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Abstract

Social networks are creating a digital world in which the cognitive, emotional, and pragmatic value of the imagery of human
faces and bodies is arguably changing. However, researchers in the digital humanities are often ill-equipped to study these
phenomena at scale. This work presents FRESCO (Face Representation in E-Societies through Computational Observation),
a framework designed to explore the socio-cultural implications of images on social media platforms at scale. FRESCO
deconstructs images into numerical and categorical variables using state-of-the-art computer vision techniques, aligning with
the principles of visual semiotics. The framework analyzes images across three levels: the plastic level, encompassing
fundamental visual features like lines and colors; the figurative level, representing specific entities or concepts; and the
enunciation level, which focuses particularly on constructing the point of view of the spectator and observer. These levels are
analyzed to discern deeper narrative layers within the imagery. Experimental validation confirms the reliability and utility of
FRESCO, and we assess its consistency and precision across two public datasets. Subsequently, we introduce the FRESCO
score, a metric derived from the framework’s output that serves as a reliable measure of similarity in image content.

1. Introduction

In digital social networks, humans simultaneously pro-
duce and are exposed to an unprecedented amount of images.
Many sociocultural practices are, as a consequence, changing
the communicative power of digital representations and self-
representations, most notably that of the human face. Digital
image production has reached unprecedented levels in terms
of quantity, pervasiveness, and potential for manipulation.
The typical social media user spends more than two hours a
day generating and scrolling through content, mostly in visual
form Ortiz-Ospina (2019). Facebook, Instagram, Snapchat,
Tinder, and other digital social networks are creating a digital
world in which the cognitive, emotional, and pragmatic value
of the imagery of human faces and bodies is arguably chang-
ing. However, researchers in the digital humanities are often
ill-equipped to study these phenomena at scale. On the one
hand, collecting and analyzing large amount of images (so
called visual big data) require semi-automatic tools and tech-
niques for visualization, exploration and tagging (Manovich,
2020). While the analysis of textual media has progressed
extensively, the analysis of visual media is lagging behind.
Existing platforms do not cater to the needs of digital human-
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ities, or focus on low-level visual features (Bocyte and van
Kemenade, 2022). On the other hand, scholars in the digital
humanities have developed sophisticated tools and techniques
to interpret the multifaceted cultural significance of an im-
age. There is a need to bridge these two approaches to reach
insightful conclusions that are supported by adequate empir-
ical evidence (Manovich, 2020; Bocyte and van Kemenade,
2022).

Images on social media can be studied in many ways. In
this article, we deal with the gaze we can cast on them, using
the tools of visual semiotics (Eugeni, 2014; Polidoro, 2008;
Dondero, 2020; Corrain and Valenti, 2023; Mangano et al.,
2018; Pezzini and Spaziante, 2014). We believe that this dis-
cipline asks itself a series of very general questions, the solu-
tion to which is the basis of the way in which all other disci-
plines, from psychology to sociology, from anthropology to
aesthetics, from philosophy to art history, relate to this type
of content. Visual semiotics, in fact, questions how we as-
sign meaning to them, knowing full well that the interpre-
tations we can produce are multiple. Nonetheless, it posits
that any interpreter, when engaging with these forms of tex-
tuality, concentrates on certain specific fundamental compo-
nents. These elements – of a plastic nature (shapes, colors,
organization of space) or figurative (representations of the el-
ements of the natural world), or related to the mechanisms
which prompt the viewer to form a certain point of view on
what is shown – are those that are usually considered perti-
nent by anyone who wants to assign a meaning to what they
see in an image.

The core idea behind FRESCO (Face Representation in
E-Societies through Computational Observation) was to de-
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The face

Facial features, pose, keypoints, gaze, 
expressions… 

The body

Body pose, actions, spatial 
configurations….

Plastic features

Color palette, focused/blurry, 
contrast, saturation, grayscale, 
sepia, etc.

The context

Places, objects, and 
interactions with…

Text

Meme, slogan…

Figure 1: The FRESCO (Face Representation in E-Societies through Compu-
tational Observation) pipeline extracts quantifiable traits from images using
SOTA computer vision and deep learning tools. The traits are not limited to
facial and body characteristics, but encompass interaction with the context
and background, the presence of textual elements, and so forth. Such traits
are categorized according to their plastic (color, forms), figurative (objects
and actions) and enunciative (gazes and mutual placements) categories or
traits, based on principles from structural visual semiotics.

velop a computational platform capable of bridging the gap
between well-established semiotics principles and quantita-
tive computational image interpretation techniques that could
scale to hundreds and thousands of images. It builds on the
tremendous advances in computer vision (CV) over the past
decades, and recognizes the potential of both established im-
age processing techniques as well as the most recent founda-
tional models in extracting traits from images that are con-
sidered as potentially pertinent by visual semiotics scholars.
As an example, and without loss of generality, such a plat-
form could be used to cluster images produced by social me-
dia users based not only on content, but also based on their
composition or their narrative structure. The FRESCO plat-
form, by deconstructing images in a series of numerical and
categorical variables, as depicted in Figure 1, enables semioti-
cians to exploit the extensive toolbox that the field of big data
analytics and data mining has developed in the last decades
to uncover novel and unexpected patterns from large visual
collections.

In synthesis, our contributions are as follows:

• we introduce FRESCO, a computational framework that
operationalizes structural visual semiotics in order to in-
vestigate the socio-cultural meaning of social media im-
ages at scale;

• we propose a practical implementation of the FRESCO
framework and experimentally validate it on human-
centered datasets to demonstrate the validity and useful-
ness of the proposed framework;

• we propose the FRESCO-score, a principled and trans-
parent similarity measure based on the output of the
FRESCO pipeline.

The rest of the paper is organized as follows. Section 3
presents an overview of the related work. Section 3 provides

some essential background on visual semiotics, while Sec-
tion 4 illustrates the FRESCO computational pipeline in de-
tail. Sections 6 and 7 present the experimental methodology
and results, which are discussed in Section 8. Finally, Section
9 concludes the paper and suggests future work.

2. Related work

Many authors have investigated the interplay between com-
puter vision and disciplines from the humanities, in particular
between computer vision and art/media analysis (Datta et al.,
2006; Yi et al., 2023; Madhu et al., 2020; Hussain et al., 2017;
Ye and Kovashka, 2018; Arnold et al., 2022; Wijntjes, 2021;
Stork et al., 2021; Santos et al., 2021), psychology (Branz
et al., 2020; Ferwerda et al., 2015; Cucurull et al., 2018; Se-
galin et al., 2017b,a; Vilnai-Yavetz and Tifferet, 2015; Strano,
2008) and semiotics (Ghidoli and Montanari, 2021; Pandiani
and Presutti, 2023; Reyes and Sonesson, 2019). In this sec-
tion, the most relevant works to FRESCO and social media
analysis in general are briefly reviewed.

2.1. Inferring personality from social media

Some studies show that it is possible, to some extent, to in-
fer psychological traits from images published on social me-
dia, such as profile pictures (Branz et al., 2020; Ferwerda
et al., 2015; Cucurull et al., 2018; Segalin et al., 2017b,a;
Vilnai-Yavetz and Tifferet, 2015; Strano, 2008). For in-
stance, Segalin et al. (2017b,a) investigated the ability of
hand-crafted features and deep learning to infer both self-
assessed and attributed personality traits based on image fea-
tures extracted from Facebook profile pictures. Their research
suggests that images associated with a person can reveal some
of their individual characteristics, such as their personality
traits, with computerized assessment even outperforming hu-
man evaluation (Segalin et al., 2017b). In this type of study,
social media users may be subject to online questionnaires
designed for self-assessment of personality traits, and then
classifiers are trained to predict labels from the questionnaire.
The task is well defined with clear labels, and the problem is
to extract/select relevant information. In FRESCO, we do not
wish to make predictions on individual social media users,
but we are rather interested into extracting culturally-relevant
aspects of digital imagery.

2.2. Computational analysis in media and art history

Several computational platforms have been developed to
analyze image archives in art history (Madhu et al., 2020;
Yi et al., 2023; Wijntjes, 2021; Stork et al., 2021; Chen and
Carneiro, 2015; Seguin et al., 2016; Elgammal et al., 2018),
artistic/historical photography (Datta et al., 2006; Arnold
et al., 2022; Männistö et al., 2022; Arnold and Tilton, 2020)
and advertisement (Ye and Kovashka, 2018). Computerized
tools can analyze, at scale and in a systematic fashion, large
image archives. For instance, Elgammal et al. (2018) showed
how machine learning can predict styles based on visual fea-
tures and relate them to art history concepts. They show that
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representations learnt by deep learning correlate with princi-
ples from art history, and that predictions align with histori-
cal progression, thus providing a quantifiable verification of
art historical theories. Other authors have focused on the use
of machine learning to model and quantify image composi-
tion (Chen and Carneiro, 2015) or image aesthetics (Yi et al.,
2023). Computerized analysis also allows art historians to es-
tablish links between different authors or artworks that may
otherwise go undetected (Seguin et al., 2016).

