm] for some
bm ≤ rm ≤ ∞. Observe now that, for all indexes i ∈ N, the decomposition isomor-
phisms satisfies ϕi ◦Ψi = Ψi+1 ◦ψi, where ψi is the structure map of I[bm,dm]. This
implies that rm = dm for all indices i ∈ N.

Formula (4.3) defines the barcode B(M) as the multiset of pairs
{(bm,dm)}N

m=1, i.e., the collection of pairs in the formula counted with multiplicity.
The pairs of the kind (b,∞) are called essential pairs.

An alternative persistence module decomposition is the one that obtains a so-called
coherent basis.

Definition 63. Given a persistence module {Mi,ϕi}n
i=0, a coherent basis is given

by a set of bases
{
Bi = {vi

1, . . . ,v
i
di
}
}n

i=0
, one for each space Mi, such that for any

i = 0, . . . ,n it holds,(
ϕi(vi

k) = vi+1
ik ∈ Bi+1∨ϕi(vi

k) = 0
)
∀vi

k ∈ Bi.

In words, a coherent basis is a choice of a basis for each step of the module such that
the structure maps are block identity matrices.

Example 3. Consider a persistence module {Mi,ϕi}n
i=0 where all ϕi’s are injective.

Take any basis of M0 as B0. Suppose inductively that we have already obtained Bi

For some i = 0, . . . ,n−1, since ϕi is injective, ϕi(Bi) defines a basis for a subspace
Bi+1 in Mi+1. Take any basis completion of Bi+1 in Mi+1 as Bi+1. Hence, {Bi}n

i=0 is
a coherent basis for {Mi,ϕi}n

i=0.

Remark 3. Given an interval basis, we get an induced coherent basis.

Proof. An interval basis generates each step’s basis Bi by simply considering the
images of each vector v of the interval basis across the maps ϕ ji with j = degv≤
i.

Decomposing a persistence module via an interval basis consists in retrieving, given
a persistence moduleM, an interval basis v1, . . . ,vN with N counting the number of
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interval modules in the interval decomposition of Definition definition 62.

In the following section, we present Algorithm 4.3 for addressing the decomposition
as stated above. In order to do so from now on, we restrict to persistence modules
M = {Mi,ϕi} admitting no essential pairs in the decomposition. Notice that this
is not restrictive since we deal with persistence modules of finite type. This means
that there exists an integer n such that ϕm is an isomorphism for all m ≥ n. By
setting ϕ ′m = 0 for all m≥ n+1, we slightly modify our persistence module to get
M′ = {Mi,ϕ

′
i} in such a way that the interval decomposition admits no essential

pairs. We notice that the interval modules I[b,d] with d ≤ n are preserved. Whereas,
an interval module I[b,∞] decomposingM corresponds to an interval module I[b,n+1]

decomposingM′. Hence, our working assumption is not restrictive in practice.

Decomposition of persistence modules

Consider a persistence module {Mi,ϕi}n
i=1, as described in the previous section. In

particular, we suppose without loss of generality that the module is finite and that
the last map ϕn : Mn→Mn+1 is the null one. Denote with mi the dimension of the
space Mi and with ri the dimension of Im (ϕi−1). For each i there is a flag of vector
sub-spaces of Mi given by the kernel of the maps ϕi, j:

0⊆ ker(ϕi,i+1)⊆ ker(ϕi,i+2)⊆ ·· · ⊆ ker(ϕi,n+1) = Mi. (4.4)

where the last equality holds by the assumption above.
Denote for simplicity each space ker(ϕi, j) as V i

j .
An adapted basis for the flag in Mi is given by a set of linearly independent vectors
V i = {v1, . . . ,vmi}, and an index function J : V i→{1, . . . ,n− i+1}, such that

V i
i+s = ⟨{v ∈ V i | J(v)≤ i+ s}⟩ ∀s, 1≤ s≤ n− i+1. (4.5)

In words, an adapted basis is an ordered list of vectors in Mi such that for every j,
the first dimV i

j vectors are a basis of V i
j (where we assume an empty list is a basis of

the trivial space).

Lemma 3. Notice that, without loss of generality, it is possible to choose an adapted
basis of Mi in such a way that it contains as a subset a basis of Im (ϕi−1).
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Proof. Let us consider an adapted basis V i = (t1, . . . , tmi) for the flag of kernels in
Mi, with the vectors t1, . . . , tmi ordered by index function J. We construct the desired
basis explicitly: set V i = {t1}. For every s = 2, . . . ,mi, if ts /∈ ⟨V i⟩+ Im (ϕi−1) add
the vector ts to V i. Otherwise,it must hold that ts = ∑a<s λata +x with x ∈ Im (ϕi−1).
Then we add to V i the vector x = ts−∑a<s λata. In this way V i is another adapted
basis, and the elements added by the second route form a basis of Im (ϕi−1).

From now on, therefore, we shall assume that each basis V i is in the form of lemma 3.
Let us introduce two subspaces of ⟨V i⟩: it holds that ⟨V i⟩= ⟨V i

Birth⟩⊕⟨V i
Im ⟩, where

V i
Im is the subset of V i made of a basis of Im ϕi−1, and V i

Birth is its complement.

Our objective is to construct a basis of the whole persistence module by leveraging
the adapted bases at each step i.

Definition 64. Let us define V :=
⋃

iV i
Birth.

So, set V is made up of the elements of the adapted basis in each degree i that are
not elements of Im (ϕi−1). In the following, we prove that V is in fact an interval
basis for {Mi,ϕi}n

i=1.

Lemma 4. For any i < j, the map ϕi, j|T restriction of the map ϕi, j to the subspace
T = ⟨{v ∈ V i | J(v)> j}⟩ is an injection.

Proof. By definition of T , it holds Mi = ker(ϕi, j)⊕T . If the restriction of ϕi, j onto
T were not injective, then T and ker(ϕi, j) would have nontrivial intersection. This is
a contradiction.

Lemma 5. For any i < j ∈ N, it holds

ϕi, j
(
⟨V i

Birth⟩
)⋂

ϕi, j
(
⟨V i

Im ⟩
)
= {0}. (4.6)

Proof. Suppose that the intersection of the two considered spaces contains a nonzero
vector u:

0 ̸= u = ϕi, j

 ∑
vk∈V i

Birth

λkvk

= ϕi, j

 ∑
wl∈V i

Im

µlwl

 .
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Denote by uB and uI the vectors

uB = ∑
J(vk)> j
vk∈V i

Birth

λkvk, uI = ∑
J(wl)> j
wl∈V i

Im

µlwl.

It holds u = ϕi, j (uB) = ϕi, j (uI), since all the elements v such that J(v)≤ j belong to
ker(ϕi, j). Then, u is the image through ϕi, j of an element of T = ⟨{v∈V i | J(v)> j}⟩.
On the other hand also the difference uB−uI belongs to the same space and is mapped
to zero by ϕi, j. The restriction of ϕi, j to T is injective because of lemma 4, therefore
it must be uB−uI = 0. Since, ⟨V i⟩= ⟨V i

Birth⟩⊕⟨V i
Im ⟩, it must be uB = uI = 0, hence

u = 0.

Theorem 7. The set V is an interval basis for the persistence module M.

