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1 Introduction

Since its introduction in [1] as a model for shallow water waves, the Camassa–Holm
equation

ut − uxxt = 6uxu− 4uxxu− 2uuxxx (1)

has been the subject of a great number of papers. In particular, some of them ([9],[4],[7],
just to cite a few) have been devoted to investigate its bi–Hamiltonian structure and its
relation with other non linear partial differential equations living on the same phase space,
namely the Korteweg de Vries (KdV) equation, the Hunter–Saxton equation [3], and the
Harry Dym (HD) equation [5]. It is well-known how to use the bi–Hamiltonian structure
of the KdV equation to construct the whole corresponding hierarchy (see, e.g., [8]). This
structure has been used in [2] to relate in a geometrical way the KdV hierarchy with the
celebrated Kadomtsev–Petviashvili (KP) hierarchy. (In this paper by “KP hierarchy” we
mean the Sato form, in terms of pseudodifferential operators, of the KP hierarchy. This
is a hierarchy of (1+1) evolution equations for infinitely many fields). The same results
have been found in [11] for the HD equation, recovering in this way the KP extension of
the Harry Dym hierarchy presented in [10].

The aim of this paper is to develop an analogous theory for the CH equation as well.
More precisely, we show how the bi–Hamiltonian approach to the CH allows us to write a
Riccati equation whose solutions give rise to the conserved densities of the CH equation.
As it is well-known, there are two hierarchies of such conserved quantities. The first one
contains the Camassa–Holm equation, and its Hamiltonian densities are nonlocal, while
the other one is formed by local densities. (To the best of our knowledge, and according
to [6], there is no sound proof of the existence of an infinite number of members of the
nonlocal hierarchy. In this paper we give such a proof). Moreover we show that the local
CH hierarchy can be embedded in a wider hierarchy in an infinite number of fields, exactly
like the KdV equation can be included in the KP hierarchy.

The paper is organized as follows. In the next section we use the bi–Hamiltonian
method to find a Riccati equation that allows us to construct the two above mentioned
hierarchies of conserved quantities. In the third and last section we show — using the
technique of the Faà di Bruno polynomials — how the local CH hierarchy can be framed
in a more general hierarchy which plays the same role that the KP hierarchy does in the
KdV case.

2 The conserved densities

It is well known that the CH equation (1) is a bi–Hamiltonian system on the infinite
dimensional space C∞(S1,R) of C∞-functions from the circle to the real line, with respect
to the Poisson tensors

P0 =
1

2
∂x −

1

2
∂3x , P1 = −(m∂x + ∂xm) ,

where m is defined by m = (1 − ∂2x)u. In this section we construct the positive and
negative CH hierarchies using the so-called method of the Casimir of the Poisson pencil.
This means that we look for Casimirs of the Poisson pencil Pλ = P0 − λP1, i.e., for
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functionals H(λ) whose differentials v(λ) belong to the kernel of Pλ. The coefficients of
the Laurent expansion of any such Casimir H(λ) =

∑+∞
k=−∞Hkλ

−k provide indeed a set
of functionals satisfying the Lenard-Magri recursion relation

P0dHk = P1dHk+1

and thus in involution with respect to both Poisson structures (see, e.g., [8]).
The key point to determine v(λ) is to notice that

vPλv = v

(
1

2
vx −

1

2
vxxx + 2λmvx + λmxv

)
=

(
1

4
v2 − 1

2
vxxv +

1

4
v2x + λmv2

)
x

. (2)

This result is a direct consequence of the fact that
∫
vPλv is the antisymmetric action of

the 2–tensor Pλ on the pair (v, v). The condition Pλv(λ) = 0 is thus equivalent to

1

4
v2 − 1

2
vxxv +

1

4
v2x + λmv2 = f(m,λ) , (3)

where f(m,λ) satisfies fx = 0. It turns out that v is an exact 1-form if f does not depend
on m. Without loss of generality, we can put f(λ) = λ

4
. Then equation (3) can be put in

the useful Riccati form

hx + h2 =
1

4
+ z2m (4)

through the transformation
−vx + 2vh = z , (5)

where z2 = λ. Let us verify that v(λ) is an exact 1–form:

〈v, ṁ〉 (4)
=

∫
S1

vz−2(ḣx + 2hḣ) dx

(5)
=

1

z2

∫
S1

(−vx + 2vh) ḣ dx

=
1

z

d

dt

∫
S1

h dx , (6)

so that the potential of v(λ) is given by H = z−1
∫
S1 h dx. In the next two subsections we

will solve the Riccati equation (4) using a formal development for the function h. We will
find a first solution of the form h(z) =

∑∞
i=−1 hiz

−i, where the hi are functions of m and its
x-derivatives. This solution gives rise to the local (often called also negative) CH hierarchy,
starting from a Casimir of P1. The second solution has the form k(z) =

∑∞
i=0 kiz

−i,
where the ki are now nonlocal densities. They constitutes the usual (nonlocal, positive)
CH hierarchy, which the CH equation belongs to. In other words, we will deal with two
possible different choices of the essential singularity of the solutions of the Riccati equation
(4).

