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Summary

Multimorbidity holds paramount importance in public health, represent-
ing a multidimensional state where multiple pre-existing medical conditions
coexist and interact. This condition has been linked to an elevated risk
of COVID-19. Those with multimorbidity who succumb to COVID-19
experienced a substantial increased risk of negative outcomes. The post-
pandemic period also sees an acceleration of frailty. Therefore, it is impera-
tive to incorporate existing multimorbidity details into epidemiological risk
assessments. Handling clinical data with medical history poses significant
challenges, notably the data’s sparsity due to the rarity of multimorbidity
conditions and the intricate enumeration of combinatorial multimorbidity
features, which introduces a combinatorial explosion issue.

In this research, based on the health administrative data of the piedmont
region, each patient profile in the dataset is depicted as a binary vector,
where each feature denotes the presence or absence of a specific multimor-
bidity condition. In the first project of this research, by clustering the sparse
medical data, newly engineered features are generated as a bin of features,
and they are combined with the prevalent features for COVID-19 severity
predictive modeling. In the second project, a sparsity-addressing Evolu-
tionary Machine Learning model for analyzing pre-existing multimorbidity
in COVID-19 hospitalized patients using their medical history is proposed.
This research attempt to discover the optimal set of multimorbidity feature
combinations that are highly associated with COVID-19 severity.

This research distinguishes the severity of COVID-19 on infected people
who have multiple medical conditions alongside their demographic charac-
teristics, age, and sex. Contrary to misconceptions, the concept of multi-
morbidity analysis of COVID-19 patient is outdated, this research intro-
duces a groundbreaking tool designed to analyze the intricate interactions
among diverse chronic health conditions and their collective impact that
could be useful in situations analogous to recent health crises.
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Chapter 1

Introduction

1.1 Background

Coronavirus Disease 19 (COVID-19) is classified as a highly infectious dis-
ease, posing a severe threat to vulnerable populations, and thus, it is a
critical public health concern and a significant epidemiological situation
worldwide. On February 21, 2020, the first Italian case of COVID-19 was
diagnosed in the Lombardy region. The virus rapidly spread throughout the
country, resulting in a nationwide lockdown and overwhelming the health-
care system. Italy was one of the countries that suffered the most from the
COVID-19 pandemic, with Piedmont, a region in the northwest of Italy,
being one of the areas with a large number of instances in the first wave.

In the case of people infected with Severe Acute Respiratory Syndrome
Coronavirus 2 (SARS-CoV-2), multimorbidity can increase the severity of
the infection [1, 2]. Multimorbidity refers to the presence of multiple coex-
isting medical conditions in a patient, which interact with each other and
can result in a complex and multidimensional health condition [3]. It has
been established at population level that interactions between diseases can
increase the severity of the medical condition and make the treatment of
other diseases in the combination complex [4, 5]. Therefore, it is important
to identify specific disease combinations that could have an impact on the
severity of COVID-19 among individuals with multimorbidity.

Multimorbidity is consistently linked to a lower health-related quality
of life in mid-life [6, 7]. Additionally, there is evidence suggesting that
women have a higher likelihood of developing multimorbidity compared to
their male counterparts [8]. Moreover, having multiple health problems
at the same time has been found to make healthcare more expensive and
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create difficulties for healthcare systems in terms of resource allocation and
providing appropriate care [9].

Moreover, multimorbidity can worsen the effects of long COVID in sev-
eral ways [10, 11], when multimorbidity is present, additional symptoms
related to other chronic conditions can compound the overall symptom bur-
den, making it more challenging for individuals with long COVID to man-
age and recover from their illness. Research studies have indicated that
individuals with multimorbidity have been adopting various precautionary
behaviors during the pandemic [12, 13]. This is reflected in the restric-
tive guidelines recommended by authorities to control transmission [14].
Furthermore, studies have found that females are more likely to adopt pro-
tective measures compared to males [13]. The difference in precautionary
behaviors based on gender underlines the importance of considering vari-
ous demographic factors in the development of public health interventions
during a pandemic.

It is important to note that having one or more of these chronic health
conditions does not necessarily mean that an individual will develop se-
vere COVID-19, but it does increase the risk and that different diseases
could act in a different way on COVID-19 outcomes. Therefore, identi-
fying specific disease combinations and studying the interactions between
different chronic health conditions is relevant when analyzing the severity of
COVID-19 among individuals with multimorbidity. This can help health-
care professionals to identify those at highest risk of severe complications
and provide appropriate prevention, care, and treatment.

1.2 Challenges in Dealing with Multimorbidity Clin-
ical Data

Studying multimorbidity using traditional methods can be labor-intensive
and requires identifying high-dimensional combinatorial features, especially
when dealing with data coming from health administrative registers. Fur-
thermore, there is no universally accepted list of medical conditions to elu-
cidate the state of multimorbidity. To address these challenges, efforts must
be put forward to identify low-dimensional representations of multimorbid-
ity features for effective prediction of outcome. High-order input features
make Machine Learning models more prone to overfitting, and identifying
meaningful high-order combinatorial features requires extensive effort from
experts with domain knowledge.
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1 – Introduction

Rare features such as diseases and drugs with low occurrence rates in
the data can pose significant challenges for both statistical and Machine
Learning analyses. This is because their lower prevalence in the data can
result in sparsity, which may lead to poor predictions. The sparse data
generated by the absence of medical conditions in a cohort is illustrated in
Figure 1.1

Figure 1.1: Absence of medical conditions in a cohort - sparse data

The challenges of sparsity in predictive modeling include (i) biased and
unreliable results, (ii) imbalances in data due to under representation by
certain medical conditions, (iii) hampering of the model’s ability to effec-
tively learn from the data, (iv) noise and difficulty in pattern detection.

1.3 State of the Art: Multimorbidity Analysis

Traditionally, research in multimorbidity relies on counting the total number
of chronic conditions instead of considering the difference in individual expe-
riences and the effects of various combinations of diseases [15]. Count-based
multimorbidity measures have been used for emergency hospitalization pre-
diction [16]. Patients with the same number of chronic conditions may have
vastly different experiences. For instance, two patients with three chronic
conditions each might have completely different symptoms, treatment regi-
mens, and levels of disability. Counting conditions alone does not account
for these individual variations. In [15], authors suggest to undertake the
task of identifying and condensing prevailing multimorbidity indices used
to assess multimorbidity beyond mere disease counts. In a recent litera-
ture [17], researchers state that these indices might offer limited clinical
practicality. Because, even though an index score can anticipate particular
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outcomes within a population or aid in mitigating confounding variables in
various research, it typically does not help in patient-level management or
offer guidance for interventions. Moreover, Indices for measuring multimor-
bidity fail to adequately consider the intricate connections between various
chronic health conditions [17]. In this context, Machine learning techniques
can play a crucial role in identifying and characterizing these intricate mul-
timorbidity patterns, offering valuable insights for personalized patient care
and treatment strategies [17, 18].

Frequent combinations of medical conditions have been reported to de-
scribe multimorbidity patterns [19, 20]. According to [19], in the context of
the COVID-19 pandemic, there are various combinations of multiple health
conditions that people experience. Some of these combinations have been
consistently common since the start of the pandemic, while others occur
less frequently but tend to appear when there are more cases of COVID-19.
Moreover, when a specific combination of health conditions is of low preva-
lence, it can make clinical management more complicated since they often
include Orphan diseases [19].

Previous works have also investigated multimorbidity combinations through
latent class [21], cluster-based [22], network-based [23], factor-based [24].

A latent class is a concept used in statistical modeling and analysis to
represent unobservable or hidden groupings or categories within a dataset
[25]. These groupings are inferred based on patterns or associations in ob-
served data. In [21], latent class analysis was used to group patients based
on similar combinations of long-term health conditions, capturing complex
interactions between these conditions while maintaining specificity. The
study then analyzed patient characteristics and treatment patterns among
these multimorbidity phenotype clusters, using statistical tests. A limita-
tion of using latent class analysis (LCA) in the context of grouping multi-
morbidity is that it may not be well-suited for scenarios where the under-
lying health conditions exhibit continuous or overlapping characteristics,
as LCA assumes categorical, mutually exclusive, and exhaustive subgroups
[26], which may not fully capture the complexity of certain multimorbid-
ity patterns that can involve overlapping conditions or varying degrees of
severity.

In [22], the sum of squared errors determines the number of clusters and
the ratio of within-cluster variance to between-cluster variance. Later, the
individuals are put into various clusters based on the composition of their
health conditions. A limitation of the described study is that the method
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1 – Introduction

assigns individuals to clusters based solely on the majority composition of
their health conditions within a cluster, which might not fully capture the
complexity of individual health profiles, potentially overlooking important
nuances in multimorbidity patterns.

In [23], authors identified complex network of disease associations using
network graphs. However, a potential limitation is that the network analy-
sis often relies on predefined relationships or connections between variables,
which may not capture more complex and non-linear relationships that Ma-
chine Learning algorithms can uncover.

In [24], authors used Exploratory Factor Analysis (EFA), a statistical a
statistical method used to uncover latent patterns or relationships among
variables in a dataset without making prior assumptions about the structure
of those relationships. This method can identify interactions among variois
medical conditions. But, EFA relies on the assumption that observed vari-
ables are linear combinations of underlying latent factors [27] and doesn’t
have predictive capabilities, which can be a drawback when the goal is to
make predictions or decisions based on data patterns, a task more commonly
addressed by Machine Learning techniques.

As many studies employ various techniques to discern patterns and re-
lationships among multimorbidity, we can see that Machine Learning holds
distinct advantages over these approaches. However, it is worth noting that
research specifically addressing sparse multimorbidity data, where there are
limited instances or occurrences of comorbid conditions, is currently lack-
ing, and this presents a gap in the literature. Therefore, while Machine
Learning offers significant potential for multimorbidity analysis, addressing
the unique challenges posed by sparse data remains an area that requires
further exploration and investigation within the field.

Some works that use Machine Learning to investigate multimorbidity
patterns address sparsity in the dataset by either removing the sparsity-
generating features [28], merging the categories of features after performing
one-hot encoding [29], or clustering the rare features [30]. However, while
these methods may reduce sparsity, they may also lead to the loss of impor-
tant information and hinder the meaningful interpretation of multimorbidity
features.

From literature it is evident that combinations of less prevalent medical
conditions are markedly associated with worse outcomes and amplify the
risks associated with individual conditions [31].
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1.4 Importance of Proposed Method for Multimor-
bidity Research

With the growing prevalence of electronic health records and other large
datasets, there is a growing need for efficient and effective methods to ana-
lyze and understand multimorbidity. By leveraging Machine Learning algo-
rithms and other advanced computational techniques, researchers can gain
deeper insights into the underlying mechanisms and risk factors associated
with multimorbidity, which can ultimately inform more effective prevention
and treatment strategies.

Multimorbidity is typically associated with deficient health-related qual-
ity of life in mid-life, and the likelihood of developing multimorbidity in
women is elevated. In some studies, epidemiological data reveals no visible
sex-based discrepancy in disease severity, suggesting that the progression of
the virus is comparably favorable in both women and men, and there is a
similarity in the age at which the rate of SARS-CoV-2 infection peaks for
both male and female [32], [33]. However, the specific comorbidities that
increase the risk of severe COVID-19 outcomes can differ significantly be-
tween men and women [34]. Also, according to literature, women appear to
be relatively less susceptible to SARS-CoV-2 infection than men [35]. This
underscores the need for a refined understanding of gender-specific factors
influencing susceptibility and outcomes in the context of the COVID-19
pandemic. While existing literature provides valuable insights, there is a
distinct lack of in-depth investigation specifically focusing on women [32].
To comprehensively address this gap in knowledge, it is imperative to ad-
vocate for targeted research works dedicated to understanding the unique
aspects of women’s vulnerability or protection against COVID-19.

The first project of this research address the issue of data sparsity in
non-prevalent features by clustering the binary data of various rare medical
conditions in a cohort of middle-aged women. This study aims to enhance
understanding of how multimorbidity affects COVID-19 severity by cluster-
ing rare medical conditions and combining them with prevalent features for
predictive modeling.

In this project, clustering is performed on less prevalent features and put
such features into various Bins to enhance the interpretability of our data.
By strategically grouping less common features into Bins and integrating
them with prevalent ones, this research aim to capture a comprehensive
picture of multimorbidity among women in midlife.
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1 – Introduction

To group the multimorbidity features into various bins, a matrix is re-
constructed based on the cluster structures. The clustering process involves
two levels: feature level and data level. Feature level is performed to assign
features into different clusters which are the Bins and data level clustering
is performed where patients’ records are grouped into clusters based on the
features within each Bin before predictive modeling.

Constructing clusters of multimorbidity and interpreting the outcomes at
the patient level aids in identifying, in case of future patients, which cluster
value of a Bin contribute to whether a group of patients will be hospitalized
or not due to COVID-19. Furthermore, in this study, identifying the most
predictive feature or a Bin that includes less prevalent features helps in
revealing the underlying combination of multimorbidity that predicts the
severity of COVID-19 among the studied cohort. The insights gained can
guide the development of targeted interventions and improved management
strategies for individuals with multiple health conditions.

In second project, an Evolutionary Algorithm with deep learning-based
feature scoring is used and it is a powerful approach for analyzing multi-
morbidity data [36]. The application of evolutionary model might be better
not because of its higher predictive performance alone but because it han-
dles sparsity more effectively. This could manifest in better identification
of key features, more stable predictions, or better performance in certain
subgroups of the data [37].

Also, a logistic model can uncover complex multimorbidity patterns [38].
However, while linear models offer high interpretability, they may fall short
in sparse datasets where feature selection is key [39]. Here, evolutionary
algorithms, particularly Genetic Algorithms, excel by efficiently navigating
complex feature interactions and identifying optimal feature subsets, a task
challenging for linear models in sparse data scenarios [40].

This method involves several steps to identify the most relevant features
for predicting the target variable while minimizing the number of features
used. The dataset is preprocessed by generating various subsets or bins of
the multimorbidity features using a feature binning approach. This step
reduces sparsity in the data and allows for more efficient feature scoring.
Next, deep learning is used to score the features within each subset based
on their importance for predicting the target variable. The output of this
step is a feature score for each feature within each subset. An Evolutionary
Algorithm is then applied to select the best subset of features based on their
scores. The algorithm generates a population of candidate feature subsets
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and iteratively improves the population through selection, crossover, and
mutation operations [41]. The fitness of each candidate solution is evaluated
using a fitness function that incorporates the deep learning-based feature
scores of each subset or bin of features.

The output of the Evolutionary Algorithm is a subset of features that
are most relevant for predicting the target variable. These features can be
used for further analysis, such as building a predictive model or identifying
the underlying associations of the multimorbidity patterns. In summary, an
Evolutionary Algorithm with deep learning-based feature scoring provides
a powerful approach for analyzing multimorbidity data by identifying the
most relevant features for predicting the target variable. This approach
can lead to better model performance, faster training times, and improved
interpretability in complex datasets with multimorbidity features [42].

1.5 Goal of this Research

1.5.1 Research question

What are the multimorbidity predictors of severe COVID-19 outcomes (specif-
ically, as proxy of a more severe COVID-19 outcome), considering the spar-
sity challenges posed by rare features in the data and the optimal set of
morbidity feature combinations that are highly associated with COVID-19
severity.

1.5.2 Scope of the research

The research aims to mitigate the challenges while dealing with sparse mul-
timorbidity data and develop effective models to predict severe COVID-19
outcomes and to identify the specific combinations of medical conditions
that are most strongly associated with severe COVID-19 outcomes.

Rare diseases, characterized by their lower prevalence in the population,
are a diverse group of conditions affecting only a small fraction of individ-
uals [31]. A recent study have shown a clear link between rare diseases
and negative inpatient outcomes, suggesting these patients may require in-
dividualized care protocols [31]. Combining less prevalent conditions with
other morbidity features might create complex interactions that amplify or
diminish the impact on the outcome. The impact of less prevalent medical
conditions on outcomes is a complex and under-researched area [43].
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1 – Introduction

The 2001 article suggests that future research on comorbidity conse-
quences should focus on specific combinations of diseases [44]. But ap-
parently, there is still limited knowledge regarding the outcomes when mor-
bidity conditions are considered together [45].

In this study, it is demonstrated how the innovative tool used in this
research has the potential to revolutionize traditional risk assessment ap-
proaches. By incorporating intricate combinations of diseases, the tool aims
to enhance the accuracy of predicting severe outcomes for individuals who
have multiple chronic conditions. Through its adaptable design, it ensures
applicability even in evolving scenarios of different communicable diseases,
underscoring its continued relevance. This study focuses on investigating
the complexities of disease interactions, showcasing how this aforementioned
tool could reshape risk assessment for similar contexts.
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Chapter 2

Methodology

2.1 Multimorbidity Dataset

Data for the multimorbidity analyses were gathered from the Piedmont Lon-
gitudinal Study (PLS), which is a health-administrative cohort composed of
anonymous records linked at the individual level from various social, health,
and administrative databases [2]. Furthermore, since February 2020, the
PLS has been enhanced by the regional COVID-19 platform that collects
COVID-19 infection data. From these databases, we used registers for: (i)
hospital discharges, (ii) drug prescriptions data and the (iii) COVID-19 hos-
pitalizations of the individuals diagnosed with a SARS-CoV-2 infection for
the first time between February 22, 2020 and May 31, 2020. We retrieved the
5-year medical history of COVID-19-positive patients from these datasets.
The extracted data consists of 12,793 people aged 45 to 74 years who tested
positive for the first time for the SARS-COV-2 infection. Table 5.1 depicts
the descriptive statistics of the dataset utilized.

This research focused on individuals who were aged 45 to 74 years, elimi-
nating the potential influence of both younger (people aged less than 45) and
elderly subjects (people aged 75 and more) on the results. Because, there
are clinical differences between younger and elderly COVID-19 patients [46]
and growing older is linked to a rising prevalence of multiple health condi-
tions [46]. Additionally, the non utilization of the patient profiles of people
aged 75 and more allowed us to eliminate any bias associated with patients
residing in nursing homes.

As the study was incorporated into the National Statistical Plan, no
ethical approvals or permits were required and the database used for the
analyses included anonymized data only.
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2.2 Construction of the Exposure Variables

In this longitudinal cohort study, the patients with their presence and
absence of various multimorbidity in the past 5 years (2015 - 2019) are
compared for a particular outcome (hospitalization due to COVID-19).
It’s important to note that the study population exclusively consisted of
COVID-19 patients, and the primary focus was on assessing hospitalization
as the outcome. Multimorbidity has been defined using records from hos-
pital discharges’ and drug prescriptions’ registers. In the case of hospital
discharges and drug prescriptions datasets, there are multiple entries for
a single COVID-19 infected patient. The drug prescriptions dataset con-
sists of around 1 million records; the hospital discharges dataset consists of
around 19,000 entries. From the drug prescriptions dataset, the Anatom-
ical Therapeutic Chemical classification system (ATC) code is used. All
distinct ATC codes up to the 4th level (the first 5 digits of the ATC codes)
are considered in this study. One-hot encoding is carried out for converting
categorical codes into different feature columns with 0 or 1 values (absence
and presence of drugs in the history of prescriptions for each patient). Sim-
ilarly, from the hospital discharge data, the 9th International Classification
of Diseases-Clinical Modification (ICD9-CM) code [47] (as a diagnosis code
of disease) is used and one-hot encoding is performed. After these trans-
formations, only the drug codes and diagnosis codes that comply with this
condition are kept: "at least 100 patients with this code in the COVID-19-
positive patients’ data". Thus, 194 features are derived from drug codes
(112) and diagnosis codes (82) as multimorbidity features from the whole
data, where the presence and absence of those features are marked as 0 and
1, respectively. The other two features are age and sex, where sex is coded
as 1 for female and 0 for male. Later, this pre-processed data is divided
into four datasets based on age and sex. The dataset transformation steps
are illustrated in Figure 2.1.

The study conducted separate analyses for four cohorts, which are sub-
sets of the original data stratified by sex and age. A combined analysis
can be informative only if the research is primarily interested in the over-
all effect of the main variable, regardless of subgroups. Also, combining
data might be acceptable if the effect modifier has a small impact on the
relationship.However, based on existing literature [2, 48], age and sex are
recognized as effect modifiers, making separate analyses more appropriate.
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Figure 2.1: Dataset transformation steps

23



Subsets of various cohorts are obtained by considering the study popu-
lation who fall within the age criteria of "aged 45 – 59 years" and "aged
60 – 74 years". This sub-division is performed since people over 60 can be
considered as part of the older population.

The various cohorts in this research are : cohort 1 - Female COVID-19
patients aged 45 to 59, cohort 2 - Male COVID-19 patients aged 45 to 59,
cohort 3 - Female COVID-19 patients aged 60 to 74 and cohort 4 - Male
COVID-19 patients aged 60 to 74.

In the datasets for the middle-aged cohorts (cohort 1 and cohort 2),
the age feature is converted into a binary variable where 1: age>53, 0:
age≤53. The age values are taken from the 2020 COVID-19 data, and the
age of 53 is used as a threshold to divide the younger population into two
subgroups (45-53, 54-59). Similarly, the elderly population is also divided
into two subgroups (60-68, 69-74), where the age feature is converted into
a binary variable where 1: age>68, 0: age≤68. All four cohort datasets are
considered as separate binary classification problems. The input variables,
which include multimorbidity history and age, and the outcome variable,
which denotes whether a patient was hospitalized due to COVID-19 or not,
are represented as binary values.

In this study, the presence and absence of prescribed drugs and diagnosed
diseases including patient age, and sex were considered as the multimorbid-
ity features. However, due to the rarity of many medical conditions in
the study population, the resulting dataset becomes sparse when encoding
absence as zero values.

2.3 Data Imbalance Rectification

A major challenge when handling clinical data is predicting rare events,
which can lead to an imbalance problem when the target feature has more
observations in a class than in other classes [49]. Therefore, it is essential
to treat the imbalanced raw data properly to avoid bias towards a partic-
ular class. Oversampling, a data imbalance rectification process offers the
advantage of retaining all information from the original training set, as it
preserves all members from both the minority and majority classes [50]. In a
recent study that compares performance of various data resampling meth-
ods on imbalanced medical data [51], the findings indicate that utilizing
class imbalance techniques can contribute to the diagnosis of lung cancer.
The study suggests that among various imbalanced learning methods, the
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oversampling technique demonstrates superior performance.
SMOTE works by connecting existing data points, but when features are

binary, creating intermediate values through interpolation is not meaning-
ful [52]. This can result in synthetic data points that may not accurately
reflect the original data distribution. There are variations for SMOTE that
specifically handles nominal features like binary data by randomly picking a
neighbor instead of interpolating. SMOTE-NC is an extension of the origi-
nal SMOTE algorithm designed to handle datasets with both nominal and
continuous features [53]. However, for SMOTE-NC to function properly,
the dataset must contain at least one continuous attribute [54]. In this re-
search not only all the datasets are unbalanced, but also all the data points
are binary and there is no continuous valued attribute. Moreover, the per-
formance assessment of different interpolation methods confirmed previous
findings regarding the limited effectiveness of established SMOTE-based
variations.

Also, oversampling introduces the drawback of significantly increasing
the training set size; undersampling, on the other hand, outperforms over-
sampling in time and memory complexity when resampling time is not con-
sidered [55]. In a study [56] addressing class imbalance in cardiovascular
data, the well-known SMOTE oversampling [53] technique is utilized, ac-
companied by exploration of under-sampling methods. Also, they used an
undersampling technique, and experimental results demonstrate its superior
performance compared to existing methods.