Proof. Say that V = {v1, . . . ,vN}. Each vector v j in the set V induces an interval
module I(v j). We want to show that M =

⊕N
j=1 I(v j). To do so, let us see that for

each 0≤ i≤ n, the space Mi is exactly ⊕N
j=1Ii(v j). By construction we know that

Mi = ⟨{v ∈ V i | v /∈ Im (ϕi−1)}⟩ ⊕ Im (ϕi−1) =
⊕
v∈V

degv=i

Ii(v) ⊕ Im (ϕi−1). (4.7)

All we have to show is that Im (ϕi−1) can be written as
⊕

v∈V
degv<i

Ii(v). At first we

will see that it holds Im (ϕi−1) =+ v∈V
degv<i

Ii(v). By definition, it holds + v∈V
degv<i

Ii(v)⊆

Im (ϕi−1). On the other hand, Im (ϕi−1) ⊆ + v∈V
degv<i

Ii(v). We can see it by induc-

tion. Let us consider M0 = ⟨V0⟩, where none of the elements of V0 belongs to
Im (ϕ−1) = {0}. Then, Im (ϕ0)⊆+ v∈V

degv=0
I1(v). Suppose by induction that for any

k−1 it holds Im (ϕk−2)⊆+ v∈V
degv<k−1

Ik−1(v). Then, since Mk−1 = ⟨{v ∈ Vk−1 | v /∈

Im (ϕk−2)}⟩ ⊕ Im (ϕk−2), it holds

Im (ϕk−1) = + v∈Vk−1

v/∈Im (ϕk−2)

Ik(v)+ϕk−1(Im (ϕk−2)) (4.8)

Therefore, by the induction hypothesis

Im (ϕk−1)⊆+ v∈V
degv<k

Ik(v).
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Now that we have shown that Im (ϕi−1) = + v∈V
degv<i

(I(v))i, it remains to see that this

sum is direct. Suppose to have a non trivial combination w1 + · · ·+wk = 0, where
each wq belongs to Ii(vtq). Suppose that the w1, . . . ,wk are ordered according to the
degree of the element vtq that generates the interval module they belong to. Let us
say that these elements have a maximum degree l < i. Then, it holds

w1 + · · ·+wk = ϕl,i(x)+ ∑
vtr |degvtr=l

λrϕl,i(vtr),

where x ∈ Im (ϕl−1). Because of lemma 5, it must be

ϕl,i(x) = ∑
vtr |degvtr=l

λrϕl,i(vtr) = 0.

On the other hand we also assumed that the wq are different from zero, there-
fore the index J(vtq) of the vectors in the adapted basis has to be greater than
i− l. Hence, because of lemma 4, it holds that ∑vtr |degvtr=l λrϕl,i(vtr) = 0 implies

∑vtr |degvtr=l λrvtr = 0. Since the {vtr |degvtr = l} are linearly independent it must be
λr = 0 for any r, and therefore wr = 0. The same idea can be repeated for all the
previous elements w1, . . . ,ws, coming from interval modules generated by vectors
with degree less than l. Since there are finitely many vectors this process has an end
and it shows that all the vectors w1, . . . ,wk are 0 and the sum is direct.

We now provide an explicit construction for set V . To do so, we must first obtain
sets V i.

Remark 4. Notice that the construction of each V i is independent from the others.
Therefore they can be computed simultaneously.

Construction of V i
Birth

We first recall that a simple basis extension algorithm is given by the the procedure
described in the following alg. 4.1. The setW is ordered, and its elements are added
to U in their ascending order inW , so that U is extended to a basis of ⟨U⟩+ ⟨W⟩. In
the following, we refer to the extension of basis U by the vectors in setW through
alg. 4.1 as bca(U ,W).
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Algorithm 4.1: Basis completion algorithm
Input: linearly independent vectors U = {u1, . . . ,ur}, linearly independent
vectorsW = {w1, . . . ,wn};

Result: minimal set of vectors wi1, . . . ,wip /∈< U > such that
< U ∪{wi1, . . . ,wip}>=< U ∪W >

R= {};
for i=1,. . . , n do

if rankU < rank(U ∪{wi}) then
U = U ∪{wi};
R=R∪{wi};

end
end
returnR

We now give a general algorithm to construct the set V i
Birth for a given Mi of the

persistence module.

To find an adapted basis V i we need only to iteratively complete a basis of ker(ϕi, j)

to a basis of ker(ϕi, j+1), using for example the algorithm described above. In general,
the basis obtained through alg. 4.1 will not contain a basis of the space Im (ϕi−1),
so the procedure does not match the construction in lemma 3. We show below that
this is not strictly necessary, so we can save computations without hindering the
correctness of the algorithm. In fact, we obtain the set V i

Birth applying the reduction
algorithm, using as inputs any basis of Im (ϕi−1) and the adapted basis V i.

This is equivalent to using the construction of lemma 3 and then discarding the
elements that belong to Im (ϕi−1). Consider the ordered set V i = {v1, . . . ,vmi}
and a set U = {u1, . . . ,uri}, basis of Im (ϕi−1). Vector v j is modified by the pro-
cedure in lemma 3 if it can be written as a linear combination of the vectors
{u1, . . . ,uri,v1, . . . ,vi−1}. If that is the case, it is modified so that it belongs to
V i

Im, and then it is not included in V i
Birth. In the same way, alg. 4.1 discards such

vectors without performing further calculations. The vectors belonging to V i
Birth are

the same in both procedures, hence the result is valid.

The full procedure to construct V i
Birth from Mi and the structure maps is described in

alg. 4.2.
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Algorithm 4.2: Single step decomposition
Input: map ϕi−1 : Mi−1→Mi, maps {ϕ j : M j→M j+1)}, i≤ j ≤ N ;
Result: V i

Birth and associated index function J
Take a basis U = {u1, . . . ,uk} of Im (ϕi−1);
k := dimIm (ϕi−1);
R := Id : Mi→Mi;
r := rank(R);
V i

Birth = {} ;
for s = 0, . . . ,N− i do

R = ϕi+s ·R ;
r′ = rankR;
if r′ < r then

B = basis of ker(R) ;
vs

1, . . . ,v
s
ρs
= bca(U ,B);

U = U ∪{vs
1, . . . ,v

s
ρs
} ;

V i
Birth = V i

Birth∪{vs
1, . . . ,v

s
ρs
}, J(vs

1) = · · ·= J(vs
ρs
) = s+1;

r = r′;
end
if r = 0 or |V i

Birth|+ k = dimMi then
break ;

end
end
return V i

Birth, J : V i
Birth→{1, . . . ,N− i+1}.
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In the following, we refer to the construction of V i
Birth through alg. 4.2 as ssd(Mi).

Once the decomposition of each space is performed, it is immediate to assemble
the interval basis V . Further, we can read the persistence diagram of module
{Mi,ϕi}i off of the interval basis by storing the indices of appearance and death of its
elements, without increasing the computational cost. This is the content of alg. 4.3,
which summarizes the procedures introduced so far into a single routine that takes a
persistence module and returns its interval basis and persistence diagram.

Algorithm 4.3: Persistence module decomposition

Input: persistence module {Mi,ϕi}n
i=1;

Result: interval basis {vs
i} and persistence diagram

ϕ0 := empty matrix with dimM0 rows and 0 columns;
ϕn+1 := empty matrix with 0 rows and dimMn columns;
PB = {};
PD = {};
for b = 1, . . . ,n+1 do
V i

Birth,J = ssd(ϕb−1,{ϕ j} j≥b);
if V i

Birth is not empty then
Add to the interval basis PB the vectors in V i

Birth;
Update the persistence diagram with the points (b,J(v)+b) for

v ∈ V i
Birth;

end
end
return Interval basis, persistence diagram

We refer to the decomposition of alg. 4.3 as pmd(M).

Example 4. Consider the following R-persistence module

0
ϕ0−→(
0
) R ϕ1−→(

1
0

) R2 ϕ2−→(
1 1

) R ϕ3−→(
0
) 0

Where the matrices below each arrow represent the map above it in the canonical
bases. We showcase the procedure of alg. 4.3 and compute its interval basis. Notice
that this example matches the persistence module generated by persistent homology
of the filtration in fig. 4.1, whose interval basis is depicted in fig. 4.3.
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For i = 0,1,2,3 we need to compute V i
Birth.

