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Chapter 1

Introduction

The study of vector bundles supported on a smooth projective variety is a powerful
tool to understand its geometry.

Let X ⊂ PN be a projective variety. It is naturally endowed with the very ample
line bundle OX(h) =OX ⊗OPN (1). Let us denote by RX the coordinate ring of X .
We say that X is arithmetically Cohen-Macaulay (aCM for short) if H i(IX(th)) = 0
for t ∈ Z and 1 ≤ i ≤ dim(X), where IX is the ideal sheaf of X .

A coherent sheaf E over a variety X is called aCM if is locally Cohen-Macaulay
and all the twists of its intermediate cohomology groups vanish, i.e. H i(X ,E(th)) = 0
for t ∈ Z and 1 ≤ i ≤ dim(X)− 1. When X is aCM, aCM sheaves correspond to
Maximally Cohen-Macaulay modules over RX through the correspondence which
associate to a sheaf E its RX -module of global section

⊕
t H0(X ,E(th)).

The study of aCM sheaves supported on X gives us a measure of the complexity of
the variety itself. For example the projective space PN is characterized by Horrock’s
theorem by the property that a vector bundle is aCM if and only if it is totally
decomposable [60]. This can be interpreted as the idea that “simple" varieties should
support “simple" category of aCM sheaves. Starting from Horrock’s result, the
characterization of vector bundles without intermediate cohomology has been an
interesting topic in algebraic geometry (see for example [72] and [21] for smooth
quadrics, [11] for the Grassmannian of lines in P4 and [10] for Fano threefolds with
b2 = 1). Following these lines, a cornerstone result was the classification of aCM
varieties of finite representation type, i.e. those varieties that support only a finite
number of indecomposable aCM vector bundles. It turned out that they fall into a
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very short list: three or less reduced points on P2, projective spaces, smooth quadric
hypersurfaces X ⊆ Pn, cubic scrolls in P4, any Veronese surface in P5 or rational
normal curves, see [46].

For the rest of aCM varieties, an interesting problem is to give a criterium to
split them in a finer classification. An approach was offered by representation
theory. An aCM variety X ⊆ Pn is called of tame representation type if for each
r the indecomposable aCM sheaves of rank r form a finite number of families of
dimension at most one. On the other hand, X will be called of wild representation
type if there exists l-dimensional families of non-isomorphic indecomposable aCM
sheaves for arbitrary large l. In [51] Faenzi and Malaspina deal with the tame case.
They showed that, apart from smooth elliptic curves, the only aCM varieties of
tame representation type are the quartic surface scrolls. In [52] D. Faenzi and J.
Pons-Llopis proved that a reduced non-degenerate closed aCM subscheme X ⊂ Pn

of dimension m ≥ 1 is of wild type unless is either one of the finite representation
cases listed above, or it is a smooth elliptic curve or a smooth rational surface scroll
of degree 4, completing the list of non-CM-wild varieties in a broad sense. For more
details the interested reader can see [80].

In the first part of this thesis we will study a particular family of aCM sheaves,
namely the Ulrich ones. They are defined to be the aCM sheaves whose correspond-
ing module H0(E) has the maximum number of generators.

Ulrich bundles were introduced in a purely algebraic context in 1984. The study
of these objects began in [91] by Ulrich. In the paper he investigated criteria for a
local Cohen-Macaulay ring to be Gorenstein. One criteria involved finitely generated
modules M of positive rank over a local Cohen-Macaulay ring R. In this case, the
minimal numbers of generators ν(M) of M is bounded above by the product of the
multiplicity of R and the rank of M. One necessary condition for R to be Gorenstein
is the existence of a finitely generated R- module M of positive rank such that the
minimal number of generators is big enough. Because of this Ulrich raised the
following question:

• Let R be a local Cohen-Macaulay ring with positive dimension and infinite
residue class field. Does there exist a Cohen-Macaulay R-module M with
positive rank such that ν(M) = e(R) rk(M)?
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Few years later Brennan, Herzog and Ulrich investigated these modules, which
they called “Maximally Generated Cohen-Macaulay Modules" (MGMCM in short)
in [19]. In particular, they proved that a homogeneous, two-dimensional Cohen-
Macaulay domain R with infinite residue class field admits an MGMCM module.
The term “Ulrich module" as a synonym for a MGMCM was coined by Backelin
and Herzog in [13]. In that article, they proved the existence of Ulrich modules on
hypersurface rings.

Beauville in [16] made a systematic exposition of the relationship between
Ulrich bundles supported on a hypersurface X and the existence of a determinantal or
pfaffian representation of X . Ulrich bundles have been thoroughly studied in recent
years because of this relation with the determinantal representation of the variety but
also because of their relationship with Chow forms and Clifford algebras. In fact in
[55] it has been proved that rank r Ulrich bundles are in one-to-one correspondence
with the equivalence classes of matrix representation of the generalized Clifford
algebra C f of f .

In [47] Eisenbud and Schreyer characterized Ulrich sheaves E on a n-dimensional
aCM variety X ⊆ PN with respect to a very ample line bundle OX(h). Let E be
an initialized (i.e. H0(X ,E(−h)) = 0 but H0(X ,E) ̸= 0) aCM coherent sheaf on X ,
then the following are equivalent

(i) E is Ulrich.

(ii) E admits a linear OPN -resolution of the form:

0 →OPN (−N +n)aN−n → ··· →OPN (−1)a1 →Oa0
PN → E → 0.

If this occurs then a0 = deg(X) rk(E) and ai =
(N−n

i

)
a0 for all i.

(iii) hi(X ,E(−ih)) = h j(X ,E(−( j+1)h)) = 0 for each i > 0 and j < n.

(iv) For some (resp. all) finite linear projections π : X → Pn, the sheaf π∗E is the
trivial sheaf Ot

Pn for some t.

In particular, initialized Ulrich sheaves are 0-regular and therefore they are globally
generated.

Ulrich sheaves carry many interesting properties and they are the simplest bundles
from the cohomological point of view. Furthermore an Ulrich sheaf is locally free
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on the complement of the singular locus of the variety X . In [47] the authors raised
the following questions:

• Is every variety X ⊂ PN the support of an Ulrich sheaf? If so, what is the
smallest possible rank for such a sheaf?

The answers to these questions are still unknown in general, although there are
several scattered results. The survey [17] is a standard reference for an introduction
to Ulrich bundles. In this paper Beauville also obtains some results on rank one and
two Ulrich bundles on surfaces and threefolds.

Casanellas and Hartshorne proved in [22] that a smooth cubic surface F ⊂ P3

is endowed with families of arbitrary large dimension of non-isomorphic, indecom-
posable initialized Ulrich bundles. In cases like this , we will say that the variety is
Ulrich-wild.

For what concerns other projective surfaces, Ulrich bundles on K3 surfaces have
been thoroughly studied in the past years. In [7] Aprodu, Farkas and Ortega showed
the existence of families of stable, even rank Ulrich bundles on K3 surfaces with
Picard number one and satisfying a mild generality condition. This result somehow
generalizes the paper [35] by E. Coskun, Kulkarni and Mustopa where they focused
on Ulrich bundles over smooth quartic surfaces in P3. In [31] Casnati and Galluzzi
proved the existence of non-special rank two Ulrich bundles on non-degenerate K3
surfaces of degree greater than two. Finally Faenzi in [50] proved the existence of
rank two special Ulrich bundles on any K3 and for any polarization by deforming an
aCM vector bundle over the surface.

Moreover there have also been results on other surfaces and higher dimensional
varieties and we briefly list some of them in what follows. In [8] Aprodu, Huh,
Malaspina and Pons-Llopis characterized Ulrich bundles on smooth rational normal
scroll as the bundles admitting a special type of filtration. In [24] Casnati proved
the existence of special Ulrich bundles on non-special surfaces with pg = q = 0 and
he studied when such varieties are Ulrich-wild. In [26] and [25] the same author
showed respectively that surfaces S with pg(S) = 0 and q = 1 are Ulrich-wild, and
the existence of special Ulrich bundles on regular surfaces with non-negative Kodaira
dimension. For what concerns del Pezzo surfaces E. Coskun, Kulkarni and Mustopa
in [36] characterized the divisors class on del Pezzo surfaces which represent the
first Chern class of a rank r Ulrich bundle. In [23] Casnati completely classified rank
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two Ulrich bundles on anticanonically embedded surfaces and in [81] Miró Roig
and Pons-Llopis dealt with the minimal resolution conjecture on del Pezzo surfaces
and its connection with Ulrich bundles. In [82] the same authors showed that all
smooth rational aCM surfaces in P4 are Ulrich-wild and that a general determinantal
variety of codimension one or two supports indecomposable Ulrich sheaves of rank
one and two. In [77] proved the existence of Ulrich bundles on some surfaces
of maximal Albanese dimension. In [37] I. Coskun, Costa, Huizenga, Miró-Roig
and Woolf studied equivariant vector bundles on partial flag varieties arising from
Schur functors and they classify Ulrich bundles of this form on some two-steps
flags. In [40] Costa and Miró-Roig classified all homogeneous Ulrich bundles on
the Grassmannian of k-planes in the projective n-space. Finally in [? ] the authors
dealt with the existence of Ulrich line bundles and stable rank two Ulrich bundles on
geometrically ruled surfaces and in [83] the authors proved the existence of rank two
special and simple Ulrich bundles on Weierstrass fibrations.

In this context the contribution of the present thesis can be found in chapter 3 (see
the introduction of the chapter for the statements of the main results), where we study
Ulrich bundles over Hirzebruch surfaces, i.e. geometrically rationally ruled surfaces.
Aprodu, Costa and Miró-Roig proved in [6], the existence of stable, rank two special
Ulrich bundles on ruled surfaces over a curve of genus g ≥ 1. Faenzi and Malaspina
in [51] and Miró-Roig in [79] considered the case of Hirzebruch surfaces embedded
as rational normal scrolls. In chapter 3, using derived categories techniques, we
prove that any Ulrich bundle admits a two-terms resolution on the Hirzebruch surface
X . Conversely, given an injective map between totally decomposed vector bundles
on X , we give a necessary and sufficient condition such that its cokernel is an Ulrich
bundle. In this way we are able to prove and classify, with different techniques with
respect to [6], the existence of rank two special (i.e. det(E) = 3h+K) Ulrich bundles
on the Hirzebruch surfaces X . Furthermore, using a result of I. Coskun and Huizenga
[38], we are able to prove the existence of Ulrich bundles of any admissible rank and
first Chern class on X with respect to all very ample divisors h.

Moreover this characterization of Ulrich bundles on Hirzebruch surfaces leads to
a description of the moduli space of such vector bundles (for previous results see [42],
[43] and the references therein). The study of moduli spaces of sheaves has been an
important and central topic in algebraic geometry in the recent years. In particular
we show that the moduli space of stable Ulrich bundles (whenever non-empty) can
be realized as the quotient of an open subset of some space of matrices. Furthermore
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we are able to describe, inside this space of matrices, the locus corresponding to
non-Ulrich bundles.

Finally we give criterions of admissibility for the first Chern class and the rank
of an Ulrich bundle and we construct several examples of indecomposable rank two
and three Ulrich bundles both via the Hartshorne-Serre correspondence and using
the computer software Macaulay2.

In the second part of the thesis we focus on instanton bundles. Instanton bundles
on P3 were first defined in [12] by Atiyah, Drinfel’d, Hitchin and Manin. Their
importance arises from quantum physics; in fact these particular bundles correspond
(through the Penrose-Ward transform) to self-dual solutions of the Yang-Mills equa-
tion over the real sphere S4. We recall that a mathematical instanton bundle E with
charge (or quantum number k) on P3 is a stable rank two vector bundle E such that
c1(E) = 0, c2(E) = k and with the property (called instantonic condition) that

H1(E(−2)) = 0.

Every instanton of charge k on P3 can be represented as the cohomology of a
monad (a three-term self dual complex). Starting from P3, instanton bundles were
generalized to other projective spaces and the study of their moduli spaces became
an important topic in algebraic geometry (see for example [63], [65], [66], [64] and
[85]).

Coming back to the connections with quantum physics, in [59] Hitchin showed
that the only twistor spaces of four dimensional (real) differential varieties which are
Kähler (and a posteriori, projective) are P3 and the flag variety F(0,1,2), which is
the twistor space of P2.

On F(0,1,2) instanton bundles have been studied in [20], [45] and more recently
in [78]. F(0,1,2) is a Fano threefold with Picard number two. Let us call h1 and h2

the two generators of Pic(F(0,1,2)). In [78] Malaspina, Marchesi and Pons-Llopis
gave the following definition:

a rank two vector bundle E on the Fano threefold F(0,1,2) is an instanton bundle
of charge k if the following properties hold:

• c1(E) = 0, c2(E) = kh1h2;

• h0(E) = h1(E(−1,−1)) = 0 and E is µ-semistable.
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Apart from the connection to physics, another line of work is to generalize the
notion of instanton bundles on other threefolds, also as part of the larger goal of
understanding vector bundles on threefolds. Furthermore there have been generaliza-
tions of instanton bundles on higher dimensional varieties (see for example [2], [39],
[41], [85]).

In [49] (see also [73] in the case iX = 2 and [87] for details in the case of the del
Pezzo threefold of degree 5), the author generalizes the notion of instanton bundle
on P3 to any Fano threefold X with Picard number one. He defines instanton bundles
starting from a stable vector bundle G with

• G ∼= G∨⊗ωX ;

• H1(X ,G) = 0.

Let E be the twist G(t) of G such that c1(E) is either −1 or 0, and let c2(E) = k.
Then E is a k-instanton on X .

In [49] Faenzi considered Fano threefolds X with Picard number one. In this case
the index iX of the threefold is a number iX ∈ {1,2,3,4}. iX = 4 implies X = P3,
while iX = 3 implies that X is a smooth quadric hypersurface in P4. In case iX = 2,
the threefold X is called a del Pezzo threefold, while for iX = 1 the variety X is
called a prime Fano threefold. The author showed the non-emptiness of the moduli
space of instanton bundles of charge k for all the Fano threefolds with iX > 1, and
when iX = 1 under the assumption that the anticanonical bundle is very ample and
that X contains a line with normal bundle OL ⊕OL(−1). Then the author considers
varieties X such that the intermediate Jacobian of X is trivial. In this case he obtains
a monadic description of instanton bundles on a Fano threefold of Picard number
one.

In [73] Kuznetsov focused on Fano threefolds of Picard number 1, index 2 and
degree 4 and 5, both via a monadic description and by studying the behaviour of
such vector bundles when restricted to lines. In the case of degree 5 there is only
one such threefold Y5 which can be constructed as a linear section of codimension
3 of the Grassmannian Gr(2,5) embedded into the Plücker space P(Λ2k5). On Y5

any instanton is described, similarly to case of P3, as the cohomology of a self-dual
monad. Furthermore the Hilbert scheme of lines on Y5 can be identified with the
projective plane P2 and the locus of jumping lines is a curve inside P2. In degree
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4 each Fano threefold Y4 of index two is an intersection of two quadrics in P5. In
the pencil of quadrics passing through Y4 there are 6 degenerate quadrics. Consider
the double covering C of P1 parameterizing quadrics in the pencil. Let τ be the
hyperelliptic involution of C. Then the acyclic extension

∼
E of an instanton bundle

E of charge n corresponds to a semistable rank n vector bundle F on C such that
π∗F ∼= F∨. Moreover the scheme of lines on Y4 is isomorphic to the abelian surface
Pic0(C) and the curve of jumping lines coincides with the theta-divisor on Pic0C
associated with the bundle F . In [73] the author offers also some remarks on the
case of degree two and three.

Comparing the definition of instanton bundle on Fano threefolds with different
Picard number, it is worth to notice that when the Picard number is one, the condition
H0(E) = 0 implies the µ-stability. When the Picard number is larger than one,
however, this is not true and it is natural to consider also µ-semistable bundles (see
[45] and [78] Remark 2.2).

In this line also the definition on F(0,1,2) may be generalized to any Fano
threefold with Picard number larger than one (see [27] for the case of the blow up of
the projective 3-space at a point).

A really interesting subject concerning instanton bundles is the study of their
moduli space. The subspace of stable instanton bundles with a given c2 can be
identified with the open subspace of the Maruyama moduli space of stable rank
two bundles with those fixed Chern classes satisfying the cohomological vanishing
condition. For a large family of Fano threefolds with Picard number one, Faenzi in
[49, Theorem A] proves that the moduli spaces of instanton bundles has a generically
smooth irreducible component. An analogous result has been obtained in [78] for
the flag threefold. In the case of P3, it is known that the moduli space of instantons
of arbitrary charge is affine (see [44]), irreducible (see [89], [90]) and smooth (see
[32], [71] for charge smaller than 5 and [68] for arbitrary charge). The rationality is
still an open problem in general, being settled only for charges 1, 2, 3, and 5 (see
[15], [58], [48] and [70]).

In chapter 4 of this thesis (see the introduction of the chapter for the statements of
the main results) we contribute to the study of instanton bundles on Fano threefolds,
dealing with P1 ×P1 ×P1 which has the same index and degree of F(0,1,2) but its
Picard number is three. We also slightly generalize some results on the flag variety
F(0,1,2). Let us call h1, h2 and h3 the three generators of Pic(P1 ×P1 ×P1). The
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only difference with respect to the definition of instanton bundle on F(0,1,2) is
that on P1 ×P1 ×P1 we allow any possible second Chern class c2(E) = k1h2h3 +

k2h1h3 + k3h1h2 instead of restricting to c2(E) = kh1h2, and we define the charge to
be k = k1 + k2 + k3. By using a Beilinson type spectral sequence with suitable full
exceptional collections we construct two different monads which are the analog of
the monads for instanton bundles on P3 and on F(0,1,2).

This part of the the thesis is also related to the first one concerning Ulrich
bundles. Indeed there is a connection between Ulrich and instanton bundles. Notice
that when the charge is minimal, namely k = 2, any instanton bundle is, up to
twist, an Ulrich bundle. In the case of P1 ×P1 ×P1, in [28] Casnati, Faenzi and
Malaspina showed that there exist rank two Ulrich bundles with either c1(E) = 2h
or c1 = h1 +2h2 +3h3. It is straightforward to see that any rank two Ulrich bundle
with c1 = 2h is an instanton bundle twisted by h. However each rank two Ulrich
bundle with c1 = h1 +2h2 +3h3 cannot be the twist of an instanton bundle because
of numerical conditions on c1(E). On the two Fano threefolds with index two and
Picard number two every instanton bundle with minimal degree of c2(E) is a twist
of an Ulrich bundle (see [78] and [27]). If E is an instanton bundle on a Fano
threefold X with index two and Picard number one we have h1(E) = c2(E)−2 and
h0(E) = h2(E) = h3(E) = 0 (see section 3 of [49]). So when the charge is minimal,
namely c2(E) = 2, by Serre duality we have hi(E) = hi(E(−1)) = hi(E(−2)) = 0
for any i, so E is Ulrich up to a twist. On the three dimensional quadric (the only
case of index three) each instanton bundle of minimal charge is the spinor bundle
which is Ulrich. The monad for instanton bundles on P3 is

0 →OP3(−1)⊕k α−→O⊕2k+2
P3

β−→OP3(1)⊕k → 0,

so when k = 0 we get E =O⊕2
P3 . This is not an instanton bundle because is not simple.

However, from a monadic point of view, we may say that the trivial bundle E =O⊕2
P3 ,

which is Ulrich, is a limit case. The case of index one is much more complicated
(see section 4 of [49]).

In chapter 4, starting from Ulrich bundles, we are able to show, via an induction
process, the existence instanton bundles on P1 ×P1 ×P1 for every charge and every
second Chern class. In this process we are able to construct, similarly to [49] and
[78], a nice component of the moduli space of instanton bundles, i.e. generically
smooth and irreducible. Furthermore the vector bundles living in this component are
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generically trivial when restricted to lines. Since minimal charge instanton bundles
are Ulrich, we show that the generic Ulrich bundle is trivial when restricted to the
generic line. Apart from being the base case of induction, this could lead to a
better understanding of rank two Ulrich bundles on P1 ×P1 ×P1. The construction
proceeds as follows: take a rank two Ulrich bundle which is trivial when restricted
to the generic line. Then apply an elementary transformation along a generic line
to obtain a torsion free sheaf with increased c2 and deform it to a locally free sheaf.
As a consequence, the generic instanton bundle on P1 ×P1 ×P1 will be trivial when
restricted on the generic line of each family. Thus it is natural to study the locus
inside the Hilbert scheme of lines consisting of lines for which the restriction of the
generic instanton is not trivial, i.e. the locus of jumping lines. We show that the locus
of jumping lines form a divisor inside the Hilbert scheme of lines and we describe it.

Another approach to better study and understand the moduli space of instanton
bundles has been given by the ’t Hooft bundles. They are defined to be instanton
bundles on P3 having sections at the first twist (i.e. H0(E(1)) ̸= 0) and with c1 = 0
and c2 ≥ 2. These vector bundles correspond to smooth points in the moduli space
of instanton bundles. In particular the zero locus of a section of E(1) is given by a
disjoint union of lines. Starting from this notion, we generalized the concept of ’t
Hooft bundles to the Fano varieties P1 ×P1 ×P1 and F(0,1,2). The main difference
with the P3 case is that it is no longer possible to consider only lines, because
through the Hartshorne-Serre correspondence, such curves are in correspondence
with bundles with sections. Thus in our case a ’t Hooft bundle E is an instanton
bundle such that H0(E(hi)) ̸= 0 for some i, and the generic section of E(hi) vanishes
along a one-dimensional subscheme which is the disjoint union of lines and conics.
These vector bundles are special points in the moduli space of instanton bundles,
indeed one expects that the generic instanton start to have section when twisted by
a large number. Nevertheless they allow us to construct a nice component of the
moduli space of instanton bundles.
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Preliminary notions

2.1 Vector bundles

We will work over an algebraically closed field k of characteristic zero.

For any coherent sheaf E on X we will denote the twisted sheaf E ⊗OX(l) by
E(l). E∨ will indicate the dual sheaf HomOX (E,OX) and End(E) =HomOX (E,E)
stands for the sheaf of endomorphisms of E while End(E) = Hom(E,E) will de-
note the group. H i(X ,E) will denote, as usual, the cohomology groups of the
sheaf E and hi(X ,E) will denote their dimensions. We will also write exti(E,F) =

dimk Exti(E,F) for the dimension of the extension groups. We will use the notation
H i
∗(X ,E) for the graded module

⊕
l∈ZH i(X ,E(l)) and ωX will denote the dualizing

sheaf. We will write ci(E) for the i-th Chern class of a coherent sheaf E and we will
denote the Picard group of X , i.e. the group isomorphism classes of line bundles, by
Pic(X).

In this work by a vector bundle on X we will mean a locally free sheaf of constant
rank over a projective variety X .

2.1.1 Construction of vector bundles

In this section we present the main tools to construct vector bundles that we will use
in the next chapters. Let us start with the Hartshorne-Serre correspondence.
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Let F be a rank two vector bundle on X and let s ∈ H0(X ,F) be a section. In
general its zero-locus (s)0 ⊆ X is either empty or its codimension is at most 2. We
can always write (s)0 = S∪Z where Z has codimension 2 (or it is empty) and S has
pure codimension 1 (or it is empty). In particular F(−S) has a section vanishing on
Z, thus we can consider its Koszul complex

0 →OX(S)→ F →IZ|X(−S)⊗det(F)→ 0. (2.1.1)

Sequence (2.1.1) tensorized by OZ yields IZ|X/I2
Z|X

∼= F∨(S)⊗OZ , thus

NZ|X ∼= F(−S)⊗OZ. (2.1.2)

If S = 0, then Z is locally complete intersection inside X , because rk(F) = 2. In
particular, it has no embedded components. The above construction can be reversed
as follows.

Theorem 2.1. Let Z ⊆ X be a local complete intersection subscheme of codimension
2. If det(NZ|X)∼=OZ ⊗L for some L ∈ Pic(X) such that h2(X ,L∨) = 0, then there
exists a vector bundle F of rank two on X such that:

(i) det(F)∼= L;

(ii) F has a section s such that Z coincides with the zero locus (s)0 of s.

Moreover, if H1(X ,L∨) = 0, the above two conditions determine F up to isomor-
phism.

Proof. See [9].

Let us focus on the surface case. Let X be a smooth, projective irreducible
surface. As in Theorem 2.1 we will relate rank two vector bundles on a surface X
with subscheme of codimension two.

Theorem 2.2. [61, Theorem 5.1.1] Let Z ⊂ X be a local complete intersection of
codimension two, and let L and M be line bundles on X. Then there exists an
extension

0 → L → E → M⊗IZ|X → 0
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such that E is locally free if and only if the pair (L∨⊗M⊗KX ,Z) has the Cayley-
Bacharach property:
(CB) If Z′ ⊂ Z is a subscheme with l(Z′) = l(Z)− 1 and s ∈ H0(X ,L∨⊗M ⊗KX)

with s|Z′ = 0, then s|Z = 0.

Observe that the Cayley-Bacharach property clearly holds for all Z if H0(X ,L∨⊗
M⊗KX) = 0.