The findings from a recent study show that Cost-Sensitive Learning
(CSL) is effective in predicting imbalanced medical data [57]. Instead of ar-
tificially creating balanced class distributions through sampling techniques,
CSL addresses the imbalanced class issue by using cost matrices that specify
the costs linked to misclassification for each class [57]. This cost matrix is
used during the training process to adjust the model’s behavior by assign-
ing costs or penalties to different types of classification errors, influencing
the learning algorithm to prioritize certain outcomes over others. Sparse
and imbalanced binary datasets may exhibit unique characteristics that are
not well-represented in the training set. CSL might struggle to general-
ize to unseen sparse patterns, impacting the model’s performance on new
data. In cost-sensitive learning, features might be used to dynamically ad-
just the misclassification costs for different instances [58]. Also, adaptive
cost adjustment may introduce additional computational complexity [58],
particularly if the algorithm needs to iteratively update costs during the
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training process. This can impact the efficiency of the learning algorithm,
especially when using in conjunction with evolutionary approach.

Class weighting allows the algorithm to retain all instances in the dataset,
including those from the majority class [59]. In binary data, class weighting
often assigns higher weights to the minority class, which can inadvertently
push the model to solely prioritize its prediction. Also, studies show that if
the class imbalance is moderate, under-sampling can be advantageous [60].

All the datasets used in this study are unbalanced, and resampling is pro-
posed. To achieve this, randomly class-balanced sample data is taken from
the unbalanced original dataset, followed by a statistical hypothesis test
called the one proportion z-test. This test is carried out to draw an analogy
between the proportion of the sampled population and the population in
raw data. This test ensures the representativeness of randomly balanced
sample data and the original cohort dataset, avoiding any potential bias.

The steps performed to obtain an unbiased balanced dataset with signif-
icant features are:

• Extract all minority and majority samples attributed to the outcome
value from the original cohort dataset.

• Randomly select samples belonging to the majority class such that they
are equal in number to the minority class to obtain a balanced dataset.

• Calculate the prevalence of each feature in the randomly selected sam-
ples and the original population.

• Conduct one proportion z-test on all non-zero variables to determine
whether the frequency distribution of a feature in the resampled data is
representative of the same feature in the original cohort dataset, using
a significance level of .05.

• Evaluate the obtained one proportion z-test statistic and P values to
support the significance of the conclusion of the test and eliminate
non similar features. Thus the features for which there is statistical
evidence of a significant difference in proportions between the original
and resampled datasets are eliminated from the sampled data.

The rationale for conducting a one-proportion z-test in this context is
to assess whether the frequency distribution of a specific feature in the
resampled data is statistically representative of the same feature in the
original cohort dataset. This test helps determine whether any observed
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differences in the proportions of the feature between the resampled data and
the original data are statistically significant. By using a significance level
of 0.05 (commonly chosen in hypothesis testing), the test aims to identify
features in the resampled data that deviate significantly from the original
dataset, indicating that they may not be representative. Features with non-
significant differences would likely be retained, while those with significant
differences would be considered for elimination, as they may not accurately
reflect the original data’s characteristics. Thus, in this research, the one-
proportion z-test is employed as a statistical tool to ensure the validity of
the resampled data by identifying and potentially excluding features that
do not maintain the expected distribution. The statistics before and after
rectification is tabulated in Appendices B.1, B.2, B.3, and B.4.

2.4 Model Development

2.4.1 Machine Learning algorithms

To choose a best model, we examine the performance of various supervised
Machine Learning algorithms.

The labeled health records allow for the use of supervised learning, and
the binary classification method is used to classify the multimorbidity pro-
file of a patient. Deep learning and other Machine Learning algorithms
are applied to all cohort datasets as shown in Figure 2.2. The results are
compared using a scoring grid with average cross-validated scores.

2.4.2 SHAP analysis for interpretation

The SHapley Additive exPlanations (SHAP) [74] values are used to ex-
plain the contribution of individual features in predicting hospitalization
outcomes of the cohort.

SHAP values provide a way to quantify the contribution of each feature
to the prediction of hospitalization. This can help identify which multi-
morbidity features have the most significant impact on the likelihood of
hospitalization due to COVID-19. SHAP values offer an intuitive way to
explain the predictions of a Machine Learning model. For healthcare profes-
sionals and policymakers, it’s essential to understand why a model predicts
a certain outcome. SHAP values provide a clear breakdown of how each
feature influences the prediction, making it easier to trust and act upon
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Figure 2.2: Selecting best Machine Learning model for each cohort dataset

the model’s recommendations. Moreover, by analyzing SHAP values, indi-
viduals who are at higher risk of hospitalization due to COVID-19 based
on their multimorbidity features can be identified. This can inform tar-
geted interventions, such as vaccination prioritization, remote monitoring,
or preventive measures, for individuals with specific comorbidities.

The SHAP values of all features are plotted and positioned on the y-
axis based on their impact on the model outcome. The SHAP beeswarm
plots are used to investigate the distribution of the influence each feature
has on the outcome of the model, with features having higher importance
positioned at the top of the graph. A data point for a feature corresponds to
a single patient, with the position of the data point (SHAP value) on the X-
axis representing the effect of that feature on the outcome of the model for
that particular patient. If the multimorbidity is present (feature value is 1:
red) for a patient accounting for a more positive SHAP value, it indicates
that the presence of that feature acts as a risk factor for hospitalization.
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Similarly, if the multimorbidity is present (feature value is 1: red) for a
patient having a more negative SHAP value, it indicates that the presence
of that feature acts as a protective factor against hospitalization risk for
that patient.

2.5 Projects

We have undertaken two projects aimed at identifying predictors of severe
COVID-19 outcomes related to multimorbidity. These projects address the
challenge of dealing with sparse data, particularly rare features, and focus
on determining the optimal combinations of morbidity features strongly
linked to the severity of COVID-19.

• Project 1: Multimorbidity in Middle-aged Women and COVID-19: Bi-
nary Data Clustering for Unsupervised Binning of Rare Multimorbidity
Features and Predictive Modeling.

• Project 2: Evolutionary Machine Learning Based Multimorbidity Anal-
ysis In COVID-19 Hospitalized Patients: A Longitudinal Study Using
Health-administrative Data of a Region in the North-West of Italy
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Table 2.1: Machine Learning Algorithm Descriptions

Algorithm Underlying Principle Strengths Weaknesses
Logistic Regres-
sion (LR) [61]

Linear model for binary
classification.

Simplicity and inter-
pretability.

May underperform with
complex relationships.

CatBoost Classi-
fier [62]

Gradient boosting with
category-aware features.

Handles categorical data
well, robust to overfit-
ting.

Can be computationally
intensive.

Gradient Boost-
ing Classifier [63]

Ensemble method that
builds trees sequentially.

High predictive accu-
racy, handles complex
relationships.

Prone to overfitting,
longer training times.

AdaBoost Classi-
fier [64]

Ensemble method that
assigns weights to data
points.

Good at correcting
misclassifications, works
well with weak learners.

Sensitive to noisy data
and outliers.

Linear Discrim-
inant Analysis
(LDA) [65]

Dimensionality reduc-
tion and classification
based on linear combi-
nations.

Effective in high-
dimensional data,
reduces multicollinear-
ity.

Assumes Gaussian dis-
tributions.

Random Forest
Classifier [66]

Ensemble of decision
trees with bootstrapped
samples and feature
randomness.

Excellent at handling
complex data, resistant
to overfitting.

Less interpretable than
individual trees.

Naive Bayes [67] Probabilistic classifier
based on Bayes’ theo-
rem with independence
assumptions.

Simple, computationally
efficient, good for text
classification.

Assumes feature inde-
pendence, may not cap-
ture complex relation-
ships.

LightGBM [68] Gradient boost-
ing framework with
histogram-based learn-
ing.

High-speed training and
good accuracy, handles
large datasets.

Prone to overfitting with
small datasets.

Extra Tree Classi-
fier [69]

Ensemble of decision
trees with random fea-
ture splits.

Low computational cost,
robust to noise.

Less interpretable than
other tree-based models.

Extreme Gradient
Boosting (XG-
Boost) [70]

Gradient boosting with
optimized tree algo-
rithms.

High performance,
strong regularization,
and feature selection.

Can be sensitive to hy-
perparameters.

Decision Tree
Classifier

Hierarchical structure of
binary decisions.

Simple to understand,
interpretable.

Prone to overfitting, not
suitable for complex re-
lationships.

K-Nearest Neigh-
bors Classifier [71]

Classifies data points
based on their neigh-
bors.

Non-parametric, simple
to implement.

Sensitive to the choice
of k, computationally
expensive for large
datasets.

Quadratic Dis-
criminant Analy-
sis [65]

Extension of LDA allow-
ing for different covari-
ance matrices.

More flexible than LDA
when covariance struc-
tures differ.

Requires more data,
computationally expen-
sive.

Support Vector
Machine (SVM)
Linear Kernel [72]

Creates a linear decision
boundary with maximal
margin.

Effective for high-
dimensional data, works
well with small to
medium-sized datasets.

Limited ability to cap-
ture complex non-linear
patterns.

Ridge Classifier
[73]

Linear model with L2
regularization.

Reduces multicollinear-
ity, robust to noisy data.

Less interpretable than
logistic regression.
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Chapter 3

Project 1: Binary Data
Clustering for Unsupervised
Binning

3.1 Clustering Patients with Multimorbidity

This project, specifically focuses on clustering binary data related to various
medical conditions in middle-aged women (cohort 1). Cluster analysis is a
valuable statistical technique for grouping objects based on their similarity
in terms of indicator variables or features, and can be applied to identify
clinically significant multimorbid groupings of medical conditions [75]. By
using cluster analysis, researchers can learn important information about
how different medical conditions are related and occur together. This helps
them understand the complex connections between diseases and to develop
personalized ways of treatment. It is also evident from the existing studies
that clustering methodology can be applied to identify patient subgroups
with similar disease profiles or symptom patterns [76]. Furthermore, it also
can be utilized for identifying patient subgroups with distinct healthcare
utilization trends and identifying risk factors associated with adverse out-
comes [77]. In a multimorbidity study [78], the authors utilized K-means
non-hierarchical cluster analysis to identify patterns of multimorbidity. Sim-
ilarly, another study [79] focused on stratifying a population of high-risk
multimorbid patients by using cluster analysis for risk stratification and
identifying distinct characteristics of each cluster. These findings emphasize
the significance of healthcare reform in addressing the unique needs of dif-
ferent patient clusters. By tailoring interventions and care strategies based
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on these identified clusters, healthcare providers can effectively address the
diverse challenges associated with multimorbidity. Self-Organizing Feature
Maps (SOFMs) have been widely employed in various clustering applica-
tions, including tasks like handwritten digit recognition [80]. In another
study [81], the authors employed SOFMs to identify clusters of patients
based on their healthcare data. However, SOFMs are not commonly used
for clustering multimorbidity patterns, as these patterns typically involve
clinical and demographic data rather than image data. Instead, other clus-
tering approaches such as k-means, hierarchical clustering, and latent class
analysis are more commonly employed for multimorbidity clustering.

3.2 Clustering Rare Features

This study focus on clustering rare features, which are medical conditions
that are not commonly observed in patient data. We grouped multimor-
bidity features into bins using a matrix based on cluster structures. This
process involves two levels of clustering: the feature level and the data level,
without making assumptions about the number of feature clusters. Once
the features associated with each cluster are identified, they are mapped to
corresponding bins. The unsupervised bins are then merged with prevalent
features to create a new engineered feature matrix. The performance of
models using clustered data is compared to models without clustered data,
and the importance of the features is investigated, leading to the interpre-
tation of the models.

3.2.1 Unsupervised feature binning

To group the multimorbidity features into various bins, a matrix is recon-
structed based on the cluster structures. The clustering process involves
two levels: feature level and data level, as shown in Figure 3.1.

At the feature level clustering, the Binary Matrix Decomposition (BMD)
algorithm [82] is used to assign features into different clusters without boot-
strapping on labeled train data. The clustering method makes no presump-
tions regarding the number of feature clusters. After identifying the features
associated with each cluster, each feature is mapped to its corresponding
bin. Features that are not considered rare (i.e., present in at least 20% of
the data) are not mapped to any bin and are used as they are. Only the
rare features are mapped to their corresponding cluster, forming the Cluster
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Figure 3.1: Feature level and data level clustering is performed before predictive modeling

Map.
Using the Cluster Map, the features within each cluster are represented

as a Feature Bin Matrix (FBM). The training FBM consists of the features
in the corresponding cluster, along with the feature values for all patients
in the training dataset (without the class label). The unsupervised learning
[83] is performed on the training FBM using the same BMD algorithm,
iteratively for each cluster in the Cluster Map. The resulting values for
each cluster are obtained. The trained model is then used to predict the
cluster labels for the test FBM.

The unsupervised bins engineered from the FBMs are merged with the
prevalent features (with the features excluded from the Cluster Map) to
form a new engineered Feature Matrix (FM). This process is carried out
separately for the training and test sets, resulting in the train FM and
test FM, respectively. During the data level clustering, both datasets are
handled separately without the class label to prevent data leaks. The entire
procedure is illustrated in Figure 3.2.

3.2.2 Predictive modeling

To assess the performance of different Machine Learning algorithms in pre-
dicting hospital admission due to Covid-19, we utilized the train and test
FM datasets. Since the data is labeled, we employed a supervised learn-
ing approach on this engineered dataset. The trained binary classification
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Figure 3.2: Unsupervised feature binning of rare features and generation of the Feature Matrix
using new engineered features and other features

model was then applied to the holdout data to classify patients into one
of two classes: whether or not hospital admission is required, taking into
account their multimorbidity history.

Following the creation of the train and test FM datasets with the newly
engineered features, we analyzed the variance of each feature. We trained
the train FM using various Machine Learning algorithms available in the
Pycaret package [84], employing 5-fold cross-validation.

Due to the sparsity of the data and the skewed distribution of value lev-
els (0 or 1), certain levels may dominate others, resulting in insufficient
variation to generate informative features. Therefore, during the Machine
Learning-based predictive modeling, such non-informative features can be
disregarded. The criteria for ignoring low-variance features [85] are as fol-
lows:

number of unique values in a feature
sample size < 10%

and
number of most prevalent value

number of second most prevalent value > 20

The best-performing model is selected by examining the mean area under
the curve (AUC) score of each Machine Learning model. Later, the best
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model is evaluated using the test FM and the performance scores are re-
ported.
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Chapter 4

Project 2: Evolutionary
Machine Learning for Feature
Engineering

4.1 An Evolutionary Approach for Discovering Fre-
quent Associated Bins

Firstly, Machine Learning algorithms are compared for selecting the opti-
mal classification algorithm for the evolutionary approach. Employing 5-
fold cross-validation, each model’s performance is evaluated. Subsequently,
the proposed Evolutionary Algorithm utilized a deep learning classifier to
generate prediction-based fitness scores for identifying multimorbidity com-
binations associated with COVID-19 hospitalization. The selected models
are interpreted using SHAP values to understand the relationship between
the multimorbidity features of the various cohort data and hospitalization
outcome. The proposed method also generates a feature-engineered dataset
consisting of a user-specified number of outcome-associated combinations or
bins of multimorbidity. Finally, the best-performing bins has been analyzed
to discover the frequency of various multimorbidity patterns in all cohorts.

4.1.1 Deep Learning with sparse data

The sparse healthcare dataset of this research contains rare medical condi-
tions and drugs which pose a challenge for statistical and Machine Learning
analyses due to their lower prevalence [37]. To overcome this issue, the study
uses sequential deep learning with Adagrad - Adaptive Gradient Algorithm,
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an optimization algorithm that is well-suited for handling sparse data [86].
By an optimization method systematic adjusting of a model’s parameters to
minimize or maximize a specified objective function can be achieved. Thus,
model’s performance on a given task can be improved. In sparse datasets,
many features have zero or near-zero values, and traditional optimization
algorithms may struggle to adapt their learning rates properly. Adagrad’s
adaptive learning rates help overcome this issue. Adagrad’s adaptive scaling
of the learning rate eliminates the need for manual tuning, and it is more ro-
bust than stochastic gradient descent. Additionally, the study employs the
early stopping functionality to improve the model’s performance. By using
early stopping, the training is halted when performance on a validation set
starts to degrade.

Dropout is a regularization technique used during training in neural net-
works to reduce overfitting by randomly deactivating a portion of neurons
during both forward and backward passes, the network is compelled to learn
features that are more robust and generalizable [87]. In all deep learning
models of this research, Dropout as a regularization technique is used to
minimize overfitting while training [88] and also introduced a dropout layer
with 20% dropout after the first and second layers in the sequential model.
Since this research deals with a binary classification problem, the default
loss function is used for such a problem, which is Binary Cross Entropy Loss
[89]. Binary Cross Entropy Loss, also known as log loss, is a loss function
commonly used for binary classification problems in Machine Learning [90].
It measures the dissimilarity between the predicted probability distribution
and the actual binary labels, penalizing the model more as its predictions
deviate from the true labels, providing a gradient signal that guides the
model towards better classification performance [91].

4.1.2 Feature selection for discovering the optimal set of multi-
morbidity features

Feature selection as a pre-processing method eliminates irrelevant and re-
dundant information and aid in dimensionality reduction [92]. Three meth-
ods of feature selection are: filter-based, embedded, and wrapper-based
methods [93]. The filter-based method generates models with reduced pre-
dictive performance compared to the other two methods. The embedded
method performs optimum feature subset search while constructing the
model, while the wrapper method selects the best feature subset using the
performance of the classifier used. This study uses a wrapper method that

38



4 – Project 2: Evolutionary Machine Learning for Feature Engineering

uses deep learning as a classifier algorithm and an Evolutionary Algorithm
as a search strategy to generate feature subsets (bins). The best-performing
bin is estimated using AUC and selected as the optimal subset of the multi-
morbidity features that are highly associated with Covid-19 hospitalization.

4.1.3 Evolutionary Algorithms

Evolutionary Algorithms encompass a group of optimization techniques that
draw inspiration from the biological evolution proces [94]. They are used
to solve complex optimization and search problems. In this algorithms,
a population of potential solutions or individuals (in this research it can
be represented as feature groups with more association to the outcome)
evolves over generations. Each generation undergoes a selection process
where individuals (feature groups) are assessed by considering their fitness,
which quantifies their problem-solving capability. Individuals demonstrat-
ing higher fitness are likelier to be chosen for reproduction.[95].

Genetic Algorithms

Genetic Algorithms are a specific subset of Evolutionary Algorithms [96].
These algorithms are a type of optimization algorithm inspired by the pro-
cess of natural selection. They involve creating a population of individuals,
which represent potential solutions, and subsequently, evolving this pop-
ulation over many generations through various operations. Reproduction
involves creating new individuals (offspring) through operations like muta-
tion, crossover (recombination), and selection. These processes introduce
genetic diversity into the population and promote the evolution of better so-
lutions [97]. Over multiple generations, the algorithm seeks to improve the
population’s overall fitness and, consequently, find optimal or near-optimal
solutions to the problem [98].

4.1.4 Evolutionary Machine Learning

The use of Evolutionary Algorithms is a promising approach for extracting a
reduced set of meaningful rare associations that are accurate, especially for
problems such as sparse data, epistatic association with features, and high
dimensional representations of features. Evolutionary Machine Learning is
a hybrid method that uses evolutionary computation to overcome obstacles
in various Machine Learning tasks [94]. Compared to traditional algorithms
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that rely on exhaustive search-based techniques, Evolutionary Algorithms
offer a more robust solution.

These are important points to consider when performing feature engi-
neering using Evolutionary Algorithms: (i) just because a feature is not
prevalent does not mean it is irrelevant, as it could still have a strong asso-
ciation with the outcome, (ii) dealing with sparsity in the data is a challenge
for many Machine Learning methods, especially when it comes to features
with near-zero variance and (iii) considering combinations of features may
be more predictive than just looking at isolated features, which highlights
the importance of searching for feature interactions.

This study used a Genetic Algorithm to create an optimized feature ma-
trix. Initially, the features are randomly grouped into bins, and a feature
matrix is created for each bin. The bins are regrouped using a Genetic
Algorithm and a wrapper-based method to interact with a classifier. The
study adopts the elitism principle to preserve the best-performing bins and
save them as a checkpoint. The final feature matrix is the engineered matrix
evolved after all iterations, and it can be utilized for tackling the problems
of data sparsity and including the perspective of interactions among various
multimorbidity features. The proposed evolutionary approach is an Evolu-
tionary Algorithm-based wrapper method and it is illustrated in Figure 4.1.
It is a modified version of an Evolutionary Algorithm called Relevant Asso-
ciation Rare-variant-bin Evolver [37]. The idiosyncrasies that differentiate
our proposed method from the existing one in terms of the following: (i) In
the section of evolutionary approach, our method uses a prediction-based
method with train and test methods. Nonetheless, the existing instance
count-based prediction method uses all available data without any model
fitting. Furthermore, this research used this instance count-based prediction
method only for the last evolutionary cycle to calculate the scores of the final
bins. The Pseudocode for calculating final bin scores using prediction-based
feature scoring method is given in Appendix 1. However, this research has
adopted sparsity addressing contribution of the existing method by means
of the summation of the values of the features in a group of final bins for gen-
erating a value for that feature group. (ii) In this study, it is implemented
not only a feature learning algorithm but also a deep learning technique
with an Adagrad optimizer for predicting the outcome in each iteration of
the evolutionary cycle, enabling the Evolutionary Algorithm to converge to
solutions (multimorbidity feature combinations) that generalize well regard-
less of the feature selection for a single model. While executing the Genetic
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Algorithm, the scores generated from the deep learning model are used for
genetic operations, where this prediction score is used as the fitness score to
evaluate the performance of multimorbidity combinations (feature matrices)
evolved in each cycle. (iii) Existing method discovers new feature combi-
nations and then encode them as features. But, in this study, in addition
to this, the discovered feature combinations are further analyzed to esti-
mate the frequency of occurrence of a particular feature in best-performing
feature combinations rather than using them for a single model. From the
outcome-associated multimorbidity combinations, the most prevalent mul-
timorbidity combinations are also extracted to identify the multimorbidity
pattern among COVID-19 patients using Apriori algorithm.

4.1.5 Frequent multimorbidity features

Most prevalent multimorbidity combinations are extracted to identify the
multimorbidity pattern among COVID-19 patients using the apriori algo-
rithm. Apriori algorithm is applied to the dataset, which contains various
combinations of multimorbidity features obtained from the Evolutionary
Algorithm. The support measure was used to determine how common a
feature combination is in the feature matrix, with the rows representing
the various feature groups in the final bins. To avoid analyzing irrelevant
feature combinations, only the most common multimorbidity feature com-
binations in the final bins were analyzed. The frequent combinations of
the features were then analyzed using a threshold value of 0.5 for minimum
support (smin) to obtain the frequent itemsets.
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Figure 4.1: Illustration of the evolutionary approach carried out in this study.
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Chapter 5

Results

5.1 COVID-19 population

Table 5.1 provides the summary of the characteristics of the COVID-19
population and the distribution of hospitalized and non-hospitalized pa-
tients represented as counts and percentages.

