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Abstract 

Retrieving the physical properties of the shallow subsurface has various uses, from the site 
characterization for seismic hazard analysis (based on the S-wave velocity model), to the 
static corrections of reflection seismic data (that require the knowledge of the P-wave 
velocity model). An inaccurate reconstruction of the shallow heterogeneities may affect 
significantly the imaging results at greater depth and the related seismic attributes. In the 
presence of complex near-surface geometries, the use of specific seismic methods may be 
necessary for guaranteeing the targeted resolution.  

Elastic full-waveform inversion (FWI) is an effective tool for high-resolution subsurface 
multi-parameter characterization. However, FWI is rarely employed for near-surface 
applications, since the seismic data are dominated by highly energetic, dispersive and 
scattered surface waves (SWs). In these conditions, a successful deterministic FWI scheme 
requires a very accurate initial model. Besides, various inversion strategies may be 
necessary to guarantee adequate convergence. Particularly, the initial model becomes very 
important when the SWs data domination reduces the algorithm’s sensitivity with respect 
to specific waveform components and related parameters (e.g. first or reflected arrivals 
and P-wave velocity). Contextually, this study aims at enhancing the resolution of complex 
shallow targets imaging, by integrating devoted SW analysis techniques (for the initial 
model building) with a spectral-element based elastic 3D FWI.  

Different initial S-wave (VS) and P-wave (VP) velocity models (laterally homogeneous and 
laterally variable) are retrieved from dispersion curves (DCs), which are extracted through 
a moving Gaussian windowing technique and f-k domain processing. The workflow for 
initial model building is based on a clustering algorithm, followed by a data-transform 
procedure. The workflow is applied to both synthetic and field seismic data, recorded in a 
shallow geological context characterized by a known low-velocity target of a particular 
shape.  

On these models, various FWI tests are performed, using a simple scheme in the first place, 
to evaluate the influence of the different initial models (both laterally homogeneous and 
laterally variable), retrieved using SW analysis, on the results. The adopted FWI workflow 
enriched the overall content of the initial models, allowing a reliable reconstruction over 
the shallow target. Particularly, more accurate results were obtained after FWI when using 
laterally variable initial models.  

The integration of different model and data-oriented strategies into the main optimization 
scheme allowed obtaining an even better convergence. Among others, a preliminary 
monoparametric FWI, which exploits the higher sensitivity of SW concerning the shear 
properties, contributed to the improvement of the initial VS model. Moreover, data-based 
strategies, such as offset weighting, time windowing and multiscale inversion led to the 
achievement of better data fitting and more accurate model reconstruction after FWI.  

A 3D acquisition layout, characterized by different source positions and variable source 
number, was also tested, ensuring a better lateral resolution of the reconstructed target 
after FWI.  
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Riassunto 
Conoscere le proprietà fisiche degli orizzonti geologici superficiali ha varie utilità, dalla 
caratterizzazione sismica dei siti (basata sul modello di velocità delle onde S) alle correzioni statiche 
dei dati sismici a riflessione (che richiedono la conoscenza del modello di velocità delle onde P). Una 
ricostruzione inaccurata della variazione delle proprietà fisiche negli orizzonti superficiali può 
influire in modo significativo sui risultati di imaging a profondità più elevate e sui relativi attributi 
sismici. Di conseguenza, quando gli orizzonti superficiali sono caratterizzati da geometrie complesse, 
l’integrazione di più metodi sismici può essere importante per garantire la risoluzione ricercata. 

La full-waveform inversion (FWI) in approssimazione elastica è un potente strumento per la 
caratterizzazione multi-parametrica e ad alta risoluzione del sottosuolo. Tuttavia, la FWI viene 
raramente applicata ai dati sismici provenienti da acquisizioni a bassa profondità, in quanto i 
sismogrammi relativi ad esse sono dominati da onde superficiali altamente energetiche e dispersive. 
In queste condizioni, uno schema funzionale di FWI deterministico richiede un modello iniziale 
molto accurato; inoltre, varie strategie di inversione sono necessarie per garantire un'adeguata 
convergenza. In particolare, il modello iniziale diventa molto importante quando la dominazione 
delle onde superficiali nei dati riduce la sensibilità dell'algoritmo rispetto a specifici componenti 
della forma d'onda e parametri correlati (ad esempio: i primi arrivi, gli arrivi riflessi e la velocità 
delle onde P). Contestualmente, l’obiettivo del presente studio è la ricostruzione ad alta risoluzione 
di target superficiali complessi attraverso l’integrazione di tecniche particolari di analisi delle onde 
superficiali (per la definizione del modello iniziale) con un algoritmo di FWI elastica 3D, basato sul 
metodo degli elementi spettrali. 

A tal fine, diversi modelli iniziali di velocità delle onde S (VS) e delle onde P (VP) (lateralmente 
omogenei e lateralmente variabili) sono ricavati dalle curve di dispersione. Tali modelli sono estratti 
dai dati sismici utilizzando una finestra gaussiana mobile e tecniche di processing nel dominio fk. Il 
workflow completo per la costruzione del modello iniziale prevede un algoritmo di clustering, seguito 
da una procedura di data transform. Tale workflow viene applicato sia ai dati sismici sintetici, che ai 
dati reali, acquisiti in un contesto geologico poco profondo, caratterizzato da un target a bassa 
velocità sismica. 

I primi test di FWI sono stati eseguiti utilizzando uno schema semplice, ai fini di valutare l’efficacia 
dei diversi modelli iniziali ricavati dalle curve di dispersione. I risultati appartenenti a questi 
esperimenti hanno dimostrato come la FWI consenta il miglioramento complessivo dei modelli 
iniziali e una ricostruzione affidabile del target. In particolare, i modelli iniziali variabili lateralmente 
hanno garantito risultati più accurati dopo la FWI.  

L'integrazione di diverse strategie (orientate ai parametri del modello oppure ai dati sismici) nello 
schema di ottimizzazione principale ha consentito di ottenere una migliore convergenza dopo la FWI. 
Ad esempio, una preliminare FWI mono-parametrica, che sfrutta la maggiore sensibilità delle onde 
superficiali rispetto al modulo di taglio, ha contribuito al miglioramento del modello iniziale di VS. In 
più, le strategie di FWI orientate ai dati, tra cui l’applicazione di una funzione di peso variabile con 
l’offset, la finestratura sull’asse dei tempi e l'inversione multiscale, hanno portato al raggiungimento 
di un migliore data-fitting e ad una ricostruzione del modello più accurata. 

Inoltre, è stata testata anche una geometria di acquisizione sismica 3D, caratterizzata da una 
posizione variabile delle sorgenti e un numero variabile dei punti di scoppio stessi. Tale 
configurazione ha garantito una migliore risoluzione laterale del target dopo FWI.  
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Thesis structure 

The Thesis consists of two main bodies, following the Introduction section:  

Part I (Chapters 2 to 5), which provides an overview of the theoretical background and 
describes the applied methodologies. 

Part II (Chapters 6 to 10), which contains the main experiments and connected results.   

Several Appendices are attached at the end of the corresponding Chapters for fluency 
reading purposes.  

Chapter 1 gives a general introduction on the investigated problem, with emphasis on the 
applications and uses of surface wave analysis and full-waveform inversion. The overview 
regards the state of art and the importance of the initial model’s accuracy when full-
waveform inversion aims to reconstruct shallow targets characterized by high impedance 
contrasts. In this general framework, the objectives of the Thesis are presented, as well as 
the connected scientific question.  

Chapter 2 presents basic theoretical concepts on the seismic wave propagation and the 
analytical and numerical solution of the wave equation. Some space (in Appendix 1) is 
allocated to the spectral element method, as it represents the architecture of the full-
waveform inversion tool used for this study.  

Chapter 3 offers a synthetic presentation of the inverse problem theory, with conceptual 
insights on the deterministic and probabilistic approaches for the solution of non-linear 
inverse problems.  

Chapter 4 gives an overview of the surface wave analysis through the exploitation of the 
dispersive behavior occurring in vertically heterogeneous media. After some theoretical 
insights on the surface wave methods, the workflow for the initial model building is 
presented.  

Chapter 5 is dedicated to the full-waveform inversion method. The limitations of the 
gradient-based techniques are introduced and possible strategies that can be employed to 
constrain the optimization are presented as well. Some examples from the literature, 
related to FWI application to shallow wavefields, are also presented. The final part of this 
chapter contains a description of the spectral-element based full-waveform inversion code 
used for this study, followed by some insights on the source estimation from field data.  

 

N.B.  Chapter 2, Chapter 3 and part of Chapter 4 and Chapter 5 are 
not intended for expert readers.  

In the above-mentioned Chapters, the key elements necessary for a fluent 
reading are presented in Section 4.3 of Chapter 4 and Section 5.4 of Chapter 5. 
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Chapter 6 is dedicated to forward modeling simulations and presentation of the real and 
synthetic data sets analyzed in this work. The first part gathers some synthetic 
experiments related to 3D viscoelastic wave propagation, conducted over models with 
different geometries. Some of these models reflect the geological asset of the test site. The 
second part describes the parameters and characteristics of the seismic acquisition carried 
out in the experimental site, as well as the corresponding field data set. The third part 
presents the synthetic data set used for validating the methodology applied in this study. 

Chapter 7 presents the various initial models retrieved from surface wave dispersion 
curves analysis application on both synthetic and field data. 3D numerical simulations are 
conducted over some of these models and a novel set of dispersion curves is extracted 
from the modeled data set. A QC in terms of data-fitting and dispersion curve comparison 
is then presented.   

Chapter 8 contains various full-waveform inversion tests, performed using the initial 
models retrieved from surface wave analysis over both synthetic and field data. The first 
full-waveform inversion tests involve a relatively simple workflow and a 2D acquisition 
layout, to focus the investigation on the dispersion curves based initial model’s 
effectiveness. Further, different model-oriented and data-based strategies are integrated 
into the main full-waveform inversion workflow. A 3D acquisition geometry is also tested. 
Data-fitting comparisons are presented for all experiments.   

Chapter 9 offers a quantitative interpretation of the results obtained after full-waveform 
inversion, as well as some comparisons and discussion related to the effectiveness of the 
seismic methods used for geotechnical scale exploration. The results obtained in this work 
are also compared with other published results.      

Chapter 10 summarizes the main conclusions related to the addressed scientific question 
and the connected experiments while presenting also some perspectives of the study.  
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Frequently used terminology 
 

SW Surface Wave 
BW Body Wave 
DC Dispersion Curve of the fundamental mode of Rayleigh 

waves 
VP P-wave velocity model 
VS S-wave velocity model 
FWI Full Waveform Inversion 
EAWI Early Arrival Waveform Inversion 

SEM Spectral Element Method 

f. a. first-arrival 

f-k frequency-wavenumber 

MASW Multichannel Analysis of Surface Waves 

Initial model 
Velocity model obtained via surface wave dispersion 
curves analysis 

Single-DC analysis The analysis of one dispersion curve (i.e. 1D analysis) 

Single-DC based initial model 
Velocity model obtained from the analysis of one 
dispersion curve (1.e. 1D analysis) 

Full-DC analysis 
The analysis of all dispersion curves along a seismic line 
(i.e. 2D analysis) 

Full-DC based initial model 
Velocity model obtained from the analysis of all dispersion 
curves along a seismic line (1.e. 2D analysis) 

Reference/True model 
The synthetic velocity model used to generate the synthetic 
reference (i.e. true) data  

Final model Velocity model obtained after full-waveform inversion 

Initial data 
Seismic data belonging to the initial model retrieved from 
dispersion curves analysis 

Inverted data 
Seismic data belonging to the final model obtained after 
full-waveform inversion 

Real data Seismic data belonging to the field acquisition 

Synthetic data 
Seismic data obtained from numerical simulation over the 
reference, initial or final model  
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1.1 – Generic introduction and historical overview 

The seismic method aims at estimating the internal properties of the Earth by recording, 
with an array of receivers, the mechanical vibrations caused by artificial (man-maid) or 
natural sources. The recorded data, called seismograms or traces, are oscillatory wriggles 
sampled in time. Depending on the instrument response, these vibrations are essentially 
either particle velocities or particle accelerations. Most of the sensors are based on inertial 
properties: they can record horizontal and/or vertical motions. For geotechnical 
applications, the vibrations emitted by each source are recorded on different geophones 
with often regular offsets. 

For many decades until the 1960s, the advances in seismic wave theory, the 
instrumentation’s precision and the computation barriers have controlled the 
seismograms quantitative interpretation’s feasibility. The main developments between the 
1960s and 1980s regarding the wave propagation theory, digital processing and 
computing architectures, supported the quantitative seismic method’s effectiveness. 
Moreover, the continuous evolution of the data inversion theory provided accurate 
mathematical tools, allowing for the recorded data conversion into high-resolution 
quantitative models of the subsurface physical parameters. Until the introduction of full-
waveform inversion (FWI) in the early 80s, only limited information, such as travel times, 
was used for subsurface imaging. Although the first FWI experiments for crustal imaging 
were focused on deep marine environments, FWI gradually became a widely used tool for 
land data sets as well. Yet, using FWI for the reconstruction of near-surface land targets is 
not a routine procedure.  

Knowing the physical properties of the shallow geological layers is useful for various 
purposes, from the site characterization to the static corrections of data belonging to 
reflection seismic surveys. The individuation of localized low-velocity shallow 
heterogeneities is important for the accurate imaging of the structures at greater depth. 
However, the accurate reconstruction of sharp-interface shallow targets, from land 
acquisition data, is controlled by the complex behavior of the wavefield when interacting 
with them. In the presence of high lateral impedance contrasts, the effectiveness of the 
commonly employed tools for near-surface characterization is partially limited and the 
integration of various seismic methods may be required to obtain reliable results.  

The first-arrival traveltime tomography often used to retrieve the P-wave velocity (VP) 
variation is not sensitive to embedded low-velocity horizons, since the first-arrival phases 
tend to propagate through higher-velocity layers. Moreover, for small-offset acquisitions, 
the time picking process may be complicated due to the difficulty to distinguish the 
separation of various phases. Several surface wave (SW) analysis and inversion techniques 
can be employed to retrieve the S-wave velocity (VS) variation, using processing workflows 
based on windowing and wavefield transform to extract and invert local dispersion curves 
(DCs) – i.e. the SW phase velocity variation with the frequency/wavelength. However, the 
reconstructed VS may not be accurate enough in the presence of sharp lateral transitions, 
given the locally layered-model assumption of SW methods. Moreover, due to the plane-
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wave approximation commonly adopted by the SW methods, the localized lateral 
heterogeneities cannot be easily identified and picked in the f-k domain, since they do not 
exhibit a continuous dispersive energy trend (Pan et al., 2019b).  

Compared with the near-surface phase-oriented techniques, FWI, based on waveform 
analysis, overcomes the above-mentioned limitations while ensuring a theoretical 
resolution equal to half of the local propagating wavelength (Vireux and Operto, 2009). 
FWI also allows for the simultaneous reconstruction of multiple parameters (e.g., VP, VS, 
mass density, attenuation factor) providing a more detailed site characterization.  

FWI is defined as a non-linear iterative data fitting procedure, based on the numerical 
solution of the seismic wave equation (Virieux and Operto, 2009; Fichtner, 2011). After the 
introduction of FWI by Lailly (1983) and Tarantola (1984), different successful 
applications have been suddenly performed both in the time domain (Tarantola, 1986; 
Mora, 1987a,b; Bunks et al., 1995; Zhou et al., 1995 and 1997; Fichtner et al., 2013) and in 
the frequency domain (Liao and McMechan, 1996; Pratt et al., 1998; Pratt, 1999; Ravaut et 
al., 2004; Ben-Hadj-Ali et al., 2008; Brossier et al., 2009 and 2010; Plessix, 2009). FWI is 
under continuous development, supported by the simultaneous evolution of the parallel 
computing architectures. Nevertheless, one of its drawbacks is still the high computational 
cost. For this reason, most of the FWI applications, especially for marine data, are 
performed using the acoustic approximation (e.g. Plessix and Perkins, 2010; Warner et al., 
2013; Operto et al., 2015). The 2D elastic approximation is also used, both for marine and 
land applications (e.g. Sheen et al., 2006; Sears et al., 2008;  Bretaudeau et al., 2013; Vigh et 
al., 2014), but the time-domain 3D elastic or viscoelastic FWI examples are still rare in the 
literature (e.g. Epanomeritakis et al., 2008; Butzer et al., 2013; Borisov and Singh, 2015; 
Fathi et al., 2015; Trinh et al., 2019).  

Few studies used FWI for shallow structures imaging, but most of them are based on the 
2D approximation of the wave equation (e.g. Romdhane et al., 2011; Tran and McVay, 
2012; Bretaudeau et al., 2013; Tran et al., 2013; Dou and Ajo-Franklin, 2014; Gross et al., 
2014; Masoni et al., 2014; Schäfer et al., 2014; Amrouche and Yamanaka, 2015; Bohlen et 
al., 2015; Nuber et al., 2016; Athanasopoulos and Bohlen, 2017; Gross et al., 2017; Kӧhn et 
al., 2016; Pan et al., 2016; Chen et al., 2017; Gross et al., 2017; Nuber et al., 2017; 
Athanasopoulos et al., 2018a,b; Köhn et al., 2018; Krampe et al., 2018; Athanasopoulos and 
Bohlen, 2019; Krampe et al., 2019; Pan et al., 2019a,b; Wang et al., 2019; Xing and Mazzotti, 
2019a,b; Borisov et al., 2020). The full-3D FWI applications for near-surface 
characterization are nowadays less common (Butzer et al., 2013; Fathi et al., 2016; Nguyen 
and Tran, 2018; Borisov et al., 2018; Smith et al., 2019; Tran et al., 2019; Irnaka et al., 
2019). Some of these publications are summarized in Section 5.3.  

While FWI is mainly driven by body waves for upper-crust imaging (Sirgue et al., 2010; 
Warner et al., 2013), data from shallow acquisitions are dominated by SWs. For near-
surface reconstruction, elastic or viscoelastic propagation need to be considered. The 
(visco)elastic multi-parameter FWI is facing more challenges. One of them is related to the 
different sensitivity of the algorithm with respect to each parameter class. Another one is 
the increased computational cost and inverse problem’s dimensionality when 
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implementing the viscoelastic propagation. A linearized formulation based on quasi-
Newton methods is the most widespread technique, given its computational efficiency. 
Nevertheless, the commonly used least squares (L2) objective function contains many local 
minima where the solution could be trapped. Consequently, an accurate initial model, 
which predicts the observed data with an error smaller than half-period, is required for a 
proper convergence (Pratt, 1999; Mulder and Plessix, 2008; Virieux and Operto, 2009).  

One strategy that aims at mitigating the FWI’s non-linearity follows a multi-scale and 
multi-resolution hierarchical approach (Bunks et al., 1995). Accordingly, the inversion 
starts from low frequencies (long wavelengths) and gradually incorporates the higher 
frequencies (short wavelengths): The lower frequencies are less likely to favorize delays of 
more than a half-cycle in the predicted waveform (Sirgue and Pratt, 2004; Pratt, 1999). An 
opposite alternative is the layer-stripping procedure (high-to-low frequency filtering). In 
this case, the model reconstruction proceeds hierarchically from the shallow part to the 
bottom, while the offset range is gradually increased as a function of penetration depth 
(Virieux and Operto, 2009; Shi et al., 2015; Masoni et al., 2016): This is especially true for 
SWs with a specific medium probing related the depth dependence of eigenmodes.   

The FWI applications for shallow target reconstruction are very sensitive to the initial 
model configuration. This is mainly due to the complex structure of the wavefield, with 
often-combined highly energetic and scattered phases. Therefore, devoted strategies are 
required for the correct definition of the initial model. An accurate initial model can be 
retrieved with global inversion strategies, essentially used for 1D or 2D geometries (Tran 
and Hiltunen, 2012a,b; Xing and Mazzotti, 2019a,b). Nevertheless, for 3D applications, the 
high computation resources required by the probabilistic techniques and the 
computationally oversized character of the inverse problem limit their employment to a 
few cases. Instead, SW analysis may be a more efficient tool for building accurate VS and VP 
initial models. However, only the VS initial model is commonly retrieved, while the VP 
model is usually inferred from VS by assuming a constant Poisson’s ratio. An alternative for 
the initial VP model building is the first-arrival traveltime tomography, although this 
technique is not very efficient for the reconstruction of localized low-velocity shallow 
layers.  

SW analysis commonly provides only the VS model, but some studies (Socco et al., 2017; 
Socco and Comina, 2017) introduced a method based on the concept of SW skin depth, to 
estimate also the VP model. Further, Khosro Anjom et al. (2019) proposed a data-clustering 
algorithm, which efficiently organizes data subsets for mitigating the impacts of strong 
lateral variations. Moreover, a specific data transform allows building both VS and VP 
models over laterally variable shallow environments. Following these approaches, the 
method used in this study for the initial model building allows considering high lateral 
contrasts and provides both VS and VP models.   
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1.2 –Thesis objectives   

This study aims at enhancing the resolution of complex shallow targets imaging, by 
integrating 2D SW analysis techniques (for the initial model building) with a spectral 
element based elastic 3D FWI. Specifically, the purpose of the work is investigating 
whether the initial models retrieved from SW analysis can efficiently handle the additional 
challenges, arising when FWI is applied to shallow land data sets, recorded over targets 
characterized by high impedance contrasts and lateral heterogeneities.  

In this framework, the study addresses the following questions: 

I) Is an initial model derived from SW analysis accurate enough for FWI? 

II) Given the initial model derived from SW analysis, which is the best FWI workflow and 
seismic acquisition layout (2D or 3D)? 

To answer the first question, initial VS and VP models, retrieved using SW analysis, are 
tested with a relatively simple FWI scheme. These initial models are characterized by a 
different lateral resolution, according to the adopted SW analysis workflow: 

A) “single-DC analysis (i.e. 1D analysis)”, which uses only one DC, characteristic of the 
background medium, and provides laterally homogeneous models, or  

B) “full-DC analysis (i.e. 2D analysis)”, which uses the entire set of DCs extracted from the 
seismic data and provides laterally heterogeneous initial models.  

To answer the second question, the FWI workflow, which is relatively simple during the 
first experiments, becomes gradually more sophisticated. Specifically, model-oriented and 
data-based strategies are incorporated into the main FWI scheme, to evaluate their 
potential efficiency for better data fitting and more accurate model reconstruction.  

Finally, a 3D acquisition design, with flexible source positions and variable source number, 
is also tested, to evaluate which configuration guarantees the best resolution of the 3D 
target-model after FWI.    
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Some publications are connected to Thesis research. Among them: 

 Teodor et al. (2017) presented a preliminary QC analysis for seismic data belonging to 
VP and VS models built from SW analysis.  

 Teodor et al. (2018a) showed an example of an initial model building from DC analysis 
using a synthetic data set, while 

 Khosro Anjom et al. (2019) applied the same workflow (DC clustering and data 
transform) to a real data set, acquired over the complex-shaped shallow target.  

For both synthetic and real tests, a good waveform matching was noticed when 
comparing the reference (i.e. true) or real data with the corresponding synthetic data 
belonging to the initial models from DC analysis.  

 Teodor et al. (2018b) and Teodor et al. (2019) presented some preliminary results of 
multi-parameter 3D FWI on synthetic data, starting from initial models retrieved by 
DC analysis.  

 Teodor et al. (2020 – submitted) investigated the accuracy of DC analysis based initial 
models by carrying out various 3D FWI tests on both synthetic and field data. Some 
data-based and model-oriented strategies, as well as different acquisition geometries, 
are experimented in this study.   

 Teodor et al. (2020 – submitted) questioned about the best acquisition layout for 
imaging near-surface heterogeneities with high accuracy (when using 2D SW analysis 
and 3D FWI).  
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2.1 – Introduction to seismic waves propagation 

Describing the waves propagation in highly heterogeneous media often involves the use of 
some assumptions (i.e. the elastic particle displacement, the harmonic repetition of the 
wave in space and time, the small-strain assumption). These assumptions allow using the 
elastic theory (e.g. Telford et al., 1991; Aki & Richards, 2002) to describe the medium’s 
particles variation in shape and volume as a reaction to the seismic wave propagation.  

Considering a harmonic signal crossing a certain element of the space, the amount of time 
it takes for one wave cycle to complete is called period T, while the wavelength λ is the 
distance between two adjacent peaks. The number of times the wave cycle repeats in each 
period (i.e. one second) is defined as frequency f, whereas the wavenumber k is the spatial 
frequency of the wave, measured in cycle or radians per unit distance.  

When the energy is released from the source, part of it propagates through the medium as 
body waves (BWs: pressure waves and shear waves), while another part distributes along 
the surface (SWs: Rayleigh waves and Love waves). The seismic wave velocity represents 
the velocity of the seismic energy propagating in a medium. It is different from the particle 
velocity, which is the velocity of the medium’s particles caused by the seismic wave 
propagation. 

The pressure (P) wave propagation inside a medium causes the vibration of the particles 
according to compressive and relaxing movements, in the same direction of propagation 
(Figure 2.1a). The action of a shear (S) wave causes the oscillation of the particles 
transversally to the direction of propagation (Figure 2.1b), in the vertical plane (SV-wave, 
vertical shear) and the horizontal plane (SH-wave, horizontal shear). The P-wave velocity is 
defined by the relation: 

   𝑉௣ =  ට
ఒାଶఓ

ఘ
=  ඨ

௞ା
ర

య
ఓ

ఘ
,              (2.1)

                                      
while the S-wave velocity is defined by the relation: 

𝑉௦ =  ට
ఓ

ఘ
,               (2.2) 

where: 

 𝑘 =  𝜆 +
ଶ

ଷ
𝜇 is the Bulk or compressibility modulus (which describes the change in 

volume of a material that follows the action of hydrostatic stress); k is always positive. 

 𝜇 =
ா

ଶ(ଵାఔ)
 is the shear or stiffness modulus (which describes the change in the shape of 

a material related to the action of tangential stress). In a fluid μ = 0, then S-waves do 
not propagate in fluids. 

 E = 
ఙೣೣ

ఌೣೣ
 is the Young modulus (which describes the deformation of the material when 

normal stress is applied). 
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 𝜆 =  
(ఔா)

(ଵାఔ)(ଵିଶఔ)
 is the Lamé coefficient. 

 𝜈 =  
ఒ

ଶ(ఒାఓ)
 is the Poisson's coefficient, which connects k and E according to the relation 

𝑘 =  
ா

ଷ(ଵିଶఔ)
. 

 ቀ
௏೛

௏ೞ
ቁ

ଶ

=  
ఒାଶఓ

ఓ
=  

ଶ(ଵିఔ)

(ଵିଶఔ)
 > 1. For ν=0.25, 𝑉௉ =  √3𝑉ௌ. 

 

Figure 2.1 – Elastic deformation of the medium’s particles related to the body waves 
propagation. (a) P-wave, (b) S-wave – from Kearey et al. (2002). 

The surface on which all particles are moving with the same phase, in each instant, 
represents the wave front. At a short distance from the source, in a homogeneous medium, 
BWs have a spherical wave front. According to the Huygens principle, all the points 
belonging to a spherical wave front become sources of secondary spherical waves; the new 
wave front is defined by the envelope of these secondary waves. As the distance from the 
source increases, the observed curvature of the wave front decreases, up to the point 
where it can be considered as flat. At such distance, the seismic wave can be assimilated to 
a plane wave. For isotropic media, the direction perpendicular to the wave front represents 
the ray. 

SWs are mainly divided into two categories: Rayleigh waves (LR) and Love waves (LQ). 
Rayleigh waves are generated from the interaction between evanescent pressure waves 
(P) and vertically polarized shear-waves (SV). They propagate along the shallow part of a 
medium, bearing about 2/3 of the waveform energy. In a homogeneous medium, the 
amplitude displacement of the particles decreases exponentially with depth. The particles 
of the LR wave front vibrate in a vertical plane, with an elliptical retrograde motion with 
respect to the direction of propagation; the major (vertical) axis and the minor (horizontal) 
axis are oriented toward the direction of propagation (Figure 2.2a).  
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Figure 2.2 – Elastic deformation of the medium particles related to the surface waves 
propagation. (a) Rayleigh wave, (b) Love wave – from Lowrie (2007). 

In the presence of a homogeneous medium, the Rayleigh wave velocity does not depend on 
the frequency. Contrariwise, for a heterogeneous medium (where the stiffness varies with 
depth), the Rayleigh wave phase velocity is frequency dependent. In particular, the larger 
wavelengths (lower frequencies) travel deeper in the subsurface, reaching geological 
layers that are characterized by different mechanical proprieties, and then by different 
velocities. This phenomenon is known as surface waves dispersion, while a dispersion curve 
defines the relationship between the phase velocity of the Rayleigh waves VR and the 
frequency f. 

Love waves (LQ) are generated in heterogeneous media because of constructive 
interference among S waves trapped under the free surface. They are mainly observed in 
the presence of a thin shallow horizon, overlying a stiff half-space, or in the presence of a 
low-velocity shallow layer trapped between two stiffer layers. The LQ waves engine is 
represented by a supercritical angle of incidence, the consequent upward reflection, 
followed by the downward reflection of the energy in correspondence of the free surface. 
They cause the vibration of the medium particles orthogonally to the direction of 
propagation, with a shear motion polarized in a horizontal plane (SH), parallel to the 
surface, with rectilinear ray path (Figure 2.2b). Love wave velocity always depends on 
frequency (wavenumber) and therefore LQ are dispersive. 

As a seismic signal propagates away from the source, its energy decreases. In part, the 
signal attenuation is due to the geometrical spreading: the energy is distributed on 
spherical surfaces (BWs) or cylindrical surfaces (SWs) that become progressively greater 
due to the increase of the radius r. Consequently, while BWs energy attenuation is 

proportional to 
ଵ

୰మ : ቂI୴(r) =  
୉౬

ସ ஠ ୰మቃ, SWs attenuation is proportional to 
ଵ

௥
: ቂIୱ(r) =  

୉౩

ସ ஠ ୰ ୢ
ቃ. 

The corresponding amplitude attenuation is 1/r and 1/√r, respectively (as the intensity is 
proportional to the square of the amplitude). Therefore, BWs amplitude decreases more 
with the distance than SWs amplitude.  
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The seismic wave amplitude attenuation is also caused by the inelastic properties of the 
medium (anelastic damping), described by a parameter called quality factor: Q=2πE/∆E. In 
the literature, the Q value also refers to a field measurement (i.e. an observable), which is 
different from the so-called Q parameter from rheology description. The parameter Q 
expresses the energy loss per cycle, where E represents the total amount of energy and ∆E 
the energy lost in one cycle: 

   𝐴 =  𝐴଴ 𝑒𝑥𝑝  ቀ− 
గ ௥ ௙

ொ ௩
ቁ =  𝐴଴ 𝑒𝑥𝑝 ቀ− 

௥

஽
ቁ,          (2.3) 

where f is the frequency and 𝐷ିଵ is the absorption coefficient. The absorption coefficient is 
inversely proportional to the wavelength and directly proportional to the frequency: λ=v/f, 
where v is the velocity. As a result, the higher frequencies (smaller wavelengths) attenuate 
more during the wave propagation than the lower frequencies (larger wavelengths). 
Accordingly, the seismic signal’s spectrum varies with the distance from the source as the 
geological medium acts as a low pass filter (Lowrie, 2007).  

For a given wavelength, D is proportional to Q. The greater Q value is the longer seismic 
energy travels with small absorption. Generally, the Q parameter for P waves (𝑄୔) is 
greater than the corresponding value for the S waves (𝑄ୗ) – Lowrie (2007). Therefore, the 
anelastic attenuation is mainly due to the shear component of the strain tensor, thus shear 
attenuation is much more important than bulk attenuation (Dahlen and Tromp, 1998). In 
solid materials with low rigidity moduli, the shear deformation can reach high values and, 
therefore, the attenuation is greater than the attenuation in materials with a high value of 
shear modulus. The Q factor exhibits high values in fluids, where the attenuation is low 
because the shear deformation is zero and only the compression waves propagate (Lowrie, 
2007). 

2.2 – Seismic wave equation: analytical background 

The following description of the elastic wave equation and the numerical solution is based 
on the characterization given by Fichtner (2011). To maintain a coherency over the entire 
manuscript, some notations inside the formulas were modified.  

2.2.1 – Displacement-stress formulation in elastic approximation 

The seismic wave equation is the linearized version of Newton’s second law, balancing the 
momentum of particle displacement, the internal stress and the external forces, 
corresponding to the source of seismic wave propagation (Aki and Richard, 2002; Fichtner, 
2011, modified): 

   𝜌(𝐱)
డమ

డ௧మ u(𝐱, 𝑡) −  𝛻 ∙ σ(𝒙, 𝑡) = f(𝒙, 𝑡),              (2.4) 

with  𝒙 𝜖 𝐺 ⊂   𝑅ଷ , 𝑡 ∈ [𝑡଴, 𝑡ଵ] ⊂ 𝑅, where u is the displacement field, ρ is the mass density, 
𝜎 is the stress tensor and f is an external force. Some conditions need to be imposed 
(Fichtner, 2011): 
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 The free boundary condition: the normal component of the stress tensor σ vanishes at 
the Earth’s surface: σ ∙ 𝑛|௫ ఢ డ ீ = 0. 

 The initial condition: the displacement and velocity fields need to be zero before the 
action of the external source: u|௧ழ௧బ

= v|௧ழ௧బ
= 0. 

The complementary equation defines the viscoelastic rheology and connects the stress 
tensor σ with the displacement field u. Following the assumption that σ depends linearly 
on the strain tensor 𝜀 =  భ

మ
 (ఇ୳ା ఇ୳మ) , leads to (from Fichtner, 2011, modified):  

   σ௜௝(𝐱, 𝑡) =  ∫
డ

డ௧
C௜௝௞௟  (𝐱, 𝑡 − 𝑡ᇱ)

ஶ

ି ஶ
∗ 𝜀௞௟  (𝐱, 𝑡ᇱ)𝑑𝑡ᇱ                                  (2.5) 

where C is the (unrelaxed) elastic tensor (i.e. stiffness coefficient) - 4th order, which honors 
the causality condition C(𝑡)|௧ழ௧బ = 0  and 𝜀 is the strain tensor – 2nd order. The 
components of C are characterized by the symmetry relation C௜௝௞௟ =  C௞௟௜௝ =  C௝௜௞௟ , 

according to the symmetry of 𝜀, the conservation of angular momentum and the relation of 
the C with the internal energy (Aki and Richards, 2002; Fichtner, 2011). The symmetries of 
the C௜௝௞௟  coefficients reduce the number of its independent components to 21 for a fully 

anisotropic medium, allowing the equation (2.5) to be written in terms of displacement 
gradient 𝛻u (from Fichtner, 2011, modified): 

    σ௜௝(𝐱, 𝑡) =  ∫
డ

డ௧
C௜௝௞௟(𝐱, 𝑡 − 𝑡ᇱ) ∗  𝛻u (𝐱, 𝑡ᇱ)𝑑𝑡ᇱ 

ஶ

ିஶ
,       (2.6)  

where " ∗ " is the convolution operator.  

For an isotropic medium, the components of C can be expressed as linear combinations of 
two elastic moduli, the Lamé parameter λ and the shear modulus μ (from Fichtner, 2011): 
C௜௝௞௟ =  𝜆 𝛿௜௝𝛿௞௟ +  𝜇 𝛿௜௞ 𝛿௝௟ ା  𝜇 𝛿௜௟ 𝛿௝௞. Often, λ is replaced by the bulk modulus 𝑘 =  𝜆 + 2/3, 

which relates the strain tensor 𝜀 with the scalar pressure 𝑝 = −𝑘 𝛻 ∙ u. 

In elastic approximation (non-dissipative medium), the stress tensor formulation 
simplifies to (from Fichtner, 2011):  

     σ(𝐱, 𝑡) =  C(𝐱): 𝛻u(𝐱, 𝑡),                        (2.7) 

where the double dots denote a contraction over two adjacent indices (e.g. A ∶ B =
∑ A௜௝B௜௝

௡
௜,௝ୀଵ , B 𝜖 R୬୶୬) . 

The equations (2.4) and (2.7) represent the displacement-stress formulation in elastic 
approximation. To avoid the convolution present in the stress tensor’s expression, many 
numerical implementations are based on the elastic approximation, while incorporating 
the dissipation into a less computation-demanding memory variable.  
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2.2.2 – Viscoelastic dissipation  

The time dependency of the elastic tensor C in equations (2.5) and (2.6) describes the 
viscoelastic dissipation. The components of the elastic tensor can be also expressed as a 
superposition of standard linear solids (SLS) – i.e. the Zener model, controlled by 
relaxation parameters, related to frequency-dependent Q factors: 𝜔ఔ  𝜖 [𝜔௠௜௡ , 𝜔௠௔௫]. The 
inverse of the quality factor tensor 𝑄௜௝௞௟(𝐱)ିଵdescribes the seismic attenuation (Emmerich 

and Korn, 1987), which can be related to a memory variable acting on the stress field. The 
expression for the stress tensor becomes (e.g. Komatitsch and Tromp 1999; Trinh et al., 
2019 – modified): 

σ௜௝(𝐱, 𝑡) = C௜௝௞௟(𝐱) ∗ 𝜀௞௟(𝐱, 𝑡) − C௜௝௞௟
ோ (𝐱) ∑ 𝜓ఔ; ௞,௟(𝐱, 𝑡)௡

௦ୀଵ ,                                          (2.8) 

with C௜௝௞௟
ோ = C௜௝௞௟(𝐱) 𝑄௜௝௞௟

ିଵ (𝐱),           (2.9) 

and 
డ

డ௧
 𝜓ఔ; ௞,௟(𝐱, 𝑡) + 𝜔ఔ𝜓ఔ; ௞,௟(𝐱, 𝑡) = 𝜔ఔ𝑦ఔ𝜀௞௟(𝐱, 𝑡),                               (2.10) 

where C௜௝௞௟  are the unrelaxed coefficients of the stiffness tensor, C௜௝௞௟
ோ  are the relaxed 

stiffness coefficients, 𝜓ఔ; ௞,௟ is the memory variable, responsible for the attenuation and 

𝑦ఔ  (for 𝜈 = 1, … , 𝑛) is a dimensionless anelastic coefficient, with n scalars connected to n 
quality factors 𝑄௜௝௞௟  (Yang et al., 2016a); it is important to mention that here 𝑄௜௝௞௟  does not 

refer to the Q field measurement.  

2.3 – Numerical solution of the elastic wave equation 

Analytical solutions for the seismic wave equation exist only for simple models, which 
however do not reflect the real structural complexity of the subsoil. For moderately 
heterogeneous media, perturbation methods can be used to find an approximate solution. 
However, FWI is focused above all on highly heterogeneous media, for which analytical or 
perturbation methods cannot be easily applicable (Fichtner, 2011).  

The difficulty of finding analytical solutions for the wave propagation in heterogeneous 
media led to the design of numerical solutions, based on the partial derivatives 
discretization in space and time. The spatial discretization leads to a system of ordinary 
partial-derivatives non-homogeneous differential equations, which can be numerically 
solved both in the time domain and frequency domain.  

2.3.1 – Wave equation discretization in space 

All numerical methods have in common the discrete approximation in space of the 
continuous wavefield u(x, t), through a finite number of time-dependent coefficients 
 uതଵ(𝑡), …  uതே(𝑡) that can be synthesized in an N-dimensional vector (Fichtner, 2011). Using 
the space discretization, the elastic wave equation is transformed into a differential 
equation that can be written in a form that allows eliminating the gradient (from Fichtner, 
2011, modified): 

   M ∙
డమ

డ௧మ uത(𝑡) +  K ∙ uത(𝑡) =  f(̅𝑡),                    (2.11) 
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where M is the mass matrix, K is the stiffness matrix, f ̅ is the discrete version of the 
external source vector and uത is the discrete version of the particle displacement. The mass 
and stiffness matrices are sparse. The expression for the space-discretized displacement-
stress formulation is (from Fichtner, 2011, modified): 

M ∙
డమ

డ௧మ uത(𝑡) +  Kଵ ∙ s̅(𝑡) =  f(̅𝑡) , with  s̅(𝑡) =  Kଶ ∙ uത(𝑡),                             (2.12) 

where: Kଵ e Kଶ are the stiffness matrices and s̅ is the discrete approximation of the stress-
tensor. 

Viscoelastic equation  

Using the Voight indexing to describe the strain and memory-variable vectors, the matrix 
C = (C୧୨)଺௫଺ contains the elastic-stiffness coefficients. The viscoelastic wave equation 

becomes (from Trinh et al., 2019, modified): 

M ∙
డమ

డ௧మ uത(𝑡) +  K ∙ uത(𝑡) −  𝐷 Cୖ ∑ 𝜓௦
௅
௦ୀଵ =  f(̅𝑡),                                                       (2.13) 

డ

డ௧
𝜓௦ + 𝜔௦𝜓௦ =  𝜔௦ 𝑦௦𝜀,                     (2.14) 

where D is a spatial derivative operator. In the spectral element discretization (described 
in Appendix 1), the spatial derivative operator is weighted by GLL weights 𝐷௪ . 

2.3.2 – Wave equation discretization in time or frequency 

The system of differential equations in time, resulting from the spatial discretization of the 
wave equation, can be solved both in the time domain and in the frequency domain.  

Displacement formulation in time-domain 

The time-domain modeling is based on the substitution of the time derivatives with finite-
difference approximations. This procedure allows representing the wavefield propagation 
for discrete time intervals Δt. The time-discretized expression for the displacement-stress 
formulation is (from Fichtner, 2011, modified):  

డమ

డ௧మ uത(𝑡) =  Mିଵ · ൣf(̅𝑡) − K · uത(𝑡)൧,                               (2.15) 

డమ

డ௧మ uത(𝑡) ≈  
ଵ

∆௧మ [uത(𝑡 + ∆𝑡) − 2 uത(𝑡) +  uത(𝑡 − ∆𝑡)] ,         (2.16) 

where the equation (2.16) is the expression for the second-order finite difference 
approximation. Therefore, the relation that allows computing the displacement at time the 
𝑡 + ∆𝑡 from the displacement at time the 𝑡 − ∆𝑡 is:  

uത(𝑡 + ∆𝑡) ≈  2 uത(𝑡) +  uത(𝑡 − ∆𝑡) +  ∆𝑡ଶ Mିଵ ·  ൣf ̅(𝑡) −  K · uത(𝑡)൧.       (2.17) 

An alternative to the relation (2.17) is the Newmark scheme (Newmark, 1959; Chaljub et 
al., 2007; Fichtner, 2011, modified): 

uത(𝑡 + ∆𝑡) =  uത(𝑡) +  ∆𝑡 vത(𝑡) +  ∆𝑡ଶ  ቒ൫భ

మ
− 𝛽൯

డమ

డ௧మ uത(𝑡) +  𝛽
డమ

డ௧మ  uത(𝑡 + ∆𝑡)ቓ,      (2.18) 
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vത(𝑡 + ∆𝑡) =  vത(𝑡) +  ∆𝑡 ቒ(ଵ −  𝛾)
డమ

డ௧మ  uത(𝑡) +  𝛾
డమ

డ௧మ  uത(𝑡 + ∆𝑡)ቓ,       (2.19) 

where 𝛾 ϵ [0,1] and 𝛽 ϵ [0, 1/2]. If 𝛾 = 1/2 and 𝛽 = 0, the explicit central-difference 
scheme is obtained (Fichtner, 2011, modified): 

uത(𝑡 + ∆𝑡) =  uത(𝑡) +  ∆𝑡 vത(𝑡) +  భ

మ
 ∆ 𝑡ଶ డమ

డ௧మ uത(𝑡)          (2.20) 

vത(𝑡 + ∆𝑡) =  vത(𝑡) +  భ

మ
 ∆𝑡 ቒ 

డమ

డ௧మ uത (𝑡) +
డమ

డ௧మ uത (𝑡 + ∆𝑡)ቓ                                                   (2.21) 

All time-discretization algorithms are explicit (Marfurt, 1984), in the sense that the 
dynamic field at time t depends only on the dynamic field at the previous time. These 
algorithms are stable only under certain conditions. The numerical stability criterion, 
called CFL condition (from the names of the authors who defined it: R. Courant, K. 
Friedrichs and H. Levy), limits the maximum time-increment and therefore the efficiency of 
each time sampling (Fichtner, 2011): 

∆𝑡 ≤ 𝐶 
௠௜௡ ( ௛)

௠௔௫  (௩)
 ,     (2.22) 

where h is the size of a grid’s cell, v is the P-wave velocity and C is a constant depending on 
the specific discretization method in time and space.  

