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Abstract: Agriculture is being transformed through automation and robotics to improve efficiency
and reduce production costs. However, this transformation poses risks of job loss, particularly for
low-skilled workers, as automation decreases the need for human labor. To adapt, the workforce
must acquire new qualifications to collaborate with automated systems or shift to roles that leverage
their unique human abilities. In this study, 15 agricultural occupations were methodically mapped
in a cognitive/manual versus routine/non-routine two-dimensional space. Subsequently, each
occupation’s susceptibility to robotization was assessed based on the readiness level of existing
technologies that can automate specific tasks and the relative importance of these tasks in the
occupation’s execution. The qualifications required for occupations less impacted by robotization
were summarized, detailing the specific knowledge, skills, and work styles required to effectively
integrate the emerging technologies. It was deduced that occupations involving primary manual
routine tasks exhibited the highest susceptibility rate, whereas occupations with non-routine tasks
showed lower susceptibility. To thrive in this evolving landscape, a strategic combination of STEM
(science, technology, engineering, and mathematics) skills with essential management, soft skills, and
interdisciplinary competences is imperative. Finally, this research stresses the importance of strategic
preparation by policymakers and educational systems to cultivate key competencies, including digital
literacy, that foster resilience, inclusivity, and sustainability in the sector.

Keywords: Occupational Information Network (O*NET) system; process automation; technological
substitution/complementarity; agricultural workforce capacity-building

1. Introduction

Currently, the labor landscape is changing due to technological advancements and dig-
italization, including innovations like the internet of things (IoT), artificial intelligence (AI),
big data analytics, and robotics. The recent COVID-19 pandemic accelerated digitalization,
remarkably impacting the agricultural workforce [1,2]. Research efforts have intensified to
analyze the key trends influencing labor markets and the necessary skills for professionals
to navigate this transition effectively [3–5]. Key trends include automation’s impact on
job destruction and task modification within occupations [6,7]. Specifically, automation is
shifting tasks from physical and repetitive to social and intellectual, and creating new roles,
such as data management and robotics maintenance. This shift generates a series of emerg-
ing phenomena in the labor landscape like job polarization, where both high- and low-skill
jobs are growing, while middle-skill positions decline. This is accompanied by wage and
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working condition polarization, and reduced job stability [8]. Additionally, knowledge
work in services is becoming more standardized, while new employment practices includ-
ing teleworking and digital platforms are emerging, favoring high-skilled workers and
offering global talent access [9]. These changes often lead to unstable, on-demand jobs with
income insecurity [10].

To address these disruptions, a mindset of lifelong learning is essential. Individuals
need to engage in up-skilling (improving existing skills), re-skilling (learning new skills),
multi-skilling (developing skills in interrelated domains), and cross-skilling (combining
skills applied in different domains for the purpose of having a broader perspective) to
remain relevant [11,12]. In the context of a dynamic labor market, individuals should
manage by themselves their careers through continuously acquiring new knowledge and
mastering skills that are in demand at a high speed. In brief, knowledge is related to
theory, while skills are associated with practice and developed trait through experience,
with the link between them being competencies [13]. Skills needed span from technical to
socioemotional [14], with high-order cognitive and socioemotional skills, known as “new
economy skills”, offering better job prospects and conditions [15]. Considering the policy at
an international level for greening economies, “green” skills are also increasingly important
for sustainable practices.

In this evolving labor market, the agricultural sector is increasingly integrating ad-
vanced robotics and computerization, which are not only handling repetitive and physically
demanding tasks but also performing non-routine tasks requiring cognitive abilities [16].
As a consequence, a gradual transition from humans to robots is apparent, while simul-
taneously, new strategies are emerging to foster complementarity between humans and
robots [17,18]. In particular, the landscape of the agricultural labor market is undergoing a
profound transformation. This shift towards automation not only boosts productivity and
efficiency, but also necessitates a reassessment of the key skills required in this volatile labor
market. The necessity for continued education has been recognized in the relevant litera-
ture on the transition towards more sustainable and digitized agricultural systems [19–24].
The results of the related literature converge in five broad categories of qualifications [13]:
(a) lifelong learning: continuous learning is essential, extending beyond formal educa-
tion to everyday engagement with new technologies and labor market changes; (b) sys-
tems perspective: understanding the complexities of diverse agricultural systems [24],
expanding beyond basic competencies to include the broader scope of Agriculture 4.0 [25];
(c) knowledge integration: combining interdisciplinary knowledge from both scientific and
practical farmer experience to bridge theoretical and empirical gaps; (d) subject-specific
technical knowledge: updated technical expertise is required to meet the demand for
efficiency, safety, and sustainability in agriculture [26,27]; (e) building and maintaining
networks: engaging in learning communities and networks to share knowledge, foster
new ideas, and include diverse perspectives, including those from outside the agricultural
sector [28].