Table 5.1: Characteristics and distribution of the COVID-19 population

Age Groups 45-53 54-59 60-68 69-74
Overall Count N = 7324 N = 5469

4179(57.1%) 3145(42.9%) 3296(60%) 2173(40%)
Female 4477(61.1%) 2355 (43.1%)
Male 2847(38.9%) 3114 (56.9%)

Mean age 52.3 (SD 4.18) 67 (SD 4.55)

Age groups Hospitalized Non-Hospitalized
Male Female Male Female
N=1717 N=5607

45 - 59 1101 616 1746 3861
45 - 53 825 (48%) 3352(60%)

522 303 1031 2323
54 - 59 892(52%) 2253(40%)

579 313 715 1538
N=2927 N=2542

60 - 74 1974 953 1140 1402
60 - 68 1582 (54%) 1711 (67%)

1073 512 740 971
69 - 74 1342(46%) 831(33%)

901 441 400 431
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5.2 One Proportion z-test Results

The one proportion z-test is performed on all features and the results of the
one proportion z-test between randomly taken samples and original cohort
datasets are presented in Appendices B.1, B.2, B.3, and B.4.

5.3 Machine Learning model performance compari-
son

The performance evaluation of Machine Learning models as 5-fold Cross
Validation of all cohorts is tabulated in Table 5.2, 5.3, 5.4 and 5.5.

Table 5.2: Performance of Machine Learning models: Cohort 1

Model Acc1 AUC2 Recall Prec.3 F1 TT4

Logistic Regression 0.7175 0.7634 0.6275 0.7588 0.6863 6.260
CatBoost Classifier 0.7193 0.7602 0.6037 0.7773 0.6792 5.214
Gradient Boosting Classifier 0.7148 0.7583 0.5963 0.7735 0.6725 0.286
Ada Boost Classifier 0.7039 0.7512 0.6294 0.7340 0.6770 0.132
Naive Bayes 0.6489 0.7502 0.3266 0.8968 0.4772 0.012
Random Forest Classifier 0.6878 0.7262 0.5945 0.7237 0.6524 0.246
Light Gradient Boosting Machine 0.6742 0.7241 0.5853 0.7044 0.6387 0.204
Extreme Gradient Boosting 0.6751 0.7216 0.5780 0.7093 0.6358 0.948
Extra Trees Classifier 0.6814 0.7168 0.5963 0.7089 0.6473 0.248
Linear Discriminant Analysis 0.6787 0.7061 0.5229 0.7510 0.6148 0.042
Decision Tree Classifier 0.6291 0.6166 0.5413 0.6459 0.5882 0.016
K Neighbors Classifier 0.5858 0.6072 0.2385 0.7465 0.3611 0.060
Quadratic Discriminant Analysis 0.5272 0.5329 0.8606 0.5750 0.6255 0.052
SVM - Linear Kernel 0.6444 0.0000 0.6257 0.7345 0.6213 0.040
Ridge Classifier 0.6931 0.0000 0.5450 0.7668 0.6349 0.012

1Acc : Accuracy Score obtained by the corresponding Machine Learning model
2AUC: Area under the ROC Curve
3Prec: Precision score.
4TT : Time taken in seconds

44



5 – Results

Table 5.3: Performance of Machine Learning models: Cohort 2

Model Acc AUC Recall Prec. F1 TT (Sec)
CatBoost Classifier 0.6295 0.6699 0.5296 0.6644 0.5886 6.564
Gradient Boosting Classifier 0.6179 0.6683 0.4854 0.6638 0.5602 0.550
Logistic Regression 0.6315 0.6669 0.5417 0.6631 0.5962 6.582
Ada Boost Classifier 0.6204 0.6614 0.5226 0.6525 0.5797 0.312
Extreme Gradient Boosting 0.6204 0.6518 0.5176 0.6554 0.5779 1.558
Linear Discriminant Analysis 0.6204 0.6509 0.4955 0.6637 0.5673 0.134
Light Gradient Boosting Machine 0.6164 0.6443 0.5347 0.6417 0.5831 0.452
Naive Bayes 0.5810 0.6396 0.2281 0.7854 0.3536 0.050
Random Forest Classifier 0.6073 0.6366 0.5286 0.6313 0.5752 0.468
Extra Trees Classifier 0.6048 0.6212 0.5387 0.6238 0.5779 0.510
K Neighbors Classifier 0.5507 0.5640 0.3035 0.6045 0.4033 0.282
Decision Tree Classifier 0.5543 0.5310 0.4492 0.5735 0.5031 0.080
Quadratic Discriminant Analysis 0.5078 0.5065 0.8211 0.5455 0.5805 0.130
SVM - Linear Kernel 0.5876 0.0000 0.4492 0.7409 0.4866 0.098
Ridge Classifier 0.6285 0.0000 0.5116 0.6707 0.5803 0.044

Table 5.4: Performance of Machine Learning models: Cohort 3

Model Acc AUC Recall Prec. F1 TT (Sec)
Gradient Boosting Classifier 0.6035 0.6569 0.5157 0.6292 0.5659 0.432
CatBoost Classifier 0.6064 0.6541 0.5343 0.6296 0.5769 7.624
Random Forest Classifier 0.6157 0.6520 0.5912 0.6236 0.6065 0.352
Extra Trees Classifier 0.5994 0.6512 0.5982 0.6020 0.5992 0.408
Naive Bayes 0.5761 0.6420 0.3171 0.6633 0.4221 0.050
Ada Boost Classifier 0.5924 0.6294 0.5145 0.6134 0.5591 0.220
Logistic Regression 0.5901 0.6290 0.5238 0.6076 0.5617 6.366
Light Gradient Boosting Machine 0.5948 0.6288 0.5529 0.6052 0.5773 0.324
Extreme Gradient Boosting 0.5819 0.6252 0.5366 0.5921 0.5627 1.302
Linear Discriminant Analysis 0.5866 0.6060 0.5006 0.6082 0.5483 0.124
K Neighbors Classifier 0.5522 0.5800 0.2939 0.6114 0.3961 0.240
Quadratic Discriminant Analysis 0.5545 0.5760 0.6497 0.5946 0.5655 0.088
Decision Tree Classifier 0.5271 0.5245 0.5227 0.5286 0.5252 0.080
SVM - Linear Kernel 0.5656 0.0000 0.5804 0.6149 0.5429 0.090
Ridge Classifier 0.5895 0.0000 0.5075 0.6109 0.5534 0.040
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Table 5.5: Performance of Machine Learning models: Cohort 4

Model Acc AUC Recall Prec. F1 TT (Sec)
Gradient Boosting Classifier 0.5717 0.6032 0.5520 0.5741 0.5618 0.482
Ada Boost Classifier 0.5668 0.6004 0.5267 0.5726 0.5475 0.188
CatBoost Classifier 0.5604 0.5992 0.5549 0.5614 0.5577 6.952
Logistic Regression 0.5721 0.5984 0.5423 0.5779 0.5590 6.468
Linear Discriminant Analysis 0.5629 0.5918 0.5286 0.5682 0.5474 0.124
Random Forest Classifier 0.5585 0.5845 0.6142 0.5536 0.5820 0.436
Naive Bayes 0.5429 0.5796 0.7805 0.5383 0.6286 0.048
Light Gradient Boosting Machine 0.5546 0.5787 0.5471 0.5565 0.5512 0.394
Extra Trees Classifier 0.5565 0.5784 0.6161 0.5515 0.5818 0.412
Extreme Gradient Boosting 0.5546 0.5739 0.5287 0.5583 0.5424 1.656
Decision Tree Classifier 0.5429 0.5361 0.5549 0.5434 0.5488 0.112
K Neighbors Classifier 0.5209 0.5333 0.4422 0.5262 0.4798 0.286
Quadratic Discriminant Analysis 0.5000 0.5002 0.4999 0.5117 0.4015 0.136
SVM - Linear Kernel 0.5317 0.0000 0.3484 0.5745 0.3405 0.112
Ridge Classifier 0.5692 0.0000 0.5316 0.5759 0.5524 0.114

5.4 Results - Project 1

5.4.1 Cluster Map

After applying feature-level clustering to the training data, a Cluster Map
is generated. In this Cluster Map, rare features are clustered and assigned
to their respective bins, resulting in 13 feature clusters. The bin values
for each observation are calculated by determining the cluster label of the
corresponding features in that bin. Table 5.6 illustrates the resulting 11
bins after excluding features with low variance.

5.4.2 Analysing performance score for model selection

To select the best model from various Machine Learning algorithms, the
AUC score of each Machine Learning model is compared after executing a
5-fold cross-validation. During cross-validation using the train data with
all 174 features of cohort 1 data, the best performance was obtained by LR
(accuracy 0.72, AUC 0.76, F1-score 0.69), CatBoost Classifier (accuracy
0.72, AUC 0.76, F1-score 0.68), and Gradient Boosting Classifier (accuracy
0.72, AUC 0.76, F1-score 0.67).

Later, using the features which are reduced by clustering technique and
ignoring the features with low variance, performance is analysed. During
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cross-validation using the train data with only 17 features, the best perfor-
mance was obtained by LR (accuracy 0.7, AUC 0.74, F1-score 0.68), LDA
(accuracy 0.7, AUC 0.74, F1-score 0.66) and Ada Boost Classifier (accuracy
0.7, AUC 0.73, F1-score 0.67). The 5-fold cross-validation scores of each
Machine Learning model are tabulated in Table 5.7.

5.4.3 Model performance evaluation

After analyzing the cross-validation results, the top three models are se-
lected based on their performance. To assess the predictive ability of these
Machine Learning algorithms on the reduced data without sparsity, the
selected models are utilized to predict the outcome of Covid-19 hospital
admission using the test Feature Matrix (FM).

The performance metrics of the selected models on the test FM (holdout
data) are as follows: LR (accuracy 0.72, AUC 0.77, F1-score 0.69), LDA
(accuracy 0.7, AUC 0.77, F1-score 0.67) and Ada Boost (accuracy 0.7, AUC
0.77, F1-score 0.68). For a comprehensive overview, please refer to Table 5.8
for the complete set of results.

5.4.4 Feature importance

Feature importance refers to the scores assigned to input features, which
indicate their relative significance in making predictions. These scores pro-
vide insights into the importance of each feature in the data and the model.
Feature importance helps not only in explaining the influential features but
also in understanding the data and model better.

Feature importance score from the model coefficients

In linear algorithms such as LR and LDA, the predictions are calculated
as a weighted sum of the observations, with the coefficients determined
by the algorithm. In this context, negative coefficients indicate that as
the value of a feature increases, the severity due to Covid-19 is predicted
to decrease, suggesting no hospital admission. The features with negative
coefficients in both LR and LDA algorithms are bin 2, bin 3, bin 4, bin
7, bin 10, J01CR, J01FA, and Age >53. On the other hand, features with
positive coefficients have a positive association with the severity outcome. A
higher negative coefficient indicates a stronger negative association between
the input feature and the severity outcome. For example, if the value of
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a cluster or feature is 1, it suggests that most patients belonging to that
cluster or feature category have a lower chance of severe Covid-19 outcomes,
and vice versa. Conversely, in the case of a positive coefficient, if the cluster
or feature value is 1, it indicates an increased likelihood of severe Covid-19
outcomes, and vice versa.

Figure 5.1: Feature importance scores from LR, LDA, and Ada Boost Models

The impurity-based feature importance

In the Ada Boost algorithm, the feature scores are determined using the
Gini importance [99]. This score is calculated for each decision tree based
on how much a single feature split improves the model’s performance, and
it is normalized by the number of observations accounted for by that feature.
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To analyze the feature importance of all three models (LR, LDA, and Ada
Boost), the feature importance values are aggregated and visualized the re-
sults in Figure 5.1. In the case of linear models (LR and LDA), the feature
importance is represented by the absolute values of the coefficients. For the
Ada Boost Classifier, the feature importance values are scaled and presented
in the visualization.

5.4.5 Interpretation of the model

We used SHAP to interpret the most impactful features that our models
utilize [74] in determining the status of the hospitalization. The SHAP
heatmaps for the linear models depicted in Figure 5.2 and Figure 5.3 are
based on the 20% test samples (X-axis). The sorted global feature im-
portance is represented by the Y-axis and the bar plot (right-hand side).
The magnitude of SHAP values of each observation (each patient) is rep-
resented by colors. The blue color for a feature denotes, in that patient
profile, that particular feature has a value of 0 and this feature contributed
to or impacted the prediction of the severity either positively or negatively.
The topmost graph, f(x) represents the model predictions of each patient’s
multimorbidity profile.

In the LR heatmap of SHAP values, while examining the f(x), the 0th
patient observation number possesses a higher prediction. So, it is predicted
that the patient is admitted to the hospital, and the features in cluster “bin
10” contribute more positively to the Covid-19 severity of that particular
patient. Similarly, we can interpret the results of other patients for all the
features using this visualization.
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Figure 5.2: Heatmap matrix and global importance of features - LR
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Figure 5.3: Heatmap matrix and global importance of features - LDA
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Table 5.6: Cluster Map: Rare features are clustered and mapped to their corresponding cluster
(Bins) after feature level clustering
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5 – Results

Table 5.7: Score of the Machine Learning models obtained during 5-fold Cross Validation using
reduced features

Model Acc AUC Recall Prec. F1 TT
LR Logistic Regression 0.7015 0.7376 0.6186 0.7436 0.6752 2.410

LDA Linear Discriminant Analysis 0.7025 0.7370 0.5781 0.7712 0.6605 0.008
Ada Boost Ada Boost Classifier 0.6964 0.7347 0.6248 0.7315 0.6737 0.030

NB Naive Bayes 0.6843 0.7305 0.5823 0.7345 0.6492 0.006
RF Random Forest Classifier 0.6772 0.7301 0.6267 0.6980 0.6601 0.196

CatBoost CatBoost Classifier 0.6853 0.7272 0.5800 0.7398 0.6490 0.674
XGBoost Extreme Gradient Boosting 0.6761 0.7184 0.5900 0.7159 0.6451 0.402

QDA Quadratic Discriminant Analysis 0.6772 0.7171 0.5701 0.7267 0.6387 0.008
ET Extra Trees Classifier 0.6690 0.7155 0.6064 0.6947 0.6469 0.178

GBC Gradient Boosting Classifier 0.6914 0.7147 0.5761 0.7507 0.6516 0.028
LightGBM Light Gradient Boosting Machine 0.6843 0.7146 0.5962 0.7260 0.6541 0.258

KNN K Neighbors Classifier 0.6569 0.7058 0.5537 0.7001 0.6162 0.422
DT Decision Tree Classifier 0.6548 0.6522 0.5618 0.6956 0.6201 0.006

Dummy Dummy Classifier 0.4975 0.5000 0.4000 0.1990 0.2658 0.006
SVM SVM - Linear Kernel 0.5513 0.0000 0.9091 0.5393 0.6700 0.010
Ridge Ridge Classifier 0.7025 0.0000 0.5781 0.7712 0.6605 0.006

Table 5.8: Performance Evaluation of the selected Machine Learning models using Holdout data

Model Acc AUC Recall Prec. F1
LR 0.72 0.77 0.63 0.76 0.69
LDA 0.70 0.77 0.59 0.76 0.67
AdaBoost 0.70 0.77 0.65 0.72 0.68

53



5.5 Results - Project 2

5.5.1 Performance evaluation of Deep Learning model

Table 5.9 depicts the evaluation of the performance of the deep learning
model used in all four cohorts.

Table 5.9: Performance evaluation of Deep Learning model

AUC score
5-fold CV

Train
AUC score

Test
AUC score Acc Prec. Recall F1

Cohort 1
77%

(SD 1.87%)

82%

Loss: .28

80%

Loss: .29
76% 85% 63% 72%

Cohort 2
68%

(SD 1.94%)

71%

Loss: .30

67%

Loss: .32
62% 62% 61% 62%

Cohort 3
67%

(SD 1.87%)

74%

Loss: .31

69%

Loss: .32
67% 70% 60% 65%

Cohort 4
61%

(SD 2.44%)

65%

Loss: .34

62%

Loss: .34
63% 62% 68% 65%

For each cohort, as shown in Figure 5.4, two line-plots are obtained while
validating the efficiency of the model using cross-validation. The topmost
plot depicts the Binary Cross Entropy Loss for the epochs for the train
dataset and validation dataset, and the bottommost one presents the clas-
sification performance (AUC score) over epochs.

In the case of Cohort 1, it is visible that the problem is learned by
the model quite well and quickly, attaining an AUC score of 82% in the
train dataset and 80% in the test dataset. The obtained scores are nearly
equivalent, indicating that the model is apparently neither over-fitting nor
under-fitting. The plot of Cross Entropy Loss depicts that the model has
converged. Moreover, on either dataset, the loss is admissible and the classi-
fication performance plot also indicates the convergence. The model perfor-
mance and converging manner advocate that Cross Entropy Loss is appro-
priate for the neural network to learn this problem. In the case of Cohort 2,
the model obtained performance scores of 71% and 67% for train and test
datasets respectively with reasonable loss. The difference between these
scores is very less suggesting the model satisfactorily learned the problem.
In the case of Cohort 3, the model returned 74% as a train score and 69%
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as the AUC test score. It is visible that there is not much improvement
after 30 epochs, so Early stopping can be introduced while model training
to circumvent the problem of overfitting and for the validation loss to stay
the course. In Cohort 4 scenario, the loss plot appears to be converged
well, albeit at a lesser classification performance than the models of other
cohorts.

Figure 5.4: Model Loss Plot and AUC Score over Epochs
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5.5.2 Influence of individual features on COVID-19 Hospitaliza-
tion

SHAP beeswarm plots are illustrated to depict the impact of all features on
COVID-19 hospitalization for all four models in Figure 5.5.

Figure 5.5: SHAP beeswarm plots - impact of features on COVID-19 hospitalization
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5.5.3 Most Prevalent Multimorbidity Features in Evolved Bins

The accuracy score of evolutionarily obtained final bins are calculated. The
highest accuracy obtained for Cohort 1 using evolutionary approach for
finding outcome-associated best subsets of features is 71.43% (95% CI 67.31-
67.97) using 64 features, for Cohort 2 is 63% (95 % CI 59.43-59.75) using
69 features, for Cohort 3 is 62.38% (95 % CI 59.84-60.09) using 53 features
and for Cohort 4 is 58% (95% CI 55.42-55.63) using 61 features. These
results are compared with the accuracy score of the deep learning model
that use all features is illustrated in Figure 5.6. It represents maximum
classification accuracy achieved by a bin vs number of features in that bin
using evolutionary approach (left side) and the accuracy score achieved
exclusively by the Deep Learning model (right side) with all the available
features in the Cohort.

Figure 5.6: Final Bin’s maximum classification accuracy VS No: of features

Frequently occurred morbidity features are the variables Age>53, R03BA
(glucocorticoid inhalants), N03AX (other antiepileptics) in Cohort 1, A10BA
(biguanide or metformin), N02BE (anilides) in Cohort 2, N02AX (other
opioids), M04AA (preparations inhibiting uric acid production) in Cohort
3 and G04CA (Alpha-adrenoreceptor antagonists) in Cohort 4.

Table 5.10 shows the multimorbidity features that occurred more fre-
quently in the final bins dataset of all cohorts with a minimum support
(smin) measure of 0.6 along with the prevalence of the features in the sam-
pled dataset. All other features with their statistics in case of each cohort
are also given in Appendices C.1, C.2, C.3, and C.4.
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Table 5.10: Frequently occurred morbidity features in the evolutionarily ob-
tained final bins dataset

1

Age Age
>53

<.001 0.84 41.15

ATC#

R03BA Glucocorticoids <.001 0.85 15.5

N03AX Other antiepileptics <.001 0.82 5.6

R06AX Other antihistamines for sys-
temic use

<.001 0.79 6.74

J01XX Other antibacterials <.001 0.78 14.2

C03CA Sulfonamides, plain <.001 0.76 5.19

N02AX Other opioids <.001 0.74 6.9

A11CC Vitamin D and analogues <.001 0.73 23.05

C09CA Angiotensin II receptor block-
ers (ARBs), plain

<.001 0.69 5.44

J01CA Penicillins with extended
spectrum

<.001 0.66 14.12

J01EE Combinations of sulfon-
amides and trimethoprim,
incl. derivatives

.03 0.61 2.44

ICD#

298 Other nonorganic psychoses .16 0.68 0.16

411 Other acute and subacute
forms of ischemic heart dis-
ease

.32 0.62 0.08

2

ATC#

A10BA Biguanides <.001 0.86 4.31

N02BE Anilides <.001 0.79 6.4

Cohort Features Description P
value

Support Prevalence

Continued on next page
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Table 5.10: Frequently occurred morbidity features in the evolutionarily ob-
tained final bins dataset (Continued)

J05AB Nucleosides and nucleotides
excl. reverse transcriptase in-
hibitors

<.001 0.76 2.91

C03CA Sulfonamides, plain <.001 0.76 4.09

M04AA Preparations inhibiting uric
acid production

<.001 0.74 5.13

C09CA Angiotensin II receptor block-
ers (ARBs), plain

<.001 0.71 8.4

C02CA Alpha-adrenoreceptor antag-
onists

<.001 0.65 3.22

C08CA Dihydropyridine derivatives <.001 0.65 7.4

J02AC Triazole and tetrazole deriva-
tives

.03 0.64 6.18

N06AB Selective serotonin reuptake
inhibitors

.03 0.63 8.58

S01EE Prostaglandin analogues .07 0.62 0.68

N03AG Fatty acid derivatives .08 0.61 2.5

M01AB Acetic acid derivatives and re-
lated substances

.001 0.6 18.21

N03AE Benzodiazepine derivatives .17 0.6 1.54

ICD#

V64 Surgical or other procedure
not carried out because of
contraindication

1.0 0.64 0.18

V54 Other orthopedic aftercare .26 0.64 0.32

188 Malignant neoplasm of blad-
der

.32 0.63 0.18

735 Acquired deformities of toe 1.0 0.6 0.18

454 Varicose veins of lower ex-
tremities

.83 0.6 1.04

Cohort Features Description P
value

Support Prevalence

Continued on next page
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Table 5.10: Frequently occurred morbidity features in the evolutionarily ob-
tained final bins dataset (Continued)

820 Fracture of neck of femur .32 0.6 0.05

3

ATC#

N02AX Other opioids <.001 0.84 12.96

M04AA Preparations inhibiting uric
acid production

<.001 0.82 8.5

C03EA Low-ceiling diuretics and
potassium-sparing agents

<.001 0.76 5.35

A02BA H2-receptor antagonists .004 0.75 4.04

B01AB Heparin group <.001 0.73 12.59

N03AX Other antiepileptics <.001 0.7 11.7

N02AA Natural opium alkaloids <.001 0.68 13.9

J05AB Nucleosides and nucleotides
excl. reverse transcriptase in-
hibitors

.008 0.65 5.77

A12AA Calcium .11 0.62 4.67

C07BB Beta blocking agents, selec-
tive, and thiazides

.16 0.62 2.62

B03BB Folic acid and derivatives <.001 0.61 9.23

R03AC Selective beta-2-
adrenoreceptor agonists

.005 0.6 7.19

ICD#

295 Schizophrenic disorders .03 0.68 0.73

813 Fracture of radius and ulna .62 0.68 0.84

4

ATC#

G04CA Alpha-adrenoreceptor antag-
onists

.02 0.8 25.75

Cohort Features Description P
value

Support Prevalence

Continued on next page
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Table 5.10: Frequently occurred morbidity features in the evolutionarily ob-
tained final bins dataset (Continued)

J01CA Penicillins with extended
spectrum

.008 0.73 14.47

C09DA Angiotensin II receptor block-
ers (ARBs) and diuretics

.07 0.66 13.11

C09AA ACE inhibitors, plain .03 0.66 26.32

B01AA Vitamin K antagonists .001 0.64 4.61

C03CA Sulfonamides, plain .002 0.62 16.49

ICD#

995 Certain adverse effects not
elsewhere classified

1.0 0.61 0.44

Cohort Features Description P
value

Support Prevalence

The graph illustrated in Figure 5.7 represents the combinations obtained
by analyzing all of the two variable combinations with smin = 0.5. The
results for all combinations are provided in Appendices D.1, D.2, D.3 and
D.4.

