
ON FUNCTIONAL SUCCESSIVE MINIMA.

F. AMOROSO, D. MASSER, U. ZANNIER

This note is dedicated to Andrzej Schinzel in fond memory. One

of his favourite english authors was Hilaire Belloc, who wrote (with

a single word changed):

When I am dead, I hope it may be said:
‘His sins were scarlet, but his papers were read.’

Abstract. In the classical Geometry of Numbers the calculation of suc-
cessive minima may be quite difficult, even in R2 using the norm coming
from a distance function associated to a set. In the literature there seem
to be hardly any analogues when R is replaced by the algebraic closure
of a function field in one variable and one uses a norm arising from the
absolute height. Here we calculate a one-parameter family of examples
that naturally arose in our recent paper on bounded heights. We also
comment on whether the minima are attained.

Mathematics Subject Classification: 11G50 (Primary), 11H99 (Sec-
ondary).

1. introduction

Siegel’s Lemma was originally constructed for use in diophantine approx-
imation and transcendence theory, but has since found applications else-
where, for example to complexity theory (see [9] p.98), to integer-valued
entire functions (see [9] chapter 10), or to counting rational points (see [9]
chapter 18). In its simplest form it says that a system of M ≥ 1 homo-
geneous linear equations (assumed for convenience linearly independent) in
N ≥ 1 unknowns over Z has a small non-trivial solution in ZN provided
M < N . More general versions show that there are L = N − M linearly
independent solutions which are usually not much bigger.

It is convenient to take advantage of the homogeneity by working with Q
and QN .

More precisely, we define the projective height of non-zero q = (q1, . . . , qK)
in QK as

(1.1) H(q) = max{|qq1|, . . . , |qqK |}
where q is anything in Q such that qq1, . . . , qqK are in Z and coprime. The
linear equations define a variety V of dimension L in QN whose Grassman-
nian coordinates form a non-zero vector v in QK for K =

(
N
L

)
, and we may

define H(V ) = H(v). Then there are independent x1, . . . ,xL in V with

H(x1) · · ·H(xL) ≤ cH(V )
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where c depends only on N .
There are extensions with Q replaced by any number field, but now c

depends on the field (and indeed must). For all this see [4] (pp. 72-80).
Roy and Thunder [10] in 1996 succeeded in replacing Q by its algebraic

closure Q; and now c again depends only on N . In fact they proved that
for any ϵ > 0 there are independent x1, . . . ,xL in V with

H(x1) · · ·H(xL) ≤ (2L(L−1)/2 + ϵ)H(V )

(see also David and Philippon [7] for an explicit deduction of a better bound
on H(x1) from a 1995 work [13] of Zhang - they remark that a similar
deduction can be made for the product of heights).

In the same [10], they proved results when Q is replaced by the function

field k(t), where k is any field and t is transcendental over k. Now one gets
(see Theorem 2.2 p.6 with δ = 0)

(1.2) H(x1) · · ·H(xL) ≤ (1 + ϵ)H(V ),

which is sharp because they note (also p.6) that for any independent x1, . . . ,xL

in V one has

(1.3) H(x1) · · ·H(xL) ≥ H(V ).

They reformulate these results in terms of successive minima already familiar
from the classical Geometry of Numbers.

But from now on we will go additive with h = logH.
Thus for i = 1, . . . , L define µi(V ) as the infimum of all real µ for which

there exist i linearly independent elements x of V with h(x) < µ. Thus

µ1(V ) ≤ · · · ≤ µL(V ).

Then (1.2) and (1.3) are equivalent to the single statement

(1.4) µ1(V ) + · · ·+ µL(V ) = h(V ).

At last we give the definition of h in k(t)
N
. As in (1.1) but with degrees

we define h(q) for q in k(t)K by

(1.5) h(q) = max{deg(qq1), . . . ,deg(qqK)}

where q is anything in k(t) such that qq1, . . . , qqK are in k[t] and coprime.
This is the same as

(1.6)
∑
v

logmax{|q1|v, . . . , |qK |v}

where v runs over all valuations of k(t) that are trivial on k. Standard

height theory [4] then extends this to k(t)
K
, where an analogue of (1.6)

holds with extra rational coefficients. Then h(V ) is defined as above with
the Grassmannian.