The common denominator of the practices applied in the above studies for investigat-
ing the most valuable skills was group discussions and interviews. Moreover, secondary
data from previous surveys have been integrated to summarize the content of the skill set
that different worker groups should develop. Nevertheless, in order to identify the key
qualifications required for individuals to adapt in the evolving landscape of the agricultural
labor market considering the advancements in automation, a systematic methodological
approach is needed. To this end, this study initially selects the occupations purely asso-
ciated with crop and livestock production. Subsequently, each agricultural occupation is
decomposed into the various tasks it involves. The scope is the mapping of the selected oc-
cupations in a routine/non-routine versus cognitive/manual two-dimensional (2D) space
and an evaluation of their susceptibility to robotization. As a final point, focusing on the
less susceptible to robotization occupations, the most important sets of knowledge, skills,
and work styles are summarized.
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To address the objectives of the present study, the methodology used by Mari-
noudi et al. [29] was adopted, where 17 agricultural occupations were mapped with respect
to their routine/non-routine and cognitive/manual nature, while their susceptibility to
robotization was also assessed. In comparison with [29], the updated version of the O*NET
Online tool [30] was used in the present study, where some occupations were either inte-
grated into other occupations or the number and the content of the tasks they encompass
were modified. Furthermore, two new agricultural occupations were added for the sake
of completeness. Finally, the present analysis utilized the expansive database of O*NET,
also encompassing a diverse array of qualifications necessary for executing tasks within
the selected occupations. Leveraging this tool enabled us to assess both the importance
and proficiency level associated with each qualification, thereby facilitating a systematic
quantification of our findings. This study’s outcomes highlight the urgent need for targeted
skill development and policy interventions, making it a valuable contribution to managing
the impacts of technological change in the agricultural sector, a challenging sector due to
its reliance on traditional practices and manual labor. To the best of our knowledge, this is
the first instance in the pertinent literature where such quantification has been achieved.

2. Materials and Methods
2.1. Reviewed Occupations

As mentioned above, the O*NET-SOC system was implemented for this work, a
database that contains 1016 occupational titles categorized in broadly defined occupations.
This classification system defines occupations in the context of their content, tasks, technol-
ogy skills, and work activities, in conjunction with the required worker qualifications, and
integrates them into a functional system. The required information is gathered statistically
directly from a random sample of workers at business establishments via standardized
questionnaires and is continually updated. The open-source online tool of O*NET is used
by a broad range of audiences for career development, public policy, and research.

As far as the present analysis is concerned, 15 agricultural occupations were selected.
Their O*NET-SOC title, code, comparison with [29], as well as the number of tasks, knowl-
edge, skills, and work styles are summarized in Table 1.

Overall, compared to [29], two new occupations have been added, namely, “Preci-
sion Agriculture Technicians” (19-4012.01) and “Farm and Home Management Educators”
(25-9021.00). The remaining 13 occupations resulted from either merging previous occu-
pations into a broader category, augmenting the existing tasks, or maintaining the same
code and tasks. For the sake of clarity, Figure 1 provides a schematic comparison of
changes in the examined occupations between the current study (green) and the previous
study [29] (orange).

Table 1. Summary of the 15 reviewed occupations accompanied by the O*NET 8-digit code, comparisons
with [29], as well as number of tasks, knowledge, skills, and work styles, according to [30].

O*NET-SOC 2019 Title O*NET Code Comparison with [29] Tasks Knowledge Skills Work Styles

Farmers, Ranchers, and
Other

Agricultural Managers
11-9013.00

New code (resulting from the
merger of “Nursery and
Greenhouse Managers”

(11-9013.01) and “Farm and
Ranch Managers” (11-9013.02))

30 13 20 16

Farm Labor Contractors 13-1074.00 Same code; same tasks 8 7 8 15

Agricultural Engineers 17-2021.00 Same code; 1 task added 14 16 23 15

Animal Scientists 19-1011.00 Same code; same tasks 9 10 22 15

Soil and Plant Scientists 19-1013.00 Same code; 7 tasks added 27 12 19 15

Agricultural Technicians 19-4012.00
New code (resulting from
“Agricultural Technicians”
(19-4011.01)); 1 task added

26 11 14 16
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Table 1. Cont.

O*NET-SOC 2019 Title O*NET Code Comparison with [29] Tasks Knowledge Skills Work Styles

Precision
Agriculture Technicians 19-4012.01 New occupation and code 22 13 15 15

Farm and Home
Management Educators 25-9021.00 New occupation and code 15 9 20 16

First-Line Supervisors of
Farming, Fishing, and

Forestry Workers
45-1011.00

New code (resulting from the
merger of “First-Line

Supervisors of Agricultural
Crop and Horticultural

Workers” (45-1011.07) and
“First-Line Supervisors of

Animal Husbandry and Animal
Care Workers” (45-1011.08))

30 9 22 16

Agricultural Inspectors 45-2011.00 Same code; Same tasks 22 7 15 16

Graders and Sorters,
Agricultural Products 45-2041.00 Same code; 1 task added 6 3 0 * 8

Agricultural
Equipment Operators 45-2091.00 Same code; same tasks 17 1 7 16

Farmworkers and
Laborers, Crop, Nursery,

and Greenhouse
45-2092.00

New code (resulting from the
merger of “Agricultural
Equipment Operators”

(45-2092.01) and “Farmworkers
and Laborers, Crop”

(45-2092.02))

30 0 * 2 16

Farmworkers, Farm,
Ranch, and

Aquacultural Animals
45-2093.00 Same code; same tasks 22 7 11 15

Farm Equipment
Mechanics and

Service Technicians
49-3041.00 Same code; 1 task added 14 8 15 16

* Did not meet the minimum required O*NET threshold.
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As can be seen in Figure 2, out of the fifteen reviewed occupations listed in Table 1, six
of them come from “Farming, Fishing, and Forestry”, and four from “Life, Physical, and
Social Science” major groups of occupations. Furthermore, there is a single representation
from each of the following categories: “Management”, “Business and Financial Operations”,
“Architecture and Engineering”, “Educational Instruction and Library”, and “Installation,
Maintenance, and Repair”. This distribution clearly demonstrates the heterogeneity of
the contemporary agricultural domain, which is built on diverse actors’ experiences and
knowledge towards adapting to the current market needs and challenges.
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2.2. Occupation Mapping and Susceptibility to Robotization Rating

This part of the present work follows the methodology developed in [29] and refers, as
a first step, to the mapping of the occupations in a 2D graph on the basis of their nature of
work, and, as a second step, to the assessment of the level of susceptibility to robotization
for each occupation. The methodology is summarized below.