While most of the above mentioned studies have focused
on a few variables or on a specific analysis, in more re-
cent years scholars have started to suggest that, in light of
recent advances in computer vision and deep learning, a
more extensive “visual grammar” could be operationalized
and made accessible to the digital humanities scholar. In
particular, Männistö et al. (2022) have proposed the AICE
framework (Automatic Image Content Extraction) tailored to
photography analysis. Their framework is based on the the-
oretical underpinnings of visual semiotics, and in particu-
lar the book “Image Grammar of Visual Design” by Kress
and Van Leeuwen (1996), and Bell (2012)’s version Visual
Content Analysis (VCA), a more practical and readily op-
erable adaptation of the original grammar which is particu-
larly suitable for photographic analysis. In their book, Kress
and Van Leeuwen (1996) presented an inventory of the major
composition structures established as conventions in the his-
tory of visual semiotics and examined how they are used by
contemporary image makers to generate meaning. Despite
being developed independently and from different sources,
FRESCO and AICE share many common traits. Both meth-
ods share the premises that visual semiotics provides a the-
oretical background to define a comprehensive lists of vari-
ables, which are mapped to state of the art computer vision
and machine learning techniques. FRESCO is structured dif-
ferently, grouping concepts according to different levels of
analysis ( plastic, figurative and enunciational) initially de-
fined by Greimas and refined by subsequent authors, as pre-
sented in greater detail in Section 3. We carefully reviewed
the structure proposed in AICE to ensure that all the variables
proposed therein are also covered in FRESCO. In addition,
unlike Männistö et al. (2022) we provide a first practical im-
plementation of FRESCO and go into greater detail into the
accuracy and consistency of the extracted values, as well as
practical issues that arise when trying to combine them into
an overall similarity scores.

2.3. Semiotics and computational analysis

Regarding the relationship between semiotics and compu-
tational analysis, the debate has first and foremost focused on
how a discipline that originated at the intersection of philos-
ophy and the social sciences, thus in the humanities, can di-
alogue with computer science and statistics. In this regard, a
very important book is Quantitative Semiotic Analysis (Com-
pagno, 2018), in which the issue of how to use tools for quan-
titative investigation is addressed when we set out to iden-
tify the meaning of a written or visual text, an activity that in

the past has always been carried out using qualitative analysis
methodologies.

Since signification is a deferential phenomenon, which
people accomplish by linking signs to what those signs mean,
thanks to codes that are not found in the texts themselves but
in the minds of the interpreters and the culture they share,
it has always proved more functional to assign the task of
describing these mechanisms to a researcher and his or her
ability to produce interpretations, as well as to imagine or
recognize the interpretive logics of others. This, however, in-
evitably reduces the extent of the content corpora that can be
worked on, since this kind of investigation is constrained by
methods of analysis that take a long time to be carried out.
When one wishes to conduct studies on a very large corpus of
texts, such as can be built in digital environments, it is nec-
essary to make use of quantitative methods and tools. Con-
fronting the various approaches to this problem in the vari-
ous fields of the digital humanities (Moretti, 2005; Manovich,
2020), the authors of Quantitative Semiotic Analysis propose
solutions that are in many ways similar to those we adopt
in FRESCO: they emphasize, in fact, that computer systems
must be designed to make use of semiotics to scrutinize their
objects of analysis, recognizing their most significant ele-
ments and describing them in a way that is as functional as
possible to enable the researchers who use them to best inter-
pret the value of the data that these same systems produce.

The book edited by (Compagno, 2018), however, is also
interesting for another reason: it deals, in fact, with a long se-
ries of theoretical problems raised by the encounter between
semiotics and the techniques of quantitative investigation of
large digital data corpora, but in its most applied part it deals
only with the analysis of written texts. Only one article - that
of Cholet ((Cholet, 2018), ibid.: 101-121) - deals with the
study of images, but with the technique of eye tracking. Thus,
in practice, FRESCO’s field of research is not considered, in
this work. As is well known, after all, the computer tools that
are used today to carry out quantitative semiotic analysis in
the digital domain are mostly linguistic systems. Little has
been done, so far, to reason about how to read and process
images in an automated way using semiotics.

In this regard, the scarce available literature can be found
first of all in the field of marketing. Ghidoli and Montanari
(2021) reflects on some computer tools used to identify trends
in consumer tastes. Making use of the Java SOM Toolbox
framework, for example, O’Halloran (2015) analyzed large
masses of images found online of young Japanese people hav-
ing their pictures taken in their favorite clothes, producing a
graph that can show how these can be divided into interre-
lated classes according to some logic that takes into account
how fashion works in those latitudes (Owyong, 2009). Some-
thing similar, but at a broader level of generality, was done
by the authors of ScenarioDNA2. In this case, different types
of images found on social networks have been organized into
concept maps, which allow them to be grouped into clusters

2https://www.scenariodna.com/
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of similar content, which derive their meaning because they
differ from those found in other clusters that can be linked to
them. By doing so, it is possible to conduct synchronic and
diachronic analyses of the spread of these same contents. In
addition, thanks to some network analysis tools, it is possible
to understand how certain images spread in some networks
of people rather than others. None of these systems focus, as
FRESCO does, on face analysis, but the fact that they are be-
ginning to be developed demonstrates the significance of our
research project.

3. Background

As we have anticipated, FRESCO has been designed to al-
low scholars of visual semiotics to analyze the meaning of
large amounts of images taken from the social profiles of
people all over the world. Since the interpretation of this
kind of content can differ depending on the research ques-
tions and the point of view of the researcher, our goal was to
develop a computer system capable of reading the constituent
elements of the images themselves which, according to the
scientific literature, are usually taken into account to deter-
mine the meaning of the latter, whatever it is.

To identify these elements, we have used several texts,
starting with Greimas’ seminal essay entitled Sémiotique figu-
rative et sémiotique plastique (Greimas, 1984), cited by many
as the foundational work of modern visual semiotics studies
(Corrain and Valenti, 2023). Then we turned to books on
semiotic analysis of visual text in general (Eugeni, 2014; Poli-
doro, 2008; Dondero, 2020). Finally, we consulted works that
deal with the semiotic study of photography (Mangano et al.,
2018) and images on social media (Pezzini and Spaziante,
2014).

All the authors of these articles and volumes agree that
when we are faced with a figurative image such as those that,
in most cases, are uploaded to our social profiles by people,
one of the first interpretative actions is the recognition of the
figures of the natural world that it reproduces: humans, an-
imals, plants, objects, places, etc. It is also essential to rec-
ognize the actions of these subjects, which of them are active
and which are passive, how they move and what emotions
they feel. All this serves to identify the main topic or top-
ics of this image, but to do so and understand how the image
frames the topic itself, it is also necessary to focus on the so-
called “plastic” level. The latter comprises three categories of
traits: eidetic, chromatic, and topological. The first category
(eidetic) accounts for the shapes, lines, contours, dimensions,
and symmetries of which the image is composed. The second
one (chromatic) for the colors, brightness, saturation, and tex-
tures. The last one (topological) for the spatial arrangement
of all these contents, that is, what is above or below, right or
left, in the center or in the periphery, in the foreground or in
the background. All these elements, which compose the plas-
tic structure of the image, contribute, together with the more
figurative ones, to determine its meaning.

For example, as we have shown in a previous work (Santan-
gelo and Morra, in press), in order to understand the meaning

Figure 2: The profile of a mountain climber

of Figure 2, downloaded from the Facebook/Meta profile of
one of the authors of this article, it is certainly important to
understand that it depicts a man with mountaineering equip-
ment, a peak to climb and a very steep slope made of snow
and ice. But it is also essential to realize that the mountaineer
covers only a small part of the image itself, which is otherwise
occupied by the majesty of the natural environment; that he is
more or less in the middle of the frame, that at the top of the
image is the mountain top from which he has descended or on
which he will soon climb, while a steep slope lies below; that
the light illuminates his smiling face, giving it a warm hue in a
context otherwise populated by cold colors. All these figura-
tive and plastic elements help to communicate the happiness
of being in the beauty of wild nature and being able to climb,
feeling small but at the same time the protagonist of a great
adventure.

Another fundamental element, in order to understand the
meaning of Figure 2, as of any other image, is the construc-
tion of the observer’s point of view, which Eugeni (2014) (op.
cit.: 97-166) also calls gaze system or watcher-looked system.
Eugeni himself argues that, depending on whether the latter
is basic, first-grade or second-grade, it helps to position the
viewer of the image with respect to the latter and its contents,
guiding how the image is “read” by the viewer. For example,
speaking of the basic watcher-looked system, it is evident that
a large painting of the face of Christ on the dome of a church
is meant to be observed by much smaller people who are be-
low, giving it a very specific meaning. The photograph on a
social network page, on the other hand, is composed to be ob-
served from a very different position, which generates greater
engagement also because of its communication style. On the
other hand, speaking of the first-degree watcher-looked sys-
tem, which again in photography refers substantially to the
way in which the camera (or the camera of a smartphone) is
placed, if we pay attention again to Figure 2, the fact that it
is taken from below and from a distance puts the observer in
a position to appreciate the great steepness of the slope and
the vertigo of the climb. Finally, coming to the second-degree
watcher-looked system, which has to do with the direction of
the gazes of the subjects represented, Figure 3, also down-
loaded from the Facebook/Meta profile of one of the authors
of this article, shows how important it is to look in the direc-
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Figure 3: Picture of a man looking towards the clouds beneath him

Figure 4: A set of images with similar meaning

tion in which the protagonist of an image is looking, since
there, evidently, lies a good part of the meaning of what the
image itself wants to communicate.

A system like FRESCO must be able to recognize all the
salient characteristics of a plastic, figurative nature and re-
lated to the construction of the gaze of the observer of an im-
age, in order to combine them with those of the other images
it processes. Such a system should aid the researcher expert
in visual semiotics in identifying clusters of images, such as
the three ones depicted in Figure 4, that have many similar
elements within them and, therefore, can be interpreted in the
same way.