Now in the classical Geometry of Numbers the calculation of successive
minima even in rather simple situations can be difficult. For example let
S be the (long thin) set of (x, y) in R2 with |πx − y| ≤ 1/113, |x| ≤ 113.
Then by Minkowski the infimum µ1(113) of all µ ≥ 0 such that µS contains
a non-zero point of Z2 satisfies µ1(113) ≤ 1. Here it is not so hard to show
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that in fact µ1(113) = 113(106π − 33) > .99. But if we replace 113 by 1936
then

(1.7) µ1(1936) =
113

1936
= .058367 . . . <

1√
292

.

However µ1(33102) > .99 again. The behaviour with parameters lies very
deep, as one can show that lim infλ→∞ µ1(λ) = 0 if and only if π has un-
bounded partial quotients in its continued fraction (as might be guessed
from (1.7) above). Of course the transcendence of π plays no role here; for
example the real α with α3 − 8α − 10 = 0 has a reasonably early partial
quotient 16467250 (see [6] Churchhouse and Muir). For related problems
see also Cassels [5] Theorem VIIA (p.92) on binary cubic forms and section
XI.4 (p.329) in connexion with Minkowski’s Conjecture.

An example more in our context is the plane V in Q3 defined by a1x1 +
a2x2+a3x3 = 0 with integers a1, a2, a3. On it the smallest value of h(x) with
non-zero x in Q3 can be found in principle for any specific integers, but there
is probably no simple closed formula; and a fortiori for two independent
solutions. Further if we replace Q by Q the problems are unlikely to get
easier. See however Sombra [11] for the explicit calculation of certain related
successive minima for toric varieties.

Things may look easier in the function field case (where for example all
valuations are ultrametric); thus for V0 defined by x1 + x2 − x3 = 0 with
h(V0) = 0, corresponding to the affine line x + y = 1, we have (x, y) =
(1, 0), (0, 1) so that µ1(V ) = 0, µ2(V ) = 0. Or for the line tx+ (1− t)y = 1
with h(V1) = 1 we have (1, 1), (t, 1 + t) so that µ1(V ) = 0, µ2(V ) = 1. But

just for t1/2x + (1 − t)1/2y = 1 the values are not so clear (see section 4).
Indeed we know of no other calculations of this sort in the literature.

In a recent paper [2] we proved (among other things) that algebraic num-
bers τ satisfying τλ + (1 − τ)λ = 1 usually have height bounded above
independently of the positive rational λ ≥ 0 (see also [1] for integral λ). The
proof involved the Vλ corresponding to

tλx+ (1− t)λy = 1

with h(Vλ) = λ. There it sufficed to know when µ1(Vλ) could be near zero.
Here we push the techniques further to calculate explicitly µ1(Vλ), µ2(Vλ) for
all λ ≥ 0, at least in characteristic zero. Thus from now on we will assume
that k has characteristic zero, and (for convenience) that k is algebraically
closed. By (1.4) it will suffice to treat the first minimum.

Theorem 1.1. Define the integer part l = [3λ/2] ≥ 0, so that

2l

3
≤ λ <

2l + 2

3
.

Then µ1(Vλ) = λ/2 unless l ≡ 1 mod 3, in which case

µ1(Vλ) = l − λ

(
2l

3
≤ λ <

2l + 1

3

)
,

µ1(Vλ) = 2λ− l − 1

(
2l + 1

3
≤ λ <

2l + 2

3

)
.
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Thus by plotting also the second minimum µ2(Vλ) = λ − µ1(Vλ) we see
an infinite sequence of “lozenges”, as in the picture.