The tasks of an occupation can be classified as (a) manual routine; (b) manual non-
routine; (c) cognitive routine; and (d) cognitive non-routine. The distinction between
“cognitive” and “manual” refers to the type of mental or physical effort required for a
task, respectively, while “routine” and “non-routine” refer to the involving standardized
or non-standardized activities, respectively. Having all the related occupations integrated
in a common 2D graph—the vertical axis representing the cognitive versus manual na-
ture of the occupation, and the horizontal axis the non-routine versus routine nature—is
particularly important in light of examining possible human–machine substitution or
complementarity [29,32].

In the initial step, the importance of each individual task within an occupation is
assessed by assigning an “importance weight”. This weight is derived from the average
results of a series of participatory interviews conducted with professionals in agricultural
occupations. Each interviewed professional rates the importance of the task within the
occupation using the following scale: (a) not important: Score 1; (b) slightly important:
Score 2; (c) important: Score 3; (d) very important: Score 4; (e) strongly important: Score 5.

After rating the “importance” of each individual task within the occupation, the
process of indexing the nature of each task is conducted. Assessors assign values from
the set [0, 0.25, 0.5, 0.75, 1] to each task to quantify the contribution of cognitive routine,
cognitive non-routine, manual routine, and manual non-routine attributes to the execution
of the task. These values must sum to 1 for each task. The cognitive/manual balance
for a task is calculated by summing the values of the cognitive routine and cognitive
non-routine indexes and subtracting the values of the manual routine and manual non-
routine indexes. The cognitive/manual balance for an occupation (corresponding to the
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y-coordinate of the occupation in the 2D graph, lC−M) is then determined by summing
the cognitive/manual balances of each task, each weighted by the importance of the task.
Analogously, the routine/non-routine balance for a task is calculated by summing the
values of the cognitive non-routine and manual non-routine indexes and subtracting the
values of the cognitive routine and manual routine indexes. The routine/non-routine
balance for an occupation (corresponding to the x-coordinate of the occupation in the 2D
graph, lR−nR) is then determined by summing the routine/non-routine balances of each
task, each weighted by the importance of the task.

Next, an overall normalized susceptibility rate to robotization, ŝi, is calculated. The
rating refers to three scores, namely: (a) Score 0: there is no technology at technology
readiness level (TRL) 3 or higher demonstrated, or there is no reasonable indication that
the task can be computerized or robotized in the short- or mid-term future; (b) Score 0.5:
a significant part (or parts) of the task can be computerized or robotized; and (c) Score 1:
there is an existing technology or a technology under development at least at TRL 3 that can
be implemented for the execution of the task. Tasks with a score of 0.5 are typically subject
to transformation, often evolving into roles that require human–machine collaboration,
where human oversight complements automated processes. In contrast, tasks with a score
of 1 are predominantly automated or replaced entirely by machines, resulting in a more
significant shift towards full automation [33].

Towards providing a clearer understanding of the technologies being addressed,
several robotics and automation technologies relevant to the agricultural sector are con-
sidered indicatively, including (a) self-driving vehicles, like tractors, which can perform
tasks like plowing and seeding with high precision [34]; (b) robotic harvesters, such as
strawberry-picking robots and grape harvesters, which are equipped with advanced sensors
to minimize manual involvement [35]; (c) automated irrigation systems that use IoT sensors
and AI to optimize water usage by monitoring soil moisture and weather conditions [36];
(d) unmanned aerial (UAV) and ground vehicles (UGV), which include drones for aerial
crop monitoring, weed detection, and field mapping, as well as ground robotic systems
for soil sampling, autonomous equipment transport, and various maintenance tasks such
as harvesting and applying fertilizers or pesticides [37]; (e) computerized systems, which
manage logistics, inventory, and distribution of agricultural products, thus reducing the
need for manual coordination and tracking [38]; and (f) machine learning models, which
analyze data from soil sensors, weather forecasts, and UAV and satellite imagery to detect
diseases early, predict crop yields, and optimize farming practices [39]. These technologies
collectively drive the transformation in agriculture, enhancing efficiency while reducing
the demand for manual labor.

The overall susceptibility rating of an occupation results as the weighted—in terms
of the task importance—average value of the tasks it contains. These values classify the
occupations into three zones:

• The “green zone”, which denotes a very low potential to robotization, ŝi ∈ [0, 0.33) ;
• The “yellow zone”, which represents a low to medium potential to robotization,

ŝi ∈ [0.33 , 0.66);
• The “red zone”, which signifies a very high potential to robotization, ŝi ∈ [0.66 , 1].

The values of the aforementioned coefficients, regarding the level of importance, the
nature of each task, and the level of susceptibility to robotization, were independently
provided by the assessors. A consensus tele-meeting of the authors was held for the sake
of resolving any disagreement of opinion and evaluating the final scores. The assessors
possessed proven knowledge in a wide range of scientific areas, such as agricultural
robotics, human–robot interaction, precision agriculture, operations management, logistic
operations, sustainability assessment, informatics, and AI, to mention but a few. The score
scales used in this analysis could be considered arbitrary, as any other scales could be
applied. This may introduce biases inherent to that dataset. However, by incorporating the
critical opinion of a group of assessors and professionals, coming from multidisciplinary
research fields and labor categories, this study aimed to mitigate potential biases and
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provide a more comprehensive understanding of the subject matter by shedding light on
the labor market trends in the agricultural sector.

