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Abstract—This paper evaluates the power consumption of
different parallel programming interfaces (PPI) in a multicore
architecture. These PPIs are: PThreads, OpenMP, MPI-1 and
MPI-2 (spawn). We measure the total energy and execution time
of 11 applications in a single architecture, varying the number
of threads/processes. The goal is to show that these applications
can be used as a parallel benchmark to evaluate the power con-
sumption of different PPIs. The results show that PThreads has
the lowest power consumption among the interfaces, consuming
less than the sequential version for memory-bound applications.

Index Terms—parallel benchmark, parallel programing inter-
faces, MPI, OpenMP, POSIX Threads, energy.

I. INTRODUCTION

Nowadays, many countries are limiting the use of existing
supercomputers because of their high energy consumption [1].
This shows that energy consumption is currently a concern
in many different computer systems. The increasing of the
applications complexity and data size has required extensive
research into both computational performance and energy effi-
ciency. The popularization of Green500, which lists computers
from the TOP500 list of supercomputers in terms of energy
efficiency, shows that reducing energy consumption is one
of the directions of high-performance computing [1]. So the
challenge should not only be to increase performance, but also
to consume less energy.

The performance increase is reached with even faster multi-
ple parallel processors. Parallel computing aims to use multiple
processors to execute different parts of the same program
simultaneously [2]. However, processors should be able to
exchange information at a certain point in execution time.
While tasks parallelism makes it possible to increase the
performance, the need for communication among them and the
more extensive use of the processor can lead to an increase in
power consumption.

The parallelism can be explored with different Parallel
Programming Interfaces (PPIs), each one having specific pe-
culiarities in terms of synchronization and communication.
In addition, the performance gain may vary according to
processor architecture and hierarchical memory organization,
communication model of each PPI, and also with the com-
plexity and other characteristics of the application.

Although parallelism allows performance gains, this can
lead to higher power consumption. This power consumption
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grows mainly according to the amount of processors that are
used in parallel and the volume of communication among
them. On the other hand, the reduction in execution time
allowed by the parallelization causes the decrease in the total
energy consumption in some cases. Parallel benchmarks can be
used to define which parallelization strategy compensates for
the increase in power consumption in a particular architecture.
However, there is not a benchmark that offers a good set of
applications, fully parallelized, using multiple PPIs and differ-
ent models of communication by tasks. The most commonly
used parallel benchmarks have only partial parallel sets using
more than one PPI.

To fill this gap, this work studies a set of 13 applications
developed with the purpose of evaluating the performance and
energy consumption in multi-core architectures. These appli-
cations were developed and classified according to different
criteria in previous studies [3]–[6]. These studies have shown
that these applications have characteristics that are distinct
enough to represent different scenarios. The objective of this
work is to show the impact of these distinct characteristics on
the power consumption of different applications and also the
impact of the implementations using different PPIs.

The remainder of this work is organized as follows. In the
section II we present the PPIs in which the applications are
implemented. The related works are discussed in section III,
where we compare our work with similar benchmarks. The
section IV presents the set of applications and the techniques
used to parallelize them, bringing more details about the
historic of classifications. Section V shows how our experi-
ments were structured and brings some information to a better
understanding of the results. The section VI discusses the
results and, finally, section VII draws the final considerations
and future works.

II. PARALLEL PROGRAMMING INTERFACES

There are several forms of parallelism that can be applied
into a program, such as: data parallelism, shared memory, ex-
change of messages, and operations in remote memory. These
models differ in several aspects, such as whether the available
memory is locally shared or geographically distributed, and
volume of communication [7]. In this work, the set of appli-
cations were implemented using two communication models
with the four PPIs: PThreads, OpenMP, MPI-1 and MPI-2.

The OpenMP pattern consists of a series of compiler di-
rectives, function libraries, and a set of environment variables
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that influence the execution of parallel programs [2]. These
directives are inserted into the sequential code and the parallel
code is generated by the compiler from them. This interface
operates on the basis of the thread fork-join execution model.

Different from OpenMP, in POSIX Threads (PThreads) the
parallelism is explicit through library functions. That is, the
programmer is responsible for managing threads, workload
distribution, and execution control [8]. PThreads comprises
some subroutines that can be classified into four main groups:
thread management, mutexes, condition and synchronization
variables.

MPI-1 standard API specifies point-to-point and collective
communications operations, among other characteristics. In a
program developed using MPI-1 all processes are statically
created at the start of the execution. This means that the
number of processes remains unchanged during program exe-
cution. At the start of the program, an initialization function of
the execution environment MPI is executed by each process.
This function is MPI_Init(). A process MPI is terminated
by calling the function MPI_Finalize(). Each process is
identified by a rank.