We will conclude this section by describing how to construct vector bundles on
surfaces via elementary transformation.

Definition 2.3. Let C be an effective divisor on the surface X . If F and G are vector
bundles on X and C, respectively, then a vector bundle E is obtained by an elementary
transformation of F along G if there exists an exact sequence

0 → E → F → i∗G → 0

where i denotes the embedding C ⊂ X .

Proposition 2.4. If F and G are locally free on X and C, respectively, then the kernel
E of any surjection φ : F → i∗G is locally free. Moreover, if ρ denotes the rank of G,
one has det(E)∼= det(F)⊗OX(−ρC) and c2(E) = c2(F)−ρCc1(F)+ 1

2ρC(ρC+

KX)+χ(G).

Observe that a trivial example of an elementary transformation is given by
OX(−C) which fits into the short exact sequence

0 →OX(−C)→OX →OC → 0,

i.e. is the elementary transformation of OX along OC.

2.1.2 Moduli spaces

In this section we will state the main definitions and results about moduli spaces of
sheaves. For the proofs of the statements and more details see [61, Chapter 4].

Let X ⊂ PN be a smooth n-dimensional projective variety and let H be a very
ample divisor on X . Given a coherent sheaf E on X , the Euler characteristic of E is
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defined as

χ(E) =
n

∑
i=0

(−1)ihi(E).

The Hilbert polynomial PE(m) is given by

m → χ
(
E ⊗OX(m)

)
/ rk(E).

Definition 2.5. Let X be a smooth irreducible projective variety of dimension n and
let H be an ample line bundle on X .

(i) For a torsion free sheaf E on X let

µH(E) :=
c1(E)Hn−1

rk(E)

be the slope of E with respect to H. The sheaf E is µ-semistable with respect
to the polarization H if and only if

µH(F)≤ µH(E)

for all non-zero subsheaves F ⊂E with rk(F)< rk(E). If the strictly inequality
holds then E is µ-stable with respect to H.

(ii) For a torsion free sheaf E on X let

PE(m) :=
χ
(
E ⊗OX(m)

)
rk(E)

be its Hilbert polynomial. The sheaf E is Gieseker semistable with respect to
the polarization H if and only if

PF(m)≤ PE(m) for m >> 0

for all non-zero subsheaves F ⊂E with rk(F)< rk(E). If the strictly inequality
holds then E is Gieseker stable with respect to H.

Remark 2.6. We will simply say µ-(semi)stable or stable when there is no confu-
sion on H. Furthermore the two notions of stability are related by the following
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implications

µ − stable ⇒ Gieseker stable ⇒ Gieseker semistable ⇒ µ − semistable.

Also it is worth to notice that both notion of stability strongly depends on the choice
of the ample line bundle H.

Theorem 2.7. Let X be a smooth projective variety of dimension n ≥ 2 and let H
be an ample line bundle on X. Then for any rank r torsion-free, µ-semistable with
respect to H, sheaf E on X we have

∆(E) := (2rc2(E)− (r−1)c2
1(E))H

n−2 ≥ 0.

The class ∆(E) is called the discriminant of E.

Let C be a category and let M : C → (Sets) be a contravariant moduli functor.

Definition 2.8. We say that a moduli functor M : C → (Sets) is represented by
an object M ∈ Ob(C) if it is isomorphic to the functor of points of M defined by
hM(S) = HomC(S,M). The object M is called a fine moduli space for the moduli
functor M.

If a fine moduli space exists, it is unique up to isomorphism. Since it is quite rare
that a fine moduli space exists it is necessary to find some other weaker conditions.
So we have the following

Definition 2.9. We say that a moduli functor M : C → (Sets) is corepresented by
an object M ∈ Ob(C) if there is a natural transformation α : M → hM such that
α({pt}) is bijective and for any object N ∈ Ob(C) and any natural transformation
β : M→ hN there exists a unique morphism φ : M → N such that β = hφ α . The
object M is called a coarse moduli space for the contravariant moduli functor M.
Furthermore if such a space exists, it is unique up to isomorphism.

In this work we will deal with the following contravariant moduli functor. Let
X be a smooth, irreducible projective variety over an algebraically closed field k of
characteristic zero. For a fixed polynomial P ∈Q[t], we consider the contravariant



16 Preliminary notions

moduli functor

MP
X(−) : (Sch/k)→ (Sets)

S 7→MP
X(S),

where MP
X(S) = {S-flat families F → X × S of vector bundles on X all whose

fibers have Hilbert polynomial P}/∼, with F ∼ F ′ if and only if F ∼= F ′⊗ p∗L for
some L ∈ Pic(S) where p : S×X → S is the natural projection. If f : S → S′ is a
morphism of schemes, MP

X( f )(−) is the map obtained by pulling-back sheaves via
fX = f × idX .

If MP
X exists is unique up to isomorphism. Nevertheless, in general the con-

travariant moduli functor MP
X(−) is not representable. To get a coarse moduli space

we must restrict to stable vector bundles.

Definition 2.10. Let X be a smooth, irreducible, projective variety of dimension n
over an algebraically closed field k of characteristic 0 and let H be an ample divisor on
X . For a fixed polynomial P ∈ Q[t], we consider the contravariant moduli subfunctor
Ms,H,P

X (−) of the contravariant moduli functor MP
X(−), where Ms,H,P

X (S) = {S-flat
families F → X ×S of vector bundles on X all whose fibers are µ-stable with respect
to H and have Hilbert polynomial P}/∼.

Theorem 2.11. The contravariant moduli functor Ms,H,P
X has a coarse moduli

scheme Ms,H,P
X which is separated and of finite type over k, i.e.:

(i) There exists a natural transformation

Φ : Ms,H,P
X (−)→ Hom(−,Ms,H,P

X )

which is bijective on any reduced point x.

(ii) For every scheme N and any natural transformation

Ψ : Ms,H,P
X (−)→ Hom(−,N),



2.1 Vector bundles 17

there exists a unique morphism α : Ms,H,P
X →N such that the following diagram

commutes:

Ms,H,P
X (−) Hom(−,Ms,H,P

X )

Hom(−,N)

Ψ

Φ

α∗

Moreover, Ms,H,P
X decompose as a disjoint union Ms

X ,H(r;c1, . . . ,cmin(r,n)) of
moduli spaces of rank r µ-stable vector bundles with Chern classes (c1, . . . ,cmin(r,n))

up to numerical equivalence.

One of the main problems in algebraic geometry is to determine the local and
global structure of Ms

X ,H(r;c1, . . . ,cmin(r,n)). We have the following bounds for the
local dimension:

Proposition 2.12. Let X be a n-dimensional smooth irreducible projective variety,
let H be an ample divisor and let E be a µ-stable vector bundle of rank r with
Chern classes ci ∈ H2i(X ,Z), represented in Ms

X ,H(r;c1, . . . ,cmin(r,n)) by a point [E].
Then the Zarinski tangent space of Ms

X ,H(r;c1, . . . ,cmin(r,n)) at [E] is canonically
isomorphic to

T[E]M
s
X ,H(r;c1, . . . ,cmin(r,n))

∼= Ext1(E,E).

Moreover we have the following bounds

ext1(E,E)≥ dim[E]M
s
X ,H(r;c1, . . . ,cmin(r,n))≥ ext1(E,E)− ext2(E,E).

In particular, if Ext2(E,E) = 0 then Ms
X ,H(r;c1, . . . ,cmin(r,n)) is smooth at [E] and

dim[E]M
s
X ,H(r;c1, . . . ,cmin(r,n)) = ext1(E,E).

We conclude this section by recalling the definition of simple and indecomposable
vector bundles.

Definition 2.13. Let X be a projective variety and let E be a vector bundle on X . E
is called simple if the only endomorphisms are the homoteties, i.e. End(E) = k. E
is called indecomposable if it cannot be written as E ∼= F ⊕G where F and G are
non-zero vector bundles.
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These notions are related as follows:

Lemma 2.14. Let X ⊆ PN be a projective variety and let E be a vector bundle on X.
Then we have the following implications:

E is µ-stable ⇒ E is simple ⇒ E is indecomposable.

2.2 Derived categories

In this section we will state some preliminary facts on derived categories. For more
details on the topic see for example [54], [56].

Definition 2.15. Let A be an abelian category. Let A• and B• be two complexes
over A and let k = (ki) : Ai → Bi−1 be a collection of morphisms of sheaves. Then
the maps

h = kd +dk : A• → B•,

i.e.
hi = ki+1di

A +di−1
B ki : Ai → Bi

form a morphism of complexes.

The morphism h = A• → B• is said to be homotopic to 0, and we will write h ∼ 0.
Morphisms f ,g : A• → B• are said to be homotopic if f − g = kd + dk ∼ 0 and k
is the corresponding homotopy. If f ∼ g, then H•( f ) = H•(g) where H•(•) is the
induced map in cohomology.

Definition 2.16. A morphism f : A• → B• of complexes in an abelian category A
is said to be a quasi-isomorphism if the corresponding cohomology morphisms
Hn( f ) : Hn(A•)→ Hn(B•) are isomorphisms for any n.

Definition 2.17. Let A be and abelian category and Kom(A) the category of com-
plexes over A. There exists a category D(A) and a functor Q : Kom(A)→ D(A)

with the following properties:

a) Q( f ) is an isomorphism for any quasi-isomorphism f .

b) Any functor F : Kom(A)→D transforming quasi-isomorphisms into isomor-
phisms can be uniquely factorized through D(A) i.e. there exists a unique
functor G : D(A)→D with F = G◦Q.
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The category D(A) is called the derived category of the abelian category A

In what follows we will work with a full subcategory of D(A). Let

Kom+(A) : Ki = 0 for i ≤ i0(K•),

Kom−(A) : Ki = 0 for i ≥ i0(K•)

Komb(A) = Kom+(A)∩Kom−(A).

These are full subcategories in Kom(A) and if we localize by quasi-isomorphism it
is possible to form the corresponding derived categories D+(A), D−(A) and Db(A).

2.2.1 Derived category of coherent sheaves

Given a smooth projective variety X , we will denote by Db(X) be the bounded
derived category of coherent sheaves on X .

Definition 2.18. Let X be a smooth projective variety.

(i) An object E ∈Db(X) is called exceptional if Hom•
Db(X)

(E,E) is a 1-dimensional
algebra generated by the identity.

(ii) An ordered collection (E0,E1, . . . ,Em) of objects in Db(X) is called an excep-
tional collection if Hom•

Db(X)
(Ei,E j) = 0 for j < i.

(iii) An exceptional collection (E0,E1, . . . ,Em) of objects in Db(X) is called a
strongly exceptional collection if ExtkDb(X)

(Ei,E j) = 0 for j ≥ i and k ̸= 0.

(iv) An ordered collection (E0,E1, . . . ,Em) of objects in Db(X) is a full (strongly)
exceptional collection if it is a (strongly) exceptional collection and E0,E1, . . . ,Em

generate the bounded derived category Db(X).

Remark 2.19. The existence of a full strongly exceptional collection (E0, . . . ,Em) of
coherent sheaves on a smooth projective variety X imposes that the Grothendieck
group K0(X) = K0(OX −mod) is isomorphic to Zm+1.

Definition 2.20. Let X be a smooth projective variety and let (A,B) be an exceptional
pair of objects of Db(X). Let us consider the following distinguished triangles on
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the category Db(X)

LAB → Hom•(A,B)⊗A → B → LAB[1] (2.2.1)

RBA[−1]→ A → Hom∨•(A,B)⊗B → RBA. (2.2.2)

A left mutation of an exceptional pair σ = (A,B) is the pair

LAσ = (LAB,A) = (LB,A)

and a right mutation of an exceptional pair σ = (A,B) is the pair

RBσ = (B,RBA) = (B,RA).

Lower indices will be omitted whenever this does not cause confusion.

Definition 2.21. Let X be a smooth projective variety and let σ = (E0, . . . ,Em) be
an exceptional collection of objects of Db(X). A left mutation (resp. right mutation)
of σ is defined as a mutation of a pair of adjacent objects in this collection, i.e. for
any i ≤ m a left mutation Li replaces the i-th pair of consequent elements (Ei−1,Ei)

by its left mutation (LEi−1Ei,Ei−1) and a right mutation Ri replaces the same pair of
consequent elements (Ei−1,Ei) by its right mutation (Ei,REiEi−1):

Liσ = LEi−1σ = (E0, . . . ,LEi−1Ei,Ei−1, . . . ,Em),

Riσ = REiσ = (E0, . . . ,Ei,REiEi−1, . . . ,Em).

Remark 2.22. (i) If X is a smooth projective variety and σ = (F0, . . . ,Fm) is an
exceptional collection of objects of D, then any mutation of σ is an exceptional
collection. Moreover, if σ generates the category Db(X), then the mutated
collection also generates Db(X).

(ii) In general the mutation of strongly exceptional collection is not a strongly
exceptional collection. In fact, take X = P1 ×P1 and consider the full strongly
exceptional collection σ = (OX ,OX(1,0),OX(0,1),OX(1,1)) of line bundles
on X . It is not difficult to check that the mutated collection

(OX ,OX(1,0),LOX (0,1)OX(1,1),OX(0,1))

is no more a strongly exceptional collection of line bundles on X .
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In the next sections we will use the Beilinson’s spectral sequence in order to
obtain a complex whose cohomology coincides with certain vector bundles (for this
version of the theorem see [8, Theorem 2.5]). We start by stating that for every
coherent sheaves there exists a spectral sequence which degenerates to the sheaf
itself.

Theorem 2.23 (Beilinson-type spectral sequence). Let X be a smooth projective
variety with a full exceptional collection (E0, . . . ,En) where Ei = E∗

i [−ki], with
each Ei a vector bundle, and (k0, . . . ,kn) ∈ Zn+1 such that there exists a sequence
(F0 = F0, . . . ,Fn = Fn) of vector bundles satisfying

Extk(Ei,Fj) = Hk+ki(Ei ⊗F j) =

C if i = j = k,

0 otherwise.
(2.2.3)

(Fn, . . . ,F0) is the right dual collection of (E0, . . . ,En). Then for every coherent sheaf
A on X there is a spectral sequence in the square −n ≤ p ≤ 0, 0 ≤ q ≤ n with
E1-term

E p,q
1 = Hq+k−p(E−p ⊗A)⊗F−p

which is functorial in A and converges to

E p,q
∞ =

A if p+q = 0,

0 otherwise.

It is possible to state a stronger version of the Beilinson’s theorem. Namely, given
additional conditions on a exceptional collection E of the variety, every coherent
sheaf is quasi isomorphic to a complex exact everywhere except in degree 0. Every
term of this complex is a direct sum of objects of the dual collection of E.

Theorem 2.24. [18][1] Let A j
i , B j

i , with i = 1, . . . ,n and j = 1, . . . ,ki be bundles on
a smooth projective variety X and denote by p and q the two projections of X ×X X
on X. Suppose that we have

(i) a resolution of the diagonal ∆X ⊂ X ×X given by

· · · →
k2⊕

j=1

p∗A j
2 ⊗q∗B j

2 →
k1⊕

j=1

p∗A j
1 ⊗q∗B j

1 →OX×X →O∆ → 0.
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(ii) Extp
X(B

j
i ,B

s
t ) = 0 for p > 0 and for all i, j, t,s.

Then each complex F• on X is obtained as the cohomology of a complex C•F with

C p
F =

⊕
s−i=p

ki⊕
j=1

Hs(X ,F•⊗A j
I )⊗B j

i

so that B j
i are building block for the sheaves on X

The idea is to take the resolution of the diagonal and apply the Fourier-Mukai
functor

Rq∗(p∗(−)⊗C∆)

where C is the complex resolving the diagonal and p and q are the two natural
projections from X ×X to X . In this way we obtain a complex quasi isomorphic to
F•, but with morphism defined in derived category. Condition (ii) ensures that these
morphisms actually arise from true morphism of sheaves.

Kapranov showed that if Db(X) admits a strong full exceptional collection of
locally free sheaves (E0, . . . ,Em) then there exists a resolution of diagonal in terms
of these sheaves and their derived category duals, and every complex on X is quasi-
isomorphic to a complex whose terms are direct sums of the E ′

i s [69, 2.14-2.17].

Let us rephrase these results.

Proposition 2.25. Let X be a smooth projective variety and let A be a coherent sheaf
on X. Let (E0, . . . ,En) be a full exceptional collection of locally free objects and
(Fn, . . . ,F0) its right dual collection as in (2.2.3) and such that F ′

i s are locally free.
If Extk(Fi,Fj) = 0 for k > 0 and all i, j, i.e. (Fn, . . . ,F0) is strong, then there exists a
complex of vector bundles L• such that

1. Hk(L•) =

A if k = 0,

0 otherwise.

2. Lk =
⊕

k=p+q
Hq+k−p(A⊗E−p)⊗F−p with 0 ≤ q ≤ n and −n ≤ p ≤ 0.

Example 2.26. The projective space Pn admits a full exceptional collection of
the form (OPn(−n), . . . ,OPn(−1),OPn) whose dual is (OPn(−1), . . . ,Ω1

Pn(1),OPn).
Both collections are strong, thus both the Ω

j
Pn( j) and OPn(− j) with j = 0, . . . ,n, can
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be considered as the building blocks of any coherent sheaf on the projective space
(see [18] for the original result).

In the rest of this section we will recall to construct full exceptional collections
for projective bundles. Indeed this will cover the construction of full exceptional
collections for the varieties we considered in this thesis.

Let E be a rank r vector bundle over a smooth projective variety X . Then there
exists a projective bundle P(E) with projection p : P(E)→ X . We will denote by
Db(X) and Db(E) the bounded derived category of coherent sheaves on X and P(E)
respectively.

Proposition 2.27. [86, Corollary 2.7] If there exists a full exceptional collection
in the derived category Db(X) then the derived category Db(E) also posses an
exceptional collection. Indeed, let (E0, . . . ,En) be a full exceptional collection in
Db(X). Then the collection

(p∗E0 ⊗OE(−r+1), . . . , p∗En ⊗OE(−r+1), . . . , p∗E0, . . . , p∗En)

is a full exceptional collection in Db(E).

Let us consider the Hirzebruch surface Xe = P(OP1 ⊕OP1(−e))→ P1. Using
Proposition 2.27 we have that the collection (corresponding to Ei in Theorem 2.23)

(OXe(−1,−1),OXe(−1,0),OXe(0,−1),OXe) (2.2.4)

is a full exceptional collection for Xe, whose dual collection (Fi in Theorem 2.23)

(OXe(−1,−e−1)[−1],OXe(−1,−e)[−1],OXe(0,−1),OXe) (2.2.5)

is obtained using the duality condition expressed in (2.2.3).

In an analogous way it is possible to compute a full exceptional collection for
the Segre threefold X = P1 ×P1 ×P1. Indeed we have that the collection

(OX(−h),OX(−h2 −h3),OX(−h1 −h3), (2.2.6)

OX(−h1 −h2),OX(−h3),OX(−h2),OX(−h1),OX)
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which is self dual up to shift, i.e. the dual collection using (2.2.3) is given by

(OX(−h)[−4],OX(−h2 −h3)[−4],OX(−h1 −h3)[−3],

OX(−h1 −h2)[−2],OX(−h3)[−2],OX(−h2)[−1],OX(−h1),OX).

We conclude this section with some remarks on the resolution of the diagonal
and mutations.

Example 2.28. Let us consider the quadric surface Q = P1 ×P1 ⊂ P3. In [69] the
author shows that the diagonal ∆ ⊂ Q×Q admits the following resolution

0 →
OQ(−1,−2)⊠OQ(−1,0)

⊕
OQ(−2,−1)⊠OQ(0,−1)

→OQ(−1,−1)⊠Ψ →OQ×Q →O∆ → 0. (2.2.7)

where Ψ is the restriction of ΩP3 to Q.

However it is also possible to consider the following resolution of the diagonal

0 →OQ(−1,−1)⊠OQ(−1,−1)→
OQ(−1,0)⊠OQ(−1,0)

⊕
OQ(0,−1)⊠OQ(0,−1)

→OQ×Q →O∆ → 0.

(2.2.8)

In this example we show how to obtain (2.2.7) from (2.2.8) through consecutive
mutations. Let us consider the full exceptional collection

E = (OQ(−1,−1),OQ(−1,0),OQ(0,−1),OQ),

whose dual is

F = (OQ(−1,−1)[−1],OQ(−1,0)[−1],OQ(0,−1),OQ).

Let us apply a left mutation to the pair (OQ(−1,−1),OQ(−1,0)) of objects of E.
The mutated pair, using the Euler sequence of P1, is given by (OQ(−1,−2),OQ(−1,−1)).
Since F is the dual collection of E, to a left mutation of objects of E corre-
spond a right mutation of objects of F . In particular to a left mutation of the
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pair (OQ(−1,−1),OQ(−1,0)), corresponds a right mutation of the pair

(OQ(−1,−1)[−1],OQ(−1,0)[−1])

of objects of F . Thus the mutated pair will be (OQ[−1](−1,0),OQ(−1,1)[−1]). So
the two mutated collections are

E ′ = (OQ(−1,−2),OQ(−1,−1),OQ(0,−1),OQ)

F ′ = (OQ(−1,0)[−1],OQ(−1,1)[−1],OQ(0,−1),OQ)

and (2.2.8) becomes

0 →OQ(−1,−2)⊠OQ(−1,0)→
OQ(−1,−1)⊠OQ(−1,1)

⊕
OQ(0,−1)⊠OQ(0,−1)

→OQ×Q →O∆ → 0.

Now let us consider the pair (OQ(−1,−1),OQ(0,−1)) in E ′. Its left mutation is
given by the pair (OQ(−2,−1),OQ(−1,−1)). The correspondent right mutation in
F ′ is given by ROQ(0,−1)(OQ(−1,1)[−1],OQ(0,−1))= (OQ(0,−1),ROQ(−1,1)[−1]).
Now we compute ROQ(−1,1)[−1] using the distinguished triangle (2.2.2). In de-
rived category Hom∨

D(OQ(−1,1)[−1],OQ(0,−1))=Ext1Q(OQ(−1,1),OQ(0,−1))∨.
Since ext1Q(OQ(−1,1),OQ(0,−1)) = 2, we have ROQ(−1,1)[−1] = Ψ where Ψ is
an extension of type

0 →OQ(0,−1)2 → Ψ →OQ(−1,1)→ 0

i.e. Ψ is the restriction of ΩP3 to Q. Now the mutated collections are

E ′′ = (OQ(−1,−2),OQ(−2,−1),OQ(−1,−1),OQ)

F ′′ = (OQ(−1,0)[−1],OQ(0,−1),Ψ,OQ)

and we obtain the resolution of the diagonal as in (2.2.7)

0 →
OQ(−1,−2)⊠OQ(−1,0)

⊕
OQ(−2,−1)⊠OQ(0,−1)

→OQ(−1,−1)⊠Ψ →OQ×Q →O∆ → 0.



Chapter 3

Ulrich bundles on Hirzebruch
surfaces

In this chapter we will characterize Ulrich bundles over Hirzebruch surfaces. In
[6] Aprodu, Costa and Miró-Roig discussed the existence of Ulrich line bundles
and special rank two Ulrich bundles, i.e. rank two Ulrich bundles E such that
det(E) = 3h+KX , over ruled surfaces. Their existence implies that the associated
Cayley-Chow form is represented as a linear pfaffian [47]. The authors proved
that Ulrich line bundles over ruled surfaces exist only for a particular choice of the
polarization OX(h), and they proved the existence of special Ulrich bundles under a
mild assumption on the polarization.

In [51] and [79] the authors considered the case of Hirzebruch surfaces embedded
as rational normal scrolls.

In this chapter we prove the following theorem:

Theorem 3.1. Let (Xe,OXe(a,b)) be a polarized Hirzebruch surface and E a rank r
Ulrich bundle with c1(E) = αC0 +β f .

1. Then E fits into a short exact sequence of the form

0 →Oγ

Xe
(a−1,b− e−1)→Oδ

Xe
(a−1,b− e)⊕Oτ

Xe
(a,b−1)→ E → 0

where γ = α + β − r(a+ b− 1)− e(α − ar), δ = β − r(b− 1)− e(α − ar)
and τ = α − r(a−1).



27

2. Then E fits into a short a exact sequence of the form

0→E →Oλ
Xe
(2a−1,2b−2)⊕Oµ

Xe
(2a−2,2b−1−e)−→Oν

Xe
(2a−1,2b−1)→ 0

where λ = r(2b − 1 − e)− β − e(r(2a − 2)− α), µ = r(2a − 1)− α and
ν = r(2a+2b−3− e)−α −β − e(r(2a−2)−α).

Thus we are able to express E as the cokernel (resp. kernel) of a certain injective
(resp. surjective) map, using derived categories techniques. A result of this type was
obtained in [33] for the Veronese surface, and in [76] for the projective space PN

embedded with a very ample line bundle OPN (d).

In [38] I. Coskun and Huizenga found a similar resolution with totally different
methods. They used it to classify Chern characters such that the correspondent
general stable bundle on Xe is globally generated.