2.3. Investigation of the Most Required Qualifications to Cope with Robotization

The second aspect of this work deals with the filtering of a wide range of qualifications
related to the occupations engaged in agricultural sector. For this scope, for each occupation,
the required set of knowledge, skills, and work styles was considered as listed and described
in the O*NET database. Specifically, these categories concern the following:

• Knowledge: related to knowledge of principles and methods of different disciplines,
such as mathematics, chemistry, and management;

• Skills: contains a variety of skills, including, indicatively, critical thinking, identifying
the reasons behind operational errors, and system analysis;

• Work styles: This set includes several personal characteristics, such as stress tolerance,
leadership, and concern for others.

For the purpose of quantifying our analysis, the “importance” and “level” ratings
for each qualification were also considered, as they have been identified in O*NET by
occupational analysts according to established protocols for reviewing the occupational
information. The importance rating spans from 0 (signifying insignificance or irrelevance to
the occupation in question) to 100 (indicating utmost importance). Likewise, the level rating
ranges from 0 to 100, representing the degree of proficiency, with higher scores indicating
greater expertise or mastery. The final category of work styles, commonly referred to as
“soft skills”, could not be assessed for proficiency level due to the unavailability of data.
Therefore, only their importance was considered.

In order to determine the essential qualifications needed to adapt to robotization, our
analysis focused on the occupations belonging to the “green zone”, which corresponds to
the low susceptibility to robotization, as was elaborated in Section 2.2. In particular, overall
normalized values were calculated based on the following:

Overall normalized importance : Îi =∑n
i=1

Ii
100·n −→ [0, 1], (1)

Overall normalized level : L̂i =∑n
i=1

Li
100·n −→ [0, 1], (2)

where n stands for the total number of occupations with a very low susceptibility rate,
while Ii and Li represent the importance and level rating of the ith occupation, respectively.
Finally, upon consolidating all the necessary qualifications, our analysis results in the most
significant ones, specifically those with an overall normalized importance rating of 0.5 or
higher, in accordance with the importance rating guidelines outlined by O*NET.

3. Results

Subsequently, in Section 3.1, the mapping of the 15 reviewed occupations in the
cognitive/manual versus routine/non-routine 2D space is described in conjunction with
their susceptibility rate to robotization. In Section 3.2, each category of qualifications (i.e.,
knowledge, skills, and work styles) is separately scrutinized to delve into the specific
intricacies associated with each category.

3.1. Occupation Mapping in Terms of Their Cognitive/Manual and Routine/Non-Routine Nature
and Susceptibility Rate to Robotization

The coefficients lR−nR
i and lC−M

i are firstly calculated that correspond to the horizon-
tal and vertical coordinates, respectively, of a 2D graph representing the virtual cogni-
tive/manual versus routine/non-routine space according to the methodology described
in Section 2.2. The occupations belonging to the first quadrant of the graph depicted in
Figure 3 are those of a cognitive non-routine nature, which correspond to positive values
of both lC−M

i and lR−nR
i . In contrast, the occupations situated within the third quadrant
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are those of a manual routine nature, which correlates to negative values of both lC−M
i

and lR−nR
i . Combination of positive lC−M

i values and negative lR−nR
i values represents

occupations of the second quadrant, being of cognitive routine nature. Finally, the com-
bination of negative lC−M

i values and positive lR−nR
i values represents occupations of the

fourth quadrant, being of manual non-routine nature. To enhance the information content
within the graph in Figure 3, the susceptibility rate to robotization for each occupation
is also included. In brief, the “green zone” denotes a very low rate of susceptibility to
robotization, the “yellow zone” signifies a medium to high susceptibility rate, and the “red
zone” represents a very high susceptibility rate. In addition, the sizes of the circles are
proportional to the susceptibility rate to robotization.
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As a representative example of the methodology described, consider the occupation
of Animal Scientists (19-1011.00), which involves nine distinct tasks. Among these, the
task of studying nutritional requirements of animals and nutritive values of animal feed
materials was rated as “strongly important” (Score 5) due to its significant and direct impact
on animal health and productivity. This task was predominantly classified as cognitive
non-routine, receiving a value of 1 for this component, while the values for cognitive
routine, manual routine, and manual non-routine attributes were all zero. Additionally,
this task was assigned an average score of 0 for its potential to be robotized, indicating
minimal susceptibility to robotization. After evaluating all tasks within the Animal Scientist
occupation, the overall susceptibility to robotization was calculated as 0.17. The cogni-
tive/manual coordinate (lC−M) was determined to be 0.96, and the routine/non-routine
coordinate (lC−M) was 0.91. Based on these metrics, the occupation was positioned in the
first quadrant of the 2D graph and classified within the “green zone”, indicating very low
susceptibility for robotization.