Applications deployed with MPI-2 can begin the
execution with a single process. Then, the primitive
MPI_Comm_spawn() can be used for the creation of
processes dynamically. A process of an MPI application,
which will be called by the parent, invokes this primitive.
This invocation causes a new process, called child, to
be created, which does not need to be identical to the
parent. After creating a child process, it will belong to
an intra-communicator and the communication between
parent and child will occur through this communicator.
In the child process, the execution of the function
MPI_Comm_get_parent() is responsible for returning
the intercom that links it to the parent. In the parent process,
the intercom that binds the child is returned in the execution
of the function MPI_Comm_spawn().

III. RELATED WORK

There are several benchmarks developed to serve different
purposes. Through a bibliographic study, we searched for
benchmarks that have similar purposes and the same target ar-
chitectures of the benchmark proposed in this work. Therefore,
we have considered benchmarks that provide a set of parallel
applications for embedded or general-purpose multi-core ar-
chitectures. In this way, we identify the following benchmarks:
ALPBench, PARSEC, ParMiBench, SPEC, Linpack, NAS and
Adept Project.

A. Similar Benchmarks

ALPBench consists of a set of parallelized complex media
applications gathered from various sources and modified to
expose thread-level and data-level parallelism. It consists of
5 applications parallelized with PThreads. This benchmark is
focused on general-purpose processors and has open source
license.

PARSEC (Princeton Application Repository for Shared-
Memory Computers) is an open source benchmark suite. It
consists of 13 applications, some parallelized using OpenMP,
or PThreads or Intel TBB. The suite focuses on emerging
workloads and was designed to contain a diverse selection of
applications that are representative of next-generation shared-
memory programs for chip-multiprocessors.

ParMiBench is an open source benchmark that specifically
serves to measure performance on embedded systems that
have more than one processor. This benchmark organizes
its applications into four categories and domains: industrial
control and automotive systems, networks, office devices and
security. Its set consists of 7 parallel applications implemented
using PThreads.

SPEC is a closed source benchmark, but offers academic
licenses. This benchmark is intended for general purpose ar-
chitectures, but is subdivided into several groups with specific
target architectures, and can be used for several purposes, such
as: Java servers, file systems, high-performance systems, CPU
tests, and others. We consider the following groups of SPEC:
SPEC MPI2007 and SPEC OMP201. SPEC MPI2007 is a set
of 18 applications deployed in MPI focused on testing high-
performance computers. SPEC OMP2012 uses 14 scientific
applications implemented in OpenMP, offering optional energy
consumption metrics based on SPEC Power.

HPL consists of a software package that solves arithmetic
dual floating-point precision random linear systems in high-
performance architectures. It runs a testing and timing program
to quantify the accuracy of the solution obtained, as well as
the time it took to compute. HPL is open-source and consist of
7 applications that form a collection of subroutines in Fortran,
mostly CPU-Bound. Parallel implementations use MPI. HPL is
the benchmark that makes up the so-called High-Performance
Computing Benchmark Challenge, which is a list of the 500
fastest high-performance computers in the world.

The NAS Parallel Benchmarks is a small set of open source
programs that serve to evaluate the performance of parallel
supercomputers. The benchmark is derived from physical
applications of fluid dynamics and consists of four cores and
three pseudo-applications. It is an open source benchmark
and the applications are implemented with MPI and OpenMP.
Some applications are also implemented in HPF, UPC, Java,
Titanium, TBB etc.

The Adept Benchmark is used to measure the performance
and energy consumption of parallel architectures. Its code is
open and is divided into 4 sets: Nano, Micro, Kernel and
Application. The Micro suite, for example, consists of 12
sequential and parallel applications with OpenMP, focusing on
specific aspects of the system, such as process management,
caching, and others. On the other hand, the Kernel set has
10 applications implemented sequentially and parallel with
OpenMP, MPI and one of them in UPC (Unified Parallel C).

