
20 May 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

About polygon area uncertainty in GIS and its implications on agro-forestry estimates

Published version:

DOI:10.1016/j.ecoinf.2024.102617

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is the author's manuscript

This version is available http://hdl.handle.net/2318/1975490 since 2024-05-08T07:46:18Z



Ecological Informatics 81 (2024) 102617

Available online 27 April 2024
1574-9541/© 2024 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-
nc/4.0/).

About polygon area uncertainty in GIS and its implications on 
agro-forestry estimates 

Samuele De Petris *, Filippo Sarvia , Enrico Borgogno-Mondino 
Department of agriculture, forest and food sciences, University of Torino, L.go Braccini 2, Grugliasco, Italy   

A R T I C L E  I N F O   

Keywords: 
GIS 
Error propagation 
Uncertainty 
Area error 
Shape metrics 

A B S T R A C T   

Error affecting calculation of a polygon area from a digital map is an issue that is commonly neglected by remote 
sensing and Geographic information system (GIS) users. In this work, a method is presented aimed at estimating 
the uncertainty related to area calculation of polygons in a vector map. Additionally, area error relationship with 
polygon geometric features was analyzed, as well. A multivariate regression-based approach was applied for this 
task. After presenting the method, to demonstrate its operational capabilities, it was applied to 2 case studies 
corresponding (i) to a forest map and (ii) to the map from the Geo Spatial Aid Application used for in the 
framework of the EU Common Agriculture Policy. Estimated uncertainty (percentage) median values were found 
to be 0.01% and 0.02% for (i) and (ii), respectively. It was also demonstrated that the same polygon shape built 
using less vertices (longer vectors) generates area estimates that are less accurate than the ones from polygons 
built using a higher number of vertices (shorter vectors).   

1. Introduction 

In the framework of digital maps, especially when working at higher 
scales (e.g. cadastre), the area computation accuracy is an important 
issue to be considered. In fact, given a polygon defined by a sequence of 
vertices, its true “horizontal” area can be exactly known only if co-
ordinates of vertices are assumed as “exact” (i.e. with infinite accuracy). 
This assumption is known to be always wrong, since national and in-
ternational map standards rigorously define the expected horizontal 
accuracy of a map (σxy), once known its nominal scale (Goodchild et al., 
2009; Hunter et al., 2000; Zhou and Stein, 2013). Uncertainty affecting 
the horizontal position of polygon vertices necessarily affects the accu-
racy of the corresponding computed area. In spite of this obvious 
consideration, quite often map users neglect this issue and assume as 
infinitely accurate area computation from digital maps by Geographical 
Information System (GIS) tools. This relies on an increasing uncon-
sciousness about the true meaning of cartography and the rules it has to 
respect to be accepted as “official”. Digitalization, geographical data 
sprawling provided through a huge number of geoportals online and a 
generalized lack of proper metadata are degrading consciousness of map 
utilization, especially from the accuracy issues point of view. The users, 
in fact, often use data and derive quantitative information from mapped 
features without having a complete knowledge of the data themselves 

nor o their quality (Leung et al., 2004). An unrealistic faith in 
geographical data accuracy seems to be the ordinary approach (Shi, 
1998). Nevertheless, errors affecting length and area computation from 
geometric features of vector digital maps have been studied by many 
authors (Chun and Xiaohua, 2005; Crosetto et al., 2000; Rae et al., 
2007). For example: points error distribution was analyzed in geodesy 
and surveying (Mikhail and Ackermann, 1976); uncertainty related to 
length computations was explored by Perkal (1956); while Chrisman 
and Yandell (1988) developed a formula to compute area variance; 
Kiiveri (1997) explored positional uncertainty in maps and Shi (1998) 
developed a statistical model for estimate errors of vectors in GIS. 

According to the above mentioned scientific contributions, issues 
related to uncertainty affecting geometric features of digital maps are 
currently neglected while facing applications (Shi et al., 1999). Never-
theless, GIS applications are huge, and the demand for the resulting 
products is continually increasing especially in the agroforestry sector 
(Amici et al., 2017; Nowak et al., 2023; Sarvia et al., 2023). 

This can be surprising if one considers some works that well 
demonstrate the operational impact of accuracy on agro-forest appli-
cations. For example, inaccuracies in delineating forest boundaries can 
lead to significant errors in estimating forest biomass (Næset, 1999). 
This misestimation can affect both ecological management and carbon 
stock assessments (Suwanlee et al., 2024) Additionally, the errors in area 

* Corresponding author. 
E-mail address: samuele.depetris@unito.it (S. De Petris).  