Based on the present methodology, the occupation that appeared to be mostly sus-
ceptible to robotization was “Graders and Sorters, Agricultural Products” (45-2041.00;
ŝi = 0.92), whose responsibilities indicatively involve grading, sorting, and classifying agri-
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cultural products by condition, color, size, and weight. Obviously, all the responsibilities
include mainly manual and routine tasks and, therefore, the occupation was placed in the
third quadrant. The other four occupations of this quadrant are “Agricultural Equipment
Operators” (45-2091.00; ŝi = 0.71), “Farmworkers and Laborers, Crop, Nursery, and Green-
house” (45-2092.00; ŝi = 0.67), “Farmworkers, Farm, Ranch, and Aquacultural Animals”
(45-2093.00; ŝi = 0.46), and “Agricultural Technicians” (19-4012.00; ŝi = 0.21). Similarly,
the first three occupations include primarily manual routine tasks usually carried out with
the use of hand tools so as to cultivate, harvest, and prune crops or apply fertilizers and
pesticides. These tasks have already been robotized to a great extent, at least in developed
countries, although some of them, such as assessing the quality of a crop, identifying
pests and weeds, as well as monitoring the work of seasonal workers, presupposes some
cognitive skills. Furthermore, agricultural equipment operators, who have to control or
drive equipment towards supporting agricultural operations, also carry out some cognitive
tasks, which, however, now tend to be automated with the progress in AI. Interestingly,
agricultural technicians (19-4012.00) were positioned near the boundary between cogni-
tive and manual regions of the graph, primarily due to the distinct nature of their tasks
compared to the occupations analyzed above. This difference is also reflected in the lower
value of ŝi.

Only one occupation was found in the second quadrant, namely, that of “Agricultural
Inspectors” (45-2011.00; ŝi =0.36), which, although requiring mostly cognitive routine
tasks, also necessitates a considerable contribution of non-routine aspects. Indicatively,
an agricultural inspector has to document findings in reports and advise farmers on
necessary corrective actions. It should be noted that the horizontal coordinate (lR−nR

i ) of this
occupation was calculated equal to−0.06, demonstrating that the tasks it encompasses have
a propensity for being non-routine in nature. Likewise, only one occupation was placed
in the fourth quadrant, mainly containing manual tasks, however of non-routine nature,
namely, “Farm Equipment Mechanics and Service Technicians” (49-3041.00; ŝi = 0.21). This
occupation involves tasks such as diagnosis, adjustment, and repair of farm machinery like
tractors, dairy equipment, and irrigation systems.

Remarkably, almost half of the reviewed occupations were placed in the first quadrant,
encompassing occupations whose tasks are mainly of non-routine nature and require
cognitive involvement. Nevertheless, some of them contain several routine processes.
As a result, these occupations were placed in the left side of the first quadrant, because
of its relatively low (positive) horizontal coordinate (lR−nR

i ). These two occupations are
“Farm Labor Contractors” (13-1074.00; ŝi = 0.37) and “Precision Agriculture Technicians”
(19-4012.01; ŝi = 0.51). Indicatively, the former occupation deals with recruiting and
hiring seasonal workers as well as transporting and providing meals for them. The latter
occupation involves applying geospatial technologies for management operations, like
site-specific pesticide application and variable-rate irrigation. Very close to the vertical axis
that separates routine from non-routine tasks is also “First-Line Supervisors of Farming,
Fishing, and Forestry Workers” (45-1011.00; ŝi = 0.15), which encompasses supervising
and coordinating the operations of agricultural workers.

In the upper right of the first quadrant, there are two occupations, namely, “Animal
Scientists” (19-1011.00; ŝi = 0.17) and “Soil and Plant Scientists” (19-1013.00; ŝi = 0.06). As
indicated by their name, these occupations may involve animal nutrition consultants and
beef cattle specialists (Animal Scientists), as well as crop nutrition scientists, agronomists,
and plant research geneticists (Soil and Plant Scientists). The very low susceptibility rate
to robotization observed in these occupations is strongly related to the high order of
cognitive non-routine skills required to perform their tasks, as will be discussed next. The
list of occupations with strong non-routine nature also includes “Agricultural Engineers”
(17-2021.00; ŝi = 0.22), which entails planning or coordinating policies, programs, and
services, and identifying potential customers.

Finally, there are two occupations with lR−nR
i between 0.4 and 0.5, namely, “Farmers,

Ranchers, and Other Agricultural Managers” (11-9013.00; ŝi = 0.21) and “Farm and Home
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Management Educators” (25-9021.00; ŝi = 0.08). These occupations are associated with
management, involved in overseeing agricultural operations or providing education in
farm management, respectively.

In conclusion, as expected, the occupations mainly involving tasks of routine nature
exhibited a high susceptibility to robotization, as they follow well-defined sets of repetitive
procedures. In particular, as can be seen in Figure 4a, the average susceptibility rate of
manual routine occupations was found equal to 0.59, while the corresponding rate of
cognitive routine occupations was 0.36. In contrast, non-routine occupations exhibit a lower
average susceptibility rate, with cognitive non-routine occupations having 0.22 and manual
non-routine ones having 0.21.
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A similar analysis was conducted for the major occupational groups, as illustrated in
Figure 4b. The analysis revealed that the six occupations within “Farming, Fishing, and
Forestry” had the highest average susceptibility, equal to 0.55. This high susceptibility
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to robotization is primarily due to the routine nature of the activities involved in these
occupations. Following, in descending order of average susceptibility, are “Business and
Financial Operations” at 0.36, “Life, Physical, and Social Science” at 0.24, “Architecture
and Engineering” at 0.22, and “Management” and “Installation, Maintenance, and Repair”
both at 0.21. Notably, “Educational Instruction and Library” had the lowest average
susceptibility, at 0.08. This low value can be attributed to the predominantly interactive
nature of tasks in this field, which require critical thinking and personalized instruction,
making them less susceptible to robotization.