Clearly ϕ0 is the null map, so the flag for the first step is trivial and V0
Birth is empty.

For i = 1 we have Im (ϕi−1) = 0 and ker(ϕ1,2) = ker(ϕ1,3) = 0, so R = ker(ϕ1,4).
By ssd we extend a basis of Im (ϕ0) (which is empty) to a basis of R, which yields
vector 1. Then V1

Birth = {1} with persistence pair (1,4).

For i = 2 we have Im (ϕi−1) = ⟨
(

1
0

)
⟩. Furthermore ker(ϕ2,3) = ⟨

(
1
−1

)
⟩, so we extend

the basis of Im (ϕ1) against the basis of ker(ϕ2,3) obtaining set {
(

1
−1

)
,
(

1
0

)
}, which

spans R2, so ssd terminates setting V2
Birth = {

(
1
−1

)
} with persistence pair (2,3).

For i = 3 we have Im (ϕi−1) = R, so V3
Birth is empty.

Finally, the interval basis is V = {1,
(

1
−1

)
}, with persistence diagram PD =

{(1,4),(2,3)}.

The case of real coefficients
In case we use the field R in the persistence module, we can specialise the

decomposition of the space described in the previous paragraph. We will use the
following notation: given a matrix A with m rows and n columns, A[:, i] denotes the
ith column of the matrix , whereas A[:, : i] denotes the submatrix given by the first i
columns of A. The same notation is used on the first arguments in the parenthesis to
denote operations on rows. We will make use of this simple result in linear algebra.

Lemma 6. Given three vector spaces V1,V2, and V3 over R and two linear maps
ψ1 : V1→V2 and ψ2 : V2→V3 it holds

ker(ψ2 ◦ψ1) = ker(ψ1)⊕ker
(

ψ2 ◦ψ1|(ker(ψ1))
⊥

)
.

Proof. Let x be an element of ker(ψ2 ◦ψ1). It can be written uniquely as x =

v+w, with v ∈ ker(ψ1) and w ∈ (ker(ψ1))
⊥. Since (ψ2 ◦ψ1)(v+w) = 0 and v ∈

ker(ψ1), it must be ψ2(ψ1(w)) = 0, therefore w ∈ ker(ψ2 ◦ψ1). Then, w belongs to
ker
(

ψ2 ◦ψ1|(kerψ1)⊥

)
and the statement follows.
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Fix M0, and suppose that ϕn = 0.

For each Mi, denote with di the number dimMi. Consider ϕ0 and decompose it via
the SVD decomposition in ϕ0 =U0S0V T

0 . If r0 = rankϕ0, then k0 = d0− r0 is the
dimension of kerϕ0. Notice that S0 is a matrix d1×d0 with non-zero elements only
on the first r0 positions on the main diagonal. Therefore, if ei is the ith element
of the canonical basis of Rd0 , with r0 < i ≤ d0, then ϕ0V0ei = U0S0ei = 0. Then,
a basis of kerϕ0 is given by the vectors {V0er0+1, . . . ,V0ed0}. The index function
J attains the value 1 on all of them. All such vectors will be also in the kernel
of the maps ϕ0, j for all j > 0. In order to avoid repetitions, it will be considered
only the restriction of each ϕ0, j on the orthogonal complement of kerϕ0. This
operation will not change the result because of lemma 6. To do so, consider the map
ϕ̃0 =U0S̃0, where S̃0 = S0[:, : r0], given by the first r0 columns of S0. Repeating the
same process, it will be considered m1 = ϕ1ϕ̃0 instead of ϕ0,2. Call d1 = d0− k0.
Decompose again m1 =U1S1V T

1 and call r1 = rankm1 and k1 = d1−r1 = dimkerm1.
Again, a basis of kerm1 is given by the vectors V1er1+1, . . . ,V1ed1 . Recall that this
vectors are expressed in the basis {V0[:,1], . . . ,V0[:,r0]} of kerϕ⊥0 . To return them in
the canonical basis of M0 it is sufficient to consider the matrix η0 with d0 rows and
r0 columns such that η0[i, j] is equal to 1 if 1≤ i = j ≤ r0 and 0 otherwise. Then,
the vectors in the canonical basis of M0 are {V0η0V1er1+1, . . . ,V0η0V1ed1}. In this
case the value of the index function for these vectors will be 2. For the general step
j, consider m j = ϕ jm̃ j−1 =U jS jV T

j . The adapted basis of M0 will be updated with
the vectors

V0η0 . . .Vj−1η j−1Vjex, r j +1≤ x≤ d j, (4.9)

and it will be J(V0η0 . . .Vj−1η j−1Vjex) = j+ 1 for every r j +1 ≤ x ≤ d j Once all
the vectors are obtained, as in the general case, it is necessary to complete a basis of
Im (ϕi−1) to a basis of M0, introducing the vectors in V in ascending order given by
the function J. The resulting vectors will be part of the interval basis.
The procedure is encoded in alg. 4.5, which makes use of the matrix decomposition
routine alg. 4.4 and specializes alg. 4.2 to the case of real coefficients. We denote it
by ssdR(Mi). Then, the full decomposition of alg. 4.3 can be specialized to the reals
by replacing ssd(Mi) with ssdR(Mi).
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Algorithm 4.4: Matrix decomposition
Input: matrix A;
Result: Restriction of A on the space orthogonal to its kernel with respect to a

basis V of the domain, V matrix whose columns are a basis of the
domain of A, dim(kerA)⊥ ,dimkerA

U,S,V = SVD(A);
nz = rankS, d = number of columns of A, dk = d−nk ;
R =US[:, : nz];
return R, V , nz, dk
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Algorithm 4.5: single step decomposition on R
Input: map ϕi−1 : Mi−1→Mi, maps {φ j : M j→M j+1)}, i≤ j ≤ N ;
Result: Vectors V i

Birth
U,S,V = SVD(ϕi−1) ;
r := rank(ϕi−1);
U =U [:, : r] basis of the image of ϕi−1;
V i

Birth = {}; lk = 0;
R = Id : Mi→Mi;
d := dimMi ;
Vtot = Id;
for s = 0, . . . ,N− i do

R = ϕs+1 ·R;
if number of rows of R = 0 then

k := number of columns of R;
V = Ik;
nz = 0;
dk = k;

else
R,V,nz,dk = dec(R);

end
Vtemp = Id , l = ord(V ), Vtemp[: l, : l] =V t ;
Vtot =Vtot ·Vtemp;
if dk > 0 then
T = bca(U ,Vtot [:,d− lk−dk : d− lk]);
U = U ∪Vtot [:,d− lk−dk : d− lk];
V i

Birth = V i
Birth∪T ;

J(t) = s+1 for all t ∈ T ;
lk = lk+dk;

end
if nz = 0 or |V|+ r = d then

break;
end

end
return V i

Birth, J
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Improved decomposition algorithm

Algorithm 4.2 can be modified to obtain a computationally improved version.
The modification is based on the observation that the reduction of matrix R can be
used to update R for the following step, by restricting it to the non-null columns.
This decreases the complexity of all matrix multiplications and reductions involved
in the for-cycle, i.e. throughout the subsequent steps of the module.
Moreover, the basis completion procedure can take advantage of this collapse of
matrix R, in terms of how the linear independence among kernel generators is
checked. Indeed, with the collapsed R it is no longer needed to check new-found
vectors against the already stored vectors with lower persistence. The new-found
vectors need simply to be checked against the basis of the image of ϕi−1, since the
independence from the other vectors from the kernel is ensured by the deletion of
the zero columns from the collapsed matrix R of the previuos step.
This change alters significantly the complexity of the single step decomposition. We
sketch give the modified algorithm below. The implicit procedure ColumnReduction
simply reduces matrix R, storing the change of basis matrix C, ignoring columns that
had become zero and highlighting the indices of the new columns that become zero.
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Algorithm 4.6: Improved Single step decomposition
Input: map ϕi−1 : Mi−1→Mi, maps {ϕ j : M j→M j+1)}, i≤ j ≤ N ;
Result: V i