µ(Vλ)

λ0 1 2 3 4 5 6 7

1

2

3

4

Lower lines: µ1

Upper lines: µ2

Single lines: µ1 = µ2

2. preliminaries

The first is very well-known.

Lemma 2.1. For non-zero coprime A,B,C in k[t], not all in k, with A +
B + C = 0 we have

max{degA,degB, degC} ≤ −1 +
∑

τ∈k,ABC(τ)=0

1.

Proof. The account in [8] (p.194) is simple but unfortunately does not ex-
plicitly exclude A,B,C being all in k; however if one adds the assumption
n0(abc) ≥ 1 there, then all becomes fine. Alternatively see the third author
[12] (p.121) or the second author [9] (p.153). □

The second has a similar flavour but seems to be new. For a multiplicative
abelian group G we define Gdiv as the set of g for which there exists a positive
integer d with gd in G. We shall need this only for G = k(t)∗.

Lemma 2.2. For α, β, γ in k(t)∗div with α + β + γ = 0 there exists δ in

k(t)∗div such that δα, δβ, δγ are in k(t)∗.
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Proof. Indeed this mimics the first step in the proof of Lemma 2.1. Write
u = −α/γ, v = −β/γ so that u+ v = 1. With the extension of d/dt to k(t),
we have u′ + v′ = 0 or better (u′/u)u + (v′/v)v = 0; and, if u′/u ̸= v′/v,
then solving the two linear equations for u, v yields

u = − v′/v

u′/u− v′/v
, v =

u′/u

u′/u− v′/v
.

There is a positive integer d with w = ud in k(t), and so u′/u = (w′/w)/d
lies also in k(t). Similarly for v′/v, and so u, v lie in k(t). Thus δ = 1/γ will
do. And if u′/u = v′/v then w = u/v lies in k so k(t), so also v = 1/(1 +w)
and u too. □

3. Proof of Theorem

We may assume λ > 0. By (1.4) we have µ1 = µ1(Vλ) ≤ λ/2. Take any

ξ, η in k(t) with h(ξ, η, 1) < λ and

(3.1) ξtλ + η(1− t)λ = 1.

Then ξ, η are both non-zero.
Let σ be any element of Gal(k(t)/k(t)). Applying it to (3.1), we get

ξσθσt
λ + ησϕσ(1− t)λ = 1.

with roots of unity θσ, ϕσ. Eliminating (1 − t)λ from this and (3.1) gives
∆tλ = δ with

∆ = ∆σ = ξησϕσ − ξσηθσ, δ = δσ = ησϕσ − η.

.
If ∆ ̸= 0 for some σ then

λ = h(tλ, 1) = h(δ,∆).

Here δ and ∆ are bihomogeneous in (ξ, ξσ),(η, ησ), of bidegrees (0, 1) and
(1, 1) respectively. Now

max{y, y′, xy′, x′y} ≤ max{x, y, 1}max{x′, y′, 1}
for x, y, x′, y′ ≥ 0. In the analogue of (1.6) for h(δ,∆) a typical term is

logmax{|δ|v, |∆|v} ≤ logmax{|η|v, |ησ|v, |ξησ|v, |ξση|v}
which is therefore at most

logmax{|ξ|v, |η|v, 1}+ logmax{|ξσ|v, |ησ|v, 1}.
Summing over v, we end up with

h(δ,∆) ≤ h(ξ, η, 1) + h(ξσ, ησ, 1) = 2h(ξ, η, 1).

So we get

(3.2) h(ξ, η, 1) ≥ λ

2

which would imply µ1(Vλ) ≥ λ/2. If that were true then we have equality
by (1.4). This means that we are on the “single lines” in the picture or
possibly their continuations through the lozenges.
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But what if ∆ = 0 above for all σ?
Then δ = 0 as well. And eliminating tλ instead shows that

(3.3) ξσθσ = ξ, ησϕσ = η.