4. The FRESCO architecture

4.1. Conceptual design
The FRESCO architecture arises from a systematic map-

ping activity between concepts introduced in visual semiotics,
introduced for the uninitiated reader in Section 3, and con-
cepts and techniques developed in the context of CV. This
mapping is informed by the authors’ experience, by an ex-
tensive analysis of the current literature, as well as previous
attempts from art history and photography history, such as
AICE (Männistö et al., 2022). The result is presented in Ta-
ble 1, in which the first two columns refer to the traits or cate-
gories commonly used in visual semiotics, while the last three
columns denote their CV counterparts. Each trait was asso-
ciated with one or more CV tasks that compute one or more
quantitative measure: when this column is empty, it does not
necessarily imply that the corresponding trait is not amenable
to computerized analysis, but rather that to the best of the au-
thors’ knowledge the task has not been extensively tackled
in the literature, and therefore suitable annotated datasets and
models are not available. The last column illustrates the nu-
meric output that is used to quantify the corresponding trait.
In some cases, the output of a CV algorithm or model could
be another image, such as a semantic segmentation map. To
enable certain types of analysis, it would be preferable to have

more synthetic and numeric measures: for instance, if an im-
age is reduced to a series of numeric or categorical measure-
ments, it makes it easier to apply data analytics techniques to
correlate them with other variables representing, e.g., socio-
demographic measurements. For the traits currently imple-
mented in FRESCO.v1, we therefore sought to define mea-
surements that could be used for this purpose.

The first section of Table 1 represents technical information
regarding the nature of the image: a photograph, an illustra-
tion, a map, a drawing, etc. The nature of this classification
depends in part on the assumptions made about the archive
under analysis. FRESCO was initially designed for the analy-
sis of social media profile pictures, and thus to accommodate
any type of imagery that a user may potentially select as a
symbolic depiction of their face, while maintaining a focus on
the face. Classifiers to distinguish different type of mediums
can be trained with high accuracy (Cutzu et al., 2003; Wev-
ers and Smits, 2020). For instance, Wevers and Smits (2020)
trained a CNN to distinguish historical photographs from sev-
eral types of diagrams. Alternatively, and without the need to
define ad-hoc categories, one can obtain a rough classification
by employing a clustering technique on the features extracted
from a pretrained model. In the case of photographs, tech-
nical characteristics are often available from the file header,
such as camera model, focal length, etc. (see Männistö et al.
(2022) for a more thorough analysis of this aspect).

At the plastic level, the meaning of an image is constructed
through a complex interplay of eidetic, chromatic, and topo-
logical categories. These plastic elements not only accentu-
ate, but also sometimes contradict the figurative content, lead-
ing to nuanced interpretations and visual ambiguities. Many
of the plastic categories identified in visual semiotics corre-
spond to low-level image characteristics that have been stud-
ied in image processing and computer vision for decades.

Eidetic categories (1.1) pertain to the forms expressed in
the images, through lines, contours, and textures. As dis-
cussed in Eugeni (2014), eidetic categories include first of all
whether the image has mimetic or abstract qualities - that is,
whether the image seeks to represent an existing objects or is
rather an abstract image. Eidetic categories properties of the
overall spatial composition such as the type of forms present
(circular, square, etc.) (1.1.1), the symmetry of the composi-
tion and the main objects (1.1.2), the type of contours present
(1.1.5), the main lines forming in the composition (1.1.6),
etc. Many CV techniques have been developed to charac-
terize the overall spatial composition of an image (Yao et al.,
2012; Amirshahi et al., 2014; Wevers and Smits, 2020), such
as evaluating the rule of thirds (Amirshahi et al., 2014) The
presence of prominent compositional elements, such as diag-
onal line detection (1.1.7) and classification of spatial compo-
sition as vertical, horizontal or central (1.3.5), can be estab-
lished borrowing from the field of computational photography
(Yao et al., 2012).

In particular, spatial composition is of particular impor-
tance in the study of artistic photography (Yao et al., 2012),
advertising (Wevers and Smits, 2020), and paintings (Don-
dero, 2020), in which the author of the image usually employs
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Table 1: Face Representation in E-Societies through Computational Observation (FRESCO) Computational Framework. The table maps semiotic-inspired
category or variable with the corresponding computer vision task, if available, and the values that the variable can assume (either output by the computer
vision task, or appropriately summarized). A ✓indicates variables that are included in the current FRESCOv1 implementation and the experimental validation
in this paper.

Semiotic category Computer vision task Values

0 Technical
0.1 Image type classification / clustering ✓ Photograph / illustration / map / ..

1 Plastic level
1.1 Eidetic categories
1.1.1 Form
1.1.2 Simmetry
1.1.3 Mimetic/abstract
1.1.4 Geometric/non-geometric
1.1.5 Kind of contour
1.1.6 Lines Edge extraction ✓ Line map

Diagonal element detection diagonal ulbr, diagonal urlb, ...

1.2 Chromatic categories
1.2.1 Color Palette estimation ✓ Palette

Color ✓ Grayscale / color
Color distribution ✓ Histogram

1.2.2 Luminosity Brightness estimation ✓ Brightness
1.2.3 Saturation Saturation estimation ✓ Saturation
1.2.4 Texture Texture classification

1.3 Topological categories
1.3.1 High/low Object detection ✓ Position of each object centroid

w.r.t. the image midline
1.3.2 Left/right object detection ✓ Position of each centroid w.r.t. the

image midline
1.3.3 Central/peripheral object detection ✓ Centrality ratio of each object
1.3.4 Foreground/background panoptic segm. + depth ✓ Avg. depth value of each person

panoptic segm. + depth ✓ Avg. depth value of each object
1.3.5 Spatial disposition of forms visual relationship detection scene graph (’X’ left of ’Y’, etc.)

semantic segmentation ✓ semantic segmentation map
semantic segmentation ✓ spatial coverage (percentage cov-

ered by each class)
spatial composition class vertical, horizontal, centered

1.3.7 Dynamization of forms
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Table 1, cont’d

1.4 Links between adjacent
forms

1.4.1 By similarity
1.4.2 By confrontation
1.5 Links between distant forms
1.5.1 By similarity
1.5.2 By confrontation

1.6 Overall configuration
1.6.1 Static vs. Dynamic Classification

2 Figurative level
2.1 General
2.1.1 Main topic Classification / Clustering ✓ Person/animal/object/environment/event/...

Image tagging ✓ tags
2.1.2 Salience Salience estimation salience map

2.2 Persons / objects / scene

2.2.1 Characteristics of people
groups

2.2.1.1 Number of people Face/person detection ✓ 0/1(single)/2(couple)/3-6(small
group)/7-12(medium group)/13-
30(large group)/31-(crowd)

2.2.1.2 Number of groups Gaze estimation / Social dis-
tance estimation

1/2/3+

2.2.1.3 Group typology Gaze estimation / Social dis-
tance estimation

Unfocused/ common focused /

jointly focused/
2.2.1.4 Group type Classification Family/friends/sport team/...
2.2.1.5 Atmosphere Classification Casual/formal/intimate/festive/...

2.2.2 Characteristics of each
person

2.2.2.1 Status Main character recognition Main Character (MC) / Side Char-
acter (SC)

2.2.2.2 Age Age estimation ✓ Baby/child/young/adult/old
2.2.2.3 Gender Attribute prediction ✓ Male/female/other
2.2.2.4 Identity Face recognition Name
2.2.2.5 Ethnicity Attribute prediction ✓ European/Asian/African/...
2.2.2.6 Height Height estimation Short/average/tall
2.2.2.7 Weight Weight estimation Thin/average/fat
2.2.2.8 Occupation Classification Doctor/police/cook/pilot/
2.2.2.9 Role Visual relationship detection Child/mother/friend/neighbor/...
2.2.2.10 Nudity Nudity detection Nude/partially nude/clothed
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Table 1, cont’d
2.2.2.11 Physical condition classification Healthy/sick/wounded/dead/...
2.2.2.12 Clothes Attribute classification / Ob-

ject detection
✓

2.2.2.13 Clothing style Style clustering
2.2.2.14 Face and head accessories Attribute prediction ✓ Glasses/jewellery/hat/..
2.2.2.15 Facial attributes Attribute prediction ✓ Eyebrows/nose type/double

chin/cheeks ...
2.2.2.16 Facial expressions Attribute prediction ✓ Smile/frown/...

Facial keypoints
2.2.2.17 Hair attributes ✓ Beard /Hair

length/Hairline/Bangs/Sideburns...

2.2.3 Objects
2.2.3.1 Status Main motif (MM)/side motif (SM)
2.2.3.2 Category Object recognition ✓ Animal/object
2.2.3.3 Text in image Text recognition / OCR ✓ Text in image

2.2.4 Settings/events
2.2.4.1 Scene class Scene classification / Tag-

ging
✓ Urban/rural/forest/hospital/school/

2.2.4.2 Privacy Private/semi-public/public
2.2.4.3 Indoor/outdoor scene classification ✓ Indoor/outdoor
2.2.4.4 Man-made/natural scene classification ✓ Man-made/natural
2.2.4.5 Event event recognition
2.2.4.6 Location location recognition / land-

mark detection
Location

2.2.4.7 Time of day classification Morning/day/evening/night
2.2.4.8 Time of year classification Winter/spring/summer/autumn
2.2.4.9 Weather classification Sunny/cloudy/raining/snowing/...