Then we discuss the inverse problem: given an injective map φ as above, is
E = Coker(φ) an Ulrich bundle? Our answer is given by

Theorem 3.2. Let (Xe,OXe(h)) with h= aC0+b f be a polarized Hirzebruch surface.

1. Let φ be an injective map

Oγ

Xe
(a−1,b− e−1)

φ−→Oδ
Xe
(a−1,b− e)⊕Oτ

Xe
(a,b−1)

with δ ,τ non-negative, γ positive and δ + τ > γ . Let us call r = δ + τ − γ

and denote with E the cokernel of φ . In particular c1(E) = αC0 +β f with
α = τ + r(a−1) and β = r(b−1)+δ −e(r−τ). If c1(E)h = r

2(3h2 +hKXe)

then E is an Ulrich bundle if and only if H2(E(−2h)) = 0.

2. If ψ is a surjective map

Oλ
Xe
(2a−1,2b−2)⊕Oµ

Xe
(2a−2,2b−1− e)

ψ−→Oν
Xe
(2a−1,2b−1)

with λ ,µ non-negative, ν positive and λ +µ > ν . Let us call r = λ +µ −ν

and denote by E the kernel of ψ . In particular c1(E) = αC0 +β f with α =

r(2a−1)−µ and β = r(2b−1−e)−λ −e(µ−r). If c1(E)h= r
2(3h2+hKXe)

then E is an Ulrich bundle if and only if H0(E(−h)) = 0.
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For the first case, by computing the long exact sequence in cohomology we
see that h0(E(−h)) = h1(E(−h)) = 0 and that h1(E(−2h)) = h2(E(−2h)). Thus
as soon as one of them vanishes, also the other does, and this is equivalent to
the injectivity of the induced map H2(φ(−2h)). The second case is treated in an
analogous way.

In the particular case of special Ulrich bundles, the induced map H2(φ(−2h)) is
always an isomorphism. So we obtain an alternative (with respect to [6, Theorem
3.4]) proof of the existence of special Ulrich bundles, characterizing them as the
cokernel of a map between very well understood vector bundles. For the other cases
we offer a family of counterexamples which shows that the cohomological condition
h1(E(−2h)) = 0 is necessary in general, and we describe the locus where Coker(φ)
fails to be Ulrich. Moreover we are able to prove the following existence theorem:

Theorem 3.3. Let us consider (Xe,OXe(h)) with h = aC0 +b f . If the map φ as in
Theorem 3.2 is general, then E =Coker(φ) is Ulrich. In particular on (Xe,OXe(a,b))
there exist Ulrich bundles for any admissible rank and first Chern class.

The strategy is to use [38, Theorem 1.1] to obtain that the bundle E, realized as the
cokernel of a general map φ , has the property that E(−2h) has natural cohomology.
Since h1(E(−2h)) = h2(E(−2h)) they cannot be both different from zero and thus
E is Ulrich. This shows that every Hirzebruch surface admits Ulrich bundles of
any admissible first Chern class, any admissible rank and with respect to every very
ample polarization.

Starting from Theorem 3.3 we also discussed the existence of stable Ulrich
bundles of rank greater than two with respect to polarizations that do not factor
through a Veronese embedding.

Furthermore, using the computer software Macaulay2, Theorem 3.2 gives us a
useful tool to construct examples of Ulrich bundles of higher rank with a fixed first
Chern class.

Part of what follows can be found in [4].
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3.1 General facts on Hirzebruch surfaces and Ulrich
bundles

Let us begin with some definitions and results on Hirzebruch surfaces. For more
details see [57, V.2].

Definition 3.4. A geometrically ruled surface, or simply ruled surface, is a surface
X , together with a surjective morphism π : X →C to a (nonsingular) curve C, such
that the fibre Xy is isomorphic to P1 for every point y ∈C.

Note that as a consequence of this definition, π admits a section (i.e. a morphism
σ : C → X such that π ◦σ = idC).

Proposition 3.5. If π : X →C is a ruled surface, then there exists a locally free sheaf
E of rank 2 on C such that X ∼= P(E) over C. Conversely every such P(E) is a ruled
surface over C. If E and E ′ are two locally free sheaves of rank 2 on C, then P(E) is
a ruled surface over C, then P(E) and P(E ′) are isomorphic as ruled surfaces over
C if and only if there exists an invertible sheaf L on C such that E ′ ∼= E ⊗L.

Now we continue with a description of the Picard group.

Proposition 3.6. Let π : X →C be a ruled surface, let C0 ⊆ X be a section, and let
f be a fibre. Then

PicX ∼= Z⊕π
∗PicC,

where Z is generated by C0. Also

NumX ∼= Z⊕Z,

generated by C0, f , and satisfying C0 f = 1, f 2 = 0.

Proposition 3.7. If π : X → C is a ruled surface, it is possible to write X ∼= P(E)
where E is a vector bundle on C such that E has section, but for all invertible
sheaves L on C with negative degree we have H0(E(L)) = 0. In this case the integer
e = −degE is an invariant of X. Furthermore there is a section σ : C → X with
image C0, such that L(C0)∼=OX(1).

Now we describe the canonical divisor on X .



30 Ulrich bundles on Hirzebruch surfaces

Lemma 3.8. The canonical divisor KX on X is given by

KX =−2C0 +(2g−2− e) f

where g is the genus of the curve C.

Definition 3.9. An Hirzebruch surface is a geometrically ruled surface over P1. In
this case e ≥ 0 and for each e ≥ 0 there is exactly one Hirzebruch surface with invari-
ant e, given by P(E) = P(OP1 ⊕OP1(−e)) over P1. We will denote the Hirzebruch
surface with invariant e by Xe.

Now let us consider a divisor D. It will be of the form D = aC0 +b f . We have
the following

Proposition 3.10. Let D as above be a divisor on Xe. Then:

D is very ample ⇔ D is ample ⇔ a > 0 and b > ae.

Given a divisor D= aC0+b f we will write the associated line bundle as OXe(a,b)
or OXe(aC0 +b f ).

Furthermore on Xe there are two natural short exact sequences. The first one is

0 →OXe(0,−1)→O2
Xe

→OXe(0,1)→ 0, (3.1.1)

which is the pullback on Xe of the Euler sequence over P1. Other than that we also
have a second natural exact sequence

0 → ΩXe/P1 → π
∗(OP1 ⊕OP1(−e))⊗OXe(−1,0)→OXe → 0

which, in this case, will take the form

0 →OXe(−1,−e)→OXe ⊕OXe(0,−e)→OXe(1,0)→ 0. (3.1.2)

Now we state the following lemma which shows how to compute the cohomology
of the line bundles over Xe.
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Lemma 3.11. [57, Exercise III.8.1, III.8.4] Given OXe(tC0 + s f ) a line bundle on
π : Xe → P1 then

H i(Xe,OXe(tC0 + s f )) =


0 if t =−1
H i(P1,Symt(E)⊗OP1(s)) if t ≥ 0
H2−i(P1,Sym−2−t(E)⊗OP1(−e− s−2)) if t ≤−2,

where E =OP1 ⊕OP1(−e).

Now we recall the main definitions and properties of Ulrich bundles and we
present the main results on Hirzebruch surfaces. Let X ⊂ PN be a smooth irreducible
closed subscheme, let F be a vector bundle on X and let OX(h) be the induced
polarization. We say that:

• F is initialized if h0(X ,F(−h)) = 0 ̸= h0(X ,F).

• F is aCM if hi(X ,F(th)) = 0 for each t ∈ Z and i = 1, . . . ,dim(X)−1.

• F is Ulrich if hi(X ,F(−ih)) = h j(X ,F(−( j+ 1)h)) = 0 for each i > 0 and
j < dim(X).

Proposition 3.12. [24, Proposition 2.1] Let S be a surface endowed with a very
ample line bundle OS(h). If E a vector bundle on S, then the following are equivalent:

1. E is an Ulrich bundle;

2. E∨(3h+KS) is an Ulrich bundle;

3. E is an aCM bundle and

c1(E)h =
rk(E)

2
(3h2 +hKS),

c2(E) =
1
2
(c1(E)2 − c1(E)KS)− rk(E)(h2 −χ(OS));

(3.1.3)

4. h0(S,E(−h)) = h0(S,E∨(2h+KS)) = 0 and equalities (3.1.3) hold.

Moreover, the Riemann-Roch theorem on a surface S is

χ(F) =
c2

1(F)

2
− c1(F)KS

2
− c2(F)+ rk(F)χ(OS) (3.1.4)
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for each locally free sheaf F on S.

We continue with some properties of Ulrich bundles.

Theorem 3.13. [22, Theorem 2.9] Let X ⊂ PN be a smooth, irreducible, closed
variety. If E is an Ulrich bundle on X then the following assertions hold.

a) E is semistable and µ-semistable.

b) E is stable if and only if it is µ-stable.

c) if
0 → L → E → M → 0

is an exact sequence of coherent sheaves with M torsion free and µ(L) = µ(E),
then both L and M are Ulrich bundles.

Finally we state the main result about Ulrich bundles on Hirzebruch surfaces.

Proposition 3.14. [6, Theorem 2.1] Let us consider (Xe,OXe(h)) with h = aC0 +b f
and e > 0. Then there exists Ulrich line bundles with respect to h if and only if a = 1,
and they are

OXe(0,2b−1− e) and OXe(1,b−1).

Now we consider rank two Ulrich bundles. Although the following result was
proved in a more general context, we state it in the case of Hirzebruch surfaces.

Proposition 3.15. [6, Proposition 3.1, 3.3, Theorem 3.4] Let us consider (Xe,OXe(h))
with h = aC0 +b f and e > 0. Then

1. if a = 1 there exists a family of dimension 2b− e− 3 of indecomposable,
rank-two, simple, strictly semistable, special Ulrich bundles on Xe.

2. if a≥ 2 there exists special Ulrich bundles with respect to h given by extensions

0 →OXe(a,b−1)→ E →IZ(2a−2,2b−1− e)→ 0,

where Z is a general zero-dimensional subscheme of Xe with l(Z) = (a−
1)(b− ea

2 ).
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In what follows we will show that every Ulrich bundle of any rank fits into a
short exact sequence of totally decomposed vector bundles on Xe. Furthermore,
given an injective map between these vector bundles we give necessary and sufficient
conditions such that the cokernel of the map is Ulrich. In this way we are able to
obtain the existence of Ulrich bundles of any admissible rank and first Chern class
on Xe.

3.2 From the Ulrich bundle to the resolution

We start this section by describing the cohomology of an Ulrich bundle E on Xe.

Lemma 3.16. Let E be a rank r Ulrich bundle on (Xe,OXe(a,b)). Then

1. h0(Xe,E(t,s)) = h2(Xe,E(t,s)) = 0 for all −2a ≤ t ≤−a and −2b ≤ s ≤−b

2. h1(Xe,E(−a,s)) = h2(Xe,E(−a,s)) = 0 for all s ≥−b.

3. h1(Xe,E(t,s)) = h2(Xe,E(t,s)) = 0 for all t ≥−a and s ≥−b+ e.

4. h0(Xe,E(t,s)) = h1(Xe,E(t,s)) = 0 for all t ≤−2a and s ≤−2b− e.

In particular E(t,s) has natural cohomology (i.e. there exists at most one k such that
hk(E(t,s)) ̸= 0) for such t and s.

Proof. For the first part of the lemma, since E is Ulrich, then E(−a,−b) has no
cohomology. For any effective divisor D we have the following short exact sequence

0 →OXe(−D)→OXe →OD → 0. (3.2.1)

Tensoring (3.2.1) by E(−a,−b) and considering the long exact sequence in coho-
mology, we obtain h0(Xe,E(t,s)) = 0 for all t ≤ −a and s ≤ −b. Using Serre’s
duality and the fact that E∨(3h+KXe) is Ulrich, we obtain h2(Xe,E(t,s)) = 0 for all
t ≥−2a and s ≥−2b.

For the second part, we proceed by induction on s. We have h1(Xe,E(−a,−b)) =
0 because E is Ulrich. Suppose h1(Xe,E(−a,k)) = 0 for all −b ≤ k ≤ s, tensor
(3.1.1) by E(−a,s) and consider the long exact sequence in cohomology. Since
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h1(Xe,E(−a,s)) = 0 by inductive hypothesis, we have h1(Xe,E(−a,s+ 1)) = 0,
which proves (2).

For the third part we want to show that h1(Xe,E(t,s)) = 0 for all t ≥ −a and
s ≥ −b+ e, so we proceed by a double induction on t and s. Suppose s ≥ −b,
by (2) we have that h1(Xe,E(−a,s)) = 0. Suppose that h1(Xe,E(k,s)) = 0 for all
−a ≤ k ≤ t and s ≥ −b, and tensor (3.1.2) by E(t,s). Considering the long exact
sequence induced in cohomology we have that if s ≥−b+ e, then h1(Xe,E(t,s)) =
h1(Xe,E(t,s− e)) = 0 by inductive hypothesis, and h2(Xe,E(t − 1,s− e)) = 0 be-
cause E is Ulrich, so we can conclude that h1(Xe,E(t + 1,s)) = 0 which proves
(3).

For the last part recall that since E is Ulrich then the same holds for E∨(3h+KXe),
so we obtain (4) using (3) and Serre’s duality.

Now we will prove one of the main theorems of this work.

Theorem 3.17. Let E be an Ulrich bundle of rank r on (Xe,OXe(h)) with h =

aC0 +b f and with first Chern class c1(E) = αC0 +β f .

1. Then E fits into a short exact sequence of the form

0 →Oγ

Xe
(a−1,b− e−1)→Oδ

Xe
(a−1,b− e)⊕Oτ

Xe
(a,b−1)→ E → 0

(3.2.2)
where γ = α + β − r(a+ b− 1)− e(α − ar), δ = β − r(b− 1)− e(α − ar)
and τ = α − r(a−1).

2. Then E fits into a short a exact sequence of the form

0→E →Oλ
Xe
(2a−1,2b−2)⊕Oµ

Xe
(2a−2,2b−1−e)

ψ−→Oν
Xe
(2a−1,2b−1)→ 0

(3.2.3)
where λ = r(2b − 1 − e)− β − e(r(2a − 2)− α), µ = r(2a − 1)− α and
ν = r(2a+2b−3− e)−α −β − e(r(2a−2)−α).

Proof. We apply the Beilinson’s Theorem to E(−a,−b) as in Proposition 2.25. We
start by computing the cohomology table of E(−a,−b).
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OXe(−1,−e−1) OXe(−1,−e) OXe(0,−1) OXe

0 0 0 0 h3

γ δ 0 0 h2

0 0 τ 0 h1

0 0 0 0 h0

E(−a−1,−b−1)[−1] E(−a−1,−b)[−1] E(−a,−b−1) E(−a,−b)

Every column represents the dimension of the cohomology groups of the vector
bundle at the bottom. The therms on the top of the table are the vector bundles that
will appear in the Beilinson resolution as in Proposition 2.25. The shifts in the last
two columns represent the ki’s in Theorem 2.23 and Proposition 2.25.

Since Xe is a surface, it follows that:

h3(Xe,E(−a,−b)) = h3(Xe,E(−a,−b−1)) = 0

and trivially

h0(Xe,E(−a−1,−b−1))[−1] = h0(Xe,E(−a−1,−b))[−1] = 0.

All the zeroes in the table are obtained using Lemma 3.16. Since all the vector
bundles in the table have natural cohomology, we will use the Riemann-Roch theorem
to compute the only non-zero cohomology groups. In general given a divisor D on
Xe we have

c1(E(D)) = c1(E)+ rD

c2(E(D)) = c2(E)+(r−1)c1(E)D+
r(r−1)

2
D2.
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So by Riemann-Roch and using Proposition 3.12 we have

χ(E(D)) = rh2 + c1(E)D+
r
2

D(D−KXe). (3.2.4)

• E(−a−1,−b−1).

In this case D = −h−C0 − f so using Proposition 3.12 and equality (3.2.4)
we have

χ(E(D)) =−α −β + r(a+b−1)+ e(α − ra).

• E(−a−1,−b).

In this case D =−h−C0 so as above

χ(E(D)) =−β + r(b−1)+ e(α −ar).

• E(−a,−b−1).

In this case D =−h+ f and

χ(E(D)) =−α + r(a−1).

By Proposition 2.25 we have a short exact sequence

0 →Oγ

Xe
(−1,−1− e)→Oδ

Xe
(−1,−e)⊕Oτ

Xe
(0,−1)→ E(−a,−b)→ 0 (3.2.5)

with γ = α +β − r(a+b−1)− e(α −ar), δ = β − r(b−1)− e(α −ar) and τ =

α − r(a−1). Tensoring the sequence by OXe(h) we obtain part (1) of the theorem.

For part (2) recall that if E is Ulrich, then the same is true for E∨(3h+KXe).
Applying Beilinson’s theorem to E∨(3h+KXe), and dualizing the sequence, we
obtain (2).

Observe that Theorem 3.17 imposes some numerical necessary conditions that a
vector bundle must satisfy in order to be Ulrich.

Corollary 3.18. Let E be a rank r vector bundle on (Xe,OXe(a,b)) with first Chern
class c1(E) = αC0 +β f . If E is Ulrich then, using the notation of Theorem 3.17, δ ,
τ and γ (resp. λ , µ and ν) are non-negative, with δ and τ (resp. λ and µ) not both
zero. Moreover if a > 1 and e > 0 then γ and τ (resp. µ and ν) are positive.
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Proof. The non-negativity follows directly from the fact that the exponents of the res-
olutions (3.2.2) and (3.2.3) must be non-negative since they represent the dimension
of a cohomology group. Since δ + τ − γ = r > 0, δ and τ cannot be both zero. Fur-
thermore, suppose γ = 0. Then we will have E ∼=Oδ

Xe
(a−1,b−e)⊕Oτ

Xe
(a,b−1) but

by Propositions 3.14 and 3.23, if e = 0 then both Oδ
Xe
(a−1,b−e) and Oτ

Xe
(a,b−1)

are Ulrich. If e > 1 then Oδ
Xe
(a−1,b− e) is not Ulrich and Oτ

Xe
(a,b−1) is Ulrich

only when a = 1. So γ can be zero only if e = 0 or a = 1 (and in this case also
δ = 0). The part regarding ν is completely analogous. Now we prove the last part
of the statement. Suppose e > 0 and a > 1. If τ = 0 then E would be the pull-back
of a vector bundle of P1. By Grothendieck’s theorem every vector bundle on P1 is
the direct sum of line bundles, i.e E = π∗(

⊕
i Li). Since E is Ulrich, each π∗(Li) is

Ulrich, but this is not possible since, by Proposition 3.14, Xe does not admit Ulrich
line bundles if e > 0 and a > 1.

Using similar techniques it is also possible to retrieve each Ulrich bundle on Xe

as the cohomology of a monad.

Proposition 3.19. Let E be a rank r Ulrich bundle on (Xe,OXe(a,b)) with a > 1 and
with first Chern class c1(E) = αC0 +β f . Then E is the cohomology of a monad of
the form

0 →Oε
Xe
(a−1,b− e)→Oζ

Xe
(a−1,b+1− e)⊕Oη

Xe
(a,b)→Oϑ

Xe
(a,b+1)→ 0

(3.2.6)
where ε = 2α +β − r(2a+b−1)− e(α −ar), ζ = 2α −2r(a−1), η = α +β −
r(a+b−1)− e(α −ar) and ϑ = α − r(a−1).

Proof. We apply Beilinson’s theorem to retrieve the monad. In order to do so, we
compute the cohomology table of E(−a,−b−1).
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OXe(−1,−e−1) OXe(−1,−e) OXe(0,−1) OXe

0 0 0 0 h3

ε ζ 0 0 h2

0 0 η ϑ h1

0 0 0 0 h0

E(−a−1,−b−2)[−1] E(−a,−b−2)[−1] E(−a−1,−b−1) E(−a,−b−1)

Since Xe is not embedded as a scroll, we obtain all the vanishings in the table with
Lemma 3.16. To compute the dimension of the only non-zero cohomology groups
we use Riemann-Roch. So we have

• ε =−χ(E(−a−1,−b−2)) = 2α +β − r(2a+b−1)− e(α −ar).

• ζ =−χ(E(−a,−b−2)) = 2α −2r(a−1).

• η =−χ(E(−a−1,−b−1)) = α +β − r(a+b−1)− e(α −ar).

• ϑ =−χ(E(−a,−b−1)) = α − r(a−1).

By Proposition 2.25 we get that E(−a,−b−1) is the cohomology of the monad

0 →Oε
Xe
(−1,−e−1)→Oζ

Xe
(−1,−e)⊕Oη

Xe
(0,−1)→Oϑ

Xe
→ 0

and tensoring it by OXe(a,b+1) we obtain the desired result.

3.3 From the resolution to the Ulrich bundle

Now we study the inverse problem: given a coherent sheaf E which is the cokernel
(resp. kernel) of a map as in (3.2.2) (resp in (3.2.3)), is it an Ulrich sheaf on Xe?
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Theorem 3.20. Let (Xe,OXe(h)) with h = aC0 +b f be a polarized Hirzebruch sur-
face.

1. Let φ be an injective map

Oγ

Xe
(a−1,b− e−1)

φ−→Oδ
Xe
(a−1,b− e)⊕Oτ

Xe
(a,b−1) (3.3.1)

with δ ,τ non-negative, γ positive and δ + τ > γ . Let us call r = δ + τ − γ

and denote with E the cokernel of φ . In particular c1(E) = αC0 +β f with
α = τ + r(a−1) and β = r(b−1)+δ −e(r−τ). If c1(E)h = r

2(3h2 +hKXe)

then E is an Ulrich bundle if and only if H2(Xe,E(−2h)) = 0.

2. If ψ is a surjective map

Oλ
Xe
(2a−1,2b−2)⊕Oµ

Xe
(2a−2,2b−1− e)

ψ−→Oν
Xe
(2a−1,2b−1)

(3.3.2)
with λ ,µ non-negative, ν positive and λ +µ > ν . Let us call r = λ +µ −ν

and denote by E the kernel of ψ . In particular c1(E) = αC0 +β f with α =

r(2a−1)−µ and β = r(2b−1−e)−λ −e(µ−r). If c1(E)h= r
2(3h2+hKXe)

then E is an Ulrich bundle if and only if H0(Xe,E(−h)) = 0.

Proof. We only prove (1), since the proof of (2) is completely analogous. First of
all observe that the existence of an injective map φ is guaranteed by the fact that
Oγδ

Xe
(0,1)⊕Oγτ

Xe
(1,e) is globally generated [14, §4.1].

Let E be the cokernel of φ , thus E fits into an exact sequence like (3.2.2). So as
soon as we check that

H0(Xe,E(−h))=H1(Xe,E(−h))= 0 and H1(Xe,E(−2h))=H2(Xe,E(−2h))= 0,

then E is an Ulrich vector bundle. Let us consider E(−h) = E(−a,−b). Now tensor
(3.2.2) by OXe(−a,−b). Since

H i(Xe,Oγ

Xe
(−1,−e−1)) = H i(Xe,Oδ

Xe
(−1,−e)⊕Oτ

Xe
(0,−1)) = 0 for all i,

we get
h0(Xe,E(−a,−b)) = h1(Xe,E(−a,−b)) = 0.
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Now we focus on E(−2h) = E(−2a,−2b). We tensor (3.2.2) by OXe(−2a,−2b).
Setting A =Oγ

Xe
(−a−1,−b−e−1) and B =Oδ

Xe
(−a−1,−b−e)⊕Oτ

Xe
(−a,−b−

1) the induced long exact sequence in cohomology takes the form

0 → H1(Xe,E(−2h))→ H2(Xe,A)
H2(φ(−2h))−−−−−−−→ H2(Xe,B)→ H2(Xe,E(−2h))→ 0.

We show that h2(Xe,A)= h2(Xe,B). This will imply H1(Xe,E(−2h))=H2(Xe,E(−2h)).
By Riemann-Roch we obtain that if c1(E)h = r

2(3h2 +hKXe), then χ(A) = χ(B). In
particular χ(E(−2h)) = 0 and since H0(Xe,E(−2h)) = 0 we have that

H1(Xe,E(−2h)) = H2(Xe,E(−2h)).

Thus E = Coker(φ) is Ulrich if and only if H2(Xe,E(−2h)) = 0 (which is equivalent
to the injectivity of the map H2(φ(−2h))).

In [6] the authors proved the existence of special rank two Ulrich bundles on
ruled surfaces. Thanks to Theorem 3.20 we obtain the existence of special Ulrich
bundles on Hirzebruch surfaces for any very ample polarization in a different way.
Furthermore we characterize them as the cokernel (resp. kernel) of an injective (resp.
surjective) map between certain totally decomposed vector bundles.

Corollary 3.21. Let E be a rank two vector bundle on (Xe,OXe(h)) with h = aC0 +

b f and c1(E) = αC0 + β f = 3h+KXe . Then E is Ulrich if and only if it is the
cokernel of an injective map φ

Oγ

Xe
(a−1,b− e−1)

φ−→Oδ
Xe
(a−1,b− e)⊕Oτ

Xe
(a,b−1)

with γ = α + β − 2(a + b − 1)− e(α − 2a), δ = β − 2(b − 1)− e(α − 2a) and
τ = α −2(a−1).