We can see that some multimorbidity features appear in most of the
outcome-associated bins. Moreover, some acts as common frequent features
in the final bins of various cohorts. In Table 5.11, the features and combina-
tions that are frequently appeared in the final bins dataset when configured
the support (s) between 0.7–1.0 are tabulated and they are graphically pre-
sented in Figure 5.8.
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(a) Cohort 1 (b) Cohort 2

(c) Cohort 3 (d) Cohort 4

Figure 5.7: Frequent outcome-associated multimorbidity feature combinations (two variable com-
binations with smin = 0.5)
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Table 5.11: Frequently appeared features and combinations in the final bins dataset when con-
figured the support (s) between 0.7–1.0

Support Length of the combination Frequent Features Cohort
0.85 1 ATC R03BA cohort 1
0.84 1 age >53 cohort 1
0.82 1 ATC N03AX cohort 1
0.79 1 ATC R06AX cohort 1
0.78 1 ATC J01XX cohort 1
0.76 1 ATC C03CA cohort 1
0.74 1 ATC N02AX cohort 1
0.74 2 age >53, ATC R03BA cohort 1
0.73 1 ATC A11CC cohort 1
0.72 2 ATC N03AX, ATC R03BA cohort 1
0.72 2 age >53, ATC N03AX cohort 1
0.86 1 ATC A10BA cohort 2
0.79 1 ATC N02BE cohort 2
0.76 1 ATC C03CA cohort 2
0.76 1 ATC J05AB cohort 2
0.74 1 ATC M04AA cohort 2
0.71 1 ATC C09CA cohort 2
0.84 1 ATC N02AX cohort 3
0.82 1 ATC M04AA cohort 3
0.76 1 ATC C03EA cohort 3
0.75 1 ATC A02BA cohort 3
0.73 1 ATC B01AB cohort 3
0.71 2 ATC M04AA, ATC N02AX cohort 3
0.7 1 ATC N03AX cohort 3
0.8 1 ATC G04CA cohort 4
0.73 1 ATC J01CA cohort 4
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Figure 5.8: Illustration of the features and combinations that are frequently appeared in the
final bins dataset when configured the support (s) between 0.7–1.0 as radar chart with features
presented in more than one cohort is stacked.
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Chapter 6

Discussion

6.1 Principal Observations

The primary findings of the study highlight prevalent morbidity patterns
within the evolved dataset. These patterns, characterized by specific ATC
codes and ICD codes, demonstrate significant associations with the hospi-
talization outcome, particularly among specific demographic groups. This
analysis not only contributes insights in the context of COVID-19 but also
offers potential for broader applications. By repurposing data initially col-
lected for administrative purposes, this innovative approach holds promise
for multimorbidity analysis in the realm of public health. This underscores
the adaptability and versatility of the methodology, with the potential to
extract valuable insights from existing datasets, thereby informing effective
public health strategies and interventions.

The use of the method to address data sparsity in medical data and
improve the understanding of the factors associated with the impact of
infectious diseases on health outcomes in a population with multimorbid-
ity is significant. In the first project of the research, the methodology
adopted maps data from higher-dimensional spaces into lower-dimensional
ones. This approach lead to a loss of information, but it can also yield
advantages in Machine Learning by mitigating sparsity issues, ultimately
enhancing predictive capabilities without much computational requirement
as Evolutionary Algorithms.

In the second project of the research, it not only underscores the effective-
ness of Evolutionary Machine Learning but also opens up promising avenues
for future exploration in the realm of managing multimorbid conditions.
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Moreover, the utilization of a novel Evolutionary Machine Learning ap-
proach demonstrates that even with rare events, meaningful results can be
obtained. The evolutionary mining of prevalent morbidity patterns that are
more associated with the outcome showcases the potential of this method
to derive valuable insights, which can be particularly impactful in situations
involving sparsity of data due to rare events.

In this research, prevalent morbidity patterns from the evolved dataset
are identified. Notably, multimorbidity features like higher age with spe-
cific ATC codes (N03AX, R03BA) were common in outcome-related bins,
especially in middle-aged females. Also, while analyzing SHAP values, it is
found that in the case of Cohort 1, the inhaled corticosteroid medication
used for Asthma (R03BA) has a very high positive impact on the analyzed
hospitalized outcome. This supports the Open SAFELY study, which high-
lighted asthma as a noteworthy risk factor for mortality in individuals with
COVID-19 and indicated that patients using inhaled corticosteroids face the
highest risk in this context [100].

ATC NO3AX group comprises of other antiepileptics. This group include
medications utilized for bipolar disease, epilepsy treatment, migraine man-
agement as well as schizophrenia in some cases. Individuals afflicted by a
severe mental illness exhibited a slightly elevated risk of experiencing severe
clinical outcomes due to COVID-19 compared to individuals not affected
by prior mental health conditions [101]. Moreover, there have been reports
of a link between the use of antiepileptics and the occurrence of vitamin
D deficiency [102]. In our study, multimorbidity associated with presence
of A11CC (Vitamin D and analogues) in history makes middle aged female
more vulnerable for hospitalization. On the other hand, for elderly female,
presence of this feature is associated with smaller SHAP values. So, pres-
ence of this drug in the history makes such patients not to be hospitalized
and thus act as protective.

In a multimorbidity study of hospitalized COVID-19 patients [103], the
ATC group most closely linked with prolonged hospital stays is M04AA,
preparations inhibiting uric acid production. In our study also, in case of el-
derly females, M04AA and NO3AX combinations were prominent. M04AA
also appeared frequently in middle-aged males, while G04CA (Alpha-adrenoreceptor
antagonists), used for benign prostatic hypertrophy, was prominent among
elderly males. Research indicates that male COVID-19 cohorts experience
more unfavorable clinical outcomes compared to females [104, 105]. No-
tably, while cancer patients face heightened susceptibility to SARS-CoV-2

66
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infection, individuals with prostate cancer receiving androgen-deprivation
therapies seem to possess some level of protection against the infection [105].

6.2 Strength and Limitations

While there is a connection between ICD and ATC codes, the factors such
as the nature of drugs and their diverse uses introduce complexity [106].
This research is carried out under the assumption ATC and ICD codes
are dependent and they are not collinear. Collinearity occurs when two
features are highly correlated and provide redundant information. In this
case, dependence implies that there is a connection between the two code
systems, but it doesn’t mean that one can be perfectly predicted from the
other. Also, a drug can be prescribed for different diseases, leading to
different ICD codes. For instance, an antiacid might be used for conditions
beyond just one specific disease. This diversity in usage adds complexity to
the relationship between drugs and ICD codes.

The dimensionally reduced data with newly engineered features can be
used for the predictive modeling and the removal of data sparsity by the
proposed unsupervised binning of the rare features offered a low dimensional
feature matrix for the predictive modeling.

It is important to note that the absence of a detailed clustering valid-
ity analysis leaves a potential gap in fully understanding the robustness of
these clusters. However, the binary nature of the data, where diseases are
represented as present or absent for each patient, inherently limits the com-
plexity of the clustering process and the clusters formed through BMD are
likely to reflect clear patterns without significant noise. BMD is specifically
designed to capture underlying patterns or latent features in binary data.
By decomposing the binary patient-disease matrix, BMD inherently iden-
tifies clusters that represent meaningful associations between patients and
diseases. Moreover, previous studies in similar domains have demonstrated
the effectiveness of BMD in extracting meaningful clusters from binary data
[82].

The predictive ability of the new sparsity-free feature matrix and the
original sparse data is compared and found that with a very low number
of features itself, the model achieves nearly equal prediction performance.
Also, the predictive utility of the new feature matrix by interpreting the
feature importance and impact of the new features in the Machine Learning
model is checked.
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All Evolutionary Algorithms possess a bias towards the best-performing
choices that are available. So, even though Evolutionary Algorithms are
stochastic, these biases lead these algorithms to perform better. Also, for
identifying the best performing group of features, each evolutionary cycle
involves bin fitness evaluation and genetic operations for generating an elite
population. In this study, the Evolutionary Algorithm is not just used for
feature selection in a sparse data. On the other hand, in each evolution-
ary cycle, the epistatic association between features are indirectly assessed
by using the strategy of binned multimorbidity features. These group of
features are scored based on the ability of a Deep Learning Classifier to
predict the outcome and the features in the bins are regrouped after each
evolutionary cycle.

Many works that use Machine Learning for investigating multimorbid-
ity patterns only use the removal of sparsity-generating features from the
dataset to deal with the sparse datasets. In some cases, they merge the
categories of features to avoid sparsity. However, these methods lead to
more information loss and vague interpretation of multimorbidity features.
Rather than just concluding the analysis based on a simple sequential Deep
Learning model, all the evolved bins are aggregated and obtained a new
dataset contain these final bins. By analyzing the evolutionarily evolved
bins, the frequent multimorbidity features and combinations are obtained.

It is computationally very expensive to analyze all possible combina-
tions of multimorbidity features in a dataset, and many irrelevant feature
combinations need not be analyzed further. An Evolutionary Algorithm
has already been applied to obtain meaningful combinations, including less
prevalent features in those combinations. As a result, only the most com-
mon multimorbidity features in the top bins were further analyzed.

6.3 Future Perspective

This research has the potential to enhance the delivery of personalized
medicine and patient-centered care by tailoring treatments and interven-
tions to the specific multimorbid profiles of individuals. This could lead
to improved patient outcomes, reduced healthcare costs, and an overall en-
hancement in the quality of healthcare services.

By clustering and creating new features, the method adopted in project 1
could provide a more detailed understanding of multimorbidity patterns and
the associations between different diseases in the context of sparse binary
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medical data. Continuing to refine and expand the clustering and feature
generation methods can lead to even more nuanced insights into how dif-
ferent medical conditions co-occur and influence one another. This could
result in the identification of previously unrecognized disease clusters or risk
factors. Moreover, building on the method’s capabilities, researchers could
explore its potential in predicting long-term health outcomes for patients
with specific multimorbidity profiles. This could aid in early intervention
and preventive measures.

Continued research can concentrate on refining and optimizing the Evo-
lutionary Machine Learning algorithm employed in Project 2, tailoring it
specifically for the analysis of multimorbidity features. These algorithms
could be designed to further decrease computational costs while preserving
and improving their capacity to identify meaningful feature combinations.

Improving the understanding of the factors associated with the severity of
COVID-19 in this population could have important implications for public
health policies, and for the assessment of patients particularly vulnerable
to the disease. The method has the potential to lead to better healthcare
outcomes and inform public health policies related to COVID-19 and other
similar public health contexts.
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Chapter 7

Conclusions

When combined with other multimorbidity features, it is identified that even
less prevalent medical conditions show association with the outcome. The
discovery of hidden interconnections between the different multimorbidity
features can offer a new research pathway for the study of multidimensional
medical conditions in combination.

In the future, further investigation into these intricate associations can
lead to a deeper understanding of disease interactions and the development
of more effective treatment strategies tailored to patients with complex mul-
timorbid profiles.

Mapping higher-dimensional data to a low-dimensional space using the
clustering technique adopted in this research can result in information loss,
but reducing sparsity can be beneficial for Machine Learning modeling due
to improved predictive ability.

In this research, the issue of data sparsity in electronic health records
is addressed and created a model that incorporates both prevalent and
rare medical conditions, leading to more accurate and effective predictive
modeling. Looking ahead, this approach has the potential to revolutionize
healthcare by enabling the development of predictive models that can assist
clinicians in making informed decisions and ultimately improving patient
outcomes. The identification of complex associations between multimorbid-
ity and the severity of COVID-19 has shed light on crucial areas for future
research. This includes in-depth studies on long COVID, which remains a
challenging and poorly understood aspect of the pandemic. Furthermore,
intervention efforts can be more precisely targeted based on the insights
gained from these complex associations, potentially leading to more effec-
tive public health strategies.
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By employing an innovative Evolutionary Machine Learning approach,
prevalent morbidity patterns associated with hospitalization risk is uncov-
ered, particularly among specific age and gender cohorts. The findings of
this research underscore the adaptability of this methodology, showcasing
its potential to derive meaningful results even from situations involving rare
events. Moreover, the repurposing of administrative data for multimorbid-
ity analysis presents an innovative avenue for public health research. This
opens up possibilities for leveraging existing data sources to gain a better
understanding of health trends and disparities. As public health challenges
continue to evolve, this approach can inform effective strategies and in-
terventions, enhancing the overall well-being of communities. As a future
direction, this research can be enhanced by integrating patient stratifica-
tion based on their healthcare requirements. This entails grouping patient
data to identify cohorts with similar healthcare utilization patterns. This
approach will aid in identifying patient subgroups with distinct clinical pro-
files, enabling the design of targeted interventions and personalized care
plans. By refining patient stratification methods, we can optimize health-
care delivery and improve patient outcomes, ultimately advancing the field
of healthcare and public health research.
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Appendix A

Pseudocode for the feature
score calculation on final bins

Algorithm 1: Pseudo code for calculating feature scores using prediction based
method

Data: feature matrix
Result: best score of each feature combination
for each feature combination do

get all the values in the feature combination;
for each value in the feature combination as threshold do

for each patient do
if value of feature combination>threshold then

put the patient in above threshold instances;
else

put the patient in under threshold instances;

predicted as hospitalized=above threshold instances;
predicted as non-hospitalized=under threshold instances;

TP=actual hospitalized & predicted as hospitalized;
TN=actual non-hospitalized & predicted as non-hospitalized;
FP=actual non-hospitalized & predicted as hospitalized;
FN=actual hospitalized & predicted as non-hospitalized;

//calculate score as accuracy;
score=count(TP)+count(TN)/(count(TP)+count(TN)+count(FP)+count(FN));

find max score and corresponding threshold;
return max scores as best scores of each feature combination;
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Appendix B

One Proportion z-test Results

If P value <= 0.05, the features are eliminated from the sampled dataset.

Table B.1: One Proportion z-test Results - Cohort 1

ATC J01CR -1.92 .06 47.2 44.48
ATC H02AB -1.68 .09 43.67 41.31
Age >53 -0.14 .89 41.34 41.15
ATC J01FA -1.25 .21 36.77 35.06
ATC A02BC -2.57 .01 32.39 29.06
ATC J01MA -1.78 .07 29.28 27.03
ATC M01AB -1.78 .07 26.11 23.94
ATC A11CC -1.34 .18 24.66 23.05
ATC M01AE -2.65 .008 21.44 18.51
ATC J01DD -0.13 .9 21.33 21.19
ATC R03BA -1.04 .3 16.57 15.5
ATC J01XX -1.48 .14 15.68 14.2
ATC J01CA -0.76 .45 14.88 14.12
ATC N06AB -0.77 .44 13.8 13.07
ATC B03AA -0.33 .74 11.99 11.69
ATC H03AA -1.1 .27 11.77 10.8
ATC J02AC -0.41 .68 11.08 10.71
ATC A02AD -1.66 .10 10.97 9.58
ATC N02BE -1.47 .14 10.72 9.5
ATC C07AB -0.57 .57 10.14 9.66

Features z score P value Prevalence of
the feature in
raw data (%)

Prevalence of
the feature in
sampled data
(%)

Continued on next page
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Table B.1: One Proportion z-test Results - Cohort 1 (Continued)

ATC A07AA -0.29 .77 9.98 9.74
ATC R03AK -1.3 .19 9.56 8.52
ATC M01AH -0.4 .69 9.34 9.01
ATC C09AA -1.73 .08 9.02 7.71
ATC A02BX -0.8 .43 8.06 7.47
ATC N02AX -1.06 .29 7.66 6.9
ATC N02AA -0.59 .55 7.33 6.9
ATC R06AX -0.45 .65 7.06 6.74
ATC B03BB -0.74 .46 6.68 6.17
ATC N06AX -0.02 .99 6.34 6.33
ATC C08CA -0.71 .48 6.32 5.84
ATC N03AX -0.96 .34 6.23 5.6
ATC C10AA -1.64 .10 5.96 4.95
ATC C09CA -0.54 .59 5.79 5.44
ATC B01AB -0.76 .44 5.76 5.28
ATC N02CC -0.59 .56 5.65 5.28
ATC R06AE -1.6 .11 5.14 4.22
ATC R03AC -1.03 .3 5.07 4.46
ATC A12AX -0.63 .53 4.67 4.3
ATC C03CA 0.87 .39 4.65 5.19
ATC J05AB -1.01 .31 4.62 4.06
ATC M01AX -1.24 .22 4.58 3.9
ATC B01AC -0.18 .85 4.24 4.14
ATC C09DA -1.02 .31 4.11 3.57
ATC M01AC -2.63 .009 3.89 2.68
ATC G03DB -0.91 .36 3.71 3.25
ATC B02AA -0.13 .9 3.64 3.57
ATC C09BA -0.12 .91 3.31 3.25
ATC G03CA -1.12 .26 3.28 2.76
ATC A10BA -0.07 .94 3.28 3.25
ATC N06AA -1.69 .09 3.08 2.35
ATC A02BA 0.59 .55 2.95 3.25
ATC P01AB -0.21 .83 2.86 2.76
ICD 621 0.92 .36 2.26 2.68

Features z score P value Prevalence of
the feature in
raw data (%)

Prevalence of
the feature in
sampled data
(%)

Continued on next page
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B – One Proportion z-test Results

Table B.1: One Proportion z-test Results - Cohort 1 (Continued)

ATC J01EE 0.46 .65 2.23 2.44
ATC G03AA 0.51 .61 2.21 2.44
ATC J01AA 0.38 .7 2.19 2.35
ATC A03FA -1.01 .31 2.17 1.79
ATC C03EA 0.54 .59 2.12 2.35
ATC A07EC -0.06 .95 2.05 2.03
ATC D05AX 0.51 .61 2.05 2.27
ATC C09BB -1.21 .23 1.97 1.54
ICD 218 -1.56 .12 1.9 1.38
ATC J01DC 0.99 .32 1.85 2.27
ICD 727 -0.12 .9 1.83 1.79
ATC A05AA 0.21 .84 1.79 1.87
ICD 574 -0.63 .53 1.68 1.46
ATC N03AG -0.12 .9 1.59 1.54
ATC M04AA 0.56 .57 1.5 1.7
ATC A12AA -0.82 .41 1.47 1.22
ATC C02CA -0.54 .59 1.47 1.3
ATC C07AA 0.69 .49 1.45 1.7
ATC R03DC -2.24 .02 1.38 0.81
ATC B03BA -0.2 .84 1.36 1.3
ATC R03AL 0.99 .32 1.34 1.7
ICD 454 0.19 .85 1.32 1.38
ATC S01ED -0.75 .45 1.18 0.97
ICD 735 -0.44 .66 1.18 1.06
ATC C07BB -0.29 .77 1.14 1.06
ICD V58 1.41 .16 1.12 1.62
ATC C03DA -0.75 .45 1.09 0.89
ATC C03BA 1.14 .26 1.07 1.46
ATC P01BA -0.93 .35 1.05 0.81
ATC N02BA 0.36 .72 1.03 1.14
ICD 174 0.17 .86 1.01 1.06
ATC R03BB -1.46 .15 0.98 0.65
ATC C10AX -0.25 .8 0.96 0.89
ATC N03AF -0.49 .62 0.94 0.81

Features z score P value Prevalence of
the feature in
raw data (%)

Prevalence of
the feature in
sampled data
(%)

Continued on next page
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Table B.1: One Proportion z-test Results - Cohort 1 (Continued)

ATC M05BA -1.16 .24 0.92 0.65
ATC A12BA 0.48 .63 0.92 1.06
ATC N03AE 0.08 .94 0.87 0.89
ICD 278 0.08 .94 0.87 0.89
ATC L01BA 0.61 .54 0.8 0.97
ICD 717 0.33 .74 0.8 0.89
ATC A07EA 0.33 .74 0.8 0.89
ATC C09BX -1.49 .14 0.78 0.49
ATC C09DB -2.68 .007 0.76 0.32
ICD 338 -0.29 .77 0.71 0.65
ICD 626 -1.04 .3 0.69 0.49
ATC A10AB -0.19 .85 0.69 0.65
ICD 726 -0.19 .85 0.69 0.65
ATC A10BB 0.25 .8 0.67 0.73
ATC N01BB 0.91 .36 0.65 0.89
ATC N05AD 0.34 .73 0.65 0.73
ICD 715 -1.99 .05 0.65 0.32
ATC C10AB 0.34 .73 0.65 0.73
ATC N02AB 0.73 .47 0.63 0.81
ATC N02AJ -0.7 .49 0.63 0.49
ATC S01EE -1.72 .09 0.6 0.32
ATC C03AA -0.47 .64 0.58 0.49
ATC S01EC -0.06 .95 0.58 0.57
ICD 473 -0.25 .8 0.54 0.49
ICD 455 -1.3 .19 0.54 0.32
ATC N04AA -0.6 .55 0.51 0.41
ATC C10BA 0.89 .37 0.51 0.73
ICD 553 -0.47 .64 0.49 0.41
ICD V54 0.09 .93 0.47 0.49
ATC C03EB -0.35 .73 0.47 0.41
ICD 296 1.08 .28 0.47 0.73
ATC N03AA -2.48 .01 0.45 0.16
ATC C07AG 0.57 .57 0.45 0.57
ATC B01AA 0.89 .38 0.45 0.65

Features z score P value Prevalence of
the feature in
raw data (%)

Prevalence of
the feature in
sampled data
(%)

Continued on next page
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B – One Proportion z-test Results

Table B.1: One Proportion z-test Results - Cohort 1 (Continued)

ATC N05AA -0.75 .45 0.45 0.32
ICD V64 0.67 .5 0.42 0.57
ATC N05AH 0.43 .67 0.4 0.49
ATC R03DA 0.02 .98 0.4 0.41
ICD 592 0.43 .67 0.4 0.49
ATC B05BB -0.97 .33 0.38 0.24
ICD 241 -1.51 .13 0.34 0.16
ICD 996 -0.65 .51 0.34 0.24
ICD 618 0.39 .7 0.34 0.41
ATC C01BC -0.49 .62 0.31 0.24
ICD 038 1.47 .14 0.31 0.65
ICD 812 0.88 .38 0.31 0.49
ICD 354 -1.12 .26 0.29 0.16
ATC C02AC 0.64 .52 0.29 0.41
ICD 478 -0.33 .74 0.29 0.24
ICD V53 -0.17 .86 0.27 0.24
ICD 301 0.35 .73 0.27 0.32
ICD 780 0.35 .73 0.27 0.32
ICD 295 -0.02 .99 0.25 0.24
ICD 298 -0.53 .59 0.22 0.16
ICD 518 1.33 .18 0.22 0.49
ATC C01DA -0.53 .59 0.22 0.16
ICD 434 -1.75 .08 0.22 0.08
ICD 562 -0.53 .59 0.22 0.16
ICD 998 0.14 .89 0.22 0.24
ICD 599 -0.34 .74 0.2 0.16
ICD 585 1.13 .26 0.2 0.41
ICD V43 -1.48 .14 0.2 0.08
ICD 427 0.3 .76 0.2 0.24
ICD 722 0.3 .76 0.2 0.24
ICD 786 -1.2 .23 0.18 0.08
ICD 820 -0.14 .89 0.18 0.16
ICD 550 -0.14 .89 0.18 0.16
ICD V56 1.25 .21 0.18 0.41