2.3 Movement
2.3.1 Type of movement Blocked / contracted / articulated
2.3.2 Visibility Hidden / manifest

2.4 Action
2.4.1 Single action action recognition classification

body pose ✓ pose
caption generation ✓ textual description

2.4.2 Aggregate of actions visual relationship detection scene graph
2.4.3 Narrative

2.5 Emotions
2.5.1 Intensity Arousal regression ✓ arousal
2.5.2 Emotion recognition emotion classification ✓ happy / neutral / fear / sadness / dis-

gust
2.5.3 Emotional valence valence regression ✓ valence

8



Table 1, cont’d

3 Enunciational level
3.1 Basic watcher-looked sys-

tem: the viewer
3.1.1 position of the viewer panoptic segm. + depth ✓ distance of the main subject(s) from

the camera
3.1.2 position of the viewer panoptic segm. + depth ✓ distance of the main character(s)

from the camera
3.1.3 position of the viewer horizon line estimation position of the horizon line

(frontal/from above/from below)
scene classification ✓ indoor/outdoor
framing ✓ portrait vs. scene

3.1.4 position of the camera camera pose estimation

3.2 First-grade secondary
watcher-looked system:
the observer subject

3.2.1 position of the observer head pose ✓ angle (yaw/pitch/roll)
3.2.2 position of the observer body pose ✓ shoulder/hip angle (frontal/rotated

left/rotated right)
3.2.3 position of observer gaze direction ✓ angle (yaw/pitch)
3.2.4 position of the observer presence/absence of per-

spective
classification

3.2.5 position of the observer vanishing point regression vanishing point positions wrt the
image frame

3.3 Second-grade secondary
watcher-looked system:
indicators/bystanders;
insignias and epigraphs

3.3.1 bystanders main character detection +
gaze detection

3.3.2 indicators main character detection +
action recognition + pose
estimation

3.3.3 insegnias object detection
3.3.4 epigraphs
3.4 Spatial relationship
3.4.1 of secondary watcher-

looked systems (first and
second grade)

3.4.1 of secondary watcher-
looked systems (first and
second grade) vs. basic
watcher-looked system

coincident / rotated left / rotated
right / opposite

3.4.2 of first grade secondary
watcher-looked system vs.
second grade secondary
watcher-looked system

9



more sophisticated control over the composition of the image.
In FRESCO.v1, we include only edge extraction among the
existing tools.

Chromatic features encompass color (1.2.1), luminosity
(1.2.2), saturation (1.2.3), and contrast, influencing emotional
resonance and symbolic associations within the image. Chro-
matic features in FRESCO.v1 include global image features,
such as palette and color histogram. Textural components,
such as texture classification and clustering of image pixels
based on textural and chromatic components (Bianconi et al.,
2021) will be included in future work.

Topological features refer to spatial relationships, perspec-
tive and arrangement of elements, shaping the overall com-
position. Spatial relationships can be inferred from CV tasks
such as object detection, semantic segmentation, panoptic
segmentation, depth estimation and visual relationship detec-
tion. These tools produce as output spatial maps that can be
directly used to, e.g., search for images with similar compo-
sition in terms of segmentation or depth map. However, as
stated before, we sought to define more concise and inter-
pretable quantities to enable efficient indexing and compari-
son of large-scale image collections.

First, in visual semiotics the spatial disposition of each el-
ement can be determined with respect to the image frame, of-
ten represented in terms of oppositions (central vs. peripheral
1.3.1, left vs. right 1.3.2, high vs. low 1.3.3, foreground vs.
background 1.3.4). In FRESCO.v1, we compute the position
of the centroid of each identified object or person with respect
to the vertical and horizontal midlines, as well as the distance
from the image center (centrality), as illustrated in Figure 5.
Since positions are rescaled between 0 and 1, a value greater
or lower than 0.5 distinguishes between upper/left/peripheral
and lower/right/central. As an approximation of whether an
object is in the foreground or background, we compute the
average depth by using a combination of panoptic segmen-
tation and depth estimation. In visual semiotics, the figura-
tive and plastic levels establish a complex interplay. At the
computational level, this can be made evident by determining
how we chose to partition the image in its constituent forms
and elements. In FRESCO.v1, which focuses mostly on pho-
tography, elements are defined at the figurative level, through
object detection and panotic segmentation. Other forms or
elements could be extracted purely on the basis of plastic or
compositional features (e.g., texture segmentation). This as-
pect should be kept in mind to account for future extensions.

Then, the spatial disposition of the elements with respect
to each other is determined (1.3.5). In CV terms, these spatial
relationships can be interpreted as a special case of the more
general task of visual relationship detection (Cheng et al.,
2022b). Spatial coverage (that is, the percentage covered by
each class in a semantic segmentation) is also an indirect in-
dicator of the spatial arrangement of objects (Männistö et al.,
2022).

Plastic analysis also deals with how different forms and
compositional elements interact with each other and how
these interactions can shape the viewer’s interpretation.
Meaning is evoked by forms by assigning them qualities,

1.00.0

1.0

Center

Bottom-
Center

Top-
Center

Top-
Left

Top-
Right

Bottom-
Right

Bottom-
Left

Center-
Left

Center-
Right

1.0

0.0 0.0

0.00.0

Central

Peripheral

Figure 5: We compute position of the centroid of each identified object or
person with respect to the vertical and horizontal midlines, as well as the
distance from the image center, to determine the position of each object or
person with respect to the image frame. All positions are rescaled between 0
and 1 and thus are independent from image size.

which derive both from their internal characteristics and,
above all, from the network of spatial, temporal and coop-
erative or contrastive relationships with other forms and the
surrounding space (Eugeni, 2014). These connections can be
established among adjacent (1.4) or distant (1.5) forms based
on their similarities (e.g., same shape) or differences (e.g.,
dark vs. light). These connections are independent of the
figurative content of the respective forms and may thus rein-
force or redefine the interpretation that may be formed based
on the figurative content alone. Finally, all plastic elements
contribute to the overall configuration (1.6), which can bal-
anced (predominantly static) or unbalanced (predominantly
dynamic) (1.6.1).

The figurative level is concerned with the main topic (2.1),
persons, objects, scene and setting (2.2), movement (2.3), ac-
tions (2.4) and emotions (2.5).

The characterization of individual and groups of people is
partially based on AICE (Männistö et al., 2022), which in turn
is based on the work of Kress and Van Leeuwen (1996). We
do not distinguish explicitly between attributes of the main
character and of the side character, but assume that the cat-
egorization is available for each character, and expand the
characterization to include attributes available in pre-trained
facial attribute extractors (Zheng et al., 2022). Eugeni (2014)
distinguishes among movement (2.3) and actions (2.4). The
movement categories pertain to how the image, which by na-
ture is static, captures the evolving temporal dynamics of the
scene. Over time, different strategies have been evolved to
suggest how the scene depicted articulates in time, so that the
view can evoke the temporal continuity that the still image
cannot physically represent. Such techniques can be differen-
tiated based on whether the image represents one or more in-
stants in time within the same frame, which are classified by
Eugeni (2014) in blocked, contracted or articulated (2.3.1).
The resulting configuration may produce configuration that
are not realistic in favor of making the articulation of move-
ment manifest in the image (2.3.2); otherwise, the articula-
tion of movement is assumed to be hidden in the presentation
(2.3.2). While semiotics deals with all forms of still images,
not only photographs but also paintings and illustrations, in
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FRESCO.v1 we concentrate on photographs and especially
social image images, which are likely going to represent a
single instant in time (blocked). Actions, on the other hand,
refer to the semantic interpretation of the gestures and interac-
tions depicted (2.4). Single actions (2.4.1) can be associated
to CV tasks such as pose estimation and action recognition. In
the case of aggregate of actions (2.4.2) or narratives (2.4.3),
estimating the scene graph or detecting visual relationships
would be needed to differentiate the gestures performed by
different characters and capture interactions among them. Fi-
nally, at the figurative level, we measure the intensity (2.5.1)
and class of the emotions (2.5.2) expressed by the characters
depicted in the image. Some works in the CV literature have
also investigated how to determine emotional valence (2.5.3),
that is, the emotion aroused by the image (Lu et al., 2016) in
the viewer.

To conclude the figurative level, we also included as part
of FRESCO.v1 image tagging (Huang et al., 2023) and visual
captions (Hu et al., 2022). These models have the advantage
of being trained on extremely large scale datasets, and thus
were designed to achieve strong open-set capabilities, which
are essential in the context of social media. At the same time,
textual descriptions cannot be easily mapped to a specific fig-
urative element, and thus may pose some issues when inter-
preting the results.

At the enunciational level, we focus in particular on the
construction of the point of view of the spectator (basic
watcher-looked system 3.1) and the observer (first grade sec-
ondary watcher-looked system 3.2). The former, in photogra-
phy, essentially coincides with the position of the camera. It
can be reconstructed on the basis of aspects such as perspec-
tive (horizon line and vanishing points), the position of the
camera with respect to the scene, and the distance between
the main subject(s) and the viewer. It is important to distin-
guish close-up and portraits from indoor and outdoor scenes,
since the position of the spectator cannot always be clearly
defined and is inferred based on different compositional cues
depending on the type of image.

The way a photograph is framed, and therefore what is not
shown as well as what it is shown, is of paramount impor-
tance to shape its interpretation. By observer, we denote a
character that is explicitly never depicted, but implicitly as-
sumed by a composition. The position of the observer can be
inferred by the pose of the characters (body pose 3.2.2 and
head pose 3.2.1), and most importantly by the direction of
the gaze (3.2.3). The relative position of the spectator and
observer (3.4.1) will elicit involvement or detachment in the
viewer, depending on whether they coincide or differ. The
presence of bystanders, indicators, insegnias, and epigraphs
further helps to guide the viewer in the correct interpretation,
with a higher level of guidance reflecting in a greater sense
of participation, especially in artistic composition (Eugeni,
2014).

Several variables evaluated in FRESCO involve estimating
the distances between the observer (the camera, in the case
of a photographic image) and the subject(s) depicted, as well
as among the subjects depicted in the images in the case of

multiple subjects. We estimate the distance of the main char-
acter combining the depth map and the panoptic segmentation
considering only the “person” category. Similarly, we com-
pute also the distance of main subject taking into account all
the “things” categories, which includes only countable ob-
jects, since the primary theme in a photo may not necessar-
ily be a person. Interpersonal distances are shaped by our
sensory-motor possibilities (e.g., whether we can touch, hear,
or smell another person) but are also influenced by social and
cultural conventions; hence, they carry with them a plethora
of implicit messages. Moving from the seminal works of Hall
(1966), one of the cardinal findings of proxemics dictates that
people tend to organize the space around them in terms of four
concentric zones (intimate zone, casual personal zone, social
zone, and public zone) associated with increasing degrees of
intimacy and interactions. This classification forms the ba-
sis for subsequent works in visual semiotics (Bell, 2012), as
well as in computational visual proxemics or Visual Social
Distancing (VSD) estimation, that is, approaches that rely on
cameras and other imaging sensors to analyse the proxemic
behaviour of people (Cristani et al., 2011, 2020).