Proof. We showed in Theorem 3.20 that as soon as a vector bundle has a resolution
of the form (3.2.2) then hi(Xe,E(−h)) = 0 for all i. Furthermore, E is a rank two
vector bundle, so E∨ ∼= E(−c1). From the resolution we are able to conclude that
h1(Xe,E(−2h)) = h2(Xe,E(−2h)) and using Serre’s duality we get

h2(Xe,E(−2h)) = h0(Xe,E∨(2h+KXe)) = h0(Xe,E(−h)) = 0,
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thus E is Ulrich. Notice that in the case of special Ulrich bundles the resolutions
(3.2.2) and (3.2.3) are dual to each other (up to twist).

Remark 3.22. In the case of (P2,OP2(d)) one can find a resolution of an Ulrich
bundle using similar techniques (see [33], [76]). In that case, every rank r vector
bundle admitting a resolution of the form

0 →OP2
r
2 (d−1)(d −2)

φ→OP2
r
2 (d+1)(d −1)→ E → 0 (3.3.3)

is Ulrich if and only if H2(P2,E(−2d)) = 0. When we consider rank two vector
bundles sitting in the previous short exact sequence, they are automatically Ulrich, i.e.
the cohomological condition is trivially satisfied (using the fact that E∨ ∼= E(−c1)).
However we will see that the situation on rationally ruled surfaces is quite different.

In order to show that the vanishing of H1(Xe,E(−2h)) is needed in general, we
focus our attention on rank two Ulrich bundles on (X0,OX0(d,d)). We will see in
Section 5 that, thanks to Proposition 3.29, we have d + 1 admissible first Chern
classes αC0 +β f (up to an exchange of α and β ) and we have that for (α,β ) =

(2d − 2,4d − 2) the Ulrich bundle splits since Ext1(OX0(d − 1,2d − 1),OX0(d −
1,2d −1)) = 0.

We start recalling which are the Ulrich line bundles on (X0,OX0(a,b)).

Proposition 3.23. [24, Example 2.1] Let L be a line bundle on the polarized surface
(X0,OX0(a,b)). Then L is Ulrich if and only if

L =OX0(2a−1,b−1) or L =OX0(a−1,2b−1).

Now we are able to construct a counterexample of a vector bundle realized as
the cokernel of a map as in Theorem 3.20 which is not Ulrich (in particular with
H1(Xe,E(−2h))∼= H2(Xe,E(−2h)) ̸= 0).

Example 3.24. Let us consider the polarized Hirzebruch surface (X0,OX0(d,d)) and
let u be an integer such that 1≤ u≤ d−1. We construct a rank 2 vector bundle sitting
in a resolution of the form (3.2.2), with first Chern class c1 = (2d−2+u,4d−2−u)
that is not Ulrich. Let us consider the following exact sequence

0 →Ou−1
P1 (d −1)→Ou

P1(d)→OP1(u+d −1)→ 0
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and let us pull it back on X obtaining

0 →Ou−1
X0

(d −1,d −1)→Ou
X0
(d,d −1)→OX0(u+d −1,d −1)→ 0.

With the same argument we can find a second short exact sequence

0 →O2d−u−1
X0

(d −1,d −1)→O2d−u
X0

(d −1,d)→OX0(d −1,3d −u−1)→ 0.

If we set E = OX0(u+ d − 1,d − 1)⊕OX0(d − 1,3d − u− 1) and we combine the
two sequences we obtain a resolution of the form (3.2.2):

0 →O2d−2
X0

(d −1,d −1)→O2d−u
X0

(d −1,d)⊕Ou
X0
(d,d −1)→ E → 0.

Every direct summand of an Ulrich bundle is also Ulrich. By Proposition 3.23, we
know that both OX0(u+ d − 1,d − 1) and OX0(d − 1,3d − 1− u) are Ulrich only
when u = d, so the bundle E constructed in this way is not Ulrich.

We conclude this section with the following remark.

Remark 3.25. In the same hypothesis of Theorem 3.20, the locus of maps φ which
do not give rise to Ulrich bundles is a divisor in the open space of maximal rank
matrices which represent morphisms φ . In fact it is the locus where the induced map
in cohomology

H2(Xe,Oγ

Xe
(−a−1,−b−e−1))

H2(φ(−2h))−−−−−−−→H2(Xe,Oδ
Xe
(−a−1,−b−e)⊕Oτ

Xe
(−a,−b−1))

is not an isomorphism. Since this two vector spaces have the same dimension, the
locus where E = Coker(φ) is not Ulrich is given by det(H2(φ(−2h))) = 0. Now we
produce an example where we explicitly describe this locus.

Consider X0 embedded with OX0(2,2). By [23, Theorem 6.7] there exists a rank
two Ulrich bundle F on (X0,OX0(2,2)) with c1(F) = 3C0+5 f . Consider a rank two
vector bundle E with c1(E) = 3C0 +5 f realized as the cokernel of an injective map

O2
X0
(1,1)

φ−→O3
X0
(1,2)⊕OX0(2,1).

Now we describe the locus where E = Coker(φ) fails to be Ulrich. Recall by
Theorem 3.20 that E is Ulrich if and only if the induced map in cohomology
H2(φ(−2h)) is injective. By Serre’s duality this is equivalent to the surjectivity
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of a map ψ : Hom(O3
X0
(−3,−2)⊕OX0(−2,−3),OX0(−2,−2))→ Hom(O2

X0
(−3−

3),OX0(−2,−2)) where ψ( f ) = f ◦φ .

Now take

f ∈ Hom(O3
X0
(−3,−2)⊕OX0(−2,−3),OX0(−2,−2)).

Let us denote [Y0 : Y1] the coordinates of the first factor P1 and [Y2 : Y3] the coordinates
of the second factor. Then the matrices of f and φ are

f =
(

α0
1Y0 +α1

1Y1 α0
2Y0 +α1

2Y1 α0
3Y0 +α1

3Y1 α2
4Y2 +α3

4Y3

)
and

φ =


β 2

1,1Y2 +β 3
1,1Y3 β 2

1,2Y2 +β 3
1,2Y3

β 2
2,1Y2 +β 3

2,1Y3 β 2
2,2Y2 +β 3

2,2Y3

β 2
3,1Y2 +β 3

3,1Y3 β 2
3,2Y2 +β 3

3,2Y3

β 0
4,1Y0 +β 1

4,1Y1 β 0
4,2Y0 +β 1

4,2Y1

 .

Imposing ψ( f ) = f φ = (0) we obtain a system 8 equations given by

3

∑
l=1

α
i
l β

j
l,k +α

j
4β

i
4,k = 0 (3.3.4)

where i = 0,1, j = 2,3 and k = 1,2. Now if we consider αa
b as variables, the matrix

of the system (3.3.4) is given by

B =



β 2
1,1 β 2

2,1 β 2
3,1 0 0 0 β 0

4,1 0
β 2

1,2 β 2
2,2 β 2

3,2 0 0 0 β 0
4,2 0

β 3
1,1 β 3

2,1 β 3
2,2 0 0 0 0 β 0

4,1

β 3
1,2 β 3

2,2 β 3
3,2 0 0 0 0 β 0

4,2

0 0 0 β 2
1,1 β 2

2,1 β 2
3,1 β 1

4,1 0
0 0 0 β 2

1,2 β 2
2,2 β 2

3,2 β 1
4,2 0

0 0 0 β 3
1,1 β 3

2,1 β 3
2,2 0 β 1

4,1

0 0 0 β 3
1,2 β 3

2,2 β 3
3,2 0 β 1

4,2


(3.3.5)

and the locus where E is not Ulrich is described by det(B) = 0.
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3.4 Admissible ranks and Chern classes for Ulrich
bundles

In this section we deal with the admissible first Chern classes and admissible ranks
of Ulrich bundles on (Xe,OXe(a,b)). We start with the following definition:

Definition 3.26. Let D = αC0 +β f be a divisor on (Xe,OXe(h)) with h = aC0 +b f
and let r be a positive integer. We say that the pair (r,D) is an admissible Ulrich pair
with respect to h if and only if the following conditions hold

• Dh = r
2(3h2 +hKXe);

• α and β satisfy the numerical conditions

r(a−1)≤ α ≤ r(2a−1), (3.4.1)

r(b−1)− e(α − r(2a−2))≤ β ≤ r(2b−1)− e(r(2a−1)−α), (3.4.2)

with strict equalities in (3.4.1) if e > 0 and a > 1.

We will omit h in the notation when no confusion arises. It follows trivially
from the definition that if (r,D) is not an admissible Ulrich pair, then there cannot
exist a rank r Ulrich bundles on (Xe,OXe(h)) with c1(E) = D. Furthermore, once
the rank is fixed, we will sometimes consider admissible first Chern classes instead
of admissible Ulrich pairs.

Remark 3.27. The bounds in Definition 3.26 are obtained using Corollary 3.3. In
particular the bound on β would be r(b−1)−e(α −ar)≤ β ≤ r(2b−1)−e(r(2a−
1)−α) but it is possible to improve it. Recall by Proposition 3.12 that E is Ulrich
if and only if E∨(3h+KXe) is Ulrich, so the bounds on β should be centred in
r
2(3b−2− e). This gives us the actual bounds on β in Definition 3.26.

In the next proposition we characterize admissible Ulrich pairs.
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Proposition 3.28. Let D=αC0+β f be a divisor on (Xe,OXe(h)) with h= aC0+b f .
If (r,D) is an admissible Ulrich pair then it satisfies

T =
er
2
(3a−1)+

b
a
(α + r) ∈ Z

and (3.4.3)

r(a−1)+
era
2b

(a−1)≤ α ≤ r(2a−1)− era
2b

(a−1).

Conversely any pair (r,D) satisfying (3.4.3) and Dh= r
2(3h2+hKXe) is an admissible

Ulrich pair.

Proof. Since (r,D) is an admissible Ulrich pair then Dh =α(b−ea)+βa = r
2(3h2+

hKXe). Now we express β as a function of α , thus

β = r(3b−1)+αe− er
2
(3a−1)− b

a
(r+α).

However α and β represent the coefficients of the divisor D, thus they must be
integers. In particular we obtain that

er
2
(3a−1)+

b
a
(α + r) ∈ Z.

Moreover observe that since we expressed β as a function of α , the numerical
conditions (3.4.2) on β give us the bound on α . In fact by imposing β ≤ r(2b−1)−
e(r(2a−1)−α) one obtains

r(a−1)+
era
2b

(a−1)≤ α.

The upper bound is obtained as in Remark 3.27 by noticing that the interval giving the
bounds for α should be centered in r

2(3a−2). For the second part of the statement
it is enough to show that the bound (3.4.3) on α gives us the bound on β , but this
follows from the fact that we obtained (3.4.3) by imposing the inequalities (3.4.2)
on β .

Now we focus on rank two Ulrich bundles. Notice that in this case er
2 (3a−1)

is always even, thus the admissibility of the first Chern class depends on whether
b
a(α + r) is an integer or not.
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Proposition 3.29. Let E be a rank two Ulrich bundle on (X0,OX0(a,b)). If GCD(a,b)=
s then we have 2s+1 possible first Chern classes for E given by

(2a−2+ kq)C0 +(4b−2− kp) f

with 0 ≤ k ≤ 2s, p = b
s and q = a

s .

Proof. Suppose that c1(E) is given by c1(E) = αC0+β f . Then by Proposition 3.12
we have:

c1(E)h = aβ +bα = 6ab−2a−2b (3.4.4)

which is an integer. Now solving with respect to β we obtain

β =
1
a
(6ab−2a−2b−bα).

In order for c1(E) to be an admissible first Chern class of an Ulrich bundle, by
Proposition 3.28 we have the following bounds for α and β

2a−2 ≤ α ≤ 4a−2 and 2b−2 ≤ β ≤ 4b−2.

Now define {
αi = 2a−2+ i
βi =

1
a

(
6ab−2a−2b−b(2a−2)−bαi

)
= 4b−2− bi

a ,

By Proposition 3.28, (2,αiC0 +βi f ) is an admissible Ulrich pair if and only if bi
a

is an integer. Let us define s = GCD(a,b). Then the only possibilities for bi
a to be

integer are when i = k a
s , with 0 ≤ k ≤ 2s and k ∈ Z. So we have 2s+1 admissible

first Chern classes for E.

Remark 3.30. In the case of (X0,OX0(a,b)), to satisfy the Bogomolov’s inequality for
semistable rank two vector bundles is equivalent to satisfy the numerical conditions
in Corollary 3.18. In fact for a semistable rank two vector bundle E with first Chern
class c1(E) = αC0 +β f the Bogomolov’s inequality gives us

∆ = 4c2(E)− c2
1(E)≥ 0,
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while the numerical conditions for the Beilinson’s resolution are{
4a−2 ≥ α ≥ 2a−2
4b−2 ≥ β ≥ 2b−2.

Using Proposition 3.12 we have

c2(E) =
c1(E)

2

2
− c1(E)KX0

2
−2(h2 −1),

so that
∆ = c1(E)2 −2c1(E)KX0 −2(h2 −1).

Recall that for a rank two Ulrich bundle we have

c1(E)h = αb+βa = 3h+KX0,

so expressing ∆ in terms of α we have ∆(α)≥ 0 for all 2a−2 ≤ α ≤ 4a−2. We
conclude that any rank two vector bundle on X0 fitting into the resolution (3.2.2)
satisfies Bogomolov’s inequality and, conversely, any vector bundle satisfying the
Bogomolov’s inequality also satisfies the conditions in Corollary 3.18

For (Xe,OXe(a,b)) with e > 0 the situation is slightly different from X0, because
when the invariant e is positive is not always guaranteed the existence of Ulrich line
bundles.

Remark 3.31. Polarizations h =C0 +b f with b > e are the only ones such that Xe

admits Ulrich line bundles. In this case it is immediate to see that we have three
admissible first Chern classes for a rank two Ulrich bundle, which are

(4b−2−2e) f C0 +(3b−2− e) f 2C0 +(2b−2) f .

For all the other cases we have the following proposition.

Proposition 3.32. Let E be a rank two Ulrich bundle on (Xe,OXe(h)) with h =

aC0 +b f such that a > 1. If GCD(a,b) = s then the admissible first Chern classes
for E are given by

(2a−2+ kq)C0 +(4b−2− e− kp+ kqe) f
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with k ∈ Z such that es
b (a−1)≤ k ≤ 2s− es

b (a−1), p = b
s and q = a

s .

Proof. The strategy is completely analogous to the one of Proposition 3.29 but the
computations are a bit more tedious. Since the degree of c1(E) is fixed for any rank
two Ulrich bundle, this will give us an equation in the coefficients of c1(E), namely
α and β . By solving for β and imposing that it is an integer number, we obtain all
the admissible first Chern classes.

Remark 3.33. Suppose Xe is embedded with a very ample divisor h = aC0 +b f such
that GCD(a,b) = 1, then the only possibility for the first Chern class of a stable,
rank two Ulrich bundle E on Xe is c1(E) = 3h+KXe (i.e. E is special).

In what follows we focus on the admissibility of ranks and first Chern classes of
Ulrich bundles in some particular cases. In light of Remark 3.33, one expects that
for polarizations OXe(a,b) with GCD(a,b) = 1 we have the least possible number
of admissible first Chern classes for E.

Let E be a rank r Ulrich bundle on Xe with respect to OXe(a,b) with GCD(a,b) =
1 and let c1(E) = αC0+β f be its first Chern class. Suppose e > 0 and a > 1. If a is
odd or e is even, then by Proposition 3.28 the pair (r,c1(E)) is an admissible Ulrich
pair if and only if

α = ka− r (3.4.5)

with
k ∈ Z and r+

er
2b

(a−1)≤ k ≤ 2r− er
2b

(a−1).

Now we describe explicitly all the admissible Ulrich pairs for such polarized Hirze-
bruch surfaces.

Proposition 3.34. Let E be a rank r Ulrich bundle on (Xe,OXe(h)) with h= aC0+b f
such that GCD(a,b) = 1. Suppose e > 0 and a > 1. If a is odd or e is even then the
admissible first Chern classes for E are given by

(ka− r)C0 +
(

r
(
3b−1− e

2
(3a+1)

)
+ k(ae−b)

)
f (3.4.6)

with k ∈ Z such that r+ er
2b(a−1)≤ k ≤ 2r− er

2b(a−1).

Proof. In the hypothesis of this Proposition c1(E) = αC0 +β f is admissible if and
only if α = ka− r with r+ er

2b(a−1)≤ k ≤ 2r− er
2b(a−1). For each of such α use
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the relation
α(b−ae)+βa =

r
2
(3h2 +hKXe)

to compute β .

3.5 Existence and moduli spaces

In this section we will discuss some results on the existence of Ulrich bundles and
their moduli spaces. Let us fix the notation. Let X be a smooth algebraic surface,
we will denote by Mh(r;c1,c2) the moduli space of rank two locally free sheaves
E on X stable with respect to a polarization h and with det(E) = c1 ∈ Pic(X) and
c2(E) = c2 ∈ Z. We start by recalling the following proposition concerning the rank
two case.

Proposition 3.35. [42, Theorem 4.7] Let X be a smooth, irreducible, projective,
minimal, rational surface, c1 ∈ Pic(X) and c2 ∈ Z. Then, for any polarization h on
X, the moduli space Mh(2;c1,c2) is a smooth, irreducible, rational, quasi-projective
variety of dimension 4c2 − c2

1 −3, whenever non-empty.

The moduli space of stable rank r Ulrich bundles E with det(E) = c1 and c2(E) =
c2 is an open subset in Mh(r;c1,c2) and we will denote it by MU

h (r;c1,c2). In what
follows we show how we can use Theorem 3.17 to study the moduli spaces of Ulrich
bundles of rank greater than two. We start by giving an existence theorem.

We showed in the previous section that given an injective map φ as in Theo-
rem 3.20, in general the vanishing H1(Xe,E(−2h)) = 0 is necessary to obtain that
Coker(φ) is Ulrich. However we are able to prove the following existence result.

Theorem 3.36. (Xe,OXe(h)) supports Ulrich bundle of any admissible Ulrich pair
(r,c1).

Proof. First of all recall that by Proposition 3.14 and 3.23, (Xe,OXe(h)) admits Ulrich
line bundles if and only if e = 0 or h =C0+b f and e > 0. Now let us consider a map
φ , as in (3.3.1), general. Then φ would be injective and let us denote by E its cokernel.
Corollary 3.18 implies that the Chern character of E(−2h) satisfies the hypothesis
of [38, Theorem 1.1]. In particular we obtain that E(−2h) has natural cohomology
and, since χ(E(−2h)) = 0, we have h1(Xe,E(−2h)) = h2(Xe,E(−2h)) = 0 and E
is Ulrich.
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Once the existence is settled we focus on moduli spaces of Ulrich bundles.

Lemma 3.37. If E is a rank r Ulrich bundle on (Xe,OXe(h)) with h = aC0 +b f and
a,b > 1, then Ext2(E,E) = 0.

Proof. Consider the short exact sequence (3.2.2) and tensor it by E∨. The long exact
sequence in cohomology gives us

δh2(Xe,E∨(a−1,b− e))+ τh2(Xe,E∨(a,b−1))≥ h2(Xe,E ⊗E∨).

Since E is Ulrich, the same is true for E∨(3h+KXe). Now using Lemma 3.16 and
the fact that a,b > 1, we obtain h2(Xe,E∨(a−1,b− e)) = h2(Xe,E∨(a,b−1)) = 0,
thus H2(Xe,E ⊗E∨)∼= Ext2(E,E) = 0.

In light of this we can state the following proposition.

Proposition 3.38. Let us consider (Xe,OXe(h)) with h = aC0 + b f and let (r,c1)

be an admissible Ulrich pair. Then the moduli space MU
h (r;c1,c2) is a smooth,

irreducible, unirational, quasi-projective variety of dimension c2
1−rc1KXe −r2(2h2−

1)+1, for r = 2,3, e > 0 and a > 1.

Proof. Smoothness comes from Lemma 3.37. To any element

φ ∈ Hom(Oγ

Xe
(a−1,b− e−1),Oδ

Xe
(a−1,b− e)⊕Oτ

Xe
(a,b−1))

as in Theorem 3.20, we can associate its cokernel, forming a flat family. Thanks
to Theorem 3.36 the generic element in this family is an Ulrich bundle. Theorem
3.13 tells us that an Ulrich bundle can only be destabilized over an Ulrich bundle
and the cokernel of the inclusion map is also Ulrich. In particular, if we consider the
rank r to be two or three, the existence of a strictly semistable Ulrich bundle would
imply the existence of Ulrich line bundles. Using Proposition 3.14, we see that
(Xe,OXe(h)) does not admit Ulrich line bundles for e > 0 and a > 1. We conclude
that in these cases all the Ulrich bundles are stable, so MU

h (r;c1,c2) is non-empty.
For irreducibility and unirationality observe that MU

h (r;c1,c2) is dominated by an
open subset of a space of matrices, which is irreducible and unirational. Finally,
for the dimension, recall that for stable bundles we have h0(E ⊗E∨) = 1. Since
dimMU

h (r;c1,c2) = dimExt1(E,E), and Ext2(E,E) = 0 by Lemma 3.37, we obtain
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dimMU
h (r;c1,c2) = 1−χ(E⊗E∨). Using [22, Proposition 2.12] we have the desired

result.

Remark 3.39. When (Xe,OXe(a,b)) admits Ulrich line bundles the situation is dif-
ferent. In [51] the authors proved that when a = 1 we have exactly two Ulrich line
bundles and all the Ulrich bundles of rank greater than two are strictly semistable,
i.e MU

h (r;c1,c2) is empty for r ≥ 2. If we consider (X0,OX0(a,b)) with a,b > 1, by
Proposition 3.23 it always admits two Ulrich line bundles. However we will see in
Section 7 that there exists a stable rank two Ulrich bundle for every admissible first
Chern class. Thus we can describe the moduli space MU

X0,h
(2;c1,c2) using the same

argument of Proposition 3.38.

We continue this section dealing with higher ranks Ulrich bundles. Suppose Xe

is embedded with a very ample line bundle OXe(h) with h = aC0 +b f and such that
GCD(a,b) = 1, i.e. the embedding Xe ↪→ PN does not factor through a Veronese
embedding, and with a > 1 and odd. Once we fix the rank r the admissible Ulrich
pairs are given by (3.4.6).

Remark 3.40. It is worth to notice that in Proposition 3.34 we have r+ er
2b(a−1)<

2r− er
2b(a−1). However k is an integer and it could happen that there is no integer

between r+ er
2b(a−1) and 2r− er

2b(a−1), i.e. in that cases there are no admissible
Ulrich pairs (r,D) with respect to h = aC0 +β f .

Proposition 3.41. Let us consider (Xe,O(a,b)) with GCD(a,b) = 1, e > 0 and
a > 1. If a is odd or e is even then for any even rank r the pair (r, r

2(3h+KXe)) is an
admissible Ulrich pair.

Proof. Let us set D = αC0 +β f = r
2(3h+KXe). In particular α = 3

2ra− r so by
Proposition 3.34 it is enough to show that r+ er

2b(a−1)≤ 3
2r ≤ 2r− er

2b(a−1). This
is equivalent to r(b− ea+ e) ≥ 0 which is always true by the very ampleness of
h.

In the cases when r is odd then the divisor r
2(3h+KXe) does not have integer

coefficients, thus the “nearest" admissible Ulrich pair would be r
2(3h+KXe)− 1

2D
where D = aC0 +(ae−b) f . Let us denote by ∆t the positive number

∆t =
tb

b−ae+ e
.
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Observe that if r is odd and r < ∆1, then there are no integers between r+ er
2b(a−1)

and 2r− er
2b(a−1), thus we have the following proposition.

Proposition 3.42. Let us consider (Xe,O(a,b)) with GCD(a,b) = 1, e > 0 and
a > 1. If a is odd or e is even then there are no admissible Ulrich pair (r,D) with r
odd and r < ∆1, i.e. there cannot exist odd rank Ulrich bundles of rank r < ∆1.

Remark 3.43. In the same setting of Proposition 3.42, let us consider r̄ to be the
first odd integer such that r̄ ≥ ∆1. Then there exists two admissible Ulrich pairs(
r̄, r̄

2(3h+KXe)− 1
2D

)
and

(
r̄, r

2(3h+KXe)+
1
2D

)
with D = aC0 + (ae− b) f . By

Proposition 3.36 there exist an Ulrich bundle corresponding to these admissible
Ulrich pairs. Observe that such a bundle is stable. In fact if it were semistable, then
would be an extension of an odd and an even Ulrich bundle with rank smaller than r̄,
but this is not possible since there are no Ulrich bundles of odd rank smaller than r̄.

Now we prove a Lemma which will be useful in the next propositions

Lemma 3.44. Let Ei be Ulrich bundles on (Xe,OXe(h)) such that rk(Ei) = ri are
even. Then the admissible first Chern classes for Ei are

c1(Ei) =
ri

2
(3h+KXe)+ kiD with −

(ri

2
− er

2b
(a−1)

)
< ki <

ri

2
− er

2b
(a−1)

(3.5.1)
with ki ∈ Z and D = aC0 +(ae−b) f . In particular

χ(Ei ⊗E∨
j ) =−

rir j

4
(h2 −4)+KXeD

(ri

2
k j −

r j

2
ki

)
+ kik jh2.