Features z score P value Prevalence of
the feature in
raw data (%)

Prevalence of
the feature in
sampled data
(%)

Continued on next page
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Table B.1: One Proportion z-test Results - Cohort 1 (Continued)

ICD 410 -0.14 .89 0.18 0.16
ICD 470 0.46 .64 0.18 0.24
ICD V57 0.46 .64 0.18 0.24
ICD 560 -0.93 .35 0.16 0.08
ICD 482 0.78 .44 0.13 0.24
ICD 813 0.25 .8 0.13 0.16
ICD 486 0.44 .66 0.11 0.16
ICD 041 0.44 .66 0.11 0.16
ICD 211 0.44 .66 0.11 0.16
ICD 162 -0.1 .92 0.09 0.08
ICD 437 -0.1 .92 0.09 0.08
ICD 424 1.1 .27 0.09 0.24
ICD 995 0.64 .52 0.09 0.16
ICD V71 -0.1 .92 0.09 0.08
ICD 571 -0.1 .92 0.09 0.08
ICD 728 0.17 .86 0.07 0.08
ICD 428 0.17 .86 0.07 0.08
ATC C01BD 1.26 .21 0.07 0.24
ICD 188 0.17 .86 0.07 0.08
ICD 250 0.83 .41 0.07 0.16
ICD 438 0.45 .65 0.04 0.08
ICD 366 0.45 .65 0.04 0.08
ICD 411 0.45 .65 0.04 0.08
ICD 440 0.73 .47 0.02 0.08
ICD 153 0.73 .47 0.02 0.08

Features z score P value Prevalence of
the feature in
raw data (%)

Prevalence of
the feature in
sampled data
(%)

Removed features: ATC A02BC, ATC M01AE, ATC M01AC, ATC R03DC, ATC C09DB, ICD 715,
ATC N03AA

Table B.2: One Proportion z-test Results - Cohort 2

Age >53 -0.72 .47 45.45 44.69

Features z score P value Prevalence of
the feature in
raw data (%)

Prevalence of
the feature in
sampled data
(%)

Continued on next page
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B – One Proportion z-test Results

Table B.2: One Proportion z-test Results - Cohort 2 (Continued)

ATC J01CR -1.07 .28 41.45 40.33
ATC H02AB -1.25 .21 34.77 33.51
ATC J01FA -0.76 .45 29.43 28.7
ATC J01MA -1.76 .08 27.43 25.79
ATC A02BC -3.06 .002 26.91 24.11
ATC M01AB -1.73 .08 19.63 18.21
ATC J01DD -1.34 .18 16.89 15.85
ATC M01AE -0.78 .43 16.23 15.62
ATC R03BA -1.33 .18 13.94 12.99
ATC C09AA -1.25 .21 12.86 11.99
ATC J01CA -0.67 .51 11.94 11.49
ATC C10AA -2.93 .003 10.92 9.13
ATC A07AA -1.61 .11 10.78 9.76
ATC C07AB -2.24 .02 10.75 9.36
ATC C09CA -0.82 .41 8.89 8.4
ATC N06AB -0.51 .61 8.89 8.58
ATC C08CA -1.46 .14 8.22 7.4
ATC R03AK -0.82 .41 8.18 7.72
ATC G04CA -1.96 .05 8.01 6.95
ATC B01AC -2.68 .007 7.55 6.18
ATC A02AD -1.61 .11 7.48 6.63
ATC A11CC -0.74 .46 7.02 6.63
ATC N02BE -0.59 .56 6.71 6.4
ATC J02AC -0.9 .37 6.64 6.18
ATC A02BX -0.69 .49 6.25 5.9
ATC C09DA -1.16 .25 5.87 5.31
ATC M04AA -1.26 .21 5.73 5.13
ATC B01AB -0.52 .6 5.66 5.4
ATC N03AX -0.97 .33 5.44 5
ATC M01AH -1.45 .15 5.23 4.59
ATC N02AA -1.26 .21 5.2 4.63
ATC R06AX -0.66 .51 5.16 4.86
ATC A10BA -1.8 .07 5.09 4.31
ATC N02AX -1.07 .29 4.78 4.31

Features z score P value Prevalence of
the feature in
raw data (%)

Prevalence of
the feature in
sampled data
(%)
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Table B.2: One Proportion z-test Results - Cohort 2 (Continued)

ATC N06AX -1.22 .22 4.6 4.09
ATC C03CA -1.05 .29 4.53 4.09
ATC B03BB -1.31 .19 4.5 3.95
ATC J01XX -0.69 .49 4.43 4.13
ATC R03AC -0.11 .91 4.18 4.13
ATC C09BA -0.81 .42 4.14 3.81
ATC M01AX -1.57 .12 3.86 3.27
ATC C02CA -0.95 .34 3.58 3.22
ATC C09BB -0.39 .7 3.23 3.09
ATC B03AA -1.12 .26 3.16 2.77
ATC R06AE -1.12 .26 3.16 2.77
ATC J05AB -0.52 .61 3.09 2.91
ATC J01EE -0.85 .39 3.02 2.72
ATC H03AA -1.15 .25 2.88 2.5
ATC N03AG -0.94 .35 2.81 2.5
ATC C10AX -0.8 .43 2.81 2.54
ATC A07EC -0.59 .56 2.74 2.54
ATC D05AX -0.59 .56 2.6 2.41
ATC M01AC -0.23 .82 2.53 2.45
ATC A07EA -1.22 .22 2.21 1.86
ATC C10AB -0.25 .8 2.07 2
ATC N02BA -1.43 .15 2.07 1.68
ICD 550 0.62 .53 2.07 2.27
ATC A10AB -0.57 .57 1.93 1.77
ATC C09DB -0.74 .46 1.93 1.73
ATC A02BA -1.15 .25 1.9 1.59
ATC N03AE -0.94 .35 1.79 1.54
ATC N02CC 0.25 .81 1.79 1.86
ATC A10BB -1.29 .2 1.58 1.27
ATC P01AB -0.14 .89 1.58 1.54
ATC C03DA -1 .32 1.51 1.27
ICD 717 -0.13 .9 1.44 1.41
ATC S01ED -0.22 .83 1.37 1.32
ATC J01AA -0.46 .64 1.33 1.23

Features z score P value Prevalence of
the feature in
raw data (%)

Prevalence of
the feature in
sampled data
(%)
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B – One Proportion z-test Results

Table B.2: One Proportion z-test Results - Cohort 2 (Continued)

ATC B03BA -2.11 .03 1.33 0.91
ATC A05AA 0.03 .98 1.26 1.27
ATC R03AL -0.36 .72 1.26 1.18
ATC N05AD -0.36 .72 1.26 1.18
ATC N03AF -0.21 .83 1.23 1.18
ATC N05AH -0.06 .95 1.19 1.18
ATC G04CB -0.76 .45 1.16 1
ATC N04AA -0.53 .6 1.16 1.04
ATC N06AA -0.53 .6 1.16 1.04
ATC J01DC -0.31 .75 1.16 1.09
ICD 574 -0.89 .37 1.09 0.91
ICD V58 -0.2 .84 1.09 1.04
ICD 727 -0.42 .67 1.09 1
ATC A12AX -0.2 .84 1.09 1.04
ATC C01DA -1.41 .16 1.09 0.82
ATC B01AA -0.97 .33 1.05 0.86
ATC A03FA -0.26 .8 1.05 1
ATC R03BB -0.97 .33 1.05 0.86
ICD 592 -0.48 .63 1.05 0.95
ATC C09BX -0.31 .75 1.02 0.95
ATC N05AA -0.37 .71 0.98 0.91
ATC B02AA -1.13 .26 0.98 0.77
ICD 454 0.28 .78 0.98 1.04
ATC R03DC -0.95 .34 0.95 0.77
ICD 410 -1.64 .10 0.91 0.64
ATC A12AA 0.15 .88 0.88 0.91
ATC C03BA -0.57 .57 0.88 0.77
ICD 553 -0.13 .89 0.84 0.82
ATC A12BA 0.1 .92 0.84 0.86
ATC C10BA -0.92 .36 0.84 0.68
ATC C07AG -0.19 .85 0.81 0.77
ATC C03EA -0.45 .65 0.81 0.73
ATC C07BB -0.72 .47 0.81 0.68
ATC N03AA -0.81 .42 0.77 0.64

Features z score P value Prevalence of
the feature in
raw data (%)

Prevalence of
the feature in
sampled data
(%)
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Table B.2: One Proportion z-test Results - Cohort 2 (Continued)

ATC S01EE -0.52 .6 0.77 0.68
ICD 715 0.42 .68 0.74 0.82
ICD 038 -0.78 .44 0.67 0.54
ATC C02AC -0.26 .8 0.63 0.59
ATC R03DA -0.88 .38 0.63 0.5
ATC B05BB -0.88 .38 0.63 0.5
ICD 518 -0.26 .8 0.63 0.59
ICD 455 -0.11 .91 0.56 0.54
ICD 473 -0.11 .91 0.56 0.54
ATC N02AB -0.75 .45 0.56 0.45
ICD 413 -0.11 .91 0.56 0.54
ICD 470 -0.42 .68 0.56 0.5
ATC L01BA -0.75 .45 0.56 0.45
ATC C07AA -0.51 .61 0.53 0.45
ATC N02AJ -0.18 .86 0.53 0.5
ICD V53 0.12 .91 0.53 0.54
ATC C03AA -1.28 .2 0.53 0.36
ICD 600 0.05 .96 0.49 0.5
ICD 301 -1.45 .15 0.49 0.32
ATC C03EB 0.34 .73 0.49 0.54
ATC S01EC -0.02 .99 0.46 0.45
ATC C01BC -1.16 .25 0.46 0.32
ICD 585 0.29 .78 0.46 0.5
ATC N01BB 0.52 .6 0.42 0.5
ICD 298 0.23 .82 0.42 0.45
ICD 214 0.52 .6 0.42 0.5
ICD 278 0.23 .82 0.42 0.45
ICD 996 0.16 .87 0.39 0.41
ICD 995 -1.03 .31 0.39 0.27
ICD 427 -0.57 .57 0.39 0.32
ICD 722 -0.18 .86 0.39 0.36
ICD 434 -1.03 .31 0.39 0.27
ICD 482 0.09 .93 0.35 0.36
ICD 726 -0.28 .78 0.35 0.32

Features z score P value Prevalence of
the feature in
raw data (%)

Prevalence of
the feature in
sampled data
(%)
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B – One Proportion z-test Results

Table B.2: One Proportion z-test Results - Cohort 2 (Continued)

ICD 295 0.42 .67 0.35 0.41
ICD V43 0.09 .93 0.35 0.36
ICD 414 -0.71 .48 0.35 0.27
ICD 438 -1.22 .22 0.35 0.23
ICD 571 -0.71 .48 0.35 0.27
ICD 478 -0.88 .38 0.32 0.23
ICD 786 -0.39 .69 0.32 0.27
ICD V54 0.01 .99 0.32 0.32
ICD 431 -0.39 .69 0.32 0.27
ICD 486 -0.39 .69 0.32 0.27
ATC C01BD -1.09 .27 0.28 0.18
ICD 560 -0.08 .94 0.28 0.27
ICD 296 -0.53 .59 0.28 0.23
ICD 411 -1.84 .07 0.28 0.14
ICD 728 -0.08 .94 0.28 0.27
ICD 415 -1.84 .07 0.28 0.14
ICD 338 -0.08 .94 0.28 0.27
ICD 428 0.31 .76 0.28 0.32
ICD V64 -1.09 .27 0.28 0.18
ICD V57 -1.84 .07 0.28 0.14
ICD V71 -0.19 .85 0.25 0.23
ICD 211 -0.19 .85 0.25 0.23
ICD 780 -0.19 .85 0.25 0.23
ICD 424 -0.32 .75 0.21 0.18
ICD V56 0.56 .58 0.21 0.27
ICD 241 0.16 .87 0.21 0.23
ICD 173 0.16 .87 0.21 0.23
ATC P01BA -0.95 .34 0.21 0.14
ICD 812 0.07 .95 0.18 0.18
ICD 250 0.07 .95 0.18 0.18
ICD 041 -0.5 .62 0.18 0.14
ICD 437 -0.5 .62 0.18 0.14
ICD 998 0.51 .61 0.18 0.23
ICD 354 -0.5 .62 0.18 0.14

Features z score P value Prevalence of
the feature in
raw data (%)

Prevalence of
the feature in
sampled data
(%)
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Table B.2: One Proportion z-test Results - Cohort 2 (Continued)

ICD 440 -0.05 .96 0.14 0.14
ICD 366 -0.05 .96 0.14 0.14
ICD 735 0.45 .65 0.14 0.18
ICD 188 0.45 .65 0.14 0.18
ICD 562 0.45 .65 0.14 0.18
ICD 813 -0.05 .96 0.14 0.14
ICD 153 -0.23 .82 0.11 0.09
ICD 185 -0.23 .82 0.11 0.09
ICD 584 0.39 .69 0.11 0.14
ATC M05BA -0.23 .82 0.11 0.09
ICD 599 -0.23 .82 0.11 0.09
ICD 820 -1.32 .19 0.11 0.05
ICD 276 -0.55 .58 0.07 0.05
ICD 162 -0.55 .58 0.07 0.05
ATC G03DB 0.23 .82 0.04 0.05
ICD 331 0.23 .82 0.04 0.05

Features z score P value Prevalence of
the feature in
raw data (%)

Prevalence of
the feature in
sampled data
(%)

Removed features: ATC A02BC, ATC C10AA, ATC C07AB, ATC B01AC, ATC B03BA

Table B.3: One Proportion z-test Results - Cohort 3

ATC J01CR 0.16 .87 54.01 54.2
ATC A02BC -0.13 .89 49.47 49.32
ATC H02AB -0.09 .93 47.69 47.59
ATC A11CC 0.13 .9 45.18 45.33
ATC J01MA -0.19 .85 41.4 41.19
ATC J01FA -0.32 .75 38.6 38.25
Age >68 1.42 .15 37.03 38.61
ATC M01AB -0.05 .96 33.16 33.11
ATC M01AE 1.1 .27 30.62 31.79
ATC J01DD -0.01 .99 29.13 29.12
ATC C10AA 0.04 .97 26.24 26.29

Features z score P value Prevalence of
the feature in
raw data (%)

Prevalence of
the feature in
sampled data
(%)
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B – One Proportion z-test Results

Table B.3: One Proportion z-test Results - Cohort 3 (Continued)

ATC C07AB 0.18 .86 24.59 24.76
ATC R03BA -0.91 .36 23.27 22.4
ATC N06AB 0.18 .85 22.12 22.3
ATC J01XX 0.03 .98 21.49 21.51
ATC B01AC -0.16 .87 21.19 21.04
ATC C03CA -0.1 .92 20.08 19.99
ATC C09AA 0.09 .93 19.49 19.57
ATC M01AH 0.54 .59 17.83 18.31
ATC A07AA 0.12 .91 17.58 17.68
ATC J01CA -0.63 .53 17.54 17
ATC H03AA -0.73 .47 17.2 16.58
ATC N02BE 0.22 .83 17.07 17.26
ATC C08CA 0.43 .67 15.8 16.16
ATC A02AD -0.69 .49 15.63 15.06
ATC R03AK -0.19 .85 15.37 15.22
ATC C09CA 0.48 .63 15.03 15.42
ATC C09DA 0.72 .47 14.31 14.9
ATC N02AA -0.03 .98 13.93 13.9
ATC N06AX 0.1 .92 13.04 13.12
ATC N02AX 0.23 .82 12.78 12.96
ATC A12AX -0.77 .44 12.7 12.12
ATC A02BX -0.74 .46 12.57 12.01
ATC B01AB 0.53 .59 12.19 12.59
ATC N03AX -0.14 .89 11.8 11.7
ATC A10BA 0.18 .86 11.25 11.39
ATC B03BB -1.06 .29 9.94 9.23
ATC M04AA -0.26 .8 8.66 8.5
ATC M01AX -0.26 .8 8.66 8.5
ATC C09BA -0.12 .9 8.58 8.5
ATC J02AC 0.54 .59 8.15 8.5
ATC B03AA -0.73 .47 7.94 7.5
ATC R03AC -0.05 .96 7.22 7.19
ATC M01AC 0.51 .61 6.84 7.14
ATC J05AB -0.64 .52 6.11 5.77

Features z score P value Prevalence of
the feature in
raw data (%)

Prevalence of
the feature in
sampled data
(%)
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Table B.3: One Proportion z-test Results - Cohort 3 (Continued)

ATC R06AE 0.05 .96 5.9 5.93
ATC N02BA 0.05 .96 5.9 5.93
ATC R06AX -0.67 .5 5.86 5.51
ATC G03CA -0.18 .86 5.39 5.3
ATC C02CA 0.5 .62 5.35 5.61
ATC M05BA 0.08 .93 5.31 5.35
ATC R03BB 0.07 .94 5.05 5.09
ATC J01EE 0.16 .88 5.01 5.09
ATC C03EA 0.91 .36 4.88 5.35
ATC A12AA -0.09 .93 4.71 4.67
ATC C03DA 0.06 .95 4.59 4.62
ATC A07EC 0.04 .96 4.54 4.56
ATC A02BA -0.83 .4 4.42 4.04
ATC A10AB 0.01 .99 4.25 4.25
ATC C09BB 0.81 .42 4.08 4.46
ATC C10AX -0.01 .99 3.99 3.99
ATC A12BA -0.03 .97 3.95 3.93
ATC N06AA 0.3 .77 3.91 4.04
ATC A10BB 0 1.0 3.78 3.78
ATC S01ED 0.56 .58 3.74 3.99
ATC D05AX -0.82 .41 3.69 3.36
ATC A05AA 0 1.0 3.57 3.57
ATC B01AA 0.38 .7 3.35 3.52
ATC A03FA -0.15 .88 3.31 3.25
ATC N03AG 0.36 .72 3.31 3.46
ICD 715 0.09 .93 3.27 3.31
ATC C03EB 0.42 .67 3.18 3.36
ATC B03BA -0.88 .38 3.06 2.73
ATC N05AD -0.45 .65 3.06 2.89
ATC C03BA 0.71 .48 3.01 3.31
ATC R03AL 0.22 .83 2.8 2.89
ATC N02CC -0.09 .93 2.76 2.73
ICD V58 -0.4 .69 2.72 2.57
ATC C07BB -0.03 .98 2.63 2.62

Features z score P value Prevalence of
the feature in
raw data (%)

Prevalence of
the feature in
sampled data
(%)
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B – One Proportion z-test Results

Table B.3: One Proportion z-test Results - Cohort 3 (Continued)

ATC P01AB -0.86 .39 2.55 2.26
ATC C10BA -0.23 .82 2.55 2.47
ATC C01DA 0.18 .86 2.51 2.57
ATC J01DC 0.46 .64 2.51 2.68
ATC N02AJ 0.32 .75 2.51 2.62
ICD 518 0.07 .94 2.34 2.36
ATC C07AA -0.27 .79 2.29 2.2
ATC N02AB 0.61 .54 2.25 2.47
ATC N03AE 0.11 .91 2.17 2.2
ATC P01BA -0.27 .79 2.08 1.99
ATC C09DB 0.64 .52 2.04 2.26
ATC B05BB -0.64 .52 1.87 1.68
ICD V43 0.23 .82 1.87 1.94
ATC L01BA -0.1 .92 1.87 1.84
ICD 574 0.17 .86 1.78 1.84
ICD 727 0.34 .74 1.78 1.89
ATC S01EE 0.14 .89 1.74 1.78
ATC R03DA -0.4 .69 1.74 1.63
ATC C10AB 0.45 .65 1.7 1.84
ATC S01EC 0.45 .65 1.7 1.84
ICD 038 0.45 .65 1.7 1.84
ATC N03AA -0.29 .77 1.66 1.57
ATC B02AA -0.33 .74 1.61 1.52
ATC N03AF -0.52 .6 1.61 1.47
ATC R03DC -1 .32 1.57 1.31
ATC N04AA 0.19 .85 1.57 1.63
ATC N05AA 0.19 .85 1.57 1.63
ATC C07AG -0.37 .71 1.57 1.47
ATC N05AH 0.34 .74 1.53 1.63
ATC C01BC -0.67 .5 1.49 1.31
ATC J01AA 0.65 .51 1.49 1.68
ICD 338 0.09 .93 1.44 1.47
ICD 621 0.09 .93 1.44 1.47
ATC N01BB -0.3 .76 1.44 1.36

Features z score P value Prevalence of
the feature in
raw data (%)

Prevalence of
the feature in
sampled data
(%)
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Table B.3: One Proportion z-test Results - Cohort 3 (Continued)

ATC C03AA 0.94 .35 1.4 1.68
ICD 296 -0.34 .73 1.4 1.31
ICD 820 -0.61 .54 1.36 1.21
ICD 996 -0.22 .82 1.32 1.26
ICD 410 -0.06 .95 1.27 1.26
ATC C02AC -0.06 .95 1.27 1.26
ICD 174 -0.06 .95 1.27 1.26
ICD 735 0.14 .88 1.27 1.31
ICD 454 -0.14 .89 1.19 1.15
ICD 428 0.07 .94 1.19 1.21
ICD 427 0.03 .97 1.15 1.15
ATC C09BX 0.21 .84 1.1 1.15
ICD 618 0.21 .84 1.1 1.15
ICD 278 0.55 .58 1.02 1.15
ICD 585 -0.15 .88 0.98 0.94
ATC C01BD 0.09 .93 0.98 1
ATC A07EA 0.49 .62 0.93 1.05
ICD 486 -0.15 .88 0.76 0.73
ICD 295 -0.15 .88 0.76 0.73
ICD 366 0.32 .75 0.72 0.79
ICD 331 0.32 .75 0.72 0.79
ICD 482 0.32 .75 0.72 0.79
ICD 813 0.56 .57 0.72 0.84
ICD V56 -0.34 .73 0.64 0.58
ICD V53 0.24 .81 0.64 0.68
ICD 717 0.24 .81 0.64 0.68
ICD 812 0.19 .85 0.59 0.63
ICD 424 0.14 .88 0.55 0.58
ICD 411 -0.17 .87 0.55 0.52
ICD 995 0.14 .88 0.55 0.58
ICD 413 -1.33 .18 0.55 0.37
ICD 250 0.14 .88 0.55 0.58
ICD 786 -0.61 .54 0.51 0.42
ICD 241 0.09 .93 0.51 0.52

Features z score P value Prevalence of
the feature in
raw data (%)

Prevalence of
the feature in
sampled data
(%)
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B – One Proportion z-test Results

Table B.3: One Proportion z-test Results - Cohort 3 (Continued)

ICD 301 0.39 .7 0.51 0.58
ICD 414 0.09 .93 0.51 0.52
ICD 415 0.09 .93 0.51 0.52
ICD 434 -1.03 .3 0.51 0.37
ICD 728 -0.24 .81 0.51 0.47
ICD 550 0.03 .97 0.47 0.47
ICD 562 0.63 .53 0.47 0.58
ICD 437 0.63 .53 0.47 0.58
ICD 592 0.35 .73 0.47 0.52
ICD V57 0.03 .97 0.47 0.47
ICD V64 -0.32 .75 0.47 0.42
ICD 438 -0.03 .97 0.42 0.42
ICD V71 0.3 .76 0.42 0.47
ICD 571 -0.41 .68 0.42 0.37
ICD 726 0.3 .76 0.42 0.47
ICD 153 0.25 .8 0.38 0.42
ICD 211 0.25 .8 0.38 0.42
ICD 041 -1.02 .31 0.38 0.26
ICD 560 0.25 .8 0.38 0.42
ICD 173 0.25 .8 0.38 0.42
ICD 276 -0.11 .91 0.38 0.37
ICD V54 0.25 .8 0.38 0.42
ICD 599 -0.11 .91 0.38 0.37
ICD 780 -0.53 .6 0.38 0.31
ICD 218 -0.53 .6 0.38 0.31
ICD 478 -0.11 .91 0.38 0.37
ICD 188 -0.19 .85 0.34 0.31
ICD 584 0.54 .59 0.34 0.42
ICD 214 -0.3 .77 0.3 0.26
ICD 431 -0.83 .4 0.3 0.21
ICD 998 0.06 .95 0.25 0.26
ICD 455 -1.07 .28 0.25 0.16
ICD 553 0.06 .95 0.25 0.26
ICD 433 0.47 .64 0.25 0.31

Features z score P value Prevalence of
the feature in
raw data (%)

Prevalence of
the feature in
sampled data
(%)
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Table B.3: One Proportion z-test Results - Cohort 3 (Continued)

ICD 440 -1.07 .28 0.25 0.16
ICD 722 0.06 .95 0.25 0.26
ICD 298 0.43 .67 0.21 0.26
ICD 473 -0.02 .98 0.21 0.21
ICD 162 0.38 .7 0.17 0.21
ICD 470 0.38 .7 0.17 0.21
ICD 626 0.33 .74 0.13 0.16
ICD 354 -1.43 .15 0.13 0.05
ATC G04CA 0.27 .79 0.08 0.1
ATC G03AA -0.62 .54 0.08 0.05
ATC G03DB 0.19 .85 0.04 0.05

Features z score P value Prevalence of
the feature in
raw data (%)

Prevalence of
the feature in
sampled data
(%)

No features are removed from the sampled data.