By raising to suitable powers we see that ξ, η lie in k(t)∗div.
Now Lemma 2.2 on (3.1) shows that ξtλ, η(1− t)λ are in k(t)∗.
So ρ = ξtλ, 1− ρ = η(1− t)λ for some ρ ̸= 0, 1 in k(t), and with λ = p/q

and ρ = Y/Z with coprime Y,Z in k[t] we contradict (3.2) if

(3.4) h∗ = qh(ξ, η, 1) = h((1− t)pY q, tp(Z − Y )q, tp(1− t)pZq) < p/2

now over k[t]. If the three expressions were coprime then h∗ would be
max{p+ nq, 2p+mq}, where

(3.5) n = max{deg Y,degZ}, m = degZ.

Now the only possible common prime factors are t, 1− t. Write

(3.6) r = ordt=0Y, s = ordt=1(Z − Y ).

If t occurs as a common factor then r ≥ 1 so Z(0) ̸= 0, and the largest
power of t occurring is min{rq, p} (and this holds even if t does not occur,
because then r = 0).

Similarly the largest power of 1− t occurring is min{sq, p}.
Thus

(3.7) h∗ = max{p+ nq, 2p+mq} −min{rq, p} −min{sq, p},

and we have to figure out how much smaller than p/2 this can be. Now
h∗ < p/2 is equivalent to eight inequalities according to the choices in max
and the two min. Dehomogenizing these gives

(3.8) n− r − s < −λ

2
, n− r <

λ

2
, n− s <

λ

2
, n <

3λ

2
,

(3.9) m− r − s < −3λ

2
, m− r < −λ

2
, m− s < −λ

2
, m <

λ

2
.

Adding the first of (3.8) and the fourth of (3.9) gives r + s > n + m. We
apply Lemma 2.1 to Y + (Z − Y )− Z. The terms are not all constant, else
ρ would be, and then h(ξ, η, 1) = λ. Counting the zeroes τ = 0, 1 separately
gives

n ≤ −1 + 2 + (n− r) + (n− s) +m,

that is, r + s ≤ n+m+ 1. Therefore

(3.10) r + s = n+m+ 1.

And the fourth of (3.8) and the first of (3.9) now give (3λ/2) − 1 < n <
3λ/2. Thus

(3.11) n = [3λ/2] = l

as in the theorem.
Similarly the first of (3.8) and the fourth of (3.9) give

l

3
− 1 ≤ λ

2
− 1 < m <

λ

2
<

l + 1

3
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so m ≤ l/3, and then

(3.12) m =

[
l

3

]
.

Now the second and third of (3.8) give

(3.13) min{r, s} > n− λ

2
= l − λ

2
> l − l + 1

3
=

2l − 1

3
.

Next we examine the cases l ≡ 2, 0, 1 mod 3 in turn.
When l ≡ 2 mod 3 we have by (3.12) m = (l − 2)/3; and (3.13) gives

min{r, s} ≥ (2l + 2)/3. But then

r + s ≥ 4l + 4

3
>

4l + 1

3
= n+m+ 1

a contradiction to (3.10).
When l ≡ 0 mod 3 we have m = l/3. Now the second and third of (3.9)

give

min{r, s} > m+
λ

2
=

l

3
+

λ

2
≥ 2l

3
so min{r, s} ≥ (2l + 3)/3. Thus now

r + s ≥ 4l + 6

3
>

4l + 3

3
= n+m+ 1

a similar contradiction. Thus in both cases l ≡ 2, 0 mod 3 we cannot have
∆ = 0 and (3.2) holds.

Finally when l ≡ 1 mod 3 thenm = (l−1)/3 and (3.13) implies min{r, s} ≥
(2l + 1)/3. But then

r + s ≥ 4l + 2

3
= n+m+ 1

now no contradiction to (3.10). Instead it forces

r = s =
2l + 1

3
.

Next (3.7) gives

h(ξ, η, 1) =
h∗

q
= max{λ+ n, 2λ+m} −min{r, λ} −min{s, λ}.