Proof. The first part of the Lemma is a direct consequence of Proposition 3.34. For
the computation of the Euler characteristics see [22, Proposition 2.12] using the
relations D2 =−h2 and Dh = 0.

Proposition 3.45. Let us consider (Xe,O(a,b)) with GCD(a,b) = 1, e > 0 and
a > 1. Suppose a is odd or e is even. Then for any even rank r < ∆1 there exists a
stable rank r Ulrich bundle E with c1(E) = r

2(3h+KXe).

Proof. First of all observe that if ∆1 ≤ 2 then there are no r satisfying the hypothesis,
thus let us suppose ∆1 ≥ 3. We will use the same idea of a method that M. Casanellas
and R. Hartshorne used in [22, Theorem 4.3]. To show the existence of rank 2t < ∆1

simple Ulrich bundles with c1(E) = t(3h+KXe), we proceed by induction on half the
rank t. The existence of stable special rank two Ulrich bundles is given by Proposition
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3.38 and 3.41. Now suppose that for any s < t there exists a rank 2s stable Ulrich
bundle with first Chern class equal to s(3h+KXe). By inductive hypothesis there
exist stable Ulrich bundles F and G of ranks 2 and 2t − 2 respectively, such that
c1(F)+ c1(G) = t(3h+KXe). Now consider a non-split extension

0 → F → E → G → 0.

The bundle E is a simple Ulrich bundle of rank 2t (see [22, Lemma 4.2]). Notice that
this is possible since dimExt1(G,F) = h1(Xe,F ⊗G∨) > 0 by Lemma 3.44. Now
consider the modular family of simple bundles E. We can compute its dimension
using Lemma 3.44 as h1(Xe,E ⊗ E∨) = t2(h2 − 4) + 1. Now we show that the
dimension of each family of strictly semistable Ulrich bundles of rank 2t which
are obtained as an extension of two stable Ulrich bundles is strictly smaller than
h1(Xe,E ⊗E∨). Consider two stable Ulrich bundles F1 and F2 of rank 2t1 and 2t2
respectively, such that t1+ t2 = t. We have c1(Fj) = t j(3h+KXe). Now we show that

dim{F1}+dim{F2}+dim(Ext1(F2,F1))−1 < h1(Xe,E ⊗E∨), (3.5.2)

i.e. we want to show that

(t2
1 + t2

2 + t1t2)(h2 −4)< (t1 + t2)2(h2 −4)

which is equivalent to
t1t2(h2 −4)> 0.

Since we supposed e > 0 and a > 1, we have that h2 ≥ 12, thus t1t2(h2 −4)> 0. In
particular, we have that the general element in the modular family of simple Ulrich
bundles of rank 2(t1 + t2) = 2t and c1 = t(3h+KXe) is stable.

We continue with some remarks.

Remark 3.46. In the proof of Proposition 3.45 it is enough to consider strictly
semistable Ulrich bundles E which are extensions of stable Ulrich bundles. Indeed
suppose E is a strictly semistable Ulrich bundle. Then each term of his Jordan-Hölder
filtration is a stable Ulrich bundle [34, Lemma 2.15]. Let F be one of them and
consider the quotient F1 = E/F . Observe that F1 is Ulrich by Proposition 3.13.
In this way we can always assume that a strictly semistable Ulrich bundle is an
extension of a stable bundle F and a semistable Ulrich bundle F1. Now, if F1 is
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extension of two stable Ulrich bundles, then using the same dimensional count as
in the proof of Proposition 3.45, the family parametrizing F1 has dimension strictly
smaller than the family of simple Ulrich bundles with the same invariants as F1. If F1

is an extension of a stable Ulrich bundle and a strictly semistable Ulrich bundle then
we iterate this process until we obtain an Ulrich bundle Fl which is extension of two
stable Ulrich bundles. However at each step of this process we have an inequality
as in (3.5.2), thus in the end h1(Xe,E ⊗E∨) is strictly greater than the dimension of
any family parametrizing strictly semistable Ulrich bundles with the same invariants
as E.

Remark 3.47. The hypothesis r < ∆1 in Proposition 3.45 is necessary to exclude
the existence of rank odd Ulrich bundles. The inequality ∆ j−1 ≤ r < ∆ j gives
us information about the admissible Ulrich pairs (r,D). We saw that if r < ∆1

there are no admissible Ulrich pairs (r,D) with r odd. Using Proposition 3.41 it
is possible to see that if ∆1 ≤ r < ∆2 then if r is even the only admissible Ulrich
pair is given by

(
r, r

2(3h+KXe)
)

and if r is odd then we have exactly two admissible
Ulrich pairs given by

(
r, r

2(3h+KXe)− 1
2D

)
and

(
r, r

2(3h+KXe)+
1
2D

)
, with D =

aC0 +(ae−b) f .

In general given t ∈ Z≥0, if ∆t−1 ≤ r < ∆t then

• there exist n = 2
⌊ t

2

⌋
admissible Ulrich pairs (r,D) with r odd;

• there exist m = 2
⌈ t

2

⌉
−1 admissible Ulrich pairs (r,D) with r even.

Observe that r < ∆r for each r, thus the maximum number of admissible Ulrich pairs
(r,D) is r−1. Moreover it is worth to notice that, without the hypothesis r < ∆1, it
is considerably more difficult to use the same strategy of Proposition 3.45 to prove
the existence of stable Ulrich bundles. In fact, in these cases, an Ulrich bundle can
be realized as an extension of two Ulrich bundles in several different ways.

In the remaining part of this section we compare the results we obtained with the
existing literature.

Remark 3.48. In [92] it has been proved that for any birationally ruled surface S
endowed with an ample divisor h, the moduli spaces Mh(r;c1,c2) of semistable vector
bundles, whenever non-empty, are irreducible and normal. In addition, the open
subspace of stable vector bundles Mh(r;c1,c2) is smooth. Theorem 3.36, Proposition
3.38 and 3.45 extend these results in the case of Hirzebruch surfaces showing the
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unirationality of an open subset and the non-emptiness for some admissible Ulrich
pairs (r,c1) and polarizations.

In [75] the authors proved the unirationality, smoothness, irreducibility and non-
emptiness of the moduli spaces Mh(3;c1,c2) of rank three stable vector bundles on
polarized Hirzebruch surfaces for some Chern classes. Thanks to Proposition 3.38
we partially extend this result for r = 3, e > 0, a > 1 and all the admissible Chern
classes of an Ulrich bundle.

3.6 Indecomposable rank two Ulrich bundles

In this section we will construct rank two stable Ulrich bundles on Xe with respect
to a very ample polarization aC0 +b f . Using Serre’s correspondence on surfaces,
we will construct stable Ulrich bundles on X0 for two of the admissible first Chern
classes. Then we will show how to use Macaulay2 to produce examples of Ulrich
bundle on Xe for several different polarization, Chern classes and ranks.

Proposition 3.49. Let us consider (X0,OX0(h)) with h = aC0+b f and GCD(a,b) =
s > 1. Then there exists non-special rank two Ulrich bundles with c1(E) = (3a−
2− a

s )C0 +(3b−2+ b
s ) f given by

0 →OX0(a−1,b+
b
s
−1)→ E →IZ(2a−1− a

s
,2b−1)→ 0, (3.6.1)

with Z a general zero dimensional subscheme of X0 with l(Z) = ab( s−1
s ).

Proof. First we prove that there exists vector bundles realized as an extension (3.6.1).
In order to do so we need to verify that the pair ((a− 2− a

s )C0 +(b− b
s − 2) f ,Z)

has the Cayley-Bacharach property. We have

h0(X0,OX0(a−2− a
s
,b− b

s
−2)) = ab(1− 1

s
)2 − (a+b)(1− 1

s
)+1.

An easy computation shows that

h0(X0,OX0(a−2− a
s
,b− b

s
−2))≤ l(Z)−1.
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It follows that for a general Z, the pair
(
(a−2− a

s )C0 +(b− b
s −2) f ,Z

)
verifies the

Cayley-Bacharach property, so in any extension of type (3.6.1) there are rank two
vector bundles.

By Proposition 3.12, in order for E to be Ulrich we need to verify the equalities
on the Chern classes and the vanishings in cohomology. Every vector bundle
in the extension (3.6.1) has first Chern class c1(E) = 3h+KX0 +D where D =

(−a
s )C0+(b

s ) f , so we have c1(E)h = 3h2+KX0h. Furthermore a direct computation
shows that

c2(E) = l(Z)+
(
(a− a

s
)C0 +(b− b

s
) f
)(
(a−1)C0 +(b+

b
s
−1) f

)
+

+
(
(a−1)C0 +(b+

b
s
−1) f

)2

=
1
2
(c1(E)2 − c1(E)KX0)+ r(h2 −1).

So it remains to check that h0(X0,E(−h)) = h0(X0,E∨(2h+KX0)) = 0. Twisting
(3.6.1) by OX0(−h) and considering the long exact sequence in cohomology we
obtain:

h0(X0,E(−h)) = h0(X0,IZ(a−1− a
s
,b−1)).

Furthermore
h0(X0,OX0(a−1− a

s
,b−1)) = l(Z)

thus for a general Z we have h0(X0,IZ(a−1− a
s ,b−1)) = 0 and h0(X0,E(−h)) = 0.

For the second vanishing recall that E∨(2h+KX0)
∼= E(−h−D) = E(−a+ a

s ,−b−
b
s ). Now tensoring (3.6.1) by OX0(−a+ a

s ,−b− b
s ) and considering the long exact

sequence in cohomology we get

h0(X0,E(−h−D)) = h0(X0,IZ(a−1,b− b
s
−1)).

Furthermore
h0(X0,OX0(a−1,b− b

s
−1)) = l(Z),

thus for a general Z we have h0(X0,IZ(a− 1,b− b
s − 1)) = 0 and h0(X0,E(−h−

D)) = 0, so by Proposition 3.12, E is a rank two Ulrich bundle on X0.

Remark 3.50. Recall by Proposition 3.23 that the only two Ulrich line bundles on
(X0,OX0(a,b)) are L =OX0(2a−1,b−1) and M =OX0(a−1,2b−1). We conclude
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that a non-special rank two Ulrich bundle, apart from the trivial ones E = L2 and
E = M2, is always stable. In fact we can check the (semi)stability of a sheaf E by
considering the subsheaves F such that the quotient E/F is torsion free (see [? ,
Theorem 1.2.2]). A rank two Ulrich bundle can only destabilize on an Ulrich line
bundle, but in this way the quotient would also be an Ulrich line bundle thanks to
Theorem 3.13. However, this is not possible because of the numerical conditions
imposed by the first Chern classes.

Remark 3.51. In a completely similar way it is possible to construct rank two special
Ulrich bundles for any very ample polarization h = aC0 +b f as extensions

0 →OX0(a−1,b+
b
s
−1)→ E →IZ(2a−1,2b− b

s
−1)→ 0, (3.6.2)

with Z a general zero dimensional subscheme of X0 with l(Z) = ab( s−1
s ). Although

examples of special rank two Ulrich bundles on X0 had already been given by
extensions of the two Ulrich line bundles L =OX0(2a−1,b−1) and M =OX0(a−
1,2b−1), the Ulrich bundles constructed as in (3.6.2) are stable. In fact if we tensor
(3.6.2) by L∨ and consider the long exact sequence in cohomology we get

0 → H0(X0,E ⊗L∨)→ H0(X0,IZ(0,b−
b
s
)),

but h0(X0,OX0(0,b− b
s )) = b− b

s +1 ≤ l(Z) so it is not possible to have non-zero
maps between L and E. Similarly, tensoring (3.6.2) by M∨ and taking the induced
sequence in cohomology we have

0 → H0(X0,E ⊗M∨)→ H0(X0,IZ(a,−
b
s
)).

but H0(X0,IZ(a,−b
s )) = 0, so does not exist a non-zero map between M and E.

Since a rank two Ulrich bundle can only destabilize on an Ulrich line bundle, E is
stable, thus indecomposable.

Now we produce an alternative description of a rank two non-special Ulrich
bundle on (X0,OX0(d,d)) as a non-trivial extension of two non-Ulrich line bundles.

Proposition 3.52. Let E be a rank two Ulrich bundle on
(
X0,OX0(d,d)

)
with

c1(E) = (4d − 3)C0 + (2d − 1) f , then E can be represented by an element ξ ∈
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Ext1(OX0(2d −2,2d −1),OX0(2d −1,0)) i.e. there exists a short exact sequence

0 −→OX0(2d −1,0)−→ E −→OX0(2d −2,2d −1)−→ 0. (3.6.3)

Conversely, if E is a rank two vector bundle corresponding to ξ ∈ Ext1(OX0(2d −
2,2d −1),OX0(2d −1,0)) then E is Ulrich if and only if it is initialized.

Proof. Let us build the Beilinson’s table of E(−2d +1,−2d +1).

OX0(−1,−1) OX0(−1,0) OX0(0,−1) OX0

0 0 0 0 h3

0 1 0 0 h2

0 0 2d −1 2d-2 h1

0 0 0 0 h0

E(−2d,−2d)[−1] E(−2d,−2d +1)[−1] E(−2d +1,−2d) E(−2d +1,−2d +1)

Observe that the zeroes in the table are obtained using Lemma 3.16. So in order
to compute the numbers in the cohomology table we use the Riemann-Roch theorem.
Thus we have

• χ(E(−2d +1,−2d +1)) =−h1(X0,E(−2d +1,−2d +1)) =−2(d −1).

• χ(E(−2d +1,−2d)) =−h1(X0,E(−2d +1,−2d)) = 1−2d.

• χ(E(−2d,−2d +1)) =−h1(X0,E(−2d,−2d +1)) =−1.

The first page of the Beilinson’s spectral sequence will give us

0 → Kerφ →OX0(0,−1)2d−1 φ→O2d−2
X0

→ Cokerφ → 0, (3.6.4)

and looking at the second (and infinity) page we have

0 → Kerψ →OX0(−1,0)
ψ→ Cokerφ → 0. (3.6.5)
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So in the end we obtain E(−2d +1,−2d +1) as an extension

0 → Kerφ → E(−2d +1,−2d +1)→ Kerψ → 0. (3.6.6)

Observe that Kerφ is locally free since φ is the pull-back of a map on P1 and the
kernel of a map on a smooth curve between locally free sheaves is locally free.
Furthermore, by (3.6.6) Kerφ can have rank at most 2. We say that Kerφ has rank
1. In fact the rank cannot be zero because φ in (3.6.4) cannot be injective and the
rank cannot be 2 because in that case Kerψ would be a torsion sheaf which is in
contradiction with (3.6.5).

So Kerφ =OX0(0,x). Consider (3.6.5). Since E is Ulrich we have that E∨(3d−
2,3d−2) is also Ulrich. In particular hi(X0,E∨(2d−2,2d−2)) = 0 for all i. But E
is a rank two vector bundle, so E ∼= E∨(c1) and we have the following short exact
sequence

0 → Kerφ ⊗OX0(0,2d −2)→ E∨(2d −2,2d −2)→ Kerψ ⊗OX0(0,2d −2)→ 0.
(3.6.7)

Now if we tensor (3.6.5) by OX0(0,2d−2) we get h0(X0,Kerψ ⊗OX0(0,2d−2)) =
0 so, considering the long exact sequence in cohomology induced by (3.6.7) we have

h0(X0,Kerφ ⊗OX0(0,2d −2)) = h1(X0,Kerφ ⊗OX0(0,2d −2)) = 0

and the only possibility is to have x+2d −2 =−1, i.e. Kerφ =OX0(0,1−2d).

Now we deal with Cokerφ . Consider (3.6.5), then the only two possibilities for
Kerψ are

i) Kerψ = IZ(0,−1) with Z a non-empty zero dimensional subscheme of X0.

ii) Kerψ =OX0(−D) with D an effective divisor on X0.

If i) holds then we have c2(Cokerφ) = −l(Z). But using (3.6.4) we observe that
c2(Cokerφ) = 0 which is in contradiction with Z being non-empty. So it must
be Kerψ = OX0(−D). Since c1(Cokerφ) = 0 then the only possibility is to have
O(−D) =OX0(0,−1) and Cokerφ = 0. In this way we obtain

0 →OX0(0,1−2d)→ E(−2d +1,−2d +1)→OX0(−1,0)→ 0.
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and tensoring it by OX0(2d −1,2d −1) we obtain the desired result.

Conversely take an extension

0 →OX0(2d −1,0)→ E →OX0(2d −2,2d −1)→ 0. (3.6.8)

Twisting it by OX0(−2d,−2d), we have

h1(X0,E(−2d,−2d)) = h2(X0,E(−2d,−2d)) = 0.

Now twist (3.6.8) by OX0(−d,−d) and consider the long exact sequence in coho-
mology. Since

h1(X0,OX0(d −1,−d)) = h0(X0,OX0(d −2,d −1)) = d(d −1),

we have h0(X0,E(−d,−d)) = h1(X0,E(−d,−d)). So as soon as one of the coho-
mology groups vanishes, also the other does.

We end this paper with an example of a code which allows us to construct Ulrich
bundles on (Xe,OXe(h)) for an admissible Ulrich pair. We will use the resolution
(3.2.3).

Example 3.53. In this example we will construct non-special rank two Ulrich
bundles on X1. In Macaulay2, given a divisor D = tC0 + s f on the Hirzebruch
surface Xe the notation for line bundles is OXe(D) =OXe(DC0,D f ) =OXe(s− et, t),
i.e. OXe(D) =OXe(a,b) where a and b are respectively the intersection between D
and the generators C0 and f of Pic(Xe).

i1 : loadPackage "NormalToricVarieties";

Choose the self intersection invariant e
i2 : e=1;

i3 : FFe=hirzebruchSurface(e, CoefficientRing => ZZ/32003, Variable => y);

i4 : S = ring FFe;

i5 : loadPackage "BoijSoederberg";

i6 : loadPackage "BGG";

i7 : cohomologyTable(ZZ,CoherentSheaf,List,List):=(k,F,lo,hi)->(new Cohom

· · ·
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Fix a polarization h = aC0+b f , the rank r of our bundle and the first Chern class
uC0 + v f .

i8 : a=3;

i9 : b=6;

i10 : r=2;

i11 : u=6;

i12 : v=16;

i13 : exp1=r*(2*b-1-e)-v-e*(r*(2*a-2)-u);

i14 : exp2=r*(2*a-1)-u;

i15 : exp3=r*(2*a+2*b-3-e)-u-v-e*(r*(2*a-2)-u);

we construct two random matrices to obtain, as in Theorem 3.20(2), two maps

Oexp1
Xe

(0,−1)→Oexp3
Xe

Oexp2
Xe

(−1,−e)→Oexp3
Xe

i16 : M=random(S^exp3,S^{exp1:{-1,0}});

4 2

o16 : Matrix S <--- S

i17 : P=random(S^exp3,S^{exp2:{0,-1}});

4 4

o17 : Matrix S <--- S

i18 : Mtot=M|P;

4 6

o18 : Matrix S <--- S

i19 : F=minimalPresentation ker Mtot;

i20 : ShF= (sheaf(FFe,F))(2*b-1-e*(2*a-1),2*a-1);

Finally we check that the sheaf constructed in this way satisfies the vanishing of
H0(Xe,F(−h)) (or equivalently of H1(Xe,F(−h))) required in Theorem 3.20(2).

i21 : HH^0(FFe,ShF(e*a-b,-a))
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o21 = 0

ZZ

o21 : ------module

32003

i22 : exit



Chapter 4

Instanton bundles on Fano threefolds

In this chapter we study instanton bundles over P1 ×P1 ×P1 and over the flag variety
F(0,1,2), which are Fano threefolds of degree 6. We divide this chapter in two
sections. In the first one we consider P1 ×P1 ×P1. We describe each instanton
as the cohomology of a monad and we prove the existence of instanton bundles
of every charge and every possible c2 via both a deformation argument and using
the Hartshorne-Serre’s correspondence. Finally we describe the locus of jumping
lines. In the second section we consider the flag variety F(0,1,2). We recall the
known results which can be found in [78]. Then we generalize them by showing the
existence of instanton bundles of every possible charge and c2.

4.1 Instanton bundles on P1×P1×P1.

In this section we consider P1 ×P1 ×P1 which is a Fano threefold of Picard number
three. Let us call h1, h2 and h3 the three generators of the Picard group. By using
a Beilinson type spectral sequence with suitable full exceptional collections we
construct two different monads which are the analog of the monads for instanton
bundles on P3 and on F(0,1,2). We will prove the following theorem:

Theorem 4.1. Let E be a charge k instanton bundle on X with c2(E) = k1e1+k2e2+

k3e3, then E is the cohomology of a monad of the form
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(i)

0 →

Ok3
X (−h1 −h2)

⊕
Ok2

X (−h1 −h3)

⊕
Ok1

X (−h2 −h3)

→

Ok2+k3
X (−h1)

⊕
Ok1+k3

X (−h2)

⊕
Ok1+k2

X (−h3)

→Ok−2
X → 0.

Conversely any µ-semistable bundle defined as the cohomology of such a
monad is a charge k instanton bundle.

(ii)

0 →

Ok3
X (−h1 −h2)

⊕
Ok2

X (−h1 −h3)

⊕
Ok1

X (−h2 −h3)

→O3k+2
X →

Ok2+k3
X (h1)

⊕
Ok1+k3

X (h2)

⊕
Ok1+k2

X (h3)

→ 0

Conversely any µ-semistable bundle with H0(E) = 0 defined as the cohomol-
ogy of such a monad is a charge k instanton bundle.

Furthermore we show that the Gieseker strictly semistable instanton bundles are
extensions of line bundles and can be obtained as pullbacks from P1 ×P1. The cases
where the degree of c2(E) is minimal, namely k = k1+k2+k2 = 2, has been studied
in [28]. In fact we get, up to twist, Ulrich bundles.

Here we show that Ulrich bundles is generically trivial on the lines. So we use
this case as a starting step in order to prove by induction the existence of µ-stable
instanton bundles generically trivial on the lines for any possible c2(E). In particular
we prove the following

Theorem 4.2. For each non-negative k1,k2,k3 ∈ Z with k = k1 + k2 + k3 ≥ 2 there
exists a µ-stable instanton bundle E with c2(E) = k1e1 + k2e2 + k3e3 on X such that

Ext1X(E,E) = 4k−3, Ext2X(E,E) = Ext3X(E,E) = 0

and such that E is generically trivial on lines.

In particular there exists, inside the moduli space MI(k1e1 + k2e2 + k3e3) of
instanton bundles with c2 = k1e1 + k2e2 + k3e3, a generically smooth irreducible
component of dimension 4k−3.
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Finally we also study the locus of jumping lines obtaining the following result:

Proposition 4.3. Let E be a generic instanton on X with c2 = k1e1 + k2e2 + k3e3.
Then the locus of jumping lines in the family |e1|, denoted by D1

E , is a divisor given
by D1

E = k3l + k2m equipped with a sheaf G fitting into

0 →Ok3
H(−1,0)⊕Ok2

H(0,−1)→Ok2+k3
H → i∗G → 0.

Permuting indices we are also able to describe the locus of jumping lines in the
other two rulings of P1 ×P1 ×P1.

Part of what follows can be found in the paper [5] by Antonelli and Malaspina.

4.1.1 First properties and monads

Let V1,V2,V3 be three 2-dimensional vector spaces with the coordinates [x1i], [x2 j], [x3k]

respectively with i, j,k ∈ {1,2}. Let X ∼= P(V1)×P(V2)×P(V3) and then it is em-
bedded into P7 ∼= P(V ) by the Segre map where V =V1 ⊗V2 ⊗V3.

The intersection ring A(X) is isomorphic to A(P1)⊗A(P1)⊗A(P1) and so we
have

A(X)∼= Z[h1,h2,h3]/(h2
1,h

2
2,h

2
3).

We may identify A1(X) ∼= Z⊕3 by a1h1 + a2h2 + a3h3 7→ (a1,a2,a3). Similarly
we have A2(X) ∼= Z⊕3 by k1e1 + k2e2 + k3e3 7→ (k1,k2,k3) where e1 = h2h3,e2 =

h1h3,e3 = h1h2 and A3(X)∼= Z by ch1h2h3 7→ c. Then X is embedded into P7 by the
complete linear system h = h1 +h2 +h3 as a subvariety of degree 6 since h3 = 6.

If E is a rank two bundle with the Chern classes c1 = (a1,a2,a3), c2 = (k1,k2,k3)

we have:

c1(E(s1,s2,s3)) = (a1 +2s1,a2 +2s2,a3 +2s3) (4.1.1)

c2(E(s1,s2,s3)) = c2 + c1 · (s1,s2,s3)+(s1,s2,s3)
2

for (s1,s2,s3) ∈ Z⊕3.
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Let us recall the Riemann-Roch formula:

χ(E) = (a1 +1)(a2 +1)(a3 +1)+1− 1
2
((a1,a2,a3) · (k1,k2,k3)+2(k1 + k2 + k3))

(4.1.2)

Let us also recall the description of the Hilbert scheme of lines on X . A line on
X is in the class of |ei| for some i.