Birth and its index function J

Reduce ϕi−1 and find a basis U = {u1, . . . ,uk} of Im (ϕi−1);
k := dimIm (ϕi−1);

R← Id : Mi→Mi;
C← Id : Mi→Mi;

r← dim(Mi);
V i

Birth←{};
inds,newInds←{};
for s = 0, . . . ,N− i do

R← ϕi+s ·R ;
R,C,newInds← ColumnReduction(R,C, inds);
r′← rankR = r−|newInds|;
if r′ < r then

B← basis of ker(R) = {Cei, i ∈ newInds};
Bnew ⊆ B← bca(U ,B);
U ← U ∪Bnew;
V i

Birth←V i
Birth∪Bnew;

for v ∈ Bnew do
J(v)← s+1;

end
r← r′;
inds← inds∪newInds;

end
if r = 0 or |V i

Birth|+ k = dimMi then
break ;

end
end
return V i

Birth, J
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Interval bases and the primary decomposition

In this section we propose an alternative method to compute an interval basis, based
on a suitable reduction of a presentation matrix. It is based on a combination of
two technical ingredients: first, the construction of "any" presentation matrix for our
persistence module. This is done in a way that, to our knowledge, was first explicitly
envisaged in a technical passage of [12]. Next, by the reduction of this presentation
matrix into a nearly-diagonal form (i.e. diagonal up to a permutation of rows), so
that each syzygy in the module is pure, i.e. concerns exactly one generator. This is
done by leveraging a graded Smith Normal Form reduction that was, again to the
best of our knowledge, first presented in [10].
In the process of doing so, we also propose a modification of this algorithm, based
on the following observation: while theoretically the reduction of an F[x]-module is
performed by operating on a matrix with coeffiecients in the PID F[x], in practice
we can leverage the grading structure and the explicit knowledge of the degree of
each generator and relation, plus the fact that each operation is homogeneous, to
only consider operations over F, much in the same way as for the classical algorithm
for persistent homology.

In the following, let us frame the problem from the point of view of module presen-
tations. We have a family of maps of F-vector spacesM= (Mi,ϕi)i.
Fix the standard grading on F[x]. Build a graded F[x]-module α(M) :=

⊕
i Mi, with

this given grading, i.e. such that xpMi ⊆Mi+p. In particular, we define that x acts on
a homogenous element mi by ϕi(mi).

In other words, if we fix the obvious basis for
⊕

i Mi, we can write the ϕi’s together
as a map

Φ :
⊕

i

Mi→
⊕

i

Mi

So, on any element m ∈ α(M), multiplication by polynomial p(x) ∈ F(x) acts as

p(x) ·m := p(Φ)(m)

α(M) must fit in the following exact sequence

0→ ker µ
i
↪→ F[x]g

µ

↠ α(M)→ 0
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which amounts to giving a presentation of α(M).
Fixing g generators of the free module, saying the module is given amounts to giving
homogenous generators of the syzygy module, i.e. a set of homogenous elements of
the free module that span Im i. Then

α(M)∼= F[x]g / Im i∼= F[x]g / ker µ

As per [12], from the ϕi’s in the DAPM one can build these homogeneous generators
of Im i, ⟨r1, . . . ,rs⟩. They can be stored as a g × s matrix S representing map i.
It then holds

α(M)∼= F[x]g / Im S∼= F[x]g / ⟨r1, . . .rs⟩

In particular, by the procedure we propose one obtains a matrix S with the same size
as Φ, i.e. where g = s = dim

⊕
i Mi.

The construction is as follows: assume the module has d steps, each of dimension
mi. Matrix S is nearly a block matrix, although not quite. In particular, call di

the first index of a generator of the ith step, i.e. di = ∑ j<i m j + 1. Then for each
i = 1, . . .d− 1, matrix S contains a block on columns from di to di+1− 1 and on
rows from di to di+2−1. The sub-block of rows from di to di+1−1 (whose diagonal
is the main diagonal of S) is a diagonal matrix with all entries equal to −x. The
off-diagonal sub-block of rows going from di+1 to di+2−1, which is a mi+1×mi

matrix, contains the matrix representing ϕi. Outside of these blocks, S is zero. The
last block is diagonal and contains no second sub-block, as everything past that point
is mapped to zero.
Notice two consecutive blocks overlap between the second sub-block of the first and
the first sub-block of the second. This will impact the computational complexity of
the reduction procedure. Further details can be found in the proof of lemma 6 of
[12].

Definition 65. Given a DAPM, we refer to the construction above as its presentation
matrix S.

Notice that the structure of the (sub-) blocks in S determines the degree of each
element. In particular, each row can be assigned the degree of the corresponding
generator, so that each row between di and di+1− 1 (included) has degree i. The
same goes for columns: each column represents the action on one of the generators
of some map ϕi, which is to send this generator up one degree. Indeed, each column
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between di and di+1−1 is supported on the rows between di to di+2−1, and contains
−x (an element of degree 1) on a row of degree i and some scalars (elements of
degree 0) on rows of degree i+1. Hence each column between di and di+1−1 has
degree i+1.
This entails that each element in matrix S is either 0, or has a degree that is equal to
the difference between the degrees of its column and the degree of its row.
This is what will allow us to run the whole procedure without symbolic computations.
The only genuinely relevant information in the matrix is whether an element is zero
or not, because other than that its degree is determined by its position.

Example 5. Consider the same persistence module as in the example 4.

0
ϕ0−→(
0
) R ϕ1−→(

1
0

) R2 ϕ2−→(
1 1

) R ϕ3−→(
0
) 0

We ignore the zero maps as they are immaterial to the matrix construction. We say
the module has three steps M1 =R of degree 1, M2 =R2 of degree 2 and M3 =R of
degree 3. Matrix S is 4×4, and it holds d1 = 1, d2 = 2, d3 = 4. Then matrix S is

S =


−x 0 0 0
1 −x 0 0
0 0 −x 0
0 1 1 −x


When implemented in practice, the terms −x are substituted by −1, as their degree
is implicit by their position.

In general, the presentation obtained via definition 65 is far from minimal, in the
sense that several pairs of generator-relation are in excess and can be discarded while
maintaining the module fixed.

The graded Smith Normal Form in [10] computes a graded primary decomposition
over F[x] of this module, changing basis for generators and syzygies to obtain new
(homogenous) relations r′1, . . . ,r

′
g that are, up to reordering, diagonal.

Of these, some are zero, corresponding to free generators of the module. Others
are units (invertible in F[x], i.e. non-zero scalars), which correspond to surplus
generators which should be discarded. Finally others are elements of positive degree,
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corresponding to torsion elements. Then

α(M)∼= F[x]g /
(
⟨r′1⟩⊕ · · ·⊕⟨r′g⟩

) ∼= F[x] / ⟨r′1⟩⊕ · · ·⊕F[x] / ⟨r′g⟩ ∼=

∼=
⊕
r′=0

F[x]⊕
⊕

degr′i>0

F[x] / ⟨r′i⟩ ⊕
⊕

r′ unit

0

The algorithm is as follows:
By low of a column we refer to the index of its last (downward) non-zero entry.
Notice no column of S is zero in the beginning.