If λ ≤ (2l + 1)/3 this is

(λ+ l)− λ− λ = l − λ ≤ λ

2

so h(ξ, η, 1) decreases from l/3 to (l − 1)/3 as λ increases from 2l/3.
And if λ ≥ (2l + 1)/3 it is

(2λ+m)− r − s = 2λ− l − 1 ≤ λ

2

so h(ξ, η, 1) increases from (l−1)/3 to (l+1)/3 as λ increases from (2l+1)/3
to (2l + 2)/3.

These describe precisely how h(ξ, η, 1) falls below λ/2, which is in accor-
dance with the assertions of the theorem, and we are now on the “lower
lines” of the picture.
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The above arguments show that if we are not on the single lines then
l ≡ 1 mod 3 as well as n = l, m = (l − 1)/3, r = s = (2l + 1)/3 and we
are on the lower lines. We complete the proof by showing that in this case
coprime Y,Z actually exist satisfying (3.5), (3.6) and 0 ̸= Y ̸= Z ̸= 0, thus
producing a point on the lower lines.

In fact linear algebra gives Y,Z, not both zero, of degrees at most n,m
respectively and ordt=0Y at least r and ordt=1(Z − Y ) at least s. The rest
is relatively routine, but we give some details.

For example Y = 0 implies Z ̸= 0 and so s ≤ m a contradiction; similarly
for Y = Z and Z = 0. If we assume for the moment that Y,Z are coprime,
then for example deg Y < n leads to a contradiction using Lemma 2.1;
similarly for degZ < m and ordt=0Y > r, ordt=1(Z − Y ) > s. And finally
if Y, Z have a common factor D = ta(1− t)bC with C(0) ̸= 0, C(1) ̸= 0 and
degD = d ≥ 1, then we check that Y/D = tr−aY ′ with deg Y ′ ≤ n−d−r+a,
(Z − Y )/D = (1 − t)s−bX with degX ≤ n − d − s + b, and of course
deg(Z/D) ≤ m− d. Now Lemma 2.1 gives yet another contradiction (using
a+ b− 2d = (a+ b− d)− d < 0).

Here are some examples.
For l = 1 we have n = 1,m = 0, r = s = 1 and we can take

Y = t, Z = 1, Z − Y = 1− t

corresponding to x = t so (3.1) holds for

ξ = t1−λ, η = (1− t)1−λ;

here 2/3 < λ < 4/3.
For l = 4 we have n = 4,m = 1, r = s = 3 and we can take

Y = −t3(t− 2), Z = 2t− 1, Z − Y = −(1− t)3(t+ 1)

so (3.1) holds for

(3.14) ξ = −t3−λ t− 2

2t− 1
, η = −(1− t)3−λ t+ 1

2t− 1
;

here 8/3 < λ < 10/3.
And finally for l = 7 we have n = 7,m = 2, r = s = 5 and we can take

Y = t5(2t2 − 7t+ 7), Z = 7t2 − 7t+ 2, Z − Y = (1− t)5(2t2 + 3t+ 2)

and (3.1) for

ξ = t5−λ 2t
2 − 7t+ 7

7t2 − 7t+ 2
, η = (1− t)5−λ 2t

2 + 3t+ 2

7t2 − 7t+ 2

and 14/3 < λ < 16/3.



ON FUNCTIONAL SUCCESSIVE MINIMA. 9

4. Additional remarks

The above discussion shows that the infimum µ1(Vλ) is attained when
l ≡ 1 mod 3. We do not know if this is generally the case for other l.

An interesting value with l = 0 is λ = 1/2. Here one can check that
(ξ1, η1) and (ξ2, η2) are independent solutions, where

ξ1 =
1 + (1− t)1/2

t1/2
, η1 = −1

ξ2 =
−20t+ 20 + 9t1/2 + 12(1− t)1/2 + 15t1/2(1− t)1/2

25t− 16
,

η2 =
−15t− 12t1/2 − 16(1− t)1/2 − 20t1/2(1− t)1/2

25t− 16
.