4.2. Implementation

FRESCO relies on a collection of readily available, open-
source off-the-shelf CV models representing the state of the
art in their respective tasks. Although we recognize that po-
tentially better results could be achieved using cloud-based
commercial APIs, for the sake of privacy, reproducibility, and
transparency, an open implementation was preferred (Santan-
gelo and Morra, in press).

We tightly combined the output of these pre-trained mod-
els with geometric properties and/or image processing meth-
ods to extract the information described in Section 4.1.
FRESCO.v1 includes the following models, which corre-
spond to the items marked by ✓in Table 1. Face detec-
tion is obtained using RetinaFace (Deng et al., 2020) with
a ResNet50 backbone. The face mesh is obtained from Me-
diaPipe (Lugaresi et al., 2019), while the body pose is ob-
tained using PifPaf (Kreiss et al., 2019). The head pose
(roll, pitch, yaw) is estimated from 6DRepNet (Hempel et al.,
2022), while the gaze direction (pitch, yaw) and pupil coor-
dinates) is extracted using 3DGazeNet (Ververas et al., 2022)
exploiting the InsightFace implementation. Continuous lev-
els of valence/arousal and emotion category are estimated us-
ing EmoNet (Toisoul et al., 2021), while 40 facial attributes,
corresponding to those available in the CelebA dataset (Liu
et al., 2015), are extracted using FACER (Zheng et al., 2022).
Age, gender, and ethnicity are estimated using the DeepFace
(Serengil and Ozpinar, 2021) framework. Depth estimation,
edge detection, object detection, OCR, semantic segmenta-
tion, panoptic segmentation, and caption generation are de-
rived through PRISMER (Liu et al., 2023) and its associated
expert models (Ranftl et al., 2021; Poma et al., 2020; Zhou
et al., 2022; Liu et al., 2018; Cheng et al., 2022a). Image tags
are extracted using the Recognize Anything Model - RAM++
(Huang et al., 2023). Scene classification is performed using a
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Task Model Dataset (train) Dataset (test) Performance (expected)
Face Detection RetinaFace (ResNet50) (Deng et al., 2020) WIDERFACE (train) WIDERFACE (val) mAP: 96.5%(easy), 95.6% (medium), 90.4% (hard)

Face Mesh MediaPipe (Lugaresi et al., 2019) Private Private IOD MAD: 3.96%
Head Pose 6DRepNet (Hempel et al., 2022) 300W-LP AFLW2000 Yaw: 3.63, Pitch: 4.91, Roll: 3.37, MAE: 3.97

Gaze Direction 3DGazeNet (Ververas et al., 2022) Gaze360 (train) Gaze360 (test) Gaze error (degrees): 9.6
Emotion Estimation EmoNet (Toisoul et al., 2021) AffectNet (train) AffectNet (test) Expression Acc: 0.75

Valence CCC: 0.82, PCC: 0.82, RMSE: 0.29, SAGR: 0.84
Arousal CCC: 0.75, PCC: 0.75, RMSE: 0.27, SAGR: 0.80

Face Attribute Estimation FACER (Zheng et al., 2022) LAION-Face-20M CelebA (test) Acc: 92.1%
+ CelebA (train)

Age Estimation DeepFace (Serengil and Ozpinar, 2021) IMDB-WIKI IMDB-WIKI MAE: 4.65
Gender Estimation DeepFace (Serengil and Ozpinar, 2021) IMDB-WIKI IMDB-WIKI Acc: 97.44%, Precision: 96.29%, Recall: 95.05%

Ethnicity Estimation DeepFace (Serengil and Ozpinar, 2021) FairFace (train) FairFace (test) Acc: 68.0%
Image Tags RAM++ (Swin-L) (Huang et al., 2023) COCO OpenImages, Tag-Common mAP: 86.6 (OpenImages), 72.4 (ImageNet-Multi)

+ VG ImageNet-Multi, Tag-Uncommon mAP: 75.4 (OpenImages), 55.0 (ImageNet-Multi)
+ SBU captions HICO Phrase-HOI mAP: 37.7 (HICO)

+ Conceptual Captions
+ Conceptual 12M

Scene Classification VGG-Places365 (Zhou et al., 2017) Places365 (train) Places365 (test) Top-1 acc: 55.19%, Top-5 acc: 85.01%
Body Pose PifPaf (Kreiss et al., 2019) COCO keypoint COCO keypoint (test-dev) AP: 66.7, APM: 62.4, APL: 72.9

Depth Estimation DPT-Hybrid (Ranftl et al., 2021) MIX-6 DIW WHDR: 11.06
Surface Normal NLL-AngMF (Bae et al., 2021) ScanNet ScanNet (test) Angular error (degrees) Mean: 11.8, Median: 5.7, RMSE: 20.0
Edge Detection DexiNed-a (Poma et al., 2020) BIPED BIPED (test) ODS: 0.859, OIS: 0.867, AP: 0.905

Object Detection UniDet (Zhou et al., 2022) COCO COCO (test), mAP: 52.9 (COCO), 60.6 (OpenImages),
+ Objects365 OpenImages (test), 25.3 (Mapillary), 33.7 (Objects365)
+ OpenImages Mapillary (test),
+Mapillary Objects365 (valid)

OCR CharNet (Xing et al., 2019) SynthM ICDAR 2015 Acc: 71.6 (sen), 74.2 (in-sen)
Semantic Segmentation Mask2Former (Swin-L) (Cheng et al., 2022a) ADE20k ADE20K (val) mIoU (s.s.): 56.1, mIoU (m.s.): 57.3
Panoptic Segmentation Mask2Former (Swin-L) (Cheng et al., 2022a) COCO panoptic (train2017) COCO panoptic (val2017) PQ: 57.8, PQth: 64.2, PQst: 48.1, APth

pan: 48.6, mIoUpan: 67.4
Caption Generation PrismerLARGE (Liu et al., 2023) Pre-train: COCO Caption (Karpathy train) COCO Caption (Karpathy test) BLEU@4: 40.4, METEOR: 31.4, CIDEr: 136.5, SPICE: 24.4

+ Visual Genome
+ Conceptual Captions
+ SBU captions
+ Conceptual 12M

Fine-tune: COCO Caption (Karpathy train)

Table 2: Models included in FRESCO v1 implementation.

A woman and a young girl

posing for a picture together

with other people in the

background at a park.

catch | daughter | girl | grass |

hug | mother | pose | stand |

woman

Body Pose Head Pose Face Mesh Gaze Direction Face Attributes Age, Gender, Ethnicity Emotion Tags

CaptionObjectsPanopticSemanticNormalDepthOCREdges

Figure 6: Example of output of models included in FRESCO.v1 implementation.

VGG model trained on Places365 (Zhou et al., 2017). Chro-
matic information is extracted using established image pro-
cessing techniques, whereas simple geometric measures are
implemented custom. Some key details of these models can
be found in Table 2. We plan on making the implementa-
tion available. An example of the output of these models can
be seen in Figure 6.

5. The FRESCO Similarity Score

In this Section we define FRESCO-Score, a similarity mea-
sure that leverages FRESCO, and specifically all the mea-
sures available in FRESCO.v1 as highlighted in Table 1. It
represents an estimation of how closely two images repre-
sent the same content at the plastic, figurative, and enunci-
ational level. Unlike feature-based similarity metrics (Ram-
toula et al., 2023; Hessel et al., 2021; Heusel et al., 2017),
FRESCO-Score allows for an in-depth exploration of which

aspects of the images are mostly different and hence affect
the final score offering significant benefits in terms of inter-
pretability. In fact, two pairs of images may have comparable
final distances, but differ with respect to heterogeneous as-
pects. For instance, a pair of images, despite having different
chromatic properties, may depict similar figurative content
and thus present a distance akin to another pair that, while
similar at the plastic level, have different figurative contents.
A user may also choose to weight each component differently,
as to cluster images based on specific properties. These con-
siderations are in general not possible with methods that re-
turn a single distance value between the representations of
the two compared images in the features space of a black-box
pre-trained neural network. By considering all the analysis
one by one, FRESCO-Score enables us to appreciate the dif-
ference among two images at different scales, delving into
even the most intricate details, such as the direction of the
gaze of each single person depicted in the image.
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FRESCO-Score needs to aggregate over properties that are
associated with the whole image (e.g., chromatic categories,
main topics, place) and single subjects or objects in the im-
ages (e.g., the characteristics, emotions, pose and gaze of a
specific person). While the former allows for a direct com-
parison of values computed at image-level, the latter requires
a mapping strategy to associate each person/object of the first
image to a comparable instance, if any, in the second one.
For convenience, in the following we will refer to them as
image-level and instance-level measures. We exclude from
FRESCO-Score intermediate maps (e.g., semantic maps or
line maps) and body poses, that will be included in further
development.

Image-level measures. Palette similarity is derived from the
CIELAB color difference between two single colors obtained
as the weighted average of the two palettes, following the sin-
gle (homogeneous) color difference model proposed in Pan
and Westland (2018). RGB color histograms are compared
using the Bhattacharyya distance. For scalar measures such as
brightness, saturation, face-background ratio and background
average depth, the absolute error is considered. Binary mea-
sures such as grayscale and indoor/outdoor evaluate to 1 if
the corresponding value is the same in both images, 0 other-
wise. Scene classification is compared using the cosine simi-
larity on the confidence vectors returned by the model. Image
tags are compared using the Jaccard index (Real and Vargas,
1996), while for the spatial coverage a continuous Jaccard in-
dex was properly designed, taking into account the common
area for each category. The number of people and objects
in the image are compared using the percentage of common
instances. The caption is instead compared using the cosine
similarity between the text embeddings extracted by the CLIP
ViT / L-14 text encoder. All distances are scaled in the range
[0,1].