3.2. Comparison of the Present Results with Those of Marinoudi et al. [29]

As compared with the findings of Marinoudi et al. [29], where the previous version of
O*NET was used, the content of the tasks involved within five occupations remained the
same (Figure 1). Hence, the position of these occupations in the updated cognitive/manual
versus routine/non-routine graph of Figure 3, as well as the susceptibility rate to robotiza-
tion, stayed unchanged. Two new occupations, namely, “Precision Agriculture Technicians”
(19-4012.01) and “Farm and Home Management Educators” (45-1011.00), were added in the
updated graph. These new entries were both placed in the first quadrant. Remarkably, the
merger of the previous two management-related occupations into “Farmers, Ranchers, and
Other Agricultural Managers” (11-9013.00) shifted the occupations from the second to the
first quadrant. In addition, as can be seen in Table 2, they had an average ŝi equal to 0.38 that
decreased to 0.21 in the current analysis, owing to the new defined tasks. In this fashion,
it should be stressed that the position of the previous management-related occupations
was very close to the vertical axis dividing routine work from work non-routine in nature
in [29].

Similarly, the merger of the previous two first-line supervisor-related occupations into
“First-Line Supervisors of Farming, Fishing, and Forestry Workers” (45-1011.00) created
an occupation located in the left side of first quadrant, having a slight decrease from
an average ŝi of 0.17 to 0.15 (Table 2). In the previous graph presented in [29], these
occupations had been placed in the first and second quadrant. In contrast, the merger of the
previous two occupations associated with manual routine labor resulted in placing the new
integrated occupation of “Farmworkers and Laborers, Crop, Nursery, and Greenhouse”
(45-2092.00) in an almost similar position in the third quadrant. Additionally, the new ŝi
was slightly reduced from an average 0.71 to 0.67.

In all other instances, as shown in Table 2, the inclusion of additional tasks within
existing occupations led, most of the time, to a decrease in ŝi, varying according to the
number of added tasks. This increase in responsibilities for the examined occupations
caused a shift in their position on the graph mainly upwards and to the right. Consequently,
more cognitive and non-routine tasks were incorporated as compared to [29]. Figure 5
offers a qualitative depiction of how agricultural occupations are evolving. Figure 5a,c
correspond to the present study while Figure 5b,d to [29]. Focusing on the nearly identical
contour plots of Figure 5a,b, which use equal intervals and three classes for ŝi, it is clear
that occupations with low susceptibility to robotization (indicated by dark green) cover
almost the entire first, second, and third quadrants. The prominence of dark green in the
first quadrant emphasizes the difficulty of cognitive and non-routine tasks to be automated.
The fourth quadrant displays a similar pattern due to the prevalence of non-routine tasks.
However, this similarity breaks mainly in the second quadrant, where the merger of
previous management-related occupations (both with medium susceptibility rates) shifted
the new occupation (with a relatively low susceptibility rate) to the first quadrant, as
mentioned above. The redistribution also impacted the third quadrant, which previously
included two medium susceptibility occupations in [29]. The presence of dark green in this
manual routine quadrant is justified by the inclusion of an occupation with a relatively low
susceptibility rate at the boundaries of the second and third quadrants in both analyses.
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Table 2. Summary of the susceptibility rate to robotization of the reviewed occupations in comparison
with the findings of [29].

O*NET-SOC 2019 Title O*NET Code ŝi Average ŝi in [29] Percentage Change

Farmers, Ranchers, and Other Agricultural Managers 11-9013.00 0.21 0.38 −44.7%
Farm Labor Contractors 13-1074.00 0.37 0.37 0%
Agricultural Engineers 17-2021.00 0.22 0.23 −4.3%

Animal Scientists 19-1011.00 0.17 0.17 0%
Soil and Plant Scientists 19-1013.00 0.06 0.04 +50%
Agricultural Technicians 19-4012.00 0.21 0.19 +10.5%

Precision Agriculture Technicians 19-4012.01 0.51 - -
Farm and Home Management Educators 25-9021.00 0.08 - -

First-Line Supervisors of Farming, Fishing, and
Forestry Workers 45-1011.00 0.15 0.17 −11.8%

Agricultural Inspectors 45-2011.00 0.36 0.36 0%
Graders and Sorters, Agricultural Products 45-2041.00 0.92 0.95 −3.2%

Agricultural Equipment Operators 45-2091.00 0.71 0.71 0%
Farmworkers and Laborers, Crop, Nursery,

and Greenhouse 45-2092.00 0.67 0.71 −5.6%

Farmworkers, Farm, Ranch, and Aquacultural Animals 45-2093.00 0.46 0.46 0%
Farm Equipment Mechanics and Service Technicians 49-3041.00 0.21 0.23 −8.7%

The hyphen (-) denotes that the occupation was not included in [29], while a percentage reduction equal to 0%
indicates that the content of the occupation remained unchanged.
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cognitive (C)/manual (M) versus routine (R)/non-routine (nR) space by means of equal intervals
and three classes (a,b) and quantiles with four classes (c,d); left plots correspond to the present study
while the right plots to [29].
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When using four quantile classes (Figure 5c,d), more information about the underlying
distribution is revealed, as each class contains the same proportion of data. Both these plots
demonstrate that manual routine tasks, located in the third quadrant, exhibit the highest
susceptibility to robotization, indicated by the red areas. In contrast, cognitive non-routine
tasks show the lowest susceptibility, as highlighted by dark green areas in the top-right
region of the first quadrant. The dark green circle in the fourth quadrant of both Figure 5c,d
corresponds to the “Farm Equipment Mechanics and Service Technicians” occupation,
common in both studies. The existence of an extra dark green circle in the second quadrant
of Figure 5d is due to an occupation relatively resilient to robotization in [29], such that the
present study shifted it to the first quadrant. Additionally, transition zones of yellow and
light green represent tasks with moderate to high susceptibility to robotization.