2.1 The local CH hierarchy

In this case the Laurent expansion of the density of Hamiltonians is

h(z) = h−1z + h0 +
h1
z

+
h2
z2

+ . . . = h−1z + h0 +
∞∑
i=1

hi
zi
, (7)
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where the maximum degree of the positive term is established by (4).
If we substitute this expansion in (4) we get

∞∑
i=−2

((
hix +

i+1∑
j=−1

hi−jhj

) 1

zi

)
=

1

4
+ z2m . (8)

Then the obtained system can be solved in a purely algebraic way by equating the terms
with the same degree in z:

z2 h2−1 = m h−1 =
√
m

z1 h−1x + 2h0h−1 = 0 h0 =
(

ln(m−
1
4 )
)
x

z0 h0x + h20 + 2h1h−1 = 1
4

h1 = 1
8
√
m
− 1

8
mxx√
m3

+ 5
32

m2
x√
m5

z−1 h1x + 2h0h1 + 2h2h−1 = 0 h2 =
(
− 1

16m
+ 1

16
mxx

m2 + 5
64
m2

x

m3

)
x

and so on. It can be shown that the even densities are x-derivatives, so that H =
z−1

∫
S1 h dx is actually a Laurent series in λ:

H(λ) =
+∞∑
i=0

H2iλ
−i .

If j is even, we call Xj the Hamiltonian vector field associated with Hj =
∫
S1 hj−1 dx

by means of the Poisson operator P0. By construction, Xj is the Hamiltonian vector
field associated with Hj+2 by means of P1. The first nontrivial equation of the hierarchy,
corresponding to X0, is

∂m

∂t0
= P0dH0 = (∂x − ∂3x)

1

4
√
m

= −1

8

mx√
m3
− 1

8

mxxx√
m3

+
9

16

mxxmx√
m5

− 15

32

m3
x√
m7

(9)

= P1dH2 .

2.2 The nonlocal CH hierarchy

In this case the Laurent expansion of the solution k(z) of the Riccati equations (4) is

k(z) = k0 + k−1z + k−2z
2 + k−3z

3 + . . . =
+∞∑
i=0

k−iz
i . (10)

Substituting it in (4), we obtain

∞∑
i=0

((
k−ix +

i∑
j=0

k−jkj−i

)
zi

)
=

1

4
+ z2m . (11)

Exactly as before, we can find a recursive solution of (11) comparing the terms of the same
degree on both side of the equation. However, in the present case this requires to solve
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at any step a differential equation. This fact is responsible for the presence of nonlocal
quantities. The first equation to be considered is that related to the coefficient of z0,

k0x + k20 =
1

4
.

It is easily checked that the only periodic solutions of this equation are the constant
solutions k0 = ±1

2
. Let us choose the positive constant solution. Next, the coefficient of

z1 gives
k−1x + 2k0k−1 = 0

or, using k0 = 1
2
,

(1 + ∂x)k−1 = 0.

This linear equation is solved by k−1 = c exp(−x), where c is a constant. But again
among them the only solution which lies in C∞(S1,R) is the trivial one: h−1 = 0. More
generally, the operator 1 + ∂x is invertible in C∞(S1,R). The unique solution of

(1 + ∂x)k = f(x)

of period 1 is indeed explicitly given by

k(x) =

∫ x

0

ey−xf(y) dy +
1

e− 1

∫ 1

0

ey−xf(y) dy .

From k−1 = 0 one can immediately show that k−2n−1 = 0 for all n ≥ 0. In fact, k−2n−1
appears for the first time in the coefficient of zn+1,

k−2n−1x + k−2n−1 + 2
n∑
i=1

k−2ik−2(n−i)−1 = 0 ,

and this allows us to prove by recursion that all the odd terms in the Laurent series k(z)
are zero. Using the remaining equations,

z2 k−2x + 2k0k−2 + k2−1 = m
z4 k−4x + 2k0k−4 + 2k−1k−3 + k2−2 = 0
z6 h−6x + 2k0k−6 + 2k−1k−5 + k2−3 + 2k−2k−4 = 0
. . . . . .

it is now simple to find the even terms:

k−2 = (1 + ∂x)
−1m

k−4 = −(1 + ∂x)
−1 ((1 + ∂x)

−1m)
2

k−6 = 2(1 + ∂x)
−1
(

(1 + ∂x)
−1 · ((1 + ∂x)

−1m)
2

(1 + ∂x)
−1m

)
. . . = . . .