Discretization in frequency domain 

The Fourier transform of the expression for the space-discretization of the displacement is 
(Fichtner, 2011):  

− 𝜔ଶ M ∙ uത(𝜔) + K ∙ uത(𝜔) =  f(̅𝜔),   (2.23) 

where L(𝜔) =  − 𝜔ଶM + K is the impedance matrix, leading to a linear system L(𝜔) ∙

uത (𝜔) =  f ̅(𝜔), which can be solved using direct matrix factorization methods, such as LU 
decomposition (Pratt et al., 1998; Pratt, 1999; Press et al., 2007). Nevertheless, since the 
direct matrix factorization is memory demanding, the use of iterative solvers is often 
preferred (Quarteroni et al., 2000).  

One important advantage of the frequency domain modeling is the easier and less 
memory-demanding implementation of the viscoelastic dissipation since the convolution 
in the stress tensor formulation becomes a product (Fichtner, 2011). 
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2.3.3 – Numerical methods overview 

Several numerical methods are available for the solution of the seismic wave equation, 
such as:  

 Finite difference - e.g. Alford et al. (1974); Kelly et al. (1976); Virieux (1984, 1986); Igel 
et al. (1995); Graves (1996). 

 Optimal operators - e.g. Geller and Takeuchi (1995); Geller and Takeuchi (1998); 
Takeuchi and Geller (2000). 

 Pseudospectral method - e.g. Furumura et al. (1988); Tessmer and Kosloff (1994); Igel, 
(1999). 

  Finite elements method - e.g. Lysmer and Drake (1972); Bao et al. (1998); Moczo et al. 
(2007). 

 Spectral element method - e.g. Patera (1984) - application for fluid mechanics; Seriani 
(1998); Komatitsch and Vilotte (1998); Komatitsch and Tromp (1999); Komatitsch 
and Tromp (2002a,b); Chaljub and Valette (2004); Chaljub et al. (2007); Nissen-Meyer 
et al. (2007, 2008); Tape et al. (2010); Peter et al. (2011). 

 Direct solution method - e.g. Geller and Ohmiato (1994); Cummings et al., (1994a,b); 
Kawai and Geller (2010).  

 Discontinuous Galerkin method – e.g. Dumbser and Käser (2006); de la Puente et al. 
(2007, 2008, 2009); Brossier et al. (2009b). 

Among them, the finite difference (FD) method is the most frequently used in FWI. It is 
based on the approximation of the partial derivatives with incremental ratios, which may 
lead to numerical dispersion of the signal (Alford et al., 1974; Fichtner, 2011). In the 
presence of numerical dispersion, the various frequencies of a signal propagate at different 
velocities and, therefore, the velocity of every single phase is different from the group 
velocity (Telford et al., 2009). Consequently, the numerical solution may be "slower" than 
the analytical one, but it can also be faster at some frequencies due to the numerical 
dispersion introduced by time discretization. 

The numerical dispersion depends, among other factors, on the number of grid points 
covered by the smallest wavelength (corresponding to the highest frequency). The choice 
of the optimum grid points’ number per wavelength is highly dependent on the 
approximation order. Increasing the order of the finite difference operator generally leads 
to more accurate results. The error decreases rapidly as the dominant wavelength 
increases, or the grid spacing decreases. The first implementations of the finite difference 
method were based on the conventional grid, where all the field variables (stress, strain, 
displacement) were defined in the same positions. Once the finite difference method has 
been developed in 3D, a new approach, based on the use of a staggered grid, was defined 
(e.g. Virieux, 1984; 1986; Hustedt et al., 2004); in this case, the dynamic fields are 
evaluated in different positions. This geometry leads to a smaller spacing between the 
samples, reducing the numerical dispersion (Fichtner, 2011).  
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The spectral element method (SEM) is also used in many FWI tools, especially for the 
applications involving irregular geometries and complex structures. Based on the weak 
form of the wave equation, it involves the decomposition of the computational domain into 
non-overlapping elements that are mapped to a reference space. Within each element in 
the reference space, the dynamic fields, represented by Lagrange polynomials, are 
collocated at the Gauss-Lobatto-Legendre (GLL) points.  

The SEM solution’s accuracy is controlled by the size of the elements and by the degree of 
the Lagrange polynomials. Since the GLL quadrature is exact only for polynomials of 
degree (2N-1), the SE discretization, where the integrands are products of polynomials of 
degree N, is not exact. Increasing the polynomial degree helps for a better representation 
of complex geometries, although it is limited by the CFL condition. In practice, polynomial 
degrees of 4 to 7 and at least 5 grid points per minimum wavelength are used to ensure a 
reasonable numerical accuracy, when the number of propagating wavelengths varies from 
10 to 50 (Fichtner, 2011).  

Many successful applications of the spectral element method (SEM) exist for 
heterogeneous media with complex geometries (e.g. Komatitsch and Vilotte, 1998; Seriani, 
1998; Komatitsch et al., 2004; Fichtner et al., 2009; Trinh et al., 2019). The SEM is 
computationally advantageous because of the weak solution of the wave equation (which 
implicitly contains, in the stiffness matrix, the free-surface condition) and of the possibility 
of adapting the mesh’s shape and dimension to irregular topographies and variable 
wavelengths inside the medium. A review of the SEM can be found, for example, in 
Komatitsch et al. (2005) and Chaljub et al. (2007).  

Overall, the most important advantages of the SEM are:  

 The implicit implementation of the free-surface boundary condition in the stiffness 
matrix of the wave equation weak form.  

 The mesh’s adaptability to irregular topographies and complex structures (variable 
wavelengths) and the facilitation for parallel implementation.  

 The mass matrix is diagonal in the spectral element discretization: This property 
allows computing the explicit formula for the second-order time derivatives of the 
wavefield coefficients, with limited computational resources.   

 The direct computation of the stiffness matrix is not necessary: only the computation 
of its product with the expansion coefficients vector is normally required.  

Since the FWI tool used in this study is based on the spectral element method, a brief 
description of this method is given in Appendix 1, following Fichtner (2011). A more 
detailed presentation of the mathematical background of SEM, including the orthogonal 
polynomials, the function interpolation (Lagrange, Lobatto) and the numerical integration 
(Gauss-Lobatto-Legendre quadrature) can be found in Fichtner (2011), Appendix A, pp 
301-315. Other detailed treatments can be also found, for example, in Quarteroni et al. 
(2000), Karniadakis and Sherwin (2005), Zienkiewicz et al. (2005).  
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2.4 – Highlights 

 When an external force is activated in a certain volume, some energy propagates 
inside the volume (as BWs: pressure waves and shear waves), while some energy 
propagates near the surface (as SWs: Rayleigh waves and Love waves).  

 The velocity of seismic energy propagation inside a medium is known as seismic wave 
velocity. The latter is different from the medium’s particles displacement (particle 
velocity) that are moving as a consequence of the seismic wave propagation.   

 In a heterogeneous medium, SWs exhibit prominent dispersive behavior: the phase 
velocity varies with the frequency (wavelength).  

 The seismic energy decreases with the distance from the source, due to various factors 
as geometrical spreading and anelastic damping. The BWs amplitude attenuation due 
to geometrical spreading varies more quickly with the distance (1/r) than the SWs 
amplitude (1/√r). The attenuation caused by anelastic damping is described by a 
parameter, called quality factor Q. The greater Q value is the less seismic energy is 
subject to attenuation.  

 The seismic wave equation is the linearized version of Newton’s second law. It is 
formulated as a second-order partial-derivatives nonhomogeneous differential 
equation, balancing the momentum of particle displacement, the internal stress and 
the external forces, corresponding to the seismic wave source.  

 The complementary equation in the stress-displacement formulation defines the 
viscoelastic rheology and connects the stress tensor with the displacement field. The 
time dependency of the elastic tensor (convolution term) describes the viscoelastic 
dissipation. The components of the elastic tensor can be expressed as a superposition 
of standard linear solids, controlled by relaxation parameters, related to frequency-
dependent Q factors. To avoid convolution, many FWI implementations are based on 
the elastic approximation for the wave equation, while incorporating the dissipation 
into a memory variable.  

 For the real data applications, involving highly heterogeneous models, the analytical 
solutions for the seismic wave equation are substituted by numerical solutions, based 
on the spatial discretization of the partial derivatives. Such discretization over the 
space leads to a system of ordinary partial-derivatives non-homogeneous differential 
equations, which can be solved numerically both time domain and frequency domain.  

 There are several numerical methods for the solution of the seismic wave equation, 
such as finite difference, optimal operators, pseudospectral method, finite elements, 
spectral element, direct solution, discontinuous Galerkin, etc. Among them, the finite 
difference method is the most frequently used, due to the staggered grid efficient 
implementation and the consequent relatively low necessary computer memory. 
Nevertheless, in the presence of complex geometries and variable topography, the 
spectral element method (SEM) is often preferred. 
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 In the SEM, the continuous domain is decomposed into a set of non-overlapping 
elements. The equations governing each element are then assembled into a global 
system of equations through a continuity condition imposed to neighboring elements.  
All elements are mapped to a unitary 3D space, using shape functions and collocation 
nodes. Tensorized Lagrange polynomials are often used as basis functions in the 3D 
SEM, leading to the elements’ representation through hexahedra.   
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Appendix 1 

Spectral element method insights  

The following presentation is based on the description provided by Fichtner (2011).   

A 1.1 - The weak form of the seismic wave equation 

The strong form of the wave equation in 1D is (from Fichtner, 2011): 

(𝜌)
డమ

డ௧೟ u(x, 𝑡) - 
డ

డ௫
ቂ𝜇(x)

డ

డ௫
u(x, 𝑡)ቃ = f(x, 𝑡),                          (A1.1) 

where the space variable x 𝜖 𝐺 = [0, 𝐿], the time variable 𝑡 𝜖 [0, 𝑇], and the displacement 
field u is subject to the Neumann boundary conditions: 

  
డ

డ௫
u(x, 𝑡)|௫ୀ଴ =  

డ

డ௫
u(x, 𝑡)|୶ୀ௅ = 0,            (A1.2) 

and to the initial conditions:  u|௧ୀ଴ =  
డ୳

డ௧
|௧ୀ଴ = 0.         (A1.3) 

The weak form of the wave equation can be derived multiplying the strong form by an 
arbitrary test function w (𝜖 𝐺 → 𝑅), which is time-dependent, and integrating over the 
space G (from Fichtner, 2011): 

∫ 𝜌 𝑤
డమ

డ௧೟ u 𝑑𝑥 − 
ீ

଴
∫ 𝑤

డ

డ௫
ቀ𝜇

డ

డ௫
uቁ 𝑑𝑥 =  ∫ 𝑤 f 𝑑𝑥

ீ

଴

ீ

଴
.          (A1.4) 

Integrating the left-hand side by parts and honoring the boundary condition (A1.2), leads 
to (from Fichtner, 2011): 

∫ 𝜌 𝑤
డమ

డ௧೟ u 𝑑𝑥 + 
ீ

଴
∫ 𝜇

డ

డ௫
𝑤

డ

డ௫
u 𝑑𝑥 =  ∫ 𝑤 f 𝑑𝑥

ீ

଴

ீ

௢
.          (A1.5) 

The boundary condition (A1.2) corresponds to the free surface condition and it is 
implicitly satisfied. The solution of the weak form of the wave equation is the wavefield u 
that satisfies the above equation, for any test function 𝑤, under the initial conditions (from 
Fichtner, 2011): 

∫ 𝜌 𝑤 u |௧ୀ଴ 𝑑𝑥 = ∫ 𝜌 𝑤
డ

డ௧

௚

௢

ீ

଴
u |௧ୀ଴ 𝑑𝑥 = 0.          (A1.6) 

When both density 𝜌 and the elastic parameter 𝜇 are variable in space, finding analytical 
solutions for the (strong and weak form of the) wave equation is almost impossible. 
Therefore, also for the weak form of the wave equation, numerical solutions, based on 
wavefield discretization, are designed. 

A 1.2 – Discretization in space and the Galerkin method 

The Galerkin method is commonly used for the space discretization. It is based on the 
approximation of the exact solution u(𝑥, 𝑡) by a finite superposition of n so-called space-
dependent basis functions 𝜓௜  (𝑖 = 1, … . , 𝑛) (from Fichtner, 2011): 

u(x, 𝑡) ≈  uത(x, 𝑡) = ∑ u୧(𝑡)௡
௜ୀଵ  𝜓௜(x),       (A1.7) 
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where u௜(𝑡) are the time-dependent expansion coefficients. The basis functions depend 
only on space and they are used as test functions in the weak form of the wave equation. 
Therefore, the solution of the wave equation requires the wavefield uത to satisfy the 
approximate weak form (from Fichtner, 2011):  

∫ 𝜌 𝜓௜  
డమ

డ௧೟ uത 𝑑𝑥 + 
ீ

଴
∫  𝜇

డ

డ௫
𝜓௜

డ

డ௫
uത 𝑑𝑥 =  ∫ 𝜓௜  f 𝑑𝑥

ீ

଴

ீ

௢
,                                   (A1.8) 

for all basis functions 𝜓௜  under the initial conditions: 

∫ 𝜌 𝜓௜  uഥ|௧ୀ଴ 𝑑𝑥 =  ∫ 𝜌 𝜓௜
డ

డ௧

௚

௢

ீ

଴
uത |௧ୀ଴ 𝑑𝑥 = 0.                           (A1.9) 

Using the equations (A1.7) and (A1.8), the Galerkin projection transforms the weak form 
into a linear equation for the coefficients u௜(𝑡) (from Fichtner, 2011): 

∑ ቂ
డమ

డ௧೟ 𝑢௜(𝑡) ∫ 𝜌(x) 𝜓௝(x) 𝜓௜(x) 𝑑𝑥
ீ

௢
ቃ +  ∑ ቂu௜(𝑡) ∫ 𝜇(x)

డ

డ௫
𝜓௝(x)

ீ

௢
 

డ

డ௫
𝜓௜(x) 𝑑𝑥ቃ௡

௜ୀଵ  =௡
௜ୀଵ

 ∫ 𝜓௝(x) 𝑓(x, 𝑡) 𝑑𝑥
ீ

଴
,                      (A1.10) 

for 𝑗 = 1, … . , 𝑛 . The differential equation (A1.10) can be written in matrix notation as 
(from Fichtner, 2011): 

M ∙  
డమ

డ௧೟  u(𝑡) + K ∙ u(𝑡) = f(𝑡),                  (A1.11) 

where the vector u contains the expansion coefficients u௜ , 

the mass matrix is:  M௜,௝ =  ∫ 𝜌(x)
ீ

଴
 𝜓௝(x) 𝜓௜(x) 𝑑𝑥,                                 (A1.12) 

the stiffness matrix is: K௝,௜ =  ∫ 𝜇(x) 
డ

డ௫
𝜓௝(x)

డ

డ௫
𝜓௜(x) 𝑑𝑥

ீ

଴
,                     (A1.13) 

and the source term is: f௜(𝑡) =  ∫ 𝜓௝(x) 𝑓(x, 𝑡) 𝑑𝑥
ீ

଴
.                  (A1.14) 

The stiffness matrix K implicitly contains the free-surface boundary condition. This fact 
renders the SEM numerically more convenient than other methods (i.e. finite difference) 
that require additional implementation for the free-surface condition.  

In the SEM, the continuous G domain is decomposed into a set of 𝑛௘ non-overlapping 
elements 𝐺௘ . The size of each element is usually chosen proportional to the wave velocity, 
to ensure a relatively uniform sampling of the wavelength. The element decomposition 
transforms the equation (A1.10) into (from Fichtner, 2011):  

∑ ቂ
డమ

డ௧೟ u௜(𝑡) ∑ ∫ 𝜌(x) 𝜓௝(x) 𝜓௜(x) 𝑑𝑥
ீ೐

௢

௡೐
௘ୀଵ  ቃ +௡

௜ୀଵ

 ∑ ቂu௜(𝑡) ∑ ∫ 𝜇(x)
డ

డ௫
𝜓௝(x)

ீ೐

௢

డ

డ௫
𝜓௜(x) 𝑑𝑥

௡೐
௘ୀଵ ቃ௡

௜ୀଵ  = ∑ ∫ 𝜓௝(x) 𝑓(x, 𝑡) 𝑑𝑥
ீ೐

଴

௡೐
௘ୀଵ ,                 (A1.15) 

where each expansion coefficient u௜  depends on the integrals over all elements. To 
overcome this dependency related inconvenient, N+1 local basis functions 𝜓௜

௘  (𝑒 =

1, … . , 𝑁 + 1), each one related one element 𝑛௘  of the 𝐺௘  space, are defined, and the discrete 
equation is solved for each element individually. The displacement field for the 𝐺௘  
elements is approximated by (from Fichtner, 2011): 

u ഥ(x, 𝑡)|௫ ∈ ீ೐
=  ∑ u௜

௘(𝑡) 𝜓௜
௘(x)ேାଵ

௜ୀଵ ,                    (A1.16) 



Chapter 2 – THE FORWARD PROBLEM 

 

34  
 

and the equation (A1.15) becomes (from Fichtner, 2011, modified): 

∑
డమ

డ௧೟ u௜
௘(𝑡) ∫ 𝜌(x) 𝜓௝

௘(x) 𝜓௜
௘(x) 𝑑𝑥

ீ೐

௢
+  ∑ u௜

௘(𝑡) ∫ 𝜇(x)
డ

డ௫
𝜓௝

௘(x)
ீ೐

௢

డ

డ௫
𝜓௜

௘(x) 𝑑𝑥ேାଵ
௜ୀଵ  =ேାଵ

௜ୀଵ

 ∫ 𝜓௝
௘(x) 𝑓(x, 𝑡) 𝑑𝑥

ீ೐

଴
,                                                          (A1.17) 

whose corresponding matrix notation is: 

Mୣ ∙
డమ

డ௧೟ uୣ(𝑡) +  Kୣ ∙ u௘(𝑡) =  f ௘(𝑡),   𝑒 = 1, … . , 𝑛௘,                (A1.18) 

where uୣ, Mୣ and Kୣ are the local coefficient vector, mass matrix and stiffness matrix, 
respectively.  

To satisfy the discrete approximation of the wavefield uത, the implementation of a 
continuity condition between all basis functions inside each element 𝑛௘  is required. To 
allow all integrals to be managed in the same way, each element 𝐺௘  is mapped into a 
standard reference interval [−1, 1], via an element transformation (from Fichtner, 2011): 

 𝐹௘: [−1, 1] →  𝐺௘ ,   x =  𝐹௘(𝜉),    𝜉 = 𝜉(x) = 𝐹௘
ିଵ(𝑥),    𝑒 = 1, … . , 𝑛௘                 (A1.19) 

Introducing the above transformation into the equation (A1.17), gives (from Fichtner, 
2011): 

∑
డమ

డ௧೟ u௜
௘(𝑡) ∫ 𝜌[x(𝜉)]  𝜓௝

௘[x(𝜉)]  𝜓௜
௘[x(𝜉)] 

ௗ௫

ௗక
𝑑𝜉

ଵ

ିଵ
+ேାଵ

௜ୀଵ

 ∑ u୧
ୣ(𝑡) ∫ 𝜇[x(𝜉)] 

ௗ

ௗక
𝜓௝

௘[x(𝜉)] 
ଵ

ିଵ

ௗ

డక
𝜓௜

௘[x(𝜉)] ቀ
ௗ௫

ௗక
ቁ

ଶ

ቀ
ௗ௫

ௗక
ቁ 𝑑𝜉ேାଵ

௜ୀଵ  =

 ∫ 𝜓௝
௘[x(𝜉)] f{[x(𝜉)], 𝑡}  

ௗ௫

ௗక

ଵ

ିଵ
  𝑑𝜉.                    (A1.20) 

The basis functions definition is based on the choice of N+1 Lagrange polynomials of 
degree N, having the corresponding Gauss-Lobatto-Legendre (GLL) points collocated as 
𝜓௜

௘[x(𝜉)] = 𝑙௜
(ே)

(𝜉), 𝜉 ∈ [−1, 1]. Since the GLL points are the collocation points of the GLL 

quadrature, the GLL quadrature formulas allow obtaining accurate approximations of the 
integrals in equation (A1.20). Substituting 𝑙௜(𝜉) for ψ[x(ξ)] and omitting the superscript (N) 
in 𝑙௜

(ே), leads to (from Fichtner, 2011): 

∑
డమ

డ௧೟ u୧
ୣ(𝑡) ∫ 𝜌ᇱ(𝜉) 𝑙௝(𝜉)

ଵ

ିଵ
𝑙௜(𝜉)

ௗ௫

ௗక
𝑑𝜉 + ∑ 𝜇ᇱ(𝜉)

డ

డక
𝑙௝(𝜉)  

డ

డక
𝑙௜(𝜉) ቀ

ௗ௫

ௗక
ቁ

ଶ

ቀ
ௗ௫

ௗక
ቁ 𝑑𝜉ேାଵ

௜ୀଵ  =ேାଵ
௜ୀଵ

 ∫  𝑙௝(𝜉) f ᇱ(𝜉, 𝑡)
ௗ௫

ௗక

ଵ

ିଵ
 𝑑𝜉,                      (A1.21) 

where the transformed density 𝜌ᇱ, the elastic moduli 𝜇ᇱ and the external force f ᇱ are 
defined by: 𝜌ᇱ(𝜉) =  𝜌 [x(𝜉)],   𝜇ᇱ(𝜉) =  𝜇[x(𝜉)],   f ᇱ(𝜉) =  𝑓[x(𝜉)].                 (A1.22) 

Using the GLL quadrature formula: ∫ f(x)𝑑𝑥 ≈ ∫ 𝑃ே(x)𝑑𝑥 =  ∑ 𝑤௜  f(x௜)
ேାଵ
௜ୀଵ

ଵ

ିଵ

ଵ

ିଵ
,            (A1.23) 

where f(x) is and arbitrary function, 𝑃ே(x) is an interpolating polynomial and 𝑤௜ =

 ∫ 𝑙௜
(ே)ଵ

ିଵ
(x) 𝑑𝑥 are the integration weights, the integrals in (A1.21) can be approximated as 

(from Fichtner, 2011): 
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∑
డమ

డ௧೟ u୧
ୣ(𝑡) 𝑤௞  𝜌ᇱ(𝜉) 𝑙௝(𝜉) 𝑙௜(𝜉)  

ௗ௫

ௗక
|కୀకೖ

+ேାଵ
௜,௞ୀଵ

 ∑  𝑤௞  u୧
ୣ(𝑡) 𝜇ᇱ(𝜉)

డ

డక
𝑙௝(𝜉) 

డ

డక
𝑙௜(𝜉) ቀ

ௗ௫

ௗక
ቁ

ଶ ௗ௫

ௗక
|కୀకೖ

ேାଵ
௜,௞ୀଵ ≈ ∑ 𝑤௞

ேାଵ
௞ୀଵ 𝑙௝(𝜉) 𝑓ᇱ(𝜉, 𝑡)

ௗ௫

ௗక
|కୀకೖ

.  (A1.24) 

The symbols 𝜉௞  and 𝑤௞  are the GLL points and their corresponding integration weights. 
The numerical integration in the above equation is not exact because the integrands are 
not polynomials of degree 2N – 1 or lower (Fichtner, 2011). Considering the interpolation 
property of the Lagrange polynomials 𝑙௜(𝜉௞) = 𝛿௜௞ , the equation (A1.24) can be written in a 
more compact form as (from Fichtner, 2011): 

∑ M୨୧
ୣ  

డమ

డ௧೟ u୧
ୣ(𝑡) +  ∑ K୨୧

ୣ  u୧
ୣ(𝑡ேାଵ

௜ୀଵ ) =  f୧
ୣ(𝑡) ேାଵ

௜ୀଵ ,  e = 1, … . nୣ,  where                        (A1.25) 

M୨୧
ୣ =  𝑤௝  𝜌ᇱ(𝜉)  

ௗ௫

ௗక
 𝛿௜௞|కୀకೕ

,                     (A1.26) 

K୨୧
ୣ =  ∑  𝑤௞  𝜇ᇱ(𝜉) 

డ

డక
𝑙௝(𝜉)  

డ

డక
𝑙௜(𝜉)  ቀ

ௗ௫

ௗక
ቁ

ଶ ௗ௫

ௗక
|కୀకೖ

ேାଵ
௞ୀଵ ,                   (A1.27) 

f୧
ୣ(t) = 𝑤௝  𝑓ᇱ(𝜉, 𝑡) 

ௗ௫

ௗక
|కୀకೕ

.                     (A1.28) 

An important numerical advantage of the spectral element discretization is the property of 
the mass matrix Mୣ of being diagonal, which renders the inversion of M୨୧

ୣ  computationally 

convenient and allows obtaining explicitly the formula for the second-order time 
derivative of u୧(𝑡). Another advantage is the non-necessity of computing the stiffness 
matrix: only the computation of its product with the expansion coefficients vector is 
normally required.  

Equation (A1.24) refers to the local numerical integration, and the resulting linear system 
in equation (A1.25) is also related to a local element. The GLL points of an element can be 
addressed by exploiting a local numbering scheme, in which the points shared between 
neighboring elements are counted twice (because they are considered in the discretized 
version of two integrals). However, the continuity condition of the approximation uത across 
the element boundaries needs to be satisfied. This process is guaranteed by assembling a 
global system of equations, where a global numbering scheme counts each GLL point only 
once, including the point shared between neighboring elements (from Fichtner, 2011, 
modified): 

M௚௟  ∙  
డమ

డ௧మ u௚௟(𝑡) +  K௚௟ ∙ u௚௟(𝑡) =  f ௚௟(𝑡),                 (A1.29) 

where M௚௟ is the global stiffness matrix (obtained by associating the local matrices M௘), 
K௚௟  is the global stiffness matrix (resulted from the association of the local stiffness 
matrices K௘), and u௚௟  is the global displacement vector. The global values are obtained by 
summing the local elements of the matrices at coincident node points.  

A 1.3 – Mesh generation  

The mesh generation is related to the subdivision of the domain G into 𝑛௘  non-overlapping 
elements 𝐺௘  proportional to the seismic wave velocity and subject to the condition 
that 𝐺 = ∪௜ୀଵ

௡೐ 𝐺௘ . In a 3D implementation, all elements 𝐺௘  are mapped to the unit cube 𝑋 =

[−1, 1]ଷ, using shape functions and anchor nodes (Fichtner, 2011).  
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In practice, each element 𝐺௘  is defined by 𝑛௔ anchor nodes 𝑥௔ (normally coincident with 
the 8 corners of each element but depending on the geometry and the approximation 
order) and their corresponding shape functions 𝑁௔. A position vector x in 𝐺௘  is related to a 
position vector ξ in the reference cube X, via a transformation that relates each anchor 
node 𝑥௔ of the physical element 𝐺௘  to a corresponding anchor node 𝜉௔  in the reference 
cube X (Fichtner, 2011): 

x(𝜉௔) = 𝑥௔, where  x(𝜉) = F௘(𝜉) = ∑ 𝑁௔(𝜉)
௡ೌ
௔ୀଵ x௔ and 𝑁௔(𝜉௕) = 𝛿௔,௕.               (A1.30) 

The shape functions 𝑁௔ are commonly defined as a product of three Lagrange polynomials, 
with variable degree according to the element’s complexity. Their collocation points are 
the coordinates 𝜉௜

௔  of the anchor nodes 𝜉௔  in the reference cube X (Fichtner, 2011): 

𝑁௔(𝜉) =  𝑙ଵ,௔(𝜉ଵ) 𝑙ଶ,௔(𝜉ଶ) 𝑙ଷ,௔(𝜉ଷ), with 𝑙௜,௔(𝜉௜) =  𝛿௔,௕ .                  (A1.31) 

When tensorized Lagrange polynomials are used as basis functions in 3D spectral 
elements, the mesh’s elements are represented by hexahedra (Fichtner, 2011).  

A 1.4 – Spectral element method for 3D geometries 

Weak solution of the elastic wave equation  

The weak form for the equation of motion in 3D is obtained by multiplying the strong 

displacement-stress formulation 𝜌(𝑥)
డమ

డ௧మ u(𝑥, 𝑡) − ∇ ∙ σ(𝑥, 𝑡) = f(𝑥, 𝑡) and σ(x, 𝑡) =

 C(x): ∇u(x, 𝑡) by a time-dependent test function w, and integrating over the 3D space G 
(from Fichtner, 2011): 

∫ 𝜌 w ∙
డమ

డ௧మ  𝑑ଷீ

଴
x −  ∫ 𝑤

ீ

଴
∙ (∇ ∙ σ) 𝑑ଷx = ∫ 𝑤

ீ

଴
∙ f 𝑑ଷx.                  (A1.32) 

Using the identity w ∙ (∇ ∙ σ) = ∇ ∙ (w ∙ σ) −  ∇w: σ, together with the Gauss theorem, 
equation A1.32 becomes (from Fichtner, 2011): 

∫ 𝜌 w ∙
డమ

డ௧
u 𝑑ଷீ

଴
x −  ∫ w

డீ

଴
∙ σ ∙ n 𝑑ଶx + ∫ ∇w

ீ

଴
: σ 𝑑ଷx =  ∫ w

ீ

଴
∙ f 𝑑ଷx                     (A1.33) 

Inserting the free surface boundary condition, equation (A1.33) becomes (from Fichtner, 
2011): 

∫ 𝜌 w ∙
డమ

డ௧మ u 𝑑ଷீ

଴
x + ∫ ∇w

ீ

଴
: σ 𝑑ଷx =  ∫ w

ீ

଴
∙ f 𝑑ଷx .                   (A1.34) 

The weak solution for the equation (A1.34) is the displacement field u that satisfies the 
above integral relation and the initial conditions (from Fichtner, 2011): 

∫ 𝜌 w · u|௧ୀ଴ 
ீ

଴
𝑑ଷx =  ∫ 𝜌 w ·

డ

డ௧
u|௧ୀ଴ 

ீ

଴
𝑑ଷx = 0.                   (A1.35) 

Galerkin discretization  

Approximating the p-components of the u୮ displacement field u by a superposition of 

(𝑁 + 1)ଷ basis functions inside an element 𝐺௘𝜖 𝑅ଷ, gives (Fichtner, 2011): 
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𝜓௜௝௞(x) = 𝜓௜௝௞(𝑥ଵ, 𝑥ଶ, 𝑥ଷ),                     (A1.36) 

weighted by the expansion coefficients u୮
୧୨୩: 

u୮(x, 𝑡) ≈ uത୮(x, 𝑡) =  ∑ u୮
୧୨୩

(𝑡)ேାଵ
௜,௝,௞ୀଵ 𝜓௜௝௞(x).                   (A1.37) 

The approximation of the stress tensor components σ୮୯ is (Fichtner, 2011): 

σ୮୯(x, 𝑡)  ≈  σഥ୮୯(x, 𝑡) = ∑ σ୮୯
୧୨୩

(𝑡)ேାଵ
௜,௝,௞ୀଵ 𝜓௜௝௞(x).                   (A1.38) 

The discretized formulation of the weak solution uത needs to satisfy the relations (from 
Fichtner, 2011): 

∫ 𝜌 𝜓௜௝௞  e௣
ீ೐

଴
· 

డమ

డ௧మ uത 𝑑ଷx  + ∫ ∇(𝜓௜௝௞e௣)
ீ೐

଴
: σഥ 𝑑ଷx = ∫ 𝜓௜௝௞e௣

ீ೐

଴
· f 𝑑ଷx , and                (A1.39) 

∫  𝜓௜௝௞  e௣
ீ೐

଴
· σഥ 𝑑ଷx  = ∫ 𝜓௜௝௞e௣

ீ೐

଴
· C ∶ ∇uത 𝑑ଷx ,                  (A1.40) 

and the initial conditions for the weak formulation:  

∫ 𝜌 𝜓௜௝௞  e௣ ∙ 
ீ೐

଴
uത |௧ୀ଴ 𝑑ଷx =  ∫ 𝜌 𝜓௜௝௞e௣

డ

డ௧
uത|௧ୀ଴ 𝑑ଷx

ீ೐

଴
= 0,                      (A1.41) 

for all basis functions 𝜓௜௝௞  and all unit vectors e௣ , with 𝑝 = 1,2,3. 

a) The first term in the left-hand side of (A1.39) is transformed as follows (from Fichtner, 
2011):   

𝐹௤௥௦  ቂ𝜌 
డమ

డ௧మ u୮ቃ =  ∫ 𝜌 𝜓௜௝௞  e௣
ீ೐

଴
·

డమ

డ௧మ uത 𝑑ଷx =   

∑ ∫ 𝜌 (x) 
డమ

డ௧మ u୮
୧୨୩(𝑡) 𝜓௜௝௞(x)

ீ೐

଴
𝜓௤௥௦(x)𝑑ଷx ேାଵ

௜,௝,௞ୀଵ ,                   (A1.42) 

where F୯୰ୱ ቂ𝜌 
డమ

డ௧మ u୮ቃ is a discrete local force, averaged over the element 𝐺௘ . 

Further, the element 𝐺௘  (𝑒 = 1, … . , 𝑛௘) is mapped to the reference cube 𝑋 = [−1, 1]ଷ by the 
specific transformation (Fichtner, 2011): 

F௘: [−1, 1]ଷ = 𝑋 →  𝐺௘  , x =  F௘(ξ),  ξ = ξ(x) =  F௘
ିଵ(x), 𝑒 = 1, … , 𝑛௘ ,                (A1.43) 

leading to (from Fichtner, 2011): 

F୯୰ୱ  ቂ𝜌
డమ

డ௧మ u୮ቃ = ∑ ∫ 𝜌[x(ξ)]  
డమ

డ௧మ u୮
୧୨୩(𝑡) 𝜓௜௝௞[x(ξ)]

௑

଴
𝜓௤௥௦[x(ξ)] J(ξ) 𝑑ଷξ ேାଵ

௜,௝,௞ୀଵ ,                 (A1.44) 

where the symbol J denoted the Jacobian of F௘ . The elements are chosen such that J > 0. 

All basis functions 𝜓௜௝௞[x(ξ)] are related to the product of three Lagrange polynomials, 

collocated at the GLL points (Fichtner, 2011): 

 𝜓௜௝௞[x(ξ)] = 𝑙௜(𝜉ଵ) 𝑙௝(𝜉ଶ) 𝑙௞(𝜉ଷ), leading to (Fichtner, 2011):                (A1.45) 

F୯୰ୱ  ቂ𝜌
డమ

డ௧మ u୮ቃ = ∑ ∫ 𝜌ᇱ(ξ)  
డమ

డ௧మ u୮
୧୨୩(𝑡)  𝑙௜(𝜉ଵ) 𝑙௝(𝜉ଶ)𝑙௞(𝜉ଷ)

௑

଴
 𝑙௤(𝜉ଵ) 𝑙௥(𝜉ଶ) 𝑙௦(𝜉ଷ) J(ξ) 𝑑ଷξ  ேାଵ

௜,௝,௞ୀଵ ,                    

                           (A1.46) 

where 𝜌ᇱ(ξ)= 𝜌[x(ξ)] is the transformed density. Applying the GLL quadrature rule to 
equation (A1.46) yields to (from Fichtner, 2011): 
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F୯୰ୱ  ቂ𝜌
డమ

డ௧మ u୮ቃ=  𝑤௤ 𝑤௥ 𝑤௦  𝜌
ᇱ(ξ௤௥௦) 

డమ

డ௧మ u୮
୯୰ୱ

 J(ξ௤௥௦),                   (A1.47) 

where the transformed density and the Jacobian are evaluated at the GLL points: 

ξ௤௥௦ = (ξଵ
௤

, ξଶ
௥  ξଷ

௦).                      (A1.48)  

The equation (A1.47) is the 3D equivalent of the mass matrix for the 1D case. The 
combination of GLL quadrature as Lagrange polynomials collocated at GLL points ensures 
the diagonality of the mass matrix in 3D (Fichtner, 2011). 

b) The second term of the left-hand side of (A1.39) is transformed as follows (Fichtner, 
2011): 

𝐹௤௥௦ ൣ(∇ ∙ σ)௣൧= ∫ ∇(𝜓௜௝௞e௣)
ீ೐

଴
: σഥ 𝑑ଷx.                                    (A1.49) 

Transforming the reference cube X and substituting the Lagrange polynomials for the basis 
functions, gives (Fichtner, 2011): 

𝐹௤௥௦ ൣ(∇ ∙ σ)௣൧=∑ ∫
డక೘

డ௫೙

௑

଴
ଷ
௡,௠ୀଵ  

డ

డక೘
 [𝑙௤(𝜉ଵ) 𝑙௥(𝜉ଶ) 𝑙௦(𝜉ଷ)] 𝜎ത௡௣

ᇱ (ξ) J(ξ) 𝑑ଷξ ,                (A1.50) 

where σഥᇱ(ξ) =σഥ [x(ξ)] is the transformed stress tensor.  

The approximation of the above integral via the GLL quadrature leads to a summation over 
9(N+1) elements (from Fichtner, 2011): 

F୯୰ୱ ൣ(∇ ∙ σ)௣൧ = ∑ ∑ 𝑤௜  𝑤௥  𝑤௦ 
డ

డక
 ேାଵ

௜ୀଵ
ଷ
௡ୀଵ 𝑙௤൫𝜉ଵ

௜ ൯ 𝜉ଵ
௜𝜎௡௣

௜௥௦ 𝐽(𝜉௜௥௦) 
డకభ

డ௫೙
(𝜉௜௥௦)  

  + ∑ ∑ 𝑤௤ 𝑤௜  𝑤௦ 
డ

డక
 ேାଵ

௜ୀଵ
ଷ
௡ୀଵ 𝑙௥൫𝜉ଶ

௜ ൯ 𝜉ଶ
௜ 𝜎௡௣

௤௜௦
 𝐽(𝜉௤௜௦) 

డకమ

డ௫೙
(𝜉௚௜௦) 

  + ∑ ∑ 𝑤௤ 𝑤௥ 𝑤௜ 
డ

డక
 ேାଵ

௜ୀଵ
ଷ
௡ୀଵ 𝑙௦൫𝜉ଷ

௜ ൯ 𝜉ଷ
௜ 𝜎௡௣

௤௥௜
 𝐽(𝜉௤௥௜) 

డకయ

డ௫೙
(𝜉௚௥௜).                 (A1.51) 

c) After the transformation, the source term f in equation (A1.39) becomes (Fichtner, 
2011): F୯୰ୱ (f୮)= ∫ 𝜓௤௥௦e௣

ீ೐

଴
· f 𝑑ଷx  = 𝑤௤  𝑤௥  𝑤௦ f୮

ᇱ (𝜉௤௥௦) 𝐽(𝜉௤௥௦),                 (A1.52) 

where f୮
ᇱ (𝜉) = f୮[x(ξ)] is the transformed density. 

Since the equation (A1.52) is obtained by applying the GLL quadrature, which is exact only 
for polynomials of maximum degree equal to 2𝑁 − 1, the expression of the source term is 
an approximation.  

The Galerkin projection of the (mn)-component of the stress tensor σ in the approximate 
weak form of the displacement-stress formulation (A1.40) follows (from Fichtner, 2011):  

F୯୰ୱ(σ୫୬) = ∫ (𝜓௤௥௦ e௠
ீ೐

଴
· σഥ)௡ 𝑑ଷx = 𝑤௤𝑤௥𝑤௦ σ୫୬

୯୰ୱ
 𝐽(𝜉௤௥௦),                                (A1.53) 

and 

F୯୰ୱ  [(C ∶ ∇u)]௠௡ୀ ∫ (𝜓௤௥௦e௠
ீ೐

଴
· C ∶ ∇uത)௡ 𝑑ଷx =

                                  ∑ ∑ 𝜓௤௥௦(x)ேାଵ
௜,௝,௞ୀଵ

ଷ
௔,௕ୀଵ  𝐶௠௡௔௕

డ 

డ௫ೌ
ൣ𝑢௕

௜௝௞
𝜓௤௥௦(x)൧𝑑ଷx                                 (A1.54) 
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for the left-hand side and right-hand side, respectively. Inserting the Lagrange polynomials 
as basis functions into the equation (A1.53), the relation for mapping the elements to the 
reference volume X is (from Fichtner, 2011):       

F୯୰ୱ [(C ∶ ∇u)]௠௡ୀ ෍ ෍ න 𝑢௕
௜௝௞

 
௑

௢

ேାଵ

௜,௝,௞ୀଵ

ଷ

௔,௕,௣ୀଵ

𝑙௤(𝜉ଵ) 𝑙௥(𝜉ଶ) 𝑙௦(𝜉ଷ)  

   ·  𝐶௠௡௔௕
ᇱ (𝜉)

డ క೛

డ௫ೌ
 

డ 

డక೛
 [𝑙௜(𝜉ଵ) 𝑙௝(𝜉ଶ) 𝑙௞(𝜉ଷ)] J(ξ) 𝑑ଷξ ,               (A1.55) 

with Cᇱ(ξ) = C[x(ξ)]. 

Finally, the Galerkin projection for the stress tensor in the approximate weak form leads to 
(from Fichtner, 2011): 

 𝐹௤௥௦  [(C ∶ ∇u)]௠௡ =  𝑤௤𝑤௥𝑤௦  𝐽(𝜉௤௥௦) ∑ 𝐶௠௡௔௕
ᇱ (𝜉௤௥௦)  ଷ

௔,௕ୀଵ  

 ∙  ∑ ቂu୬
୧୰ୱ డ

డక
𝑙௜(𝜉ଵ

௤
)

డకభ

డ௫೘
+ u୬

୯୧ୱ డ

డక
𝑙௜(𝜉ଶ

௥)
డకమ

డ௫೘
+ u୬

୯୰୧ డ

డక
𝑙௜(𝜉ଵ

௦)
డకయ

డ௫೘
ቃே

௜ୀଵ .                (A1.56) 

The discrete equations of the displacement-stress formulation become (from Fichtner, 
2011):  

[𝑤௤  𝑤௥ 𝑤௦  𝜌
ᇱ(ξ௤௥௦) 𝐽(ξ௤௥௦)]

డమ

డ௧మ u୮
୯୰ୱ

 + F୯୰ୱ ൣ(∇ ∙ σ)௣൧= F୯୰ୱ (f୮),                 (A1.57) 

[𝑤௤  𝑤௥ 𝑤௦  𝐽 (𝜉௤௥௦)] σ୫୬
୯୰ୱ = F୯୰ୱ  [(C ∶ ∇u)]௠௡                   (A1.58) 

Equation (A1.58) provides the expansion coefficients σ୫୬
୯୰ୱ of σ in terms of expansion 

coefficients u୬
୯୰ୱof u, and it can be insert into the equation (A1.57) to compute the local 

acceleration 
డమ

డ௧మ u୮
୯୰ୱ. Due to the use of GLL node points and GLL quadrature, the explicit 

computation of the mass and stiffness matrices in unnecessary (Fichtner, 2011).  

Point source implementation 

The approximation of the projection integral in equation (A1.52) by GLL quadrature is 
inappropriate when the integrand is not a polynomial of degree 2N-1. Usually, the seismic 
source is approximately represented by a single-force point source (Fichtner, 2011): 

f(𝑥, 𝑡) = s(𝑡)𝛿(x − x௦),                      (A1.59) 

or by a moment tensor point-source:  

f(𝑥, 𝑡) = − ∇  ∙ [M(𝑡)𝛿(x − x௦)],                        (A1.60) 

where (x − x௦) indicates the source location, s denotes a vectorial source time function and 
M denotes a moment tensor.  

There are two common methods for the point source implementation: (1) the exact 
integration and (2) the polynomial approximation of the delta function (Fichtner, 2011). 

(1)          In the exact integration, the single-force point source is (Fichtner, 2011): 
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𝐹௤௥௦൫𝑓௣൯ =  ∫ 𝜓௤௥௦e௣
ீ೐

଴
· f 𝑑ଷx  = ∫  𝑠௣(𝑡) 𝜓௤௥௦(x)

ீ೐

଴
(x − x௦) 𝑑ଷx = 𝑠௣(𝑡) 𝜓௤௥௦(x௦),         (A1.61) 

while the moment tensor source is:   

𝐹௤௥௦൫𝑓௣൯ =  − ∫ 𝜓௤௥௦(x)e௣
ீ೐

଴
· ∇  ∙ [M(𝑡) 𝛿(x − x௦)] 𝑑ଷx = e௣  ∙ M(𝑡) · ∇ 𝜓௤௥௦(x௦).           (A1.62) 

Since in the reference cube X the basis functions 𝜓௤௥௦ are Lagrange polynomials, with the 
GLL points as collocation points, more than one coefficient 𝐹௤௥௦൫𝑓௣൯ will be non-zero, unless 

the source location x௦ coincides with a grid point. The numerical point source is therefore 
potentially non-local (Fichtner, 2011).  