Proposition 4.4. [29, Proposition 4.1][62, Proposition 3.5.6] The Hilbert scheme
Hilbt+1(X) has exactly three disjoint components. Each of them is the locus of points
representing one and the same class inside A2(X) and it is isomorphic to P1 ×P1.

Now we define instanton bundles on X .

Definition 4.5. A µ-semistable vector bundle E on P1 ×P1 ×P1 is called an instan-
ton bundle of charge k if and only if c1(E) = 0,

H0(E) = H1(E(−h)) = 0

and c2(E) = k1e1 + k2e2 + k3e3 with k1 + k2 + k3 = k.

Remark 4.6. It is worthwhile to point out that, exactly as in the case of F(0,1,2) (see
[78] Remark 2.2), the condition H0(E) = 0 does not follow from the other conditions
defining an instanton bundle. Indeed we may consider the rank two aCM bundles
with c1(E) = 0 and H0(E) ̸= 0 given in [28] Theorem B.

Now we recall the Hoppe’s criterion for semistable vector bundles over polycyclic
varieties, i.e. varieties X such that Pic(X) = Zl .

Proposition 4.7. [67, Theorem 3] Let E be a rank two holomorphic vector bundle
over a polycyclic variety X and let L be a polarization on X. E is µ-(semi)stable if
and only if

H0(X ,E ⊗OX(B)) = 0

for all B ∈ Pic(X) such that δL(B) ≤
(<)

−µL(E), where δL(B) = degL(OX(B)).

In order to get a monadic description of instanton bundles, we need to apply
Proposition 2.25. We start by constructing the full exceptional collections that we
will use in the next theorems.
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Let us consider on the three copies of P1 the full exceptional collection

{OP1(−1),OP1}.

We may obtain the full exceptional collection ⟨E7, . . . ,E0⟩ (see Proposition 2.27):

{OX(−h)[−4],OX(−h2 −h3)[−4],OX(−h1 −h3)[−3], (4.1.3)

OX(−h1 −h2)[−2],OX(−h3)[−2],OX(−h2)[−1],OX(−h1),OX}.

The associated full exceptional collection ⟨F7 = F7, . . . ,F0 = F0⟩ of Theorem 2.23
is

{OX(−h),OX(−h2 −h3),OX(−h1 −h3),OX(−h1 −h2), (4.1.4)

OX(−h3),OX(−h2),OX(−h1),OX}.

From (4.1.3) with a left mutation of the pair {OX(−h1),OX} we obtain:

{OX(−h)[−4],OX(−h2 −h3)[−4],OX(−h1 −h3)[−3], (4.1.5)

OX(−h1 −h2)[−2],OX(−h3)[−2],OX(−h2)[−1],OX(−2h1),OX(−h1)}.

From the above collection with a left mutation of the pair {OX(−h2)[−1],OX(−2h1)}
we obtain:

{OX(−h)[−4],OX(−h2 −h3)[−4],OX(−h1 −h3)[−3], (4.1.6)

OX(−h1 −h2)[−2],OX(−h3)[−2],A[−1],OX(−h2)[−1],OX(−h1)}

where A is given by the extension

0 →OX(−2h1)→ A →OX(−h2)
⊕2 → 0. (4.1.7)
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From the above collection with a left mutation of the pair {OX(−h3),A} we
obtain:

{OX(−h)[−4],OX(−h2 −h3)[−4],OX(−h1 −h3)[−3], (4.1.8)

OX(−h1 −h2)[−2],B[−2],OX(−h3)[−2],OX(−h2)[−1],OX(−h1)}

where B is given by the extension

0 → A → B →OX(−h3)
⊕2 → 0. (4.1.9)

Making the respective right mutation of (4.1.4) we obtain the full exceptional
collection ⟨F7 = Fn, . . . ,F0 = F0⟩ of Theorem 2.23:

{OX(−h),OX(−h2 −h3),OX(−h1 −h3),OX(−h1 −h2),OX ,OX(h3),OX(h2),OX(h1)}.
(4.1.10)

It is easy to check that the conditions (2.2.3) are satisfied. Observe that both
collections (4.1.3) and (4.1.10) are strong.

Theorem 4.8. Let E be a charge k instanton bundle on X with c2(E) = k1e1+k2e2+

k3e3, then E is the cohomology of a monad of the form

0 →

Ok3
X (−h1 −h2)

⊕
Ok2

X (−h1 −h3)

⊕
Ok1

X (−h2 −h3)

→

Ok2+k3
X (−h1)

⊕
Ok1+k3

X (−h2)

⊕
Ok1+k2

X (−h3)

→Ok−2
X → 0. (4.1.11)

Conversely any µ-semistable bundle defined as the cohomology of such a monad is a
charge k instanton bundle.

Proof. We consider the Beilinson type spectral sequence associated to an instanton
bundle E and identify the members of the graded sheaf associated to the induced
filtration as the sheaves mentioned in the statement of Theorem 2.23 and Proposition
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2.25. We consider the full exceptional collection ⟨E7, . . . ,E0⟩ given in (4.1.3) and
the full exceptional collection ⟨F7, . . . ,F0⟩ given in (4.1.4).

First of all, let us observe that since H0(E)= 0 we have H0(E(−D))= 0 for every
effective divisor D. Furthermore by Serre’s duality we have also H2(E(K +D)) = 0
for all effective divisors D. Since c1(E)= 0 using Serre’s duality and H1(E(−h))= 0
we obtain

H i(E(−h)) = H3−i(E(−h)) = 0 for all i.

We want to show that for each twist in the table, there’s only one non vanishing
cohomology group, so that we can use the Riemann-Roch formula to compute the
dimension of the remaining cohomology group. Let us consider the pull-back of the
Euler sequence from one of the P1 factors

0 →OX(−ha)→O2
X →OX(ha)→ 0 (4.1.12)

and tensor it by E(−h). We have

0 → E(−2ha −hb −hc)→ E2(−h)→ E(−hb −hc)→ 0

with a,b,c ∈ {1,2,3} and they are all different from each other. Since H i(E(−h)) =
0 for all i and H0(E(−2ha −hb −hc)) = H3(E(−2ha −hb −hc)) = 0, considering
the long exact sequence induced in cohomology we have H2(E(−hb − hc)) = 0.
Now we want to show that H2(E(−ha)) = 0 for all a ∈ {1,2,3}. Tensor (4.1.12) by
E(−hb) with b ̸= a and we have:

0 → E(−2ha −hb)→ E2(−ha −hb)→ E(−hb)→ 0.

Considering the long exact sequence induced in cohomology we have that H2(E(−hb))=

0 since H2(E(−ha − hb)) = H3(E(−2ha − hb)) = 0. Finally if we tensor (4.1.12)
by E(−ha) and we consider the long exact sequence in cohomology, we obtain
H2(E) = 0.

Now let us compute the Euler characteristic of E tensored by a line bundle OX(D)

so that we are able to compute all the numbers in the Beilinson’s table. Combining
(4.1.1) and (4.1.2) we have

χ(E(D)) =
1
6
(2D3 −6c2(E)D)+h(D2 − c2(E))+Dh2 +2. (4.1.13)
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By (4.1.13) we have

• h1(E) =−χ(E) = 2− k1 − k2 − k3 = 2− k.

• h1(E(−hi)) =−χ(E(−hi)) = ki − k.

• h1(E(−hi −h j)) =−χ(E(−hi −h j)) = ki + k j − k.

So we get the following table:

OX (−h) OX (−h2 −h3) OX (−h1 −h3) OX (−h1 −h2) OX (−h3) OX (−h2) OX (−h1) OX

0 0 0 0 0 0 0 0 h7

0 0 0 0 0 0 0 0 h6

0 k1 0 0 0 0 0 0 h5

0 0 k2 0 0 0 0 0 h4

0 0 0 k3 k1 + k2 0 0 0 h3

0 0 0 0 0 k1 + k3 0 0 h2

0 0 0 0 0 0 k2 + k3 k−2 h1

0 0 0 0 0 0 0 0 h0

E(−h)[−4] E(−h2 −h3)[−4] E(−h1 −h3)[−3] E(−h1 −h2)[−2] E(−h3)[−2] E(−h2)[−1] E(−h1) E

Using Beilinson’s theorem in the strong form (as in Proposition 2.25) we retrieve
the monad (4.1.11).

Conversely let E be a µ-semistable bundle defined as the cohomology of a monad
(4.1.11). We may consider the two short exact sequences:

0 → G →

Ok2+k3
X (−h1)

⊕
Ok1+k3

X (−h2)

⊕
Ok1+k2

X (−h3)

→Ok−2
X → 0 (4.1.14)

and

0 →

Ok3
X (−h1 −h2)

⊕
Ok2

X (−h1 −h3)

⊕
Ok1

X (−h2 −h3)

→ G → E → 0. (4.1.15)
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We deduce that H0(G) = H0(E) = 0. By (4.1.14) and (4.1.15) tensored by
OX(−h) we obtain H1(G(−h)) = H1(E(−h)) = 0 so E is an instanton.

Proposition 4.9. Let E be an instanton bundle on X, then h1(E(−h−D)) = 0 for
every effective divisor D.

Proof. Let us consider the two short exact sequences (4.1.14) and (4.1.15) tensored
by OX(−h+D). By Künneth formula we have that hi(OX(−h−D)) = 0 for all i,
and thus taking the cohomology of (4.1.14) we get hi(G(−h−D)) = 0 for i ̸= 3.
Combining this with the induced sequence in cohomology of (4.1.15) we obtain
h0(E(−h−D)) = h1(E(−h−D)) = 0.

In the next theorem we obtain a description of instanton bundles as the cohomol-
ogy of a different monad.

Theorem 4.10. Let E be a charge k instanton bundle on X with c2(E) = k1e1 +

k2e2 + k3e3, then E is the cohomology of a monad of the form

0 →

Ok3
X (−h1 −h2)

⊕
Ok2

X (−h1 −h3)

⊕
Ok1

X (−h2 −h3)

→O3k+2
X →

Ok2+k3
X (h1)

⊕
Ok1+k3

X (h2)

⊕
Ok1+k2

X (h3)

→ 0 (4.1.16)

Conversely any µ-semistable bundle with H0(E) = 0 defined as the cohomology of
such a monad is a charge k instanton bundle.

Proof. We consider the Beilinson type spectral sequence associated to an instanton
bundle E and identify the members of the graded sheaf associated to the induced
filtration as the sheaves mentioned in the statement of Theorem 2.23. We consider
the full exceptional collection ⟨E7, . . . ,E0⟩ given in (4.1.8) and the full exceptional
collection ⟨F7, . . . ,F0⟩ given in (4.1.10).

First of all, let us observe that since since E is µ-semistable, by Hoppe’s criterion
we have H0(E(−D)) = 0 for every effective divisor D. Furthermore we have all the
vanishing computed in Theorem 4.8. Moreover by (4.1.7) and (4.1.9) tensored by E
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we get

χ(E ⊗B) = χ(E ⊗A)+2χ(E(−h3))

= χ(E(−2h1))+2χ(E(−h3))+2χ(E(−h2))

=−2+ k1 − k2 − k3 −2(k1 + k2)−2(k1 + k3)

=−2−3k.

So we get the following table:

OX (−h) OX (−h2 −h3) OX (−h1 −h3) OX (−h1 −h2) OX (−h3) OX (−h2) OX (−h1) OX

0 0 0 0 0 0 0 0 h7

0 0 0 0 0 0 0 0 h6

0 k1 0 0 0 0 0 0 h5

0 0 k2 0 a 0 0 0 h4

0 0 0 k3 b k1 + k2 0 0 h3

0 0 0 0 0 0 k1 + k3 0 h2

0 0 0 0 0 0 0 k2 + k3 h1

0 0 0 0 0 0 0 0 h0

E(−h)[−4] E(−h2 −h3)[−4] E(−h1 −h3)[−3] E(−h1 −h2)[−2] E ⊗B[−2] E(−h3)[−2] E(−h2)[−1] E(−h1)

where a−b = −2−3k. Since the spectral sequence converges to an object in
degree 0 and there no maps involving a we deduce that a = 0 and b = 3k+2. So we
get the following table:

OX (−h) OX (−h2 −h3) OX (−h1 −h3) OX (−h1 −h2) OX (−h3) OX (−h2) OX (−h1) OX

0 0 0 0 0 0 0 0 h7

0 0 0 0 0 0 0 0 h6

0 k1 0 0 0 0 0 0 h5

0 0 k2 0 0 0 0 0 h4

0 0 0 k3 3k+2 k1 + k2 0 0 h3

0 0 0 0 0 0 k1 + k3 0 h2

0 0 0 0 0 0 0 k2 + k3 h1

0 0 0 0 0 0 0 0 h0

E(−h)[−4] E(−h2 −h3)[−4] E(−h1 −h3)[−3] E(−h1 −h2)[−2] E ⊗B[−2] E(−h3)[−2] E(−h2)[−1] E(−h1)

Using Beilinson’s theorem as in Proposition 2.25 we retrieve the monad (4.1.16).
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Conversely let E be a µ-semistable bundle with no global sections defined as the
cohomology of a monad (4.1.11). We may consider the two short exact sequences:

0 → G →O3k+2
X →

Ok2+k3
X (h1)

⊕
Ok1+k3

X (h2)

⊕
Ok1+k2

X (h3)

→ 0 (4.1.17)

and

0 →

Ok3
X (−h1 −h2)

⊕
Ok2

X (−h1 −h3)

⊕
Ok1

X (−h2 −h3)

→ G → E → 0. (4.1.18)

By (4.1.17) and (4.1.18) tensored by OX(−h) we obtain H1(G(−h))=H1(E(−h))=
0 so E is an instanton.

Remark 4.11. It is possible to construct vector bundles which are realized as the
cohomology of a monad as in Theorem 4.8 and 4.10 but that are not µ-semistable.
Let us consider a generic line l in the ruling e1. It has the following resolution on X

0 →OX(−h2 −h3)→OX(−h2)⊕OX(−h3)→OX →Ol → 0. (4.1.19)

By adjunction formula we have N∨
l/X

∼= Il|X ⊗Ol , and using (4.1.19) we obtain
N∨

l/X
∼=O2

l and in particular detNl/X ⊗Ol
∼=OX(D)⊗Ol where D is a divisor of

the form D = ah2 + bh3. Choosing D = 2h2 − 4h3, since h2(OX(−D)) = 0, it is
possible to construct a vector bundle E with c1(E) = 0 and c2(E) = 5e1 through the
Hartshorne-Serre correspondence (Theorem 2.1) which fits into

0 →OX(−h2 +2h3)→ E →Il|X(h2 −2h3)→ 0. (4.1.20)

The vector bundle constructed in this way has no sections, i.e. H0(E) = 0 and if we
tensor (4.1.20) by OX(−h) and we take the cohomology, we obtain

H i(E(−h))∼= H i(Il|X(−h1 −3h3)).
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Now consider the sequence

0 →Il|X →OX →Ol → 0. (4.1.21)

Tensoring (4.1.21) by OX(−h1 −3h3), we get h1(Il|X(−h1 −3h3)) = h0(Ol(−h1 −
3h3)) = h0(OP1(−1)) = 0. Thus we obtain H1(E(−h)) = 0. In this way we con-
structed a vector bundle E with c1(E) = 0 satisfying all the instantonic conditions
but the µ-semistability. In fact by Proposition 4.7 E is not µ-semistable since
H0(E(h2 −2h3)) ̸= 0. Furthermore E has the same cohomology table of an instan-
ton bundle, thus it is realized as the cohomology of the monads

0 →O5
X(−h2 −h3)→O5

X(−h2)⊕O5
X(−h3)→O3

X → 0

and
0 →O5

X(−h2 −h3)→O17
X →O5

X(h2)⊕O5
X(h3)→ 0.

Remark 4.12. Let us remark that the monad (4.1.16) is the analog of the monad for
instanton bundles on P3

0 →OP3(−1)⊕k α−→O⊕2k+2
P3

β−→OP3(1)⊕k → 0,

and the monad (4.1.11) is the analog of the second monad for instanton bundles on
P3 (see for instance [3] display (1.1))

0 →OP3(−1)⊕k α−→ ΩP3(1)⊕k β−→O⊕2k−2
P3 → 0.

A very similar behaviour was shown for the two monads for instanton bundles on
the flag threefold in [78].

As in the case of instanton bundles on the projective space and flag varieties, the
two monads (4.1.16) and (4.1.11) are closely related. Indeed, sequence (4.1.17) fits
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in the following commutative diagram

0

��

0

��

0

��

0 // G

��

// O⊕3k+2

��

β // ⊕i∈Z3O
ki+1+ki+2
X (hi) //

��

0

0 // ⊕i∈Z3O
ki+1+ki+2
X (−hi)

��

// O⊕4k

��

β ′
// ⊕i∈Z3O

ki+1+ki+2
X (hi) //

��

0

0 // O⊕k−2

��

// O⊕k−2

��

// 0

0 0

So we get sequence (4.1.14) as the first column. Moreover sequence (4.1.18) fits in
the following commutative diagram

0

��

0

��

0

��
0 // ⊕i∈Z3O

ki
X (−hi+1 −hi+2) //

��

G //

��

E //

��

0

0 // ⊕i∈Z3O
ki
X (−hi+1 −hi+2) //

��

⊕i∈Z3O
ki+1+ki+2
X (−hi) //

��

C //

��

0

0 // O⊕k−2 //

��

O⊕k−2 //

��

0

0 0

which is the display of monad (4.1.11).

Finally, for the monad (4.1.16) is not necessary the assumption H0(E) = 0.
Exactly the same behavior was shown for the analog monad on F(0,1,2) (see [78]
Theorem 4.2).

We end this section by characterizing the strictly Gieseker semistable instanton
bundles on X
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Proposition 4.13. Let E be an instanton bundle of charge k. If E is not µ-stable
then k = 2l2 for some l ∈ Z, l ̸= 0. Moreover c2(E) = 2l2ei, i = 1,2,3 and E can be
constructed as an extension

0 →OX(−lhi + lh j)→ E →OX(lhi − lh j)→ 0 (4.1.22)

with i ̸= j.

Proof. Suppose H0(X ,E(ah1 +bh2 − (a+b)h3)) ̸= 0 for some a,b ∈ Z. So E fits
into an exact sequence

0 →OX → E(ah1 +bh2 − (a+b)h3)→IZ(2ah1 +2bh2 −2(a+b)h3)→ 0

where Z ⊂X is a subscheme of X . Since H0(E(ah1+bh2−(a+b)h3)⊗OX(−h j))=

0 for all j = 1,2,3 by Proposition 4.7, we have that Z ⊂ X is either empty or purely
2-codimensional. Suppose we are dealing with the latter case, since E in Gieseker
semistable we have that

POX (t)≤ PE(ah1+bh2−(a+b)h3)(t)≤ PIZ(2ah1+2bh2−2(a+b)h3)(t)

and

PIZ(2ah1+2bh2−2(a+b)h3)(t) = POX (2ah1+2bh2−2(a+b)h3)(t)−POZ(2ah1+2bh2−2(a+b)h3)(t)

where P(t) is the Hilbert polynomial. So we have

POZ(2ah1+2bh2−2(a+b)h3)(t)≤ POX (2ah1+2bh2−2(a+b)h3)(t)−POX (t)

= (2a+ t +1)(2b+ t +1)(t +1−2a−2b)− (t +1)3

=−4(t +1)(a2 +b2 +ab)< 0 for t >> 0.

contradicting Serre’s vanishing theorem. Se we can conclude that Y is empty and E
fits into

0 →OX(−ah1 −bh2 +(a+b)h3)→ E →OX(ah1 +bh2 − (a+b)h3)→ 0.
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Now computing c2(E) we obtain

c2(E) = (−ah1 −bh2 +(a+b)h3) · (ah1 +bh2 − (a+b)h3)

= 2b(a+b)e1 +2a(a+b)e2 −2abe3.

Since E is an instanton bundle on X , all the summands of c2(E) must be nonnegative.
In fact as we saw in Proposition 4.8 they represent the dimension of a cohomology
group. So either a or b is 0 (but not both since the charge k must be greater than two)
or a =−b. In all three cases we obtain the desired result.

4.1.2 Splitting behaviour of Ulrich bundles

In the next sections we will construct, through an induction process, stable k-
instanton bundles on X for each charge k and all second Chern classes.

Let us consider the base case of induction, which consists of charge 2 instantons
on X , i.e. rank two Ulrich bundles (up to twisting by OX(−h)). For further details
about Ulrich bundles on P1 ×P1 ×P1 see [29]. We have two possible alternatives
for the second Chern class of an Ulrich bundle:

(a) c2(E) = 2ei for some i ∈ {1,2,3}.

(b) c2(E) = ei + e j with i ̸= j.

We show that in both in cases the generic Ulrich bundle has trivial restriction
with respect to a generic line of each family. In both cases we have Ext2(E,E) =
Ext3(E,E) = 0 by [29, Lemma 2.3].

Proposition 4.14. The generic instanton bundle of minimal charge k = 2 has trivial
restriction with respect to the generic line of each family |e1|, |e2| and |e3|.

Proof. We will separate the proof treating both cases (a) and (b).

Case (a)

Let us begin with the first case. By Theorem 4.8 we see that every rank two
Ulrich bundle with this second Chern class is the pullback of a vector bundle on a
quadric Q = P1×P1. In this case, by Proposition 4.13, there exist strictly semistable
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Ulrich bundle realized as extensions

0 →OX(h j −hk)→ E →OX(hk −h j)→ 0 (4.1.23)

with j ̸= k ̸= i ̸= j. For these vector bundles, by restricting (4.1.23) to a line in each
family, we observe that in the family h jhk there are not jumping lines, i.e. El =O2

l

for each l ∈
∣∣h jhk

∣∣. On the other hand, El is never trivial when l ∈ |hihk| or l ∈
∣∣h jhi

∣∣.
However the generic bundle will be stable, so let us focus on stable Ulrich bundles.
They are pull back via the projection on the quadric, of stable bundles on Q. By [88,
Lemma 2.5] every such bundle can be deformed to a stable bundle which is trivial
when restricted to the generic line of each family.

Case (b)

Now let us consider the second case. The details of what follows can be found
in [28]. Up to a permutation of the indices we can assume c2(E) = e2 + e3. Let us
denote by H a general hyperplane section in P7 and let S be S = X ∩H. S is a del
Pezzo surface of degree 6, given as the blow up of P2 in 3 points. Let us denote by
F the pullback to S of the class of a line in P2 and by Ei the exceptional divisors.
Take a general curve C of class 3F −E1, so that C is a smooth, irreducible, elliptic
curve of degree 8. Moreover we have h0(C,NC|X) = 16 and h1(C,NC|X) = 0, so the
Hilbert scheme H = H 8t of degree 8 elliptic curves is smooth of dimension 16
[28, Proposition 6.3] and the general deformation of C in H is non-degenerate [28,
Proposition 6.6]. Let C ⊂ X ×B → B a flat family of curves in H with special fibre
Cb0

∼=C over b0. To each curve in the family C we can associate a rank two vector
bundle via the Serre’s correspondence:

0 →OX(−h)→ Eb → ICb|X(h)→ 0 (4.1.24)

where Cb is the curve in C over b ∈ B. The general fiber Cb correspond via (4.1.24)
to rank two Ulrich bundle of the desired c2.

Now choose a line L in S, such that L∩C is a single point x. In order to do so,
we deal with the classes of F and Ei in A2(X). One obtain that the classes of F , E1,
E2 and E3 are e1+e2+e3, e1, e2 and e3 respectively. In particular, there exists a line
L in the system |E1| (corresponding to |e1| in A2(X)) which intersects the curve C in
the class 3F −E1 in one point. It follows that IC|X(1)⊗OL ∼=Ox ⊕OL. Tensoring
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(4.1.24) by OL we obtain a surjection

Eb0|L →Ox ⊕OL → 0.

In particular Eb0|L cannot be OL(−t)⊕OL(t) for any t > 0, thus Eb0|L is triv-
ial, which is equivalent to h0(L,Eb0|L(−1)) = 0. By semicontinuity we have that
h0(L,Eb|L(−1)) = 0 for all b in an open neighborhood of b0 ∈ B, thus the vector
bundle corresponding to the general fiber Cb is trivial over the line L. Since this is an
open condition on the variety of lines contained in X , it takes place for the general
line in |e1|.