Thanks to the invertibility of the operator 1 + ∂x in the space of C∞ periodic functions,
we can conclude that there is an infinite sequence of (increasingly nonlocal) densities k−2i,
giving rise to a set of functionals in involution with respect to both Poisson brackets. More
precisely, let K(λ) =

∫
S1 k dx be the Casimir of the Poisson pencil constructed with k.
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Then K(λ) = 1
4

+
∑∞

j=1K−2jλ
j, with K−2j =

∫
S1 k−2j dx. We call Xj the Hamiltonian

vector field associated with Kj by means of the Poisson operator P1. By construction, Xj

is the Hamiltonian vector field associated with Kj−2 by means of P0.
Since k−2x + k−2 = m, we have that K−2 =

∫
S1 k−2 dx =

∫
S1 mdx, so that the first

equation of the hierarchy is mt−2 = P1dK−2 = −mx. In order to write the second vector
field, we recall that k−4x + k−4 + k2−2 = 0 and therefore

K−4 =

∫
S1

k−4 dx = −
∫
S1

k2−2 dx = −
∫
S1

(
(1 + ∂x)

−1m
)2
dx .

This functional becomes local after the usual change of variables m = u − uxx, that is
invertible in the space of C∞ periodic functions because it is the composition of 1 + ∂x
and 1− ∂x. Its inverse is explicitly given by

u(x) =

∫ x

0

m(y) sinh(y − x) dy +
1

2 sinh 1
2

∫ 1

0

m(y) cosh(y − x− 1

2
) dy .

In terms of u we have that K−4 = −
∫
S1 (u2 + ux

2) dx, so that

∂m

∂t−4
= P1dK−4 = −(m∂x + ∂xm)(1− ∂2x)−1(−2u+ 2uxx)

= 4mux + 2mxu , (12)

that is, with t−4 = t,
ut − uxxt = 6uxu− 4uxxux − 2uuxxx , (13)

which is the standard Camassa-Holm equation with null critical velocity term. The next
symmetry of the hierarchy is related to the Hamiltonian K−6 =

∫
S1 k−6 = 2

∫
S1(u

3 +
uu2x) dx, which, using (5) to compute dK−6, gives

∂m

∂t−6
= P1dK−6 = −(m∂x + ∂xm)(1− ∂2x)−1(6u2 − 2u2x − 4uuxx).

We remark that, due to the Lenard-Magri recursion relations, the equation (13) can be
obtained also as ∂m

∂t−4
= P0dK−6.

3 KP extension of the local CH hierarchy

In [2] it has been shown how to generate, from a bi–Hamiltonian viewpoint, the KP
hierarchy starting from the KdV hierarchy. The same procedure has been performed in
[11], where the KP extension of the Harry Dym hierarchy (already found in [10]) has
been recovered. The idea is quite simple and can be successfully applied to the local CH
hierarchy, as we do in this section.

In Subsection 2.1 we have found a map m 7→ h(m), where h(m) is the unique solution
of the Riccati equation (4) with the asymptotic expansion (7). Since the coefficients of
h(m) are the densities of the Hamiltonians of the hierarchy, the time derivatives of h(m)
must be an x-derivative, that is,

∂h

∂ts
= ∂xH

(s) , s = 0, 2, . . . ,
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for suitable currents H(s). They can be explicitly constructed after noticing that the
vector fields of the hierarchy are not only bi–Hamiltonian, but they are Hamiltonian with
respect to every Poisson structure of the pencil. Indeed, one can immediately see that

∂h

∂t2s
= Pλ(λ

sdH(λ))reg = Pλ(
s∑
r=0

dH2rλ
s−r) , (14)

where “reg” stands for the regular part in the Laurent expansion. Moreover, using (4)
the Poisson pencil Pλ can be factorized in the following way:

Pλ = −1

2
(∂x + 2h)∂x(∂x − 2h).

Substituting it in the derivative with respect to t2s of (4), we obtain

λ−1(∂x + 2h)ht2s = −1

2
(∂x + 2h)∂x(∂x − 2h)(λsdH(λ))reg.