(2) The alternative to the source-point implementation is the approximation of the 
delta function by Lagrange polynomials, leading to a low-passed filtered version of the 
point source (Faccioli et al., 1997; Fichtner, 2011). Assuming that 𝛿(x − x௦) in the source-
bearing element 𝐺௘  can be approximated in terms of basis functions 𝜓௜௝௞(x) (Fichtner, 

2011): 

 𝛿(x − x௦)  ≈  𝛿̅(x − x௦) =  ∑ 𝛿௜௝௞  ேାଵ
௜,௝,௞ୀଵ 𝜓௜௝௞(x).                                (A1.63) 

The polynomial coefficients 𝛿௜௝௞  for the approximated function 𝛿̅ are determined such that 
(Fichtner, 2011): 

 𝜓(x௦) = ∫ 𝛿̅(x − x௦) 𝜓(𝑥)
ீ೐

଴
 𝑑ଷx ,                                                  (A1.64) 

for any test function 𝜓 that can be represented by 𝜓௜௝௞(x). 

Transforming the above equation to a reference cube X and substituting the equation 
(A1.63), gives (Fichtner, 2011): 

𝜓(x௦) = ∑  ேାଵ
௜,௝,௞ୀଵ ∫  𝛿௜௝௞𝜓௜௝௞  [x(ξ)] 𝜓[x(ξ)]

௑

଴
 J(ξ) 𝑑ଷξ.                   (A1.65) 

Inserting the Lagrange polynomials as basis functions, leads to (Fichtner, 2011): 

𝜓(x௦) = ∑  ேାଵ
௜,௝,௞ୀଵ ∫  𝛿௜௝௞  𝑙௜(𝜉ଵ) 𝑙௝(𝜉ଶ) 𝑙௞(𝜉ଷ) 𝜓[x(ξ)]

௑

଴
 J(ξ) 𝑑ଷξ.                 (A1.66) 

Choosing 𝜓[x(ξ)] = 𝑙௤(𝜉ଵ) 𝑙௥(𝜉ଶ) 𝑙௦(𝜉ଷ) as test function in equation (A1.66) and 

approximating the integral with GLL quadrature, gives (Fichtner, 2011): 

𝑙௤(𝜉ଵ
௦) 𝑙௥(𝜉ଶ

௦) 𝑙௦(𝜉ଷ
௦) = 𝑤௤𝑤௥ 𝑤௦  𝛿௤௥௦ 𝐽 (𝜉௤௥௦),                   (A1.67) 

where (𝜉ଵ
௦, 𝜉ଶ

௦, 𝜉ଷ
௦)= 𝜉௦ =  F௘  (x௦),                        (A1.68) 

denotes the source position in the reference coordinate system. Finally, the polynomial 
coefficients 𝛿௜௝௞  are then given by (Fichtner, 2011):  

𝛿௜௝௞ =  
௟೔(కభ

ೞ) ௟ೕ(కమ
ೞ) ௞(కయ

ೞ) 

௪೔௪ೕ ௪ೖ ௃ (క೔ೕೖ)
.                      (A1.69) 

For a tensor point source, in most applications, the polynomial approximation of  
[M(𝑡)𝛿(x − x௦)] is added directly to the stress tensor 𝜎, before the computation of the 
Galerkin projection of  ∇ ∙ 𝜎 (Fichtner, 2011). 
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3.1 – Introduction  

Solving an inverse problem consists in inferring the parameters of a model (system), for 
which the predicted data (measurements) fit the observed (experimental) ones. 
Contrariwise, the forward problem solution consists in predicting a data set (results of an 
experiment) starting from a set of parameters that characterize a model m (Figure 3.1). 
While the solution of a forward problem is unique (in deterministic physics), this is not the 
case for an inverse problem, which may have multiple solutions. To mitigate this issue, 
available a priori information and data uncertainties may be useful key elements 
(Tarantola, 2005).   

 
Figure 3.1 – Sketch of the forward problem and inverse problem concept. 

Generally, the solution of an inverse problem consists of two phases:  

1. Solving the direct problem (forward modeling) to obtain the predicted (synthetic) data 
(𝑑௣௥௘ௗ) belonging to an initial model (first guess 𝑚଴) 𝑑௣௥௘ௗ = G 𝑚௢, where G is the 

direct (or prediction) operator. 

2. Using the difference between the observed data and the predicted ones to infer the so-
called error function or objective function. In this phase, the inverse problem is solved: 
𝑚 =  Gିଵ 𝑑௢௕௦ , where Gିଵ  is the inverse operator.  

The complexity of an inverse problem is generally determined by the characteristics of the 
matrix G. If the relationship between the model parameters m and the observed data (𝑑௢௕௦) 
is linear, the inverse problem solution can be obtained by minimizing the so-called 
objective function: 𝜒 =  𝑑௢௕௦ −  𝑑௣௥௘ௗ =  𝑑௢௕௦ −  G 𝑚, where 𝑑௢௕௦  are the observed data, 
𝑑௣௥௘ௗ  are the data computed in the predicted model and G 𝑚 is the solution of the forward 

problem, which provides the predicted data. If G is a function of the unknown parameters 
𝑚 as well, the inverse problem is nonlinear: 𝑑௣௥௘ௗ = G(𝑚) and the solution requires the 

application of different techniques.  

There are two main classes of methods for the solution of nonlinear inverse problems: 
local/deterministic methods (Local Search), based on the computation of derivatives, and 
global/probabilistic methods (Global Search), which do not use derivatives.  
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3.2 – Probabilistic versus deterministic approach  

The amount of independent information contained in the seismic data is limited; this 
aspect leads to the intrinsic non-uniqueness of the reconstructed models. Therefore, 
solving an inverse problem often means evaluating multiple solutions (models) that can be 
compatible with the data. This issue can be mitigated by using a probabilistic approach 
(Tarantola, 2005), which assigns to each model m a probability p(m) to represent the 
observed data. The definition of this probability is based on two factors: the degree of 
consistency of the model with a priori knowledge and the misfit between the observed 
data and the predicted ones (Fichtner, 2011). Nevertheless, the reliable evaluation of the 
probability requires many forward simulations (Rothman, 1985) while the number of 
necessary samples increases almost exponentially with the number of model parameters. 
Therefore, solving an inverse problem with a probabilistic approach becomes very 
expensive when the number of unknowns is large.  

Differently, the computation cost can be efficiently reduced by using the deterministic 
approach, based on the definition of a misfit functional χ(m) that quantifies the 
discrepancy between the observed and predicted data. Solving an inverse problem with a 
deterministic approach means finding an optimal model m that minimizes χ(m). The 
advantage of this approach is the possibility of managing a greater number of parameters, 
at the expense of having only limited information on the solution non-uniqueness 
(Fichtner, 2011). 

The misfit functional (i.e. objective function) can be defined using various norms (Menke, 

1989): ‖𝜒௡‖ = (∑ ⌈𝑒௜⌉
௡ே

௜ୀଵ )
భ
೙, where n is the norm’s magnitude order. As the exponent n 

grows, the weight of the outliers (anomalous values, far from the characteristic 
distribution of the data) becomes more important. For 𝑛 = 2, the previous relation stays 
for the least-squares norm (𝐿ଶ). Solving an inverse problem formulated in the 𝐿ଶ 

norm ‖𝜒‖ଶ =  (∑ |𝜒ଶ|ே
௜ୀଵ )

భ
మ  ‖𝜒‖ଶ

ଶ =  ∑ |𝜒ଶ|ே
௜ୀଵ  means obtaining the minimum of the 

squared differences between the observed data and the data predicted for a certain model. 

The matrix formulation for the 𝐿ଶ norm-based objective function is: 

 𝜒ଶ = 𝜒்𝜒 = (𝑑௢௕௦ − 𝑑௣௥௘ௗ)்  ∙ (𝑑௢௕௦ − 𝑑௣௥௘ௗ),           (3.1) 

where 𝑑௣௥௘ௗ =  𝐆 𝑚, “T” is the transpose operator, 𝑚 is a column vector containing the 
model parameters, 𝑑௣௥௘ௗ  is a column vector which contains the data computed for the 

model 𝑚, and G is the N x M matrix relating the data with the model parameters 𝑚.  

In this work, both a probabilistic and a deterministic approach were used. The 
probabilistic one was employed for dispersion curves inversion, while the adopted FWI 
tool is based on a deterministic technique.  

The following sections provide a brief introduction to the global search and local search 
methods. A detailed quantitative description can be found in Tarantola et al. (2005).  
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3.3 – Global optimization: a conceptual overview 

The global optimization, related to the probabilistic theory, can be adopted for the inverse 
problem solution. In this framework, the Bayesian inference consists in the combination of 
a priori information with observed data, leading to a posteriori probability distribution 
function (e.g. Tarantola, 1987 e 2005), which represents the complete solution of the 
inverse problem (Sambridge and Mosegaard, 2002).  

Very popular global methods are the so-called Monte Carlo (MC) (Rothman, 1985; 
Tarantola, 1987) that allow an efficient extension of the Bayesian theory to nonlinear 
problems (Sambridge and Mosegaard, 2002). MC methods are based on the discrete 
simulation of the probability distribution and direct sampling in the parameter space, 
through a random (uniform) or pseudo-random (non-uniform) search. For each model’s 
parameter, a probabilistic distribution is defined. Then, in the range of this distribution, a 
random parameters extraction is carried out. The extracted parameters are used to solve 
the forward problem. The inverse problem solution is based on statistical tests, in which 
the consistency of each predicted data with the observed data is verified. The result of the 
inversion is no longer a single value, but a probability distribution function.  

When the number of unknowns is high, the sampling of the parameter space can be 
executed in a non-uniform manner: e.g. Simulated Annealing, Neighborhood Algorithm. 
Further, Genetic Algorithms (GA), introduced by Holland (1975) and developed in various 
works, i.e. Whitley (1994), are heuristic procedures inspired by an analogy with the 
natural selection and genetic evolution, defined as a form of optimization (Sambridge and 
Mosegaard, 2002). They are based on conceptually similar mechanisms to some processes 
from biology and genetics, in particular the selection, recombination and mutation. The 
models are therefore considered as individuals of a population, whose evolution is based 
on natural selection, recombination and mutation.  

Firstly, a population of individuals with an initial random distribution (within a 
predetermined range) is generated, representing all the possible solutions for the inverse 
problem. The starting models are evaluated, by modifying them (using selection, 
recombination and mutation operators) during a series of successive generations, until the 
convergence towards an optimal model is obtained. To this aim, forward modeling is 
performed, and the associated errors are calculated for each of the selected initial model 
(relatives) and a new model (the so-called descendants of the parent models, resulted from 
the first recombination) of a given generation. After this operation, the models are 
evaluated in terms of data misfit. The process continues with the selection and 
recombination of the best individuals (relatives and descendants) of each generation, 
recombination and mutation, calculation of forward modeling and associated errors, new 
selection and so on until a certain convergence criterion is satisfied. As the selection acts to 
remove the diversity of the relatives, the purpose of the mutation operator is maintaining a 
certain degree of diversity within the population (Sambridge and Mosegaard, 2002). The 
individuals can also be gathered into various sub-populations that evolve separately and 
are recombined after a certain number of generations. The final goal of the GAs is finding 
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the model with the lowest misfit, within the possible solutions generated and the 
associated uncertainties (defined as the probability of a posteriori distribution). 

3.4 – Local search methods and the linearized technique  

The local inversion techniques (i.e. gradient-based) aim at minimizing a certain objective 
function, starting from a model that should guide the convergence towards the nearest 
minimum of such function. During this iterative minimization process, the initial model is 
subsequently updated, following the negative gradient, until a certain convergence 
criterion or a certain number of iterations is reached. The minimum of the objective 
function is found by iteratively zeroing the partial derivatives, computed with respect to 
each parameter of the model 𝑚,  and exploiting some matrix transposition properties, like 
(AB)் =  B்A்and A்B =  B்A: 

∇௠ [(𝑑௢௕௦ − G𝑚)்  ∙  (𝑑௢௕௦ − G 𝑚)] = 0   

∇௠ ඃ𝑑௢௕௦
் 𝑑௢௕௦ − 2 𝑑௢௕௦

் (G 𝑚) +  𝑚் G் (G 𝑚)ඇ = 0  

−2 𝑑௢௕௦
் G + 2 𝑚் G்G = 0   𝑚் G்G =  G் 𝑑௢௕௦     

 𝑚 =  (G் G)ିଵ G் 𝑑௢௕௦                        (3.2)  

Regarding the seismic data inversion, the nonlinear relationship between the seismic 
wavefield and the model parameters can be written in compact form as: u(x, 𝑡) = G(𝑚) 
(Virieux and Operto, 2009). The solution of such a nonlinear inverse problem can be 
iteratively retrieved through the gradient descent techniques. They are usually (but not 
necessarily) based on the least-squares norm: 𝜒(𝑚) =  భ

మ
 𝛥𝑑்𝛥𝑑, where T is the transpose 

conjugate and 𝛥𝑑 =  𝑑௢௕௦ −  𝑑௖௔௟௖(𝑚௜). 

For nonlinear inverse problems, a widely used approach for the misfit function 
computation is the quasi-Newton method. Accordingly, for small variations inside the 
matrix G, the higher-order terms can be ignored, and the inverse problem can be 
"linearized" in a small neighborhood of the model parameters m (i.e. the Born 
approximation). This fact implies the assumption of a linear relationship between the 
model parameters and wavefield perturbation (Woodward, 1992; Virieux and Operto, 
2009). Consequently, the updated model is expressed through the summation of the 
starting model 𝑚௢  plus a small perturbation 𝛥𝑚, in the opposite direction of the gradient: 
𝑚ଵ =  𝑚௢ +  𝛥𝑚. Exploiting this relation, the objective function’s formulation is based on 
the analogy with the Taylor-Lagrange development in the starting model’s 𝑚଴ 
neighborhood 𝛥m. The series can be truncated at the first order (Jacobian matrix) or the 
second order (Hessian matrix):  

𝜒(𝑚଴  ± ∆𝑚) 𝜒 (𝑚௢) ±  
డఞ (௠బ)

డ௠
 𝛥𝑚 +  భ

మ

డమఞ (௠బ)

డ௠మ  ∆𝑚ଶ ±  
ଵ

ଷ!
 
డయఞ (௠బ)

డ௠య ∆𝑚ଷ +
ଵ

௡!
 
డ೙ ఞ(௠బ)

డ௠೙ 𝛥𝑚௡  +

 𝒪(𝛥𝑚)௡ାଵ  .                           (3.3) 
The Jacobian matrix contains the first derivatives of the objective function with respect to 
each parameter belonging to the model space, while the Hessian matrix contains the 
corresponding second-order derivatives:  
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𝜒(𝑚଴ + ∆𝑚) =  𝜒 (𝑚଴) + ∑
డఞ (௠೚)

డ௠೔

ெ
௜ୀଵ  ∆𝑚௜ +  భ

మ
 ∑ ∑

డమఞ (௠೚)

డ௠೔డ௠ೕ

ெ
௝ୀଵ

ெ
௜ୀଵ ∆𝑚௜∆𝑚௝ +  𝒪(𝛥𝑚)ଷ .  (3.4) 

The error 𝒪(𝛥𝑚)ଷ is zero when the misfit functional is a quadratic function of the variable 
m (Virieux and Operto, 2009).  

The general scheme of the gradient descent methods gathers the following steps: 

1. The choice of an initial model 𝑚௢ and the forward problem solution: 𝑑௣௥௘ௗ = G(𝑚଴). 
2. The computation of the residuals: 𝛥𝑑 = (𝑑௢௕௦ − 𝑑௣௥௘ௗ). 

3. The definition of the objective function: 𝜒(𝑚଴) =  
ଵ

ଶ
𝛥𝑑் 𝛥𝑑. 

4. The computation of the model update amount and direction, through the minimization 
of the objective function. 

5. The model update: 𝑚௜ାଵ =  𝑚௜ −  𝐺ିଵ ∇௠ 𝜒(𝑚௜), using a step that guarantees the 
condition 𝜒(𝑚௜ାଵ) <  𝜒(𝑚௜) to be true. 

6. Setting  𝑖 = 𝑖 + 1 and returning to step 2. 

In matrix notation, the linearized relationship providing the predicted data can be 

expressed as: ∆ 𝑑௜ =  
డ 𝐆೔

డ௠ೕ
  ∆ 𝑚௝. In detail: 

 ∆ 𝑑ଵ =
డ𝐆భ

డ௠భ
∆ 𝑚ଵ +  

డ𝐆భ

డ௠మ
 ∆ 𝑚ଶ + ⋯ +

డ𝐆భ

డ௠ಾ
∆ 𝑚ெ, 

 ∆ 𝑑ଶ =
డ𝐆మ

డ௠భ
∆ 𝑚ଵ +  

డ𝐆మ

డ௠మ
 ∆ 𝑚ଶ + ⋯ +

డ𝐆మ

డ௠ಾ
 ∆ 𝑚ெ, 

           … 

 ∆ 𝑑ே =  
డ𝐆ಿ

డ௠భ
∆ 𝑚ଵ +  

డ𝐆ಿ

డ௠మ
 ∆ 𝑚ଶ + ⋯ +

డ𝐆ಿ

డ௠ಾ
 ∆ 𝑚ெ,                          (3.5) 

where 𝑖 = 1 … 𝑁 is the number of rows and 𝑗 = 1 … 𝑀 is the number of columns of the 
matrix G. The above relation can be written as: ∆𝑑 = J ∆𝑚 , where ∆𝑑 is the increment data 
vector, ∆𝑚 is the increment model parameters vector and J is the Jacobian matrix.  

The above formulation recalls the configuration of a linear inverse problem and, therefore, 
similar techniques can be adopted for inferring the solution. For example, according to the 
L2 minimization of the objective function, the inverse problem solution can be computed 
as: 

∆𝑚 = (J୘ J)ିଵ J୘ ∆ 𝑑௢௕௦ .    (3.6) 

Nevertheless, in this case, ∆𝑚 is not the final solution, but the correction to be applied to 
the initial model 𝑚௢ (or to the predicted model of a certain iteration 𝑚௜), before 
proceeding towards the next iteration.  

When adopting the second-order approximation, the model update is obtained by 
minimizing the objective function 𝜒 in the proximity of the starting model 𝑚௢ as follows: 

డఞ(௠బା∆௠)

డ௠
=

డఞ (௠బ)

డ௠
+  ∑

డమఞ (௠೚)

డ௠೔డ௠
 ெ

௝ୀଵ ∆𝑚௜ ,                        (3.7) 

∆𝑚௜ = − ቒ
డమ ఞ (௠೚)

డ௠೔డ௠
ቓ

ିଵ
డఞ (௠బ)

డ௠
= − 𝐻ିଵ ∇௠ 𝜒(𝑚଴).                (3.8) 
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where H is the Hessian matrix, defining the curvature of the objective function, and the 
term 𝜕𝜒 (𝑚଴)/𝜕𝑚 = ∇௠ 𝜒(𝑚଴) is the gradient of the objective function, providing the 
steepest descent direction (Virieux and Operto, 2009). The direction and amount of model 
perturbation are not provided by the gradient of the misfit function itself, but by the action 
of the Hessian’s inverse to the gradient (Mora, 1987b; Virieux and Operto, 2009). The 
perturbation model ∆𝑚 is searched in the opposite direction of the gradient. 

As the computation of the Hessian matrix inverse is usually expensive for an elastic 
problem, a scalar, called step length, is commonly used instead (Virieux and Operto, 2009). 
The relations for the model perturbation and model update become: 

∆𝑚 = −𝛼
డఞ (௠బ)

డ௠
= − 𝛼 ∇௠ 𝜒(𝑚଴).                                (3.9) 

 𝑚ଵ =  𝑚଴ − 𝛼 ∇௠ 𝜒(𝑚଴).                (3.10)  

Several techniques for the step length estimation have been developed. Among these, the 
most common one is the line search (Gauthier et al., 1986; Tarantola 1984b and 1987; 
Sambridge et al., 1991). An inaccurate estimation of the step length can guide the 
convergence towards a wrong model.  

According to Shin et al. (2001) and Warner et al. (2013), the convergence of the inversion 
algorithm can be significantly improved when dividing the gradient by the diagonal terms 
of the Hessian matrix, which may act as scale property of the gradient (Pratt et al., 1998): 

   𝛥𝑚௜ ≈ −
ఈ

௛೔೔
 

డఞ (௠బ) 

డ௠
= −

ఈ

௛೔೔
 ∇௠ 𝜒(𝑚଴)                   (3.11) 

Even though the linearized techniques are computationally efficient, the inverse problem 
solution is reliable only if the initial model 𝑚௢ is close to the objective function’s global 
minimum. Thus, for a non-linear problem, the risk of ending up in a local minimum is high 
and the choice of the initial model imperatively constrains the proper convergence of the 
algorithm. 

3.5 – Highlights 

 An inverse problem may have multiple solutions; a priori information, or a very 
accurate first guess, are necessary elements for mitigating this issue. 

 If the relation connecting the data with the model parameters (unknowns) depends on 
the unknowns, the inverse problem is defined as nonlinear. 

 There are two main methods for the solution of a nonlinear inverse problem: 
local/deterministic (based on the computation of the gradient) and 
global/probabilistic (based on the global search in the parameters space). 

 The deterministic methods are computationally less demanding than the probabilistic 
ones, but they require a very accurate initial model, “located” in the proximity of the 
objective function’s global minimum. Otherwise, the convergence can reach a local 
minimum, related to a wrong solution. 
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4.1 – Some concepts related to surface waves propagation  

This section presents some concepts related to SW propagation in vertically heterogeneous 
media. A detailed quantitative description can be found, for example, in Aki and Richard 
(2002) and Foti et al. (2015). 
The basic theory is referred to both Rayleigh waves and Love waves, although more 
attention is given to the Rayleigh waves because they are preferentially employed in most 
of the practical applications for near-surface characterization. Few applications use Love 
waves (generated from horizontally polarized SWs) since they suffer from stratigraphy 
related limitations. For marine applications, Scholte waves (propagating along the fluid-
solid interface) are used, although the geometric dispersion is influenced by the thickness 
of the fluid layer.  

4.1.1 – Skin depth, critical depth and geometric dispersion 

SWs are generated at the boundary of a domain (i.e. the free surface of the Earth) where 
the internal stress vanishes (Foti et al., 2015). They generally exhibit a 2D radiation pattern 
and a lower geometrical attenuation than body waves (BWs), dominating the wavefield 
after a certain number of wavelengths from the source (Lamb, 1904). Since only a small 
amount of energy propagates inside the medium, the displacement field generated by SW 
decays exponentially with depth and it is confined within about one wavelength from the 
surface (Achenbach, 1984). In this framework, the concept of skin depth is related to the 
depth at which the SW amplitude decreases by a factor of 1/e (which is about 0.94λ for 
Rayleigh waves in a homogeneous medium – Foti et al., 2015).  

The horizontal and vertical particle displacements associated with the propagation of a 
Rayleigh wave are out of phase by 𝜋/2 (in an elastic homogeneous half-space), leading to 
elliptical particle motion on the {𝑥ଵ, 𝑥ଶ} plane, with a retrograde orbit in correspondence of 
the free surface and prograde orbit at a depth of about 𝑥ଶ

௖ = 0.2𝜆. The ratio between 
vertical and horizontal displacement is about 1.5 at the free surface, while in 
correspondence of the so-called critical depth 𝑥ଶ

௖ , the horizontal displacement vanishes and 
the motion is only vertical (Foti et al., 2015) – Figure 4.1. 

In a viscoelastic medium, the phase difference between the horizontal and vertical 
components of the wavefield is no longer  𝜋/2, because the Rayleigh eigenfunctions are 
complex-valued. This fact leads to a backward or forward rotation of the medium particles 
with respect to the free boundary (Foti et al., 2015). 
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Figure 4.1 - Particle displacement associated with the Rayleigh wave propagation; here the 
medium is considered as homogeneous (from Foti et al., 2015).  

In a heterogeneous medium where velocity of the seismic waves increases with depth, the 
lower-frequency components (larger wavelengths), which penetrate deeper in the 
subsurface than the higher-frequency components (shorter wavelengths), “propagate” with 
higher velocities (controlled by the rheological properties of the deeper geological layers). 
This phenomenon is known as geometric dispersion (i.e. the phase velocity of Rayleigh 
waves is frequency dependent) - Figure 4.2.  

 
Figure 4.2 – Geometric dispersion of Rayleigh waves: the variation of vertical particle 
displacement related to the propagation of two signals having different frequencies (from 
Foti et al., 2015).  
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The solution of a linear dispersive wave equation can be written as: 

𝑓(𝑥, 𝑡) = 𝐴 𝑒௜[௞௫ିఠ(௞)௧],                   (4.1) 

where A is the wave’s amplitude, 𝜔(k) is the wavenumber-dependent circular frequency, 
and [𝑘𝑥 − 𝜔(𝑘)𝑡] is the (constant) phase of the wave front. The wavenumber/frequency-

dependent phase velocity is: 𝐶௢ =  
ௗ௫

ௗ௧
=  

ఠ(௞)

௞
.         (4.2) 

The solution of the partial differential wave equation for a dispersive medium can be 
retrieved by using the Fourier integral:  

𝑓(𝑥, 𝑡) =  
ଵ

ଶగ
∫ 𝐴(𝑘)𝑒௜[௞௫ିఠ(௞)௧]ஶ

ିஶ
𝑑𝑘,          (4.3) 

which describes a superposition of waves characterized by different wavenumbers and 
phase velocities.  

The geometric dispersion is used to retrieve some characteristic parameters of the 
subsurface (commonly the S-waves velocity profile) via dispersion curves (i.e. the SW phase 
velocity variation as a function of wavelength/frequency) inversion (Figure 4.3). 

 
Figure 4.3 – Sketch of the dispersion curves inversion process (from Foti et al., 2015). 

4.1.2- Near-field effects 

Near the source, BWs and SWs component are not separated, biasing the phase velocity 
estimation, especially in the low-frequency band. Since BWs attenuation (spherical front) is 
faster than SWs attenuation (cylindrical front), a different spreading of energy in space is 
induced. At a certain distance from the source, as BWs energy reduces, their contribution 
can be neglected. Therefore, the concept of near field indicates the distance from the source 
where the influence of BWs field is significant (Aki and Richard, 2002; Foti et al., 2015).  

Most of the techniques used for extracting the DCs from seismic data are based on the 
plane wave front assumption. Nevertheless, in the near field, the cylindrical shape of the 
wave front (Figure 4.4) cannot be neglected and the use of cylindrical coordinates may be 
necessary (Zywicki and Rix, 2005). 
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Figure 4.4 - Radiation pattern of Rayleigh waves associated with a vertical point source (from 
Foti et al., 2015).  

A way of mitigating the near-field effects is, for example, increasing the offset of the first 
receiver (Yoon and Rix, 2009). The drawback of this approach is the loss of high-frequency 
components and the consequent loss in resolution in the shallow layers.  

4.1.3- The eigenvalue problem  

In heterogeneous media, the interference among waves scattered by different interfaces 
generates different modes of propagation. Considering a SW with a frequency ω 
propagating in the horizontal direction x (Aki and Richards, 2002): 

𝐮(𝑥, 𝑦, 𝑧, 𝑡) = 𝐙(𝑧) 𝑒[௜ (௞௫ିఠ௧)],                      (4.4) 

under the free-surface condition 𝑧 = 0, depth boundary condition 𝑧 = ∞, and the condition 
to satisfy the equation of motion, such solution can be retrieved by giving an arbitrary 
value to 𝜔, and considering k as dependent on 𝜔: 𝑘௡(𝜔). This is an eigenvalue problem, 
where the symbol 𝑛 indicates that more than one value of k may provide SWs with a given 
frequency 𝜔. In other words, different modes may correspond to a given frequency 𝜔 (Aki 
and Richards, 2002). 

For a given frequency 𝜔, the SW wavenumbers can be expresses as 𝑘଴(𝜔), 𝑘ଵ(𝜔), … , 𝑘௡(𝜔), 
where 𝑘௡(ω) is an eigenvalue corresponding to the eigenfunction 𝐮௡(𝑧); among all 
eigenvalues, 𝑘଴(𝜔) is the largest one (𝑘଴ > 𝑘ଵ > ⋯ > 𝑘௡). The phase velocities 𝐶௡ = 𝜔/𝑘௡ 
have discrete values for any frequency 𝜔; among all phase velocity values, 𝐶଴ is the lowest 
one (𝐶଴ < 𝐶ଵ < ⋯ < 𝐶௡).  

In a medium composed of a finite number of homogeneous layers overlying a 
homogeneous half-space, the number of modes is limited (Ewing et al., 1975). The 
fundamental mode 𝑛 = 0 is generally dominant in long-period waves generated by shallow 
sources. The separation of various modes can be identified at great propagation distances, 
where they arrive at different times, as propagating with different group velocities.  

In some cases, the energy associated with the higher modes is negligible, while the 
fundamental mode assumes a predominant role in the propagation of Rayleigh waves. 
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Differently, when the higher modes play an important role (e.g. in inversely dispersive sites 
or in presence of high impedance contrasts), the phase velocity retrieved from a relatively 
short acquisition spread is an apparent one, related to an apparent DC, determined by the 
superposition of various modes. In such conditions, the modes superposition must be 
accounted for in the forward problem solution and inversion, or various processing 
techniques must filtrate the various modal components before extracting the experimental 
DC (Foti et al., 2015).  

When Rayleigh waves exhibit multimodal propagation, a greater penetration depth is 
reached. Therefore, the reconstruction of the deeper layers through DCs inversion also 
depends on the correct identification of the higher modes of propagation (Foti et al., 2015) 
– Figure 4.5. 

 

Figure 4.5 – Various modes of horizontal component (dashed lines) and vertical component 
(bold lines) of Rayleigh displacement eigenfunctions for a vertically layered medium (from 
Foti et al., 2015). It can be noticed how the particle displacement associated with the mode 
n=4 reaches the highest depth. 

4.1.4 - Phase velocity versus Group velocity 

In a homogeneous medium, SWs are not dispersive, and the waveform does not change 
during the propagation since the phase velocity 𝐶௡ is not frequency dependent. Conversely, 
in a dispersive medium, SW velocity varies as a function of frequency and the aspect of the 
waveform varies with increasing offset.  

The phase velocity is the propagation velocity of a single phase of the waveform. The group 
velocity is related to a wave packet consisting of contribution from a frequency range 
around a given frequency 𝜔଴. The peaks and troughs of the wave packet propagate at the 
same phase velocity, generally different from the group velocity (Aki and Richards, 2002). 
Given a wave packet with a spectral density |𝐹(𝜔)| and initial phase 𝜙(𝜔), containing a 
single mode (Aki and Richards, 2002):  
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𝑓(𝑥, 𝑡) =  
ଵ

ଶగ
∫ |𝐹(𝜔)| 𝑒[ି௜ఠ௧ ା ௜௞೙௫ ା ௜థ(ఠ)]ஶ

ିஶ
𝑑𝜔,               (4.5) 

in a non-dispersive medium (with invariable 𝐶௡ = 𝜔/𝑘௡) the waveform remains constant 
over the propagation path: 

𝑓(𝑥, 𝑡) =  
ଵ

ଶగ
∫ |𝐹(𝜔)| 𝑒[ି௜ఠ(௧ ି ௫/஼೙) ]ஶ

ିஶ
𝑑𝜔 = 𝑓(𝑡 − 𝑥/𝐶௡).                       (4.6) 

For a strongly dispersive SW, the waveform can be approximated, for example, by using the 
stationary phase method (Aki and Richards, 2002). This involves the integral estimation in 
the vicinity of the saddle point, where the phase is stationary or vary slowly with the 
frequency ω: 
ௗ

ௗఠ
(−𝜔𝑡 + 𝑘௡𝑥) = 0  or  

௫

௧
=

ௗఠ

ௗ௞೙
.           (4.7) 

The above equation provides the frequency 𝜔௦(𝑥, 𝑡) dominating at time t and distance x for 
which the group velocity is equal to x/t. The character of the SW seismogram at the 
position x is determined by how many 𝜔௦  frequencies exist for the fix position x and 
variable time t (Aki and Richards, 2002).  

The second-order approximation of Taylor’s series expansion of the phase near the saddle 
point (of stationary phase) gives: 

−𝜔𝑡 +  𝑘௡𝑥 ≈ −𝜔௦𝑡 +  𝑘௡(𝜔௦)𝑥 +  
௫

ଶ
 

ௗమ௞೙

ௗఠమ  (𝜔 − 𝜔௦)ଶ.        (4.8) 

Considering twice the contribution of positive frequencies, the formula (4.6) becomes (Aki 
and Richards, 2002): 

𝑓(𝑥, 𝑡) =
ଵ

ଶగ
2𝑅𝑒 ቊ𝑒[ି௜ఠೞ௧ ା ௜௞೙(ఠೞ)௫]|𝐹(𝜔)| ∫  𝑒

൤
ೣ

మ
௜  

೏మೖ೙
೏ഘమ   (ఠିఠೞ)మ൨ஶ

ିஶ
𝑑𝜔ቋ.      (4.9) 

Considering the property ∫ sin ቀ
ଵ

ଶ
𝑎𝜔ଶቁ 𝑑𝜔

ஶ

଴
=∫ cos ቀ

ଵ

ଶ
𝑎𝜔ଶቁ 𝑑𝜔 =  

ଵ

ଶ
 ට

గ

௔

ஶ

଴
, the formula (4.9) 

can be written as (Aki and Richards, 2002): 

𝑓(𝑥, 𝑡) ≈
|ி(ఠೞ)|

గ
 ඨ

ଶగ

௫ ฬ
೏మೖ೙
೏ഘమ ฬ

 cos ቂ−𝜔௦𝑡 +  𝑘௡(𝜔௦)𝑥 ±  
గ

ସ
ቃ.                     (4.10) 

The formula (4.10) describes the normal dispersion of SW, for a given phase velocity 𝐶௡ =

𝜔/𝑘௡ and group velocity 𝐶௚ = 𝑑𝜔/𝑑𝑘. The sign of the phase shift by 𝜋/4 (time shift of 1/8 

T) marks a delay when the group velocity increases with the period. When the group 
velocity is stationary for various frequencies, the term 𝑑ଶ𝑘௡/𝑑𝜔ଶ is zero and the above 
formula is not valid anymore (Aki and Richards, 2002).  

The expression of the phase, when using a higher-order approximation in the Taylor 
expansion, provides results in terms of Airy function, while the arrivals associated with the 
maxima and minima of the group velocity are called Airy phases (e.g. Savage, 1969). 

The group velocity is simpler defined as (Stokes, 1880): 

𝐶௚ =  
ௗఠ(௞)

ௗ௞
 = 𝐶଴ + 𝑘

ௗ஼బ

ௗ௞
=  𝐶଴ ቀ1 − 𝑘

ௗ஼బ

ௗఠ
ቁ

ିଵ

.      (4.11) 
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The above expression can be retrieved by considering the propagation, in a dispersive 
medium, of a signal composed by the superposition of two monochromatic waves with 
identical amplitude and frequency:  

𝑓(𝑥, 𝑡) = 𝐴 sin(𝑘ଵ𝑥 −  𝜔ଵ𝑡) + 𝐴 sin(𝑘ଵ𝑥 −  𝜔ଵ𝑡).            (4.12) 

Considering 𝑘௠ =
௞భା௞మ

ଶ
, 𝑘 =

௞భି௞మ

ଶ
, 𝜔௠ =

ఠభାఠమ

ଶ
, 𝜔 =

ఠభିఠమ

ଶ
 , 

the equation (4.12) can be written as (Foti et al., 2015): 

𝑓(𝑥, 𝑡) = 2𝐴 cos(∆𝑘𝑥 − ∆𝜔𝑡) sin(𝑘௠𝑥 − 𝜔௠𝑡),            (4.13) 

describing a signal propagating with phase velocity C଴ =  ω୫/k୫, and an envelope 
velocity  C୥ = dω/dk. The equation for the group velocity is obtained for dk → 0. The 

phase velocity may be higher or lower than the group velocity. In normally dispersive 
conditions, the phase velocity is usually higher than the group velocity. When the derivative 
of the phase velocity is equal to zero (i.e. in a homogeneous medium), the phase velocity is 
equal to the group velocity.  

Figure 4.6 illustrates schematically the concept of phase velocity and group velocity.  

 
Figure 4.6 - Phase velocity 𝐶଴ vs Group velocity 𝐶௚ for a signal composed by a superposition of 
several monochromatic waves with similar frequencies (from Foti et al., 2015). 
 
In the presence of higher modes of propagation, each mode is described by a frequency-
dependent phase and group velocity (Foti et al., 2015) – Figure 4.7. 
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Figure 4.7 – Example of dispersive behavior of SWs for a normally dispersive site: (a) 
common-shot gather, (b) dispersion curves for the phase velocity (𝑐଴) and group velocity (𝑐௚) 
of each mode (from Foti et al., 2015 - modified).  

The group velocity analysis is commonly used in seismology for the Earth crust 
characterization, or it is applied to microtremors for basin characterization; however, it is 
not a commonly used method for near-surface characterization, because of the limited 
resolution and interference between the various modes of propagation (Foti et al., 2015). 

4.2 – Applications and developments of the surface wave 
method 

Most of the surface waves (SW) based applications exploit the physical phenomenon of 
geometric dispersion to retrieve the values of some depth-dependent parameters of the 
subsurface.  

There are two main categories of SW methods: passive methods, exploiting natural sources 
that generate low-frequency signals (such as ambient noise) and active methods, based on 
sources that produce signals characterized by higher frequencies. The first ones allow 
exploring deeper geological formations (at the expense of the shallower layers resolution), 
while the second ones explore the shallower horizons with relatively high resolution.  

There are various applications based on the joint use of active and passive methods (e.g. 
Foti, 2005; Foti et al., 2007). They allow reconstructing the dispersion curve DC (i.e. the SW 
phase-velocity associated with different frequencies/wavelengths) for a wider band of 
frequencies (and then for various depths), while still preserving a high resolution for the 
shallower layers - Figure 4.8. 
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Figure 4.8 – Schematic illustration of the combination of passive methods (lower frequencies) 
with active methods (higher frequencies), providing the reconstruction of the dispersion curve 
for a wider frequency range (from Foti et al., 2015). 

DCs are functions of the physical and mechanical proprieties of the subsurface and they can 
be used for the solution of an inverse problem, aimed at retrieving the model parameters. 
The inversion of SW DCs classically provides the local S-wave velocity model (e.g. Foti et al., 
2000, 2001, Socco and Strobia, 2004; Socco et al., 2010b; Haney and Miller, 2013). The 
retrieved models are used for many applications. One of them is defining the weighted 
average value of the S-wave velocity in the upper 30 meters of the soil profile (Vs,30) for 
the site seismic response characterization (e.g. Brown et al., 2000; Moss, 2008; Comina et 
al., 2011). Another one is retrieving the one-way travel-times, used to compute the static 
corrections of the 3C seismic reflection data (e.g. Papadopolou et al., 2020).  

In heterogeneous media, SW propagation may exhibit different modes (one single 
frequency can “travel” with different velocities). In this case, the DC is an apparent one, 
formed by the superposition of various modes and related to an apparent phase velocity. 
For a normally dispersive vertical profile (whose stiffness increases with depth), the 
fundamental mode may be dominant. This fact does not occur in the presence of high 
impedance contrasts and velocity inversions, where the higher modes may exhibit 
preferential sensitivity to some parameters. However, they could be used to increase the 
inversion’s robustness (Gabriels et al., 1987; Socco and Strobbia, 2004; Boiero et al., 2009; 
Maraschini and Foti, 2010; Bergano et al., 2011).  

A longer array of receivers allows distinguishing better the various modes of propagation 
than a shorter array, which usually limits the analysis to the fundamental mode. The 
necessity of considering the higher modes triggered the development of various filtering 
techniques based, for example, on group velocity separation (e.g. Dziewonski et al., 1969; 
Levshin et al., 1994). The main advantage of inverting the higher modes is extending the 
investigation to higher depths than the ones interested by the particle displacement of the 
fundamental mode (Gabriels et al., 1987; Socco et al., 2010a; Foti et al., 2015). They may 
also enhance the resolution of the inverted model (Xia et al., 2003). 
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Regarding the DC inversion approach, a Monte Carlo method proved to be more suitable 
than a deterministic one, especially when the multi-modal Rayleigh waves propagation is 
considered; this occurs because the multi-modal objective function is characterized by 
many local minima. For the classical inversion of the SW DCs, a vertically layered model, 
which neglects the lateral variations, is commonly hypothesized in the forward modeling 
step. This simplification allows using different algorithms for the forward problem 
solution, i.e. propagator matrix (Thomson, 1950; Haskell, 1953; Gilbert and Backus, 1966) 
or stiffness matrix (Kausel and Roesset, 1981). Despite the 1D assumption of SW methods, 
there are some successful examples in literature for the reconstruction of lateral 
heterogeneities and anomaly detections (e.g. Socco et al.,2009; Boiero and Socco, 2010; 
Schwenk et al., 2016; Liu et al., 2019).  

Commonly, to simplify the inverse problem’s dimensionality and trade-off and to reduce 
the computation time, some parameters (such as the density and the Poisson's ratio) are 
considered a priori known, and only the S-wave velocity and the layers’ thickness vary 
during inversion. The choice of considering the density and the Poisson’s ratio as known 
parameters during inversion is also based on a sensitivity analysis performed by Nazarian 
(1984), who showed how this simplification reduces the number of unknown parameters 
from 4n-1 to 2n-1, where n refers to the number of layers overlaying a half-space, half-
space included. A common issue of DC inversion is the solution’s non-uniqueness (several 
velocity profiles can provide different DCs positioned at the same distance from the 
experimental DC). This renders the evaluation of the experimental errors, together with 
the uncertainties’ assessment, non-negligible aspects for defining the solution’s reliability 
(e.g. Cercato, 2009; Foti et al., 2009; Foti et al., 2015).     

*** 
SWs have been intensively used in seismology for crustal layers characterization from 
earthquake recordings (Aki & Richards, 2002). Since the 1950s, the SW method was also 
applied for engineering site characterization (e.g. Jones 1958, 1962). After the 1970s, SWs 
were widely used for the reconstruction of the Earth’s interior at various depths (including 
the upper mantle), supported by the continuous development of seismic networks and 
numerical analysis theory.  

The use of passive SW tests (microtremor surveys – e.g. Louie, 2001; Strobbia and Cassiani, 
2011, recording the ambient noise with a 2D array of receivers) has been supported by the 
development of various processing techniques, such as the frequency-domain 
beamforming (Lacoss et al., 1969) and the spatial autocorrelation (Aki, 1957). Passive data 
sets are usually acquired using 2D arrays, but there are few examples of passive data 
recorded with linear arrays (ReMi – e.g. Louie, 2001). 

Another SW analysis approach, which uses the ratio between the vertical and horizontal 
radial component, helps to deconvolve the effects of the source while inverting the 
polarization/ellipticity of SW to estimate the velocity profile. The horizontal-to-vertical 
spectral ratio (HVSR or H/V) is commonly used for the estimation of the natural frequency 
of the site (e.g. Nakamura, 1989, 1996, 2000; Fäh et al., 2001; Fäh et al., 2003).  
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SWs techniques are widely employed in the geotechnical and engineering field, especially 
after the introduction of the SASW (Spectral Analysis of Surface Waves; e.g. Nazarian and 
Stokoe, 1983; Stokoe et al., 1994) and MASW method (Multichannel Analysis of Surface 
Waves - Park et al., 1999; Xia et al., 1999). Most of the applications are based on the 
analysis of Rayleigh waves since they can be more easily identified in the vertical 
component of the seismograms than the transverse motion of Love waves.  

The first SW applications for geotechnical and engineering purposes were based on the 
laterally homogeneous medium assumption, but further strategies have been proposed to 
account for lateral heterogeneities as well (e.g. Bohlen et al., 2004; Bergamo et al., 2012; 
Ikeda et al., 2013).  Socco et al. (2009) and Boiero and Socco (2010) proposed a filtering 
strategy for retrieving smooth lateral variations instead of a 1D model. Their method 
regards the DCs extraction along the seismic line trough moving receiver array or moving 
spatial windows, and the simultaneous inversion of evenly spaced DCs under certain lateral 
constrains. A pseudo-2D or a pseudo-3D model represents the output. Boiero and Socco 
(2014) experimented the joint inversion of the Rayleigh waves DCs and refracted P-waves 
travel-times, highlighting the advantage of eliminating the ambiguities related to velocity 
inversions and hidden horizons.  