Algorithm 4.7: Graded Smith Normal Form

Input: Matrix S as per definition 65 ;
Result: Matrices SNF(S) and the change of basis matrix R
R := Idg×g ;
for each column c of S from left to right do

l := low of c ;
For all rows from l−1 upward, get 0 in column c by summing row l ;
Store the row operations in R ;
For all columns from c+1 rightward, get 0 in row l by summing column c ;

end
return SNF(S),R

The output of this procedure is the graded Smith Normal Form SNF(S) (which is
diagonal up to reordering), alongside the change of basis matrix R, which is a g×g
matrix that refers to the change of basis of the row space, i.e. of the generators of the
free module.
Knowing the degree structure of SNF(S), which is the same as that of S, we can
read the barcode off of it: each row i has a degree deg i. It either participates in a
single relation (column) j, of degree deg j, or it is a zero row. In the first case, it
generates a submodule of length deg j−deg i. If this difference is zero, the generator
can equivalently be discarded, as it corresponds to a virtual, zero-persistence, pair.
In the case of a zero row, it is a free generator.
Matrix R is a row basis change matrix for map i : ker µ ↪→ F[x]g, i.e. a change of
generators in the free module. Each column c in R represents the old generator gc in
terms of the new generators g′1, . . . ,g

′
g. Notice it is invertible.

In its inverse, R−1, it holds that each column c represents the new generator g′c in
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terms of the old generators g1, . . . ,gg. Those corresponding to a zero-length pair in
SNF (an invertible element) can be discarded. The others form an interval basis.

Theorem 8. The columns of R−1 corresponding to non-zero length pairs in SNF
form an interval basis forM.

Proof. That they spanM descends from the Structure theorem. That they do so as a
direct sum descends by the diagonal structure of the relations with respect to that
basis, which implies that the only linear relations among those generators are of the
form xpg = 0.

Example 6. (continued) From matrix S obtained in example 5, let us compute an
interval basis. Algorithm 4.7 applied to S yields

SNF(S) =


0 0 0 x3

1 0 0 0
0 0 −x 0
0 1 0 0


We see that rows 2 and 4 correspond to surplus generators, as they contain a unit
in SNF(S). Row 1 corresponds to a bar born at degree 1, and killed by a relation
(column) of degree 4, hence yielding a pair (1,4). Row 3 corresponds to a bar born
at degree 2, and killed by a relation of degree 3, hence yielding a pair (2,3).
The change of basis matrix R is

R =


−1 −x −x −x2

0 1 0 0
0 0 1 0
0 0 0 1


whose inverse equals itself

R−1 =


−1 −x −x −x2

0 1 0 0
0 0 1 0
0 0 0 1


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Then, column 1 and 3 in this matrix, corresponding to non-zero persistence gen-
erators, form an interval basis. They are −g1 and −xg1 +g3. They are indeed the
first cycle to be born (with a minus sign, which is irrelevant), and the difference
between the first cycle mapped at the second step and the second cycle. We remark
that xg1 = g2 Notice everything is exactly as in the example 4.

We have implemented this procedure as Python code, as a purely numerical matrix
construction and reduction scheme, and plan to render it publicly available soon.
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Computational complexity estimates

Here, we give an estimate of the computational complexity of the algorithms pre-
sented above. The conclusion that we draw is that the SNF procedure has a com-
plexity that is essentially only dependent on the size of the barcode throughout the
steps. The naive version of the parallel algorithm has the same order of complexity,
even with a worse factor. The improved version, instead, has a complexity estimate
which does not only depend on the size of the barcode, but also on how the bars are
connected. Its complexity is, roughly speaking, output dependent. When exploiting
a parallel implementation, the improved algorithm has a complexity that in the worst
case equals that of the SNF, and on average outperforms it.

Let us assume that our module has N steps, each called Mi, each having dimension mi.
Assume that, on average, each Mi has dimension m. Then, a reasonable estimate of
the complexity of the graded Smith normal form is of O(N m3 + lower order terms)
[10]. Notice that matrix R is always triangular, as we only combine a row to the
rows above it, therefore its inverse is inexpensive to compute and does not add a
significant term. Plus, forming matrix S is essentially book-keeping, depending on
the implementation virtually cost-less.

Algorithm 4.2, in its basic version, for the generic step Mi has a complexity estimate
of O(m3

i +(N− i)(3mi)
3). Therefore, even when computation is fully distributed and

each step is analyzed at the same time, the worst-case steps still have a complexity
that is of the same order of the full SNF procedure.

The modified version of the single step decomposition, given in alg. 4.6, has an
estimate that is output dependent.
First, a column reduction is called once before the for cycle to extract the image of
ϕi−1, reducing a matrix of size mi×mi−1.
We observe that inside the for cycle the number of operations depends on the
parameter ki = mi− ri, where ri = rankϕi−1, and on the variable parameter rs that
counts the number of columns that have not collapsed.
Indeed within the for cycle, for each s:
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• A matrix multiplication is called for matrices of sizes mi+1+s×mi+s and
mi+s× rs, where rs is the number of columns in R that have not collapsed.

• A column reduction is called for a matrix of size mi+1+s× rs.

• A basis completion alg. 4.1 (bca) is called between a list of ri vectors and a
list of |newInds| vectors.

Now, the bca operation is performed in chunks as s increases, but the sum of the
|newInds| eventually amounts to ki. By the property of interval generators of remain-
ing linearly independent, the total cost of bca for the whole for cycle amounts to
that of reducing a list of ki vectors against a list of ri vectors, each vector being mi

entries long. The total cost is therefore O(mi ri ki)< O(m3
i ).

The cost of matrix multiplication between a mi+1+s×mi+s and a mi+s× rs matrix is
O(mi+1+s mi+s rs). Let us again leverage the assumption that on average all steps
have dimension m, and we get O(m2rs). Now, the sum ∑s rs is, roughly speaking, the
"volume" of all bars born at step Mi, until their death. Denote it by V (Mi). Hence,
the total cost of matrix multiplication throughout the for cycle is O(m2V (Mi)). We
can bound this quantity by the case of the rectangular barcode, which is the worst
case and where all bars live from the beginning to the end, as V (Mi) ≤ m(N− i),
obtaining a total cost of O(m3(N− i)).

As for the column reduction, we can again assume an average dimension of m and
bound each rs by m itself, as in the worst case for the fully rectangular barcode,
obtaining another estimate of O(m3(N− i)).

Putting all three together along with the column reduction before the for cycle yields
an estimate of O(m3(2(N− i)+1)) as the cost of decomposing one step via alg. 4.6
in the worst case. Assuming a parallel implementation, this amounts to the cost
of the total procedure alg. 4.3. We see therefore that in the worst case the parallel
approach has the same order of complexity as the SNF approach.
Notice that computing the decomposition of an H0 persistence module, where all
generators are born at step zero, could attain a complexity similar to the theretical
worst case, when in the parallel pipeline the first job handles the full decomposition,
while all the others terminate at once.
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However, in the average case, the classes that are spawned at Mi do not fill the
whole persistence module, i.e. usually a barcode is relatively sparse and V (Mi) is
significantly smaller than m(N− i). As such, in the average case the cost of the
parallel approach is closer to O(m2η +mη2) with η an area parameter that we could
reasonably estimate as η ∼ m, therefore attaining an advantage with respect to the
SNF approach.
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In the following section, we shall employ the concepts introduced so far to address
the specific case of persistence modules arising from persistent homology. To this
aim, we recall a few basic notions about persistent homology.