3.3. Investigation of Key Qualifications towards Adapting to the Ongoing Labor Market Changes
in Agriculture

This section delves into the exploration of key qualifications for adapting to the dy-
namic shifts occurring in agricultural practices and employment patterns. Towards this
direction, the analysis focuses on the corresponding information of [30], which is provided
for those occupations belonging to the “green zone” in Figure 3, namely, occupations with
a very low rate of susceptibility to robotization, i.e., ŝi ∈ [0, 0.33) . Most specifically, we
concentrate on the common knowledge, skills, and work styles that are required for the
following eight non-routine occupations: (1) “Farmers, Ranchers, and Other Agricultural
Managers” (11-9013.00); (2) “Agricultural Engineers” (17-2021.00); (3) “Animal Scientists”
(19-1011.00); (4) “Agricultural Technicians” (19-4012.00); (5) “Soil and Plant Scientists”
(19-1013.00); (6) “Farm and Home Management Educators” (25-9021.00); (7) “First-Line
Supervisors of Farming, Fishing, and Forestry Workers” (45-1011.00); and (8) “Farm Equip-
ment Mechanics and Service Technicians” (49-3041.00). After summarizing all the requisite
qualifications using the methodology outlined in Section 2.3, the analysis identifies the
most critical ones. Specifically, these are qualifications (knowledge, skills, and work styles)
with an overall normalized importance rating, Îi, equal to or exceeding 0.5 similarly to [30].

3.3.1. Knowledge

Figure 6 illustrates a broad spectrum of knowledge aspects exhibiting a low suscep-
tibility rate to robotization, in descending order of importance, Îi, which is represented
by blue bars. Focusing on those with Îi ≥ 0.5, biology provides essential understand-
ing of ecosystems and crop management, while mathematics aids in data analysis and
decision-making processes. Administration and management are vital for coordinating
agricultural operations, and education and training facilitate knowledge dissemination
and skill development within the agricultural community. Proficiency in food production
ensures the implementation of sustainable methods, thereby safeguarding food security,
while competency in computers and electronics enables the integration of innovative tech-
nologies. Additionally, customer and personal service abilities enhance communication
and stakeholder relationships and expertise in chemistry contributes to food safety and
quality control measures. Finally, proficiency in production and processing, engineering,
and technology, and mechanical expertise, optimizes machinery utilization and automation
implementation in agricultural processes.

The proficiency level of each analyzed aspect is also visually represented in Figure 6 by
orange bars, accompanied by the corresponding bar signifying its importance. Indicatively,
in [30], three level examples are provided for biology: (a) L̂i = 1: isolate and detect a new
virus; (b) L̂i = 0.71: examine the impacts of pollution on both plant and animals; and
(c) L̂i = 0.14: feed domestic animals.
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Figure 6. The critical knowledge domains associated with low susceptibility to robotization, alongside
the corresponding importance and proficiency level for each analyzed aspect.

3.3.2. Skills

As depicted in the bar chart of Figure 7, a diverse array of skills demonstrates a
low susceptibility to robotization. In line with the previous analysis, we focus on skills
with Îi ≥ 0.5 depicted together with proficiency level for each examined skill. The key
skills include critical thinking, which involves analyzing and evaluating issues to make
sound decisions, and active learning and listening, essential for understanding instructions
and collaborating effectively. Complex problem-solving, judgment- and decision-making,
and time management are also crucial for choosing the best course of action under vary-
ing circumstances. Writing, speaking, and reading efficiency is also important for clear
documentation and communication of agricultural practices. Monitoring and systems
evaluation and analysis help in assessing performance and ensuring optimal functioning
of operations. Social perceptiveness and coordination enhance interpersonal interactions
and teamwork, while instructing is an essential skill for breaking down complex concepts
or processes into manageable steps. Learning strategies facilitate continuous improvement
and adaptation to new technologies. Lastly, a solid grounding in science is critical for
applying scientific principles to improve, inter alia, crop yields, pest management, and
overall productivity. Mastery of these skills is vital for adapting to the demands of modern
agriculture driven by technological advancements. Remarkably, no purely technical skills
were found from this analysis that meet the criterion of Îi ≥ 0.5, such as equipment mainte-
nance, selection, and repairing, obviously because the occupations that are associated with
these skills involve mainly tasks of routine nature. These kinds of skills are also presented
in Figure 7, displaying, however, lower overall importance.
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Figure 7. The key skills associated with low susceptibility to robotization, alongside the corresponding
importance and proficiency level for each investigated skill.

In the same vein as above, the proficiency level of each analyzed skill is also rep-
resented in Figure 7. For instance, concerning critical thinking, three level examples
are outlined in [30]: (a) L̂i = 0.85: compose a legal document contesting a federal law;
(b) L̂i = 0.57: evaluate customer complaints and determine proper actions; and (c) L̂i = 0.28:
Assess whether a subordinate has a valid justification for tardiness.

3.3.3. Work Styles

Regarding the personal characteristics, they are also crucial, as they provide the ability
to adapt to unpredictable situations, which are prevalent in agricultural settings [40]. In
addition, they enhance confidence and increase opportunities for career advancement.
Figure 8 summarizes a wide range of work styles that contribute towards building resis-
tance to robotization. It is noteworthy that all of them surpassed the threshold of Îi ≥ 0.5. In
summary, dependability and integrity ensure reliability and trustworthiness in performing
various tasks, while attention to detail and analytical thinking enable effective problem-
solving. Initiative drives proactive and creative approaches to work, while cooperation
and leadership promote effective collaboration, and team management. Persistence and
stress tolerance enable individuals to persevere in the face of challenges, and adaptabil-
ity/flexibility and self-control empower them to navigate changing circumstances with
composure and agility. Lastly, achievement/effort, independence, concern for others, and
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social orientation stress the significance of personal motivation, empathy, and social skills
in fostering positive work environments and achievements.
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Figure 8. The principal work styles associated with low susceptibility to robotization, alongside the
corresponding importance for each studied aspect.