Socco et al. (2017) developed a method for the direct estimation from DCs of an average S-
wave velocity profile. This method is based on an approximative linear relationship 
between the SW wavelength and the DC investigation depth. Specifically, the authors 
proved the existence of a link between the depth where the shear wave velocity registers a 
certain value (Vs,z – i.e. the time average S-wave velocity) and the wavelength for which the 
Rayleigh wave phase velocity has the same value. The so-called wavelength-depth 
relationship, retrieved from one DC and the corresponding VS,z profile (known from the 
inversion of from the borehole measurements), can be used to calculate the time average S-
waves velocities corresponding to a set of similar DCs belonging to the same area. The 
authors have shown that the use of the SW inversion for the average VS,Z estimation is only 
partially affected by the solution non-uniqueness problem; this happens because the DC is 
not particularly sensitive to one single model parameter, while it is strongly sensitive to the 
RMS proprieties of the velocity model.  

Even though in classical applications the Poisson’s ratio is kept as constant (as well as the 
density) during the DC curve inversion to a VS profile, many authors highlighted the 
Poisson's ratio influence on the SW investigation depth (e.g. Karray and Lefebvre, 2008; 
Pelekis and Athanasopoulos, 2011). In this framework, Socco and Comina (2017) 
introduced a novel approach for the Poisson ratio estimation from DCs, which exploits the 
sensitivity of the wavelength-depth relationship to the Poisson’s ratio variation. This 
method allows retrieving an average P-waves velocity model (VP,z), broadening the SW 
usefulness to the statics correction computation. Khosro Anjom et al. (2019) extended the 
application of the above method to the reconstruction of the S-wave and P-wave interval 
velocity by exploiting a Dix-type formula and a total variation regularization approach.   
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4.3 - Workflow for initial model building from surface wave 
analysis 

In this study, the initial model building process follows the method proposed by Socco et 
al. (2017) and Socco and Comina (2017). The procedure (Figure 4.9) gathers the following 
steps: 

Figure 4.9 – Synthetic sketch of the initial VP and VS model building workflow. 

a) DCs extraction 

The DCs are extracted from seismic data using a Gaussian windowing approach. Inside 
each Gaussian window, the amplitude of the signal decreases as the distance from the 
window’s center increases. The Gaussian window represents a good compromise between 
the optimum spectral (but low lateral) resolution of a Hanning window (that considers the 
entire receivers line and provides one DC) and the high lateral (but low spectral) 
resolution of a box window (that divides the seismic record in sub-records and provides a 
set of DC) – Figure 4.10, Bergamo et al (2012).  

This Gaussian windowing procedure allows extracting DC related to local physical 
properties along a seismic line. The Gaussian window is defined as (Bergamo et al., 2012): 

                      𝑤(௞) =  𝑒
ష

భ
మ

 ൬ഀ  
ೖ ష (ಿ ష భ) ഁ

(ಿ ష భ)/మ
൰
               (4.14) 

where 𝑤(௞) is the weight assigned to the kth trace, N stays for the number of receivers, β is 

a parameter related to the position of the Gaussian maximum on the receiver array and α is 
a parameter inversely proportional to the window’s standard deviation: σ = N / (2 α). The 
value of the parameter α controls the lateral resolution: for great values of α, the window 
standard deviation decreases and, therefore, the lateral resolution increases. This path in 
offset domain is related to a decrease in spectral resolution, which leads to the necessity of 
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finding an optimum trade-off between lateral resolution and wavenumber resolution. The 
parameter α value needs to guarantee a certain minimum wavenumber resolution, which 
allows for the various SW modes identification and events separation in the f-k domain, 
while still providing us with DCs as local as possible (Socco et al., 2009; Bergamo et al., 
2012).  

In the windowing process, only the external shots, placed outside the receiver line, are 
considered. Once the windowing is completed, for each Gaussian window, all shots are 
converted to the f-k domain and stacked. For each stacked spectrum, the picking of the 
spectral maxima provides the DC (together with the experimental uncertainties), 
corresponding to the related Gaussian window. Each DC is associated with the spatial 
coordinate of the corresponding Gaussian window’s center. At the end of this process, 
several DCs, distributed along the seismic line, are obtained.    

Figure 4.10 – Lateral and 
corresponding spectral resolution 
of different windows: Hanning, 
Gaussian, Box window (from 
Bergamo et al., 2012). ASF= Array 
Smoothing Function, related to the 
spectral resolution. According to 
the Rayleigh resolution criteria, 
the wavenumber resolution can be 
quantified as half the main lobe 
width (HW) at – 6 dB (from 
Bergamo et al., 2012). 

Figure 4.11 shows some details related to the Gaussian window design. In Figure 4.11a, it 
can be noticed how increasing the parameter 𝛼 causes the decrease of the Gaussian 
window’s standard deviation (and therefore the increase in spatial resolution). In Figure 
4.11b we can see how only the external shots, with respect to the receivers belonging to a 
certain Gaussian window, are considered for DC extraction.    

 
Figure 4.11 – a) The relation 
between the Gaussian 
window’s standard deviation 
and the value of the parameter 
a (from Bergamo et al., 2012).  
 
b) Sketch of the selected 
receivers and shots for a 
certain Gaussian window: d is 
the offset range in which the 
shots are selected, W is the 
length of the Gaussian window, 
ΔW indicates the amount of 
window shifting (from Socco et 
al., 2009).  
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Figure 4.12 shows an example of f-k spectra and DC extraction belonging to two different 
Gaussian windows, placed along a seismic line that crosses a low-velocity (sand) target.  

 

Figure 4.12 – Example of f-k spectra and the related DC for two Gaussian windows along a 
seismic line crossing a sand body of low velocity. It can be noticed how the DC related to the 
Gaussian window 1, placed far from the sand target, registers higher phase velocities 
compared with the DC related to the Gaussian window 5, placed in the centre of the sand box.  

c) DCs clustering 

A clustering algorithm divides the DCs into homogeneous sets, according to metric criteria 
based on the Euclidean distance between adjacent DCs (Khosro Anjom et al., 2019): 

  𝑑 (𝑥, 𝑦) =  ඥ(𝑥ଵ −  𝑦ଵ)ଶ + (𝑥ଶ − 𝑦ଶ)ଶ + ⋯ + (𝑥௡ −  𝑦௡)ଶ,          (4.15) 

where d is the Euclidean distance and x and y are two adjacent dispersion curves 
represented by phase velocity as a function of frequency. Different clusters are separated 
by a distance-related linkage criterion.    

Figure 4.13 shows an example of DCs extracted along a seismic line crossing a sand target 
of low seismic velocity. The extracted DCs are divided into two different groups: a group 
characterized by higher phase velocities, which gathers the DCs placed in external 
positions with respect to the sand body (plotted in blue) and a group characterized by  
lower phase velocities, which gathers the DC placed in correspondence of the sand body 
(plotted in yellow). The clustering algorithm efficiently distinguishes these two groups of 
DCs according to different phase velocity trends.     
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Figure 4.13 – Example of dispersion curves extracted along a seismic line crossing a low-
velocity target. The clustering algorithm can separate the extracted DCs into different groups 
according to the phase velocity value: i.e. a group of DCs with higher phase velocities (in blue) 
and a group of DCs with lower phase velocities (in yellow).   

d) Reference DC selection and DC inversion to a reference VS profile 

A reference DC (having a broad frequency band – e.g. Figure 4.14a) is selected inside each 
cluster and inverted to a reference VS profile (e.g. Figure 4.14b) using an optimized Monte 
Carlo approach, based on the application of scale properties between the various 
parameters (Socco and Boiero, 2008; Maraschini et al., 2011). The model parameters 
considered for the inversion are the Vs, the thickness of each layer and the corresponding 
Poisson’s ratio. The forward modeling scheme is based on the Haskell and Thompson 
algorithm (Haskell, 1953; Thompson, 1950; Maraskini, 2008). The results of the MCI are a 
set of accepted VS models, inside the imposed level of confidence in a statistical one-tailed 
Fisher test. The reference VS model is computed by averaging these accepted models at 
each depth (Khosro Anjom et al., 2019).  
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e) Reference VS transformation into a time-average VS profile 

The reference VS is transformed into a depth-continuous time-average VS profile, according 
to equation 4.16 (Socco et al., 2017): 

𝑉ୗ୸ =
∑ ௛೔೙

∑
೓೔

ೡ౏೔
೙ 

      (4.16) 

where hi and 𝑉ୗ௜  are the thickness and the shear velocity of the ith layer, respectively  

The time-average velocity at a given depth allows for the direct computation of the one-
way time at a selected depth z (Socco et al., 2017). Socco et al. (2017) have proven that 
using the time-average velocity instead of the layered velocity for DC computation 
efficiently reduces the solution non-uniqueness problem while enforcing the robustness of 
the results.  

Figure 4.14 – Example of DC inversion to a reference VS profile and VS profile transformation 
to a time-average VS profile (Vs,z) a) Reference DC of the fundamental mode of Rayleigh 
waves, plotted as phase velocity function of wavelength (in black). b) Example of reference VS 
profile (plotted in black) obtained from MC inversion of the reference DC. c) Example of time-
average VS profile (Vs,z), corresponding to the reference VS profile in b) – from Socco et al. 
(2017), modified.    

f) Wavelength-depth relationship definition 

Starting from the reference DC and the corresponding time-average VS profile, a 
characteristic relation between the SW Wavelength and the investigation Depth is inferred 
(W/D relationship) – Figure 4.15. The W/D relationship is retrieved by finding, for each 
VS,Z value, the wavelength at which the phase velocity of the DC is equal to VS,Z. The W/D 
pairs obtained in this way are plotted as wavelength function of depth and interpolated 
with a piece-wise polynomial fit (Figure 4.15b). From this relation, it is possible to directly 
retrieve the VS,Z corresponding to each wavelength related to all DCs belonging to a certain 
cluster (Socco et al., 2017).   
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Figure 4.15 - Example of wavelength-depth relationship construction from the reference DC 
(plotted in green) and the corresponding reference time-average VS profile (plotted with 
grey). a) For each identical values of time-average VS velocity and SW phase velocity (e.g. 390 
m/s), the SW wavelength (e.g. about 51 m) is related with the corresponding VS,Z investigated 
depth (e.g. about 44 m). b) The wavelength-depth relationship is built by plotting all the 
wavelength-depth couples having identical velocity values and interpolating them with a 
piece-wise polynomial – from Socco et al. (2017), modified. 

g) Transformation of all DCs inside each cluster to time-average VS profiles 

All DCs inside each cluster are directly transformed into time-average VS profiles by using 
the retrieved W/D relationship. The obtained VS profiles provide the one-way time values 
at each depth within the investigated limit (Socco et al., 2017). 

h) Apparent Poisson’s ratio estimation for each cluster 

For each reference model (DC-VSZ), inside each cluster, the W/D relationship’s sensitivity 
to Poisson’s ratio variation is exploited to estimate the apparent Poisson ratio (i.e. the 
Poison’s ratio value that relates the time-average VS to the time-average VP; Socco and 
Comina, 2017a). For example (Figure 4.16), the synthetic DCs corresponding to each 
Poisson’s ratio value in the range from 0.1 to 0.45 are inferred from the reference VSZ. 
Further, from each synthetic DC (corresponding to different Poisson’s ratio values, which 
are the same for all the layers of the related synthetic DC) and using the reference VS,Z, the 
related W/Ds are computed. Analysing Figure 4.16, it can be noted how the Poisson ratio 
acts on the slope of the W/D relationship: The W/D slope decreases with increasing 
Poisson’s ratio. The Poisson’s ratio value that matches the experimental data is retrieved 
by comparing the experimental W/D with the simulated ones (Figure 4.17): For each 
depth, the precise value for the experimental Poisson ratio is inferred, from the 
experimental W/D (in red), by linear interpolation between the nearest upper and lower 
values of simulated W/Ds for the same reference VSZ at different Poisson’s ratio values (in 
blue) - Socco and Comina (2017a). 
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Figure 4.16 - Example of W/S 
relationship for the reference 
model (red), compared with the 
estimated W/D for the same 
model and different values of 
Poisson’s ratio (blue) – from 
Socco et al. (2017b), modified.   

 

 

 

 

 

 

Figure 4.17 - Example of 
experimental Poisson’s 
ratio estimation from the 
experimental W/D and the 
upper and lower simulated 
W/Ds. The simulated W/Ds 
are inferred from different 
DCs and the reference VSZ. 
The different DCs are 
computed using different 
Poisson’s ratio values. Each 
DC is associated with a 
constant Poisson’s ratio 
value, from 0.1 to 0.45 
(courtesy of Prof. Valentina 
Socco). 

 

i) Transformation of the time-average VS profiles into time-average VP 

profiles using the Poisson’s ratio 

The apparent Poisson’s ratio is employed to transform the time-average Vs profiles, for 
each cluster, into time-average VP profiles (Socco and Comina, 2017) 
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,      (4.17) 

where ν is the apparent Poisson’s ratio. 
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j) Time-average velocity profiles conversion to interval velocity profiles 

The time-average VS and VP velocities are converted to interval velocities by using a total 
variation regularization on a Dix-type formula (Khosro Anjom et al., 2019):  

       𝑉
ௌ೔,௉೔ ୀ 

ೋ೔షೋ(೔షభ)
ೋ೔

ೇೄ೔,ು೔
 ష 

೥(೔షభ)
ೇೄ(೔షభ),ುೄ(೔షభ)

 , where z is the thickness of the jth layer.                 (4.18)        

   

k) 1D to 2D velocity profiles interpolation and 2D to 3D velocity models 
extension  

The depth-dependent continuous interval-velocity profiles, retrieved along the seismic 
line, are interpolated to 2D models and then converted to 3D volumes. The continuous 
velocity profile is well suited for the FWI procedure, avoiding sharp interfaces. The 
purpose of the 3D extension is honouring the input requirements of the spectral-element 
FWI code, described in the next chapter.  

Limitations and particularities 

 Since the results obtained using the above method are data-driven, the experimental 
uncertainties, as well as the data coverage, directly affect the uncertainties of the 
results.  

 Only the fundamental mode of SW propagation is considered in this work and, 
therefore, the W/D relationship is related to the fundamental mode’s skin depth. In 
laterally variable sites, the challenges in higher modes identification may introduce 
additional experimental uncertainties in the DC extraction step. An example related to 
the “W/D method” application to higher modes of DC can be found in Bamarouf et al. 
(2017).     

 Since the method is based on the direct transformation of local DCs, precaution is 
required in the presence of complex topography.  

 In this study, the estimated Poisson ratio is variable with depth. The highest 
uncertainty for the Poisson estimation occurs at shallow depth (Khosro Anjom et al., 
2019). This result is coherent with the experimental W/Ds relationships’ feature, 
showing an increase in Poisson’s ratio sensitivity with depth. Indeed, it can be noted in 
Figure 4.16 how the W/D relationships related to different Poisson ratios diverge for 
large wavelengths, allowing thus for a more consistent estimation. 

 The first-arrival traveltime tomography is an alternative technique regularly adopted 
to retrieve the VP model. Some experiments and results related to this approach are 
presented in Chapter 9.  
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4.4 – Highlights 

 Most of the SW methods use the geometrical dispersion of Rayleigh wave in vertically 
heterogeneous media to retrieve the depth-dependent variation of some physical 
parameters.  

 The SW technique is based on the analysis of the dispersion curve. The DC represents 
the variation of the phase velocity with frequency/wavelength and it is commonly 
retrieved by spectral analysis in the f-k domain (𝑉ோ = 2 𝜋 𝑓/𝑘).  

 SW methods are divided into two main categories: passive methods, characterized by 
natural sources, generating signals of relatively low frequencies, and active methods, 
generating signals characterized by higher frequencies.  

 In heterogeneous media, the SW propagation is characterized by a phase velocity 
(which is the velocity of propagation of a single phase of the waveform) and group 
velocity (which is the velocity of propagation of a pack of phases around a certain 
frequency). In a normally dispersive medium, the group velocity is lower than the 
phase velocity. The group velocity is not a commonly used method for near-surface 
characterization because of the limited resolution and the interference between the 
various modes of propagation. 

 In the presence of heterogeneities or velocity inversions, SW propagation may exhibit 
different modes (i.e. the eigenvalue problem: different phase velocities can correspond 
to the same frequency). Accordingly, the DC is an apparent one, composed by the 
various modes superposition and related to an apparent phase velocity.  

 Generally, considering the higher modes in the DC inversion process helps to 
reconstruct the physical properties of the deeper layers. This happens because the 
particle displacement associated with the higher modes of Rayleigh wave propagation 
affects a deeper part of the medium. 

 Despite the 1D layered model assumption of SW methods, there are some examples in 
the literature showing successful reconstruction of smooth lateral variations of the 
site. 

 SW methods are mainly used to retrieve the S-wave velocity, but some studies 
proposed a method for the estimation of the P-wave velocity as well. This technique 
exploits the sensitivity, with respect to Poisson’s ratio variation, of a certain 
relationship that exists between the surface wave wavelength and the investigation 
depth (i.e. the wavelength-depth relationship).    
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 The method used in this study for building velocity models from SW DCs analysis 
allows for the estimation of both VP and VS model. The workflow embeds the following 
steps: 

 DC extraction through a Gaussian moving window followed by DC clustering. 

 The inversion of one DC (representative for each cluster) through a Monte Carlo 
technique. 

 The construction of a relationship between SW wavelength and investigation 
depth (the wavelength-depth relationship) using the representative DC and the 
corresponding time-average Vs profile (which is referred to as the one-way time at 
a selected depth z). 

 Data transform: all DCs of each cluster are directly converted to time-average VS 
profiles, using the wavelength-depth relationship. 

 The estimation of the (apparent) Poisson’s ratio from the wavelength-depth 
relationship and the time-average VP model computation. 

  A total variation regularization on a Dix-type formula and the interval velocities 
computation. 

 1D to 2D interpolation (and 3D extension).  

 The Poisson’s ratio estimated in this study is variable with depth.  
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5.1 – Overview  

FWI is a quantitative seismic imaging technique, based on data-fitting and characterized by 
the non-linearity of the relationship between the model parameters and the calculated 
data, the numerical solution of the seismic wave equation, the consideration of the full 
information in the seismograms and the iterative optimization of the tomographic image 
(Virieux and Operto, 2009; Fichtner, 2011). FWI aims at obtaining accurate models of the 
sub-surface physical properties, with a theoretical resolution up to half the local 
propagating wavelength (Virieux and Operto, 2009). Nevertheless, the limited bandwidth 
of the source and the partial illumination of the subsurface (related to the acquisition 
design), renders FWI an ill-posed problem (i.e. many models can explain the data equally 
well) (Virieux and Operto, 2009). For this reason, the application of different strategies and 
constrains over the data and model parameter space is required in most of the cases, 
especially for near-surface investigations, where the SW domination introduces additional 
non-linearities in the inverse problem formulation.   

According to Mora (1988 and 1989), FWI can be considered as a combination of the 
prestack reverse time migration RTM (which "solves" the high wavenumbers, 
corresponding to the reflected components) with the tomography (which "solves" the 
small wavenumbers, corresponding to the transmitted components). Nevertheless, even 
though both RTM and FWI are based on the full-wavefield modeling (e.g. Gardner et al., 
1974; Virieux and Operto, 2009), there are some substantial differences between them. For 
instance, while the former aims at obtaining an image of the reflectivity field, which is not 
necessarily a quantitative measure of the subsoil impedance properties, FWI aims at 
obtaining a quantitative model of the Earth’s velocity field (Pratt et al., 1998; Sirgue & 
Pratt, 2004). Moreover, in RTM the reflected and diffracted seismic wavefield is 
propagated from the receiver position, whereas in FWI only the data residuals are back-
propagated (Virieux and Operto, 2009).   

Before the 1980s, most of the seismic deductions concerning the Earth’s internal structure 
were based on the simplified assumption, related to the geometric optics, of representing 
the seismic waves as rays. The ray theory’s widespread use was mainly due to the difficulty 
of finding analytical solutions for the equation that describes the wave propagation in real 
heterogeneous media. Nevertheless, tray theory is based on many simplifications and is 
applied only to the high-frequency arrivals (Fichtner et al., 2006). The wave propagation is 
described through successive positions of the wave front and the arrival times of seismic 
waves are related to the velocity distribution only along a curve that connects the source 
with the receiver (Kennett et al., 1995; Fichtner, 2011). Also, the spatial resolution of the 
tomographic images is locally limited by the size of the Fresnel zone (Williamson, 1991). 
FWI overcomes the ray theory’s limitations, thanks to the numerical solution of the wave 
equation, which guarantees the accurate modeling of seismic wave propagation in 
heterogeneous media. Besides, the numerical solution provides complete information on 
the seismic waveform, which can be used to improve the tomographic resolution without 
the need to identify the separation of specific phases (Fichtner, 2011).  
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5.1.1 – Time domain or frequency domain? 

FWI was first implemented in the time domain (Tarantola, 1984a and 1984b; Gauthier et 
al., 1986; Mora, 1987a; Crase et al., 1990) and subsequently in the frequency domain 
(Pratt, 1990; Pratt and Worthington, 1990; Pratt and Goulty, 1991; Pratt, 1996; Pratt, 
1999; Operto et al., 2006). According to Sirgue and Pratt (2004), in the frequency domain, 
it is possible to use a larger sampling step and still obtain images not affected by aliasing. 
More, the frequency domain formulation allows managing a more compact volume of data, 
with less checkpointing related core storage requests (Virieux and Operto, 2009).  

The frequency domain is more appropriate for the selection of certain frequencies of 
interest, while the time domain allows for the selection of a particular type of arrival, i.e. 
the P-waves first arrivals, the reflected arrivals, the arrivals corresponding to the surface 
waves. This aspect led to the development of some FWI strategies in the frequency domain, 
based on time-domain modeling (e.g. Sirgue et al., 2008). Even if the frequency domain 
guarantees some advantages, in some cases related to the lower computational cost, most 
of the FWI applications are nowadays implemented in time-domain, especially when 
considering dispersive wavefields and the viscoelastic equation.    

5.1.2 – Acoustic or elastic approximation? 

FWI is a widely used tool in exploration seismology, even though the numerical solution of 
the (visco)elastic wave equation is nowadays computationally expensive and oversized. 
For this reason, various FWI experiments are still performed in acoustic approximation. 
Even if this approach requires fewer computation resources, it introduces amplitude 
errors in the P-wavefield (except the near-vertical angle reflections; Warner et al., 2012), 
due to the incorrect modeling of the amplitude variation with offset (AVO = Amplitude 
Versus Offset) (Virieux and Operto, 2009). In particular, the reflection coefficient in the 
elastic approximation is lower than its acoustic equivalent, since the incident energy is also 
distributed between converted phases.  

The errors of the acoustic approximation may be also related to the incorrect modeling of 
the sources and receivers’ directivity (Pratt, 1999; Ravaut et al., 2004; Operto et al., 2004; 
Brenders and Pratt, 2007a,b; Barnes and Charara, 2008). Accordingly, some corrections 
may be necessary for the sources and receivers’ directivity (if the sources and receivers are 
directional) and for the offset dependent amplitude decay (Virieux and Operto, 2009). The 
amplitude corrections aim at making the predicted and observed seismic data comparable. 
In this way, the data misfit depends only on the differences in velocity and not on the 
inappropriate representation of the amplitudes in the initial model (Isaac and Magrave, 
2012).  

A proposed solution, aimed at limiting the disadvantages of the acoustic approximation, is 
combining the acoustic inversion with the classical traveltime tomography (Plessix et al., 
2013). However, in some cases, the obtainment of accurate results is highly conditioned by 
considering the entire information from the recorded seismic data. This means using (at 
least) the elastic approximation for the wave equation, where the pressure is replaced with 
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stress and particle displacement velocities. For example, for conventional marine data, the 
information related to pressure waves is greater than the information related to the shear 
waves and, therefore, an accurate estimation of the P-wave velocity is possible in acoustic 
approximation. For an OBC (Ocean Bottom Cable) acquisition, an accurate reconstruction 
of the S-wave velocity field requires the use of the elastic wave equation, since S waves and 
converted arrivals are present as well in the recorded seismograms (Raknes et al., 2013). 
Furthermore, for land acquisitions, where the seismic data are dominated by SWs, using 
the (visco)elastic equation for modeling the waves propagation is imperative.  

Nevertheless, in the elastic FWI experiments, the introduction of new parameters (i.e. the 
S-wave velocity, SWs) increases the inverse problem’s non-uniqueness, due to the increase 
in freedom degrees and because of different FWI sensitivity to each of these parameters 
(Virieux and Operto, 2009; Operto et al., 2013; Raknes et al., 2013).  

5.2 – Gradient methods insights 

The use of global methods for FWI is nowadays computationally expensive, especially for 
3D applications. For this reason, most of the FWI codes, as the one used for this work, are 
based on the deterministic method. There are various gradient-based methods, such as 
steepest descent (e.g. Fichter, 2011), Newton and Gauss-Newton (Pratt et al., 1998; Askan 
et al., 2007; Askan and Bielak., 2008; Epanomeritakis et al., 2008), conjugate gradients 
(Luenberg, 1984; Mora, 1987a, 1987b and 1988; Tarantola, 1984a, 1984b and 1987; Crase 
et al., 1990; Gilbert and Nocedal, 1992). In this work, the gradient is computed with the 
adjoint-state technique.  

5.2.1 – Conceptual introduction to the adjoint-state technique 

In many applications, the FWI gradient is computed using the adjoint state technique (e.g. 
Tarantola, 1986, Mora, 1987, Tarantola, 1988, Pratt et al., 1998, Plessix, 2006; Fichtner et 
al., 2006, Virieux and Operto, 2009, Fichtner, 2011).  

The adjoint state method is also called "the retro-propagation technique", since it involves 
the propagation of residuals over time, from the terminal point towards their origin. In 
particular, the gradient is computed by time-domain zero-lag cross-correlation between 
the direct wavefield (propagating from the source to the receivers) and the residual 
wavefield (retro-propagated from the receivers’ position to the source). Two forward 
problems per source need to be solved: one for the incident field computation and one for 
the residuals back-propagation (Virieux and Operto, 2009). The individual gradients are 
then superimposed to form a global gradient (Warner et al., 2013).  

The result of this operation contributes to the approximate Hessian matrix, whose diagonal 
terms contain the zero-lag values of the cross-correlation, representing the squared 
amplitude of the partial-derivative wavefields (Virieux and Operto, 2009). Scaling the 
gradient by the diagonal terms removes the partial-derivative wavefield amplitude and the 
residuals (Virieux and Operto, 2009). The off-diagonal terms of the Hessian are computed 
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through the cross-correlation of the partial derivative wavefields associated with different 
model parameters (Virieux and Operto, 2009). The application of the off-diagonal 
Hessian’s inverse to the gradient can be thought as a gradient deconvolution from the 
limited bandwidth effects (described by the off-diagonal terms), caused by partial 
illumination, parameterization and trade-off (Virieux and Operto, 2009).  

According to Tarantola (1984b), the retro-propagated residuals from receivers’ position 
can be thought of as a missing diffraction field, i.e. the part of the signal that is not 
described by the initial model. Therefore, for retrieving the correct model, the cross-
correlation of the incident wavefield with the one not considered in the initial model 
(corresponding to the perturbation) is required. In the model areas with “non-zero” cross-
correlation, the values of the incident field must be modified, considering the perturbed 
field. The retro-propagation technique has some similarities with the Reverse Time 
Migration (Lailly, 1983; Pratt, 1999; Warner et al., 2013; Liu et al., 2013; Raknes et al., 
2013). However, only the residual field is retro-propagated in FWI, while in RTM the 
reflected and diffracted wavefield is retro-propagated; besides, as already mentioned, the 
imaging condition is different: while in FWI the imaging is done in the velocity space, in 
RTM an image of reflectivity is targeted. 

For the gradient computation, a simultaneous availability of the direct and adjoint 
wavefield is necessary. This problem can be overcome by transforming the initial condition 
into a terminal one, i.e. solving the wave equation in the forward direction and storing the 
final state at the boundaries. Then, the adjoint equation can be solved by propagating the 
regular wavefield back in time, starting from the previously stored final stage, together 
with the forward propagation of the adjoint wavefield. However, the application of this 
strategy is possible if the wave equation remains reversible (conservation of wave energy). 
This allows using the same modeling scheme for the incident and the back-propagated 
wavefield, which facilitates the gradient computation implementation through domain 
decomposition in parallel environments (Virieux and Operto, 2009).   

Nevertheless, in the presence of anisotropies, dissipations and absorbing boundaries, the 
elastic energy is attenuated during the wave propagation and, therefore, the early stages of 
the wavefield cannot be reconstructed from the terminal point. In these conditions, the 
wavefield value could be memorized at intermediate steps (checkpoints) and used during 
the application of the adjoint algorithm.  

5.2.2 – Strategies for the local minima issue mitigation 

For nonlinear ill-posed inverse problems, many local minima are present in the gradient 
and, therefore, different models can match the same data set. This issue requires the use of 
various strategies, aimed at guiding the convergence of the iterative algorithms towards 
the global minimum of the objective function. Among others, the use of alternative norms, 
data-gradient preconditioning, introduction of weighting operators, regularizations and 
the multiscale approach can be adopted. 
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Which misfit functional? 

The commonly used 𝐿ଶ norm assumes a Gaussian distribution of the misfit function 
(Tarantola, 1987). This assumption can be problematic when outliers are present in the 
data (Claerbout and Muir, 1973). Moreover, this functional emphasizes the nonlinearity of 
the inverse problem, due to the presence of many local minima in the gradient. An 
alternative to the 𝐿ଶ norm is the 𝐿ଵ functional (e.g. Brossier et al., 2009a), which is less 
sensitive to outliers, but still does not help to bypass the local minima issue.  

To overcome the limitations imposed by the functional’s choice, some strategies, based on 
the combinations of various norms, have been proposed: e.g. the Cauchy criterion (Crase et 
al., 1990; Amundsen, 1991; Amundsen and Ursin, 1991), the Huber's norm (Bube and 
Nemeth, 2007; Ha et al. 2009). Moreover, an envelope misfit function (Bozdag et al., 2011; 
Luo and Wu, 2015; Yuan et al., 2015; Borisov et al, 2018) can be used when the emphasis 
of the low-frequency content is required.   

Shin and Cha (2008), Shin and Ha (2008), Ha et al. (2012), Ha and Shin (2012a and 2012b) 
and Shin et al. (2013) proposed the Laplace domain inversion as this algorithm may be 
more robust when low frequencies are absent in the data. Indeed, the logarithmic objective 
function has fewer local minima, compared with the objective function in the frequency or 
time domain. However, only smooth tomographic images can be obtained. Moreover, this 
strategy is efficient only if the first arrivals can be easily detected and no noise precedes 
them.  

Further, the optimal transport based objective function (Ferradans et al., 2014; Lellmann 
et al., 2014; Engquist et al., 2016; Métivier et al., 2016a,b; Yang et al., 2018) balances the 
amplitude of various seismic events. He et al. (2019) proposed the combination of an 
optimal transport misfit function with a Gaussian time-windowing strategy, to guarantee a 
more balanced contribution between BWs and SWs while focusing the analysis on the 
phase shift. Nevertheless, a strong assumption of the optimal transport method is the 
positivity of the data, while the seismic trace is oscillatory (He et al., 2019). A possible 
solution for this issue may be the Kantorovich – Rubinstein norm, which can consider 
negative values (Métivier et al., 2016a and 2016b). 

For near-surface applications, Masoni et al. (2013) and Solano et al. (2014) proposed the 
use of alternative domains for the misfit function computation, such as the ω-p (frequency-
slowness) and the ω-k (frequency-wavenumber) domain. In these cases, the event 
separation through slopes and wavenumbers allows for easier extraction of the kinematic 
information and better identification of frequency-dependent dispersion effects. 

Gradient pre-conditioning  

The data-gradient pre-conditioning (Fichtner, 2011) commonly consists in a smoothing 
operation, which involves the application of a low-pass filter. The smoothing operation 
removes the small wavelengths that cannot be solved with a certain frequency range. 
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The introduction of weighting operators modifies the formulation of the objective function 
(i.e. Tarantola, 1987; Scales and Smith, 1994; Virieux and Operto, 2009): 

𝜒(𝑚) = భ

మ
 (ௗ೚್ೞ ି ௗ೎ೌ೗೎)೅ ௐ೏  (ௗ೚್ೞ ି ௗ೎ೌ೗೎) +  భ

మ
 𝜀(𝑚 −  𝑚௣௥௜௢௥)் 𝑊௠ ൫𝑚 − 𝑚௣௥௜௢௥൯,             (5.1) 

where 𝑊ௗ =  𝑆ௗ
் 𝑆ௗ  e 𝑊௠ =  𝑆௠

்  𝑆௠ are weighting operators, representing the inverse of the 
data covariance matrix and, respectively, model covariance matrix. The term 𝑆ௗ  can be 
implemented as a diagonal weighting operator, which controls the weights of each element 
of the vector containing the residuals. Operto et al. (2006) implemented the value of  𝑆ௗ as 
a power of the source-receiver distance, intending to strengthen the far-offset data 
contribution in the frame of crustal-scale imaging (Virieux and Operto, 2009). The term 
𝑊௠

ିଵ (smoothing operator) can be used, for example, to penalize the model’s roughness 
(𝑊௠), leading to smooth final models after inversion (Virieux and Operto, 2009).  

Moreover, the model-gradient regularization aims at guiding the model update towards 
solutions that are coherent with some a priori knowledge. For instance, the Tikhonov 
regularization (Hansen, 1998) aims at eliminating the small-scale oscillations through 
minimization. In the general algorithm, the objective function is expressed as the 
summation of the misfit functional with a quadratic term: 

𝜒௥௘௚(𝑚) =  𝜒௠ + 𝑅  𝛾 ฮ𝑚 −  𝑚௥௘௙ฮ
ଶ

ଶ
         (5.2) 

where 𝑅 ฮ(𝑚 −  𝑚௥௘௙  )ฮ
ଶ

ଶ
 is the regularization term, R is the Tikhonov matrix, γ is a 

positive constant that has the role of balancing the contribution of the “pure” misfit term 
χ(m), and 𝑚௥௘௙ is a reference model, usually simple and homogeneous.  

When R = I (the identity matrix), the regularization acts through the minimization of the 
norm (norm damping), imposing small differences (𝑚 −  𝑚௥௘௙) and leading to 
homogeneous models close to 𝑚௥௘௙. This type of regularization (first-order Tikhonov) is 

commonly used for those model areas where the number of unknowns is greater than the 
observed data. In the second-order Tikhonov regularization, the matrix R becomes a finite 
differences operator D, which acts in the model space, emphasizing the small wavelengths. 
The algorithm involves the computation and damping of the discrete derivatives, which is 
equivalent to the implementation of the minimum model variation condition. This type of 
regularization privileges the presence of small wavelength components, which are the 
features FWI tries to reconstruct. 

A method combining the norm minimization with the derivatives is the total variation 
regularization. This approach aims at obtaining models that are simultaneously 
characterized by smooth areas and sinuous interfaces (Vogel & Oman, 1996; Vogel, 2002). 

The algorithm involves the minimization of the L1 norm of the differential discrete 
operator: 

𝜒௥௘௚  (𝑚) =  𝜒(𝑚) +  𝛾 ‖∇ ഥ  𝑚‖ଵ,                (5.3) 

where 𝛾 has the same role as the Tikhonov regularizations. 
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Which frequency content and offset range? 

For most of the exploration scale applications, the success of FWI depends on the 
availability of large offsets in the recorded data and on the presence of refracted arrivals 
(Mora 1988 and 1989; Pratt et al., 1996; Ravaut et al., 2004; Warner et al., 2012; Guitton 
and Alkhalifah, 2013), essential for the correct reconstruction of the medium’s large 
wavelengths (Sirgue and Pratt, 2004). This requirement becomes even more important in 
complex geological environments (for example to improve the salt imaging: Vigh et al., 
2013). This happens because the high-frequency data correspond to an objective function 
that contains many local minima; the lack of low frequencies could drive the inversion 
towards one of them. This requirement aims to avoid cycle-skipping, which leads to the 
association of the predicted data with the wrong event in the recorded data (Virieux and 
Operto, 2009; Ratcliffe et al., 2013; Morgan et al., 2013).   

A correct FWI configuration (which avoids cycle-skipping) requires the difference between 
the observed and the modelled (predicted) wavefield to be smaller than half-period 
(Beydoun and Tarantola, 1988; Mulder and Plessix, 2008; Warner et al., 2013). This 
condition is honored if the initial model is accurately collocated in the basin of attraction of 
the objective function’s global minimum (Virieux and Operto, 2009). Otherwise, the 
predicted wavefield would be related to a delayed (wrong) cycle of the observed wavefield, 
leading the optimization towards a so-called cycle-skipped local minimum (Figure 5.1). 
The dimension of the attraction basin and the half-cycle of the wave period increases with 
decreasing frequency. 

Figure 5.1 – Illustration of cycle-skipping. 
The observed data (shown in the center) 
are schematized through a monochromatic 
wave of period T as a function of time. 
Predicted data are schematically shown at 
the top and at the bottom. Between the 
predicted data shown at the top and the 
observed ones, there is a delay greater than 
T/2; therefore, the cycle n of the observed 
data is incorrectly related to the cycle n+1 
of the predicted ones. Contrariwise, 
between the observed data and the 
predicted ones shown at the bottom, there 

is a phase shift lower than T/2; consequently, the cycle n of the observed data is correctly 
related to the cycle n of the predicted data (from Virieux and Operto, 2009, modified). 

An alternative strategy for the lack of large offsets compensation is combining the 
waveform inversion with the classical first arrival tomography (Pratt and Goulty, 1991). 
The latter could be used for the initial model building (Shin and Cha, 2008). However, 
picking the first arrivals in the presence of low-velocity areas may be tricky.  
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Multiscale or layer-stripping approach? 

The multiscale approach (Bunks et al., 1995; Sirgue and Pratt, 2004) aims at guiding the 
iterative inversion towards the global minimum of the objective function, by progressively 
increasing the high-frequency content (small wavelengths) – Figure 5.2. The maximum 
frequency of each group must be sufficiently low to prevent cycle-skipping (Virieux and 
Operto, 2009). FWI is more tolerant to velocity errors in the initial model when only low 
frequencies are present since they are less likely to lead to errors of more than have a 
wavelength between the observed data and the predicted ones (Pratt, 1999; Virieux and 
Operto, 2009). 

Figure 5.2 - Illustration of the multi-
scale approach for an inversion 
performed in three stages. The grey 
area represents the attraction basin 
of the objective function’s global 
minimum. The first stage of the 
inversion uses only the large 
wavelengths. The inversion starts 
from the initial model 𝑚଴ and 
proceeds towards a better model 
𝑚ଵ෦ . In the second stage, the best 
model of the first iteration is used as 
a starting model for the second 
iteration. In the third stage, the 
model 𝑚ଶ෦  (obtained in the second 
iteration) is used as a starting point 
for the third iteration. Passing from 
the first stage to the third one, the 
objective function becomes 
increasingly wrinkled and the 
attraction basin of the global 
minimum becomes narrower (from 
Fichtner, 2011). 

However, the robust application of FWI on data containing large offsets still represents a 
numerical challenge, due to the nonlinearities introduced by the presence of a wide range 
of wavenumbers and variable incidence angles (Sirgue, 2006). If low frequencies are not 
present in the recorded data, the layer-stripping approach (high-to-low frequency) can be 
used (Kolb and Canadas, 1986; Shipp and Shing, 2002; Wang and Rao, 2009; Virieux and 
Operto 2009; Masoni et al., 2016). This approach is based on the progressive introduction 
into the inversion scheme of the later arrivals and higher offsets. The model is gradually 
updated from the shallow parts to the deeper ones, according to an empirically established 
relation between a time window and a spatial window (which acts as a function of offset). 
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Tapering and time windowing  

The above techniques may not be enough to guarantee reliable results for FWI in the 
presence of complex structures. A further applicable strategy could be muting the arrivals 
that cannot be predicted with a given approximation of the wave equation, i.e. the PS 
converted arrivals in the case of acoustic approximation. This process involves the 
application of a window in the time domain, aimed at selecting the first arrivals. This is 
equivalent to the selection of high-angle data components, which allows reconstructing the 
large wavelengths of the medium (Pratt, 1999; Virieux and Operto, 2009).  

Moreover, a time window could isolate a specific phase or a specific parameter of interest, 
such as the converted PS phases (Shipp and Singh, 2002; Sears et al., 2008; Brossier et al., 
2009b), body waves from surface waves (Trinh et al., 2019) in the case of the FWI carried 
out in elastic approximation. 

 

*** 

Most of the above-presented strategies are commonly applied for FWI tests performed for 
crustal-scale exploitation data. For the geotechnical scale exploration, characterized by a 
different acquisition geometry (e.g. in terms of source and group interval), the consequent 
presence of higher frequencies in the recorded data, the presence of energetic SWs and 
strong attenuation, additional FWI strategies may be needful, as well as the use of the 
viscoelastic equation for simulating the wave propagation. Besides, a very accurate initial 
model may be a key element for properly guiding and speeding up the convergence of the 
inversion algorithm.  

 

 

  

Some journal papers published over the last decade, related to elastic FWI applications for 
near-surface imaging, are presented in the next section. This review does not try to be 
exhaustive while it aims at providing a more extended introduction regarding the FWI 
application to near-surface data sets.  
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5.3 – Examples of FWI applications to shallow seismic 
wavefields 

Amrouche and Yamanaka (2015) developed a time-domain waveform inversion method 
for 2D shallow soil characterization. The forward modeling for P-SV wavefield simulation 
is based on a 2.5D staggered-grid FD wave propagation solver. A hybrid heuristic 
inversion, combining the Genetic Algorithm and Simulating Annealing, is adopted 
(Yamanaka, 2007). For soil modeling, the soil layers are divided into several blocks 
characterized by discontinuous interfaces. The results proved the effectiveness of the 
method to reconstruct the soil structures with a blind layer, in noisy environments, using a 
single source. The application on field data (using two shots on a survey line of 30 m) 
provided 2D soil models that nicely agree with borehole data (except for the shallow layer 
that was subject to interventions for construction purposes after the borehole drill).  

Borisov et al. (2018) applied a 3D elastic FWI of SWs on synthetic data (simulated from 
the SEAM phase II foothills model – Oristaglio, 2012), considering irregular topography. 
Their approach relies on the use of an envelope-based objective function to invert for 
shallow large-scale heterogeneities in the first stages. It proved to be well suited for 
recovering near-surface structures and providing a VS initial model for a conventional BWs 
FWI scheme. In the later stages of the inversion, the authors use a waveform difference 
objective function to obtain a higher resolution model. Since irregular topography is 
concerned, the forward modeling is based on a spectral element wave propagation solver 
(SPECFEM3D). No multiscale approach is used for FWI. The authors invert simultaneously 
for VP and VS and keep the density as constant. The quasi-Newton method l-BFGS is used 
for optimization while the step length is computed using the safeguarded backtracking line 
search (Modrak and Tromp, 2016). Generally, the initial models are smooth versions of the 
target models. The authors concluded that the envelope misfit function is effective in 
minimizing the cycle-skipping issues during SWs inversion and that SWs are useful for 
retrieving complex shallow structures.   

Borisov et al. (2020) applied a 2D FWI on exploration land data, characterized by a 
maximum offset of 12 km and the lowest available frequency of 5 Hz. They invert for SWs 
first, to constrain the shallow part of the VS model, and incorporate the BWs in the later 
stages of the inversion. At the final stage, which involves the entire offset range and 
frequency band between 5 Hz and 15 Hz, SWs and BWs are inverted simultaneously. The 
forward modeling relies on a spectral element-based wave propagation solver 
(SPECFEM2D). The initial VP model is derived from first break traveltime tomography 
while the initial VS model is derived from the initial VP using a VP/VS ratio of 1.7. Frequency 
and offset-continuation approaches are used for mitigating cycle-skipping effects. To 
account for viscoelastic effects present in the field data, the authors use a normalized 
cross-correlation objective function and a source wavelet correction. However, they state 
that including a model for attenuation in the forward simulation guarantees better results. 



Chapter 5 – FULL-WAVEFORM INVERSION 

 

82  
 

The overall results, compared with well-log information, indicate a better VP/VS and data 
fitting after FWI compared to the initial model configuration.     

Bretaudeau et al. (2013) proposed a 2D FWI approach, based on frequency-domain 
viscoelastic modeling, for building 2D images of VP and VS models from land seismic data. 
The reference synthetic model chosen for investigation is a vertically layered one. The 
authors applied the method on both synthetic data and laboratory data obtained by small-
scale physical modeling (on a laser-ultrasonic bench). Strong SWs and weak diffractions 
are present in the data. The method proved to be successful in reconstructing the 2D near-
surface model, even in the presence of noisy data. The authors explained the presence of 
some artefacts on the base of the strong nonlinearity introduced by SWs, the offset and 
frequency dependence of the S/N, the source signature inversion and the gradient features 
close to the sources.  