B. Comparison of Benchmarks

The benchmark addressed in this work consist of 11 appli-
cations implemented in C and their complexities range from



TABLE I: Comparison of our benchmark with the similar ones

Rating criteria ALPBench PARSEC ParMiBench SPEC HPL NAS Adept Our
Benchmark

Number of applications 5 13 7 32 7 7 10-12 11

Number of PPIs 1 3 1 2 1 2 3 4

Number of communication models 1 1 2 1 1 2 2 2

Set of applications implemented in multiple PPIs X X

Open-source X X X X X X X

O(n) to O(n3). All applications are parallelized in 4 PPIs:
PThreads, OpenMP, MPI-1 and MPI-2. These PPIs are the
target of this work because they are the most widespread in
the academic field and also because they are supported by most
multi-core architectures, both embedded and general purpose.
Therefore, the purpose of this benchmark is to provide the
user with a tool to evaluate the performance and energy
consumption of different PPIs in multi-core architectures.

We analyze the main characteristics of the related parallel
benchmarks and compare to the benchmark we propose in this
work in Table I. In relation to the benchmarks, some use only
one PPI while others use more than one. However, some of
those who use more than one PPI do not have the whole set
of applications paralleled by all PPIs. They implement parts
of the set with one PPI and other parts with another PPI.

SPEC, for example, has 32 parallel applications divided into
two different sets. One of them using OpenMP and the other
one using MPI, so it has no set implemented with two or
more PPIs. NAS, on the other hand, uses several other PPIs.
However, most of application are not implemented in all PPIs.
Many of them are not supported by any multicore architecture
(ARM Architecture). Three of the benchmarks use PThreads,
five of them use OpenMP, and four use MPI. ALPBench also
uses Intel TBB and Adept uses UPC.

Thus, even if some of these benchmarks implement three
different PPIs, none of them allow an efficient comparison
of these PPIs and different communication models (message
passing or shared memory). Also they do not exploit the
parallelism with dynamic process creation that MPI-2 offers.
In this way, we do not find any other benchmark that uses dif-
ferent PPIs, different communication models and a completely
parallelized set of applications. The exception is the NAS, but
it only offers two PPIs. Therefore, none of them meets the
objective of comparing parallel programming interfaces, which
is the main objective of the benchmark we are proposing in
this work.

IV. BENCHMARK APPLICATIONS

This section presents the 11 applications of the benchmark.
They were developed with the purpose of establishing a
relation between performance and energy consumption in
embedded systems and general purpose architectures [9]. Late,
the proposal to use this set of applications to form a parallel
benchmark was given by [10]. All the applications used
in this work have detailed descriptions in [6], where the

authors provide the algorithms, a detailed description of each
application and also the mathematical equations that were used
in some implementations. Below is a list of these applications
with a brief description of each.

• Gram-Schmidt- The Gram-Schmidt process is a method
for orthonormalising a set of vectors in an inner product
space.

• Matrix Multiplication - This algorithm multiplies the
lines of a matrix A by the columns of a matrix B.

• Dot Product - The dot product is an algebraic operation
that multiplies two equal-length sequences of numbers.

• Odd-Even Sort - It is a comparison sort algorithm related
to bubble sort.

• Dijkstra - It finds a minimal cost path between nodes in
a graph with non-negative edges.

• Discrete Fourier Transform - The discrete Fourier
transform (DFT) converts a finite sequence of equally-
spaced samples of a function into an equivalent-length
sequence of equally-spaced samples of the discrete-time
Fourier transform (DTFT), which is a complex-valued
function of frequency.

• Jacobi Method - The Jacobi method is an algorithm
for determining the solutions of a diagonally dominant
system of linear equations.

• Harmonic Sums - The Harmonic Sums or Harmonic
Series is a finite series that calculates the sum of arbitrary
precision after the decimal point.

• PI Calculation - It applies the Gregory-Leibniz formula
to find π.

• Numerical Integration - This algorithm integrates an
f(x) function in a given interval, using approximation
techniques to define an area.

• Turing ring - It is a space system in which predators and
prey interact in the same place. The system simulates the
iteration and evolution of preys and predators through the
use of differential equations.

These algorithms are used in the most diverse computing
areas. Four of them are directly related to linear algebra.
However, some other areas are also represented, as: molecular
dynamics, electromagnetism, digital signal processing, image
processing, mathematical optimization, and others.

A. Parallelizing the Applications

Parallelize a sequential program can be done in several
ways. However, inappropriate techniques can negatively im-



TABLE II: Details about the applications

Data Structures Problem Size Acronym Application Complexity

Unstructured data

1 billion NI Numerical Integration

O(n)4 billion PI PI Calculation

15 billion DP Dot Product

Vector

100000 HA Harmonic Sums O(n× d)

150000 OE Odd-Even Sort
O(n2)

32768 DFT Discrete Fourier Transf.

Matrix 2048×2048

TR Turing Ring O(m× n2)

DJ Dijkstra

O(n3)
JA Jacobi Method

MM Matrix Multiplication
GS Gram-Schmidt

pact the performance of an application. To minimize this
problem, all parallel implementations in this work were based
on statements from [2], [7], [8], [11]. [2] propose that the
parallelization must be done in a systematic way, according
to them, there are three fundamental steps for the paral-
lelization of a sequential application, which are: computation
decomposition; assigning tasks to processes/threads; mapping
processes/threads into physical processing units.