Table B.4: One Proportion z-test Results - Cohort 4

ATC A02BC -0.31 .76 49.71 49.39
ATC J01CR 0.07 .95 48.39 48.46
Age >68 -1.22 .22 41.78 40.53
ATC J01MA 0.44 .66 40.08 40.53
ATC H02AB -0.11 .91 36.99 36.89
ATC J01FA 0.58 .56 32.85 33.42
ATC C10AA -0.42 .67 31.73 31.32
ATC B01AC -0.16 .87 31.34 31.18
ATC C07AB -0.91 .36 28.84 27.98
ATC M01AB -0.11 .92 27.07 26.97
ATC C09AA -0.54 .59 26.81 26.32
ATC G04CA -0.82 .41 26.49 25.75
ATC M01AE 0.82 .41 24.82 25.57
ATC J01DD -0.09 .93 24.25 24.17
ATC C08CA -0.66 .51 21.71 21.14
ATC C09CA 0.01 .99 17.53 17.54

Features z score P value Prevalence of
the feature in
raw data (%)

Prevalence of
the feature in
sampled data
(%)
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B – One Proportion z-test Results

Table B.4: One Proportion z-test Results - Cohort 4 (Continued)

ATC R03BA 0.67 .5 17.05 17.59
ATC C03CA -0.51 .61 16.89 16.49
ATC A10BA -0.49 .62 16.7 16.32
ATC M04AA -0.22 .83 16.44 16.27
ATC A07AA -0.17 .86 16.18 16.05
ATC J01CA 0.29 .77 14.26 14.47
ATC A11CC -1.08 .28 13.97 13.2
ATC C09DA -0.71 .48 13.62 13.11
ATC R03AK 0.26 .8 12.85 13.03
ATC N06AB 0.28 .78 12.04 12.24
ATC N02BE -0.14 .89 11.14 11.05
ATC B01AB 1.21 .23 10.98 11.8
ATC M01AH 0.39 .69 10.53 10.79
ATC N03AX -0.44 .66 10.28 10
ATC C09BA -0.27 .78 10.08 9.91
ATC G04CB -0.55 .58 9.99 9.65
ATC N02AA -1.33 .18 9.92 9.12
ATC N02AX -0.03 .97 9.54 9.52
ATC A02AD 0.1 .92 9.28 9.34
ATC B03BB -0.44 .66 9.12 8.86
ATC N02BA 0.65 .52 8.99 9.39
ATC A02BX -0.27 .79 8.8 8.64
ATC N06AX 0.38 .7 8.29 8.51
ATC C02CA -0.57 .57 8.12 7.81
ATC M01AX -0.07 .94 7.8 7.76
ATC B03AA 0.11 .91 6.87 6.93
ATC C10AX -0.38 .7 6.78 6.58
ATC J01XX -0.15 .88 6.74 6.67
ATC A10AB -0.56 .57 6.65 6.36
ATC J02AC 0.29 .77 6.17 6.32
ATC C09BB 0.44 .66 6.01 6.23
ATC C03DA -0.4 .69 5.94 5.75
ATC A10BB 0.07 .95 5.84 5.88
ATC R03AC 0.28 .78 5.78 5.92

Features z score P value Prevalence of
the feature in
raw data (%)

Prevalence of
the feature in
sampled data
(%)
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Table B.4: One Proportion z-test Results - Cohort 4 (Continued)

ATC R03BB -1.14 .26 5.43 4.91
ATC J01EE -0.6 .55 5.14 4.87
ATC M01AC -1.03 .3 5.01 4.56
ATC H03AA -0.63 .53 4.66 4.39
ATC J05AB -0.38 .71 4.59 4.43
ATC C01DA -1.16 .25 4.56 4.08
ATC S01ED 0.59 .56 4.43 4.69
ATC B01AA 0.54 .59 4.37 4.61
ATC R06AX -0.43 .66 4.3 4.12
ATC D05AX 0.86 .39 4.27 4.65
ICD 550 -0.08 .93 3.98 3.95
ATC A07EA -0.27 .79 3.79 3.68
ATC A02BA -0.53 .6 3.76 3.55
ATC R06AE -1.2 .23 3.6 3.16
ATC A07EC 0.25 .81 3.5 3.6
ATC C10BA 0.38 .7 3.4 3.55
ATC C09DB -0.58 .56 3.37 3.16
ATC N03AG -0.17 .87 3.31 3.25
ATC C10AB -0.99 .32 3.24 2.89
ATC R03AL 0.05 .96 3.05 3.07
ATC A12BA -0.11 .91 2.89 2.85
ICD 600 -0.28 .78 2.86 2.76
ICD 518 -0.56 .57 2.73 2.54
ATC C09BX -0.89 .37 2.7 2.41
ATC C03EA 0.41 .68 2.67 2.81
ATC A12AX 0.09 .93 2.6 2.63
ICD 410 0.35 .73 2.6 2.72
ATC A05AA 0.31 .75 2.57 2.68
ATC S01EE 0.44 .66 2.57 2.72
ATC C03BA 0.02 .98 2.54 2.54
ATC B03BA 0.75 .45 2.5 2.76
ICD 715 0.69 .49 2.44 2.68
ATC C07AG -0.27 .79 2.41 2.32
ICD V58 -0.31 .76 2.38 2.28

Features z score P value Prevalence of
the feature in
raw data (%)

Prevalence of
the feature in
sampled data
(%)

Continued on next page
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B – One Proportion z-test Results

Table B.4: One Proportion z-test Results - Cohort 4 (Continued)

ATC C03EB -0.84 .4 2.31 2.06
ATC B02AA 0.54 .59 2.28 2.46
ICD 413 0.24 .81 2.25 2.32
ATC C07AA 0.61 .54 2.22 2.41
ATC C01BC 0.07 .95 2.22 2.24
ATC N06AA 0.03 .98 2.18 2.19
ATC C01BD -0.01 .99 2.15 2.15
ICD 427 -0.82 .41 2.12 1.89
ATC N05AD 0.24 .81 2.12 2.19
ATC N03AE 0.48 .63 2.09 2.24
ATC J01DC -0.17 .87 2.02 1.97
ICD 414 0.34 .73 1.96 2.06
ICD 038 -0.51 .61 1.89 1.75
ATC J01AA -0.19 .85 1.89 1.84
ATC P01AB 0.12 .9 1.89 1.93
ATC A03FA -0.39 .69 1.86 1.75
ICD 727 0.31 .76 1.8 1.89
ICD 428 -0.72 .47 1.77 1.58
ICD 574 0.53 .59 1.73 1.89
ATC N03AF -0.96 .34 1.73 1.49
ATC C07BB 0.23 .82 1.73 1.8
ATC A12AA -0.25 .8 1.73 1.67
ATC S01EC 0.19 .85 1.7 1.75
ICD 434 0.19 .85 1.7 1.75
ATC N02AJ -1.35 .18 1.64 1.32
ATC C02AC -0.69 .49 1.57 1.4
ATC N02AB -0.2 .84 1.54 1.49
ICD 411 0.43 .67 1.51 1.62
ICD 996 -0.87 .38 1.48 1.27
ATC N05AA -0.22 .83 1.41 1.36
ICD 188 -0.09 .93 1.38 1.36
ATC R03DA -0.66 .51 1.38 1.23
ICD V43 -0.09 .93 1.38 1.36
ATC B05BB -0.33 .74 1.35 1.27

Features z score P value Prevalence of
the feature in
raw data (%)

Prevalence of
the feature in
sampled data
(%)

Continued on next page
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Table B.4: One Proportion z-test Results - Cohort 4 (Continued)

ATC N03AA -0.86 .39 1.28 1.1
ICD 440 0.27 .79 1.25 1.32
ATC N05AH -0.78 .43 1.22 1.05
ATC N04AA -0.86 .39 1.19 1.01
ICD 185 -1.53 .13 1.12 0.83
ATC L01BA 0.77 .44 1.09 1.27
ATC N02CC 0.22 .83 1.09 1.14
ICD V56 -0.53 .59 1.03 0.92
ICD 486 -0.61 .54 1 0.88
ICD 585 -0.85 .39 1 0.83
ICD 438 0.83 .4 1 1.18
ICD V57 -0.44 .66 0.96 0.88
ATC C03AA 0.22 .83 0.96 1.01
ICD 717 -0.11 .91 0.9 0.88
ICD 295 -0.35 .73 0.9 0.83
ICD 338 -0.42 .68 0.87 0.79
ICD 482 0.48 .63 0.87 0.96
ATC N01BB -1.24 .22 0.87 0.66
ICD V53 0.22 .83 0.83 0.88
ATC R03DC -0.58 .56 0.8 0.7
ICD 820 0.16 .87 0.8 0.83
ICD 296 -0.14 .89 0.77 0.75
ICD 780 0.33 .74 0.77 0.83
ICD 433 0.71 .48 0.74 0.88
ICD 431 -0.21 .83 0.74 0.7
ICD 331 0.04 .97 0.74 0.75
ICD 250 -1.19 .23 0.71 0.53
ICD 584 -0.37 .71 0.67 0.61
ICD 162 -1.32 .19 0.67 0.48
ICD 153 0.16 .88 0.67 0.7
ICD 276 -0.1 .92 0.67 0.66
ICD 599 -0.17 .86 0.64 0.61
ICD 592 -0.77 .44 0.64 0.53
ATC P01BA 0.34 .73 0.64 0.7

Features z score P value Prevalence of
the feature in
raw data (%)

Prevalence of
the feature in
sampled data
(%)

Continued on next page
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B – One Proportion z-test Results

Table B.4: One Proportion z-test Results - Cohort 4 (Continued)

ICD 553 0.34 .73 0.64 0.7
ICD 728 -0.46 .65 0.64 0.57
ICD 722 0.34 .73 0.64 0.7
ICD 454 0.28 .78 0.61 0.66
ICD 571 0.75 .45 0.61 0.75
ICD 366 0.02 .98 0.61 0.61
ICD V64 0.28 .78 0.61 0.66
ICD 473 0.15 .88 0.55 0.57
ICD 726 -1.32 .19 0.51 0.35
ICD 786 0.36 .72 0.51 0.57
ICD V71 0.29 .77 0.48 0.53
ICD 455 0.56 .57 0.48 0.57
ICD 424 0.76 .44 0.45 0.57
ICD 278 -0.8 .43 0.45 0.35
ICD 560 -0.08 .94 0.45 0.44
ICD 995 0.15 .88 0.42 0.44
ICD 173 0.45 .65 0.42 0.48
ICD 437 0.15 .88 0.42 0.44
ICD 562 0.38 .7 0.39 0.44
ICD 041 0.07 .94 0.39 0.39
ATC M05BA 0.32 .75 0.35 0.39
ICD 211 -0.02 .98 0.35 0.35
ICD 298 -0.02 .98 0.35 0.35
ICD 354 -0.4 .69 0.35 0.31
ICD 998 -0.12 .9 0.32 0.31
ICD 478 0.24 .81 0.32 0.35
ICD 415 0.81 .42 0.29 0.39
ICD 214 0.5 .62 0.29 0.35
ICD 812 0.43 .67 0.26 0.31
ICD 813 -0.56 .57 0.22 0.18
ICD 735 -0.06 .96 0.22 0.22
ICD 470 -0.06 .96 0.22 0.22
ICD V54 -0.2 .84 0.19 0.18
ICD 301 0.17 .87 0.16 0.18

Features z score P value Prevalence of
the feature in
raw data (%)

Prevalence of
the feature in
sampled data
(%)

Continued on next page
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Table B.4: One Proportion z-test Results - Cohort 4 (Continued)

ICD 241 -0.14 .89 0.1 0.09
ICD 174 0.27 .79 0.03 0.04

Features z score P value Prevalence of
the feature in
raw data (%)

Prevalence of
the feature in
sampled data
(%)

No features are removed from the sampled data.
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Appendix C

Outcome Association of the
Feature and the Support

Sup1: Support - the Occurrence of the Feature in the Evolutionarily Obtained Final Bin Dataset.

Prev2: Prevalance - the Occurrence of the Feature in the Dataset.

Table C.1: Outcome Association of the Feature and the Support - Cohort 1
Features P

value
Sup1 Prev2

ATC R03BA <.001 0.85 15.5
Age >53 <.001 0.84 41.15

ATC N03AX <.001 0.82 5.6
ATC R06AX <.001 0.79 6.74
ATC J01XX <.001 0.78 14.2
ATC C03CA <.001 0.76 5.19
ATC N02AX <.001 0.74 6.9
ATC A11CC <.001 0.73 23.05
ATC C09CA <.001 0.69 5.44

ICD 298 .16 0.68 0.16
ATC J01CA <.001 0.66 14.12

ICD 411 .32 0.62 0.08
ATC J01EE .03 0.61 2.44

Features P
value

Sup Prev

ATC C10BA .003 0.28 0.73
ATC R03AC <.001 0.28 4.46
ATC N05AH .01 0.28 0.49

ICD 454 .23 0.27 1.38
ATC R03AL <.001 0.26 1.7

ICD 996 .56 0.26 0.24
ATC S01EC .71 0.26 0.57

ICD 455 1.0 0.25 0.32
ATC C01DA .16 0.24 0.16

ICD 820 .16 0.24 0.16
ICD 438 .32 0.24 0.08

ATC C03EB .65 0.24 0.41
ICD 211 .16 0.24 0.16
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Features P
value

Sup1 Prev2

ATC A02BX <.001 0.57 7.47
ATC C08CA <.001 0.57 5.84

ICD 550 .16 0.56 0.16
ATC B01AC <.001 0.56 4.14
ATC D05AX .13 0.55 2.27
ATC C07BB .17 0.54 1.06
ATC A07EC .003 0.54 2.03

ICD 618 .18 0.52 0.41
ICD 592 .41 0.51 0.49

ATC C07AA <.001 0.5 1.7
ATC R06AE <.001 0.5 4.22

ICD V54 .10 0.5 0.49
ATC B03BA .05 0.5 1.3
ATC P01AB <.001 0.49 2.76
ATC N03AE <.001 0.48 0.89
ATC N06AB <.001 0.48 13.07

ICD 278 .007 0.48 0.89
ICD 998 .08 0.47 0.24
ICD 574 .005 0.47 1.46

ATC B05BB .08 0.47 0.24
ATC C09DA <.001 0.46 3.57

ICD 038 .005 0.46 0.65
ICD V53 .08 0.46 0.24

ATC A03FA .003 0.46 1.79
ATC C03DA <.001 0.46 0.89

ICD 301 .05 0.44 0.32
ATC J01DC .13 0.44 2.27
ATC J01AA .09 0.44 2.35
ATC N04AA .65 0.42 0.41
ATC N02AB .002 0.42 0.81

ICD 482 .08 0.42 0.24
ICD 434 .32 0.42 0.08

ATC M05BA 1.0 0.42 0.65
ATC P01BA .06 0.42 0.81

ICD 188 .32 0.4 0.08
ATC C09BB <.001 0.4 1.54

ICD 218 .81 0.4 1.38
ICD 250 .16 0.4 0.16

ATC N05AD .32 0.4 0.73
ICD 473 .41 0.4 0.49

Features P
value

Sup Prev

ATC R03BB .005 0.24 0.65
ICD 727 .39 0.24 1.79

ATC C09AA <.001 0.24 7.71
ICD V43 .32 0.24 0.08

ATC N03AG .003 0.23 1.54
ATC A12BA <.001 0.23 1.06

ICD 162 .32 0.23 0.08
ICD V64 .71 0.23 0.57

ATC A07EA .13 0.22 0.89
ICD 241 .16 0.22 0.16

ATC R03DA .03 0.22 0.41
ATC N01BB .37 0.22 0.89

ICD 786 .32 0.22 0.08
ATC A10BA <.001 0.21 3.25
ATC B01AB <.001 0.21 5.28

ICD 437 .32 0.2 0.08
ICD 995 1.0 0.2 0.16
ICD 366 .32 0.2 0.08
ICD 410 .16 0.2 0.16
ICD V58 <.001 0.2 1.62
ICD 585 .03 0.2 0.41
ICD 478 .56 0.2 0.24
ICD 626 1.0 0.2 0.49

ATC G03DB .75 0.2 3.25
ATC C01BC .56 0.19 0.24

ICD 518 .01 0.19 0.49
ATC C02CA <.001 0.18 1.3
ATC B01AA .005 0.18 0.65
ATC G03CA .17 0.18 2.76

ICD 174 .17 0.17 1.06
ICD 354 .16 0.17 0.16

ATC N06AX <.001 0.16 6.33
ATC N02CC .03 0.16 5.28
ATC C10AX .03 0.15 0.89
ATC S01EE .32 0.14 0.32

ICD 424 .08 0.14 0.24
ATC B03BB <.001 0.14 6.17
ATC C03AA .10 0.14 0.49
ATC A05AA .02 0.13 1.87
ATC C07AB <.001 0.13 9.66
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C – Outcome Association of the Feature and the Support

Features P
value

Sup1 Prev2

ICD 571 .32 0.4 0.08
ATC N05AA .05 0.38 0.32

ICD 812 .10 0.38 0.49
ICD 153 .32 0.38 0.08
ICD 553 .18 0.38 0.41
ICD 470 .56 0.38 0.24

ATC C01BD .08 0.38 0.24
ATC A02BA <.001 0.37 3.25
ATC A10AB .005 0.37 0.65
ATC J05AB .78 0.36 4.06
ATC S01ED .02 0.36 0.97
ATC N02AJ .01 0.36 0.49

ICD 780 .05 0.36 0.32
ATC N02BA .001 0.36 1.14
ATC C03EA <.001 0.36 2.35
ATC N03AF .06 0.35 0.81
ATC L01BA <.001 0.35 0.97
ATC C03BA <.001 0.34 1.46

ICD 427 .56 0.34 0.24
ATC C10AB .02 0.34 0.73
ATC C07AG .008 0.34 0.57

ICD V71 .32 0.34 0.08
ATC N06AA .005 0.34 2.35

ICD 296 .003 0.34 0.73
ICD 562 1.0 0.32 0.16
ICD 599 .16 0.32 0.16
ICD 717 .76 0.32 0.89
ICD 041 1.0 0.32 0.16

ATC C09BX .10 0.32 0.49
ICD 560 .32 0.32 0.08
ICD 295 .56 0.31 0.24

ATC A12AX <.001 0.3 4.3
ATC A10BB .003 0.3 0.73
ATC C02AC .03 0.3 0.41

ICD 428 .32 0.3 0.08
ICD 440 .32 0.3 0.08
ICD 735 .78 0.3 1.06
ICD 722 .08 0.3 0.24
ICD V56 .03 0.3 0.41

ATC M04AA <.001 0.3 1.7
ICD V57 .08 0.3 0.24
ICD 726 1.0 0.29 0.65

Features P
value

Sup Prev

ATC B03AA .13 0.13 11.69
ATC B02AA .03 0.12 3.57
ATC A12AA <.001 0.12 1.22
ATC C09BA <.001 0.12 3.25
ATC G03AA .03 0.12 2.44

ICD 338 .03 0.12 0.65
ICD 728 .32 0.12 0.08

ATC M01AH <.001 0.11 9.01
ATC J02AC <.001 0.1 10.71
ATC J01MA <.001 0.1 27.03
ATC M01AB <.001 0.1 23.94

ICD 486 .16 0.09 0.16
ATC N02AA <.001 0.09 6.9
ATC H03AA <.001 0.09 10.8
ATC A07AA <.001 0.08 9.74
ATC C10AA <.001 0.08 4.95

ICD 621 .12 0.08 2.68
ATC N02BE <.001 0.07 9.5
ATC M01AX .009 0.06 3.9
ATC J01FA <.001 0.06 35.06
ATC H02AB <.001 0.06 41.31
ATC R03AK <.001 0.05 8.52
ATC J01CR <.001 0.04 44.48

Table C.2: Outcome Association of the Feature and the Support - Cohort 2
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Features P
value

Sup Prev

ATC A10BA <.001 0.86 4.31
ATC N02BE <.001 0.79 6.4
ATC J05AB <.001 0.76 2.91
ATC C03CA <.001 0.76 4.09
ATC M04AA <.001 0.74 5.13
ATC C09CA <.001 0.71 8.4
ATC C02CA <.001 0.65 3.22
ATC C08CA <.001 0.65 7.4