The k-persistent homology module

A chain complex with coefficients in F is a sequence C = (C•,∂•) of F-vector spaces
connected by linear maps with k ∈ N

. . .
∂k+2−→Ck+1

∂k+1−→Ck
∂k−→Ck−1

∂k−1−→ . . .
∂2−→C1

∂1−→C0
∂0−→ 0,

such that ∂k+1∂k = 0 for all k ∈ N. Each F-vector space Ck is called the space of
k-chains.

A chain complex can be constructed from a simplicial complex.

The subspace Zk = ker(∂k) is called the space of k-cycles. The subspace Bk =

Im (∂k+1) is called the space of k-boundaries. The condition ∂k+1∂k = 0 ensures that

Bk ⊆ Zk, for all k ∈ N.

The quotient space Hk = Zk/Bk is called the k-homology space.

A chain map f : (C•,∂C
• )−→ (D•,∂ D

• ) is a collection of linear maps fk : Ck −→ Dk

such that
fk∂

C
k+1 = ∂

D
k+1 fk+1, for all k ∈ N. (4.10)

A chain map induces a linear map of homology spaces. Indeed, for each k-cycle z in
Ck or Dk, we write [z]C or [z]D for its projection onto the homology space HC

k or HD
k ,

respectively. By Equation (4.10), we get that fk(BC
k )⊆ BD

k . Hence, we get induced a
map f̃k : HC

k −→ HD
k defined by

f̃k([z]C) = [ fk(z)]D. (4.11)

This property is called functoriality of the homology construction.
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The k-persistent homology module with coeffients in F is the persistence module
obtained from a sequence of chain maps

0
f(0)
//C(1)

f(1)
// . . . // . . .

f(i−1)
//C(i)

f(i)
// . . .

f(n−1)
//C(n), (4.12)

by applying the homology construction to get the following diagram of vector spaces

0
f̃k,(0)
// Hk,(1)

f̃k,(1)
// . . . // . . .

f̃k,(i−1)
// Hk,(i)

f̃k,(i)
// . . .

f̃k,(n−1)
// Hk,(n). (4.13)

The persistent homology is a persistence module M = {Mi,ϕi}n
i=0 by setting Mi =

Hk,(i) and ϕi = f̃k,(i).

In the following section, we introduce a way of computing the persistent homology
of a given sequence of chain complex connected by linear maps.

Construction of the persistent homology module

In this section, we present a construction of the k-persistent homology module
{H i

k,ϕi}i∈N for general coefficients from a general chain complex C = (C•,∂•). For
each index i ∈N, we first introduce alg. 4.8 for constructing the step H i

k. Afterwards,
we introduce alg. 4.9 for retrieving the structure map ϕi as the map at homology
level induced by a general chain map f : (C•,∂C

• )−→ (D•,∂ D
• ) in degree k. In the

persistent homology module construction, f is one of chain maps f(i) connecting
subsequent chain complexes.

Notice that these two constructions can be distributed and performed in parallel for
each i ∈ N.

Computing the homology steps in parallel

Let us introduce the following lemma:

Lemma 7 (Splitting [117]). For a short exact sequence

0 // K s // A
q
// Q // 0,

the following statements are equivalent:
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a) there exists a surjective map p : A // K such that ps = idK : K // K

b) there exists an injective map r : Q // A such that qr = idQ : Q // Q

c) there exists an isomorphism K
⊕

Q h // A such that (idK,h, idQ) is an isomor-
phisms of short exact sequences

0 // K s // A
q
// Q // 0

0 // K
incl1 //

idK

OO

K⊕Q
proj2 //

h

OO

Q //

idQ

OO

0,

(4.14)

where morphisms incl1, proj2 are the canonical inclusion and projection of the
direct sum ⊕.

This is said that the sequence splits. Notice that in an Abelian category such as that
of finite-dimensional vector spaces and linear maps, every exact sequence splits.

For computing the step H i
k, we want to find a split sequence of type c of the Splitting

Lemma above (lemma 7) for the short exact sequence given by Bk ⊆ Zk and by the
definition of homology as H i

k = Zk/Bk

0 // Bk
� � // Zk

[·]
// Hk // 0,

where the arrow � � // denotes the natural injection and the map [·] is the natural
quotient projection defining the k-homology space.

In particular, in diagram 4.14 the map h is the isomorphism assigning the standard
basis of the biproduct to the basis {h1, . . . ,hβk

} retrieved by Algorithm 4.8, and the
maps incli and proji are the standard inclusions and projection of the component i in
the biproduct space.

Algorithm 4.8 accepts as inputs the boundary matrices ∂k+1 and ∂k expressed in
terms of the standard basis of C. The algorithm reflects the standard idea introduced
by Edelsbrunner et al ([108]) and called left-to-right reduction, and it boils down
to computing the column reduction of the boundary matrices ∂k and ∂k+1. Let us
call Vk and Vk+1 the matrices such that Rk = ∂kVk and Rk+1 = ∂k+1Vk+1 are matrices



116 Interval Bases and persistence module decomposition

reduced by columns. The columns of Vk corresponding to zero columns of Rk provide
the the basis {v1, . . . ,vs} for Zk, whereas the non-zero columns of Rk+1 provide the
basis {b1, . . . ,br} for Bk. Let us call βk = dimHk. In the for-cycle, the left-to-right
reduction is exploited again to obtain the result by completing the basis of Bk to a
basis of Zk using the vectors yielded by Vk.

Algorithm 4.8: Computing homology

Input: Boundary matrices ∂k,∂k+1 of the chain complex C ;
Result: Betti number βk and basis {h1, . . . ,hβk

,b1, . . . ,br} of Zk, where
span{[h1], . . . , [hβk

]}= Hk and span{b1, . . . ,br}= Bk.
Compute the reduction Rk = ∂kVk ;
Compute the reduction Rk+1 = ∂k+1Vk+1 ;
b1, . . . ,br := non-zero columns of Rk+1 ;
v1, . . . ,vs := columns of Vk corresponding to zero columns of Rk ;
J := matrix with columns {b1, . . . ,br,v1, . . . ,vs} ;
βk = 1 ;
for i = r+1, ...r+ s do

while ∃ j < i s.t. low(J[i]) = low(J[i]) do
l := low(J[i]);
γ := J[l, i]/J[l, j];
J[i] = J[i]− γJ[ j];

end
if J[i] is non-zero then

hβk
:= J[i];

βk = βk +1;

end
end
return βk, basis {h1, . . . ,hβk

,b1, . . . ,br}

Computing the homology structure maps in parallel

For any index i, Algorithm 4.9 computes the structure map ϕi as the map f̃k at
homology level induced by a general linear map as the degree k of chain map
fk : Ck−→Dk. Our algorithm assumes that the homology splittings Zk(C)∼=Hk(C)⊕
Bk(C) and Zk(D)∼= Hk(D)⊕Bk(D) are already obtained by applying Algorithm 4.8.
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In particular, this means that we have the splitting bases: {[hC
1 ], . . . , [h

C
βC

k
]} for Hk(C),

{[hD
1 ], . . . , [h

D
β D

k
]} for Hk(D), and {bD

1 , . . . ,b
D
r } for Bk(D).

Consider the map fk as the degree k of a chain map f . By functoriality of homology,
we have the following commutative diagram

0 // Bk
� � //

f|k
��

Zk
[·]
//

fk
��

Hk //

f̃k
��

0

0 // B′k
� � // Z′k

[·]′
// H ′k // 0,

(4.15)

where map f| is obvious by the fact that boundaries are mapped to boundaries.

Indeed, functoriality ofhomology depends on the map fk preserving k-cycles and
k-boundaries.
In particular for the map f̃ between quotient spaces, a choice of homology represen-
tative corresponds to a splitting map rk : Hk −→ Zk satisfying case b) in Lemma 7.