The decomposition of the computation and assignment of
tasks to processes/threads occurred explicitly in the paralleliza-
tion with PThreads and MPI 1 and 2 in order to obtain the best
workload balancing. Also message exchange functions among
processes were included, as well as the dynamic creation of
processes in MPI-2. For Parallelization with OpenMP, parallel
loops with thin and coarse granularity were used. According
to [2], [11], this technique is most appropriate for parallelizing
applications that perform iterative calculations and traverse
contiguous data structures (e.g. matrix, vector, etc.). For each
data structure, a specific parallelization model was adopted.

V. METHODOLOGY

The results presented in section VI are the average of
30 executions disregarding the extreme values. This number
of executions was established as indicated in [12]. In this
study, the authors perform experiments that show that the
minimum number of executions in order to obtain statistically
acceptable results in MPI is 30. Following the indications of
this study, the results in MPI-1 and MPI-2 showed a standard
deviation below 0.5 in the worst cases. OpenMP and PThreads
showed a standard deviation below 0.1 in all cases. During
the experiments, the computer remained locked to ensure that
other applications did not interfere in the results.

The toolkit Intel® Performance Counter Monitor (PCM) 2.0
was used to measure energy consumption. It has a tool to
monitor the power states of the processor and DRAM memory.
For the runtime, the time at the beginning and at the end of
the main function of each application was measured and the
difference of these values was used. We used these data to
calculate power consumption, according to Equation 1. Where

W is the power in Watts, J is the total energy in Joules and
s is the execution time in seconds.

W =
J

s
(1)

The Table II shows the size of the inputs used for each
application, the acronym used to identify each application in
the following section, and their complexities.

VI. RESULTS

Next experiments were carried out on a computer equipped
with 2 Intel® Xeon® E5-2650 v3 processor. Each processor
has 10 physical cores and 10 virtual cores operating at the
standard 2.3 GHz frequency and a turbo frequency of 3 GHz.
Its memory system consists of three levels of cache: a 32 KB
cache L1 and a 256 KB cache L2 for each core. Level L3 has
a 25 MB cache for each processor using Smart Cache technol-
ogy. The main memory (RAM) is 128 GB in size and DDR3
technology. The operating system is Linux version 4.4.0-128
using Intel® ICC 18.0.1 compiler with default optimization
flags.

In Figure 1 and Figure 2 bars show the power consumption
in watts for each PPI. Each chart displays the results by
applications individually. These results refer to running using
2, 4, 8, and 16 parallel threads/processes for each case. In
addition, a dashed horizontal line represents the sequential
result of the respective application. In Figure 1 are presented
the results for the CPU-bound applications. These results
show that the power consumption of MPI-1 and MPI-2 is
slightly higher when using 2 and 4 parallel tasks. However,
for 8 and 16 MPI-1 and MPI-2 processes, they have a power
consumption equal to or lower than PPIs that use threads.

The DFT application shows a different PThreads behavior
in relation to the other PPIs when the number of parallel tasks
increases. With 2 threads PThreads follows the pattern that is
seen in most CPU-Bound applications. However, using more
threads, this consumption exceeds the consumption of other
PPIs incrementally. The other three PPIs follow the pattern by
increasing the number of threads, where OpenMP consumes
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Fig. 1: Power consumption for CPU-bound applications.

less power than MPI-1 and MPI-2, have similar results for this
application.

Comparing MM with DFT shows similar behavior of
PThreads in both applications. The consumption of this PPI is
lower than OpenMP with 2 threads but grows at a higher rate
than the other PPIs as the number of threads increases. The
difference in this application is that OpenMP also uses more
power than both MPI PPIs, but the rate of increase is not as
high as PThreads, which consumes twice as much power with
16 threads as when running with 2 threads. In addition, using
MPI-2 with 2 processes this application was the one that most
approached the consumption of the sequential version among
the CPU-Bound applications.