ICD V64 1.0 0.64 0.18
ICD V54 .26 0.64 0.32

ATC J02AC .03 0.64 6.18
ICD 188 .32 0.63 0.18

ATC N06AB .03 0.63 8.58
ATC S01EE .07 0.62 0.68
ATC N03AG .08 0.61 2.5
ATC M01AB .001 0.6 18.21

ICD 735 1.0 0.6 0.18
ICD 454 .83 0.6 1.04

ATC N03AE .17 0.6 1.54
ICD 820 .32 0.6 0.05

ATC B01AA .01 0.59 0.86
ICD 211 .65 0.56 0.23

ATC P01AB <.001 0.56 1.54
ICD 574 .65 0.56 0.91

ATC A07EC .003 0.56 2.54
ATC C09BX .05 0.56 0.95

ICD 482 .005 0.55 0.36
ATC B03AA <.001 0.55 2.77

ICD V56 .01 0.55 0.27
ATC M01AC .01 0.55 2.45

ICD 550 1.0 0.55 2.27
ATC G04CB <.001 0.54 1

ICD 427 .71 0.54 0.32
ICD 571 .10 0.53 0.27
ICD V53 .25 0.52 0.54
ICD 428 .008 0.52 0.32
ICD 813 .08 0.52 0.14

Features P
value

Sup Prev

ATC N02AJ .03 0.38 0.5
ATC R03BB <.001 0.38 0.86
ATC C09DB .33 0.38 1.73
ATC H03AA .14 0.38 2.5

ICD V71 .65 0.38 0.23
ICD 366 .56 0.37 0.14
ICD 295 .32 0.37 0.41

ATC A10BB <.001 0.37 1.27
ICD V58 <.001 0.37 1.04

ATC C10AB .07 0.36 2
ICD 599 .16 0.35 0.09
ICD 998 .18 0.35 0.23

ATC N05AA .65 0.34 0.91
ATC R03DC .002 0.34 0.77
ATC C10BA .44 0.34 0.68

ICD 354 .56 0.34 0.14
ATC S01EC .06 0.33 0.45
ATC J01XX <.001 0.33 4.13

ICD 553 <.001 0.33 0.82
ICD 331 .32 0.32 0.05

ATC A12AA <.001 0.32 0.91
ICD 786 .10 0.32 0.27
ICD 486 .10 0.32 0.27

ATC N01BB .13 0.32 0.5
ATC N02AB .01 0.32 0.45

ICD 241 .65 0.31 0.23
ICD 338 .10 0.3 0.27

ATC C09AA <.001 0.3 11.99
ICD 437 .08 0.3 0.14
ICD 434 .01 0.3 0.27
ICD 153 .16 0.3 0.09

ATC M01AX .06 0.3 3.27
ATC N05AD .24 0.3 1.18
ATC R03DA .37 0.29 0.5

ICD 455 .56 0.29 0.54
ICD 301 .71 0.29 0.32
ICD 041 .56 0.29 0.14
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C – Outcome Association of the Feature and the Support

Features P
value

Sup Prev

ICD 276 .32 0.51 0.05
ATC S01ED .005 0.51 1.32
ATC N02AX .003 0.51 4.31
ATC R03AL <.001 0.5 1.18
ATC N05AH .43 0.5 1.18

ICD 278 1.0 0.5 0.45
ICD 996 .02 0.5 0.41
ICD 440 .56 0.5 0.14
ICD 727 .2 0.5 1
ICD 410 <.001 0.48 0.64

ATC N02CC .88 0.48 1.86
ATC C07AG .008 0.48 0.77

ICD 995 .41 0.48 0.27
ICD 518 .01 0.47 0.59

ATC J01EE <.001 0.47 2.72
ATC B02AA .03 0.46 0.77
ATC C07BB .44 0.46 0.68

ICD 812 .32 0.46 0.18
ICD V57 .56 0.46 0.14
ICD 038 .02 0.45 0.54
ICD 600 .76 0.45 0.5

ATC C03AA .03 0.45 0.36
ATC N04AA .3 0.44 1.04
ATC B03BB .007 0.44 3.95
ATC C01DA <.001 0.44 0.82
ATC C03BA .81 0.44 0.77
ATC C01BC .71 0.44 0.32

ICD 478 .65 0.43 0.23
ATC C09BB .23 0.43 3.09
ATC M05BA .16 0.43 0.09

ICD V43 1.0 0.43 0.36
ICD 470 .03 0.42 0.5

ATC A12AX .53 0.42 1.04
ICD 250 .32 0.42 0.18
ICD 715 .35 0.42 0.82
ICD 415 .56 0.42 0.14
ICD 780 .65 0.42 0.23

ATC L01BA .53 0.42 0.45
ATC J01DC .68 0.42 1.09

ICD 726 .71 0.41 0.32

Features P
value

Sup Prev

ICD 431 .10 0.29 0.27
ATC D05AX .89 0.29 2.41
ATC A02AD <.001 0.28 6.63

ICD 411 .08 0.28 0.14
ATC C07AA .06 0.28 0.45
ATC B05BB .76 0.28 0.5
ATC N06AA .3 0.26 1.04
ATC A10AB <.001 0.26 1.77
ATC A02BA .06 0.26 1.59
ATC C09DA <.001 0.26 5.31

ICD 717 .59 0.26 1.41
ATC A02BX .003 0.25 5.9
ATC C09BA .38 0.25 3.81
ATC B01AB <.001 0.24 5.4

ICD 424 .05 0.24 0.18
ICD 562 .05 0.24 0.18
ICD 722 .48 0.24 0.36

ATC A12BA .003 0.24 0.86
ATC C10AX .003 0.24 2.54
ATC N02AA .03 0.24 4.63
ATC N06AX .83 0.22 4.09

ICD 298 .53 0.22 0.45
ATC C03EA .01 0.22 0.73

ICD 592 .83 0.22 0.95
ICD 473 .56 0.21 0.54
ICD 173 .18 0.21 0.23

ATC C01BD .05 0.2 0.18
ATC A07EA .88 0.2 1.86

ICD 728 .41 0.2 0.27
ICD 438 .18 0.2 0.23
ICD 185 1.0 0.2 0.09

ATC A07AA <.001 0.2 9.76
ATC J01AA .34 0.19 1.23
ATC N03AF .69 0.18 1.18
ATC R03AC .005 0.16 4.13
ATC A03FA .2 0.14 1
ATC J01FA .01 0.14 28.7
ATC J01CA .007 0.12 11.49
ATC R03BA .003 0.11 12.99
ATC R06AE .52 0.11 2.77
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Features P
value

Sup Prev

ICD 414 .01 0.41 0.27
ATC P01BA .08 0.4 0.14
ATC G03DB .32 0.4 0.05
ATC C03DA <.001 0.4 1.27
ATC H02AB <.001 0.4 33.51

ICD 585 <.001 0.4 0.5
ATC C03EB .004 0.4 0.54
ATC A05AA 1.0 0.4 1.27
ATC N03AA .11 0.4 0.64
ATC N02BA <.001 0.4 1.68

ICD 162 .32 0.39 0.05
ICD 296 .18 0.39 0.23
ICD 584 .56 0.39 0.14
ICD 413 <.001 0.39 0.54

ATC C02AC .002 0.39 0.59

Features P
value

Sup Prev

Age >53 <.001 0.1 44.69
ATC A11CC <.001 0.1 6.63
ATC R06AX .02 0.1 4.86
ATC J01CR .001 0.1 40.33

ATC M01AH .001 0.09 4.59
ATC M01AE <.001 0.09 15.62
ATC N03AX <.001 0.07 5
ATC R03AK <.001 0.06 7.72
ATC J01DD <.001 0.06 15.85
ATC G04CA <.001 0.06 6.95

Table C.3: Outcome Association of the Feature and the Support - Cohort 3
Features P

value
Sup Prev

ATC N02AX <.001 0.84 12.96
ATC M04AA <.001 0.82 8.5
ATC C03EA <.001 0.76 5.35
ATC A02BA .004 0.75 4.04
ATC B01AB <.001 0.73 12.59
ATC N03AX <.001 0.7 11.7

ICD 295 .03 0.68 0.73
ICD 813 .62 0.68 0.84

ATC N02AA <.001 0.68 13.9
ATC J05AB .008 0.65 5.77
ATC A12AA .11 0.62 4.67
ATC C07BB .16 0.62 2.62
ATC B03BB <.001 0.61 9.23
ATC R03AC .005 0.6 7.19

ICD 427 .03 0.58 1.15
ICD 413 .71 0.56 0.37
ICD V53 .002 0.56 0.68

Features P
value

Sup Prev

ATC A11CC .12 0.29 45.33
ATC C09AA .11 0.28 19.57
ATC M01AH .05 0.28 18.31

ICD 410 <.001 0.28 1.26
ICD 998 .18 0.28 0.26

ATC G03DB .32 0.28 0.05
ATC S01ED .82 0.27 3.99
ATC J02AC .002 0.27 8.5

ICD V58 .007 0.26 2.57
ATC N01BB .02 0.26 1.36

ICD 560 .16 0.26 0.42
ATC N03AG 1.0 0.26 3.46
ATC C10AB .13 0.26 1.84
ATC S01EE .09 0.26 1.78
ATC C03DA <.001 0.26 4.62

ICD 995 .03 0.26 0.58
ATC C10BA .002 0.25 2.47
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C – Outcome Association of the Feature and the Support

Features P
value

Sup Prev

ATC A12BA .008 0.56 3.93
ICD 518 .002 0.56 2.36
ICD 574 .24 0.55 1.84

ATC J01DC .07 0.55 2.68
ATC N06AA .14 0.55 4.04
ATC A05AA .008 0.54 3.57
ATC G03AA .32 0.53 0.05
ATC C01DA <.001 0.52 2.57

ICD 618 1.0 0.5 1.15
ICD 727 .74 0.5 1.89
ICD 434 .71 0.5 0.37
ICD 553 .65 0.5 0.26

ATC G04CA 1.0 0.49 0.1
ICD 354 .32 0.48 0.05
ICD 241 .06 0.48 0.52
ICD 038 <.001 0.48 1.84
ICD 455 .56 0.47 0.16

ATC N02AJ .005 0.47 2.62
ATC R06AX .14 0.47 5.51

ICD 478 .71 0.46 0.37
ICD 599 .71 0.46 0.37
ICD 433 .41 0.46 0.31

ATC M01AE .009 0.46 31.79
ICD 728 .10 0.44 0.47
ICD 717 .41 0.44 0.68
ICD 437 .13 0.43 0.58

ATC D05AX .32 0.42 3.36
ATC R03BB <.001 0.42 5.09

ICD 188 .41 0.42 0.31
ATC B05BB .72 0.42 1.68

ICD 482 .2 0.42 0.79
ICD 331 .8 0.42 0.79

ATC B02AA .19 0.41 1.52
ATC R03DA .007 0.41 1.63
ATC A07EC .004 0.4 4.56
ATC C09DA <.001 0.4 14.9
ATC N02BE <.001 0.4 17.26
ATC N06AB .002 0.39 22.3

ICD 296 .84 0.39 1.31
ATC N03AA 1.0 0.39 1.57

Features P
value

Sup Prev

ICD V56 .13 0.25 0.58
ATC M05BA .07 0.24 5.35

ICD 278 .09 0.24 1.15
ICD 250 .03 0.24 0.58
ICD 218 .10 0.24 0.31

ATC J01EE <.001 0.24 5.09
ICD 431 1.0 0.23 0.21

ATC A07EA .03 0.23 1.05
ATC N06AX .005 0.23 13.12
ATC N02CC .17 0.22 2.73
ATC C09DB .09 0.22 2.26
ATC C03BA .17 0.22 3.31

ICD 996 .10 0.21 1.26
ICD 162 1.0 0.21 0.21
ICD 041 .18 0.2 0.26

ATC C02AC <.001 0.2 1.26
ICD 786 1.0 0.2 0.42

ATC M01AB .10 0.2 33.11
ICD 584 .03 0.2 0.42
ICD 440 .08 0.19 0.16
ICD 473 .32 0.19 0.21

ATC H03AA .26 0.19 16.58
ICD 735 .55 0.18 1.31
ICD 415 .53 0.18 0.52

ATC C03AA .01 0.18 1.68
ICD 411 .01 0.18 0.52

ATC R03BA .06 0.18 22.4
ATC C02CA <.001 0.18 5.61
ATC C09BB .23 0.17 4.46

ICD 592 .53 0.16 0.52
ATC C08CA <.001 0.16 16.16

ICD V64 .16 0.16 0.42
ICD 715 .17 0.16 3.31

ATC C09BX .09 0.16 1.15
ATC J01CR .01 0.16 54.2
ATC N04AA .86 0.16 1.63
ATC C03EB <.001 0.16 3.36
ATC R06AE .01 0.16 5.93
ATC M01AX .04 0.16 8.5
ATC N05AD .5 0.16 2.89
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Features P
value

Sup Prev

ICD 153 .48 0.39 0.42
ICD 550 .74 0.39 0.47
ICD 438 1.0 0.39 0.42
ICD 470 .32 0.39 0.21
ICD 428 .02 0.39 1.21
ICD 214 .65 0.38 0.26

ATC B03BA <.001 0.38 2.73
ATC C07AG <.001 0.38 1.47
ATC J01AA .03 0.38 1.68
ATC C01BC .55 0.38 1.31

ICD V43 .14 0.37 1.94
ATC N03AF .26 0.37 1.47
ATC S01EC .61 0.37 1.84
ATC M01AC .3 0.37 7.14
ATC N05AH .86 0.36 1.63

ICD 812 .25 0.36 0.63
ATC P01AB .29 0.36 2.26

ICD 780 .10 0.36 0.31
ICD 298 .18 0.36 0.26
ICD 486 .03 0.35 0.73
ICD V71 .10 0.35 0.47

ATC R03DC .07 0.34 1.31
ATC C07AA 1.0 0.34 2.2

ICD 626 .56 0.34 0.16
ATC N03AE .54 0.34 2.2

ICD 820 .06 0.33 1.21
ICD V57 .74 0.32 0.47
ICD 424 .13 0.32 0.58
ICD 174 .41 0.32 1.26

ATC A12AX .01 0.32 12.12
ICD V54 .16 0.32 0.42
ICD 338 .13 0.32 1.47
ICD 366 .2 0.32 0.79

ATC G03CA .77 0.32 5.3
ICD 621 .26 0.3 1.47

ATC N02AB .03 0.3 2.47
ATC C01BD .25 0.3 1

ICD 571 .06 0.3 0.37
ICD 211 .03 0.3 0.42
ICD 414 .06 0.29 0.52

Features P
value

Sup Prev

ICD 722 .18 0.15 0.26
ATC J01DD .02 0.14 29.12
ATC C09BA .16 0.14 8.5
ATC C09CA .005 0.14 15.42
ATC B01AC <.001 0.14 21.04

ICD 562 .76 0.14 0.58
ICD 726 .74 0.14 0.47

ATC L01BA .13 0.14 1.84
ICD 173 .16 0.13 0.42

ATC A03FA .31 0.12 3.25
ATC N05AA .86 0.12 1.63
ATC A10BB <.001 0.12 3.78
ATC B01AA <.001 0.12 3.52
ATC J01CA .003 0.12 17
ATC C10AX .001 0.1 3.99
ATC A02AD .09 0.1 15.06
ATC A02BC <.001 0.1 49.32
ATC A10AB <.001 0.1 4.25
ATC R03AL .04 0.1 2.89

ICD 276 .26 0.09 0.37
ATC C07AB <.001 0.09 24.76
ATC C03CA <.001 0.08 19.99
ATC A02BX .003 0.08 12.01
ATC J01FA .02 0.08 38.25

ICD 454 1.0 0.08 1.15
ATC A10BA <.001 0.07 11.39
ATC R03AK <.001 0.07 15.22
ATC A07AA <.001 0.06 17.68

Age >68 <.001 0.06 38.61
ATC B03AA .002 0.06 7.5
ATC J01XX .002 0.06 21.51
ATC N02BA .006 0.06 5.93
ATC C10AA <.001 0.05 26.29
ATC J01MA <.001 0.04 41.19
ATC H02AB .002 0.03 47.59

Table C.4: Outcome Association of the Feature and the Support - Cohort 4
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C – Outcome Association of the Feature and the Support

Features P
value

Sup Prev

ATC G04CA .02 0.8 25.75
ATC J01CA .008 0.73 14.47
ATC C09DA .07 0.66 13.11
ATC C09AA .03 0.66 26.32
ATC B01AA .001 0.64 4.61
ATC C03CA .002 0.62 16.49

ICD 995 1.0 0.61 0.44
ATC N04AA <.001 0.59 1.01

ICD 153 .13 0.57 0.7
ATC J02AC .02 0.57 6.32

ICD 437 .53 0.56 0.44
ATC C09BX .22 0.56 2.41

ICD 250 1.0 0.55 0.53
ICD 298 .16 0.55 0.35

ATC N05AH .004 0.55 1.05
ATC A10BA <.001 0.54 16.32

ICD 415 .32 0.52 0.39
ATC C07AG .02 0.52 2.32

ICD 786 .41 0.5 0.57
ICD 424 .17 0.5 0.57

ATC J05AB .007 0.5 4.43
ATC C03EB .47 0.5 2.06

ICD 780 .25 0.5 0.83
ICD 592 .08 0.5 0.53
ICD 185 .82 0.49 0.83
ICD 722 .13 0.48 0.7

ATC C03DA .001 0.48 5.75
ATC H03AA .55 0.48 4.39

ICD 428 .10 0.48 1.58
ICD 473 .41 0.47 0.57

ATC N05AA <.001 0.47 1.36
ATC A03FA 1.0 0.47 1.75

ICD 518 .79 0.46 2.54
ATC S01EE .2 0.46 2.72

ICD 486 1.0 0.46 0.88
ICD 366 .11 0.46 0.61

ATC S01EC .75 0.45 1.75

Features P
value

Sup Prev

ATC A12AX .8 0.32 2.63
ATC C01DA <.001 0.32 4.08
ATC N02CC .69 0.32 1.14
ATC N03AA <.001 0.32 1.1

ICD 996 .19 0.32 1.27
ICD V53 1.0 0.32 0.88
ICD 338 .64 0.32 0.79

ATC C10BA .44 0.31 3.55
ICD 174 .32 0.31 0.04
ICD 427 .88 0.31 1.89
ICD 301 .32 0.3 0.18

ATC A02BX .18 0.3 8.64
ICD 331 .002 0.3 0.75
ICD 727 .29 0.3 1.89

ATC J01FA .15 0.29 33.42
ATC C03EA .32 0.28 2.81
ATC A10AB .08 0.28 6.36
ATC N03AE .48 0.28 2.24

ICD 998 .71 0.28 0.31
ICD 562 .53 0.28 0.44

ATC C09DB .35 0.28 3.16
ATC R03BB .19 0.28 4.91

ICD 553 .62 0.28 0.7
ICD 414 .03 0.28 2.06

ATC B03BB .89 0.28 8.86
ATC B01AB .36 0.28 11.8

ICD 599 .29 0.28 0.61
ATC A07AA .14 0.28 16.05
ATC N03AX .09 0.27 10
ATC A10BB <.001 0.27 5.88

ICD 214 1.0 0.27 0.35
ATC A07EA .38 0.26 3.68

ICD 820 .11 0.26 0.83
ICD 211 1.0 0.26 0.35

ATC N02BA .41 0.26 9.39
ATC R03AL .09 0.26 3.07

ICD V54 .05 0.26 0.18
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Features P
value

Sup Prev

ATC A05AA .16 0.45 2.68
ICD 585 .82 0.45 0.83

ATC C09CA .009 0.45 17.54
ICD V71 .004 0.45 0.53

ATC D05AX .03 0.44 4.65
ATC M01AX .15 0.44 7.76
ATC B02AA .29 0.44 2.46
ATC R03DC .62 0.44 0.7
ATC A12AA .02 0.43 1.67

ICD 413 .04 0.42 2.32
ATC G04CB .18 0.42 9.65
ATC L01BA .005 0.42 1.27

ICD 454 .8 0.42 0.66
ICD 296 .23 0.41 0.75
ICD 162 .13 0.41 0.48

ATC C03BA .12 0.41 2.54
ICD 574 .88 0.41 1.89

ATC N02AA .006 0.4 9.12
ATC A07EC .27 0.4 3.6

ICD 715 .37 0.4 2.68
ICD 726 .48 0.4 0.35
ICD 295 .11 0.4 0.83

ATC J01EE .11 0.4 4.87
ATC P01BA .05 0.4 0.7

ICD 431 .62 0.4 0.7
ATC C02CA .45 0.4 7.81
ATC R03AK .15 0.4 13.03

ICD 188 .86 0.4 1.36
ICD 038 .11 0.39 1.75
ICD 550 .4 0.38 3.95
ICD 433 .18 0.38 0.88
ICD 470 .18 0.38 0.22
ICD 584 .11 0.38 0.61
ICD 411 .25 0.38 1.62
ICD 478 .16 0.38 0.35
ICD 455 .78 0.38 0.57

ATC N05AD .05 0.37 2.19
ICD V56 .05 0.37 0.92
ICD 571 .008 0.36 0.75

ATC S01ED .5 0.36 4.69

Features P
value

Sup Prev

ATC N03AG .005 0.26 3.25
ATC N02AB .49 0.24 1.49

ICD 717 .65 0.24 0.88
ICD V57 1.0 0.24 0.88

ATC C07AA .69 0.24 2.41
ATC R06AX .68 0.24 4.12
ATC N01BB .44 0.24 0.66
ATC N02AX .07 0.24 9.52
ATC M05BA .32 0.24 0.39
ATC P01AB .76 0.24 1.93

ICD 434 .53 0.22 1.75
ICD 241 .16 0.22 0.09

ATC N02BE .004 0.22 11.05
ICD 438 .18 0.22 1.18

ATC M01AC .02 0.22 4.56
ATC N03AF .09 0.22 1.49
ATC N06AA 1.0 0.21 2.19
ATC J01DC .10 0.21 1.97

ICD V58 .58 0.2 2.28
ATC C01BD .003 0.2 2.15
ATC B03BA .38 0.2 2.76

ICD 173 .76 0.2 0.48
ATC N06AX .01 0.19 8.51
ATC B05BB .19 0.19 1.27

ICD 278 1.0 0.18 0.35
ATC A02AD .15 0.18 9.34
ATC C07AB .08 0.18 27.98

ICD 410 .04 0.18 2.72
ATC A12BA .39 0.17 2.85
ATC R03AC .10 0.16 5.92
ATC B03AA .63 0.16 6.93

ICD 600 .53 0.16 2.76
ATC R06AE .81 0.16 3.16

ICD 354 .71 0.15 0.31
ATC J01XX .33 0.14 6.67
ATC C09BB .04 0.14 6.23
ATC B01AC <.001 0.14 31.18
ATC C10AX <.001 0.12 6.58
ATC C08CA .004 0.12 21.14
ATC M01AH .37 0.12 10.79
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C – Outcome Association of the Feature and the Support

Features P
value

Sup Prev

ATC A02BA .44 0.36 3.55
ATC C07BB .88 0.36 1.8

ICD 440 .72 0.36 1.32
ATC R03DA .45 0.36 1.23

ICD V43 .11 0.36 1.36
ATC C10AB .003 0.36 2.89
ATC J01AA .22 0.36 1.84

ICD 560 .53 0.35 0.44
ICD 482 .67 0.35 0.96
ICD 813 .32 0.34 0.18
ICD 735 .65 0.34 0.22
ICD 041 .32 0.34 0.39
ICD 812 .71 0.34 0.31

ATC C01BC .21 0.34 2.24
ICD 728 .78 0.34 0.57

ATC C03AA .14 0.34 1.01
ATC N06AB .17 0.34 12.24

ICD V64 .8 0.33 0.66

Features P
value

Sup Prev

ATC J01DD .004 0.12 24.17
ICD 276 .8 0.12 0.66

ATC M01AB .14 0.12 26.97
ATC J01MA .07 0.12 40.53
ATC N02AJ .72 0.1 1.32
ATC J01CR .18 0.09 48.46
ATC C10AA <.001 0.09 31.32
ATC C09BA .02 0.08 9.91
ATC H02AB .01 0.08 36.89
ATC M04AA <.001 0.08 16.27
ATC M01AE .001 0.06 25.57
ATC R03BA .003 0.06 17.59
ATC A02BC <.001 0.05 49.39

Age >68 <.001 0.04 40.53
ATC A11CC .03 0.03 13.2

check
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Appendix D

Most Prevalent
Multimorbidity Feature
Combinations in Evolved Bins

check

Table D.1: Most Prevalent Multimorbidity Feature Combinations in Evolved Bins - Cohort 1