This gives us a way of retrieving the map f̃k as

f̃k = [·]′ fkrk (4.16)

for some choice rk of homology reprentatives, i.e., such that [·]rk = idHk .

Theorem 9. The map f̃k defined in alg. 4.9 is well-defined and it is the map induced
by fk through the homology functor.

Proof. The map f̃k is obtained as f̃k = proj1h−1 fkhincl1. Precomposing by fkhincl1
implies applying fk to [hC

i ] ∈ Hk(C). The following composition of proj1h−1 im-
plies that the image of [hC

i ] ∈ Hk(C) under f̃ is independently retrieved by finding
λ1, . . . ,λβ D

k
solving the linear system in the for-cycle of Algorithm 4.9.

This yields the desired map in the form f̃k([hC
i ]) = ∑

β D
k

j=1 λ j(i)[hD
j ].
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Algorithm 4.9: Induced map between homology spaces
Input: Chain map fk : Ck→ Dk, representatives cycles hC

1 , . . . ,h
C
βC

k
of a basis of

Hk(C), β D
k and {hD

1 , . . . ,h
D
β D

k
,bD

1 , . . . ,b
D
r } output of alg. 4.8 for D;

Result: map f̃k : Hk(C)→ Hk(D) induced by fk.
f̃k := zero matrix β D

k ×βC
k ;

for i = 1, . . . ,βC
k do

Solve fk(hC
i ) = ∑

β D
k

j=1 λ jhD
j +∑

r
l=1 µlbl ;

f̃k[i] = (λ1, . . . ,λβ D
k
)T

end
return f̃k

Constructing the persistent homology through harmonics

In this section, we present a construction of the k-persistent homology module
{Hi

k, f̂i}i∈N for coefficients in R through the space of k-harmonics. We call the
persistence module {Hi

k, f̂i}i∈N the harmonic persistence module.

After some preliminaries on the Hodge Laplacian operator, by means of the Hodge
decomposition (theorem 10), for each index i∈N, we retrieve the persistence module
step of the harmonic persistence module. Afterwards, we introduce Algorithm 4.10
for retrieving the structure map f̂i as the map, at k-harmonics level, ensuring the
isomorphism of persistence modules between the k-persistent homology module
{H i

k,ϕi} and the harmonic persistence module {Hi
k, f̂i}, proven in Theorem 12.

Notice that this construction, as it was for the case of general coefficients, can be
distributed and performed in parallel for each i ∈ N.

The Hodge Laplacian operator

Since R has characteristic 0, given a chain complex

. . .
∂k+2−→Ck+1

∂k+1−→Ck
∂k−→Ck−1

∂k−1−→ . . .
∂2−→C1

∂1−→C0
∂0−→ 0,

we fix an inner product ⟨·, ·⟩k on each space of k-chains Ck so that each operator ∂k

has a well-defined adjoint operator ∂ ∗k , i.e.,⟨∂k(c),d⟩k = ⟨c,∂ ∗k (d)⟩k.
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We consider the sequence C∗

. . .
∂ ∗k+2←−Ck+1

∂ ∗k+1←−Ck
∂ ∗k←−Ck−1

∂ ∗k−1←− . . .
∂ ∗2←−C1

∂ ∗1←−C0
∂ ∗0←− 0.

For k ∈ N, the Hodge Laplacian in degree k (Laplacian, for short) is the linear
operator on k-chains Lk : Ck −→Ck given by

Lk := ∂k+1∂
∗
k+1 +∂

∗
k ∂k. (4.17)

Constructing the harmonic step in parallel

For each index i ∈ N, the step in the harmonic persistence module is given by the
space of k-harmonics. The space of k-harmonics of a chain complex is the subspace
of Ck

Hk := ker(Lk). (4.18)

Remark 5. If h ∈Hk, then h ∈ ker(∂k) and h ∈ ker(∂ ∗k+1).

Indeed, both ∂ ∗k ∂k and ∂k+1∂ ∗k+1 are positive semidefinite, as ⟨c,∂ ∗k ∂kc⟩k = ⟨∂kc,∂kc⟩k≥
0 and ⟨c,∂k+1∂ ∗k+1c⟩k = ⟨∂ ∗k+1c,∂ ∗k+1c⟩k ≥ 0. Hence, Lk is positive semidefinite,
and Lkc = 0 implies ∂ ∗k ∂kc = 0 and ∂k+1∂ ∗k+1c = 0. Thus, ⟨∂kc,∂kc⟩k = 0 and
⟨∂ ∗k+1c,∂ ∗k+1c⟩k = 0.

Elements of ker(∂ ∗k+1) are called k-cocycles. We refer to [118] for more details.

Before moving to the computation of the structure maps in the harmonic persistence
module, we discuss some useful results relative to the single stepHi

k.

First of all, the Hodge decomposition theorem states that:

Theorem 10. For a chain complex C and for every natural k,

Ck =Hk⊕ Im (∂k+1)⊕ Im (∂ ∗k )

Moreover, this decomposition is orthogonal and Zk =Hk⊕ Im (∂k+1).

By remark 5 , we can consider the homology class [h] of an element h ∈Hk. As per
Hodge theory ([119, 118]), it holds
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Theorem 11. The linear map ψk :Hk −→ Hk defined by ψk(h) = [h] is an isomor-
phism.

Given the Hodge decomposition there is the orthogonal projection πk : Zk→Hk that
is equal to the identity onHk and sends the elements of Bk to zero.

Lemma 8. For any k-cycle z ∈ Zk, it holds [z] = [πk(z)] in Hk.

Proof. Any k-cycle z can be written uniquely as h+ b, where h ∈ Hk and b ∈ Bk.
Since πk sends boundaries to zero and it is the identity onHk, it holds z−πk(z) =
h+b−h = b, and therefore z and πk(z) are in the same homology class.

Remark 6. If one chooses an orthonormal basis for the k-harmonicsHk and represent
it via the matrix Vk whose columns are the basis vectors, then the projection πk is
represented by the matrix V T

k .

Computing the harmonic structure map in parallel
In order to define the persistent homology with respect to harmonic representatives,

we focus on the behavior of the harmonic subspace under the action of chain maps.
On the one hand, we need to remark the following.

Remark 7. A chain map f : C−→D does not restrict to a map between the harmonic
subspacesHC

k andHD
k .

Indeed, given an element h ∈HC
k , the k-cycle f (h) is not necessarily inHD

k . More
precisely, f (h) is necessarily a k-cycle but not necessarily a k-cocycle.

On the other hand, we can define a map f̂K : HC
k → H

D
k in the following way.

Consider the natural inclusion iCk :HC
k →Ck and the projection πD

k : Dk→HD
k . We

define
f̂k = π

D
k fkiCk . (4.19)

Notice that the above definition corresponds to the approach used to construct the
induced map in homology in eq. (4.16).

Algorithm 4.10 computes Equation (4.19) by applying remark 6, the domain C and
the target D to represent maps iCk and πD

k .
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Consider now a sequence of chain complexes connected by linear maps as in the
sequence (4.12). We get induced the following sequence of linear maps between
k-harmonic spaces

0
f̂k,(0)
//Hk,(1)

f̂k,(1)
// . . . // . . .

f̂k,(i−1)
//Hk,(i)

f̂k,(i)
// . . .

f̂k,(n−1)
//Hk,(n).