Butzer et al. (2013) applied a 3D elastic FWI to synthetic data belonging to random 
medium velocity structures that resembles a realistic crystalline rock environment. The 
FWI implementation is based on the adjoint state method, with an optimization regarding 
the runtime and storage cost based on a time-frequency approach. The gradient is 
computed from monochromatic frequency-domain particle-velocity wavefields, which are 
calculated with a time-domain FD velocity-stress wave propagation solver. The authors 
applied a multiparameter (VP and VS) inversion for two different acquisition geometries: 
3D and 2D. They run 3D FWI for both acquisitions and 2D FWI for the 2D acquisition data 
set for comparison purposes. The results proved that the 3D FWI applied to the 3D data set 
is capable to reconstruct VP and VS 3D structures with a resolution of about one 
wavelength. 3D structures in an area around the acquisition plan can be identified when 
3D FWI is applied to multicomponent cross-well data. The authors stated that, if 
homogeneous initial models are used, sufficiently low frequencies must be included in the 
inversion. When a 2D acquisition layout is used for 3D FWI, the resolution of the results is 
lower compared to the resolution of the 3D acquisition geometry results. The results from 
the 2D FWI contain artefacts caused by 3D scattering, especially when inverting at high 
frequencies for reconstructing small-scale heterogeneities. The authors stated that a 3D 
FWI would be preferred to a 2D FWI in presence of 3D small-scale heterogeneities. 

Chen et al. (2017) applied a combined workflow based on frequency-dependent 
traveltime tomography (FDTT) and FWI to 2D near-surface P- and SH-wave seismic data 
for detecting a buried tunnel characterized by concrete walls. The FDTT inverts for P- and 
SH-waves picked traveltime at 250 HZ and provides wavelength-background initial models 
for FWI.  FWI, conducted in the frequency band of 18-54 Hz for P-wave data and 16-50 Hz 
for SH-wave data, improved the resolution of the initial models. The top of the tunnel was 
imaged at the correct location (1.6 m depth) as a high-velocity anomaly while the void 
space inside the tunnel was imaged as a low-velocity anomaly in the VP model. The authors 
also applied the conventional ray-theory infinite-frequency traveltime tomography (IFTT) 
for comparison purposes. The experiments based on FDTT provided a better initial model 
for FWI compared with the IFTT. This led to a more accurate velocity estimation after FWI, 
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with better detection of the buried anomaly’s amplitude and position. The authors stated 
that FDTT may outperform IFTT for the cases where the ray theory is valid.  

Dokter et al. (2017) developed a 2D FWI for simultaneously reconstructing the VS and 
density model from SH and Love waves. The purpose of the study was mapping historical 
building foundations buried in a highly heterogeneous medium. The authors inverted for 
both synthetic and real data sets acquired in a near-surface environment. The field data 
were recorded along 2 parallel SH profiles with a maximum offset of 24 m. The frequency 
content is in the range between 5 Hz and 80 Hz. The objective function is computed using 
the global correlation norm. The initial velocity model is characterized by a vertical 
gradient and was determined using the Wiechert-Herglotz inversion of the first arrival 
picks. The results proved the small influence of the viscoelastic effect on the waveform, as 
well as the small influence of the density on the final data fitting. Overall, the results 
proved the effectiveness of the 2D SH waveform inversion to image small-scale soil 
structures (with a size of 1 m or 2 m and down to a depth of 6 m), although the successful 
reconstruction of the foundation walls was not achieved.  

Dou and Ajo-Franklin (2014) applied full-wavefield inversion of SW to an inversely 
dispersive SW data set acquired in a permafrost site (Barrow-Alaska) for mapping 
embedded low-velocity zones. Such a data set provides unusual dispersion spectra 
characterized by dominant higher models and leaky modes, difficult to be picked. To 
overcome this difficulty, their full-wavefield method does not rely on individual modal 
curves. It is based on the inversion for velocity models that can best fit the dispersion 
spectra instead of dispersion curves. To constrain the velocity structures, their method 
uses the entire signal content of the wavefield, including higher modes and leaky models. 
The results are consistent with results from electric resistivity surveys. They revealed the 
presence of embedded low-velocity zones underlying the ice-rich permafrost site. The full-
wavefield inversion of surface waves was efficient if identifying these unfrozen zones (that 
may correspond to saline-pore waters that prevent the soil from freezing), characterized 
by velocity values of 70%-80% lower than the overlying frozen material. However, since a 
parsimonious model parameterization must be used to contain the inverse-problem high-
dimensionality, the obtained velocity models are smooth, without small-scale features. The 
authors concluded that the models obtained from their full-wavefield method could be 
good candidates as starting models for a classical time- or frequency-domain waveform 
inversion when a model refinement is required.  

Gross et al. (2014) investigated the role of attenuation for 2D FWI application to shallow 
wavefields. They proposed a source wavelet correction strategy to partially compensate 
for the residuals between elastically and viscoelastically simulated data. The source 
wavelet correction filter is retrieved by a stabilized deconvolution technique including an 
offset dependent weighting data for the high-frequency band; such correction reduces the 
high-frequency ringing present at far offset in the elastically modeled data.  The authors 
showed that the source wavelet correction can act only as a frequency-dependent filter 
and not as a distance-dependent filter. They also stated that this strategy is not fully 
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efficient in producing the frequency-dependent amplitude decay with offset present in 
viscoelastic wavefields. The field data set used in the study was acquired over a 
predominantly depth-dependent structure. The estimated Q factors vary between 10 and 
50, characteristic for shallow environments. The authors used a time-domain 2D 
viscoelastic FWI, with a priori fixed Q parameters and correct VP and density. A reference 
model was inferred from the data using joint inversion of Fourier-Bessel expansion 
coefficients (for the VS model) and P-waves traveltime (for the VP model) – Forbriger et al. 
(2003 a,b). They use a direct wave 3D to 2D transformation (Forbriger et al., 2014). The 
forward modeling is based on 2D FD time-domain (Bohlen, 2002) stress-velocity 
formulation on the standard staggered grid (Virieux, 1986; Levander, 1998).   

The authors obtained equally well reconstructed VS models when using QP=QS=10 and 
QP=QS=50. The VS model obtained by FWI was reconstructed with less accuracy when using 
elastic modeling and source wavelet correction than when using appropriate viscoelastic 
modeling. The authors proved that negative effects due to the wrong choice of the Q factors 
can be reduced by adopting the source wavelet correction, aimed at adjusting the 
bandwidth of the modeled data with respect to the bandwidth of the observed data. 
Moreover, the authors stated that too-high wrong Q values can be compensated better by 
source wavelet correction than too-low wrong Q values, as the correction filter can act also 
as a low-pass filter.  

Gross et al. (2017) proposed a 2D elastic FWI workflow and tested it on a field data set 
acquired over a predominantly depth-dependent velocity structure, with a discontinuity at 
6.8 m (probably related to the water table). The obtained velocity models are compared 
with the results of a 1D inversion based on wavefield spectra (Fourier-Bessel expansion 
coefficients) – for the VS model and first arrival P-wave traveltime – for the VP model. The 
initial VP model for 1D inversion is retrieved by refracted P-waves inversion, while the VS 
model is obtained dividing the VP by √3. The authors used the 2D time-domain FWI code 
developed by Köhn (2011) and adopted viscoelastic forward modeling based on stress-
velocity FD formulation (Bohlen, 2002). The viscoelastic damping implementation is based 
on a generalized SLS with 3 relaxation mechanisms, relatively constant over the frequency 
band of the field data (5 Hz – 70 Hz). The boundary reflections are reduced using 
convolutional perfectly matched layers (CPMLs) – Komatitsch and Martin (2007); Martin 
and Komatitsch (2009). The free surface is implemented by image technique (Levander, 
1988; Robertsson et al., 1995).  

The misfit function is based on the least-squares of the normalized amplitude signals 
proposed by Choi and Alkhalifah (2012). The authors motivated such a choice with the 
normalized misfit’s insensitivity to amplitude decay with offset caused by geometric 
spreading, which guarantees a uniform contribution of the near and far-offset traces. On 
the other side, the relative amplitude differences, caused by the frequency-dependent 
amplitude decay with offset due to anelastic damping, remain effective. The authors 
inverted simultaneously for VP and VS and kept the density (1700 kg/m3 – 2000 kg/m3) 
and the quality factors (QP=QS=20; QP=QS=50) as constant. The quality factors are 
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estimated from the field data by comparison with viscoelastically modelled data for 
different quality factors. As an initial model for FWI, the authors used a VP model retrieved 
from first arrival traveltime and a VS model derived by taking a vertical gradient down to 9 
m depth. The choice of the vertical gradient highly influenced the FWI results. The FWI 
workflow is based on different strategies, such as multiscale inversion according to the 
frequency intervals of 5 Hz – 10 Hz – 15 Hz – 20 Hz – 30 Hz – 40 – Hz – 55 Hz and 70 Hz, a 
source wavelet correction filter estimated by stabilized deconvolution, for each quality 
factor and each shot (Gross et al. ,2014), smoothing the inferred subsurface models, a 
gradient preconditioning taper by semicircular windows in the sources’ vicinity, gradient 
smoothing with a 2D median filter for each iteration step and forcing the VP/VS ratio to be 
greater than 1.56.  

Krampe et al (2019) investigated the effects of anisotropy on surface waves and FWI 
applied to shallow seismic wavefields in vertically transversely isotropic (VTI) media. As 
synthetic experiments (performed using an FD scheme – Bohlen, 2002) proved that Love 
waves are more affected by vertically transverse anisotropy than Rayleigh waves, the 
authors performed 2D anisotropic FWI tests for shallow seismic reconstruction using Love 
waves and horizontally polarized S waves. The gradient of the objective function is derived 
using the Lagrange multipliers. The inversion is performed for the vertical velocity, 
horizontal velocity and density, following a multiscale approach from 5 Hz to 95 Hz with an 
increasing step of 10 Hz. A Gaussian taper with a radius of 0.5 m is applied at the source 
locations. As an initial model, a linear gradient velocity and density model is used for one 
of the reconstructing tests, while one isotropic model is used for another test.   

Experiments showed how, when using an isotropic model or a VTI anisotropic model, 
there is a difference between the corresponding phases up to three times the dominant 
period. This means that multiple cycle-skips may occur if isotropic FWI is applied to 
anisotropic data. More, when isotropic FWI is applied to VTI data, the anisotropic effects 
on the waveform that cannot be explained by the VS model are projected into the density 
model. The errors in the initial density model also lead to a worse reconstruction of the 
velocity models because anisotropic effects are partially explained by the velocity model. 
Differently, for isotropic data, the influence of a wrong density model is minor than 
anisotropic effects; the potential inaccuracy of the initial density model does not influence 
significantly the accuracy of the VTI velocity reconstruction. To avoid overcompensation of 
wrong densities in the velocity models or the projection of anisotropic effects into the 
density model, the authors proposed to keep the density model fixed during the first stages 
of the inversion.  

In one reconstruction test, the targeted anomaly is underestimated by 50 m/s after FWI, 
probably because of the limited bandwidth and limited Love waves penetration depth.  
Overall, the results on synthetic data proved the effectiveness of anisotropic FWI of 
shallow seismic Love waves for reliable near-surface characterization. The reconstruction 
is accurate for the horizontal and vertical S-wave velocities, but the density cannot be 
retrieved accurately with a multi-parameter FWI. When applying isotropic FWI on VTI 
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data, the density inversion is unreliable as it is influenced by unresolved structures in the 
velocity model. The authors proposed to exploit this behavior for detecting the presence of 
anisotropy through a preliminary isotropic FWI with fixed density, followed by VTI FWI. If 
artefacts are present in the isotropic FWI results, the medium is anisotropic. In such a case, 
the VTI FWI can correct these artefacts.    

Masoni et al. (2014) investigated the efficiency of using alternative data domains (i.e. the 
frequency-slowness and the frequency-wavenumber domain) for the misfit function 
minimization when considering local optimization procedures for near-surface seismic 
imaging by 2D FWI of SW. The frequency-dependent dispersive effects of SWs are explicitly 
considered in the FWI scheme. Data normalization is applied before the domain 
transformation (linear moveout – for the frequency-slowness domain and Fourier 
transform for the wavenumber domain). In these alternative domains, the separation of 
various seismic events through slopes or wavenumbers allows for more efficient 
extraction of the kinematic information, while the stacking increases the misfit function’s 
robustness in the presence of noise. Since the absolute value of the data is considered, the 
misfit function is less sensitive to the phase of the source wavelet. The elastic wave 
equation is solved with a FD scheme. The gradient computation is based on the adjoint 
approach while the adjoint source term is computed using Lagrangian multiplicators. The 
space derivatives are approximated by central finite-differences while a second-order 
leap-frog scheme is used for the explicit time integration. An example of 2D synthetic data 
application proved a good reconstruction of the VS model. Such reconstruction seems to be 
more accurate when using the frequency-wavenumber based objective function than when 
using the frequency-slowness one.  

Nguyen and Tran (2018) proposed a 3D elastic FWI workflow for site characterization, 
based on the adjoint state method. The forward modeling relies on the velocity-stress 
staggered-grid FD formulation, perfectly matched layers for boundary truncation and free-
surface condition. The geometric spreading attenuation is accounted for by the 3D forward 
modeling scheme. An offset dependent correction factor acts on the estimated data and 
(partially) compensates for attenuation due to material damping. A gradient 
preconditioning and scaling with dept, together with a Tikhonov regularization are 
implemented to reduce the inversion artefacts and acquisition footprints. For the field data 
application, the estimated source signature is updated at the beginning of each inversion 
iteration. A layered VS initial model is estimated through spectral analysis of the data while 
the VP model is inferred from the VS model using a constant Poisson’s ratio of 1/3. The 
authors apply a constraint on the VP to maintain a Poisson’s ratio of more than 0 and less 
than 0.45. They performed two inversion runs, in the frequency band of 5 – 20 Hz and 5 – 
30 Hz, respectively. The results for synthetic data proved the algorithm’s effectiveness to 
characterize laterally variable layers. The results for real data are consistent with the 
values from standard penetration tests and proved the method’s effectiveness to identify 
embedded low-velocity layers.  
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Nuber et al. (2016) investigated the effects of neglecting the topography in elastic 2D 
FWI. They performed several tests on synthetic data characterized by high contrasts in 
velocity and density. The experiments proved that, if variations in topography (although 
small) are not accounted for correctly, artefacts are introduced in the velocity model. This 
fact produces a decrease in spatial resolution for greater depth features. The artefacts 
appearance at greater depths is explained on the base of decreasing sensitivity: The effects 
of systematic errors tend to be more pronounced in the low-sensitivity zones. The authors 
state that the above effects are very pronounced when the topography fluctuations have a 
wavelength comparable with the minimum seismic wavelength. Moreover, they state that 
neglecting topography with amplitude fluctuations greater than the minimum seismic 
wavelength also produces artefacts in the velocity models. Experiments performed with 
data containing random noise proved that artefacts introduced by the random noise are 
smaller than those caused by neglecting the topography. Overall, the authors concluded 
that incorporating the topography is essential when successful results are expected from 
elastic FWI applied to land data. They also stated that, when elastic 2D FWI is applied to 
data recorded in areas with complex 3D topography, minor topographic variations 
perpendicular to the 2D profile may cause artefacts.  

Nuber et al. (2017) demonstrated, employing optimized experimental design (ED) 
techniques, that a very dense spatial sampling and a great number of sources is not 
mandatory for obtaining a detailed image from acoustic or elastic FWI. Using a noise-free 
acoustic example, the authors showed that only a few carefully selected source positions 
are required for computing high-quality images. However, in the presence of noise and 
complex structures, additional sources may help to increase the inversion’s stability. More, 
using elastic FWI with noise-contaminated data and free-surface boundary condition, they 
proved that a receiver spacing with the dimension of the expected minimum shear 
wavelength is enough for obtaining accurate results. They also stated that horizontally 
oriented sources and multicomponent receivers are preferred for elastic 2D FWI. When 
only single component sources and receivers are available, the authors recommend using 
z-directed sources and x-directed receivers. Their ED procedure requires in input one a 
priori smooth model. The procedure also assumes that a suitable inversion strategy that 
accounts for the FWI nonlinearity is available. The authors stated that their approach is 
suitable for analyzing large-scale data while extracting for the inversion only a small data 
subset representative for the entire data set.  

Pan et al. (2016) used the Love-wave waveform inversion in the time-domain to estimate 
the shallow 2D VS model. The forward modeling scheme is based on the FD method. The 
source effect is removed from the data by the deconvolution technique. The authors divide 
the model into blocks of different sizes that depend on the Love waves resolution. The 
velocities of each block are updated using a conjugate gradient algorithm. The 
effectiveness of the method is proved by two synthetic applications (noise-free and noise-
contaminated) and a real case.  
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Pan et al. (2019b) provided a state of the art of the MASW and FWI application to shallow 
seismic wavefields as well as a comparison of the efficiency of these methods in 
reconstructing near-surface structures. The authors tested various FWI approaches (i.e. 
the classical, the multiscale, the envelope based, and the amplitude-spectrum based) and 
compared the resolution of MASW and FWI using a checkboard method. A numerical 
example is used to compare the shape of the objective functions of MASW, classical FWI 
and modified FWI approaches. The authors proved how the classical FWI has the highest 
resolution (and nonlinearity), MASW has the lowest resolution (and nonlinearity), while 
the other FWI approaches have an intermediate resolution between the classical FWI and 
MASW. They also proved that, among the tested methods, the classical FWI shows the 
highest dependency on the initial model’s accuracy. A sequential MASW (for 1D velocity 
model building) and multiscale FWI strategy is applied to two different field data sets. The 
implementation relies on the staggered-grid FD method for the 2D elastic wave 
propagation simulation (Virieux, 1986). A conjugate gradient method is adopted as an 
optimization algorithm. The initial VS model is built by applying multiple 1D MASW to 
adjacent shot gathers (and smoothing the results) while the initial VP model is derived 
from f. a. traveltime tomography. Comparisons with borehole data and GPR profiles 
validated the high-resolution character of the obtained S-wave velocity images.    

Romdhane et al. (2011) applied 2D elastic FWI for reconstructing shallow structures in 
the presence of complex topography. The forward modeling is performed in the frequency 
domain and is based on a mixed finite-element P0-P1 discontinuous Galerkin method aimed 
at efficiently handling the presence of complex topography. The inversion relies on the 
limited-memory quasi-Newton method. The numerical experiments are based on a 
realistic model which reproduces an earthflow structure. The model is characterized by 
strong velocity contrasts in correspondence of the layers and strong lateral variations. The 
authors experimented a hierarchical preconditioning strategy, based on a simultaneous 
multifrequency inversion of damped data, aimed at mitigating the strong nonlinearities 
introduced by SWs while alleviating the near-surface related effects. The results confirmed 
that the simultaneous inversion of damped data, based on the progressive introduction of 
converted and free-surface waves, outperforms the single-frequency inversion approach.  
Moreover, the experiments proved that using the vertical component only for the inversion 
may not lead to a significant loss in resolution of the reconstructed model (the degradation 
of the model is only 24%). Besides, experiments with increased source sampling proved 
that severe aliasing may occur if the source sampling is less than three times the maximum 
of one half-wavelength.  

Schäfer et al. (2014) proposed a single-trace hybrid transformation correction filter, 
adapted for direct BWs and Rayleigh waves, for retrieving the equivalent line-source 
response for point-source data. The authors recommend scaling the seismograms with 
ඥ2 𝑟 𝑝ℎ𝑎𝑠𝑒 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 for small receiver offsets r and then gradually applying the classical 

√𝑡ିଵ time-domain taper and scaling the waveform with 𝑟√2 for larger receiver offsets. 
They demonstrate the performance of the hybrid transformation for 2D heterogeneous 
structures. The amplitude and phases for all shots and components (vertical and radial) 
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nicely agree with the reference line-source data (except for back-scattered waves) while 
the classical Fourier-Bessel transformation produces significant artefacts. The authors 
applied 2D FWI to point-source and line-source synthetic data to evaluate the various 
performances in reconstructing the reference model. The results obtained from FWI 
applied to the point-source waveform with no explicit correction show moderate artefacts. 
The authors stated that better overall reconstructed models and inverted data are 
obtained when applying the hybrid transformation to the field data prior to 2D FWI.  

Smith et al. (2019) applied a time-domain 3D elastic FWI to reconstruct a known tunnel 
placed at 10 m below the surface. The implementation relies on the spectral element wave 
propagation solver SPECFEM3D (Komatitsch and Tromp, 1999) and the SeisFlow tool for 
inversion (Modrak et al., 2018). The inversion relays on the quasi-Newton BFGS method; 
the step-length is computed using a safeguard backtracking line search (Modrak and 
Tramp., 2016). During inversion, each trace is normalized by its L2 norm and gradient 
smoothing is applied after each model update; a Gaussian mask is also applied around each 
source. The inversion is performed simultaneously for VP and VS while keeping the density 
fixed. The initial model is estimated from SW methods. The workflow is also based on the 
use of VP/VS ratio for removing artefacts from the inverted model and highlighting the 
localization of the tunnel.  

The conducted experiments proved that the use of shear sources and horizontal receivers, 
aside with vertical sources and vertical receivers, can improve the overall velocity 
structure. The authors proved that better results are obtained after inversion when 
removing the instrument response of the horizontal sensors. The vertical sensors’ 
instrument response is not removed because their resonance frequency is lower (4.5 Hz) 
than the horizontal sensors’ resonance frequency (14 Hz), and the synthetic and observed 
data look similar in the bandpass chosen for inversion (8 – 20 Hz). The tunnel cannot be 
identified in the VP results (neither in the vertical not in the horizontal slice), but the high 
VP/VS values identified in the results from combined VP – VS inversion highlight the tunnel’s 
position in both vertical and horizontal slices. Accordingly, the 3D contour of the high VP to 
VS ratio would be an efficient way to identify the tunnel’s location. The authors stated that 
the results from 3D FWI do not bring significant improvement in imaging the tunnel 
compared with the results from 2D FWI presented in Wang et al. (2019), although the 
depth of the tunnel is more accurate in the 3D results. 

Sun et al. (2017) developed a new strategy for near-surface imaging, consisting of 
alternatively applying first-arrival traveltime tomography and waveform inversion. The 
first arrival traveltime tomography is based on wave front ray tracing and nonlinear 
inversion. A multiscale approach is used for waveform inversion and a wavelet transform 
is applied to the data for mitigating cycle-skipping issues. The method is applied to one 
synthetic and two field data sets. The results proved that the alternation of inversions that 
minimize two separate objective functions leads to a better constraint of near-surface 
structures than the application of waveform inversion alone. The results obtained from the 
field data application are artefact-less and agree with known geological structures present 
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in the investigated sites. The authors stated that the wavelet-based multiscale waveform 
inversion may handle the cycle-skipping problem better than the frequency-based 
multiscale inversion of Bunks et al. (1995). They also stated that, in their approach, the 
integration of traveltime tomography plays an important role in avoiding the solution 
trapping into local minima.  

Tran et al. (2019) proposed a 3D time-domain FWI approach for near-surface site 
characterization, based on elastic modeling and Gauss-Newton inversion, using the 
complete inverse Hessian. The numerical implementation relies on the classical staggered-
grid FD method (Virieux, 1986). The free-surface boundary condition is implemented using 
the image technique (Robertsson, 1996) while perfectly matched layers are used for the 
other boundaries (Komatitsch and Martin, 2007). Some constraints are applied for 
regularization to increase the invertibility of the approximate Hessian matrix, which acts 
as a weighting function, avoiding the use of vector gradient scaling. The algorithm is tested 
on both synthetic and real data and the results are compared with data from standard 
penetration tests. The medium is a layered one with a low-velocity layer embedded at 
about 5 m depth. The initial VS model is estimated via spectral analysis, the initial VP is 
calculated from VS (using a constant Poison ratio of 1/3) and the density is 1800 kg/m3. 
The authors invert for VP and VS while keeping the density fixed. An offset-dependent 
correction factor acts during inversion to account for viscoelasticity. Two inversion runs 
are performed, using the frequency intervals of 5 – 20 Hz and 5 – 30 Hz. The embedded 
low-velocity zone is recovered alter FWI and confirmed by the results from standard 
penetration tests. The authors also compare the results from 3D Gauss-Newton FWI with 
results from cross-adjoint 3D FWI (reported in Nguyen and Tran, 2018), in which they use 
the same initial model and frequency content. Even if both FWI implementations produced 
accurate VS models, the authors stated that the VS results from Gauss-Newton FWI are 
more consistent with the N-values from standard penetration tests. Accordingly, the cross-
adjoint 3D FWI would be less effective for detecting low-velocity zones compared with the 
Gauss-Newton 3D FWI.    

Wang et al. (2019) applied a 2D time-domain FWI scheme, based on the FD method and l-
BFGS algorithm, for detecting a 10 m deep (1.5 m width x 1.76 m high) known tunnel. The 
optimization is based on the normalized L2 norm (Choi and Alkhalifah, 2012). The 
acquisition survey is perpendicular to the tunnel axis. The initial VS model is estimated by 
merging results from MASW and joint analysis of refractions with surface wave (JASW – 
Ivanov et al., 2013). The initial VP model is inferred multiplying the VS model by a constant 
VP/VS ratio. The value of this ratio (2) was estimated from previous studies conducted over 
the investigated area, including traveltime tomography (Schwenk et al., 2012) and 
diffraction research (Peterie et al., 2016). The tunnel-imaging FWI workflow is based on 
the use of a VP/VS quotient masking method for detecting the geometry and orientation of 
anomalies characterized by high VP to VS ratios: Since the VS value in the tunnel is close to 
zero, setting a threshold for the VP/VS quotient generates a spatial mask that highlights 
voids. A multiscale FWI is performed in the frequency intervals of 1- 20 Hz, 1 – 25 Hz, 1 – 
30 Hz, 1 – 35 Hz and 1 – 40 Hz. The results show how FWI can detect the tunnel as a low-
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velocity anomaly at the correct depth. The authors stated that, when using an initial model 
from SW analysis, an intermediate 2D FWI could perform an efficient model refinement 
before implementing a 3D FWI.  

Xing and Mazzotti (2019a) proposed a two-grid genetic-algorithm based 2D FWI 
approach for predicting the VS model from Rayleigh waves. In the two-grid 
parameterization, the forward modeling is performed on a fine grid while the inversion 
(for VS and density) is performed on a coarser grid. The coarse-grid inversion allows for 
the reduction of the computing time required by a genetic-algorithm based FWI. The 
experiments on different synthetic data sets (belonging to models characterized by strong 
velocity contrasts, velocity inversion, strong lateral variations or irregular topography) 
proved an accurate prediction of the long-wavelength structures of the model obtained 
after FWI, which can be used as an initial model in a gradient-based Rayleigh wave FWI for 
further refinement.  

Xing and Mazzotti (2019b) applied a two-grid genetic-algorithm Rayleigh wave FWI to 
two different field data sets. As the forward modeling scheme is based on a 2D FD wave 
propagation solver, 3D to 2D corrections were applied to the data before inversion. An 
envelope-based objective function and offset marching strategies were used during 
inversion. The method succeeded in guaranteeing an overall accurate matching between 
observed and inverted data, within half-wavelength, even if limiting the maximum 
frequency to 30 Hz. Only in one case, the low resolution did not allow identifying a velocity 
decrease trend (observed in the borehole logs). The authors stated that the models 
obtained from the coarse-grid global FWI are accurate enough to be used as initial models 
for local FWI.  

Yuan et al. (2015) developed a wavelet-multiscale adjoint approach for elastic FWI of 
BWs and SWs. The inversion starts from SWs and minimizes, in the first stages, an 
envelope based objective function and, in the late stages, a waveform-difference one.  The 
waveform-difference objective function is also used at the end of the sequence when 
inverting simultaneously for VP, VS and density. A multiscale approach is adopted through 
all the sequence. The authors proved the effectiveness of their method using a toy method 
and the synthetic Marmousi model. The authors also investigated the effects of an incorrect 
density model in the elastic FWI.  
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5.4 – The SEM46 code 

The 3D FWI code SEM46 (Spectral Element for Seismic Imaging in eXploration) (Trinh et al., 
2019) was used for all numerical tests in this study. The code is written in Fortran 90 and 
it has two levels of MPI parallelization: the domain decomposition and the simultaneous 
managing of multiple shots, mitigating the I/O disk resources. 

Numerical implementation 

The implementation relies on non-overlapping hexahedra spectral-element architecture, 
where a deformed Cartesian-based mesh is coupled with high-order shape functions, 
allowing to model complex topography variations (Trinh et al., 2019). Each hexahedral 
element can be mapped to a reference cube [-1,1]x[-1,1]x[-1,1] and projected to a 3D 
Gauss-Lobatto-Legendre (GLL) domain, discretized into a set of (𝑛 + 1)ଷ points, where n is 
the interpolation order (Trinh et al., 2019). An interpolation order equal to 4 or 5 allows to 
accurately model the viscoelastic wave propagation with approximately five or six GLL 
nodes per shortest wavelength (Komatitsch and Vilotte, 1998; Komatitsch and Tromp, 
1999; Trinh et al., 2019). The GLL points are used to define (𝑛 + 1)ଷ basis functions, each 
function being a triple product of Lagrange polynomials of degree n.  

A compressed boundary implementation is used for memory mitigation (Yang et al., 2016c; 
Trinh et al., 2019). Moreover, an efficient strategy for the stable recovery of the decimated 
incident field, needed for the construction of the misfit gradient, is implemented (Yang et 
al., 2016b; Trinh et al., 2019). Specifically, the viscoelastic wave equation (which is not self-
adjoint), containing the memory variables, may introduce instability during the incident 
field reconstruction. To restore its reversibility, a viscoelastic version of the checkpointing 
strategy is implemented in the code (Anderson et al., 2012; Komatitsch et al., 2016; Yang et 
al 2016b). The optimal number of checkpoints (in terms of displacement, velocity and 
memory variables) is related to the total number of time steps nt by 𝑙𝑜𝑔ଶ (𝑛𝑡) - Trinh et al. 
(2019). The checkpoint-assisted reverse-forward simulation (CARFS) is based on the 
strain energy measure and a value of tolerance (Yang et al., 2016b). The latter is related to 
the reference global energy, stored at the boundaries during the forward propagation of 
the incident filed, to quantify the stability of the reverse simulation (Yang et al 2016b; 
Trinh et al., 2019).  

Viscoelastic forward modeling 

The viscoelastic wave propagation is modeled using second-order partial differential 
equations – from Fichtner (2011) and Trinh et al. (2019), modified: 

𝜌(𝐱)
డమ

డ௧మ u୧(𝐱, 𝑡) −  ∇ ∙ σ୧୨(𝐱, 𝑡) = f୧(𝐱, 𝑡) ,         (5.4) 

σ௜௝(𝐱, 𝑡) = C௜௝௞௟ ∗ 𝜀௞௟(𝐱, 𝑡) +  Ʈ௜௝ (𝐱, 𝑡),                                         (5.5) 

where C௜௝௞௟  are the unrelaxed coefficients of the stiffness (i.e. elastic) tensor and the tensor 

Ʈ is the possible stress failure.  
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The attenuation mechanism works under the approximation of constant quality factors (QP 
and QS), represented by standard-linear-solids (SLS – Robertsson et al., 1994; Blanch et al., 
1995), each one effective over limited frequency bands (Yang et al., 2016a). The 
attenuation coefficients (𝑄௜௝௞௟) are incorporated into the wave equation and a memory-

variable vector is associated with each SLS (Trinh et al., 2019).  

In the frequency domain, the inverse of the attenuation coefficients is described as the 
ratio between the imaginary and the real part of the complex relaxation rate 
𝐶መ௜௝௞௟(𝐱, 𝜔), where ‘^’ indicates the Fourier transform (Trinh et al., 2019). Given n SLS 

systems chosen to fit a constant Q value over a certain frequency interval 𝜔ఔ ∈[𝜔௠௜௡ , 𝜔௠௔௫], 
the anelastic coefficients 𝑌ఔ

௜௝௞௟are introduced in the definition of the complex relaxation 
rate 𝐶መ௜௝௞௟(𝐱, 𝜔) as follows (Emmerich and Korn, 1987; Blanch et al., 1995; Moczo and 

Kristek, 2005; van Driel and Nissen-Mayer, 2014; Trinh et al., 2019): 

𝐶መ௜௝௞௟(𝐱, 𝜔) =  𝐶௜௝௞௟(𝐱) ቀ1 −  ∑ 𝑌ఔ
௜௝௞௟

(𝐱)
ఠഌ

ఠഌା௜ఠ

௡
ఔୀଵ ቁ.         (5.6) 

Following the approximation proposed by Yang et al. (2016a), regarding the use of 𝑌ఔ
௜௝௞௟

≈

 𝑦ఔ𝑄௜௝௞௟
ିଵ (𝐱) for the entire space, with 𝑦ఔ  dimensionless anelastic coefficients, the complex 

relaxation rate becomes (Trinh et al., 2019): 

𝐶መ௜௝௞௟(𝐱, 𝜔) =  𝐶௜௝௞௟(𝐱) −   𝐶௜௝௞௟(𝐱) 𝑄௜௝௞௟
ିଵ (𝐱) ∑ 𝑦ఔ

ఠഌ

ఠഌା௜

௡
ఔୀଵ + Ʈ௜௝ (𝐱, 𝑡),        (5.7) 

where the second term of the right-hand side describes the attenuation mechanism, 
𝐶௜௝௞௟(𝐱) 𝑄௜௝௞௟

ିଵ (𝐱) is a term-by-term product and the coefficients 𝑦ఔ  are estimated as a least-

squares minimization problem (Trinh et al., 2019): 

𝑚𝑖𝑛௬ഌ
൜∫ ቂ𝑄௥௘௙

ିଵ  ቀ𝑦ఔ
ఠഌ ఠ

ఠమାఠഌ
మ − 1ቁቃ

ଶఠ೘ೌೣ

ఠ೘೔೙
ൠ ,         (5.8) 

which minimizes the distance between a constant value 𝑄௥௘௙
ିଵ  and its approximation over a 

constant frequency band [𝜔௠௜௡ , 𝜔௠௔௫], with 𝑄௥௘௙  ൣ𝑚𝑖𝑛௜௝௞௟.௫(𝑄௜௝௞௟(𝐱), 𝑚𝑎𝑥௜௝௞௟.௫(𝑄௜௝௞௟(𝐱))൧  

(Trinh et al., 2019). This method is associated with a cheap-memory storage strategy: 
instead of storing n x 21 anelastic coefficients  𝑌ఔ

௜௝௞௟
(𝐱) associated with 21 coefficients 

𝐶௜௝௞௟(𝐱) at each space location (Komatitsch and Tromp, 1999), only n scalars 𝑦ఔ  and n 

reference frequencies 𝜔ఔ  (associated with n SLSs) are stored for the entire medium (Trinh 
et al., 2019).  

The unrelaxed stiffness coefficients 𝐶௜௝௞௟(𝐱) are representative for the elastic rheology. 
Attenuative stiffness coefficients 𝐶௜௝௞௟

ோ  are introduced to describe the frequency-dependent 

attenuation mechanism (Trinh et al., 2019): 

𝐶௜௝௞௟
ோ (𝐱) =  𝐶௜௝௞௟(𝐱) 𝑄௜௝௞௟

ିଵ  (x).          (5.9) 

The relation for the stress tensor becomes (Trinh et al., 2019): 

σ௜௝(𝐱, 𝑡) = C௜௝௞௟(𝐱) ∗ 𝜀௞௟(𝐱, 𝑡) − C௜௝௞௟
ோ (𝐱) ∑ 𝜓ఔ; ௞,௟(𝐱, 𝑡)௡

ఔୀଵ + Ʈ௜௝ (𝐱, 𝑡) , 

where 𝜓ఔ; ௞,௟(𝐱, 𝑡) is the memory variable (associated with each SLS) satisfying the 

equation (Trinh et al., 2019): 
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డ

డ௧
 𝜓ఔ; ௞,௟(𝐱, 𝑡) + 𝜔ఔ𝜓ఔ; ௞,௟(𝐱, 𝑡) = 𝜔ఔ𝑦ఔ𝜀௞௟(𝐱, 𝑡).      (5.10) 

The introduction of the memory variable into the stress field expression helps to optimize 
the computation cost.  

When the attenuation mechanism is isotropic, the relaxed stiffness tensor becomes (e.g. 
Moczo et al., 1997; Trinh et al., 2019):     

Cோ =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝜆ோ + 2𝜇ோ 𝜆ோ 𝜆ோ

𝜆ோ 𝜆ோ + 2𝜇ோ 𝜆ோ

𝜆ோ 𝜆ோ 𝜆ோ + 2𝜇ோ

𝜆ோ  02𝜇ோ   𝜆ோ 02𝜇ோ    𝜆ோ02𝜇ோ

𝜆ோ  02𝜇ோ 𝜆ோ  02𝜇ோ 𝜆ோ   02𝜇ோ

𝜆ோ  02𝜇ோ 𝜆ோ  02𝜇ோ 𝜆ோ    02𝜇ோ

      

 0   0   0
 0   0   0
 0   0   0
𝜇ோ  0  0

 0  𝜇ோ  0

 0 0 𝜇ோ
⎦
⎥
⎥
⎥
⎥
⎥
⎤

 ,          (5.11) 

where the relaxed (attenuative) coefficients 𝜆ோ  and 𝜇ோ can be estimated as (Trinh et al., 
2019): 

𝜆ோ + 2𝜇ோ =
ଵ

ଷ
 𝑄୔

ିଵ (𝐶ଵଵ +  𝐶ଶଶ +  𝐶ଷଷ) and  𝜇ோ =  
ଵ

ଷ
 𝑄ୗ

ିଵ (𝐶ସସ +  𝐶ହହ +  𝐶଺଺).       (5.12) 

Discretization in space 

Considering the SEM implementation based on Lagrange polynomials as basis functions 
and GLL quadrature for numerical integration, the weak formulation of the viscoelastic 
wave equation for the displacement field is (Trinh et al., 2019): 

M 
డమ

డ௧మ u + Ku −  𝐷௪𝐶ோ ∑ ψఔ = F௡
ఔୀଵ , 

డ

డ௧
ψఔ +  𝜔ఔψఔ =  𝜔ఔ𝑦ఔ 𝐷u,                     (5.13) 

where M is the global mass matrix (diagonal), K is the global stiffness matrix, F is the 
external source, D is the spatial derivative operator of a vector in the Cartesian space and 
𝐷௪  is the spatial derivative operator weighted by GLL weights (Trinh et al., 2019).  

As the product of the displacement field vector u by the stiffness matrix K is 
computationally intensive, it is factorized as K=𝐷௪CD (Trinh et al., 2019), which is a three-
step factorization: 1) the strain component computation via estimation of the displacement 
field’s spatial derivatives, 2) the stress component computation by the product with the 
stiffness coefficients and 3) the last estimation of the spatial derivatives following the 
implementation proposed by Deville et al. (2002), which takes benefit from the tensorial 
properties of hexahedral elements and the efficient loop vectorization combined with 
manual unrolling (Trinh et al., 2019).  
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Discretization in time 

A second-order explicit Newmark scheme is implemented for time integration, to compute 
the displacement field at each time step (Komatitsch and Vilotte, 1998; Komatitsch and 
Tromp, 1999; Trinh et al., 2019).  The first-order ordinary differential equation related to 
the memory variable (equation 5.13) is efficiently incorporated into the time scheme. The 
memory variables are updated at half time steps compared to the displacement fields, to 
maintain the second-order accuracy (Trinh et al., 2019): 

ψఔ
௜௧ାଵ/ଶ

=  
ଶିఠഌ∆௧

ଶାఠഌ∆
 ψఔ

௜௧ିଵ/ଶ
+  𝜔𝜈𝑦𝜈

ଶ∆௧

ଶାఠഌ∆௧
 Du௜௧ ,       for 𝜈 = 1,…,n.                   (5.14) 

The expression above allows computing the memory variable at each step explicitly, from 
the memory variable at the previous step and the displacement field (Trinh et al., 2019). 

*** 

The memory requirements of the viscoelastic simulation are efficiently reduced by the 
above strategy (storing only a single ψఔ  per step) and by storing only n scalar anelastic 
coefficients 𝑦ఔ  (equations 5.7 and 5.8) related to the SLS attenuation mechanism (Trinh et 
al., 2019). For each checkpoint needed for the incident field reconstruction, the 

displacement 𝑢௜௧ , velocity 𝑣௜௧  and memory variable ψ௜௧ି
భ

మ fields are stored. During the 
forward propagation of the incident field, a reference global energy is also recorded at each 
time step 𝐸௥௘௙

௜௧ =1/2 (𝜎௜௧𝜀௜௧)Ώ, to monitor the stability of the incident wavefield’s reverse 

simulation, according to a certain energy tolerance (Trinh et al., 2019).  

Nonlinear optimization 

The linearized inversion relies on various local optimization methods, gathered by the 
Seiscope optimization toolbox (Métivier and Brossier, 2016), which is embedded in the 
SEM46 code through a reverse-communication interface. All Newton-like strategies are 
based on the same line-search algorithm, that satisfies the Wolfe conditions (Nocedal and 
Wright, 2006; Trinh et al., 2019).  

The gradient of the least-squares misfit function 𝜒(𝐦) = 1/2‖𝑑௢௕௦ − 𝑑௖௔௟௖  ‖ଶ with respect 
to the model parameters m (e.g. elastic tensor, density, attenuation factor, etc.) is 
computed in time-domain using the adjoint state approach (Plessix, 2006). For example, 
the gradient with respect to the elastic tensor’s coefficients Cij is the zero-lag cross-
correlation between the incident and the adjoint wavefield (Plessix, 2006; Vigh et al., 
2014): 

డఞ(୫)

డେ೔ೕ 
= ൬𝜀 ഥ,

డେ

డେ೔ೕ 
𝜀൰

ఆ,௧

               (5.15) 

where Cij is a matrix (6 x 6) containing the coefficients of the elastic tensor (i.e. the 
unrelaxed stiffness components), 𝜀  ഥ is the adjoint strain field and 𝜀 is the incident strain 
field. In viscoelastic approximation, a memory variable term 𝜓௦ is also present in the 
gradient (Fichther and van Driel, 2014; Trinh et al., 2019):  
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డఞ(୫)

డେ೔ೕ 
= ൬𝜀 ഥ,

డେ

డେ೔ೕ 
𝜀൰

ఆ,௧

− ൬𝜀 ഥ, ∑
డେೃ

డେ೔ೕ 

௡
ఔୀଵ  𝜓ఔ൰

ఆ,௧

,     (5.16) 

where Cோ is the relaxed stiffness tensor.  

The gradient for the density is the always-computed misfit gradient during one iteration of 
the FWI workflow. Its computation is done through the zero-lag cross-correlation between 
the adjoint displacement field and the incident acceleration field (Trinh et al., 2019):  

డఞ(𝐦)

డఘ
= ቀuത,

డమ

డ௧మ uቁ
ఆ,௧

.                       (5.17) 

The gradient of the attenuation parameters can be estimated as the zero-lag cross-
correlation between the adjoint strain field εത and the incident memory-variable field 𝜓ఔ  
(Trinh et al., 2019):  

డఞ(𝐦)

డொషభ =  − ቀ𝜀 ഥ, ∑
డ஼ೃ

డொషభ
௡
ఔୀଵ  𝜓ఔቁ

ఆ,௧
. 

The gradient with respect to any desirable parameter 𝛼 (e.g. seismic velocity, anisotropic 
parameter, impedance, etc.) can be retrieved by the chain rule, using the density 𝜌, the 
stiffness coefficient Cij and the attenuation parameters 𝑄௉

ିଵ, 𝑄ௌ
ିଵ (Trinh et al., 2019):  

డఞ(𝐦)

డఈ
=  ∑ ∑

డఞ

డେ೔ೕ

଺
௜ୀଵ  

డେ೔ೕ

డఈ
+  

డఞ

డఘ
 

డఘ

డఈ
+

డఞ

డொು
షభ  

డொು
షభ

డఈ
+  

డఞ

డொೄ
షభ  

డொೞ
షభ

డఈ
 ଺

௜ୀଵ .   (5.18) 

Gradient smoothing 

A gradient smoothing through a 3D anisotropic Bessel filter is efficiently performed on the 
SEM modeling mesh (Trinh et al., 2017). This filter has an arbitrary local orientation using 
3 Euler angles and spatially variable coherent lengths along these 3 specific directions (z, x 
and y).  