0.85 1 {’code_drug_R03BA’}
0.84 1 {’eta_53above’}
0.82 1 {’code_drug_N03AX’}
0.79 1 {’code_drug_R06AX’}
0.78 1 {’code_drug_J01XX’}
0.76 1 {’code_drug_C03CA’}
0.74 1 {’code_drug_N02AX’}
0.73 1 {’code_drug_A11CC’}
0.69 1 {’code_drug_C09CA’}
0.68 1 {’code_diag_298’}
0.66 1 {’code_drug_J01CA’}
0.62 1 {’code_diag_411’}
0.61 1 {’code_drug_J01EE’}
0.57 1 {’code_drug_C08CA’}
0.57 1 {’code_drug_A02BX’}
0.56 1 {’code_drug_B01AC’}
0.56 1 {’code_diag_550’}
0.55 1 {’code_drug_D05AX’}

Support Length Frequent Item Sets

Continued on next page
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Table D.1: Most Prevalent Multimorbidity Feature Combinations in Evolved Bins - Cohort 1 (Contin-
ued)

0.54 1 {’code_drug_C07BB’}
0.54 1 {’code_drug_A07EC’}
0.52 1 {’code_diag_618’}
0.51 1 {’code_diag_592’}
0.5 1 {’code_drug_C07AA’}
0.5 1 {’code_drug_R06AE’}
0.74 2 {’eta_53above’, ’code_drug_R03BA’}
0.72 2 {’eta_53above’, ’code_drug_N03AX’}
0.72 2 {’code_drug_N03AX’, ’code_drug_R03BA’}
0.68 2 {’code_drug_R06AX’, ’code_drug_R03BA’}
0.68 2 {’code_drug_R06AX’, ’eta_53above’}
0.68 2 {’code_drug_R03BA’, ’code_drug_J01XX’}
0.67 2 {’code_drug_R06AX’, ’code_drug_N03AX’}
0.65 2 {’code_drug_N03AX’, ’code_drug_J01XX’}
0.65 2 {’eta_53above’, ’code_drug_J01XX’}
0.64 2 {’eta_53above’, ’code_drug_N02AX’}
0.64 2 {’code_drug_C03CA’, ’eta_53above’}
0.64 2 {’code_drug_R03BA’, ’code_drug_N02AX’}
0.64 2 {’code_drug_C03CA’, ’code_drug_R03BA’}
0.63 2 {’code_drug_C03CA’, ’code_drug_N03AX’}
0.63 2 {’code_drug_R06AX’, ’code_drug_J01XX’}
0.62 2 {’code_drug_A11CC’, ’code_drug_R03BA’}
0.62 2 {’eta_53above’, ’code_drug_A11CC’}
0.61 2 {’code_drug_R06AX’, ’code_drug_C03CA’}
0.61 2 {’code_drug_N03AX’, ’code_drug_N02AX’}
0.61 2 {’code_drug_R06AX’, ’code_drug_N02AX’}
0.61 2 {’code_drug_A11CC’, ’code_drug_N03AX’}
0.59 2 {’code_drug_C09CA’, ’code_drug_R03BA’}
0.59 2 {’code_drug_C03CA’, ’code_drug_J01XX’}
0.58 2 {’code_drug_A11CC’, ’code_drug_J01XX’}
0.58 2 {’code_drug_C09CA’, ’eta_53above’}
0.57 2 {’code_drug_C03CA’, ’code_drug_N02AX’}
0.57 2 {’code_drug_R03BA’, ’code_diag_298’}
0.57 2 {’code_drug_N03AX’, ’code_diag_298’}
0.56 2 {’code_drug_R06AX’, ’code_drug_A11CC’}

Support Length Frequent Item Sets

Continued on next page
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D – Most Prevalent Multimorbidity Feature Combinations in Evolved Bins

Table D.1: Most Prevalent Multimorbidity Feature Combinations in Evolved Bins - Cohort 1 (Contin-
ued)

0.56 2 {’code_drug_R03BA’, ’code_drug_J01CA’}
0.56 2 {’code_drug_C03CA’, ’code_drug_A11CC’}
0.56 2 {’eta_53above’, ’code_drug_J01CA’}
0.56 2 {’eta_53above’, ’code_diag_298’}
0.56 2 {’code_drug_N02AX’, ’code_drug_J01XX’}
0.56 2 {’code_drug_C09CA’, ’code_drug_N03AX’}
0.55 2 {’code_drug_C09CA’, ’code_drug_J01XX’}
0.55 2 {’code_drug_R06AX’, ’code_drug_C09CA’}
0.54 2 {’code_drug_C09CA’, ’code_drug_N02AX’}
0.54 2 {’code_drug_C03CA’, ’code_drug_C09CA’}
0.53 2 {’code_drug_C03CA’, ’code_diag_298’}
0.53 2 {’code_diag_411’, ’code_drug_N03AX’}
0.53 2 {’code_drug_N03AX’, ’code_drug_J01CA’}
0.52 2 {’code_drug_R06AX’, ’code_diag_298’}
0.52 2 {’code_drug_A11CC’, ’code_diag_298’}
0.52 2 {’code_drug_A11CC’, ’code_drug_N02AX’}
0.52 2 {’code_diag_411’, ’code_drug_R03BA’}
0.52 2 {’code_drug_J01CA’, ’code_drug_J01XX’}
0.52 2 {’code_diag_298’, ’code_drug_J01XX’}
0.52 2 {’eta_53above’, ’code_drug_J01EE’}
0.51 2 {’code_diag_411’, ’eta_53above’}
0.51 2 {’code_drug_R06AX’, ’code_drug_J01CA’}
0.51 2 {’code_drug_C03CA’, ’code_drug_J01CA’}
0.5 2 {’code_drug_A11CC’, ’code_drug_J01CA’}
0.5 2 {’eta_53above’, ’code_drug_C08CA’}
0.5 2 {’code_diag_411’, ’code_drug_R06AX’}
0.5 2 {’code_drug_R03BA’, ’code_drug_J01EE’}
0.5 2 {’code_diag_298’, ’code_drug_N02AX’}
0.5 2 {’code_drug_C09CA’, ’code_drug_A11CC’}
0.63 3 {’eta_53above’, ’code_drug_R03BA’, ’code_drug_N03AX’}
0.59 3 {’eta_53above’, ’code_drug_R03BA’, ’code_drug_J01XX’}
0.59 3 {’code_drug_R06AX’, ’eta_53above’, ’code_drug_R03BA’}
0.58 3 {’code_drug_R06AX’, ’eta_53above’, ’code_drug_N03AX’}
0.58 3 {’code_drug_N03AX’, ’code_drug_R03BA’, ’code_drug_J01XX’}
0.58 3 {’code_drug_R06AX’, ’code_drug_N03AX’, ’code_drug_R03BA’}

Support Length Frequent Item Sets

Continued on next page
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Table D.1: Most Prevalent Multimorbidity Feature Combinations in Evolved Bins - Cohort 1 (Contin-
ued)

0.57 3 {’eta_53above’, ’code_drug_R03BA’, ’code_drug_N02AX’}
0.56 3 {’code_drug_R06AX’, ’code_drug_R03BA’, ’code_drug_J01XX’}
0.56 3 {’eta_53above’, ’code_drug_N03AX’, ’code_drug_J01XX’}
0.55 3 {’code_drug_C03CA’, ’code_drug_N03AX’, ’code_drug_R03BA’}
0.55 3 {’code_drug_C03CA’, ’eta_53above’, ’code_drug_R03BA’}
0.55 3 {’code_drug_R06AX’, ’eta_53above’, ’code_drug_J01XX’}
0.55 3 {’code_drug_R06AX’, ’eta_53above’, ’code_drug_N02AX’}
0.55 3 {’eta_53above’, ’code_drug_N03AX’, ’code_drug_N02AX’}
0.54 3 {’code_drug_R06AX’, ’code_drug_R03BA’, ’code_drug_N02AX’}
0.54 3 {’eta_53above’, ’code_drug_R03BA’, ’code_drug_A11CC’}
0.54 3 {’eta_53above’, ’code_drug_N03AX’, ’code_drug_A11CC’}
0.54 3 {’code_drug_N03AX’, ’code_drug_R03BA’, ’code_drug_N02AX’}
0.54 3 {’code_drug_R06AX’, ’code_drug_N03AX’, ’code_drug_J01XX’}
0.54 3 {’code_drug_C03CA’, ’eta_53above’, ’code_drug_N03AX’}
0.52 3 {’code_drug_C03CA’, ’code_drug_R03BA’, ’code_drug_J01XX’}
0.52 3 {’code_drug_N03AX’, ’code_drug_R03BA’, ’code_drug_A11CC’}
0.52 3 {’code_drug_R03BA’, ’code_drug_N02AX’, ’code_drug_J01XX’}
0.52 3 {’code_drug_A11CC’, ’code_drug_R03BA’, ’code_drug_J01XX’}
0.52 3 {’code_drug_R06AX’, ’eta_53above’, ’code_drug_C03CA’}
0.52 3 {’code_drug_R06AX’, ’code_drug_N03AX’, ’code_drug_C03CA’}
0.52 3 {’code_drug_R06AX’, ’code_drug_R03BA’, ’code_drug_C03CA’}
0.52 3 {’eta_53above’, ’code_drug_R03BA’, ’code_drug_C09CA’}
0.51 3 {’code_drug_R06AX’, ’code_drug_N03AX’, ’code_drug_N02AX’}
0.5 3 {’code_drug_C09CA’, ’code_drug_N03AX’, ’eta_53above’}
0.5 3 {’code_drug_C09CA’, ’code_drug_R03BA’, ’code_drug_J01XX’}

Support Length Frequent Item Sets

Table D.2: Most Prevalent Multimorbidity Feature Combinations in Evolved Bins - Cohort 2

0.86 1 {’code_drug_A10BA’}
0.79 1 {’code_drug_N02BE’}
0.76 1 {’code_drug_C03CA’}
0.76 1 {’code_drug_J05AB’}
0.74 1 {’code_drug_M04AA’}
0.71 1 {’code_drug_C09CA’}

Support Length Frequent Item Sets

Continued on next page

132



D – Most Prevalent Multimorbidity Feature Combinations in Evolved Bins

Table D.2: Most Prevalent Multimorbidity Feature Combinations in Evolved Bins - Cohort 2 (Contin-
ued)

0.65 1 {’code_drug_C02CA’}
0.65 1 {’code_drug_C08CA’}
0.64 1 {’code_diag_V54’}
0.64 1 {’code_diag_V64’}
0.64 1 {’code_drug_J02AC’}
0.63 1 {’code_drug_N06AB’}
0.63 1 {’code_diag_188’}
0.62 1 {’code_drug_S01EE’}
0.61 1 {’code_drug_N03AG’}
0.6 1 {’code_diag_454’}
0.6 1 {’code_drug_N03AE’}
0.6 1 {’code_diag_820’}
0.6 1 {’code_drug_M01AB’}
0.6 1 {’code_diag_735’}
0.59 1 {’code_drug_B01AA’}
0.56 1 {’code_diag_211’}
0.56 1 {’code_diag_574’}
0.56 1 {’code_drug_C09BX’}
0.56 1 {’code_drug_A07EC’}
0.56 1 {’code_drug_P01AB’}
0.55 1 {’code_drug_B03AA’}
0.55 1 {’code_drug_M01AC’}
0.55 1 {’code_diag_482’}
0.55 1 {’code_diag_550’}
0.55 1 {’code_diag_V56’}
0.54 1 {’code_drug_G04CB’}
0.54 1 {’code_diag_427’}
0.53 1 {’code_diag_571’}
0.52 1 {’code_diag_813’}
0.52 1 {’code_diag_V53’}
0.52 1 {’code_diag_428’}
0.51 1 {’code_drug_S01ED’}
0.51 1 {’code_drug_N02AX’}
0.51 1 {’code_diag_276’}
0.5 1 {’code_drug_N05AH’}

Support Length Frequent Item Sets
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Table D.2: Most Prevalent Multimorbidity Feature Combinations in Evolved Bins - Cohort 2 (Contin-
ued)

0.5 1 {’code_diag_996’}
0.5 1 {’code_diag_278’}
0.5 1 {’code_drug_R03AL’}
0.68 2 {’code_drug_A10BA’, ’code_drug_N02BE’}
0.64 2 {’code_drug_A10BA’, ’code_drug_M04AA’}
0.64 2 {’code_drug_A10BA’, ’code_drug_J05AB’}
0.64 2 {’code_drug_C03CA’, ’code_drug_A10BA’}
0.62 2 {’code_drug_C09CA’, ’code_drug_A10BA’}
0.61 2 {’code_drug_J05AB’, ’code_drug_N02BE’}
0.6 2 {’code_drug_C03CA’, ’code_drug_N02BE’}
0.59 2 {’code_drug_A10BA’, ’code_drug_C02CA’}
0.58 2 {’code_drug_M04AA’, ’code_drug_N02BE’}
0.57 2 {’code_drug_C03CA’, ’code_drug_J05AB’}
0.57 2 {’code_drug_A10BA’, ’code_drug_C08CA’}
0.57 2 {’code_drug_C03CA’, ’code_drug_M04AA’}
0.57 2 {’code_drug_C09CA’, ’code_drug_N02BE’}
0.57 2 {’code_drug_A10BA’, ’code_drug_J02AC’}
0.56 2 {’code_drug_C09CA’, ’code_drug_J05AB’}
0.55 2 {’code_drug_A10BA’, ’code_drug_N06AB’}
0.55 2 {’code_diag_V54’, ’code_drug_A10BA’}
0.55 2 {’code_drug_A10BA’, ’code_diag_V64’}
0.55 2 {’code_drug_C09CA’, ’code_drug_M04AA’}
0.55 2 {’code_drug_J05AB’, ’code_drug_M04AA’}
0.54 2 {’code_drug_A10BA’, ’code_drug_N03AE’}
0.54 2 {’code_drug_A10BA’, ’code_drug_M01AB’}
0.53 2 {’code_drug_A10BA’, ’code_diag_188’}
0.52 2 {’code_drug_N02BE’, ’code_drug_J02AC’}
0.52 2 {’code_drug_J05AB’, ’code_drug_C08CA’}
0.52 2 {’code_drug_N02BE’, ’code_drug_C08CA’}
0.52 2 {’code_diag_V54’, ’code_drug_N02BE’}
0.52 2 {’code_drug_N02BE’, ’code_diag_V64’}
0.52 2 {’code_drug_N02BE’, ’code_diag_188’}
0.52 2 {’code_drug_C03CA’, ’code_diag_V64’}
0.52 2 {’code_drug_C09CA’, ’code_drug_C03CA’}
0.52 2 {’code_drug_A10BA’, ’code_diag_735’}

Support Length Frequent Item Sets
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Table D.2: Most Prevalent Multimorbidity Feature Combinations in Evolved Bins - Cohort 2 (Contin-
ued)

0.52 2 {’code_drug_A10BA’, ’code_diag_454’}
0.52 2 {’code_drug_A10BA’, ’code_drug_N03AG’}
0.52 2 {’code_drug_A10BA’, ’code_drug_S01EE’}
0.52 2 {’code_drug_A10BA’, ’code_drug_B01AA’}
0.51 2 {’code_drug_M04AA’, ’code_diag_188’}
0.51 2 {’code_drug_P01AB’, ’code_drug_A10BA’}
0.51 2 {’code_drug_A10BA’, ’code_diag_820’}
0.5 2 {’code_drug_C03CA’, ’code_drug_J02AC’}
0.5 2 {’code_drug_N02BE’, ’code_diag_454’}
0.5 2 {’code_drug_N02BE’, ’code_diag_820’}
0.5 2 {’code_drug_N06AB’, ’code_drug_M04AA’}
0.5 2 {’code_drug_C02CA’, ’code_drug_N02BE’}
0.52 3 {’code_drug_A10BA’, ’code_drug_N02BE’, ’code_drug_J05AB’}
0.51 3 {’code_drug_C03CA’, ’code_drug_A10BA’, ’code_drug_N02BE’}

Support Length Frequent Item Sets

Table D.3: Most Prevalent Multimorbidity Feature Combinations in Evolved Bins - Cohort 3

0.84 1 {’code_drug_N02AX’}
0.82 1 {’code_drug_M04AA’}
0.76 1 {’code_drug_C03EA’}
0.75 1 {’code_drug_A02BA’}
0.73 1 {’code_drug_B01AB’}
0.7 1 {’code_drug_N03AX’}
0.68 1 {’code_diag_813’}
0.68 1 {’code_diag_295’}
0.68 1 {’code_drug_N02AA’}
0.65 1 {’code_drug_J05AB’}
0.62 1 {’code_drug_C07BB’}
0.62 1 {’code_drug_A12AA’}
0.61 1 {’code_drug_B03BB’}
0.6 1 {’code_drug_R03AC’}
0.58 1 {’code_diag_427’}
0.56 1 {’code_diag_V53’}
0.56 1 {’code_diag_518’}

Support Length Frequent Item Sets
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Table D.3: Most Prevalent Multimorbidity Feature Combinations in Evolved Bins - Cohort 3 (Contin-
ued)

0.56 1 {’code_drug_A12BA’}
0.56 1 {’code_diag_413’}
0.55 1 {’code_drug_J01DC’}
0.55 1 {’code_diag_574’}
0.55 1 {’code_drug_N06AA’}
0.54 1 {’code_drug_A05AA’}
0.53 1 {’code_drug_G03AA’}
0.52 1 {’code_drug_C01DA’}
0.5 1 {’code_diag_618’}
0.5 1 {’code_diag_553’}
0.5 1 {’code_diag_434’}
0.5 1 {’code_diag_727’}
0.71 2 {’code_drug_M04AA’, ’code_drug_N02AX’}
0.64 2 {’code_drug_N02AX’, ’code_drug_A02BA’}
0.64 2 {’code_drug_M04AA’, ’code_drug_A02BA’}
0.63 2 {’code_drug_N02AX’, ’code_drug_B01AB’}
0.62 2 {’code_drug_C03EA’, ’code_drug_N02AX’}
0.61 2 {’code_drug_M04AA’, ’code_drug_B01AB’}
0.61 2 {’code_drug_C03EA’, ’code_drug_M04AA’}
0.6 2 {’code_drug_N02AX’, ’code_drug_N03AX’}
0.59 2 {’code_drug_N02AX’, ’code_diag_813’}
0.58 2 {’code_drug_M04AA’, ’code_drug_N03AX’}
0.58 2 {’code_drug_M04AA’, ’code_diag_813’}
0.57 2 {’code_drug_N02AA’, ’code_drug_N02AX’}
0.57 2 {’code_drug_N02AX’, ’code_diag_295’}
0.57 2 {’code_drug_N02AA’, ’code_drug_M04AA’}
0.56 2 {’code_drug_C03EA’, ’code_drug_A02BA’}
0.56 2 {’code_drug_M04AA’, ’code_diag_295’}
0.55 2 {’code_drug_N02AX’, ’code_drug_C07BB’}
0.55 2 {’code_drug_A02BA’, ’code_drug_B01AB’}
0.55 2 {’code_drug_A02BA’, ’code_drug_N03AX’}
0.55 2 {’code_drug_C03EA’, ’code_drug_B01AB’}
0.54 2 {’code_drug_C03EA’, ’code_drug_N03AX’}
0.54 2 {’code_drug_M04AA’, ’code_drug_J05AB’}
0.54 2 {’code_drug_N02AA’, ’code_drug_C03EA’}

Support Length Frequent Item Sets
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Table D.3: Most Prevalent Multimorbidity Feature Combinations in Evolved Bins - Cohort 3 (Contin-
ued)

0.54 2 {’code_drug_A02BA’, ’code_diag_813’}
0.54 2 {’code_drug_J05AB’, ’code_drug_N02AX’}
0.52 2 {’code_drug_N02AX’, ’code_drug_R03AC’}
0.52 2 {’code_drug_C03EA’, ’code_drug_J05AB’}
0.52 2 {’code_diag_813’, ’code_drug_N03AX’}
0.52 2 {’code_diag_813’, ’code_drug_B01AB’}
0.52 2 {’code_drug_A02BA’, ’code_diag_295’}
0.52 2 {’code_drug_M04AA’, ’code_drug_A12AA’}
0.52 2 {’code_drug_C03EA’, ’code_diag_295’}
0.52 2 {’code_drug_C03EA’, ’code_diag_813’}
0.51 2 {’code_drug_N02AX’, ’code_drug_A12AA’}
0.5 2 {’code_drug_N02AA’, ’code_drug_A02BA’}
0.5 2 {’code_drug_B01AB’, ’code_drug_N03AX’}
0.5 2 {’code_drug_B03BB’, ’code_drug_N02AX’}
0.5 2 {’code_drug_M04AA’, ’code_drug_R03AC’}
0.5 2 {’code_drug_M04AA’, ’code_drug_B03BB’}
0.5 2 {’code_drug_M04AA’, ’code_drug_C07BB’}
0.56 3 {’code_drug_M04AA’, ’code_drug_N02AX’, ’code_drug_A02BA’}
0.54 3 {’code_drug_M04AA’, ’code_drug_N02AX’, ’code_drug_B01AB’}
0.52 3 {’code_drug_M04AA’, ’code_drug_N02AX’, ’code_drug_N03AX’}
0.52 3 {’code_drug_C03EA’, ’code_drug_M04AA’, ’code_drug_N02AX’}
0.52 3 {’code_drug_M04AA’, ’code_drug_N02AX’, ’code_diag_813’}

Support Length Frequent Item Sets

Table D.4: Most Prevalent Multimorbidity Feature Combinations in Evolved Bins - Cohort 4

0.8 1 {’code_drug_G04CA’}
0.73 1 {’code_drug_J01CA’}
0.66 1 {’code_drug_C09AA’}
0.66 1 {’code_drug_C09DA’}
0.64 1 {’code_drug_B01AA’}
0.62 1 {’code_drug_C03CA’}
0.61 1 {’code_diag_995’}
0.59 1 {’code_drug_N04AA’}
0.57 1 {’code_diag_153’}

Support Length Frequent Item Sets
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Table D.4: Most Prevalent Multimorbidity Feature Combinations in Evolved Bins - Cohort 4 (Contin-
ued)

0.57 1 {’code_drug_J02AC’}
0.56 1 {’code_diag_437’}
0.56 1 {’code_drug_C09BX’}
0.55 1 {’code_diag_298’}
0.55 1 {’code_drug_N05AH’}
0.55 1 {’code_diag_250’}
0.54 1 {’code_drug_A10BA’}
0.52 1 {’code_diag_415’}
0.52 1 {’code_drug_C07AG’}
0.5 1 {’code_diag_424’}
0.5 1 {’code_diag_786’}
0.5 1 {’code_drug_C03EB’}
0.5 1 {’code_diag_780’}
0.57 2 {’code_drug_G04CA’, ’code_drug_J01CA’}
0.57 2 {’code_drug_C09AA’, ’code_drug_G04CA’}
0.53 2 {’code_drug_G04CA’, ’code_drug_C09DA’}
0.52 2 {’code_diag_995’, ’code_drug_G04CA’}
0.52 2 {’code_drug_C09AA’, ’code_drug_J01CA’}
0.51 2 {’code_drug_B01AA’, ’code_drug_G04CA’}
0.51 2 {’code_drug_C09DA’, ’code_drug_J01CA’}
0.5 2 {’code_drug_C03CA’, ’code_drug_G04CA’}
0.5 2 {’code_drug_B01AA’, ’code_drug_J01CA’}

Support Length Frequent Item Sets
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