To deal with the other families of lines let us consider a general quadric Q in
|h1|. Let C be a smooth, irreducible, non-degenerate elliptic curve in the class
2e1 +3e2 +3e3. Pic(Q)∼= Z2 is generated by two lines < l,m > which correspond
respectively to e3 and e2. Since Q is general then Z =C∩Q consist of two points.
Following the previous strategy, we say that E restricted to a generic line of the
family e2 (resp. e3) is trivial if Z is not contained in a line of the ruling m (resp. l).
As in the previous case, let us consider the del Pezzo surface S = X ∩H with H a
general hyperplane section. The intersection between Q and S is a curve in the class
e2 + e3 ∈ A2(X). Let us denote by Y the curve Y = Q∩S. We compute the class of
Y in S. We have the following short exact sequences

0 →OX(−2h1 −h2 −h3)→OX(−h1)⊕OX(−h)→OX → IY → 0

0 → IY →OX →OY → 0

and computing the cohomology we find that h1(Y,OY ) = g = 0. In particular we
have that Y is a degree two curve of genus 0 on S, thus it must be in the class of
F −E1. Furthermore, observe that every line of each ruling of Q intersect S in only
one point. Now let us take a general curve C in the class 3F −E1, so that C is a
smooth, irreducible, elliptic curve of degree 8. Computing the intersection product
between C and Y , we see that C∩Y consists of two points. Those two points cannot
lie on a line in Q, because each line in Q intersect S only in one point. As before,
let C ⊂ X ×B → B a flat family of curves in H with special fibre Cb0

∼=C over b0.
To each curve in the family C we can associate a rank two vector bundle via the
sequence (4.1.24). Let Zb = Cb ∩Q and denote by l and m the two rulings of Q.
We observed that Zb0 is not contained in a line either of l or m, i.e Cb0 intersects
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the generic line of both |l| and |m| in one point. But the rulings of Q correspond
to the rulings e2 and e3 of X , thus we can repeat the same argument used for the
generic line in e1. In this way we conclude that the vector bundle corresponding to
the general fiber Cb is trivial over the generic line of each of the families |e1|, |e2|
and |e3|.

4.1.3 Construction of instanton bundles of higher charge

In this section we will construct instanton bundles of every charge generically trivial
on lines, through an induction process starting from Ulrich bundles. By doing so,
we will also construct a nice component of the moduli space MI(c2) of µ-stable
instanton bundles on X with fixed c2.

Theorem 4.15. For each non-negative k1,k2,k3 ∈ Z with k = k1 + k2 + k3 ≥ 2 there
exists a µ-stable instanton bundle E with c2(E) = k1e1 + k2e2 + k3e3 on X such that

Ext1X(E,E) = 4k−3, Ext2X(E,E) = Ext3X(E,E) = 0

and such that E is generically trivial on lines.

In particular, there exists inside MI(k1e1 + k2e2 + k3e3) a generically smooth
irreducible component of dimension 4k−3.

Proof. We will divide the proof in two steps. In the first one we will construct a
torsion free sheaf with increasing c2. In the second step we deform it to a locally
free sheaf.

Step 1: Defining a sheaf G with increased c2.

Let us consider a charge k instanton bundle E on X with c2(E) = k1e1 + k2e2 +

k3e3. Suppose E|li
=O2

li , with li is a generic line of each family ei and Ext2(E,E) =
Ext3(E,E) = 0.

Let us consider the short exact sequence

0 → G → E →Ol → 0. (4.1.25)

G is a torsion free sheaf which is not locally free. Using the resolution of Ol:

0 →OX(−h2 −h3)→OX(−h2)⊕OX(−h3)→OX →Ol → 0 (4.1.26)
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we obtain c1(Ol) = 0 and c2(Ol) =−e1 so using the sequence (4.1.25) we have that
c1(G) = 0, c2(G) = (k1 +1)e1 + k2e2 + k3e3 and c3(G) = 0.

Now, applying the functor Hom(E,−) to (4.1.25) we obtain Ext2(E,G) = 0. In
fact we have Ext2(E,E) = 0 by hypothesis and Ext1(E,Ol) = 0 by Serre’s duality
since E|l = O2

l . Now apply the contravariant functor Hom(−,G) to (4.1.25). We
have the following sequence

Ext2(E,G)→ Ext2(G,G)→ Ext3(Ol,G).

Now we show that Ext3(Ol,G) = 0 in order to obtain Ext2(G,G) = 0. By Serre’s
duality we have Ext3(Ol,G) = Hom(G,Ol(−2h)). Consider the spectral sequence

E p,q
2 = H p(X ,Extq(A,B))⇒ Extp+q(A,B)

with A,B ∈ Coh(X). Setting A = G and B =Ol(−2h) we obtain

Hom(G,Ol(−2h)) = H0(Hom(G,Ol(−2h))).

Now applying the functor Hom(−,Ol(−2h)) to the sequence (4.1.25), we obtain

0 →Hom(Ol,Ol(−2h))→Hom(E,Ol(−2h))→ (4.1.27)

→Hom(G,Ol(−2h))→Ext1(Ol,Ol(−2h))→ 0.

Now Hom(Ol,Ol(−2h))∼=Ol(−2h), Hom(E,Ol(−2h))∼=Hom(OX ,Ol)⊗E∨
|l (−2h)∼=

O2
l (−2h) and Ext1(Ol,Ol(−2h))∼=Nl(−2h)=O2

l (−2h). If we split (4.1.27) in two
short exact sequences we obtain

0 →Ol(−2h)→Hom(G,Ol(−2h))→O2
l (−2h)→ 0.

We deduce Hom(G,Ol(−2h))∼=O3
l (−2h), thus

H0(Hom(G,Ol(−2h)))∼= H0(O3
l (−2h)) = 0.

Finally we obtain Ext3(Ol,G) ∼= Hom(G,Ol(−2h)) = 0 from which it follows
Ext2(G,G) = 0. This implies that MX(2,0,c2(G)) is smooth in the point corre-
spondent to G. Now we show that Ext3(G,G) = 0. Applying the contravariant
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functor Hom(−,G) to (4.1.25) we get a surjection

Ext3(E,G)→ Ext3(G,G)→ 0.

If we apply Hom(E,−) to (4.1.25) we obtain Ext3(E,G) = Ext2(E,Ol) which van-
ishes since E|l = O2

l . Thus Ext3(G,G) = 0 and in particular we have that the
dimension of the component of MX(2,0,c2(G)) containing G has dimension equal to
dimExt1(G,G) = 1−χ(G,G). Applying Hom(G,−), Hom(−,E) and Hom(−,Ol)

to (4.1.25) we obtain

χ(G,G) = χ(E,E)−χ(E,Ol)−χ(Ol,E)+χ(Ol,Ol).

By inductive hypothesis χ(E,E) = 4− 4k. We compute the remaining terms in
the equation. Applying Hom(−,E), Hom(E,−) and Hom(Ol,−) to (4.1.26), a
Riemann-Roch computation yields χ(E,Ol) = χ(Ol,E) = 2 and χ(Ol,Ol) = 0,
thus

dimExt1(G,G) = 1−χ(G,G) = 4k+1.

Furthermore tensor (4.1.25) by Omi(−h) where mi is a generic line from the
family ei. Since mi and l are disjoint for each i, tensoring by Omi(−h) leaves the
sequence exact. Using the fact that E|mi

= O⊕2
mi

, we obtain G|mi
= O⊕2

mi
and in

particular H0(G⊗Omi(−h)) = 0 for each i.

Step 2: Deforming G to a locally free sheaf F .

Now we take a deformation of G in MX(2,0,c2(G)) and let us call it F . For
semicontinuity F satisfies

H0(X ,F ⊗Ol(−h)) = 0 and H1(X ,F(−h)) = 0

Our goal is to show that F is locally free. Let us take E ′ and l′ two deformations in a
neighborhood of E and l respectively. The strategy is to show that if F is not locally
free, then he would fit into a sequence

0 → F → E ′ →Ol′ → 0.

But such F’s are parameterized by a family of dimension 4k: indeed we have a
(4k−3)-dimensional family for the choice of E ′, 2 for the choice of a line in the first
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family and we have 1 for P1 = P(H0(l′,E|l′ )), since El′
∼=O2

l′ . But we showed that
G, and hence F , moves over a (4k+1)-dimensional component in MX(2,0,c2(G)),
so F must be locally free.

Given such F let us consider the natural short exact sequence

0 → F → F∨∨ → T → 0. (4.1.28)

Let us denote by Y the support of T . Since we supposed F not locally free, we have
that Y ̸= /0. Furthermore T is supported in codimension at least two. We say that Y
has pure dimension one.

In fact twisting (4.1.28) by OX(−h) we observe that if H0(X ,F∨∨(−h)) ̸= 0 then
a nonzero global section of F∨∨ will induce via pull-back a subsheaf K of F with
c1(K) = h, which is not possible since F is stable. So we have H0(X ,F∨∨(−h))∼=
H1(X ,F(−h)) = 0 which implies H0(X ,T (−h)) = 0. In particular Y has no em-
bedded points, i.e. is pure of dimension one. We want to show that Y is actually a
line.

Let H be a general hyperplane section which does not intersect the points where
F∨∨ is not locally free. Tensor (4.1.25) by OH . Since H is general the sequence
remains exact and Ol∩H is supported at one point, which represent the point where
GH fails to be reflexive (in this case also locally free). F is a deformation of
G and because of the choice of H, restricting (4.1.28) to H does not affect the
exactness of the short exact sequence. Moreover TH is supported on points where
FH is not reflexive. Since being reflexive is an open condition, by semicontinuity
TH is supported at most at one point. But Y cannot be empty and is purely one
dimensional, thus Y ∩H consists of one point and Y must be a line L. Furthermore by
semicontinuity T is of generic rank one and we have c2(T )h =−1 (see [53, Example
15.3.1]).

Now we prove that F∨∨ is locally free. Twist (4.1.28) by OX(th) with t << 0.
Considering the long exact sequence induced in cohomology we have h1(X ,T (t))≤
h2(X ,F(t)) because h1(X ,F∨∨) = 0 by Serre’s vanishing. Observe that c = c3(F∨∨)

and c2(T ) are invariant for twists.



84 Instanton bundles on Fano threefolds

By computing the Chern classes using (4.1.28) we have c3(T )= c and c3(T (th))=
c−2thc2(T ). For t << 0 we have

h1(T (th)) =−χ(T (th)) = (t +1)hc2(T )−
c
2
.

By semicontinuity we have h2(F(th))≤ h2(G(th)), but using (4.1.25) and Hirzebruch-
Riemann-Roch formula we obtain h2(G(th)) = h1(Ol1(t)) = −(t + 1) for t << 0.
Now we have

(t +1)hc2(T )−
c
2
= h1(T (th))≤ h2(X ,F(t))≤−(t +1)

so that
hc2(T )≥−1+

c
2(t +1)

, (4.1.29)

which holds for all t << 0. Now using (4.1.29) and substituting hc2(T ) = −1 we
get c ≤ 0. Since F∨∨ is reflexive, c ≥ 0 so we obtain c3(T ) = c = 0.

Now it remains to show that F∨∨ is a deformation of E. The first step is to show
that L is a deformation of the line l. In order to do so we compute the class of L
in A2(X), which is represented by c2(T ) = a1e1 +a2e2 +a3e3. Consider a divisor
D = β1h1 +β2h2 +β3h3, by (4.1.2) and c = 0 we have

h1(L,T (D)) = (D+2)c2(T ).

Suppose βi << 0 for all i. Then

a1(β1 +1)+a2(β2 +1)+a3(β3 +1) = h1(L,T (D)) = h2(X ,F(D))≤ h2(X ,G(D))

(4.1.30)
where the last inequality is by semicontinuity. Furthermore βi << 0 implies that
h1(X ,E(D)) = h2(X ,E(D)) = 0 and thus

h2(X ,G(D)) = h1(l,Ol(D)) =−1−β1. (4.1.31)

We showed that a1 +a2 +a3 = c2(T )h =−1 and combining this with (4.1.30) and
(4.1.31) we obtain

a2(β2 −β1)+a3(β3 −β1)≤ 0
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for all βi << 0, thus we must have a2 = a3 = 0 and a1 = −1, i.e. L lives in a
neighborhood of l. Since c = 0 we have that F∨∨ is locally free and we computed
c2(T ) =−e1, so we get c2(F∨∨) = k1e1 + k2e2 + k3e3, which implies that F∨∨ has
the same Chern classes as E. Therefore, F∨∨ is a flat deformation of E and also
semistable, so F∨∨ lies in a neighborhood of E in MX(2,0,c2(E)). Observe that, by
semicontinuity, F has trivial splitting type on the generic line of each family. To
summarize, we showed that if F is not locally free it fits into a sequence

0 → F → E ′ →Ol′ → 0

with E ′ and l′ flat deformation of E and l. But we observed that this is not possible,
thus F must be locally free.

4.1.4 Existence via Serre’s correspondence

In this section we will construct instantons of each possible c2(E) using an alternative
strategy. Suppose c2(E) = k1e1+k2e2+k3e3 with k1 ≥ k2 ≥ k3, otherwise just apply
a permutation on the e′is in the following argument.

We start by describing the Hilbert scheme of conics on X . Recall that if C is a
conic, then it is either in the class |e1 + e2|, |e2 + e3| or |e1 + e3|.

Proposition 4.16. The Hilbert scheme Hilb2t+1(X) has exactly three disjoint com-
ponents. Each of them is the locus of points representing one and the same class
inside A2(X), is smooth, unirational and has dimension 4.

Proof. We will follow the same idea as in [29, Proposition 4.2]. We want to prove
that the locus Hc2 ⊆ Hilb2t+1(X) of points representing curves whose class in A2(X)

is c2, is irreducible.

Let us consider c2 = e1 + e2 the other cases being similar. To give a morphism
α : P1 → X such that the class deg(α)im(α) in A2(X) is c2 is the same as to give
two pairs of linearly independent sections in H0(P1,OP1(1)),H0(P1,OP1(1)), thus
a general element of

F = H0(P1,OP1(1))⊕
2
×H0(P1,OP1(1))⊕

2
.



86 Instanton bundles on Fano threefolds

For the general choice of the general element the map α is an isomorphism onto
its image. Let F0 ⊆ F be the open and non-empty locus of points satisfying such a
condition. We have a natural family F0 ⊆ F0 ×X whose fibres are smooth conics,
hence the family is flat. The universal property of the Hilbert scheme yields the
existence of a unique morphism F0 → Hilb2t+1(X) whose image is H̄c2 which is the
locus of non-necessarily skew curves whose class is c2. Thus H̄c2 is irreducible and
since F0 is a rational variety, it follows that H̄c2 is also unirational. In particular Hc2

is open inside H̄c2 because it trivially coincides with H̄c2 ∩Hilb2t+1(X).

Now we prove that Hc2 is smooth of dimension 4. Let us consider a point in Hc2

corresponding to a smooth, connected conic C and we compute h0(X ,NC/X) and
h1(X ,NC/X). Since C is rational we know that NC/X =OP1(a)+OP1(b) for some
integer a and b.

By adjunction we have det(NC/X)∼=OP1(2), thus a+b = 2. Recall that there
is a surjection Ω∨

X ⊗OC ↠ NC/X . Since ΩX ∼=
⊕3

i=1OX(−2hi), it follows that
NC/X is globally generated, thus a,b ≥ 0. We conclude that h0(X ,NC/X) = 4 and
h1(X ,NC/X) = 0 so that Hc2 is globally smooth of dimension 4 and we also conclude
that the components of Hilb2t+1(X) are necessarily disjoint.

Now let us consider L1,L2, . . . ,Lα disjoint lines from the family e1, M1,M2, . . . ,Mβ

disjoint lines from the family e3 and C1,C2, . . . ,Cγ disjoint conics in the class e2+e3.
First of all observe that we can choose such curves so that they are all pairwise
disjoint. Let us denote by Y the one-dimensional scheme

Y =
α⋃

i=1

Li ∪
β⋃

j=1

M j ∪
γ⋃

k=1

Ck (4.1.32)

We claim that that detNY/X
∼=OX(2h2)⊗OY . We can verify such an isomorphism

component by component. Let us consider the sequence defining a line in e1.

0 →OX(−h2 −h3)→OX(−h2)⊕OX(−h3)→OX →OLi → 0

and split it into two short exact sequences

0 →OX(−h2 −h3)→OX(−h2)⊕OX(−h3)→ILi → 0 (4.1.33)

0 →ILi →OX →OLi → 0.
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Now recall that by adjunction formula we have N∨
Li/X

∼= ILi ⊗OLi . Now using
(4.1.35) we obtain N∨

Li/X
∼=O2

Li
. In particular

detNLi/X ⊗OLi
∼=OX(D)⊗OL1.

with D = ah2 + bh3 a divisor on X . Repeating the same reasoning on every com-
ponent of Y we obtain that detNY/X

∼=OX(2h2)⊗OY , i.e. the determinant of the
normal bundle of Y is extendable on X . Since h2(X ,OX(−2h2)) = 0, it follows
that there exists a vector bundle F on X with a section s vanishing exactly along
Y and with c1(F) = 2h2 and c2(F) = Y . Thus E = F(−h2) has c1(E) = 0 and
c2(E) = c2(F) = Y and it fits into

0 →OX(−h2)→ E →IY |X(h2)→ 0. (4.1.34)

Now we prove the following

Proposition 4.17. Let E be a vector bundle with c1(E) = 0, c2(E) = Y with Y as in
(4.1.32) and α +β +2γ ≥ 2. Suppose E(h2) has a section vanishing along Y , i.e. E
fits into

0 →OX(−h2)→ E →IY |X(h2)→ 0

then E is a µ-stable instanton bundle with charge k = α +β +2γ such that

dimExt1X(E,E) = 4k−3, Ext2X(E,E) = Ext3X(E,E) = 0.

Proof. By construction c1(E) = 0 and c2(E) = αe1 + γe2 +(β + γ)e3.

Since k = α + β + 2γ ≥ 2, then Y contains at least two disjoint components,
we have h0(IY |X(h2)) = 0. Taking the cohomology of (4.1.34) we obtain that
h0(E) = h0(IY |X(h2)) = 0. Tensoring (4.1.34) by OX(−h) we have h1(E(−h)) =
h1(IY |X(−h1 −h3)). Now consider

0 →IY |X →OX →OY → 0. (4.1.35)

Taking the cohomology of the above sequence tensored by OX(−h1 −h3), we have
h1(IY |X(−h1 −h3)) = h0(OY (−h1 −h3)) = 0 because each connected component
Z of Y is isomorphic to P1 and (−h1 −h3)Z =−1.
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Now we prove the µ-stability of E. In order to do so we will use the Hoppe’s
criterion. Let us take a divisor D such that Dh ≥ 0, thus D must be of the form
D = d1h1 + d2h2 + d3h3, with ∑

3
i=1 di ≥ 0. Now let us consider the short exact

sequence
0 →OX(−D−h2)→ E(−D)→IY |X(−D+h2)→ 0.

By Proposition 4.7, E is µ-stable if and only if h0(E(−D)) = 0. Using (4.1.35) it
is clear that h0(E(−D)) = 0 when d1 > 0, d3 > 0 or d2 > 1. So we only have four
cases left:

• D = 0.

• D = h2.

• D =−h1 +h2.

• D = h2 −h3.

In all the cases we have h0(E(−D)) = h0(IY |X(−D+h2)) = 0 because Y contains
at least two disjoint connected components, thus E is µ-stable.

Now we focus on the Ext groups. Since E is µ-stable, it is simple. Hence we
have Ext3(E,E) = 0. Now we show Ext2(E,E) = 0. Take the short exact sequence
(4.1.34) and tensor it by E∨ ∼= E. Now taking cohomology we have

H2(X ,E(−h2))→ Ext2X(E,E)→ H2(X ,E ⊗IY |X(h2)).

We show that both H2(X ,E(−h2)) and H2(X ,IY |X(h2)) are zeros. Take the coho-
mology of the short exact sequence (4.1.34) tensorized by OX(−h2). We obtain
H2(X ,E(−h2))∼= H2(X ,IY |X)∼= H1(Y,OY )∼= 0 because Y is the disjoint union of
smooth rational curves. It remains to show that H2(X ,E ⊗IY |X(h2))∼= 0. In order
to do so let us take the short exact sequence (4.1.34) and tensorize it by OX(h2).
Taking cohomology we obtain h2(X ,E(h2)) = h2(X ,IY |X(2h2)). Now if we ten-
sorize (4.1.35) by OX(2h2) and we take cohomology we have h2(X ,IY |X(2h2)) =

h1(Y,OX(2h2)⊗OY ) = 0 since OX(2h2) restricts to each component of Y to a degree
two line bundle. Thus we have h2(X ,E(h2)) = 0. Now if we take the cohomology
of (4.1.35) tensorized by E(h2) we have

h2(X ,E(h2)⊗IY |X)≤ h1(Y,E(h2)⊗OY ).
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But now using the fact that E ⊗OY ∼= N∨
Y/X we have h1(Y,E(h2)⊗OY ) = 0 and

thus h2(X ,E(h2)⊗I) = 0. Finally we obtain Ext2X(E,E) = 0 and the assertion on
the dimension of Ext1X(E,E) follows from Riemann-Roch, since E is simple and
χ(E ⊗E∨) = 4− c2(E)h.

Proposition 4.18. The vector bundles E constructed in Proposition 4.17 are generi-
cally trivial on lines.

Proof. Following the same reasoning as in Section 4.3, we have that E is generically
trivial on lines if the generic line from each family intersect the zero locus Y of a
section s ∈ H0(X ,E(h2)) in only one point. By our choice of Y it is clear that we
can choose a line in each family which intersect Y in only one point, but this is an
open condition, so it will also hold for the generic line.

4.1.5 Jumping lines

In this section we describe the locus of jumping lines inside the Hilbert scheme of
lines in X . Let us recall the definition of a jumping line:

Definition 4.19. Let E be a rank two vector bundle on X with c1(E) = 0. A jumping
line for E is a line L such that H0(EL(−r)) = 0 for some r > 0. The largest such
integer is called the order of the jumping line L.

Let us consider a line in the first family e1 = h2h3. Then we have the following
resolution

0 →OX(−h2 −h3)→OX(−h2)⊕OX(−h3)→OX →OL → 0. (4.1.36)

Let H be the Hilbert scheme of lines of the family h2h3. In particular we have
H= P1 ×P1, and we will denote by l and m the generators of Pic(H). Writing the
sequence (4.1.36) with respect to global sections of OX(−h2)⊕OX(−h3) we get
the description of the universal line L ⊂ X ×H

0→OX(−h2−h3)⊠OH(−1,−1)→
OX(−h2)⊠OH(−1,0)

⊕
OX(−h3)⊠OH(0,−1)

→OX×H →OL→ 0.

(4.1.37)
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Let us denote by D1
E the locus of jumping lines (from the first family) of an instanton

bundle E, and by i its embedding in H. Let us consider the following diagram

L ⊂ X ×H

X H

q p (4.1.38)

where q and p are the projection to the first and second factor respectively.

Lemma 4.20. D1
E is the support of the sheaf R1 p∗(q∗(E(−h1))⊠OL).

Proof. See [84, p. 108] for a proof for Pn. Since the argument is local, it can be
generalized to our case.

We recall two classical result that we need in order to describe the locus of
jumping lines.

Theorem 4.21 (Grauert). [57, Corollary 12.9] Let f : X → Y be a projective mor-
phism of noetherian schemes with Y integral, and let F be a coherent sheaf on X, flat
over Y . If for some i the function hi(Y,F) is constant on Y , then Ri f∗(F) is locally
free on Y , and for every y the natural map

Ri f∗(F)⊗ k(y)→ H i(Xy,Fy) (4.1.39)

is an isomorphism.

Theorem 4.22. [57, Theorem 5.3, Appendix A] Let f : X →Y be a smooth projective
morphism of nonsingular quasi projective varieties. Then for any x ∈ K(X) we have

ch( f!(x)) = f∗(ch(x).td(Tf )) (4.1.40)

in A(Y )⊗Q, where Tf is the relative tangent sheaf of f .

Now we are ready to state the following

Proposition 4.23. Let E be a generic instanton on X with c2 = k1e1 + k2e2 + k3e3.
Then D1

E is a divisor given by D1
E = k3l + k2m equipped with a sheaf G fitting into

0 →Ok3
H(−1,0)⊕Ok2

H(0,−1)→Ok2+k3
H → i∗G → 0. (4.1.41)
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Proof. By Lemma 4.20 a line L is jumping for E if and only if the point of H
corresponding to L lies in the support of R1 p∗(q∗(E(−h1))⊠OL).

Let us consider the Fourier-Mukai functor

ΦL : Db(X)→ Db(H)

with kernel the structure sheaf of L. We need to compute the transform of the bundles
appearing in the monad (4.1.11) tensorized by OX(−h1).

• ΦL(OX(−2h1 −h2)).

By (4.1.37) tensored by OX(−2h1 −h2)⊠OH, since the only non zero coho-
mology on X is h2(OX(−2h1 −2h2)) = 1 we get Ri p∗(q∗(OX(−2h1 −h2))⊠

OL) = 0 for i ̸= 1. Using the projection formula we obtain

R1 p∗(q∗(OX(−2h1−h2))⊠OL)∼=R2 p∗(q∗(OX(−2h1−2h2)))⊠OH(−1,0).

Observe that by Theorem 4.21 we have that R2 p∗(q∗(OX(−2h1 −2h2))) is a
rank one vector bundle on H. Using (4.1.40) it follows trivially that

c1(R2 p∗q∗(OX(−2h1 −2h2))) = 0.