From the previous equation, due to the particular form of the z–development of h, it
follows that the continuity equation

∂h

∂t2s
= ∂x

(
− λ

2
(∂x − 2h)(λsdH(λ))reg

)
(15)

holds true. Therefore, the currents H(2s) we are looking for are given by

H(2s) = −λ
2

(∂x − 2h)(λsdH(λ))reg = −λ
2

(λsv(λ)x)reg + hλ(λsv(λ))reg . (16)

The next step is to realize that the currents H(s), where s is even, can be obtained directly
from a Laurent series h of the form (7), without using the Riccati equation (4). We start
with the preliminary consideration that they can be written in two equivalent ways:

H(s) =
s∑
i=0

(
−1

2
vi,x(z

s−i+2) + vi(z
s−i+2h)

)
(17)

and

H(s) = −1

2
(∂x − 2h)

(
zs+2dH(z)− z2(zsdH(z))sing

)
=

=
1

2
zs+2(−vx + 2hv)− z2

2
(∂x − 2h)(zsv)sing (18)

(5)
=

1

2
zs+3 − z2

2
(∂x − 2h)(zsv)sing ,

where with “sing” we means the singular part of the expansion in z. Equation (18), using
(4), gives the regular asymptotic behavior of the currents, that is, (H(s))reg = 1

2
zs+3+O(z).

On the other hand, equation (17) implies that the currents belong to a particular vector
space Hh, which can be constructed using only the Hamiltonian density h. It is defined
as the linear span over the functions C∞(S1,R) of the Faà di Bruno polynomials h(n) =
(∂x + h)nz2, with n ≥ 0, h(0) = z2.
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Proposition 3.1 The currents H(2s), with s ≥ 0, are elements of Hh.

Proof Thanks to the representation (17), it suffices to show that z2i and z2ih are elements
of Hh for all i ≥ 1. First of all, z2 = h(0) ∈ Hh and z2h = h(1) ∈ Hh by definition of Hh.
Moreover, the Riccati equation multiplied by z2,

z2(hx + h2) =
z2

4
+ z4m , (19)

shows that z4 = 1
m

(h(2) − 1
4
h(0)) ∈ Hh. Now, acting with (∂x + h) on both sides of

(19), we can show that z4h ∈ Hh. More generally, acting with (∂x + h)n, we prove that
z2(Hh) ⊂ Hh, and this concludes the proof.

�

At this point it is not difficult to see that the current H(s) can be characterized in a unique
way by the following properties:

1. H(s) = 1
2
zs+3 +O(z);

2. H(s) ∈ Hh.

Therefore, we can assume that h is an arbitrary Laurent series of the form

h(z) = h−1z +
+∞∑
i=0

hi
zi
, (20)

where the coefficients hi are not constrained by the Riccati equation, and we can define
the currents H(s), for all s ≥ 0, imposing the two above-mentioned properties. Then we
define the s-th equation of the local KP–CH hierarchy as

∂h

∂ts
= ∂xH

(s) , s ≥ 0 . (21)

It is an evolution equation in an infinite number of fields given by the coefficients h−1,h0,
h1, . . . of h.

In order to write these equations one has to compute the first Faà di Bruno polyno-
mials,

h(0) = z2

h(1) = h−1z
3 + h0z

2 + h1z + . . .

h(2) = (h2−1)z
4 + (h−1x + 2h−1h0)z

3 + (h0x + h20 + 2h−1h1)z
2

+(h1x + 2h−1h2 + 2h0h1)z + . . .

h(3) = . . .

Then the first currents are given by

H(0) =
1

2h−1
h(1) − h0

2h−1
h(0) =

1

2
z3 +

h1
2h−1

z + . . .

H(1) =
1

2h2−1
h(2) −

(
h−1x
2h3−1

+
h0
h2−1

)
h(1)
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−
(
h0x

2h2−1
+

h20
2h2−1

+
h1
h−1
− h−1xh0

2h3−1
− h−1h

2
0

h3−1

)
h(0)

=
1

2
z4 +

(
h−1x
2h2−1

+
h2
h−1

+
h1h0
h2−1

− h−1xh1
2h3−1

− h0h1
h2−1

)
z + . . .

H(2) = . . .

To recover the local CH hierarchy, one has to impose on h the constraint given by the
Riccati equation (4). It entails that all the fields hi can be written in terms of m and its x-
derivatives. Thus the local KP–CH hierarchy (21) reduces to the local CH hierarchy. This
reduction can be interpreted, like in the KdV and HD cases, as a stationary reduction.
Indeed, the Riccati equation and the very definition of the currents imply that the current
H(1) is equal to z4

2
and therefore that t1 is a stationary time. From the proposition 3.1 it

also follows that all the odd times are stationary.
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