Mapping strategy. In FRESCO.v1 each instance in the first
image is associated with the closest instance of the same cate-
gory in the second image using the centroids derived from the
bounding boxes (faces and objects) or the instance masks (for
analysis involving depth information). The set of centroids
identified in the first image is associated with the set of cen-
troids found in the second, minimizing the cost of matching.
The cost is defined as the squared Euclidean distance between
each pair of centroids in the bipartite graph. To solve this
problem, we leverage the SciPy’s modified Jonker-Volgenant
algorithm for linear sum assignment, which has a complexity
of O(n3) in the worst case (Crouse, 2016).

Instance-level measures. All instances in the two images are
compared one-by-one after executing the mapping algorithm.
Object positions (vertical ratios, horizontal ratios, centralities,
distances from cameras) are compared using the absolute er-
ror. Person characteristics are compared using the cosine sim-
ilarity on the confidence vectors returned by the models for
both multiattribute (i.e., 40 face attributes and gender) and
multiclass (i.e., ethnicity and emotion) classifications. Con-
tinuous values such as age, valence, arousal and angles (roll,
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Figure 7: The hierarchy of similarities on which Fresco Score is built. Best
viewed online.

pitch, yaw) for both head pose and gaze direction are com-
pared using the absolute error. Unpaired objects and faces
(i.e., those for which the matching algorithm does not return
a real association) are assigned by default to the minimum
similarity value for all the associated measures. All distances
are defined in or are scaled to the range [0,1].

Aggregation. In FRESCO.v1, all similarity values are aggre-
gated using a linear weighted average. Instance-level similar-
ities are combined to obtain an image-level value for each
analysis. Specifically, the similarities computed for each
characteristic of each individual face in the image are aver-
aged to derive a single compound measurement. Likewise,
similarities related to single objects were also averaged out.
Similarity scores are further aggregated to obtain a cumu-
lative measure for groups of correlated characteristics (e.g.,
chromatic, topological, etc.), and then each group of mea-
sures is further averaged to get a per-level measure. The final
overall score is obtained by averaging the measures of the
three levels of analysis (i.e., plastic, figurative, and enuncia-
tional). An overview of the hierarchy of similarity scores and
their relative aggregations is illustrated in Figure 7. It should
be noted that, while all individual similarities are scaled be-
tween 0 and 1, their distribution may differ in practice. In the
future, a more sophisticated aggregation will be considered,
in which distance measures are calibrated on a target popula-
tion.

6. Experimental validation

6.1. Datasets
Experiments validation was conducted on the FFHQ in-

the-wild validation set (Karras et al., 2018) composed by
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10,000 images and on the validation set of the MIAP (More
Inclusive Annotations for People) (Schumann et al., 2021) ex-
tension of the OpenImages v7 database (Benenson and Fer-
rari, 2022; Kuznetsova et al., 2020), which we further filtered
by specifically considering the presence of at least one visi-
ble human face, obtaining a total of 2002 images. The for-
mer is composed by uncropped original images scraped from
Flickr. It encompasses a wide range of variation in terms of
age, ethnicity, and image background. Additionally, it fea-
tures also a relevant assortment of accessories, including eye-
glasses, hats, and more. The latter instead was selected due to
its greater variability of contents, which includes more com-
plex scenes. It is also equipped with additional annotations
with respect to the original OpenImages including exhaustive
bounding boxes for all people and attribute labels such as the
human perceived gender and perceived age range.

6.2. Validation

There are two fundamental questions that must be kept
in mind when validating a computational pipeline such as
FRESCO, and concern its validity (i.e., how faithful is the
information extracted from FRESCO to the original images)
and usefulness (i.e., to what extent the measures extracted by
FRESCO can be used to answer interesting research questions
that complement and extend traditional manual extraction).

In this paper, we focus first and foremost on assessing the
validity of the information extracted. Although each compo-
nent included in FRESCO.v1 has been previously tested in
isolation (relevant performance metrics are included in Table
2), some residual errors (both random and systematic) are un-
avoidable. These aspects are here investigated by searching
for discrepancies and inconsistencies in the output of differ-
ent tools, which not only provides an indirect measure of per-
formance, but can also guide researchers from different fields
in interpreting the results. The FRESCO-Score was validated
by visually analyzing how it ranked images in terms of simi-
larities.

7. Results

An example of application of the FRESCO.v1 computa-
tional pipeline is depicted in Figure 8. It should be noted
that many of the CV tools included in FRESCO.v1 produce a
spatial output, such as a depth map or segmentation map, as
exemplified in Figure 6 and in the left part of Figure 8. Key-
points and spatial maps are unstructured data and are diffi-
cult to analyze at scale - for this reason, FRESCO.v1 converts
them into a set of interpretable indicators, either numerical or
categorical, that lend themselves to analytics techniques. An
example is provided in the right part of Figure 8, in which
quantities are divided according to whether they are pertinent
to the plastic, figurative, or enunciational level.

In the rest of this Section, we first evaluate the consis-
tency of models (Section 7.1) and then proceed to evaluate
the FRESCO-score similarity measure (Section 7.2).

People detected (OpenImages)
Tasks Images with people People per image

(at least one) (all detected)
Face detection 90.26% 2.07

Object detection 88.31% 1.85
Panoptic segmentation 92.01% 2.14
Semantic segmentation 95.55% -

Tagging 96.10% -
Captioning 95.35% -

People detected (FFHQ in-the-wild)
Tasks Images with people People per image

(at least one) (all detected)
Face detection 100.00% 1.75

Object detection 99.21% 2.03
Panoptic segmentation 99.84% 2.27
Semantic segmentation 99.97% -

Tagging 99.99% -
Captioning 99.98% -

Table 3: Analysis of the people detection consistency across different models
included in FRESCO.v1 evaluated on OpenImages and FFHQ in-the-wild
datasets.

7.1. Accuracy and consistency of the extracted quantities

First, we seek to answer questions related to how the out-
put of different measures can be combined and compared. For
instance, in Figure 8 it is evident that the estimated age is in-
correct (25 years). However, both the caption and the tags
refer to the presence of a young boy or a child, which is an
indication that the age may not be accurately estimated. Two
persons and two horses are detected by semantic segmenta-
tion and object detection, but only one pose and face are de-
tected: indeed, an arm and the back of a horse are visible
in the bottom left corner. An uncommon object (a red tank)
is misclassified by the caption as a fire idrant, but the latter
is not identified by the object detector, nor the semantic seg-
mentation. A more systematic analysis of these discrepancies
is presented in Tables 3 and 5.

Determining whether two outputs are consistent is not
straightforward as FRESCO involves multiple models whose
set of labels may differ substantially, requiring some form
of concept mapping. Some concepts may be expressed only
by one label set, or may be expressed by different label sets
at varying granularities. The problem is more evident when
models with a predefined, closed-set output label space, such
as object detectors, are compared with open-set models such
as tagging or captioning models. As an example, the caption
generator can produce outputs in the form “A baseball player
catching a ball. . . ”, “A family posing for a picture. . . ”, “A
mother and daughter pose for a picture. . . ” that suggest the
presence of people in the image even if the concept “person”
is not explicitly mentioned. On the other hand, the object de-
tector used in Fresco.v1 does not consider label hierarchies
(Zhou et al., 2022), hence the class “person” is considered
as an independent concept with respect to “man”, “woman”,
“girl” and “boy” which are also included in the label space.

Table 3 reports the number of people (2.2.1.1) detected by
each model or task. To achieve a more reliable estimate of
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Plastic Level

Chromatic categories:
Grayscale: False
Brightness: 155.60
Saturation: 78.84
Palette:

Color distribution:

Topological categories:
Objects positions - centralities:
   Horse1: bottom (0.64), right (0.63), central (0.62)
   Horse2: bottom (0.70), left (0.16), peripheral (0.22)
   Person1: top (0.29), right (0.65), central (0.47)
   Footwear, sneakers: center (0.49), right (0.89), 
                                     peripheral (0.22)
   Person2: center (0.49), left (0.10), peripheral (0.21)
   Carriage: bottom (0.60), right (0.68), central (0.58)
Person average depths:
   Person1: 243.75
   Person2: 180.31
Objects average depths:
   Horse1: 207.68
   Person1: 243.75
   Car: 61.75
   Person2: 180.31
   Horse2: 232.05
Background average depth: 80.84
Objectss average depth ratios:
   Horse1: 2.57
   Person1: 3.02
   Car: 0.76
   Person2: 2.23
   Horse2: 2.87
Spatial coverage: Person (9%), Car (4%), Horse (31%),
Door (3%), Net (14%), Road (5%), Wall-brick (3%), Fence
(9%), Pavement (2%), Grass (1%), Building (3%), Other
type of wall (17%)

Figurative Level

General:
Main topic (tags): boy | brown | child | pony | horse |
horseback | miniature | pet | ride

Content participants: 
Single person characteristics:
Face1:
   Age: 25
   Gender: Man
   Ethnicity: White
   Face attributes: Male, No beard, Young
People group characteristics:
   Number of people: 2
   Crowdedness: Couple
Text in image: None
Objects: horse | horse | person | footwear, sneakers |
carriage
Setting-events:
   Indoor-outdoor: Outdoor
   Place: Bullring

Action:
Caption: "A young boy riding on the back of a brown and
white horse next to a red fire hydrant."