We found these by noting that k(t, t1/2, (1− t)1/2) has genus zero and is in
fact k(T ) for

T =
−10t+ 4− 3t1/2 − 4(1− t)1/2 − 5t1/2(1− t)1/2

25t− 16

with

t1/2 =
4T 2 + 2T

5T 2 + 4T + 1
, (1− t)1/2 =

3T 2 + 4T + 1

5T 2 + 4T + 1
.

Now the usual linear algebra in k[T ] leads to the two solutions above. One
can verify that

h(ξ1, η1, 1) = h(ξ2, η2, 1) =
1

4
(only the valuations above t = 0 and t = 16/25 are needed). This cor-
responds to a point on the first single line of the graph. Thus µ1(Vλ) =
µ2(Vλ) = 1/4 are both attained.

When l = 1 and λ = 3/4 it is easy to see that µ1(Vλ) = 1/4 is attained,
even in the form just after (3.3) with ξtλ in k(t). It is almost as easy to
show that µ2(Vλ) = 1/2 is not attained in this form, but we do not know if
it is attained in some other form. Perhaps the effective Theorem 5.1 (p.15)
of [10] may help with such problems.

From now on let us suppose that λ is in Z. Then we have µ1(Vλ) = [λ/2],
µ2(Vλ) = λ− [λ/2] and we will show that both are attained in this form, so
with ξ, η now in k(t).

To start the proof one sees again by linear algebra that the space of
S = (P,Q,R) in k[t]3 with Ptλ + Q(1 − t)λ + R = 0 and the degrees of
P,Q,R at most d has k-dimension e ≥ 2d − λ + 2. We note that if d < λ
then any S must have R ̸= 0.

For even λ ≥ 2 (we already treated λ = 0) and d = λ/2 we get e ≥ 2.
Any solution must have P,Q,R coprime, else there would be a solution with
height strictly less than λ/2, contradicting the fact that this is µ1(Vλ). Now
any two solutions that are k-independent must be k(t)-independent (and so

trivially k(t)-independent). They thus correspond to µ2(Vλ) = λ/2.
For example with λ = 2 and d = 1 we get for (3.1) two reasonable solutions

(ξ, η) = (−2t+ 3, 2t+ 1),

(
− t− 2

t
, 1

)
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of which the first is unique in k[t]2.
For odd λ ≥ 3 (we already treated λ = 1) and d = (λ − 1)/2 we get

e ≥ 1 and so any solution S1 = (P1, Q1, R1) must have P1, Q1, R1 coprime
and correspond to µ1(Vλ) = (λ − 1)/2. For d = (λ + 1)/2 we get e ≥ 3.
We already have two k-independent solutions S1 and tS1, so there must
be another solution S2 = (P2, Q2, R2) which is k-independent of these. If
P2, Q2, R2 were not coprime then any common factor D must have degree
1 because of µ1(Vλ) = (λ− 1)/2. Then S2 would be k-proportional to DS1

contradicting the way it was chosen. Thus P2, Q2, R2 must be coprime. As
above now the k-independence of S1,S2 implies their k(t)-independence, and
so S2 corresponds to µ2(Vλ) = (λ+ 1)/2.

For example with λ = 3 and d = 1 we get the unique solution (3.14) and
for d = 2 we get a solution

(ξ, η) = (6t2 − 15t+ 10, 6t2 + 3t+ 1)

which is unique in k[t]2.
The case of odd λ and d = (λ − 1)/2 corresponds exactly to the Padé

approximations originally considered by Beukers and Tijdeman [3] - see also
[4] Theorem 5.2.10 (p.130) with L = M = N = d.

The other cases, of odd λ and d = (λ + 1)/2, or even λ and d = λ/2,
do not strictly speaking correspond to Padé because they are not unique
(up to constants). They do however come from linear combinations of Padé
approximations (see for example the proof of Lemma 6 of [3] p.199). A
similar phenomenon occurs for λ = 1/2 above.
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