4. Discussion and Conclusions

As agriculture experiences unprecedented changes at its core due to the advancement
of technology, the existing skill set seems to become obsolete faster compared to previous
technology revolutions. For the purpose of identifying the critical qualifications for adapt-
ing to the ongoing labor market changes, a bottom-up approach was followed. To that end,
the analysis started from the task level of each related occupation via assessing the effect of
automation on them through the prism of the nature of each task. In total, 15 occupations
were investigated, based on [30]. Similarly to the methodology developed in [29], the re-
viewed occupations were placed in a virtual cognitive/manual versus routine/non-routine
2D space. The majority of occupations, namely, eight of them, were placed in the first, cog-
nitive non-routine, quadrant. As compared to the previous mapping in [29], the updated
analysis shifted some of the commonly investigated occupations to the right and upwards,
since the content of their tasks was updated primarily with responsibilities of non-routine
and cognitive nature, respectively.

Focusing on the automation potential, occupations primarily involving routine tasks
face high susceptibility to robotization, due to their adherence to repetitive procedures.
In particular, manual routine occupations proved to be particularly vulnerable (mean
ŝi = 0.59), with cognitive routine roles also displaying significant, but lower susceptibility
(mean ŝi = 0.36). Conversely, non-routine occupations demonstrate lower vulnerabil-
ity, with both cognitive and manual non-routine roles showing reduced susceptibility
to robotization (mean ŝi = 0.22 and 0.21, respectively). The present results align with
recent studies indicating that automation is not only automating repetitive tasks, but also
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reshaping job roles to include non-routine and cognitive tasks [41,42]. This is particularly
evident in agriculture, where advancements, such as agri-robotics, are transforming both
the tasks performed and the skills required [13,16,29,32]. As stressed in [43], automation
widens the wage gap between unskilled and skilled workers compared to medium-skilled
workers, aligning with the observed trend of wage polarization. This results in greater
economic inequality and fewer opportunities for those with moderate skill levels, especially
in industrialized developed countries [44].

Subsequently, the key knowledge, skills, and work styles required for occupations
with very low susceptibility to robotization were examined. As robotization replaces mainly
routine tasks, there is a greater emphasis on qualifications for operating and supervising
automated systems and using data analysis tools. This shift necessitates a workforce skilled
in leveraging automation to boost productivity and efficiency in agriculture. At the same
time, there is a rising demand for workers proficient in non-routine tasks that require
critical thinking, problem-solving, and adaptability. Consequently, soft skills like analytical
thinking, attention to detail, cooperation, and dependability are becoming increasingly
more important, reflecting trends in other sectors [45]. The growing emphasis on intellectual
and social activities is driving demand for higher-order cognitive skills, while physical task
demands are decreasing. Cognitive skills are crucial for adapting to new environments
and addressing challenges, with soft skills complementing them [14]. Our analysis stresses
the need to integrate STEM skills with management, interdisciplinary, and socioemotional
competencies to thrive in the evolving agricultural labor market.

However, as robotization continues to transform the agricultural sector, skill adap-
tation should extend beyond traditional STEM fields to include a range of competencies.
Specifically, skills in sustainability practices are increasingly essential for implementing
eco-friendly farming and optimizing resource use [46]. Moreover, digital literacy is cru-
cial in agriculture, as it empowers farmers to utilize advanced technologies for precision
farming, efficient data management, and market access, ultimately contributing to a more
inclusive and informed agricultural sector [47]. To cultivate resilience in the agricultural
workforce amidst robotization, policymakers should implement training programs that
integrate STEM education with interdisciplinary skills, such as sustainability practices and
digital literacy mentioned above. Lifelong learning and upskilling initiatives, supported by
funding and incentives, are also important to ensure the workforce remains competitive and
adaptable. Inclusive policies must address the needs of low-skilled workers by providing
targeted support programs to promote social equality. Evaluation of potential pathways
and support mechanisms for employees who face challenges in acquiring new skills will
help to better understand the necessary interventions to facilitate their adaptation and
integration into new roles or responsibilities.

Future directions for research could also explore the long-term implications of au-
tomation on the agricultural labor market, considering factors such as job displacement/
complement alongside cost analysis and the emergence of new job opportunities. Future
research aligns with the need of workers to adapt and acquire new skills to effectively
collaborate with the emerging AI systems or to transition into roles that exploit their unique
human capabilities to remain relevant in the labor market. Additionally, conducting so-
cioeconomic cost–benefit analyses is imperative to assess the profitability and also the
broader societal implications of replacing humans with machines, especially given the
prevailing climate of uncertainty surrounding technology adoption in agriculture. Finally,
considering the interdisciplinary nature of the topic in question, further investigation could
involve experts from various disciplines, including agriculture, as a means of examining
the broader implications of automation in employment dynamics.

As a final note, optimal development and usage of human capital are required with
the intention of adapting to change, as human capital is needed to create value. Human
capital involves all the investigated aspects of the qualifications and attributes of labor that
affect its productive capacity as well as earning potential [48]. Investing in people turns out
to be increasingly critical, since optimizing human capital constitutes a determinant factor
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for innovation and adoption in the digital transformation of agriculture. Policymakers
and educational systems must strategically prepare future workers with various kinds of
interdisciplinary knowledge, skills, and competences that have the potential to complement
new digital technologies as a means of making the agricultural sector more prosperous,
reliant, sustainable, and inclusive.
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