Emotions:
Face1:
   Valence: -0.31
   Arousal: -0.08
   Emotion: Sad

Enunciational Level

Basic watcher-looked system:
Main subjects distances from camera:
   Person1: 11.25
   Person2: 74.69
Main characters distances from camera:
   Horse1: 47.32
   Person1: 11.25
   Car: 193.25
   Person2: 74.69
   Horse1: 22.95
Scene:
   Indoor-outdoor: Outdoor
   Place: Bullring
Portrait-scene:
   Face/background ratio: 0.01
   Portrait-scene: Scene

First grade secondary watcher-looked system:
Head pose:
Face1:
   Yaw: 24.87°
   Pitch: -30.73°
   Roll: -23.52°
Gaze:
Face1:
   Yaw: 13.78°
   Pitch: -32.68°

Figure 8: Example of FRESCO.v1 final output. All quantities extracted are defined in Table 1. The figurative and plastic level are closely intertwined.
Notice, for instance, how the figurative content is that of a boy riding a horse, but the spatial disposition of the figures is part of the plastic level (the horse is
positioned in the center and occupies a substantial portion of figure, and that the boy is located in the top right part of the image).

Images with groups of people (OpenImages)
Tasks 0/1 2 3-6 7-12 13-30 31+

(single) (couple) (small group) (medium group) (large group) (crowd)
Face detection 67.88% 15.78% 11.94% 2.85% 1.25% 0.30%

Object detection 60.84% 17.38% 18.63% 3.00% 0.15% 0.00%
Panoptic segmentation 61.04% 16.28% 16.18% 5.54% 0.95% 0.00%

Images with groups of people (FFHQ in-the-wild)
Tasks 0/1 2 3-6 7-12 13-30 31+

(single) (couple) (small group) (medium group) (large group) (crowd)
Face detection 61.73% 21.80% 15.06% 1.17% 0.24% 0.00%

Object detection 52.70% 21.80% 23.56% 1.94% 0.00% 0.00%
Panoptic segmentation 51.99% 21.79% 20.60% 5.40% 0.22% 0.00%

Table 4: Analysis of the people groups detection consistency across different models included in FRESCO.v1 evaluated on OpenImages and FFHQ in-the-
wild datasets. In FRESCO.v1 counts are inferred from the object detector to adjust for individuals seen from behind.

Topics detected (OpenImages)
Tasks In first In common In second In first In common In second In first In common In second

(CLIPS core ≥ 0.80) (CLIPS core ≥ 0.85) (CLIPS core ≥ 0.90)
Tags-Objects 60.12% 29.86% 10.01% 71.91% 11.58% 16.52% 75.16% 5.47% 19.37%

Tags-Semantic 50.37% 30.09% 19.53% 64.40% 9.23% 26.37% 67.00% 4.63% 28.36%
Tags-Panoptic (things) 72.03% 25.70% 2.27% 86.22% 7.82% 5.96% 88.21% 3.48% 8.31%

Objects-Semantic 23.16% 26.30% 50.54% 30.29% 16.21% 53.49% 30.83% 15.21% 53.97%
Objects-Panoptic (things) 47.94% 43.38% 8.68% 62.09% 27.96% 9.95% 62.69% 26.87% 10.43%

Semantic-Panoptic (things) 65.49% 34.51% 0.00% 71.84% 28.16% 0.00% 72.27% 27.73% 0.00%

Table 5: Analysis of the topics detection consistency across different models included in FRESCO.v1 evaluated on OpenImages dataset. It considers three
different thresholds on the labels encoding similarities to establish if a topic can be considered in common among the predictions of each pair of models.

the number of people detected by each model, a broad synset
was properly selected to represent the concept “person” in-
cluding all labels and expressions that can be traced back to
the original wider concept. The results show that the number
of detected faces is lower than the number of people found
by the object detector and the panoptic segmentation, espe-
cially on FFHQ in-the-wild. This should not necessarily be

interpreted as an indication of poorer performance of the face
detector, but, more likely, this result may be attributable to
the presence of people photographed from behind or with oc-
cluded/cut faces. Unexpectedly, the panoptic model seems
to retrieve a slightly larger number of persons. It should be
noted that, unlike object detection, the panoptic label space
and semantic segmentation include both “things” and “stuff”

15



categories. Consequently, they are able to catch information
about both countable objects which are characterized by a
well-defined shape (things) and uncountable categories which
are in general amorphous and belong predominantly to the
context of the scene (stuff). Hence, this difference may be
explained by the huge gap in the number of categories taken
into account by the two models, only 133 (80 “things” + 53
“stuff”) compared to 722. The percentage of images recog-
nized as containing people is close to 100% for all models on
FFHQ in-the-wild. Instead, despite the OpenImages split in
use being properly filtered in the presence of “Human face”,
the percentage is in general lower. Unlike FFHQ in-the-wild,
in OpenImages a limited number of sketches and cartoons are
included, since they were annotated as containing “Human
face”; however, models such as the face detector are trained
on real faces and may fail in these different domains. The
models used for tagging and captioning appear to be more ro-
bust also in these images. Last, in Table 4 we report the dis-
tribution of the number of people discretized according to the
categories defined in Table 1 (i.e., no people, single person,
couple, small group, medium group, large group or crowd).

The consistency among the topics (2.1.1) and objects
(2.2.3) detected by each model was further evaluated on the
OpenImages validation set (Table 5). To make semantic sim-
ilar labels comparable, we leveraged a variant of the CLIP
score which evaluates the cosine similarity between the text
embeddings of the two labels extracted using the CLIP ViT-
L/14 text encoder. To establish whether a concept is equally
recognized by different models, we set a threshold on the sim-
ilarity score. Some labels, despite referring to the same con-
cept, may use different words and/or include more details. For
example, the labels “land vehicle”, “sport car”, and “sedan”
are more specific cases of the general concept “car”; com-
pared to the label “car”, their CLIP score is 0.83. Depending
on the threshold selected, we may consider semantically re-
lated information as equivalent or not. We compared each
pair of tasks (e.g., image tagging vs. object detection, image
tagging vs. panoptic segmentation) to determine whether on
average each task provides more, equal, or less information
than the other (i.e., whether the output contains the same con-
cept, or whether certain concepts are present only in one of
the outputs), at a given CLIP score threshold. The results of
Table 5 indicate that image tagging can associate the highest
number of topics with a given image. Compared to image
tagging, semantic segmentation can identify the highest num-
ber of additional topics (around 20% at a threshold of 0.8),
followed by the object detector with about 10%. Semantic
segmentation grasps more concepts w.r.t. to object detection
as it embraces both labels from countable objects (things) and
uncountable categories (stuff) which characterize mainly the
background. This is further supported by the results achieved
by the semantic segmentation, which adds more than 50%
topics to the object detector. In turn, the object detector is
able to find much more topics compared to the panoptic seg-
mentation (things) due to its higher label space (722 vs. 80).
Panoptic segmentation cannot detect more topics than seman-
tic segmentation, as it was trained on the same dataset and its

label space is a subset of the latter. In this case, the topics in
common are likely to be the things identified by both models.
Lastly, the use of multiple models trained on different datasets
introduces a relevant benefit: it allows to capture a wide range
of information from the image compensating any oversight of
each single model. In fact, common topics are less likely to
arise from mispredictions of individual models.

Finally, we investigated the distributions of a subset of con-
tinuous and categorical measures extracted from the FFQH-
in-the-wild and OpenImages validation set (Figures 9 and 10).
In terms of plastic categories, the centroids of objects and
persons appeared to be predominantly located in the middle
of the picture frame both horizontally (1.3.2) and vertically
(1.3.1). Both datasets have similar characteristics in terms of
brightness (1.2.2) and saturation (1.2.3).

At the figurative level, all images depict close-up portraits
or scenes in which two or more people interact. Unlikely
OpenImages, FFHQ in-the-wild shows a bimodal distribu-
tion for the Valence (2.5.3) category, which is consistent with
a substantial presence of people smiling and posing for the
camera. Emotion classification (2.5.2) further supports this
finding, as the FFQH in-the-wild distribution is peaked on
the “happy” category, while for OpenImages the dominant
class is “neutral”. The age (2.2.2.2) distribution is quite sim-
ilar for both datasets varying mostly in the range 20-50 (age
is normalized between 0 and 100). In terms of ethnicity
(2.2.2.5), both datasets are imbalanced with a strong preva-
lence of “white” and “asian” categories, while others are no-
tably underrepresented.

At the enunciational level, with a few exceptions (more evi-
dent in OpenImages), the gaze (3.2.3) and head (3.2.1) angles
are peaked around the value 0.5, indicating the predominant
presence of people looking at the camera while posing for pic-
tures. The face/background ratio (3.1.3) is skewed in the 0-0.2
range, even more evident for the OpenImages split, suggest-
ing that the majority of images are scenes depicting people
in context, rather than portraits. The current implementation
sets a threshold at 0.3, hence an image is considered as a por-
trait if the largest face box covers at least 30% of the total
image area.

The main subject’s distance from camera (3.1.1) is a bi-
modal distribution, suggesting the presence of two main
groups: close-up portaits and scenes in which several persons
interact.