The low power consumption by PThreads in memory-
bound applications does not represent that the total power
consumed was lower in this PPI. As seen by [13] the runtime
and energy consumption is higher than OpenMP. This low
power consumption meant that the application consumed less
energy over time, but that time was higher than OpenMP.
This means that PThreads has a lower overhead caused by
parallelization over OpenMP. In fact, for all memory-bound

applications OpenMP uses about 2 and 3 times more memory
than PThreads with 8 and 16 threads respectively. On the
other hand, PThreads have approximately 10 times more cache
misses than other PPIs in memory-bound applications. In this
way the execution of PThreads takes more time but the use of
hardware in this period is less intense in relation to the other
PPIs, which implies in a lower consumption of energy over
time. This increase in runtime can be caused by busy waiting
for PThreads.

In the memory-bound applications (Figure 2), OE with
OpenMP using 16 threads reached the higher power con-
sumption for these cases. What we have concluded, is that
the average workload initially set, is not large enough for
all cases. Besides that, as seen by [13] OpenMP achieves
good performance but the energy consumption keeps the same
when scaling to 16 threads, and this leads to an increase in
the power consumption. OE is a memory-bound application,
so the overhead of communication/synchronization among
threads begins to impact negatively earlier in these cases.
With MPI-1 and MPI-2 the results obtained are very similar
to the results of CPU-bound applications. The growth of the
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Fig. 2: Power consumption for memory-bound applications.

power consumption as the increase in the number of parallel
processes follows the same pattern previously observed. What
is perceived is that MPI-2 has a lower consumption than
MPI-1 in most cases for both CPU and memory-bound. This
small difference may possibly be caused by dynamic process
creation. This causes processes to be created later in MPI-2.

Our initial hypothesis was that a higher use of the pro-
cessor and memory system should cause an increase in en-
ergy consumption in proportion to the number of parallel
threads/processes. But in addition, reducing the execution
time of each application should reduce its consumption in
proportion to the performance achieved over the sequential
application. But what happens in practice is that the energy
consumption does not decrease in the same proportion as
the execution time, as investigated by [13]. In this way, this
generates an increase in energy consumption. This is because
there are other factors that impact on energy consumption,
such as the need for communication among tasks and the
increase in complexity of control structures that the OS has to
deal with.

Another observed factor is that PThreads access less the
memory system during synchronization. This means that for
memory-bound programs parallelized using PThreads, this
more robust processor we used is a good choice, since it
provides considerable performance improvements at the same
price in the energy consumption. For CPU-bound programs,
the power consumption for each PPI are very similar. As
the applications uses more CPU, the impact of particular
characteristics of each communication model on the memory
system is reduced.

The difference in these PPIs can be explained in the context
of threads and processes. Threads are often referred as a

lighter type of process for the system, while processes are
heavier. A thread shares with other threads its code area,
data, and operating system resources. Because of this sharing,
the operating system needs to deal with less scheduling costs
and thread creation, when compared to context switching by
processes. All of these factors impact on performance and
consequently on power consumption.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we present a set of applications that can be
used as a benchmark. The main purpose of this benchmark is
to analyze power consumption and performance of different
parallel programming interfaces in a multi-core architecture.
We first compared our studied benchmark with the main par-
allel benchmarks that are currently used for the same purpose.
This comparison showed that there is no benchmark that meets
one of our goals: to offer a simpler way to compare PPIs. In
addition, we did a study of the history of the applications,
where we showed that there were already authors using them
for the same purpose. This fact meant that there was no other
benchmark that would effectively meet this demand. So it was
necessary to create one from scratch.

Our experimental results showed that the power consump-
tion have increasing rate proportional to the number of
threads/processes used in parallel. An important thing to note
is that the way each application uses memory causes a high
impact on power consumption. These memory access features
of each application and PPI should be far better investigated
to trace a relationship between the increase in the number of
parallel tasks and energy consumption in an upcoming work.
With this more detailed analysis we will be able to observe
possible problems and points of improvement in the codes.



In future works, we intend to verify how the distribution
of threads/processes to different cores and processors affects
our experiments. We should also repeat the experiments using
another compiler, such as gcc without optimisation flags. Next
step is to check the scalability of our applications, so we
will increase the number of threads/processes by varying the
size of the workload and execute in a distributed system. In
addition, we have two new applications (Histogram Similarity
and Game of Life) that are already implemented and we are
making final adjustments to include them in the benchmark.
We also consider including more PPIs such as Intel TBB,
UPC or Intel Cilk. Finally, to make the benchmark available,
we will check the percentage of floating point operations,
integer, loads, store, etc. In this way we have data defining
each application independently of the architecture used.
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