The gradient smoothing is implemented through the application of an inverse operator. 
Instead of obtaining the smoothed gradient by an explicit convolution of the gradient 
vector g with the coefficients of the Bessel filter B3D (Trinh et al., 2017): 

 sg(𝑧, 𝑥, 𝑦) ≈ 𝐵ଷ஽ (𝑧, 𝑥, 𝑦) ∗ g(𝑧, 𝑥, 𝑦),      (5.19) 

where sg is the smoothed gradient, g is the raw gradient vector and the symbol “*” is the 
convolution operator, the Bessel filter acts as an inverse operator 𝐵ଷ஽

ିଵ (Trinh et al., 
2017):  

𝐵ଷ஽
ିଵ (𝑧, 𝑥, 𝑦) ∗ sg(𝑧, 𝑥, 𝑦) = g(𝑧, 𝑥, 𝑦).       (5.20) 

Under the assumption of small spatial variation for the filter’s parameters (aimed to 
preserve the self-adjoint property), their spatial derivatives can be neglected, and the 
coefficients of the Bessel filter can be obtained as the unique solution of a Helmholtz-like 
PDE (Trinh et al., 2017):  

ቂ1 − ቀ𝐿𝑧ଶ  
డమ

డ௭మ +  𝐿𝑥ଶ  
డమ

డ௫మ +  𝐿𝑦ଶ  
డమ

డ௬మቁቃ  sg(𝑧, 𝑥, 𝑦) = g(𝑧, 𝑥, 𝑦),   (5.21) 
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where Lz, Lx and Ly are the coherent lengths in the z, x and y directions. The above system 
is discretized using the FE method and expressed as a sparse operator (Thinh et al., 2017):  

[1 −  (𝛻௭,௫,௬
௧  P(𝑧, 𝑥, 𝑦) P(𝑧, 𝑥, 𝑦)௧  𝛻௭,௫,௬ )] sg(𝑧, 𝑥, 𝑦) =  g(𝑧, 𝑥, 𝑦)   (5.22) 

where 𝛻 gathers the spatial derivatives (δ/δx, δ/δy, δ/δz), t stands for the transposed 
operator and P is a matrix, containing the filter’s parameters and representing the 
projection between the Cartesian space and the locally rotated coordinate system (Thinh 
et al., 2017): 

P(𝑧, 𝑥, 𝑦) =  අ

𝐿𝑣 cos 𝜑 𝐿𝑢 𝑠𝑖𝑛𝜑 0
− 𝐿𝑣 𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜑 𝐿𝑢 cos 𝜃 𝑐𝑜𝑠 𝜑 𝐿𝑤 𝑠𝑖𝑛𝜃

𝐿𝑣 𝑠𝑖𝑛𝜃 sin 𝜑 − 𝐿𝑢 𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜑 𝐿𝑤 𝑐𝑜𝑠𝜃
ඉ    (5.23) 

The linear system (Mୠ  + Kୠ) sg =  Mୠ g (with Mୠ= the mass matrix - diagonal and 
Kୠ stiffness matrix - symmetric) associated with the Bessel filter and related to the PDE’s 
discretization through the weak formulation of SEM, is solved using a parallel conjugate-
gradient iterative solver (Trinh et al., 2017). Since the product Kୠ sg is computationally 
demanding, the sparse-stiffness matrix Kୠ is factorized as Kୠ=D୵ (PP୲) D (Deville et al., 
2002; Trinh et al., 2019).  

The code allows performing multiple sequential gradient smoothing runs. For example, a 
double application of the Bessel filter proved to be an accurate approximation of a Laplace 
filter (Trinh et al., 2017).  

A more detailed presentation of the SEM46 numerical implementation and computation 
performance can be found in Trinh et al. (2017) and Trinh et al. (2019). 

5.5 – Highlights 

 Based on the numerical solution of the seismic wave equation and exploiting the entire 
information in the seismogram, FWI guarantees a theoretical resolution up to half of 
the propagated wavelength. However, such achievement is not guaranteed for real 
data applications, due to resolution-restrictive factors, such as the partial illumination 
of the subsoil (related to the acquisition design) and the trade-off between different 
parameters. 

 FWI is a mathematically ill-posed problem (many models can fit equally-well the same 
data set), reason for which different strategies are required to guide and constrain the 
convergence. 

 The first FWI applications were based on the acoustic approximation, but the 
continuous evolution of parallel computing architectures renders the elastic 
approximation increasingly feasible and efficient. This opens a gate for successful FWI 
applications to land data recorded in environments characterized by complex 
geological assets.  
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 A probabilistic approach for the inversion efficiently accounts for the solution non-
uniqueness while providing information on the uncertainties. Nevertheless, for 3D 
applications using the elastic or viscoelastic equation, the computing architectures 
nowadays still cannot handle conveniently such implementation. Thus, the 
deterministic approach is adopted for most of the 3D FWI tools. This fact renders the 
initial model’s accuracy very important for FWI’s success.  

 There are various gradient methods, such as steepest descent, conjugate gradients, 
Newton and Gauss-Newton. The adjoint state technique, based on the gradient 
computation through time-domain cross-correlation between the incident and 
residual wavefield, is widely implemented in many FWI codes, as the one used in this 
work.  

 Some sensible aspects of the adjoint-state technique are the necessity of storing the 
wavefield at the boundaries and of satisfying the condition of wave energy 
conservation (to guarantee the reversibility of the wave equation). Different strategies 
(e.g. check-pointing) are implemented for bypassing these issues.    

 The gradient of the misfit function contains many local minima. To avoid the 
algorithm’s convergence towards one of them, different strategies are required, like 
the use of alternative misfit functions (to the classical one based on  𝐿ଶ norm), data-
gradient preconditioning, introduction of weighting operators, regularizations, 
multiscale inversion, time windowing, etc.  

 Although FWI was designed for deep exploration purposes, various examples are 
available in the literature for FWI application on shallow seismic wavefields. Most of 
them use 2D solvers for wave propagation simulation, but there are also some 
successful examples of FWI based on the use of 3D wave propagation equation.     

 The FWI code used for this study (SEM46) is based on 3D hexahedra-spectral 
elements architecture and is characterized by a double level of MPI parallelization: 
domain decomposition and parallel managing of multiple shots. 

 The code relies on viscoelastic forward modeling and elastic inversion. The 
attenuation is implemented as a superposition of SLS, related to Q factors, which 
are constant over limited frequency bands and are associated with specific 
memory variables. 

 A compressed boundary implementation is used for memory mitigation while an 
efficient checkpointing strategy is adopted for the stable recovery of the incident 
wavefield.  

 A reverse communication interface embeds different optimization tools, based on 
linearized inversion methods.  

 A gradient smoothing by a 3D anisotropic and non-stationary Bessel filter is 
efficiently performed on the SEM modeling mesh, under the assumption of small 
spatial variation of filter’s parameters (i.e. the coherent lengths in the z-x- and y-
direction).  
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Appendix 2 

Source estimation  

The estimation of the source wavelet can be obtained as a solution of a linear inverse 
problem. This fact is possible because the relationship between the seismic wavefield and 
the source is linear (Virieux and Operto, 2009).  

The source signature estimation requires the Green’s function computation in the initial 
model (𝑚௢). For this operation, a known wavelet is used, with the same frequency content 
as the one configured for the inversion.  

The source signature is recovered as a matching Wiener filter that minimizes the quadratic 
difference between the observed seismic data and the synthetic ones 𝐸 =
భ

మ
 (ௗ೚್ೞିௗ೎ೌ೗೎ )

೟(ௗ೚್ೞିௗ೎ೌ೗೎ ). There are two main assumptions in this process: the source 

signature is the only unknown and the initial velocity model (mo) is relatively correct 
(Pratt, 1999).  

In the frame of the optimum Wiener filter, the field data 𝑑௢௕௦ is the desired output, the 
simulated data 𝑑௖௔௟௖ (𝑚଴) is the output obtained by propagating the known Richer source 
over the initial model (𝑚଴) and w is the inverse operator that minimizes the quadratic 
difference between the two datasets.  

Considering the seismic traces as the result of the convolution between the Green’s 
function and the source wavelet, the coefficients of the unknown filter are obtained by 
solving the following inverse linear problem: 

𝜒 =  ∑ [𝑑௢௕௦ − 𝑤 ∗  𝑑௖௔௟௖]ଶ௧௥௔௖௘௦ ௡௨௠௕௘௥
௡ୀଵ      

డఞ

డ௪ 
= 2 [𝑑௢௕௦ − 𝑤 ∗  𝑑௖௔௟௖] 

డ

డ௪
 [𝑑௢௕௦ − 𝑤 ∗ 𝑑௖௔௟௖] = 0, 

డఞ

డ௪ 
= 2 [𝑑௢௕௦ − 𝑤 ∗  𝑑௖௔௟௖] (−  𝑑௖௔௟௖) = 0,    

𝑑௢௕௦ ∗  𝑑௖௔௟௖ =  𝑤 ∗ 𝑑௖௔௟௖ ∗ 𝑑௖௔௟௖ ,              (A2.1) 

where “*” indicates a convolution operator in the time domain (corresponding to a product 
in the frequency domain). The final expression for the source signature estimation in the 
frequency domain is (Pratt, 1999): 

    𝑤(𝑓)= ∑
ௗ ೚್ೞ (௙) .  ௗ೎ೌ೗೎ (௙)

ௗ೎ೌ೗೎ (௙) . ௗ೎ೌ೗೎ (೑)

௡௕.  ௢௙ ௧௥௔௖௘௦
௡ୀଵ         (A2.2) 

The above expression is a complex-valued one, providing both the amplitude and phase of 
the desired source signature in the frequency domain (Pratt, 1999). 

After Fourier frequency-time transform, the higher-time oscillations of the source function 
are filtered. This operation aims at honoring the deconvolution’s assumption related to the 
stationary character of the wavelet over the propagation path. Besides, a minimum phase 
source is the one that guarantees high resolution.  
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The source estimation can be iteratively improved in terms of amplitude and phase 
matching, following the model updated. Nevertheless, phase and amplitude discrepancies 
may occur between the estimated wavelet and the real (desired) one (Pratt, 1999). For 
example, if the real wavelet is not of minimum phase, the optimum Wiener filter is not 
causal, leading to an estimated wavelet that is more advanced in phase than the minimum-
phase desired output. To mitigate this effect, phase correction may be applied to the 
estimated source (Pratt, 1999).  

Moreover, the amplitude of the estimated source may be higher than that of the real source 
due to geometrical dispersion and mode conversion to S-waves, which affects the real 
amplitudes (Pratt, 1999). The matching between observed and synthetic amplitudes can 
be forced, for example, by reducing the value of the Q parameter in the synthetic 
simulation, which is equivalent of increasing the intrinsic attenuation (Pratt, 1999). 
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6.1– Introduction 

This chapter is dedicated to the analysis of various data sets, obtained from numerical 
simulations or belonging to a seismic acquisition conducted in an experimental site. All 
numerical simulations have been performed using the SEM46 code, based on a 3D wave 
propagation solver. Some of these results are published in Teodor et al. (2017), Khosro 
Anjom et al. (2019) and Teodor et al. (2020 - submitted).  

Chapter 6 contains three main sections: 

 The first one (6.2) is dedicated to the analysis of various shot gathers, obtained from 
numerical simulations performed over different synthetic models characterized by 
various geometries. The aim of this section is providing some examples related to the 
wave propagation behavior in a shallow geological context, as this study is focused on 
geotechnical scale applications. The dimensions of these synthetic models are similar 
to the ones of the test site.  

 The second one (6.3) is dedicated to the presentation of a seismic acquisition carried 
out on purpose for this study, as well as the analysis of the corresponding field data 
set.  

 Tre third one (6.4) is dedicated to the presentation of a synthetic model (that mimics 
the characteristics of the real test site) and the connected data set used in this study to 
validate the adopted methodology.  

6.2– Numerical simulations over synthetic models  

Data related to near-surface land acquisitions are dominated by SWs, showing high 
amplitude and dispersive behavior. These peculiar features render the accurate 
reconstruction of shallow targets a challenging task, with an important impact on the 
imaging accuracy at greater depths. Therefore, understanding the physics of wave 
propagation in shallow environments (geotechnical scale) requires devoted attention. 

The aim of this section is illustrating the above behavior through some synthetic examples. 
The results of a numerical simulation conducted over a synthetic model, having high lateral 
and vertical impedance contrasts, are schematically shown at the beginning of the Chapter, 
with the aim of providing a global picture of the wave propagation behavior in this kind of 
environment. Successively, other examples, with simple-to-complex increasing geometry, 
are presented. In the examples presented below, all the models are characterized by flat 
topography, as the real geological context investigated in this study. It is known that a flat 
topography facilitates a forward scattering regime of SW propagation with the consequent 
fundamental mode’s domination.    

Table 1 shows a summary of the numerical simulations performed in this section and the 
related parameters. A particularly high frequency was used for the source during the first 
simulation, while realistic frequency values were used for the other simulations. The 
choice of a particularly high frequency for the first simulation was aimed to guarantee a 
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relatively high number of propagating wavelengths over the maximum offset and allow 
distinguishing the separation of various arrivals in the simulated data. 

 
Synthetic models 

Central 
frequency of 

the source 
[Hz] 

Time sampling 
[s] 

Mesh 
dimensions 

(m) 

 
Simulation 1: Multilayered 
model with a low-velocity 
target embedded  

 
200  

 
4.8e-6 s 

 
0.1 m  

 
Simulation 2: Homogeneous 
medium 

 
48  

 
1.4e-5 s 

 
0.3 m 

 
Simulation 3: Medium 
composed of two layers  

 
48  

 
1.4e-5 s 

 
0.3 m 

 
Simulation 4: Homogeneous 
medium with a low-velocity 
target embedded 

 
48  

 
1.4e-5 s 

 
0.3 m 

 
Simulation 5: Medium 
composed of two layers and a 
low-velocity target embedded  

 
48  

 
1.4e-5 s 

 
0.3 m 

 
Simulation 6: Multilayered 
medium with a low-velocity 
target embedded   

 
48  

 
1.4e-5 s 

 
0.3 m 

Table 1 – List of the numerical simulations of Section 6.2 and corresponding parameters 

6.2.1 – A quick look at the “global picture” 

Figure 6.1 summarizes the parameters and the results of the wave propagation simulation 
conducted over a multilayered model, containing a low-velocity target of a particular shape 
(Figure 6.1a) – Simulation 1. The source time function is a Ricker wavelet, with a central 
frequency of 200 Hz. A 0.1 m element size (in z-, x- and y-direction) was used for the 3D 
mesh, according to the condition of including at least 5 GLL points per shortest wavelength. 
To honor the CFL (Courant-Friedrichs-Lewy) time stability condition, the time sampling 
was 4.8e-06 s. A free surface condition was applied at the top of the model while absorbing 
sponges were used for the other boundaries. 

The analysis of a shot placed in a transition area between the target and the vertically 
layered medium (Figure 6.1b) reveals the SWs domination and the weak BWs amplitude. 
Various forward-scattered and back-scattered phases are also present in correspondence 
of the target’s boundaries (Figure 6.1c).  
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Figure 6.1 – Example of seismic wave propagation in a shallow synthetic model. a) 2D 
vertical section of the 3D P-wave velocity, S-wave velocity and density model. b) Sketch of the 
acquisition geometry used for the synthetic experiment. c) The vertical component of the 
recorded data.   

6.2.2 – From simple to complex 

Numerical simulations were performed over different 3D models. The acquisition design 
gathers 72 vertical receivers that cross the models center. A Ricker wavelet, with a central 
frequency of 48 Hz (characteristic for geotechnical scale exploration) was the vertical point 
source. The source was located towards the left extremity of the seismic line, outside the 
low-velocity target (Figure 6.1b). A 0.3 m element size (in z-, x- and y-direction) was used 
for 3D mesh. To honor the CFL time stability condition, the time sampling was 1.4e-05 s. 
The maximum duration of the simulations was 0.27 s. 

Simulation 2: Homogeneous medium 

This model has homogeneous properties (Figure 6.2), with a VP of 1050 m/s and a Vs of 
600 m/s. The density (kg/mଷ) was retrieved using the relation 𝜌 = 0.5 ·  𝑉௦

଴.ଶଶ ·  10ଷ, 
characteristic for shallow environments. 

 

Figure 6.2 – 2D sections of the 3D 
model of the Simulation 2: a) P-wave 
velocity, b) S-wave velocity, c) density. 
Vertical sections (zx) are shown on the 
left-hand side, while horizontal sections 
(yx), in correspondence of the surface, 
are shown on the right-hand side.   
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Analyzing the common shot gather obtained from this simulation (Figure 6.3), one can 
notice dominant SWs as the main seismic phase. Since the medium is homogeneous, no 
dispersive behavior occurs.   

 
Figure 6.3 – Shot gather related to wave propagation through the model in Figure 6.2. 

 

Simulation 3: Medium composed of two layers 

This model (Figure 6.4) is composed of two layers, characterized by the velocity values 
shown in Table 2. For the density model computation, the same relation of the previous 
case was used.  

Model of the simulation 3 VP  [m/s] VS  [m/s] ρ [kg/𝑚ଷ] 

Layer 1 250  150  1505 

Layer 2 1050  600  2043 

Table 2. Characteristics of Model 2. 
 

 
Figure 6.4 – 2D sections of 
the 3D model of the 
simulation 3: a) P-wave 
velocity, b) S-wave velocity, c) 
density. Vertical sections (zx) 
are shown on the left-hand 
side, while horizontal sections 
(yx), in correspondence of the 
surface, are shown on the 
right-hand side.   

 

 

In the synthetic data obtained from the simulation (Figure 6.5), SWs are dominant, while 
BWs are very weak (almost indistinguishable). A weak reflected phase, corresponding to 
the interface between the two layers, can be noticed as well at about 0.075 s.  
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Figure 6.5 – Shot gather related to wave propagation through the model in Figure 6.4. 

Simulation 4: Homogeneous medium with a low-velocity target 
embedded 

The model (Figure 6.6) is characterized by a low-velocity target (VP=120 m/s, VS=70 m/s) 
embedded in a homogeneous background (VP=1050 m/s; a Vs=600 m/s).  

 
Figure 6.6 – 2D sections 
of the 3D model of the 
simulation 4: a) P-wave 
velocity, b) S-wave 
velocity, c) density. 
Vertical sections (zx) 
are shown on the left-
hand side, while 
horizontal sections (yx), 
in correspondence of 
the surface, are shown 
on the right-hand side.   
 

 

 

As in the previous cases, the seismic data are dominated by SWs, while the BWs amplitude 
is very weak (Figure 6.7). Continuous phases confined inside the low-velocity target can be 
noticed, while the laterally leaked phases, in correspondence of the target’s boundaries, 
are barely distinguishable: Almost all seismic energy remains trapped inside the low-
velocity target (the position from 8 m to 13 m in the seismogram).  

 



Chapter 6 – DATA SETS 

 

107  

 

 
Figure 6.7 – Shot gather related to wave propagation through the model in Figure 6.6. 

 

Simulation 5: Medium composed of two layers and a low-velocity target 
embedded  

This model (Figure 6.8) is characterized by the same values of density and velocity as the 
model of the Simulation 3, while the embedded low-velocity target has the same 
characteristics of the model used in the Simulation 4.  

 
 

Figure 6.8 – 2D sections 
of the 3D model of the 
simulation 5: a) P-wave 
velocity, b) S-wave 
velocity, c) density. 
Vertical sections (zx) 
are shown on the left-
hand side, while 
horizontal sections (yx), 
in correspondence of 
the surface, are shown 
on the right-hand side.   
 
 
 

One can notice dominant SWs, with some dispersive features (Figure 6.9). Again, BWs are 
very weak. Apart from the phases trapped inside the sand body, some forward and 
backward scattered phases can be noticed in correspondence of the target’s boundaries. 
The lateral leakage outside the target (offset from 8 m to 13 m in the seismogram) is higher 
than in the previous case. 
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Figure 6.9 – Shot gather related to wave propagation through the model in Figure 6.8. 

 

Simulation 6: Multilayered medium with a low-velocity target 
embedded   

The object of this simulation is a multi-layered model bearing a low-velocity target 
(VP=120 m/s, VS=70 m/s) - Figure 6.10. This model is similar to the one presented in 
Section 6.2.1, but here the frequency content of the source is much lower. The various 
layers are characterized by the velocity values reported in Table 3, while the density 
follows the path described by the relation used in the previous cases. 

Model of the 
simulation 6 

VP [m/s] VS [m/s] ρ [kg/𝑚ଷ] 

Layer 1 300  150  1505 
Layer 2 500  200  1604 
Layer 3 600  300  1754 
Layer 4 700  400  1868 
Layer 5 800  500  1962 
Layer 6 900  600  2043 
Layer 7 1050  650  2079 

Table 3. Characteristics of Model 5. 

The seismic data belonging to this experiment (Figure 6.11) contain slower and weaker 
SWs. Moreover, the phases trapped inside the target decrease, while the leakage outside 
the target’s boundaries increases. The scattered phases are less energetic compared with 
the previous case (Figure 6.9) since additional energy dissipates in correspondence of the 
various interfaces between the layers. Some boundary artefacts are also present, probably 
due to the use of a too-small number of absorbing sponges (4). 
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Figure 6.10 – 2D sections of the 3D model of the simulation 6: a) P-wave velocity, b) S-wave 
velocity, c) density. Vertical sections (zx) are shown on the left-hand side, while horizontal 
sections (yx), in correspondence of the surface, are shown on the right-hand side.   
 
 

 

Figure 6.11 – Shot gather related to wave propagation through the model in Figure 6.10. 
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6.3 – Seismic acquisition and real data set 

The real data set analysed in this study belongs to a dedicated seismic acquisition carried 
out in the experimental test site of CNR (National Research Council), located in Turin-Italy. 
The site is characterized by an on purpose buried loose-sand body (Figure 6.12a), 
surrounded by more compact sediments (gravelly-sands and gravels). The maximum 
width of the sand target is 5 m x 5 m in the shallower part, and 2 m x 2 m in 
correspondence of the maximum depth (2.5 m).  

Two acquisitions have been performed following a 2D and a 3D pattern, respectively. For 
both acquisitions, an 8 kg sledgehammer was the adopted vertical point source, generating 
a signal with a central frequency of about 60 Hz. The S/N has been improved by stacking 
from 8 to 10 shots for each source-point. The time sampling was set to 0.125 ms, for an 
acquisition duration of 0.512 s (with a pre-trig of 0.1 s).  

For the 2D acquisition, 11 seismograms were recorded along the seismic line R1 – R72 
(Figure 6.12b), which gathers 72 vertical receivers (4.5 Hz) evenly spaced every 0.3 m 
(Figure 6.12c), connected to 3 Geode - seismic modules. The maximum offset for the 2D 
acquisition (S 1 – R 72) is 25.3 m.  

 

Figure 6.12 – Field acquisition and site characteristics. a) Simplified sketch of the site’s 
geometry. b) Image of the site: the line R 1 – R 72 gathers the receivers of the 2D acquisition, 
while the lines R 1 – R 18, R 19 – R  36, R 37 – R 54, and R 55 – R 72 contain the receivers of 
the 3D acquisition. c) Details of the 2D acquisition: the receivers (R) located near the source 
positions are indicated with numbers from 1 to 72. The shots (S) are signed with numbers 
from 1 to 11. The orange rectangle marks the position of the sand target.  

The 3D acquisition contains 4 seismic lines perpendicular to the 2D acquisition direction 
(Figure 6.12b). Each seismic line of the 3D acquisition (Figure 6.13) gathers 18 vertical 
receivers (4.5 Hz), evenly spaced every 0.5 m. The in-line distance between the sources is 
0.75 m. The shot points are perpendicular to the receiver lines. The distance between two 
adjacent receiver lines is 2.5 m, while the distance between the shot “lines” is 2 m. 
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Additional 8 common shot gathers (highlighted with green circles in Figure 6.13) have 
been also recorded outside both extremities of each seismic line. The in-line distance 
between these shots and the corresponding first receiver is 2 m.   

 
Figure 6.13 – Scheme of the 3D acquisition. The channels are indicated with blue triangles, 
while the shots are signed with dark-red stars. The orange rectangle marks the position of the 
low-velocity target. The shots highlighted with green circles have been also considered 
(together with the 2D acquisition’s shot) in the DC analysis step presented in the next 
Chapter.  

The 2D acquisition contains 18 receivers placed in correspondence of the low-velocity 
target, while 20 receivers of the 3D acquisition are located inside the target. The signal 
recorded by these channels may be affected by a different instrument response, compared 
with the signal registered by the receivers placed outside the sand target. Thus, the particle 
motion amplitude’s measurement may exhibit some distortions of the recorded wavefield 
over the acquisition area, caused by the different coupling of the receivers with the ground 
and the potential geophone tilting. The same observation regards the different coupling of 
the sources with the ground over the acquisition area.  

Figure 6.14 shows an example of two common shot gathers, belonging to the 2D 
acquisition: Shot 1 (Figure 6.14a), placed at the left extremity of the receiver array, and 
Shot 4 (Figure 6.14c), located in a transition area between the background medium and 
the low-velocity target. Figures 6.14b e 6.14d show some details of the same shots for a 
narrower time window (from 0 to 0.15 s).  
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The wave propagation along the seismic line markedly evidences the presence of the low-
velocity target. In both figures, the target’s position is marked by scattered and dispersive 
SWs. The BWs amplitude, together with the SWs amplitude after crossing the low-velocity 
target (far-offset), is very low (of about three orders of magnitude lower compared with 
the SWs amplitude before crossing the target). The same patterns can be observed as well 
in Figure 6.15, which shows examples of common shot gathers belonging to the 3D 
acquisition: Shot 8 (Figures 6.15a and 6.15b) and Shot 68 (Figures 6.15c and 6.15d). 

  
Figure 6.14 – Example of data recorded in the CNR area (2D acquisition). a) Shot 1, b) detail 
of an early tine-window for the Shot 1, c) Shot 4, d) detail of an early tine-window for the 
Shot 4. The seismic traces placed in correspondence of the source have been removed because 
of saturation related effects. The entire seismograms are normalized by the corresponding 
maximum value. 

Figure 6.15 – Example of data recorded in the CNR area (3D acquisition). a) Shot 8, b) detail 
of an early tine-window for the shot 8, c) Shot 68, d) detail of an early tine-window for the 
shot 68. The entire seismograms are normalized by the corresponding maximum value. 
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Figure 6.16 shows an example of frequency spectra for all traces corresponding to some 
common shot gathers belonging to the 2D acquisition, in particular: Shot 1 (Figure 6.16a), 
placed far from the low-velocity target and Shot 6 (Figure 6.16b), placed in the middle of 
the sand target. It can be noticed that the dominant frequency is about 20-40 Hz, the 
central frequency is about 50-60 Hz, while the maximum frequency is about 150 Hz.  

Of course, the amplitude of the recorded signal is lower for the shot activated at a longer 
distance from the sand target (about 3e+08 - Figure 6.16a) than for the shot activated in 
correspondence of the low-velocity target (about 1e+09 - Figure 6.16b).  

 Figure 6.16 – Example frequency spectra of data recorded in the CNR area (2D acquisition). 
a) Shot 1, b) Shot 6.  
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6.4 – Synthetic data set 

A synthetic reference 3D model (Figure 6.17), which mimics the real site’s geometry and 
dimensions, was built for generating the synthetic data set (i.e. reference/true data). The 
model is characterized by a 3D layered structure with a low-velocity target embedded. To 
avoid boundary artefacts during numerical simulations, a model extension beyond the 
acquisition area was done.  

Figure 6.17 – Synthetic 3D model used to generate the reference data set. a) VP model, b) VS 
model, c) and d) 2D vertical sections (crossing the target) of the 3D VP and VS models, 
respectively. 

Forward simulations of wave propagation on this synthetic 3D model were performed 
using the SEM46 code. To obtain a realistic data set, the viscoelastic wave equation was 
used. Accordingly, together with the P-wave velocity, S-wave velocity and density model, 
the attenuation, in terms of quality factors (QP and QS), was also considered.  

The density value is constant over the 3D domain (1800 kg/m3, characteristic for 
unconsolidated sediments), while the 3D variation of the attenuation parameters was 
retrieved using rheological relations (Hauksson & Shearer, 2006, modified to fit the 
characteristics of a shallow environment): QS = 0.15·VS; QP = 1.5·QS. Particularly, the QS 

varies between 12 (in correspondence of the sand target) and 74 (at the deepest part of 
the medium), while the corresponding minimum and maximum QP is 18 and 110, 
respectively.  

The simulation scheme was designed considering the numerical stability criteria in space 
and time. For the computation mesh, the condition of including at least five GLL points per 
shortest wavelength was honored, leading to an element size of 0.3 m for the 3D grid, equal 
in the z, x and y directions. According to the CFL (Courant-Friedrichs-Lewy) time stability 
criterion, the sampling time step was set to 1.4e-05 s, for a total duration of the simulation 
of 0.412 s, containing 29400 samples (i.e. time iterations).  
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A Ricker wavelet with a central frequency of 60 Hz (similar to the one registered in the real 
data) was the source time function. A free surface condition was applied at the top of the 
model while absorbing sponges were used for the other boundaries. 

Figure 6.18 shows an example of two common shot gathers, belonging to the 2D 
acquisition performed over the reference (i.e. true) model: Shot 1 (Figure 6.18a), placed at 
the left extremity of the seismic line and Shot 4 (Figure 6.18c), located in a transition area 
between the background medium and the low-velocity target. Figures 6.18b e 6.18d show 
some details of the above-mentioned shots for a narrower time window (from 0 to 0.15 s).  

 
Figure 6.18 – Example of synthetic data belonging to the reference model. a) Shot 1, b) detail 
of an early tine-window for the Shot 1, c) Shot 4, d) detail of an early tine-window for the 
Shot 4. The seismic traces placed in correspondence of the source have been removed because 
of saturation related effects. The entire seismograms are normalized by the corresponding 
maximum value. 

Analyzing Figure 6.18, many similarities can be noticed between the wavefield pattern of 
the real data and the wavefield features of the reference (i.e. true) data. The presence of 
the sand-target is highlighted by high-amplitude SWs, exhibiting scattering behavior in 
correspondence of the target boundaries. The BWs amplitude is about three orders of 
magnitude lower than the SWs amplitude. Most of the seismic energy remains trapped 
inside the target boundaries: the signal is lower (of about 4 orders of magnitudes) after 
crossing the low-velocity target.  
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6.5 – Highlights 

Numerical simulations 

 The numerical simulations results proved how seismic data recorded in shallow land 
environments are dominated by SWs, while BWs are very weak. The presence of a flat 
topography facilitates the SW forward scattering propagation regime, as well as the 
fundamental mode’s dominance.   

 Data recorded over a low-velocity target, embedded into a homogeneous medium, are 
dominated by scattered SWs, almost completely trapped inside the target’s 
boundaries.  

 Passing from a homogeneous background to a vertically variable one, the energy 
trapped inside the target boundaries decreases as the lateral leakage increases.  

 For a multilayered background, the forward and back-scattered phases (in 
correspondence of the target boundaries) are less energetic (but still significant); an 
important amount of SWs energy is lost in the dispersion across the vertically layered 
structure.  

Real and synthetic data set  

 The real target of this study reaches a depth of 2.5 m and is characterized by low 
velocity and a particular shape.  

 Two different seismic acquisitions follow a 2D and a 3D pattern, respectively.  

 The acquisition parameters correspond to the geotechnical scale exploration: The 
maximum offset is 25.3 m, while the minimum source-receiver distance is 0.3 m. 

 The source direction is vertical. The receivers recorded only the vertical component of 
the particle displacement. Possible coupling related effects may be present.  

 To increase the S/N, for each source position, a stack of 8 to 10 shots was done.   

 The real and synthetic data set present similar characteristics. 

 The data sets are dominated by high-amplitude SWs, showing dispersive behaviour 
and complex scattered phases, especially in correspondence of the low-velocity target.  

 The BWs amplitude is about three orders of magnitude lower than SWs amplitude. The 
SWs amplitude is higher in correspondence of the low-velocity target and weaker after 
crossing the target. 

 Small-wavelength phases, scattered from the target’s boundaries, are present in the 
data sets.  
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7.1 – Introduction  

This Chapter presents some practical applications of the velocity model building procedure 
from SW analysis (described in Section 4.3). The SW analysis workflow provides initial VS 
and VP models for FWI. These models are subsequently used as a first guess in a spectral 
element based elastic 3D FWI workflow, presented in the next Chapter.  

In this chapter, the results from SW analysis are evaluated in terms of data fitting 
comparison and DCs comparison. Two different sets of VP - VS models, mentioned in Section 
1.2, were retrieved from DC analysis: laterally homogeneous and laterally variable. All 
experiments were conducted over both a synthetic and a field data set. Some results are 
presented in Teodor et al. (2017), Teodor et al. (2018a) and Khosro Anjom et al. (2019).  

7.2 – Synthetic example 

Several tests were first carried out for the synthetic data set presented in Section 6.4, 
which realistically reproduces the CNR site characteristics and acquisition design. Further, 
the same workflow was applied to the field data set presented in Section 6.3. 

7.2.1 – Initial model from dispersion curves analysis 

From the reference synthetic data set (i.e. true data), 9 DCs have been extracted along the 
seismic line (2D acquisition), corresponding to 9 Gaussian windows (Figure 7.1a and 
7.1b). For the Gaussian windowing algorithm (Bergamo et al., 2012), the value α = 6 
(number of receivers considered for one Gaussian window, related to the window’s 
standard deviation σ=N/2α) was used, leading to a lateral resolution of the local DC of 
about 3.6 m (considered as twice the standard deviation). Since high lateral 
heterogeneities are expected along the seismic line, the value of the parameter β (related 
to the distance between adjacent Gaussian picks) was the same as that of the standard 
deviation (which is 6). This means that one DC every 1.8 m was extracted. In practice, if no 
significant lateral heterogeneities are expected, the value of the parameter β can be equal 
to the conventional lateral resolution 2σ (Bergamo et al., 2012). Regarding the spectral 
resolution, considering the maximum reliable DC investigation depth (for the tested case) 
of about 8-10 m, a minimum wavenumber of about 0.3 rad/m was achieved (𝑘௠௜௡ ≈ 2𝜋/ 
2.5 𝑧௠௔௫). The choice of the parameters α and β should account for the trade-off between 
lateral resolution of DC and spectral resolution (please see Section 4.3): the wider the 
Gaussian window (the lower the lateral resolution) is, the higher the spectral resolution is.  

The DC(s) were converted into velocity profiles by inverting or using the data transform on 
a single DC curve (single-DC analysis) and a clustering algorithm together with the data 
transform on all DCs along the receiver array (full-DC analysis). For the latter case, the DCs 
corresponding to the receivers 25 (DC 3) and 49 (DC 7), placed in the transition zone 
between the sand target and the vertically layered structure, have been identified as 
outliers by the clustering algorithm (Figure 7.1c); for this reason, they were not 
considered for building the velocity model. Further, by replicating laterally the 1D velocity 
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profile retrieved from the single-DC analysis, and by interpolating the VP and VS profiles 
retrieved from the full-DC analysis, 2D models were obtained. The models have been 
extended laterally and in depth to avoid boundary artefacts during numerical simulations. 
The lateral extension was based on invariance, while for the depth extension the low-
frequency information provided by DCs was exploited. Therefore, no information coming 
from the reference models was used for the extension process. The obtained 2D models 
are shown in Figures 7.2a and 7.2b for the single-DC analysis, and Figures 7.2c and 7.2d 
for the full-DC analysis.  

 

Figure 7.1 –a) DCs 
position: The numbers 
13, 19, 25, 31, 37, 43, 49, 
55 and 60 indicate the 
receivers coincident with 
a DC. b) DCs extracted 
from reference synthetic 
data set. c) Example of 
DC clustering (from 
Teodor et al., 2018 - 
modified).   

 

 

 

 

 
Figure 7.2 – a) VP model and b) VS model retrieved from DC 1 – R 13 (single-DC analysis). c) 
VP model and d) VS model retrieved from the analysis of the entire set of DCs along the seismic 
line (full-DC analysis) – from Teodor et al. (2019), modified. 
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The initial model from the single-DC analysis does not contain any information related to 
the low-velocity target, while the initial model related to the full-DC analysis contains the 
low-velocity target, although the resolution is low in correspondence of the boundaries.  

As required by the FWI code, the 2D models were converted to 3D volumes, by 
symmetrically replicating the zx vertical sections in the y-direction and reproducing the 3D 
target’s extension (Figure 7.3).  

 

Figure 7.3 – Example of 3D-extended initial models for the synthetic case:                                  
a) VP model, b) VS model. 

In the y-direction, beyond the horizontal extension of the low-velocity target (5 m), the 
model is characterized by a vertically layered and laterally homogeneous structure (Figure 
7.4), as in the x-direction, far from the sand target. 

 

Figure 7.4 – Details on the model extension in the y-direction. 
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7.2.2 – Data fitting comparison 

For a preliminary evaluation of the initial models’ accuracy, forward simulations were 
performed on the estimated models (characterized by higher resolution), keeping 
unchanged all the parameters used to generate the reference (i.e. true) data set.  

Figure 7.5a shows an example of reference data while Figure 7.5b shows an example of 
seismic data belonging to the initial model built from synthetic DCs (called, hereafter, 
“initial” data). Similar features of the waveforms can be distinguished. The SWs domination 
is evident, while the BWs amplitude is very low. Better continuity of the phases leaked 
outside the target can be noticed in the initial data (Figure 7.5b), due to the smooth 
character of the initial model retrieved from DC analysis, where the impedance contrast in 
correspondence of the target’s boundary is lower than in the reference model.    

 

Figure 7.5. Example of synthetic data (vertical component) for Shot 1. Seismic data belonging 
to the a) reference model and b) initial model. The seismograms are normalized by the 
corresponding maximum value. 

Figure 7.6 displays the trace-by-trace comparison between reference and initial data. The 
initial data are not cycle-skipped, in the near-offset positions, compared with the reference 
data. Contrariwise, the matching between reference and initial data is less accurate in 
some far-offset positions, after crossing the sand target.   
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Figure 7.6 – Trace by trace data fitting comparison between the reference data (in black) 
and initial data (in magenta). The seismograms are trace-by-trace normalized – from Teodor 
et al. (2018). 

7.2.3 – Dispersion curves comparison 

Figure 7.7 shows an example of f-k spectra corresponding to a Gaussian window centred 
on the sand target, while Figure 7.8 displays all the DCs retrieved from the reference data 
(Figure 7.8a) and the data belonging to the initial model built from synthetic DCs (Figure 
7.8b). 

 

 

Figure 7.7 – Example of f-k 
spectra and the 
corresponding DCs for a 
Gaussian window located 
in the middle of the low-
velocity target: a) DC 
belonging to the reference 
data, b) DC belonging to 
the data computed in the 
estimated initial model – 
from Teodor et al. (2018), 
modified.    
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Figure 7.8 – The DCs belonging 
to all Gaussian windows. a) DCs 
belonging to the reference data, 
b) DCs belonging to the data 
computed for the initial model – 
from Teodor et al. (2018), 
modified.    
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Similar phase-velocity trends can be noticed when comparing the reference DCs (i.e. the 
DCs extracted from the reference/true data) with the DCs extracted from synthetic initial 
data. This observation regards particularly the DCs belonging to the Gaussian windows 
placed outside the low-velocity target (signed with blue), and the DCs belonging to the 
windows located inside the anomaly (DCs plotted in black). Differently, there are few DCs 
(represented with green) that exhibit a different phase-velocity trend in the reference and 
initial data, respectively. These DCs (identified as outliers by the clustering algorithm – 
Figure 7.1c) belong to a transition zone between the low-velocity target and the vertically 
layered medium, where the picking of the fundamental mode is tricky. This pattern can be 
noticed as well in Figure 7.9, related to the normalized phase-velocity difference between 
each reference DC and the corresponding DC belonging to the initial data.    

 
Figure 7.9 – Normalized misfit (computed as frequency-by-frequency velocity difference) 
between the DCs belonging to the reference data and the DC extracted from the initial data.  
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7.3 – Real data application  

For the real data application, all parameters used for the synthetic case were kept 
unchanged. The additional 4 lines, belonging to a 3D acquisition (Figure 6.13), were also 
considered to enrich the DCs information content.  

Figure 7.10 shows a detail of the DCs positions, including also the DCs belonging to the 3D 
acquisition, while Figure 7.11 shows all the DCs extracted from real data. Two different 
phase-velocity trends can be noticed in Figure 7.11: a lower-velocity one, gathering the DC 
placed in correspondence of the target or nearby, and a higher velocity one, gathering the 
DCs placed far away from the target. 

 
Figure 7.10 – Scheme of the DCs position. In blue, with numbers from 13 to 60, are indicated 
the receivers coincident with a DC extracted from the real data belonging to the 2D 
acquisition. The positions of the 4 DCs related to the 3D acquisition’s data are indicated in 
red, with numbers from 1 to 4 – from Teodor et al. (2018), modified. 

 

Figure 7.11 – All the DCs extracted from real data. The red rectangles indicate the DCs 
extracted from the data belonging to the 3D acquisition. 
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7.3.1 – Initial model from dispersion curves analysis 

Figures 7.12a and 7.12b show the velocity models obtained from the single-DC analysis, 
while Figures 7.12c and 7.12d show the velocity models obtained through the full-DC 
analysis (Khosro Anjom et al., 2019). In the last two figures, a nice reconstruction of the 
low-velocity target can be noticed, where the maximum depth and the lateral boundaries 
are correctly recovered. Again, the 2D models were extended to 3D following the same 
procedure as for the synthetic case. 

 
Figure 7.12 – The 2D models retrieved from the analysis of real-data related DCs: a) VP model 
and b) VS model obtained from the single-DC analysis of real data. c) VP model and d) VS 
model obtained from the full-DC analysis of real data.   

7.3.2 – Data fitting comparison 

Some 3D forward simulations were performed on the initial models obtained from full-DC 
analysis, to retrieve the corresponding initial data and compare them with the real ones. 
During the simulations, all parameters were maintained unchanged, except for the source 
time function. In this case, the real source was estimated from the field data by 
deconvolution (Pratt, 1999). The Green’s function was computed in the starting model 
using a known Ricker source, with a central frequency of 60 Hz and unitary amplitude.  

Figure 7.13a shows an example of real data, while Figure 7.13b shows an example of data 
belonging to the elastic model retrieved from DCs. Waveforms characterized by similar 
features can be noticed, whereas some differences at the target’s position are also 
perceptible.  
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Figure 7.13 – Example of seismic data for Shot 1. a) Real data. b) Data belonging to the 
initial model retrieved from the real dispersion curves. The entire seismograms are 
normalized by the maximum value.  

Figure 7.14 shows a trace-by-trace comparison between real and simulated data, for the 
same shot position (far-offset configuration). The data corresponding to the estimated 
models are in good agreement with the field data, especially outside the low-velocity 
target. There is also a good agreement between the two data sets inside the target, 
especially for near-offset positions. The fitting is less accurate at far offset and for the BWs.  

Figure 7.14 – Trace by trace comparison between field data (in black) and initial data (in 
magenta). The seismograms are trace-by-trace normalized. 
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After a cycle-skipping analysis, a data misfit lower than half of the dominated wavelength 
was quantified for most parts of the seismograms (Khosro Anjom et al., 2019: the half 
period for the dominant frequency is about 8.33 ms). This led to the classification of the 
initial elastic model retrieved from DC analysis as a potentially good candidate for FWI.  

A more detailed illustration of the trace-by-trace data-fitting comparison is presented in 
Appendix 3. 

7.3.3 – Dispersion curves comparison 

In Figure 7.15, an example of f-k spectra of a Gaussian window centred on the sand target 
is shown, both for the real data and for the data computed for the estimated initial model. 

 

Figure 7.15 – Example of f-k spectra and the corresponding DCs for a Gaussian window 
located in the middle of the low-velocity anomaly: a) DC belonging to the real data, b) DC 
belonging to the data computed in the estimated initial model.    
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Figure 7.16 displays all the DCs retrieved from real data (Figure 7.16a) and the data 
belonging to the initial model (Figure 7.16b), respectively. As for the synthetic application, 
one can notice similar phase-velocity trends when comparing the real DCs with the DCs 
belonging to the initial data, especially for DCs placed outside the low-velocity target 
(signed with blue), and for the ones located inside the anomaly (plotted in black).  

Again, as for the synthetic application, there are some DCs (represented with green) that 
exhibit a different phase-velocity trend in the real and initial data. These DCs are located in 
a transition zone between the low-velocity target and the vertically layered medium, 
where the individuation of the fundamental mode is difficult.    