In fact consider the diagram (4.1.38). Since X is a threefold and H is a surface,
we have that after being pulled-back on X ×H and push-forwarded to H all
the cycles on X became either zero or points. So we obtain

R1 p∗(q∗(OX(−2h1 −h2))⊠OL)∼=OH(−1,0).

We continue with the other terms of the monad (4.1.11). The computations are
completely analogous.

• ΦL(OX(−2h1 −h3)).

By (4.1.37) tensored by OX(−2h1 −h3)⊠OH, since the only non zero coho-
mology on X is h2(OX(−2h1 −2h3)) = 1 we get Ri p∗(q∗(OX(−2h1 −h3))⊠

OL) = 0 for i ̸= 1 and

R1 p∗(q∗(OX(−2h1 −h3))⊠OL)∼=OH(0,−1).



92 Instanton bundles on Fano threefolds

• ΦL(OX(−h1 −h2 −h3)).

By (4.1.37) tensored by OX(−h1 −h2 −h3)⊠OH, since the cohomology on
X is all zero we get Ri p∗(q∗(OX(−h1 −h2 −h3))⊠OL) = 0 for all i.

• ΦL(OX(−h1 −h2)).

By (4.1.37) tensored by OX(−h1 −h2)⊠OH, since the cohomology on X is
all zero we get Ri p∗(q∗(OX(−h1 −h2))⊠OL) = 0 for all i.

• ΦL(OX(−h1 −h3)).

By (4.1.37) tensored by OX(−h1 −h3)⊠OH, since the cohomology on X is
all zero we get Ri p∗(q∗(OX(−h1 −h3))⊠OL) = 0 for all i.

• ΦL(OX(−2h1)).

By (4.1.37) tensored by OX(−2h1)⊠OH, since the only non zero cohomology
on X is h2(OX(−2h1)) = 1 we get Ri p∗(q∗(OX(−2h1))⊠OL) = 0 for i ̸= 1
and

R1 p∗(q∗(OX(−2h1))⊠OL)∼=OH.

• ΦL(OX(−h1)).

By (4.1.37) tensored by OX(−h1)⊠OH, since the cohomology on X is all
zero we get Ri p∗(q∗(OX(−h1))⊠OL) = 0 for all i.

Now we apply the ΦL to the monad (4.1.11). First we apply ΦL to the sequence

0 → K →

Ok2+k3
X (−h1)

⊕
Ok1+k3

X (−h2)

⊕
Ok1+k2

X (−h3)

→Ok−2
X → 0

we get Ri p∗q∗(K ⊗OX(−h1)) = 0 for i ̸= 1 and

R1 p∗(q∗(K ⊗OX(−h1))⊠OL)∼=Ok2+k3
H .
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From

0 →

Ok3
X (−h1 −h2)

⊕
Ok2

X (−h1 −h3)

⊕
Ok1

X (−h2 −h3)

→ K → E → 0

we get

0 → R0 p∗(q∗(E ⊗OX(−h1))⊠OL)→Ok3
H(−1,0)⊕Ok2

H(0,−1)
γ→

Ok2+k3
H → R1 p∗(q∗(E ⊗OX(−h1))→ 0.

so γ is a (k2+k3)×(k2+k3) matrix made by two blocks. The first one is a (k2+k3)×
(k3) linear matrix in the first variables of H and the second one a (k2 + k3)× (k2)

linear matrix in the second variables of H. We observe that Ker(γ) is zero since
is a torsion free sheaf which is zero outside D1

E , and Coker(γ) ∼= R1 p∗(q∗(E ⊗
OX(−h1))⊠OL) is an extension to H of a rank 1 sheaf on D1

E denoted by G. That
is a divisor k3l + k2m given by the vanishing of the determinant of γ .

Remark 4.24. The Hilbert space of lines on X is made of three disjoint connected
component, each of which is isomorphic to the quadric surface P1 ×P1 (see [29,
Proposition 4.1]). So we can repeat this exact same reasoning to the lines of the
family e2 and e3, i.e. permuting the indices (1,2,3), we can describe the locus Di

E

as a divisor of type k jl + khm with i ̸= j ̸= h ̸= i.

In a completely analogous way, it is possible to use the monad (4.1.16) to study
the locus of jumping lines, obtaining the same result.

4.2 Instanton bundles on the Flag variety F(0,1,2)

In this section we deal with the Flag variety F(0,1,2), which is the other Fano
threefold of degree 6. Let us call h1 and h2 the two generators of the Picard group.
Recall that the Chow group in codimension two is generated by h2

1 and h2
2 with the

relation h2
1 + h2

2 = h1h2. In the first part of the section we summarize the known
results about instanton bundles on F(0,1,2) and we slightly generalize them taking
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into account the differences between our definition and the definition given in [78].
In particular in this work we will not assume any restriction on the second Chern
class of the bundle. In this case it is possible to obtain a monadic description of any
instanton bundle, similarly to the case of P1 ×P1 ×P1.

Theorem 4.25. Let E be an instanton bundle with charge k on F, i.e. c2(E) =
k1h2

1 + k2h2
2 with k = k1 + k2.

• Then, up to permutation, E is the cohomology of a monad

0 →
OF(−1,0)⊕k1

⊕
OF(0,−1)⊕k2

α−→
G1(−1,0)⊕k1

⊕
G2(0,−1)⊕k2

β−→O⊕k−2
F → 0, (4.2.1)

where Gi is the pull-back of the twisted cotangent bundle ΩP2(2) from the two
natural projections pi : F ⊂ P2 ×P2 → P2.

Reciprocally, the cohomology of such a monad defines a k-instanton.

• Then, up to permutation, E is the cohomology of a monad

0 →
OF(−1,0)⊕k1

⊕
OF(0,−1)⊕k2

α−→O⊕2k+2
F

β−→
OF(1,0)⊕k1

⊕
OF(0,1)⊕k2

→ 0. (4.2.2)

Moreover, the monad obtained is self-dual, i.e. it is possible to find a non
degenerate symplectic form q : W → W ∗, with W a (2k + 2)-dimensional
vector space describing the copies of the trivial bundle in the monad, such that
β = α∨ ◦ (q⊗ idOF ).

In [78] it has been proved the existence of stable instanton bundles of every
second Chern class of the form kh1h2. In this thesis we generalize this result to
any second Chern class k1h2

1 + k2h2
2. Let us consider C1,C2, . . . ,Ck1 disjoint conics

which are represented by h1h2 in A2(F), and L1,L2, . . .Lk2+1 lines represented by h2
2

in A2(F). Let Y be the one dimensional subscheme of F given by

Y =
k1⋃

i=1

Ci ∪
k2+1⋃
j=1

L j. (4.2.3)



4.2 Instanton bundles on the Flag variety F(0,1,2) 95

Proposition 4.26. Let E be a vector bundle with c1(E) = 0, c2(E) = Y +h2
2 with

and k1 + k2 ≥ 2. Suppose E(0,1) has a section vanishing along Y , i.e. E fits into

0 →OF(0,−1)→ E →IY |F(0,1)→ 0

then E is a µ − stable instanton bundle with charge k = k1 + k2 such that

dimExt1F(E,E) = 4k−3, Ext2F(E,E) = Ext3F(E,E) = 0.

As a consequence, we construct a nice component of the moduli space of instan-
ton bundles.

Corollary 4.27. For each non-negative k1 and k2 such that k1 + k2 ≥ 2 there exists
an irreducible component

MI0
F(k1h2

1 + k2h2
2)⊆ MIF(k1h2

1 + k2h2
2)

which is generically smooth of dimension 4(k1 + k2)−3.

4.2.1 The Flag variety F(0,1,2)

Let F ⊆ P7 be the del Pezzo threefold of degree 6. We can construct F as the
general hyperplane section of P2 ×P2. The projections πi induce maps pi : F →
P2 by restriction, i = 1,2 and such maps are isomorphic to the canonical map
P(Ω1

P2(2)) → P2. Thinking of the second copy of P2 as the dual of the first one,
then F can also be viewed naturally as the flag variety of pairs point–line in P2. We
denote by A(F) the Chow ring of F . Let hi, i = 1,2, be the respective classes of
p∗i OP2(1) in A1(F). The class of the hyperplane divisor on F is h = h1 +h2.

The above discussion proves the isomorphisms

A(F)∼= A(P2)[h1]/(h2
1 −h1h2 +h2

2)
∼= Z[h1,h2]/(h2

1 −h1h2 +h2
2,h

3
1,h

3
2).

In particular, Pic(F) ∼= Z⊕2 with generators h1 and h2. We will denote the Chern
polynomial of a given coherent sheaf E by

cE(t) := 1+(α1h1 +α2h2)t +(β1h2
1 +β1h2

2)t
2 + γh2

1h2t3,
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where the coefficient of degree i is ci(E).
Recall that F contains two families of lines Λ1,Λ2, each isomorphic to P2. Their
representatives in the Chow ring A(F) are h2

1, h2
2. Notice that if we look at F as

the projective bundle P(Ω1
P2(2))→ P2, these families correspond to the fibers over

points of P2. We have a geometrical description (using the notion of flag variety):
given p ∈ P2, λp := {L ∈ P2∨ | p ∈ L} ∈ Λ1. Analogously, given a line L ⊂ P2,
λL := {x ∈ P2 | x ∈ L} ∈ Λ2. Notice λx ∩λy = /0 if x ̸= y (clear from cohomological
product h2

1h2
2 = 0) and λx ∩λL = /0 (resp. {x,L}) if x ∈ l (resp. x /∈ L). If L1 (resp.

L2) is a line from the family Λ1 (resp. Λ2) it holds that

OF(α,β )⊗OL1
∼=OP1(β ) (resp.OF(α,β )⊗OL2

∼=OP1(α))

since h2
1(αh1 +βh2) = βh2

1h2. The OF -resolutions of a line L1 is:

0 −→OF(−2,0)−→OF(−1,0)2 −→OF −→OL1 −→ 0; (4.2.4)

(or the analogous one for the second family of lines L2).

In order to compute the OF -resolution of a point p ∈ F , we can consider its
OL-resolution

0 −→OL(−1)−→OL −→Op −→ 0

and use the mapping cone construction to conclude that

OF(−2,0) OF(−1,0)2

0 −→OF(−3,−1)−→ ⊕ −→ ⊕ −→ OF −→Op −→ 0.
OF(−2,−1)2 OF(−1,−1)

(4.2.5)

The flag variety F also contains a family of conics C (see the next subsection)
whose OF -resolution is:
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OF(−1,0)
0 −→OF(−1,−1)−→ ⊕ −→OF −→OC −→ 0.

OF(0,−1)
(4.2.6)

We have to distinguish two different cases (see Remark 4.30). In the case of a smooth
conic C ∼= P1, it holds:

OF(α,β )⊗OC ∼=OP1(α +β )

which will be denoted either by OC(α,β ) or OC(α + β ), to remember we are
restricting at a conic.
In the case of a reducible conic C = L1∪L2, we will always use the notation OC(α,β )

to keep track of the degree on each one of the lines.

We will now recall how to compute the cohomology of the line bundles on F
(see [30] Proposition 2.5):

Proposition 4.28. For each α1,α2 ∈ Z with α1 ≤ α2, we have

hi(F,OF(α1,α2)
)
̸= 0

if and only if

• i = 0 and α1 ≥ 0;

• i = 1 and α1 ≤−2, α1 +α2 +1 ≥ 0;

• i = 2 and α2 ≥ 0, α1 +α2 +3 ≤ 0;

• i = 3 and α2 ≤−2.

In all these cases

hi(F,OF(α1,α2)
)
= (−1)i (α1 +1)(α2 +1)(α1 +α2 +2)

2
.

It could be thought that the study of the geometry of lines of the F will be
enough to define and understand instanton bundles, as it turned out to be in the case
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of instanton bundles on P3. Nevertheless, in the case of the flag variety, the main
kind of rational curve we are interested in is the conic. In fact, through the Ward
correspondence, instanton bundles on F have trivial splitting on "real" conics (this is
explained in [20] and [45] without explicitly mentioning the degree) and therefore,
by semicontinuity, on the general element of C := Hilb2t+1(F). Therefore, we
devote this subsection to study the main properties of the conics on F .

Lemma 4.29. [78, Lemma 1.5] The Hilbert scheme of rational curves of degree two
C := Hilb2t+1(F) is isomorphic to P2×P2. The open set P2×P2\F corresponds to
smooth conics. Moreover, the canonical map p : C → F from the universal conic C
to F endows C with the structure of a quadric bundle of relative dimension 2 over F.

Remark 4.30. Indeed, it is known (see for instance [74, Lemma 2.1.1]) that any
subscheme of F with Hilbert polynomial 2t + 1 will be a smooth conic, a pair of
distinct lines intersecting on a point, or a line with a double structure. In order to see
that there is no such non-reduced subscheme on F we should observe that for any line
L on F , we have NL|F ∼=O2

L. Therefore there is no surjective map N∨
L|F →OL(−1)

and we conclude again by [74, Lemma 2.1.1].

4.2.2 Definition of instantons, properties and monads

Similarly to the case of P1 ×P1 ×P1 we will give the following definition

Definition 4.31. For any integer k ≥ 1 we will call an instanton bundle with charge k
(or, for short, a k-instanton) a rank two µ-semistable bundle E on F with H0(E) = 0,
c1(E) = (0,0), c2(E) = k1h2

1 + k2h2
2 with k1 + k2 = k and H1(E(−1,−1)) = 0.

Observe that in this case the definition is slightly different from the one found
in [78] where it is required that the second Chern class c2(E) is concentrated in the
term h1h2 (i.e. k1 = k2). Using Beilinson’s spectral sequences techniques, in [78]
obtained a monadic description of instanton bundles over F(0,1,2). Adapting their
results to our definition it is possible to state the following theorems:

Theorem 4.32. [78, Theorem 4.1] Let E be an instanton bundle with charge k on F.
Then, up to permutation, E is the cohomology of a monad

0→OF(−1,0)⊕k1 ⊕OF(0,−1)⊕k2 α−→G1(−1,0)⊕k1 ⊕G2(0,−1)⊕k2
β−→O⊕k−2

F → 0,
(4.2.7)
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where Gi is the pull-back of the twisted cotangent bundle ΩP2(2) from the two natural
projections pi : F ⊂ P2 ×P2 → P2.

Reciprocally, the cohomology of such a monad defines a k-instanton.

Theorem 4.33. [78, Theorem 4.2] Let E be an instanton bundle with charge k on F.
Then, up to permutation, E is the cohomology of a monad

0 →OF(−1,0)⊕k1 ⊕OF(0,−1)⊕k2 α−→O⊕2k+2
F

β−→OF(1,0)⊕k1 ⊕OF(0,1)⊕k2 → 0.
(4.2.8)

Moreover, the monad obtained is self-dual, i.e. it is possible to find a non degenerate
symplectic form q : W →W ∗, with W a (2k+2)-dimensional vector space describing
the copies of the trivial bundle in the monad, such that β = α∨ ◦ (q⊗ idOF ).

Reciprocally, any vector bundle with no global sections defined as the cohomol-
ogy of such a monad is a k-instanton bundle.

Moreover in [78] the authors characterized strictly semistable instanton bundles
with the second Chern class concentrated in the term h1h2.

Proposition 4.34. [78, Proposition 2.5] Let E be an instanton bundle on F with
c2(E) = kh1h2. Then, it is also Gieseker semistable. Moreover, if E is not µ-stable,
then k = l2 for some l ∈ Z, l ̸= 0 and it can be constructed as an extension Λl of the
form

0 →OF(l,−l)→ E →OF(−l, l)→ 0. (4.2.9)

The only common element of the two families of extensions Λl and Λ−l is the
decomposable bundle OF(l,−l)⊕OF(−l, l).

Through an induction process, they also constructed stable instanton bundles
with c2(E) = kh1h2 on the flag variety for each charge k. More concretely, they
proved the following

Theorem 4.35. [78, Theorem 5.1] Let F ⊂ P7 be the flag variety. The moduli space
MIs

F(k) of stable instanton bundles with c2(E) = kh1h2 is non empty and has a
generically smooth irreducible component of dimension 8k−3.

We conclude this section by stating the behaviour of instanton bundles when
restricted to conics. In [78] the authors defined the notion of jumping conic.
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Definition 4.36. Let E be an instanton bundle on the flag variety F . A conic C ⊂ F
(irreducible or not) is a jumping conic of type (a,b) if it satisfies H1(E|C(−1,0)) = a
and H1(E|C(0,−1)) = b. C is said to have trivial splitting type when it has type
(0,0).

Suppose first that C ⊂F is an irreducible conic, C ∼=P1. In that case, OF(−1,0)|C =

OF(0,−1)|C = OC(−1) and for an instanton bundle E we have E|C ∼= OC(−a)⊕
OC(a) if and only if H1(E|C(−1,0)) = H1(E|C(0,−1)) = a if and only if it is a
jumping conic of type (a,a).

On the other hand, for a reducible conic C = L1 ∪L2 for lines Li intersecting
transversely on a single point. In this case, it is well-known that Pic(C)∼= Z2, where
the isomorphism is given by L→ (degL1(L),degL2(L)). Therefore, for an instanton
E on F the restriction to C is of the form EC ∼=OC(a,b)⊕OC(−a,−b) if and only
if it is a jumping conic of type (a,b).

Let us denote by DE ⊂ C the locus of jumping conics of an instanton E, and by
i its embedding in H.

Proposition 4.37. [78, Proposition 6.2] Let E be an instanton bundle with c2(E) =
kh1h2 on F. Then DE is a divisor of type (k,k) equipped with a sheaf G fitting into

0 →OH(−1,−1)⊕k ⊕OH(−1,0)⊕k →O⊕k
H ⊕OH(−1,0)⊕k → i∗G → 0. (4.2.10)

In the next section we will slightly generalize Theorem 4.35 by allowing every
possible second Chern class.

4.2.3 Construction of instantons via Serre’s correspondence

In this section we will construct instantons for each possible c2(E) and we will show
that they are smooth points of an irreducible component of the moduli space of
instanton bundles. Suppose c2(E) = k1h2

1 + k2h2
2 with k1 ≤ k2.

Let us consider C1,C2, . . . ,Ck1 disjoint conics which are represented by h1h2

in A2(F), and L1,L2, . . .Lk2+1 lines represented by h2
2 in A2(F). Let Y be the one
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dimensional subscheme of F given by

Y =
k1⋃

i=1

Ci ∪
k2+1⋃
j=1

L j. (4.2.11)

We claim that detNY/F
∼=OF(0,2)⊗OY . Let us work component by component,

similarly to the case of P1 ×P1 ×P1. By adjunction formula N∨
Ci/F

∼= ICi ⊗OCi , so
splitting (4.2.4) in two short exact sequences and tensorizing by OCi we get NCi/F

∼=
O2

Ci
(−1). In particular we have detNCi/F

∼=OF(D)⊗OCi where D is a divisor of the
form ah1 +bh2 with a+b = 2. Doing the same for lines L j we obtain NL j/F

∼=O2
L j

and thus detNL j/F
∼=OF(D)⊗OL j where D is a divisor of the form ch2. Combining

these two results we obtain that detNY/F
∼=OF(0,2)⊗OY , i.e the determinant of

the normal bundle of Y is extendable on F . Since h2(F,OF(−2h2)) = 0, there exists
a vector bundle G on F with a section s vanishing along Y with c1(G) = 2h2 and
c2(G) = Y . Thus E = G(−h2) has c1(E) = 0, c2(E) = c2(F)+h2

2 and it fits into

0 →OF(0,−1)→ E →IY |F(0,1)→ 0. (4.2.12)

So we have the following Proposition

Proposition 4.38. Let E be a vector bundle with c1(E) = 0, c2(E) = Y +h2
2 with Y

as in (4.2.11) and k1 + k2 ≥ 2. Suppose E(0,1) has a section vanishing along Y , i.e.
E fits into

0 →OF(0,−1)→ E →IY |F(0,1)→ 0

then E is a µ − stable instanton bundle with charge k = k1 + k2 such that

dimExt1F(E,E) = 4k−3, Ext2F(E,E) = Ext3F(E,E) = 0.

Proof. The proof is similar to the proof of Proposition 4.17. By construction c1(E) =
0 and c2(E) = k1h2

1 + k2h2
2.

Taking the cohomology of (4.2.12), we obtain h0(E) = h0(IY |F(0,1)) = 0 be-
cause Y contains at least three disjoint components. Tensoring (4.2.12) by OF(−1,−1)
we have h1(E(−1,−1)) = h1(IY |F(−1,0)). Now considering the defining sequence
of the ideal IY |F tensorized by OF(−1,0) we obtain h1(IY |F(−1,0))= h0(OY (−1,0))=
0 because each connected component Z of Y is isomorphic to P1 and −h1Z =−1.
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Now we prove the µ-stability of E. By Proposition 4.7 E is µ-stable if and only
if h0(E(−D)) = 0 for each divisor D such that Dh2 ≥ 0. Let us take such a divisor
D = d1h1 +d2h2 with d1 +d2 ≥ 0 and consider the short exact sequence

0 →OF(−d1,−d2 −1)→ E(−d1,−d2)→IY |F(−d1,−d2 +1)→ 0.

Now
h0(IY |F(−d1,−d2 +1))≤ h0(OF(−d1,−d2 +1)).

So it is clear that h0(IY |F(−d1,−d2 +1)) = 0 whenever d1 > 0 or d2 > 1. In these
cases we have h0(E(−D)) = 0. It remains to study the cases D = h2 and D =

−h1 +h2. In both cases h0(E(−d1,−d2)) = h0(IY |F(−d1,−d2 +1)) = 0 because Y
contains at least three disjoint components, thus E is µ-stable.

Now we prove the part of the statement regarding the Ext groups. Since E is µ-
stable, it is simple. Thus we have Ext3F(E,E) = 0. Now we show that Ext2(E,E) =
0 and the assertion on the dimension of Ext1F(E,E) will follow from Riemann-
Roch. Consider the short exact sequence (4.2.12) and tensor it by E ∼= E∨. Taking
cohomology we have

H2(F,E(0,−1))→ Ext2F(E,E)→ H2(F,E ⊗IY |F(0,1)).

Using the short exact sequence (4.2.12) we obtain H2(F,E(0,−1))∼= H2(F,IY |F)∼=
H1(Y,OY ) ∼= 0 because Y is the disjoint union of smooth rational curves. So
Ext2F(E,E) = 0 as soon as H2(F,E ⊗IY |F(0,1)) vanishes. In order to show this
vanishing let us take the short exact sequence (4.2.12) and tensorize it by OF(0,1).
Taking cohomology we obtain h2(F,E(0,1)) = h2(X ,IY |X(0,2)). Now if we ten-
sorize

0 →IY |F →OF →OY → 0

by OF(0,2) and we take cohomology we have h2(F,IY |F(0,2)) = h1(Y,OF(0,2)⊗
OY ) = 0 since OF(0,2) restricts to each component of Y to a degree two line bundle.
Thus we have h2(F,E(h2)) = 0. Now if we take the cohomology of the defining
sequence of IY |F tensorized by E(h2) we have

h2(F,E(0,1)⊗IY |F)≤ h1(Y,E(0,1)⊗OY ).
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But now using the fact that E ⊗OY ∼=N∨
Y/F we have h1(Y,E(0,1)⊗OY ) = 0 and

thus h2(F,E(0,1))⊗IY |F) = 0. Finally we obtain Ext2X(E,E) = 0. To compute the
dimension of Ext1F(E,E) we use Riemann-Roch. Since c1(E ⊗E∨) = c3(E ⊗E∨) =

0 and c2(E ⊗E∨) = 4c2(E) we have

dimExt1F(E,E) = h0(E ⊗E∨)+h2(E ⊗E∨)−χ(E ⊗E∨) = 4c2(E)(h1 +h2)−3,

thus dimExt1F(E,E) = 4k−3.

As a consequence we are able to describe the component of the moduli space of
instanton bundles containing the vector bundles constructed in Proposition 4.38.

Corollary 4.39. For each non-negative k1 and k2 such that k1 + k2 ≥ 2 there exists
an irreducible component

MI0
F(k1h2

1 + k2h2
2)⊆ MIF(k1h2

1 + k2h2
2)

which is generically smooth of dimension 4(k1 + k2)−3 and containing all points
corresponding to the bundles obtained in Proposition 4.38.

Proof. The schemes as in (4.2.11) represent points in a non-empty open subset
U ⊂ C ×Λ2. Since the latter product is a product of irreducible varieties, it is
irreducible. It follows that U is irreducible as well.

Since the vector bundle E in Sequence (4.2.12) is uniquely determined by the
scheme Y , we obtain in this way a flat family of bundles containing all the bun-
dles obtained via Proposition 4.38 and parameterized by U . Thus there exists a
morphism u : U → MIF(k1h2

1 + k2h2
2). Every point in the image of u is smooth

because Ext2F(E,E) = 0 by Proposition 4.38, thus there exists a unique component
MI0

F(k1h2
1 + k2h2

2) containing u(U). Then by Proposition 4.38 we have

dimMI0
F(k1h2

1 + k2h2
2) = dimExt1F(E,E) = 4k−3,

which completes the proof.
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