Theorem 12. The DAPM’s {Hk,(i), f̃k,(i)}n
i=0 and

{Hk,(i), f̂k,(i)}n
i=0 are isomorphic as persistence modules with coefficients in R,

Proof. It is enough to show that, for any chain map f : C −→ D, the following
diagram commutes

HC
k HD

k

HC
p HD

k .

f̂k

ψC
k ψD

k

f̃k

That is, for any h ∈HC
k , it must be f̃k(ψ

C
k (h)) = ψD

k ( f̂k(h)). By the definition of f̃k

and f̂k the equality becomes [ fk(h)] = [πD
k ( fk(h))]. Since fk(h) belongs to ZD

k , the
statements follows from lemma 8.

Algorithm 4.10: Induced map between Laplacian kernels
Input: Chain map fk : Ck(C)→Ck(D), VC basis of ker(Lk(Ck(C))), VD basis of
ker(Lk(Ck(D))) ;

Result: Matrix Φ representing f̂k :Hk(C)→Hk(D)

Φ =V T
D · fk ·VC;

return (Φi)
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Conclusions

We now recap the contributions in this chapter. We have defined the concept of
an interval basis as a suitable choice of vectors within a persistence module that
generate it in the "freest" sense. We provide several different algorithms for the
computation of an interval basis. Firstly, we describe a general parallel algorithm,
that works for any persistence module over any field (alg. 4.2). Next, we specialize
to the case of persistence modules over R, where the scalar product structure can be
leveraged to make use of the singular value decomposition, obtaining a more efficient
method (alg. 4.5). Next again, we observe that a similar type of argument can be
equally applied to the general algorithm, hence allowing to collapse the matrices as
the reduction proceeds, and obtaining what we called an improved general algorithm
(alg. 4.6).
At this point, after the concept of interval basis has been thoroughly analyzed, we
introduce the relationship between an interval basis and the generators that can be
obtained via a graded reduction of a presentation matrix of the persistence module.
We piece together previous, unrelated contributions to construct a (serial) pipeline
that leads from the same input, a DAPM, to an interval basis. We further observe that,
in addition to what was presented in the relevant paper ([10]), we can implement the
method without the need for symbolic computations.
Interestingly, the proof of the correctness of alg. 4.2 can then be seen as a constructive,
alternative proof of the structure theorem for graded modules.
We give an estimate of the computational complexity of both approaches, and
conclude that the improved algorithm 4.6, when implemented exploiting parallelism,
is on average advantageous with respect to the matrix reduction one.
Finally, we specialize the approach to the persistence modules that derive from a
filtration of simplicial complexes, i.e. from persistent homology proper (alg. 4.8,
alg. 4.9). We describe how to obtain an entirely parallel pipeline for the computation
of persistent homology over the reals, by the Hodge isomorphism relating homology
to harmonics. We show how to construct in parallel induced maps between homology
spaces from suitably-constructed maps between harmonics (alg. 4.10), and this
concludes a parallel pipeline leading from a map of chain complexes (such as a
filtration of simplicial complexes, the standard input in most TDA problems) all the
way to an interval basis, through which one can additionally retrieve the barcode
without additional effort.



Chapter 5

Future Perspectives

In this chapter, we explore some future avenues that could be explored as an expan-
sion of the topics presented.

The subject of homology representatives is a vast one. We have touched on some of
the most employed approaches to the problem, although we foresee that a complete
answer to the question of choosing representatives is unlikely to be answered in
general.
Minimal homology bases are now treated theoretically in a rather exhaustive manner.
It appears that the road is blocked towards the computation of minimal generators in
dimension higher than one. New methods can hopefully be developed to accelerate
the computation of the 1D case, although the inherently combinatorial nature of
the problem suggests that not much hope should be cast towards obtaining a very
efficient algorithm.
Another delicate issue concerning minimal homology representatives is their well-
posedness. We have gone to some lengths in the present thesis to discuss under what
circumstances we can expect the minimal scaffold to be unique. However, the issue
of the stability of the computed representatives remains rather elusive: it is clear
that a small perturbation in the input may bring about a radical difference in the
minimal representatives. One possible approach to this problem, for the suggestion
of which we thank the input from the Referees, is akin to a bootstrapping method.
Specifically, if we have at our disposal a reasonable statistical model of the noise in
our input complex, we can obtain multiple samples of our perturbed data, computing



124 Future Perspectives

minimal representatives several times around. This can yield an "average" set of
fuzzy generators, which could potentially capture a robust picture of the topology
of our data. It must however be noted that this approach increases considerably the
complexity of the scaffolding pipeline.
The mixed approaches such as the homologically-persistent skeleton described here,
on the other hand, are promising in terms of their applicability, due to a more reason-
able computational cost. We foresee that a natural development of the work reported
in the present thesis would be to find a suitable application (i.e. one satisfying the
metricity requirement) where representatives of homology are of interest, such as
in metric graphs, cristallography, material science, and so on. Further, the extent to
which the analogy between minimal generators and approximately minimal ones
holds could deserve further enquiry. For example, an interesting question concerns
the effect of applying a computationally efficient complex reduction via one of
the many algorithms for simplex collapse as a pre-processing step. Applying the
computation of minimal representatives to this more manageable input could save
a considerable amount of computation, but the significance of the obtained output
would require further study.

Additionally, the topic of minimal (or rather, approximately minimal) generators has
recently been attacked from an entirely novel point of view. It is a relatively clas-
sical topic to feed the invariants computed via persistent homology into a machine
learning pipeline. In very recent years, however, schemes have emerged to apply
machine learning directly to the topology of the dataset, using persistent homology
as a guiding loss function instead of as a descriptor. Works that laid the ground on the
subject are, for example, [120–123]. Within this context, work has started to emerge
that attempts to address the topic of finding minimal generators of homology classes
by leveraging topological information, usually encoded in the Hodge Laplacian
operator. We suggest, as examples, the works [124, 125].

The section about using Alexander duality in the search for homology representatives
is clearly the one where more work to be carried out is easily found. Most of the
concepts presented in the section are ideas that need to be more carefully defined,
and then formally proved.
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The topic of interval bases relates to several other construction in the literature, and
we foresee that it may deserve some work towards the definition of similar objects
in multipersistent homology, where one is not given the strong guarantees of the
structure theorem, due to the wilder nature of F[x1, . . . ,xn]-modules.
Another issue that we are currently investigating that relates to interval bases is that
of how an interval basis can inform the construction of a matching between two
barcodes, when the two corresponding persistence modules are linked by a morphism.
The topic of induced matching has already attracted attention, resulting in (at least)
the works [126–128]. Here we sketch the construction of such a matching.
The recent work [128] has detected the condition of not containing nested bars as
necessary to induce a partial matching from a persistence module morphism in terms
of barcode bases, that is a choice of a graded basis along the persistence module
from which the barcode can be easily read off. Unfortunately, most applications deal
with barcodes containing nested bars.
Rather than in terms of barcode bases, an equivalent way of describing an equior-
iented persistence module (which excludes the zig-zag modules described in the
paper) was introduced in the previous chapter (based on [102]) in terms of an interval
basis, that is a choice of generators such that the cyclic submodules generated by
each generator directly provide the persistence module decomposition into interval
modules. Based on it, we have proposed another way of inducing a mapping of
barcodes when persistence module morphisms are expressed in terms of interval
bases. By exploiting the first homomorphisms theorem for graded modules, we
recover a third barcode to which both the source and the target barcodes can be
mapped to and, crucially, to which generators can be tracked. This allows us to
circumvent the limitation given by the nested bars, while still choosing a matching
in a non-arbitrary sense, via certain shrinking operations that are defined in terms of
the kernel of the morphism.
We have found that this map is computable by a modified version of the general
algorithm 4.2 to obtain the interval basis of a given submodule.
The possibility of tracking generators along a given morphism of persistence modules
might be of interest, for instance, in the case of multiparameter persistent homology,
which contains multiple morphisms of one-parameter persistence modules.
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