 
Figure 7.16 – The DC belonging to all Gaussian windows. a) DCs belonging to the real data 
(2D acquisition), b) DCs belonging to the data predicted in the initial model.    
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The overall comparison between the reference/real DCs and the ones extracted from the 
corresponding initial data also show a good degree of matching and similar trends (Figure 
7.17).  

                       a) 

 

                        b) 

 

Figure 7.17 – a) Comparison between the DCs belonging to the reference data (in black) and 
the DCs belonging to the initial data for the synthetic application (in red). b) Comparison 
between the real DCs (in black) and the DCs belonging to the initial data for the real case (in 
red). 
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7.4 – Highlights  

 The DC extraction from the data set belonging to the 2D acquisition was performed 
using a Gaussian moving window along the seismic line. Only the shots placed outside 
the receiver line have been considered for the stacking in the f-k domain. The Gaussian 
window’s lateral resolution is about 3.6 m, corresponding to a wavenumber resolution 
of about 0.3 rad/m.   

 For the real data application, additional 4 DCs were extracted from the shots placed in 
line with the receivers of the 3D acquisition.   

 The method used for the initial model building is based on a DC clustering algorithm 
and a data transform procedure. It was applied here to both synthetic and field data.  

 The estimated Poisson’s ratio is variable with depth. For the synthetic case, the 
minimum estimated Poisson’s ratio value is 0.14 while the maximum value is 0.40. For 
the field case, the minimum and maximum Poisson ratio’s values are 0.20 and 0.36, 
respectively.  

 Two different sets of initial models were retrieved: laterally homogeneous and 
laterally variable. The laterally homogeneous models were obtained by the analysis of 
one single representative DC (single-DC analysis = 1D), while for building the laterally 
variable models, a clustering algorithm and data transform was applied to all the DCs 
along the seismic line (full-DC analysis = 2D).  

 In the full-DC analysis, the DCs placed in the transition zone between the low-velocity 
anomaly and the vertically layered medium were identified as outliers by the 
clustering algorithm and they were not considered for the velocity model building.  

 The trace-by-trace comparison between reference/real data and data corresponding 
to the initial models retrieved from full-DC analysis shows a relatively good 
agreement, without cycle-skipping, especially for the near-offset positions. This may 
qualify the model built from DCs analysis as a potentially good candidate as an initial 
model for FWI, speeding up the FWI workflow.   

 Because of resolution-limitation at greater depth and the consideration of the 
fundamental mode only, in this study, the DCs are not well-separated in the frequency 
range lower than 20-30 Hz, while exhibiting clear differences among clusters at higher 
frequencies. Therefore, while a high-frequency piece of information is somehow well-
solved in the initial model from SW analysis, we expect that FWI will better solve also 
the low-frequency information content. The clear separation of the DCs at high 
frequencies (that usually does not happen for unconsolidated layers) is granted in this 
study by the small receiver-interval used in the seismic acquisition, the high signal-to-
noise ratio of the data obtained after the stacking process, as well as the good 
compromise achieved between lateral and spectral resolution in the DCs extraction 
step through Gaussian windowing. 
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Appendix 3 

Examples of data fitting comparison for initial models 
retrieved from surface wave dispersion curves analysis 

Figures A 3.1 - A 3.3 show a data fitting comparison (synthetic case) for a shot position 
placed at the left extremity of the seismic line (Shot 1). A good degree of matching between 
reference and initial data can be noticed for the near-offset traces (Figure A 3.1), and some 
traces placed in correspondence of the low-velocity target (Figure A 3.2). Conversely, the 
fitting is less accurate for the far-offset traces (Figure A 3.3).   

 
Figure A 3.1 – Trace-by-trace data fitting comparison between reference data and data 
belonging to the initial model from DC analysis. The maximum frequency is about 150 Hz: 
Shot 1, near-offset traces. 
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Figure A 3.2 – Trace-by-trace data fitting comparison between reference data and data 

belonging to the initial model from DC analysis: Shot 1, intermediate-offset traces. 

 

 
Figure A 3.3 – Trace-by-trace data fitting comparison between reference data and data 

belonging to the initial model from DC analysis: Shot 1, far-offset traces. 
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Figures A 3.4 - A 3.6 show a data fitting comparison (real case) for a shot position placed 
at the left extremity of the seismic line (Shot 1). As for the synthetic case, a relatively good 
degree of matching between real and initial data can be noticed for the near-offset traces 
(Figure A 3.4) and some traces placed in correspondence of the low-velocity target (Figure 
A 3.5). Conversely, the fitting is less accurate for the far-offset traces (Figure A 3.6).   

 
Figure A 3.4 – Trace-by-trace data fitting comparison between real data and data belonging 

to the initial model from DC analysis: Shot 1, near-offset traces. 

 
Figure A 3.5 – Trace-by-trace data fitting comparison between real data and data belonging 

to the initial model from DC analysis: Shot 1, intermediate-offset traces. 
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Figure A 3.6 – Trace-by-trace data fitting comparison between real data and data belonging 

to the initial model from DC analysis: Shot 1, far-offset traces. 
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Figures A 3.7 - A 3.9 show a data fitting comparison (real case), for a shot position placed 
in a transition area between the low-velocity target and the homogeneous background 
(Shot 4).  Again, the fitting is a relatively accurate for the near-offset traces (Figure A 3.7), 
while the degree of matching between real and initial data is less accurate at far offset 
(Figure A 3.8 and A 3.9). 

 
Figure A 3.7 – Trace-by-trace data fitting comparison between real data and data belonging 

to the initial model from DC analysis, Shot 4- near-offset traces. 

 
Figure A 3.8 – Trace-by-trace data fitting comparison between real data and data belonging 

to the initial model from DC analysis: Shot 4, intermediate-offset traces. 
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Figure A 3.9 – Trace-by-trace data fitting comparison between real data and data belonging 

to the initial model estimated from DCs: Shot 4, far-offset traces. 
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Chapter 8  

Multi-parameter 3D elastic full-waveform inversion 
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8.1 – Introduction 

In this Chapter, some FWI applications are presented, both on synthetic and real data. The 
inversions are conducted over two different initial VP and VS models, extracted from DCs: 
laterally homogeneous and laterally variable. Hereafter, the first configuration is called 
“single-DC case (i.e. 1D case)”, while the second configuration is called “full-DC case (i.e. 2D 
case)”. The models obtained after FWI are referred to as “final” models, while the data 
belonging to them are called “inverted” data. Some results of this chapter have been 
presented in Teodor et al. (2018b), Teodor et al. (2019) and Teodor et al. (2020 - 
submitted).  

8.2 – The general FWI workflow  

A simple FWI workflow was adopted in the first place, and its complexity was gradually 
increased when necessary. As data processing before inversion, a 5th order Butterworth 
filter, with corner frequencies of 3 Hz and 40 Hz, was applied (e.g. Figure 8.1).  

 
Figure 8.1 – Amplitude spectra for real data a) Example of amplitude spectra for all traces 
belonging to one shot gather. b) Example of the amplitude spectra of a trace before (blue) 
and after (red) filtering.  

Some noisy traces, close to the shot positions (offset from 0.3 m to 0.6 m), have been 
muted (Figure 8.2) to avoid their contribution in the inversion process.  

 
Figure 8.2 – Example of filtered common shot gather, before a) and after b) muting. 

8.2.1 – Modeling parameters 

According to the space-sampling criterion for SEM modeling and considering the maximum 
frequency of 40 Hz, a cell size of 1 m was used, equal in all directions of the 3D mesh. The 
time stability criterion required a sampling step of 4.8e-05 s, leading to 8600 samples in 
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time for a total duration of the simulation of 0.4128 s. 8 shots were considered for the 
gradient computation and inversion (1, 2, 4, 5, 6, 9, 10, and 11 in Figure 8.3).  

 

Figure 8.3 - Selected shots (indicated with black circles) for FWI on the 2D data set. 

As no significant cycle-skipping is present in the initial model, all FWI tests were 
performed in the full frequency band of 3 Hz – 40 Hz and the same source function was 
used for all iterations. The value of the upper-frequency band (40 Hz) chosen for inversion 
is due to the available computational resources.  

The source time function for the synthetic tests is a Ricker wavelet, with a central 
frequency of 16 Hz (maximum frequency of about 40 Hz) and a maximum amplitude of 
1e+06. For the field data application, the real source was estimated by deconvolution 
(Pratt, 1999), after applying the 3 Hz – 40 Hz band-pass filter. The main propagating 
wavelength inside the investigated models is about 16 m for VP and 10 m for VS. 
Consequently, the expected main FWI resolution is about 8 m for VP and 5 m for VS. The 
average resolution for VS is similar to the dimensions of the investigated target. Of course, a 
higher resolution is expected in the shallow part of the model (which has lower velocities) 
than in the deeper part (where higher velocities are registered). 

8.2.2 – Offset weighting, boundary constraints and gradient smoothing 

No data normalization was applied, except for an offset-variable data weighting. The aim of 
this data strategy is guaranteeing a similar contribution for each receiver over the entire 
seismogram. Since almost all the energy tends to remain trapped inside the low-velocity 
target (Figure 8.4a), the amplitude of the far-offset traces was enhanced, up to the same 
magnitude order of the near-offset traces (Figure 8.4b), to increase the contribution of the 
far-offset traces in the optimization process.  

 
Figure 8.4. Reference synthetic data 
(Shot 1). a) Not normalized seismogram 
before applying the offset-variable 
weighting function. b) Not normalized 
seismogram after the application of the 
weighting function to the far-offset 
traces.  
 
Some experiments related to the 
effectiveness of the data weighting 
function are presented in Appendix 4. 
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To avoid a possible non-physical model update during inversion, boundary constraints for 
the VP and VS parameters have been used. In particular, the maximum VP and minimum VS 
was fixed to 1000 m/s and 60 m/s, respectively, while depth-variable constraints were 
imposed for the minimum VP and maximum VS variation (e.g. Figure 8.5). The depth-
variable constraints have been inferred from the initial models, by applying a vertical 
gradient to a scaling factor based on the depth-by-depth difference between VP and VS.  

Figure 8.5 – Example of 1D profiles belonging to the 3D variable boundary constraints on 
model parameters (maximum VS and minimum VP): a) synthetic case, b) field data 
application. 

No preconditioning or regularization was used, other than gradient smoothing. Analyzing 
Figure 8.6, small-wavelength artefacts can be noticed in the gradient, not in agreement 
with the FWI resolution allowed by the frequency content of the data (Figure 8.6a and 
8.6b). To control the wavenumber content of the updated models according to the 
resolution limits, the gradient was smoothed (Figure 8.6c and 8.6d) through a double 
application of the anisotropic Bessel filter described in Section 5.4 (Trinh et al., 2017).  

 

Figure 8.6 – Example of 2D section (crossing the target’s center) of the 3D FWI gradients: a) 
VP gradient before smoothing, b) VS gradient before smoothing, c) VP gradient after 
smoothing d) VS gradient after smoothing. 
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The choice for the filter’s shape was based on the mesh dimension (1 m) for the vertical 
direction, wavelength resolution (λ/2) for the in-line direction, and acquisition design (2D) 
for the crossline direction. The filter has the following lengths in the z, x and y directions: 
1.5 m, 5 m and 12 m, respectively. No rotation was applied here, although one may 
potentially design specific Bessel filters when considering FWI first attempts. Such a 
strategy could be investigated in the future. Some details on the experiments conducted for 
the choice of the Bessel filter parameters are shown in Appendix 5.  

8.2.3 – Inversion parameters 

During FWI, the VP and VS were considered simultaneously, while the density was kept 
constant (1800 kg/m3). To focus the analysis on the velocity model update, constant values 
were also used for the attenuation coefficients in the forward modeling step of the FWI (QP 

= QS = 40), and these parameters were kept fixed during inversion.   

The inversion scheme was based on the quasi-Newton l-BFGS (Broyden-Fletcher-Goldfarb-
Shanno) method (Nocedal and Wright, 2006; Métivier and Brossier, 2016). The double 
level of MPI parallelization of the SEM code was exploited, by decomposing the 3D volumes 
into 2 x 4 x 2 sub-domains (in z-x-y-direction, respectively).  

All shots and decomposed domains have been distributed over 128 cores (8 nodes with 16 
cores each) of the HPC UGA Froggy architecture. The inversion stopped when the value of 
the misfit function no longer decreased for more than two consecutive iterations. The 
necessary time for the first gradient computation was about 11 minutes, while each FWI 
test took about 12 hours. The convergence criterion was reached after 10 – 25 iterations. 
Each FWI test required an available computer memory of about 9.8 GB.   

Table 8.1 shows a synthesis of the modeling and inversion parameters: 

Butterworth filter (5th order) 3 Hz – 40 Hz 

Trace muting offset from 0.3 m to 0.6 m 

Mesh dimension  1 m: the same in the x-y and –z direction 

Time sampling 4.8e-05 s 

Time iterations 8600 

Acquisition duration 0.4128 s 

Number of channels and shots  72 (vertical) channels and 8 shots 

Data weighting offset variable  
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VP upper boundary  1000 m/s 

VP lower boundary variable 

VS upper boundary variable 

VS lower boundary 60 m/s 

Gradient smoothing: coherent lengths for the 

Bessel filter in the z – x – y direction 

1.5 m – 5 m – 12 m 

Density (constant) 1800 kg/m3 

Quality factors (QP=QS) 40 

Inversion method quasi-Newton l-BFGS 

Decimation ratio for boundary wavefield saving 86  

CARFS – nunber of saved checkpoints 13 

Instability tolerance 0.001 

Domain decomposition in the z – x –y direction  2 – 4 – 2 subdomains 

Parallel computing: number of nodes and cores 8 nodes x 16 cores = 128 cores 

Necessary time for gradient computation  about 11 minutes 

Necessary time for one FWI test  about 12 hours 

Necessary computer memory for one FWI test 9.8 GB 

Table 8.1 – Parameters used during FWI for the 2D acquisition layout. 

8.2.4 – Synthetic example 

Figures 8.7a and 8.7b show 2D sections of the 3D VP and the VS models obtained after FWI 
for the single-DC case. The target is reconstructed with low-resolution in the VS model, 
while the VP model is not significantly modified after inversion. Figures 8.7c and 8.7d 
show the final models, obtained when starting the FWI from the full-DC initial models. The 
results show a better resolution compared with the results of the single-DC case and again, 
VS is updated better than VP.  
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Figure 8.7 – Vertical 2D sections, crossing the low-velocity target, of the 3D final models for 
the synthetic application. a) and b): VP and VS models obtained after FWI, using the initial 
models from the single-DC analysis. c) and d): VP and VS models obtained after FWI, using the 
initial models from the full-DC analysis. 

Figure 8.8 shows the normalized model misfit (i.e. normalized difference) before and after 
FWI, for the single-DC case. While VS improves (Figure 8.8d), the VP improvement is 
limited (Figure 8.8c). Figure 8.8d reveals an overall low misfit value at the target’s 
position after FWI, except for some boundary areas, where VS is underestimated.  

 
Figure 8.8 – Model misfit for the single-DC synthetic case, computed as normalized difference: 
[(Reference model - Initial or Final model) / Reference model]. a) Initial model misfit for VP. 
b) Initial model misfit for VS. c) Model misfit for VP after inversion. d) Model misfit for VS after 
inversion.  

Figure 8.9 shows the normalized model misfit (i.e. the normalized difference), before and 
after FWI, for the full-DC case. VS is better reconstructed (Figure 8.9d) compared with the 
final VS of the single-DC case. The misfit value in correspondence of the target is very low. 
The target’s boundaries are better defined, although a very slight underestimation in 
velocity is still present. VP is better recovered (Figure 8.9c) than in the single-DC case, 
although the VP model misfit in correspondence of the target is still high after inversion.  
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Figure 8.9 – Model misfit for the full-DC synthetic case, computed as normalized difference: 
[(Reference model - Initial or Final model) / Reference model]. a) Initial model misfit for VP. 
b) Initial model misfit for VS. c) Model misfit for VP after inversion. d) Model misfit for VS after 
inversion.  

Figure 8.10 shows an example of the trace-by-trace data fitting comparison, for a far offset, 
before (8.10a) and after FWI (8.10b) on the full-DC case, while Figure 8.11 shows an 
example of data fitting comparison, before (8.11a) and after FWI (8.11b), for a near-offset 
shot on the full-DC case. In the far-offset configuration, the fitting is already accurate 
before inversion for all traces close to the shot positions. One can notice a data fitting 
improvement after FWI, especially in correspondence of the target. Still, the back-scattered 
phases, close to the target’s boundaries, and some far-offset arrivals, are not properly fitted 
yet.  

 

Figure 8.10 – Example of data 
fitting comparison for the full-
DC case, far offset, synthetic 
application. a) Comparison 
between reference data (in 
black) and initial data (in 
red). b) Comparison between 
the reference data (in black) 
and inverted data (in red). The 
blue vertical lines indicate the 
approximate position of the 
low-velocity target. The 
seismograms are trace-by-
trace normalized.  
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For the near-offset configuration, all arrivals are properly fitted after FWI, both in 
correspondence of the target and far from the source position (Figure 8.11b).    

 
Figure 8.11 – Example of data fitting comparison for the full-DC case, near offset, synthetic 
application. a) Comparison between reference data (in black) and initial data (in red). b) 
Comparison between reference data (in black) and inverted data (in red). The blue vertical 
lines indicate the approximate position of the low-velocity target. The seismograms are trace-
by-trace normalized. 

8.2.5 – Real data application 

The same FWI workflow, designed on synthetic data, was applied to the field data set. 
Figures 8.12a and 8.12b display 2D sections of the 3D VP and the VS models after FWI for 
the single-DC case. The target becomes distinguishable both in the VP and VS models, 
although VS is reconstructed better than VP. Figures 8.12c and 8.12d show the final VP and 
the final VS model for the full-DC case. The target is already well defined in the initial 
models and the resolution related to a maximum 40 Hz FWI configuration does not allow 
for significant further improvement. 



Chapter 8 – 3D MULTI-PARAMETER ELASTIC FULL-WAVEFORM INVERSION 
 

146  
 

 
Figure 8.12 – Vertical 2D sections, crossing the low-velocity target, of the 3D models obtained 
after FWI on real data: a) Final VP model for the single-DC case, b) final VS model for the 
single-DC case, c) final VP model for the full-DC case and d) final VS model for the full-DC case. 

The normalized difference between the final and initial models related to the single-DC 
case indicates a velocity decrease in correspondence of the target, both for VP (Figure 
8.13a) and VS (Figure 8.13b), although the VS resolution is higher than the resolution of VP. 

The normalized difference between the final and initial model for the full-DC case reveals a 
very little velocity decrease in correspondence of the target, both for VP (Figure 8.13c) and 
VS (Figure 8.13d). The model is not modified outside the target after FWI since the layered 
structure of the initial model from DC analysis already reproduces correctly the velocity 
variation of the site. 

 
Figure 8.13 – Normalized difference between the final and initial models for the real data 
application: a) VP difference, single-DC case, b) VS difference, single-DC case, c) VP difference, 
full-DC case, d) VS difference, full-DC case. 
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Figures 8.14a and 8.14b show a data fitting comparison, before and after FWI, for the 
single-DC case, while Figures 8.15a and 8.15b show an example of data fitting comparison, 
before and after FWI, for the full-DC case. For the single-DC case, the data-fitting 
improvement is evident at the sand target position. Nevertheless, some far-offset arrivals 
are still not properly fitted.  

 
Figure 8.14 – Example of data fitting comparison for far offset, field data application, single-
DC case: a) Real data (in black), initial data (in red), b) real data (in black), inverted data (in 
red). The blue vertical lines indicate the approximate position of the low-velocity target. The 
seismograms are trace-by-trace normalized. 

For the full-DC case, one can notice an already accurate data fitting in the initial model 
(Figure 8.15a) at the target’s position. Consequently, FWI does not bring significant 
changes (Figure 8.15b). Besides, the proper fitting of some far-offset arrivals and back-
scattered phases may require more elaborated FWI strategies or higher frequencies.  
Howsoever, the smooth character of the initial model straitens the consented fitting of the 
small-wavelength phases scattered from the target’s boundaries.   
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Figure 8.15 – Example of data fitting comparison for far offset, field data application, full-DC 
case: a) Real data (in black), initial data (in red), b) real data (in black), inverted data (in 
red). The blue vertical lines indicate the approximate position of the low-velocity target. The 
seismograms are trace-by-trace normalized. 

Figure 8.16 shows the difference between the final models of the single-DC case and the 
final models of the full-DC case. Figure 8.16a reveals an overestimation of VP in 
correspondence of the target for the single-DC case compared with the full-DC case, while 
the difference between the final single-DC VS model and the final full-DC VS model is small 
(Figure 8.16b).  

 

Figure 8.16 – Vertical 2D 
sections, crossing the low-
velocity target, of the 3D velocity 
difference between the final 
models for the single-DC case 
and the final models for the full-
DC case, real data application: 
a) VP difference b) VS difference. 
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8.3 – A more elaborated FWI workflow 

The improvement of the model reconstruction and data fitting at far-offset may require the 
use of some model-oriented and data-based strategies. In this section, some examples of 
such strategies (i.e. parameter selection, data windowing and multiscale FWI) are 
presented for the synthetic data set. The FWI tests are based on the initial models 
retrieved from the full-DC analysis.  

8.3.1 – Model strategy: preliminary mono-parametric FWI 

This model strategy aims at exploiting the higher SW sensitivity to the shear properties, 
through a preliminary monoparametric FWI (Teodor et al., 2018b; Teodor et al., 2019; 
Teodor et al., 2020 - submitted). The strategy consists in two sequential steps: 
monoparametric FWI (with respect to VS), followed by multi-parameter (VP+VS) FWI. In the 
preliminary step, the VP from SW analysis is kept invariable.  

Figure 8.17a displays the initial VP model from full-DC analysis, while Figure 8.17b shows 
the VS model obtained after the monoparametric FWI step. Figures 8.17c and 8.17d show 
the VP and VS models obtained after the multi-parameter FWI. While the VP model is not 
significantly improved (as expected), the resolution of the VS model improves significantly, 
especially in correspondence of the target boundaries.   

Figure 8.17 – 2D sections (crossing the target’s center) of the 3D velocity models. a) Initial VP 
model from the full-DC analysis. b) Initial VS model from monoparametric FWI. c) Final VP 

model after multi-parameter FWI. d) Final VS model after multi-parameter FWI. An offset 
variable weighting function was also applied. 

This aspect can be noticed as well when analyzing the normalized model misfit reported in 
Figure 8.18. Specifically, the VS model reconstructed after the monoparametric FWI is 
accurate only down to 2 m (Figure 8.18c). Better results, for the deeper reconstruction of 
the VS model, are obtained only after performing the multi-parameter FWI (Figure 8.18d). 
Therefore, a relatively correct initial VP model (although smooth), retrieved from SW 
analysis, and an accurate shallow VS model, retrieved from monoparametric FWI, 
efficiently integrate each other in the multi-parameter FWI scheme. 
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Figure 8.18 – 2D sections (crossing the target’s center) of the 3D model misfit: a) (Reference 
VP model – Initial VP model from DC)/Reference VP model. b) (Reference VS model – Initial VS 
model from monoparametric FWI)/Reference VS model. c) (Reference VP model – Final VP 
model after multi-parameter FWI)/Reference VP model. d) (Reference VS model – Final VS 
model after multi-parameter FWI)/Reference VS model. 

Figure 8.19 presents a comparison between the VS model-update when no model strategy 
is employed, and the VS model-update when using a preliminary monoparametric FWI. One 
can notice, in Figure 8.19a, an overestimation in velocity after FWI (black curve), down to 
0.5 m, whereas the shallow velocity is accurately estimated when using the model strategy 
(figure 8.19b, black curve).  

Moreover, one can notice, in Figure 8.19b, how the monoparametric FWI provides 
accurate velocity estimation only down to 2 m (red curve). The velocity estimation below 2 
m improves only after the multi-parameter FWI step (black curve).  

 
Figure 8.19 – 1D profiles (in correspondence of the target) of the 3D S-wave velocity models. 
a) In this case, the initial VS model from the full-DC analysis was used for the multi-parameter 
FWI. b) In this case, the initial VS model from the mono-parameter FWI was used for the 
multi-parameter FWI.  
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8.3.2 – Data strategy: time-windowing  

The time-windowing strategy aims at ensuring a better fitting of the far-offset arrivals and 
potential better reconstruction of the VP model, as far as FWI can efficiently exploit the 
BWs in a preliminary stage (EAWI=Early Arrival Waveform Inversion). The procedure 
consists in starting the inversion from a time window that contains only early arrivals 
(bearing more P-wave signature) and introducing the entire wavefield in a second step. 
Such a strategy was experimented in other studies (e.g., Trinh et al., 2018; He et al., 2018; 
Trinh et al., 2019). Previously, Brossier et al. (2009) proposed to incorporate gradually the 
entire seismogram in the inversion process by applying a data weighting strategy 
consisting of an exponentially decay time windowing around the first break. 

Figure 8.20a shows an example of reference data used in the first step (trace muting after 
0.06 s in correspondence of the receiver 1 at offset = 4 m and after 0.10 s in 
correspondence of the receiver 72 at offset = 25.3 m). Figure 8.20b shows the entire time 
window of the reference data used in the second step: BWs are indistinguishable because 
of the high amplitude of SWs.  

 
Figure 8.20 – Example of reference data belonging to the Shot 1: a) Data used during the first 
FWI step (only BWs are present), b) Data used during the second FWI step (SWs are very 
energetic and “cover” the BWs amplitude). A weighting function was applied to the far-offset 
traces during FWI.  

 

Figures 8.21a and 8.21b show the VP and Vs model, respectively, obtained after the first 
inversion step (EAWI), while Figures 8.21c and 8.21d show the corresponding models 
obtained after EAWI+FWI. The reader can notice an improvement of the target’s resolution 
in the VS model after the second inversion step, ensured by the introduction of SWs 
information, while the VP model improvement is still not substantial.   
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Figure 8.21 – 2D sections (crossing the target’s center) of the 3D velocity models. a) Initial VP 
model after the first time-windowing step. b) Initial VS after the first time-windowing step. c) 
Final VP model after two-steps FWI. d) Final VS model after two-steps FWI.  

Figure 8.22 shows the initial and final model misfit, computed as the normalized difference 
between the reference model and the initial or final (FWI) model, respectively. A general 
improvement of the VS model can be noticed after FWI (Figure 8.22d), except for some 
localized areas in correspondence of the target boundaries, where there is a slight 
underestimation in velocity. Differently, the target’s reconstruction improvement is not so 
evident in the VP model. Anyhow, the final VP model misfit is, in this case, lower (close to 
zero) in correspondence of the very shallow part of the target, compared with the case 
when no trace windowing is applied (Figure 8.9c). However, the overestimation in velocity 
still occurs in the deeper region. The VP model update is still relatively inaccurate since the 
BWs have very weak amplitude.   

Figure 8.22 – 2D sections (crossing the target’s center) of the 3D model misfit: a) (Reference 
VP model – Initial VP model)/Reference VP model. b) (Reference VS model – Initial VS 
model)/Reference VS model. c) (Reference VP model – Final VP model)/Reference VP model. d) 
(Reference VS model – Final VS model)/Reference VS model. 
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Anyhow, the EAWI+FWI strategy efficiently ensures better data fitting for the far-offset 
arrivals, since BWs investigate the deeper part of the model. This fact can be noticed when 
comparing the data fitting for FWI performed directly for the entire time-window (Figure 
8.23a), with the data fitting obtained when an EAWI step precedes FWI (Figure 8.23b).  

 
Figure 8.23 – Trace-by-trace data fitting comparison between reference data and data 
belonging to the model obtained after FWI, for the full-DC case, 2D acquisition, synthetic 
example (Shot 1). a) FWI is conducted directly over the entire time-window. b) A two-step 
time windowing FWI strategy is applied. The blue vertical lines indicate the approximate 
position of the low-velocity target. The seismograms are trace-by-trace normalized. 
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8.3.3 – Data strategy: multiscale FWI  

The multiscale FWI is a routine procedure (e.g. Bunks et al., 1995), based on the 
reconstruction of the large wavelengths of the medium in the first stages, followed by the 
progressive reconstruction of the small wavelengths, in the later stages. Therefore, only 
low frequencies are considered in the first inversion runs, while the higher frequencies are 
introduced in the later inversion runs.   

All FWI tests presented in Section 8.2 were performed in the full-frequency band because 
no significant cycle-skipping was identified in the initial model. Here, a multiscale 
approach was also experimented, on synthetic data, to investigating whether it provides 
better results.  

In particular, 4 inversion runs were conducted: 3 Hz – 10 Hz, 3 Hz – 20 Hz, 3 Hz - 30 Hz and 
3 Hz – 40 Hz. Figure 8.24 synthetizes the characteristics of the source wavelet and Bessel’s 
filter coherent lengths in the z-x and y direction, for each inversion run.  

 
Figure 8.24 – Source time functions and parameters for the Bessel smoothing filter of each 
inversion run. a) Wavelet used for the first inversion run (maximum 10 Hz). b) Wavelet used 
for the second inversion run (maximum 20 Hz). c) Gradient smoothing parameters for the 
first inversion run. d) Gradient smoothing parameters for the second inversion run. e) 
Wavelet used for the third inversion run (maximum 30 Hz). f) Wavelet used for the fourth 
inversion run (maximum 40 Hz). g) Gradient smoothing parameters for the third inversion 
run. h) Gradient smoothing parameters for the fourth inversion run. 
 
The first inversion run started from the initial models obtained by full-DC analysis. 
Successively, the models obtained at the end of each inversion run were used as initial 
models for the next iteration.  
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The results are shown in Figure 8.25. As expected, the models reconstructed after the last 
frequency run are not very different from the ones obtained when performing FWI in the 
full-frequency band (Figures 8.7c and 8.7d). Only a slightly better reconstruction is 
noticed, both for VP (in the very shallow part, down to 1m) and VS.  

 
Figure 8.25 – Velocity models obtained after FWI: a) VP – maximum frequency = 10 Hz, b) VS 
– maximum frequency = 10 Hz, c) VP – maximum frequency = 20 Hz, d) VS – maximum 
frequency = 20 Hz, e) VP – maximum frequency = 30 Hz, f) VS – maximum frequency = 30 Hz, 
g) VP – maximum frequency = 40 Hz, h) VS – maximum frequency = 40 Hz.   
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Figure 8.26 shows the model misfit, computed as the normalized difference between the 
reference model and the model obtained after each inversion run. It can be noticed how 
the main improvements of the reconstructed models occur after the second inversion run 
(3 Hz – 20 Hz) and after the last inversion run (3 Hz – 40 Hz). 

 
Figure 8.26 – 2D sections, crossing the target, of the 3D normalized model misfit [(Final 
model-Initial model)/Final model], for each inversion run. 
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In figure 8.27, showing a trace-by-trace data fitting comparison before and after the first 
inversion run (3 Hz – 10 Hz), an accurate data fitting can be noticed.  

 

 
Figure 8.27 – Trace-by-trace data fitting comparison before a) and after b) FWI, synthetic 
example, full-DC case, shot 6 (near-offset), multiscale approach, maximum 10 Hz inversion 
run. The blue vertical lines indicate the approximate position of the low-velocity target. The 
seismograms are trace-by-trace normalized. 
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In figure 8.28, showing a trace-by-trace data fitting comparison before and after the 
second inversion run (3 Hz – 20 Hz), a significant improvement in data fitting can be 
noticed after FWI. 

 

 
 
Figure 8.28 – Trace-by-trace data fitting comparison before a) and after b) FWI, synthetic 
example, full-DC case, shot 6 (near-offset), multiscale approach, maximum 20 Hz inversion 
run. The blue vertical lines indicate the approximate position of the low-velocity target. The 
seismograms are trace-by-trace normalized. 
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In figure 8.29, showing a trace-by-trace data fitting comparison before and after the third 
inversion run (3 Hz – 30 Hz), only a little improvement in data fitting can be noticed after 
this stage.  

 

 
Figure 8.29 – Trace-by-trace data fitting comparison before a) and after b) FWI, synthetic 
example, full-DC case, shot 6 (near-offset), multiscale approach: maximum 30 Hz inversion 
run. The blue vertical lines indicate the approximate position of the low-velocity target. The 
seismograms are trace-by-trace normalized. 
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In figure 8.30, showing a trace-by-trace data fitting comparison before and after the fourth 
inversion run (3 Hz – 40 Hz), an accurate data fitting can be noticed after FWI. 

 

 

Figure 8.30 – Trace-by-trace data fitting comparison before a) and after b) FWI, synthetic 
example, full-DC case, shot 6 (near-offset), multiscale approach, maximum 40 Hz inversion 
run. The blue vertical lines indicate the approximate position of the low-velocity target. The 
seismograms are trace-by-trace normalized. 
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8.4 – FWI experiments using a 3D acquisition layout 

These tests are based on the 3D acquisition design presented in Section 6.3. The FWI 
workflow is kept relatively simple, to focus the analysis on the source positions and source 
number influence. Similar inversion parameters, as for the tests related to the 2D 
acquisition data set, are used, except for the coherent length of the Bessel smoothing filter 
in the y-direction, which here is 5 m. The offset weighting function, that proved to be very 
important for the 2D acquisition design, is less effective here (but still functional). The 
reason for this is the smaller maximum offset of the 3D acquisition (about 10 m) than the 
one of the 2D acquisition (about 25 m). 

Different experiments have been conducted over both synthetic and real data, using a 
variable number of shots (from 8 to 16) and variable locations for the sources. The real 
source was estimated by deconvolution, for any single experiment, and the same source 
was used for all iterations of that FWI test. For instance, Figure 8.31 shows two examples 
of the estimated source signature for the 3D data set. In the first example, the sources are 
placed outside the low-velocity target (Figure 8.31a). In the second example, some sources 
are activated also inside the target (Figure 8.31b). The source signature is computed as an 
average of the individual estimated sources for each acquisition configuration (Figure 
8.32).  

 

Figure 8.31 – Example of estimated source for the 3D data set. a) Estimated source when 
considering 8 shots placed outside the low-velocity anomaly. b) The source estimated when 
considering 12 shots, placed both inside and outside the low-velocity anomaly. The green and 
black stars indicate the shot positions. 
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Figure 8.32 – Example of sources estimated for the 3D data set. a) The sources estimated in 
different positions over the acquisition area are plotted with different colors. b) The sources 
estimated inside the low-velocity target are plotted in red while the sources estimated outside 
the target are plotted in blue.  

When using 8 sources for FWI, the computation mesh was decomposed into 2 x 4 x 2 sub-
domains in the in z-x-y-direction, respectively. When using more than 8 sources, the 
domain decomposition followed the 2 x 2 x 2 scheme. All shots and decomposed domains 
have been distributed over 128 cores (8 nodes with 16 cores each - when considering 8 or 
16 shots) or over 96 cores (6 nodes with 16 cores each - when considering 12 shots). Each 
FWI test required a computer memory of about 9.8 GB (when considering 8 shots) or 19.6 
GB (when using 16 shots). 

Table 8.2 gathers some inversion parameters used for the FWI experiments based on a 3D 
acquisition scheme. 
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Number of shots 8 – 12 – 16  

Bessel smoothing filter: coherent lengths in the z – x – y direction 1.5 m - 5 m - 5 m  

Domain decomposition when using 8 shots 2-4-2 in the z – x – y direction 

Domain decomposition when using 12 or 16 shots 2-2-2 in the z – x – y direction 

Computation resources involved when using 12 shots 6 nodes x 16 cores = 96 cores 

Computation resources involved when using 16 shots 8 nodes x 16 cores = 128 cores 

Necessary computer memory for one FWI test when using 16 

shots 

19.6 GB 

Table 8.2 – Parameters used during FWI for the 3D acquisition layout. 

8.4.1 – Synthetic example 

In the following section, the experiments for the 3D data set are first presented for the full-
DC case (i.e. laterally variable initial models), which previously ensured the best FWI 
results. 

Full-DC case 

Figure 8.33 summarizes all acquisition layouts tested for the 3D data set. Similar results 
were obtained for the acquisition geometry of the cases A - D - E on one side, and B - C on 
the other side. The main observation arising from these tests is that varying the number of 
shots has less influence on the FWI results’ accuracy than varying the shot positions. 

Another observation is related to the achievement of better lateral resolution in 
correspondence of the target when positioning the shots outside the target (cased C) or 
nearby its borders (case B). Differently, when positioning some sources inside the target 
(case A, D and E), the estimated shallow velocity is more accurate, but the resolution of the 
reconstructed boundaries is lower.  

Among the cases A, D and E, the worse results were obtained for the case A, while the best 
results were obtained for the case E. Among the cases B and C, the best results were 
obtained for the case C.  

The best overall model reconstruction and data-fitting are provided by the configuration of 
the case C.  
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Figure 8.33 – Acquisition geometries used for the FWI tests. The receivers are indicated with 
blue triangles, while the active shots, for each experiment, are signed with black and green 
stars. Capital letters of identical colors are used for the cases that provided similar results 
after FWI (A-D-E versus B-C).  

Some examples of reconstructed models and data-fitting are presented below for the best 
case of each group (A-D-E vs B-C), while the results for the other cases are reported in 
Appendix 6. Figure 8.34 shows 2D sections of the reconstructed 3D VP and VS models for 
the case E. The results show a good reconstruction of the shallow velocity, both for VP and 
VS while the resolution of target’s shape and lateral extension can be further improved.  

 

Figure 8.34 – FWI results for case E, synthetic data. Left) Acquisition scheme (the receivers 
are indicated with blue triangles, while the active shots are signed in black and green stars). 
Right) 2D section (crossing the target’s center) of the 3D P-wave (up) and S-wave (down) 
velocity models after FWI.  
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Figure 8.35 shows the normalized model misfit, before and after FWI, for the case E: a low 
model misfit can be noticed in the final VS model, as well as in the very shallow part of the 
VP model (down to 1 m). 

Figure 8.35 – 2D sections (crossing the target’s center) of the 3D model misfit: a) (Reference 
VP model – Initial VP model)/Reference VP model. b) (Reference VS model – Initial VS 
model)/Reference VS model. c) (Reference VP model – Final VP model)/Reference VP model. d) 
(Reference VS model – Final VS model)/Reference VS model. 

Figure 8.36 shows 2D sections of the reconstructed 3D models for case C, where all shots 
are placed outside the low-velocity target. The reader can notice how the target’s shape is 
reconstructed with a higher resolution than in the previous case; nevertheless, there is a 
slight overestimation in velocity in the shallow part of the VS model. This aspect can be 
noticed better in Figure 8.37b, related to the normalized model misfit. Besides, the VP final 
model misfit is very low in this case (Figure 8.37a): The shots configuration of case C is the 
one that guarantees the best reconstruction of the VP model.  

 
Figure 8.36 – FWI results for case C, synthetic data. Left) Acquisition scheme (the receivers 
are indicated with blue triangles, while the active shots are signed in black and green stars). 
Right) 2D section (crossing the target’s center) of the 3D P-wave (up) and S-wave (down) 
velocity models after FWI.  
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Figure 8.37 – 2D sections (crossing the target’s center) of the 3D model misfit: a) (Reference 
VP model – Initial VP model)/Reference VP model. b) (Reference VS model – Initial VS 
model)/Reference VS model. c) (Reference VP model – Final VP model)/Reference VP model. d) 
(Reference VS model – Final VS model)/Reference VS model. 

Figure 8.38 shows details of the 3D VS models for z = 0 m, in particular: the initial model 
from full-DC analysis (8.38a), the reconstructed model of case E (8.38b) and the 
reconstructed model of case C (8.38c). One can notice a better lateral resolution of the 
horizontal target’s extension for the case C (Figure 8.38c), in the x-direction (the lateral 
resolution in the y-direction is already correct, after the 2D to 3D initial model extension). 
The shallow lateral extension of the final model for case C (Figure 8.37c) is 5 meters in the 
x and y direction, as the extension of the reference (i.e. true) model.  

 
Figure 8.38 – S-wave velocity models: a) Initial model obtained from the full-DC analysis.     
b) The model obtained after FWI when placing some sources in correspondence of the sand-
target (Case E). c) The model obtained after FWI when using a 3D pattern for the source 
distribution, and no source is placed in correspondence of the sand-target (Case C).  
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A trace-by-trace data fitting analysis, for a shot belonging to the case E, before and after 
FWI, is presented in Figure 8.39. It can be noticed that the waveform matching of the initial 
configuration (Figure 8.39a) improves alter FWI (Figure 8.39b).    

 

Figure 8.39 – Trace-by-trace data fitting comparison before a) and after b) FWI, synthetic 
example, full-DC case, Shot 38 (placed inside the sand target), case E. 
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Figure 8.40 displays a trace-by-trace data fitting comparison, for a shot belonging to the 
case C, before and after FWI. One can notice a data fitting improvement after FWI, 
especially for near-offset positions and in correspondence of the target’ boundaries.  

 

Figure 8.40 – Trace-by-trace data fitting comparison before a) and after b) FWI, synthetic 
example, full-DC case, Shot 8 (placed outside the sand target), case C. 

Single-DC case 

We have seen in Section 8.2 that FWI results characterized by lower accuracy are obtained 
when using laterally homogeneous initial models. Howsoever, some FWI tests were also 
performed using the initial models retrieved from single-DC analysis, to investigate if the 
low-velocity target can be reconstructed from a horizontally homogeneous background 
when using a 3D acquisition geometry.  

Figure 8.41 shows 2D sections of the 3D models obtained after FWI on synthetic data, 
using the acquisition configuration of the case C and the single-DC based initial models. As 
expected, the target is not recovered in the VP model (Figure 8.41a), while its 
reconstruction is relatively accurate in the VS model (Figure 8.41b).  



Chapter 8 – 3D MULTI-PARAMETER ELASTIC FULL-WAVEFORM INVERSION 
 

169  
 

Figure 8.41 – FWI results for the 3D acquisition, synthetic data (case C), single-DC case. 2D 
section (crossing the target’s center) of the 3D a) P-wave velocity model and b) S-wave 
velocity model.  

This aspect can be also noticed when analyzing the Figure 8.42, which displays the 
normalized difference between the reference and initial/final models, respectively: After 
FWI, the VP is overestimated in correspondence of the target, while the VS is accurately 
reconstructed in the shallow part of the sand body. Nevertheless, there are some artefacts 
in the VS reconstructed model, far from the low-velocity target, consisting of velocity 
overestimation.    

 

Figure 8.42 – 2D sections (crossing the target’s center) of the 3D model misfit: a) (Reference 
VP model – Initial VP model)/Reference VP model. b) (Reference VS model – Initial VS 
model)/Reference VS model. c) (Reference VP model – Final VP model)/Reference VP model. d) 
(Reference VS model – Final VS model)/Reference VS model. 

In Figure 8.43, showing a detail of the 3D VS model in correspondence of the surface, 
before (8.43a) and after (8.43b) FWI, the reader can notice how the target’s horizontal 
extension is accurately reconstructed, even if the inversion starts from a laterally 
homogeneous background.  
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Figure 8.43 – S-wave velocity models, synthetic case: a) Initial model obtained from the 
single-DC analysis. c) VS model obtained after FWI when using a 3D pattern for the source 
distributions, and no shot is placed in correspondence of the sand-target (Case C).  

8.4.2 – Real data application 

Single-DC case 

Figure 8.44 shows 2D sections of the 3D models obtained after FWI on real data, using the 
configuration in C and the single-DC based initial model (i.e. laterally homogeneous). 
Again, the target is not recovered in the VP model (Figure 8.44a) while its reconstruction is 
relatively accurate in the VS model (Figure 8.44b).  

Figure 8.44 – FWI results for the 3D acquisition, real data application (case C), single-DC 
case. 2D section (crossing the target’s center) of the 3D a) P-wave velocity model and             
b) S-wave velocity model. 

Still, some artefacts nearby the low-velocity anomaly and at greater depth are present in 
the reconstructed VS model. These elements can be also noticed in Figure 8.45, which 
shows the normalized difference between the final and initial models. In particular, one 
can observe how the VS value in correspondence of the target is lower (and therefore more 
accurate) in the final model, compared with the initial one.  
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Figure 8.45 – 2D sections (crossing the target’s center) of the 3D model misfit: a) (Final VP 
model – Initial VP model)/Final VP model. b) (Final VS model – Initial VS model)/Final VS 
model.  
 
 
In Figure 8.46, showing a detail of the 3D VS model, in correspondence of the surface, 
before (8.46a) and after (8.46b) FWI, one can notice how the target’s horizontal extension 
is properly reconstructed, even when starting from a laterally homogeneous background. 
However, some artefacts are present here around the low-velocity target.  

 

Figure 8.46 – S-wave velocity models, real data application: a) Initial model obtained from 
the single-DC analysis. b) The model obtained after FWI when using a 3D pattern for the 
source distribution, and no source is placed in correspondence of the sand-target (Case C).  
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Figure 8.47 presents a trace-by-trace data fittings comparison, before (8.47a) and after 
(8.47b) inversion, for the real data FWI application on the single-DC initial model. 
Accurate reconstruction of all phases can be noticed after inversion. The fitting improves 
especially in correspondence of the target since the correct velocity field is recovered after 
FWI. 