7.2. Validation of the FRESCO score

The FRESCO Score can be employed to rank images based
on their similarity. Images can be compared using mea-
sures at different levels of aggregation enabling comparisons
at varying degrees of detail, from the more general (Overall
Score) to specific groups of aspects pertaining to the three lev-
els of analysis (Plastic, Figurative and Enunciational Score)
or even down to the more fine-grained characteristics, such
as expressions, ethnicity, and head/gaze orientation of each
single person depicted in the image, through measures at
the lowest level of the FRESCO Score hierarchy. Figure 11
shows an example of ranking using the Score at the highest
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Figure 9: Distribution of a selection of numerical values in the OpenImages (left) and FFHQ-in-the-wild (right) subsets.
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Figure 10: Distribution of a selection of categorical measures in the OpenImages and FFHQ-in-the-wild subsets.

level and the three main levels of analysis. In this case, the
reference image is compared with the entire FFHQ in-the-
wild validation set consisting of 10,000 images. The retrieved
groups of images highlight that the Plastic Score, which in-
cludes Chromatic (1.2) and Topological categories (1.3), is
more susceptible to colors variations (the more distant sam-
ples are in general darker) and spatial dispositions of forms
(both in terms of covered pixels and distance from camera).
The Figurative Score, which covers analysis on characteris-
tics of each person (2.2.2) including among others emotions,
gender, and face attributes, allows to retreive images of peo-
ple with similar characteristics. Indeed, all images in the Top-
8 contain two women of comparable age posing in an out-
door environment, and also the presence of accessories such
as hats, glasses, and necklaces is in general more consistent.
The Enunciational Score is instead sensible to the mean dis-

tance from camera (3.1.1), the scene (3.1.3) and the direc-
tion of head/gaze (3.2.1, 3.2.3) (regardless of the precise spa-
tial position of the subject) and other aspects such as gender,
accessories, and so forth. The Overall Score combines the
previous scores; when all scores are equally weighted, it can
grasp the general content, but it can lose sensitivity to specific
aspects. The weight of each level can be properly adjusted to
emphasize certain characteristics in the retrieved images, de-
pending on the interests and goals of the scholar using the
platform. The number of people (2.2.1.1) is in general well
preserved by all scores, due to the effect of the matching strat-
egy that penalizes the presence of unpaired objects as stated
in Section 5. Indeed, in all cases, the Last-8 images represent
in general crowded scenes. The same considerations are also
valid for images of a single person as shown in Figure 12.

The ranking based on a subset of single analysis is illus-
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Figure 11: Ranked images using the three scores derived from the highest levels of analysis and the overall score on a reference image including multiple
people. Each group of images (Top-8) shows different common aspects such as colors and spatial dispositions of forms (plastic score), person characteristics
such as age, gender, emotions, accessories (figurative score) and distances from camera, head/gaze directions while not caring about other details such as
gender, emotions an so forth (enunciational score).

trated in Figure 13. Each single score allows us to find im-
ages that are comparable on that specific aspect. Given a
reference image, each row shows images that are closest (or
farthest) in terms of Color distribution (1.2.1), Textual de-
scription (2.4.1), Spatial coverage (1.3.5), and General topics
(2.1.1), and in terms of characteristics of single faces includ-
ing Ethnicity (2.2.2.5), Emotion (2.5.2), Head pose (3.2.1),
and Gaze direction (3.2.3). For this specific test, the unpaired
objects were excluded from analysis, hence the comparison
on faces involves only those who can be directly matched
to a comparable one in the second image. Working directly
with distances on the models outputs, the Top-8 and the Last-
8 images are exactly at the opposite for each specific analysis
(within the limit of variability covered by the FFHQ-in-the-
wild Validation Set) with the Median-8 in the middle of the
distribution, as is definitely evident for head and gaze angles.

8. Discussion

In this work, we thoroughly explore the application of
structural visual semiotics principles to develop a detailed
computational framework that facilitates the analysis of large-
scale image archives. In this way, semioticians, as well as
scholars in the social sciences and humanities in general, can
leverage recent advances in computer vision, and particularly
the availability of general purpose models pre-trained on vast

amounts of data, also known as foundation models (Zhou
et al., 2023). In the context of social media, for instance,
FRESCO can be used to answer questions such as: when self-
representing themselves, do people want to show themselves
happy or do they prefer to show other moods? Is their face the
focus of their images? Do people usually show themselves
alone or in company? and many other questions as discussed
in (Santangelo and Morra, in press).

The outcome of our research is a computational platform
that can serve several purposes. First, it converts an image
collection from unstructured image data to structured data
in tabular format to support the application of data analytics
tools (Santangelo and Morra, in press). This tabular format
summarizes to what extent the different traits commonly em-
ployed by semioticians to characterize images are expressed
by each image, thus configuring a sort of digital identikit of
an image. Second, it supports a content-based image retrieval
system that is based on the plastic, figurative, and/or enun-
ciational content of images, using a configurable similarity
score (FRESCO-Score). That said, it is also possible to search
for similar images (content-based image retrieval) or to group
images (clustering) based on individual characteristics such
as caption, human pose, spatial composition, or color distri-
bution. This enables the discovery of similarities and group-
ings in the data that might otherwise remain unnoticed by re-
searchers (Männistö et al., 2022). Lastly, FRESCO could be
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Figure 12: Ranked images using the three scores derived from the highest levels of analysis and the overall score on a reference image including a single
person. Each group of images (Top-8) shows different common aspects such as colors and spatial dispositions of forms (plastic score), person characteristics
such as age, gender, emotions, accessories (figurative score) and distances from camera, head/gaze directions while not caring about other details such as
gender, emotions an so forth (enunciational score).

used to investigate synthetic images producted by generative
models.

The experimental validation in Section 7, along with the
standalone performance in Table 2, highlights how the ex-
tracted features are, in general, of high quality. The agree-
ment between models is generally good, and the distributions
extracted from the two datasets analyzed are consistent with
how they were sourced and collected. However, there are still
challenges and limitations associated with the current imple-
mentation of the FRESCO pipeline. Computer vision tech-
niques, although increasingly accurate, may inject various
types of errors. Algorithms included in the FRESCO pipeline
were selected based on their performance, but noise in the
form of errors or uncertainties can arise due to factors such as
variations in lighting conditions, image quality, or the com-
plexity of the subject matter. Agreement between different
models can be used to filter out uncertain and possible erro-
neous output. Care must be taken when comparing findings
across datasets, but as long as errors can be expected to oc-
cur at approximately the same rate on each dataset, a relative
comparison can be more reliably estimated than an absolute
value (Männistö et al., 2022).

Another challenge that arises when using deep neural net-
works, especially those relying on a closed set of labels, are
out-of-distribution samples. Deep learning models target-
ing the human face and body, such as for keypoint detection

or classification of facial expression, are less prone to this
drawback; on the other hand, networks that perform complex
and potentially ambiguous multi-label classification, such as
scene classification, should be interpreted with greater cau-
tion. In the future, we plan to expand the FRESCO imple-
mentation with out-of-distribution detection (Recalcati et al.,
2023; Yang et al., 2021; Fort et al., 2021) or one-shot domain
adaption (Yang et al., 2021; D’Innocente et al., 2020).

Besides such practical issues, there are also a few limita-
tions that derive from the current architecture of FRESCO.
In the field of structural visual semiotics, on which FRESCO
foundations were established, the meaning of an image de-
pends not only on what is present and can be seen, but also
on what it is omitted. Just as we are able to understand the
meaning of a sign such as “l” (the letter “L” of the alphabet)
as different from “t”, because essentially in the long vertical
bar we see there is a short horizontal one at the top missing
(De Saussure, 1989), in the same way we understand that the
meaning of a censored image is that subjects seen in other im-
ages are not represented. If we look at the famous painting by
Manet’s “Olympia”, we see that in her nudity she looks at us
proudly, directly and from above, instead of from below, with
a more demure and indirect gaze, surrounded by a maid and a
cat, instead of a governess and a dog, as in Titian’s painting ti-
tled “Venus of Urbino”. Manet’s work evidently wants to dif-
ferentiate itself from Titian’s one and from a certain tradition
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Figure 13: Ranked images using the scores derived from the lowest levels of analysis on a various set of reference images including single and multiple
people. Each group of images (Top-8) shows different common aspects strictly related to the considered analysis. For a better interpretability of the results,
in this specific test unpaired objects were excluded from the analysis, hence all scores referring to face aspects consider only faces for which a comparable
instance can be found among both images, neglecting all the others.

in the representation of naked women who are aware to be
observed from men (Berger, 2008), hence we realize that its

significance depends, precisely, on the absence of some very
significant elements of Titian’s own painting and the presence
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of other deliberately different ones. To overcome this critical
gap, FRESCO should be extended with the ability to select,
attend, and reason about external and commonsense knowl-
edge (Joshi et al., 2023; Ye and Kovashka, 2018).

9. Conclusions

In this study, we extensively investigate the use of struc-
tural visual semiotics principles to create FRESCO, a com-
prehensive computational framework that supports scholars
in the analysis of large scale image archives by leveraging
the power of foundational models. In constructing FRESCO,
instead of deploying a makeshift collection of deep neural
networks, we aimed to represent each category of semiotics
through numerical values that can be derived using cutting-
edge computer vision models.

We expect FRESCO to further promote the adoption of
quantitative methods in visual semiotics (Manovich, 2020),
closing the gap with respect to the analysis of text corpora.
At the same time, we hope that FRESCO can foster the inter-
disciplinary collaboration between computer vision scientists
and humanities scholars (Bocyte and van Kemenade, 2022).

The present study has focused on the technical character-
istics of the FRESCO pipeline, outlining its design principle
also in comparison with previous similar studies (Männistö
et al., 2022). We also performed internal validation with the
aim of investigating the consistency and usability of different
extracted characteristics. Currently, we are planning to apply
FRESCO to selected case studies involving real-life image
collections. In future studies, our aim is to further expand
FRESCO by expanding the set of characteristics computed.
FRESCO should also be extended to identify and connect el-
ements that are found in an image with those that are absent,
but are nonetheless connected to it. To this aim, FRESCO
should be integrated with the ability to integrate external and
commonsense knowledge, either in the form of structured
Knowledge Graphs and/or embedded in Multimodal Large
Language Models. Finally, further directions include mak-
ing the computational pipeline more robust, including out-of-
distribution detection, as well as adapting and validating the
pipeline in other types of image archives, such as historical
photography, advertisements, and paintings.
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