 
Figure 8.47 – Trace-by-trace data fitting comparison before a) and after b) FWI, real data 
application, single-DC case, Shot 8, case C. 

The considerations of the previous paragraph regard also Figure 8.48, showing a data 
fitting comparison for another shot gather belonging to the same FWI experiment. One can 
notice a significant improvement in data fitting, in correspondence of the target and for the 
far-offset arrivals, when passing from the initial configuration (Figure 8.48a) to the final 
one (8.48b).  
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Figure 8.48 – Trace-by-trace data fitting comparison before a) and after b) FWI, real data 
application, single-DC case, Shot 68, case C. 

Full-DC case 

Figure 8.49 shows 2D sections of the 3D reconstructed models when using the acquisition 
configuration of the case C and the initial model from full-DC analysis (i.e. laterally 
heterogeneous), for FWI applied to real data. The resolution of the reconstructed model 
improves, especially for VS. This feature can be observed also in Figure 8.50, which 
displays the normalized difference between the final models and the initial ones. In the 
final VS model, there is a slight increase in velocity in correspondence of the target after 
FWI (Figure 8.50b).  

Figure 8.49 – FWI results for the 3D acquisition, real data (case C), full-DC case. 2D section 
(crossing the target’s center) of the 3D a) P-wave velocity model and b) S-wave velocity 
model. 
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Figure 8.50 – 2D sections (crossing the target’s center) of the 3D model misfit: a) (Final VP 
model – Initial VP model)/Final VP model. b) (Final VS model – Initial VS model)/Final VS 
model. 

 

Figure 8.51 displays a detail of the 3D VS model for z = 0 m, in particular: the initial model 
from full-DC analysis (Figure 8.51a) and the model obtained after FWI for the acquisition 
configuration in C (figure 8.51b). One can notice a better lateral resolution of the target in 
the x-direction after FWI; the lateral resolution in the y-direction is already accurate after 
the 2D to 3D initial model’s extension.  

 

Figure 8.51 – S-wave velocity models, real data application: a) Initial model obtained from 
the full-DC analysis. b) The model obtained after FWI when using a 3D pattern for the shot 
distributions, and no source is placed in correspondence of the sand-target (Case C).  

In Figure 8.52, a trace-by-trace data fitting comparison is reported for a shot gather 
belonging to case C, before (8.52a) and after FWI (8.52b). An accurate data fitting can be 
noticed for the entire offset and all phases. Since the fitting is already accurate in the initial 
configuration, there are no significant changes after FWI. Still, during a careful 
examination, a better fitting of the phases scattered from the target’s boundaries can be 
observed after FWI.   

Other studies (e.g. Butzer et al., 2013) proved that the use of a 3D acquisition geometry for 
the 3D FWI allows reconstructing different sized 3D structures with a higher resolution 
compared with the 2D acquisition geometry results.  
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Figure 8.52 – Trace-by-trace data fitting comparison before a) and after b) FWI, real data 
application, full-DC case, Shot 8, case C. 
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8.5 – Highlights 

 An integrated workflow, based on 2D SWs analysis and 3D FWI, was tested, with the 
aim of enhancing the resolution in the imaging of complex-shaped shallow targets. The 
tests are based on a well-known real target, represented by a loose-sand body buried 
among more compact sediments, and on synthetic data simulating this environment.  

 Both real and synthetic seismic data are dominated by complex-scattered and highly 
energetic SWs that make the application of FWI a challenging task.  

 Two different series of initial models (laterally homogeneous and laterally variable), 
built using SW analysis procedures, were tested. A simple 3D elastic FWI workflow, 
applied to synthetic and real data, improved the initial models’ resolution. Better 
results were obtained after FWI when using laterally variable initial models.  

 The final data fitting is accurate for the near-offset traces and in correspondence of the 
target, while the fitting of some far-offset arrivals and back-scattered phases can still 
be improved.  

 Further investigations were focused on the integration, into the main FWI workflow, of 
different model-oriented and data-oriented strategies.  

 A preliminary monoparametric FWI was helpful for the initial VS model 
improvement.  

 A two-step time windowing FWI, which firstly exploits the BWs content, helped for 
a better VP model reconstruction. Even if the changes of the reconstructed model 
are not substantial, significant data fitting improvement still occurs for the far-
offset traces. More successful examples can be found in the literature.  

 A (commonly adopted) multiscale FWI provided slightly improved results after FWI. 
The difference between these results and the results obtained when applying FWI 
directly in the full frequency-band is small because the initial model from DC analysis 
is already accurate.  

 A 3D acquisition geometry ensured a more accurate reconstruction of the target 
boundaries, especially when placing the sources outside the low-velocity target.  

 When activating some sources inside the sand target, the shallow velocity is more 
accurately reconstructed, but the resolution in correspondence of the target 
boundaries is lower. Since no data normalization acts during inversion, the 
sources placed inside the target contribute with high amplitude and control the 
optimization. Increasing the shots number does not influence the result in a 
significant manner.  

 Even though better results are obtained when starting the FWI from the full-DC 
analysis based initial model, the initial model obtained by single-DC analysis also 
guarantees the premise for an accurate reconstruction of the target shape and 
horizontal extension. Nevertheless, in this case, some additional artefacts appear 
in the reconstructed model.  
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Appendix 4 

The effectiveness of data weighting strategy 

In Figure A 4.1, showing the VS models reconstructed after FWI for the case when no offset 
weighting function is used (A 4.1a and A 4.1b) and the case when such data strategy is 
integrated into the FWI workflow (A 4.1c and A 4.1d), a more accurate reconstruction of 
the target can be noticed when using the weighting function. 

 
Figure A 4.1 – 2D sections (crossing the target’s center) of the 3D S-wave velocity models 
after FWI on synthetic data (2D acquisition): a) Single-DC case (i.e. 1D), without using the 
weighting function, b) full-DC case (i.e. 2D), without using the weighting function, c) single-
DC case (i.e. 1D), using the weighting function, d) full-DC case (i.e. 2D), using the weighting 
function.  
 
The effectiveness of the weighting function is also proven by the normalized model misfit 
plotted in Figure A 4.2. A lower model misfit after FWI, in correspondence of the target’s 
boundaries, is achieved when using the weighting function. 

 
Figure A 4.2 – 2D sections (crossing the target’s center) of the 3D S-wave velocity model 
misfit, regarding the FWI application on synthetic data (2D acquisition): a) Single-DC case, 
without the weighting function, b) full-DC case, without the weighting function, c) single-DC 
case, using the weighting function, d) full-DC case, using the weighting function.  
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In Figures A 4.3 and A 4.4, showing a trace-by-trace data fitting comparison for the case 
when no offset weighting is used and the case when data weighting is applied, more 
accurate results can be noticed in the second case (A 4.3b and A 4.4b).  

 
Figure A 4.3 – Trace-by-trace data fitting comparison between reference data and data 
belonging to the model obtained after FWI, for the single-DC case (i.e. 1D), 2D acquisition, 
synthetic example (Shot 6): a) No weighting function was used during FWI; b) a weighting 
function was used during FWI for the far-offset traces. 
 

 
Figure A 4.4 – Trace-by-trace data fitting comparison between reference data and data 
belonging to the model obtained after FWI, for the full-DC case (i.e. 2D), 2D acquisition, 
synthetic example (Shot 6): a) No weighting function was used during FWI; b) a weighting 
function was used during FWI for the far-offset traces: A more accurate data fitting can be 
noticed. 
 
 

In Figure A 4.5, which shows the FWI results obtained when no data weighting is used      
(A 4.5b) and when an offset weighting is applied (A 4.5c), a more accurate reconstruction 
of the target can be noticed in the second case (Figure A 4.5c). The same aspect can be 
observed in Figure A 4.6, where a more accurate reconstruction of the VS after FWI can be 
noticed in the shallow part of the model (Figure A 4.6b).  
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Figure A 4.5 – 2D sections of the 3D S-wave velocity models, synthetic example. a) Improved 
VS model through a preliminary monoparametric FWI. b) VS model after multi-parameter 
FWI (starting from the improved initial Vs model and the previous VP model, retrieved from 
full-DC analysis): No offset weighting function was applied. c) VS model after multi-parameter 
FWI (starting from the improved initial VS model and the previous VP model, derived from 
full-DC analysis): A weighting function was applied to the far-offset traces.  

 
Figure A 4.6 – 1D profiles (in correspondence of the target) of the 3D S-wave velocity models, 
synthetic example. a) No weighting function was used. b) An offset variable weighting 
function was used.  
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Again, a more accurate data-fitting can be noticed, in Figure A 4.7b, when an offset 
weighting function is used during FWI.  

Figure A 4.7 – Trace-by-trace data fitting comparison between reference data and data 
belonging to the model obtained after FWI (using a preliminary monoparametric FWI), for 
the full-DC case (i.e. 2D), 2D acquisition (Shot 6): (a) No weighting function was used during 
FWI; (b) a weighting function was used during FWI for the far-offset traces.  

Furthermore, for the multiscale FWI strategy, one can notice better results when an offset 
weighting strategy is integrated into the FWI workflow (Figure A 4.8b and Figure 4.9b).  

 

Figure A 4.8 – 2D sections of the 3D S-wave velocity models: a) VS model after multi-
parameter FWI (full-DC case): No offset weighting function has been applied. b) VS model 
after multi-parameter FWI: A weighting function was applied to the far-offset traces: A better 
resolution can be noticed in correspondence of the target. 
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Figure A 4.9 – 1D profiles (in correspondence of the target) of the 3D S-wave velocity models. 
a) No weighting function was used during the multiscale FWI. b) An offset variable weighting 
function was used during FWI: A more accurate reconstruction of the VS model after FWI can 
be noticed in the shallow part of the model.  
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Appendix 5 

 Bessel smoothing filter for the FWI gradient: experiments 

Figure A 5.1 shows the effects of the Bessel filter’s application to the first FWI gradient, 
when different values of the coherent lengths, in the z-x- and y-direction, are used for the 
filter parameters. The values for the smoothing filter of the cases (e) and (f), used for the 
FWI tests of the 2D acquisition data set, are in agreement with the FWI wavelength 
resolution, acquisition design and mesh size. 
 

Figure A 5.1 – 2D sections (crossing the target’s center) of the 3D FWI gradients.  

a) Gradient of the objective function with respect 

to VP: no smoothing. 

b) Gradient of the objective function with respect 

to VS: no smoothing.   

c) Gradient of the objective function with respect 

to VP: Bessel smoothing filter’s values in the z – x - 

y direction = 0.5 m - 1.5 m – 5 m.       

d) Gradient of the objective function with respect 

to VS: Bessel smoothing filter’s values in the z – x - 

y direction = 0.5 m - 1.5 m – 5 m.   

e) Gradient of the objective function with respect 

to VP: Bessel smoothing filter’s values in the z – x - 

y direction= 1.5 m – 5 m – 12 m.  

f) Gradient of the objective function with respect 

to VS: Bessel smoothing filter’s values in the z – x - 

y direction= 1.5 m – 5 m – 12 m.   

g) Gradient of the objective function with respect 

to VP: Bessel smoothing filter’s values in the z – x - 

y direction = 5 m – 10 m – 15 m.  

h) Gradient of the objective function with respect 

to VS: Bessel smoothing filter’s values in the z – x - 

y direction= 5 m – 10 m – 15 m. 
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Appendix 6 

FWI results for the 3D acquisition geometry: some details  

In Figure A 6.1, showing the FWI results related to the case A of the 3D acquisition design, 
one can notice how the shape of the target is recovered with lower resolution compared 
with the next example (Figure A 6.2). Indeed, lower data misfit is obtained when placing 
the shots in these positions (Figure A 6.2 – case B).  

 
Figure A 6.1 – FWI results for the 3D acquisition, synthetic data (case A). Left) Acquisition 
scheme (the receivers are indicated with blue triangles, while the active shots are signed in 
black and green). Right) 2D section (crossing the target’s center) of the 3D P-wave (up) and 
S-wave (down) velocity model after FWI.  

Figure A 6.2 – FWI results for the 3D acquisition, synthetic data (case B). Left) Acquisition 
scheme (the receivers are indicated with blue triangles, while the active shots are signed in 
black and green). Right) 2D sections (crossing the target’s center) of the 3D P-wave (up) and 
S-wave (down) velocity model after FWI.  
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When analyzing the corresponding model misfits for these two cases, one can notice how 
the VS estimation, in correspondence of the target, is more accurate for the shots 
configuration of the Case A (Figure A 6.3) than for the shots distribution of the Case B 
(Figure A 6.4). Conversely, the target’s lateral extension is more accurately reconstructed 
when using the acquisition geometry of the case B (Figure A 6.4), compared with the case 
A (Figure A 6.3).  

Figure A 6.3 – 2D sections (crossing the target’s center) of the 3D model misfit for case A: a) 
(Reference VP model – Initial VP model)/Reference VP model. b) (Reference VS model – Initial 
VS model)/Reference VS model. c) (Reference VP model – Final VP model)/Reference VP model. 
d) (Reference VS model – Final VS model)/Reference VS model. 

 
Figure A 6.4 – 2D sections (crossing the target’s center) of the 3D model misfit for case B: a) 
(Reference VP model – Initial VP model)/Reference VP model. b) (Reference VS model – Initial 
VS model)/Reference VS model. c) (Reference VP model – Final VP model)/Reference VP model. 
d) (Reference VS model – Final VS model)/Reference VS model 
 
When using the shots configuration of the case D (Figure A 6.5 and Figure A 6.6), the FWI 
results are similar to the ones obtained when using the acquisition design of the case E 
(presented in Section 8.4). Nevertheless, lower data misfit is obtained here.  
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For the experiments synthetized in Figures A 6.5 and A 6.6, the estimation of the shallow 
velocity is more accurate in correspondence of the target than in the previous case 
(Figures A 6.2 and A 6.4), especially for the Vs model, at the expense of less accurate 
reconstruction of the target’s shape and lateral extension.  

 
Figure A 6.5 – FWI results for the 3D acquisition, synthetic data (case D): Left) Acquisition 
scheme (the receivers are indicated with blue triangles, while the active shots are signed in 
black and green). Right) 2D sections (crossing the target’s center) of the 3D P-wave (up) and 
S-wave (down) velocity models after FWI.  
 
 

 
Figure A 6.6 – 2D sections (crossing the target’s center) of the 3D model misfit for the case D: 
a) (Reference VP model – Initial VP model)/Reference VP model. b) (Reference VS model – 
Initial VS model)/Reference VS model. c) (Reference VP model – Final VP model)/Reference VP 
model. d) (Reference VS model – Final VS model)/Reference VS model. 
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Figure A 6.7 shows the data fitting comparison, for the same shot position and different 
acquisition configurations: case D, case E and case C. One can observe a better data fitting 
for the case E (Figure A 6.7b) than for the case D (Figure A 6.7a), and for the case C (Figure 
A 6.7c), compared with the case D (Figure A 6.7b).  

 
Figure A 6.7 – Trace-by-trace data fitting comparison, after FWI, for the same shot position 
(Shot 8) over different acquisition geometries, synthetic example: a) Case D, b) Case E, c) Case 
C. The reference data are plotted in black, while the final data, for each experiment, are 
represented in red. The best data-fitting after FW is obtained for case C (Figure A 6.7c).   

Figure A 6.8 shows the data fitting comparison, for the same shot position and different 
acquisition configurations: case A, case E and case B. In can be noticed that better data 
fitting is obtained for the case E (Figure A 6.8b) than for the case A (Figure A 6.8a), and for 
the case B (Figure A 6.8c), compared with the case E (Figure A 6.8b).  

Figure A 6.8 – Trace-by-trace data fitting comparison, after FWI, for the same shot position 
(Shot 35) over different acquisition designs, synthetic example: a) Case A, b) Case E, c) Case B. 
The reference data are plotted in black, while the final data, for each experiment, are 
represented in red. The best data-fitting after FW is obtained for case B (Figure A 6.8c).  
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Figure A 6.9 shows the data fitting comparison, for the same shot position (Shot 38, 
belonging to the 3D acquisition) and different acquisition configurations: case A, case D 
and case E. It can be observed that better data fitting is obtained for the case D (Figure A 
6.9b) than for the case A (Figure A 6.9a), and for the case E (Figure A 6.9c), compared 
with the case D (Figure A 6.9b).  

Figure A 6.9 – Trace-by-trace data fitting comparison, after FWI, for the same shot position 
(Shot 38), over different acquisition designs, synthetic example: a) Case A, b) Case D, c) Case 
E. The reference data are plotted in black, while the final data, for each experiment, are 
represented in red. The best data-fitting after FW is obtained for case E (Figure A 7.6c).  

 

Figure A 6.10 shows the final models obtained when using the 3D acquisition 
configuration of the case E on real data. These results are less accurate than the ones 
related to the case C (shown in Section 8.4) 

 
Figure A 6.10 – FWI results for the 
3D acquisition, real data (case D): 
a) 2D section (crossing the target’s 
center) of the 3D P-wave velocity, b) 
2D section (crossing the target’s 
center) of the 3D S-wave velocity.  
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Analyzing the normalized difference between the final and the initial models (Figure 6.11), 
it can be noticed, in the final VS model (Figure A 6.11b), a slight increase in velocity around 
the target. This feature is not observed in the final VP model (Figure A 6.11a).  

 
Figure A 6.11 – 2D sections (crossing the target’s center) of the 3D model misfit: a) (Final VP 
model – Initial VP model)/Final VP model. b) (Final VS model – Initial VS model)/Final VS 
model.  

 

Figure A 6.12 shows the data fitting comparison, for the same shot position (Shot 8, 
belonging to the 3D acquisition) and different acquisition configurations: case D and case 
C. In can be observed that better data fitting is obtained for the acquisition configuration of 
the case C (Figure A 6.12b) than for the acquisition layout used for case D (Figure A 
6.12a).  

 

Figure A 6.12 – Trace-by-trace data fitting comparison after FWI, for the same shot position 
(Shot 8), over different acquisition geometries for the real data application: a) Case D, b) 
Case C. The best data fitting after FWI is obtained for the Case C.
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Chapter 9 

Discussion 
As an overall observation, when performing multi-parameter FWI on seismic data from 
near-surface acquisitions, VS is updated more than VP and this fact was proven by many 
FWI experiments (e.g. Butzer et al., 2013; Gross et al., 2017; Borisov et al., 2018; Smith et 
al., 2019; Wang et al., 2019; Trinh et al., 2019). This behavior is justified by the physics of 
SW propagation, more sensitive to the shear properties, and by the intrinsic lower 
resolution of VP (higher velocity, larger wavelengths). A strategy aimed at better updating 
the VP model may be the application of a constraint on the VP to VS ratio, presented in Trinh 
et al. (2018).  

Another overall observation regards the predominantly shallow model update. On one 
side, the SW method is affected by the loss in resolution with depth. On the other side, 
since for near-surface applications the FWI gradient is highly dominated by SWs, its 
sensitivity at a depth greater than the SW propagating wavelengths is low. Therefore, 
detecting anomalies buried at depths greater than the SW penetration may be affected by 
loss in resolution. Some recent studies proved the effectiveness of FWI, based of SW 
analysis derived initial models, to detect anomalies buried at about 10 m depth (e.g. Wang 
et al., 2019; Smith et al., 2019).  

As far as deep anomalies are concerned, other approaches can be adopted to increase the 
resolution at greater depths. Firstly, since the SW maximum investigation depth is 
controlled by the low-frequency band of the DC, data from passive seismic measurements 
can be integrated to extend the low-frequency band. Moreover, including higher modes in 
DC analysis may also improve the vertical resolution (Socco et al., 2010b). Another 
approach could be the f. a. traveltime tomography, although it potentially fails in detecting 
low-velocity zones. Regarding this last observation, Chen et al. (2017) showed a successful 
example on the use of the frequency-dependent traveltime tomography for building initial 
models for FWI, aimed at detecting a tunnel (made of concrete walls) buried at 1.6 m 
depth. Alternatively, other strategies can be integrated into the FWI workflow for enabling 
a deeper model reconstruction: i.e. a depth preconditioning of the gradient (e.g. He et al., 
2018) or scaling the approximated Hessian matrix (e.g. Nuber et al., 2015). 

All in all, for a data set dominated by SWs, since the VP model is not significantly updated 
when using a simple multi-parameter FWI scheme, a very accurate initial model is 
necessary. A possible approach to obtain the VP model is the first-arrival tomography. 
Preliminary investigations made in this study on synthetic data (Figure 9.1 and 9.2) 
provided accurate results for the higher-velocity layers, although a slight overestimation in 
velocity still exists in the deepest region (Figure 9.2c). However, the velocity values are 
considerably underestimated in the shallow part of the model, down to 2 – 2.5 m depth 
(Figure 9.2b and 9.2c). These results suggest that, in the presence of low-velocity areas, 
the DC analysis may provide a better initial VP model for FWI compared with the f. a. 
traveltime tomography. 
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Figure 9.1 – Example of the first arrivals picking on the synthetic reference data: a) Scheme 
of the shot positions, b) Shot 2, c) Shot 5. A 0.03s AGC window was applied to the 
seismograms to emphasize BWs visualization.    
 

 
Figure 9.2. a) Vertical section of the 3D reference synthetic VP model. b) VP model obtained 
from the f. a. traveltime tomography on synthetic data. c) Model misfit computed as the 
normalized difference between the reference model and the model obtained from f. a. 
traveltime tomography. 
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The same observation arises also when analyzing the P-wave velocity model obtained by 
applying the f. a. traveltime topography on real data (Figure 9.3a). The minimum P-wave 
velocity of the model retrieved from f. a. traveltime tomography on real data is about 107 
m/s, while the corresponding minimum P-wave velocity of the model retrieved from SW 
analysis is about 142 m/s. For the synthetic case, we noticed that the shallow velocity is 
underestimated when using the f. a. traveltime tomography. This observation leads to the 
conclusion that, as for the synthetic case, when applying the f. a. traveltime tomography on 
real data the velocity of the shallow layer is underestimated as well.     

 
Figure 9.3. VP model obtained from f. a. traveltime tomography application on real data 
(courtesy of Prof. Cesare Comina). 

*** 

An observation particularly related to this study is the achievement of FWI results 
characterized by different resolution when starting the inversion from a laterally variable 
or laterally homogeneous initial model. Figure 9.4a shows the evolution of the L2 misfit 
function as the iterations proceed, while in Figure 9.4b, the error related to each iteration 
is normalized by the error of the first iteration. The criterion used to stop each FWI 
experiment is related to the misfit function evolution: When the misfit function no longer 
decreases for more than two consecutive iterations, the iterative process stops.    

Figure 9.4a indicates lower overall misfit values (of one order of magnitude) for the full-
DC cases (green and red curve) compared with the single-DC cases (blue and black curves) 
on both synthetic and real data. Therefore, a laterally variable initial model, derived from 
the analysis of the entire set of DCs, guarantees a lower initial data misfit and better 
convergence (Figure 9.4b, green curve). The final values of the normalized misfit for the 
full-DC case (0.64 for real data and 0.12 for the synthetic data) are relatively similar to the 
ones obtained by other 3D FWI tests, performed for shallow environments at similar scale 
(e.g. Tran et al., 2019). 
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Figure 9.4 – Data misfit versus iterations number for the 2D acquisition related cases: a) L2 
misfit function. b) Normalized L2 misfit function. 

The L2 misfit related to the real data for the full-DC case (Figure 9.4b, red curve) decreases 
less because the initial model is already accurate and the 2D acquisition geometry does not 
allow for further improvement. In the previous section, we noticed how the initial models 
from the real-data full-DC analysis are not significantly updated after FWI, while the initial 
models (particularly the VS) from the single-DC analysis are correctly updated. These 
observations may suggest that an acceptable reconstruction of VS could be obtained both 
from FWI (starting with a single-DC based initial model) and from the proposed full-DC 
analysis, without passing through the inversion step (e.g. Figure 8.16b). However, results 
characterized by a higher resolution are expected from an FWI workflow based on higher 
frequencies.      

*** 

A more elaborated FWI workflow, based on parameter selection and data-oriented 
strategies, potentially leads to better convergence. This study proved how a preliminary 
monoparametric (Vs) FWI helps to obtain a lower data misfit after the multi-parameter 
FWI (Figure 9.5, black curve). Nevertheless, the success of this strategy might be case 
dependent, and it may not work properly in the presence of complex topography (although 
some applications related to preferential inversion of SWs to update the shallow VS model 
showed promising results: Borisov et al., 2020). Anyhow, when irregular topography is 
present, the scattering engine behind FWI may be better solved, since the lateral variations 
of velocity may cause back-scattered SWs and the conversion to higher modes. Moreover, 
SWs propagation under a complex topography, generating secondary BWs, may help for 
the illumination of the deeper regions of the model.  

The application of a two-step FWI (experimented also in other studies: e.g. Trinh et al., 
2018, 2019), which exploits the BWs content during a preliminary early arrival inversion, 
guaranteed a better data fitting at far-offset. Nevertheless, the overall normalized data 
misfit is higher (Figure 9.5 red curve) than in the previous case (model strategy - black 
curve), since the data set is dominated by SWs, while the BWs amplitude is very weak. 
However, these results may be case dependent as well, and the above data strategy may 
work properly for another data set, characterized by BWs with higher amplitudes.  
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Figure 9.5 – Normalized L2 
misfit function versus 
iteration number for the 
synthetic test, full-DC initial 
model, when using a model-
strategy and a data-strategy, 
respectively. 

 
 
 

 
 

 

*** 

Further, the use of a 3D acquisition layout has led to different results after FWI, according 
to the variation of the source number and source positions. In Figure 9.6, the blue, 
magenta and green curves represent the data-misfit evolution during FWI, when 8 sources, 
12 sources and 16 sources, respectively, are placed in correspondence of the low-velocity 
anomaly. On the other side, the black and red curves are representative for the case in 
which the sources are activated near the target’s boundaries (black) or at a greater 
distance from the target (red).  

A preliminary observation related to this experiment is the higher influence of the source 
position than the influence of the source number. In particular, increasing the source 
number from 8 to 12 or 16 (Figure 9.6) did not ensure a significantly lower data misfit 
after FWI, even if a slight decrease of this value occurred. Similar behavior was also 
described by Smith et al (2019), who concluded (after testing an acquisition scheme based 
on 24 vertical sources) that 6-10 shots are enough for detecting a tunnel buried at 10 m 
depth. Wang et al. (2019) also noticed that increasing the number of shots does not lead to 
significant improvement in the FWI results.  

Differently, the experiments conducted for this study proved that the source position is 
important. There are few examples in the literature related to the importance of the source 
positions (e.g. Nuber et al., 2017). In the present study, we can notice that activating the 
sources outside the low-velocity target (or close to the boundaries) guarantees better data 
fitting after FWI (Figure 9.6, black and red curves). Overall, better results are obtained 
when positioning the sources at a longer distance from the target (red curve). The reason 
for this pattern may be related to the small-wavelength phases scattered from the target’s 
boundaries that play, in this case, a minor role in the misfit function computation than in 
the case when positioning the sources near the target (black curve).      
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Figure 9.6 – Normalized L2 misfit function for the various synthetic applications related to 
the 3D acquisition design.  

As far as the initial model’s effectiveness is concerned, when using a 3D acquisition 
geometry better FWI results were obtained, again, for the full-DC analysis based initial 
model (green and red curves in Figure 9.7), both for the synthetic experiment and field 
data application. The final normalized data misfit is, in these cases, 0.21 and 0.26, 
respectively. The final data misfit is almost one magnitude order higher when staring the 
FWI from the laterally homogeneous models (blue and black curves) than when starting 
the FWI from the laterally variable ones (green and red curves).  

 
Figure 9.7 – Normalized L2 misfit function for the single-DC and full-DC cases, real and 
synthetic applications. 
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*** 

Another aspect that requires analysis is the engine used in this study for simulating the 
wave propagation. As mentioned in Section 8.2, a viscoelastic modeling engine was used, 
while the values of the density and quality factors were kept invariable during inversion, to 
focusing the analysis on the velocity models reconstruction while avoiding eventual trade-
off between the velocity and secondary parameters (i.e. quality factor and density).  

However, the Q parameter is important for properly modeling the frequency-dependent 
amplitude decay with offset. Therefore, using a wrong Q value may lead to a wrong 
amplitude of the modeled data at far-offset. For the real data application, an inaccurate Q 
value may also affect the accuracy of the source wavelet estimation through deconvolution, 
leading to the necessity of introducing additional corrections (e.g. Pratt, 1999; Gross et al., 
2014).  

As presented in Section 5.4, the attenuation is implemented in the SEM46 tool through a 
constant SLS mechanism over a limited frequency band. The use of a constant Q value 
should not influence significantly the results since the frequency range involved in the 
experiments is also relatively limited (3 Hz – 40 Hz) and the number of propagated 
wavelengths is low (approximately 4 wavelengths propagated over a maximum offset of 
about 25 m). The presence of higher frequencies may require a more correct 
representation of the Q-values. In any case, more accurate results are expected when using 
variable (and accurate) Q models in the forward modeling scheme (e.g. Gross et al., 2014; 
Borisov et al., 2020). Moreover, better results would be obtained if applying amplitude and 
phase filters to the simulated data (Baumstein et al., 2011) or, better, inverting iteratively 
also for Q in addition to elastic parameters (Malinowski et al., 2011; Operto and Miniussi, 
2018; Pan and Innanen, 2019). 

As far as the density model is concerned, assuming a constant density during FWI is 
reasonable when the dominant energy propagates as SWs, which have low sensitivity to 
this parameter (Nazarian, 1983). Many studies proved that FWI guided by SWs is not 
particularly sensitive to density (e.g. Dokter et al., 2017; Borisov et al., 2018; Smith et al., 
2019). Moreover, an additional trade-off is introduced when FWI aims at reconstructing 
simultaneously the velocity model and the density (e.g. Krampe et al., 2019). Anyhow, 
considering that VP and density have the same radiation pattern for short aperture angles, 
an independent reconstruction of these parameters is challenging for short-offset data (e.g. 
Virieux and Operto, 2009).  

Some results of preliminary forward modeling investigations conducted using variable 
values for density and quality factors are presented in Appendix 7.  
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Chapter 10 

Conclusions and Perspectives 

An integrated workflow, based on 2D surface wave analysis and 3D elastic full-waveform 
inversion, was tested, to enhance the resolution in the imaging of complex-shaped shallow 
targets.  

The tests were based on a well-known real target, represented by a loose-sand body 
buried among more compact sediments, and on synthetic data simulating this geological 
asset. The seismic data are dominated by complex-scattered and highly energetic SWs, 
making the application of FWI a challenging task. Additional challenges for FWI are created 
by the flat topography of the investigated area, which facilitates the SWs forward 
scattering regime while FWI is mainly based on a backscattering one (BWs). The presence 
of irregular topography would have fulfilled better the engine behind FWI since it would 
have generated secondary BWs and SWs with higher modes of propagation, but it would 
have rendered the SWs fundamental mode’s individuation more challenging.     

Two different series of initial VP and VS models, laterally homogeneous and laterally 
variable, have been retrieved using innovative 2D SW analysis procedures. The laterally 
homogeneous models were obtained by inverting or transforming one single DC 
(representative for the background medium), while for building the laterally variable 
models, both a clustering algorithm and data transform have been applied to all the DCs 
extracted from the data.  

A simple 3D elastic FWI workflow, tested on synthetic and real data, improved the initial 
models’ resolution. In particular, the laterally variable initial model has granted better FWI 
results than the laterally homogeneous one. When using a simple FWI workflow, the final 
data fitting is accurate for the near-offset traces and in correspondence of the low-velocity 
target, while the fitting of some far-offset arrivals and back-scattered phases can still be 
improved. One way to achieve such improvement is integrating, into the basic FWI 
workflow, different model-based and data-oriented strategies. Thus, some of these 
strategies have been tested.  

Firstly, the SWs preferential sensitivity to the shear properties was exploited, through a 
preliminary monoparametric (VS) inversion step, to improve the initial VS model’s 
resolution in the shallow part. This strategy led to an overall better model reconstruction 
after the multi-parameter (VS & VP) FWI. However, the accuracy of the results may be case 
dependent, and it may vary in the presence of complex topography. 

Apart from the offset weighting strategy, which proved to be very important for the 2D 
acquisition geometry (characterized by a longer offset), additional data-oriented strategies 
have been tested. Among them, a time-windowing strategy, aimed at exploiting the early 
arrivals content during a preliminary inversion step, ensured a better data fitting at far 
offset after FWI. Nevertheless, the VP model did not improve significantly, due to the very 
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weak amplitude of BWs. However, the above strategy may work efficiently for a different 
data set, characterized by BWs with higher amplitudes. Successful examples regarding the 
windowing strategy can be found in the literature.  

Another experimented data strategy was the ordinarily employed multiscale inversion, 
which constraints and guides the model update according to the wavelength resolution. 
Although it provided better data-fitting and model reconstruction after FWI, the difference 
between the results of the multiscale FWI and the results of the FWI conducted directly in 
the full frequency band is not significant in this study. This happens because an accurate 
data fitting, without cycle-skipping for the most part of the seismograms, is already 
present in the starting configuration related to the full-DC based model. However, many 
published results proved the effectiveness of this strategy. 

Moreover, FWI experiments conducted using a 3D acquisition scheme led to different 
results, depending mainly on the source position. In particular, the position of the sources 
with respect to the low-velocity target resulted more important than the number of 
sources. Indeed, increasing the source number from 8 to 16 did not influence substantially 
the reconstructed models’ resolution, even if results characterized by a slightly lower data 
misfit were obtained. On the contrary, moving the sources outside the low-velocity 
anomaly ensured a better reconstruction of the target’s boundaries as well as a 
significantly lower data misfit after FWI. While there are many examples in the literature 
related to the influence of the number of sources used during FWI, the influence of the 
source position when using a 3D acquisition layout was not investigated very often.  

In this work, considering only the experiments with sources activated outside the target or 
close to the boundaries, the configuration based on sources placed at a greater distance 
from the low-velocity anomaly provided better results. A possible explanation for this path 
could be related to the small-wavelength phases scattered from the target’s boundaries, 
difficult to be fitted with a maximum 40 Hz FWI scheme. Indeed, these phases play an 
important role in the misfit function computation when the sources are activated near the 
target, leading to a higher data misfit after FWI. Moreover, the sources located near the 
low-velocity target contribute with high amplitudes and no data normalization acts during 
the misfit function computation.   

Differently, when positioning some sources inside the low-velocity target, a lower lateral 
resolution is achieved in correspondence of the target’s boundaries. However, in this case, 
better recovery of the shallow S-wave velocity value is obtained. On the contrary, when 
placing the sources outside the target, the better lateral resolution is obtained at the 
expense of a slight overestimation of the shallow velocity. The reason for this fact may be 
the lower information related to the shallow part of the target since no source is probing it 
appositely.   
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Overall, it may be concluded that the integration of 2D SW analysis (providing smooth 
laterally variable initial models) with a relatively simple 3D FWI scheme allows 
reconstructing complex-shaped shallow targets with high accuracy. This work proved that 
using laterally variable initial models from SWs analysis allows obtaining more accurate 
results after FWI while efficiently assisting the convergence. The integration of model-
oriented and data-based strategies into the main FWI workflow enables an additional 
improvement of the results. Using a 3D acquisition layout (with a particular position of the 
sources) allows for precise reconstruction of the target’s shape and lateral extension.  

*** 

Future investigations could be focused on: 

 The consideration of higher modes of SWs propagation in the initial model building 
step, to guarantee a greater investigation depth and improve the vertical resolution. 

 The analysis of horizontal particle displacement components in the seismogram.  

 The use of constraints on the VP to VS ratio during FWI, to guide the VP model’s update. 

 The use of higher frequencies for FWI to increase the overall wavelength resolution. 

 The use of variable values for the Q parameter and density over the 3D model.  Some 
preliminary results are presented in Appendix 7.  
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Appendix 7 

3D viscoelastic modeling using variable values for                                           
Q parameters and density: preliminary results 

Preliminary 3D modeling investigations have been conducted on real data, in the full-
frequency band (up to about 150 Hz), on the use of variable versus constant values for 
density and quality factors (Figure 10.1). The experiments followed a 2D acquisition 
pattern (Figure A 10.1) and regarded 4 different configurations (Figure A 10.2):  

A. constant quality factors and constant density (results plotted in red) 
B. variable quality factors and variable density (results plotted in green) 
C. variable quality factors and constant density (results plotted in cyan)   
D. constant quality factors and variable density (results plotted in magenta) 

The variable density model was computed using the relation 𝜌 = 0.5 · 𝑉௦
଴.ଶଶ · 10ଷ while the 

attenuation parameters were retrieved using the relations: QS = 0.09·VS; QP = 1.5·QS.    For 
the experiments based on constant values for the density and quality factors, the former is 
1800 kg/m3 while the Q factors are equal to 40. The source time function was estimated 
from the field data, in the full-frequency band, using the deconvolution technique (Pratt, 
1999). The Green’s function was computed in the initial model using a Ricker source with a 
central frequency of 60 Hz. All simulations were performed using the SEM46 code and 
exploiting the domain composition (2 x 6 x 6 in the z – x and y direction) on the parallel 
computing environment of the UGA Froggy HPC architecture (using 72 cores). A forward 
simulation for one shot took about 7 hours and required a computer memory of 25.6 GB.   

 
Figure A 10.1 – Scheck of the acquisition design. The shot positions are signed with sumbols 
and numbers from S 1 to S 11.  The green star marks the position of the shot gathers 
presented hereafter.  

In Figure A 10.2 the reader can notice how the lowest data misfit was obtained when using 
variable values for the Q parameters and constant values for the density, while the highest 
data misfit occurred when using variable density and constant values for Q parameters. 
Therefore, the use of constant density may be preferred to the use of a probably wrong 
variable density value that, in our case, may not fulfil properly the variation inside and 
outside the sand-target. Besides, the use of variable Q is very important for appropriate 
amplitude modeling.  
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Figure A 10.2 - Normalized L2 misfit function for all tested cases and different shots position 
along the 2D acquisition direction: A) Constant Q and constant density, B) variable Q and 
variable density, C) variable Q and constant density, D) variable density and constant Q.  

Henceforth, some examples of trace-by-trace data fitting comparison are presented for all 
tasted cases, in a frequency band up to about 150 Hz. The chosen shot gather is placed in 
an intermediate position between the homogeneous background and the low-velocity 
target (Figure A 10.1). All seismograms are trace-by-trace normalized.  

 

Figures A 10.3, A 10.4 and A 10.5 show some examples of trace-by-trace data fitting 
comparison for case A, related to the use of constant values for both the Q parameters and 
density.  
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Figure A 10.3 – Trace-by-trace data fitting comparison between real data and data 
belonging to the initial model from full-DC analysis, when using constant values for Q 
parameters and density: Shot 4, near-offset traces. 

Figure A 10.4 – Trace-by-trace data fitting comparison between real data and data 
belonging to the initial model from full-DC analysis, when using constant values for Q 
parameters and density: Shot 4, intermediate-offset traces. 
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Figure A 10.5 – Trace-by-trace data fitting comparison between real data and data 
belonging to the initial model from full-DC analysis, when using constant values for Q 
parameters and density: Shot 4, far-offset traces. 
 
 
Figures A 10.6, A 10.7 and A 10.8 show some examples of trace-by-trace data fitting 
comparison for case B, related to the use of variable values for Q parameters and density.  
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Figure A 10.6 – Trace-by-trace data fitting comparison between real data and data 
belonging to the initial model from full-DC analysis, when using variable values for Q 
parameters and density: Shot 4, near-offset traces. 

Figure A 10.7 – Trace-by-trace data fitting comparison between real data and data 
belonging to the initial model from full-DC analysis, when using variable values for Q 
parameters and density: Shot 4, intermediate-offset traces. 
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Figure A 10.8 – Trace-by-trace data fitting comparison between real data and data 
belonging to the initial model from full-DC analysis, when using variable values for Q 
parameters and density: Shot 4, far-offset traces. 

 

Figures A 10.9, A 10.10 and A 10.11 show some examples of trace-by-trace data fitting 
comparison for case C, related to the use of variable values for Q parameters and a 
constant value for density.  
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Figure A 10.9 – Trace-by-trace data fitting comparison between real data and data 
belonging to the initial model from full-DC analysis, when using variable values for Q 
parameter and a constant value for density: Shot 4, near-offset traces. 

Figure A 10.10 – Trace-by-trace data fitting comparison between real data and data 
belonging to the initial model from full-DC analysis, when using variable values for Q 
parameters and a constant value for density: Shot 4, intermediate-offset traces. 
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Figure A 10.11 – Trace-by-trace data fitting comparison between real data and data 
belonging to the initial model from full-DC analysis, when using variable values for Q 
parameters and a constant value for density: Shot 4, far-offset traces. 
 
Figures A 10.12, A 10.13 and A 10.14 show some examples of trace-by-trace data fitting 
comparison for case D, related to the use of a constant value for Q parameters and variable 
values for density.  
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Figure A 10.12 – Trace-by-trace data fitting comparison between real data and data 
belonging to the initial model from full-DC analysis, when using a constant value for Q 
parameter and a variable value for density: Shot 4, near-offset traces. 

Figure A 10.13 – Trace-by-trace data fitting comparison between real data and data 
belonging to the initial model from full-DC analysis, when using a constant value for Q 
parameter and a variable value for density: Shot 4, intermediate-offset traces. 
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Figure A 10.14 – Trace-by-trace data fitting comparison between real data and data 
belonging to the initial model from full-DC analysis, when using a constant value for Q 
parameter and a variable value for density: Shot 4, far-offset traces. 
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Appendix 8 - Numerical details 

The relations used for computing the element size, time sampling and the number of time 
iterations (considering 5 GLL nodes per shortest wavelength) are (Trinh et al., 2019): 

𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑠𝑖𝑧𝑒 ≤  
ఒ೘೔೙

ଵ.ଷ
≤  

௠௜௡௨௠௨௠ ௩௘௟௢௖௜௧௬
௠௔௫௜௠௨௠ ௙௥௘௤௨௘௡௖௬ൗ

ଵ.ଷ
 (m) 

𝑡𝑖𝑚𝑒 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 ≤  
଴.ଷ ∙ ଴.ଵ଻ ∙ ௘௟௘௠௘௡௧ ௦௜௭௘

௠௔௫௜௠௨௠ ௩௘௟௢௖௜௧௬
 (s) 

The number of GLL points is = (mesh + absorbing sponges a.s.) x 4 + 1. 

Table A 8.1 gathers values of the element size, time sampling, time iterations and number 
of GLL points related to different frequency intervals used in this study. 

Min. VS  ~ 60 m/s 
Max. VP  ~ 1050 m/s 
Acquisition ~ 0.412 s 

Element size Time sampling Time iterations 

  Max. freq. = 40 Hz 1.0 m 4.8e-05 8 600 

     Max. freq. = 50 Hz * 0.9 m 4.3e-05 9 600 

    Max. freq. = 150 Hz 0.3 m 1.4e-05 29 400 

     Max. Freq. = 500 Hz 0.1 m 4.8e-06 85 800 

GLL points (40 Hz) 
z-x-y direction 

4 a.s. & a free surface 

GLL points (50 Hz) 
z-x-y direction 

4 a.s. & a free surface 

GLL points (150 Hz) 
z-x-y direction 

4 a.s. & a free surface 

GLL points (500 Hz) 
z-x-y direction 

4 a.s. & a free surface 

57 – 253 – 253 61 – 281 – 281 149 – 777 – 777 421 – 2265 – 2365 

Table A 8.1 – Vales for the element size, time sampling, time iterations and GLL points. 
 
The necessary time for the simulations, conducted on the parallel computing architecture 
using 8 nodes with 16 cores each, is reported in Table A 8.2.  

     8 shots 
128 cores 

Forward modeling First gradient 
computation 

FWI – 10 iterations 

  Max. freq. = 40 Hz 4 minutes 11 minutes ~ 12 hours 

     Max. freq. = 50 Hz * 5 minutes 18 minutes ~ 20 hours 

    Max. freq. = 150 Hz 40 hours ↗ ↗ 

Table A 8.2 – The time registered for forward modeling, 1st gradient computation and FWI. 
 

The necessary computer memory for the simulations is reported in Table A 8.3.  
     8 shots 
128 cores 

Forward modeling FWI – 10 iterations 

  40 Hz 4.1 GB 9.8 GB 

     50 Hz * 5.3 GB 13.0 GB 

150 Hz 204.8 GB ↗ 

Table A 8.3 – Estimated computer memory 

 * Preliminary FWI experiments have been conducted also in the frequency band 3 Hz – 50 Hz but the results 

were not presented in this manuscript.    
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