Contents lists available at ScienceDirect 

Ecological Informatics 

journal homepage: www.elsevier.com/locate/ecolinf 

https://doi.org/10.1016/j.ecoinf.2024.102617 
Received 21 August 2023; Received in revised form 24 April 2024; Accepted 24 April 2024   

mailto:samuele.depetris@unito.it
www.sciencedirect.com/science/journal/15749541
https://www.elsevier.com/locate/ecolinf
https://doi.org/10.1016/j.ecoinf.2024.102617
https://doi.org/10.1016/j.ecoinf.2024.102617
https://doi.org/10.1016/j.ecoinf.2024.102617
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/


Ecological Informatics 81 (2024) 102617

2

computation directly impacts economic valuation influencing land use 
planning, public taxation, and conservation funding (Judge and All-
mendinger, 2011; van Oort et al., 2005). 

Given these premises, uncertainty of geometric computation from 
vector features in GIS science, appears to be crucial to understand. 
Surprisingly, as already noticed by Chrisman and Yandell (1988), none 
of the GIS standard packages, is presently offering the capability of 
completing area computation with its expected accuracy. Some authors 
have implemented their procedures as external tools to be used within 
third-party software. For instance, Kiiveri (1997), developed a 
Geographic Resources Analysis Support System (GRASS) GIS (Neteler 
et al., 2012) add-on, and (van Oort et al., 2005)implemented an Envi-
ronmental System Research Institute (ESRI) (Redlands, Ca) ArcInfo 
script. As far as authors know, the sole commercial software able to 
generate an estimate of the error affecting a polygon area is the Syn-
ergyse’s TopoCheck® (Ljubljana, Slo). No standard and generalized 
approach seems, at the moment, to enter the most diffused and open GIS 
software (Heuvelink et al., 2006; Temme et al., 2009). 

In this work, authors propose an operational approach implemented 
in QGIS open-source software and never proposed in literature, to easily 
face this challenge starting from a general rule that was at the basis of 
surveying and map production: every measure should be provided by 
two numbers, i.e. the value of the measure itself and the correspondent 
precision. 

Estimation of the expected uncertainty of area computation can be 
obtained in three possible methods: (1) by comparison with another 
(more precise) dataset (Gross and Adler, 1996); (2) by statistical simu-
lation (Caspary and Scheuring, 1992; Dutton, 1992; Shi, 1998) and (3) 
by error propagation analysis (Chrisman and Yandell, 1988). The first 
method requires a dataset of the same area to be used as reference. This 
should present a significantly higher level of accuracy, normally related 
to a higher map scale. This approach is not auto-consistent and it is 
therefore out of the scope of this paper. 

The simulation approach provides results very similar to those 
obtainable by using error propagation (Shi, 2009), but has the disad-
vantage that cannot be described by a single formula; this makes it 
unsuitable to be easily implemented in a GIS (Shi, 2009), mainly due to 
the its computational efforts. 

The last one considers area calculation as a problem of indirect 
measurement that can be faced applying the so called Variance Propa-
gation Law (VPL) (Ku, 1966). In other words, area is intended as the 
result of a computation involving other direct measures. In this situa-
tion, an estimate of the expected area uncertainty can be obtained 
through the propagation of the errors affecting direct measures along the 
adopted formula. Direct measures involved in area computation are the 
coordinates of the polygon vertices. The starting point of such an 
approach is therefore to provide a measure of the uncertainty affecting 
coordinates of polygon vertices. This can be done only if the quality of 
the processed map is known through rigorous and reliable metadata that 
have to be necessarily coupled to the map itself. 

The latter method was selected for this work due to its self- 
consistency, lack of reliance on external data, absence of statistical as-
sumptions, and ease of integration into commonly used GIS platforms 
through ordinary geospatial algorithms. 

After implementing the method, authors applied it to two case 
studies with the aim of analyzing the relationship between area uncer-
tainty and polygon shape/size. The two selected case studies (NW Italy) 
refer to maps having different scale and content that provide the 
cartographic bases for two common agro-forestry applications. The first 
one is used for forest biomass computation; the latter is used for sup-
porting payments within the Common Agriculture Policy (CAP). These 
maps are a solid benchmark since containing a wide variety of shapes, 
ranging from triangles to very complex polygons having thousands of 
vertices. The variety of shape and size of map features is an important 
issue to deal with. The dependence of area uncertainty from polygon 
shape/size was, in fact, already suggested in literature (Bondesson et al., 

1998). To achieve this task authors propose five different geometrical 
indices useful for summarizing polygons shape. 

2. Methods 

2.1. Computing area of polygons in GIS 

Polygon vector maps ordinarily entering GIS can be summarized as it 
follows: (i) maps obtained by digitalization of features from georefer-
enced image like the ones derived by remote sensing (Alvarez-Mendoza 
et al., 2019; Chow and Kar, 2017; Duarte et al., 2014; Gahegan and 
Ehlers, 2000); (ii) maps generated by automatic segmentation proced-
ures and (iii) maps from ground surveys e.g., through global navigation 
satellite system (GNSS). Whatever the source of polygons, their area 
computation in GIS software is affected by the following approxima-
tions: (i) in general, it refers to the horizontal projection of the actual 
surface, while maps refer to its projection onto an ellipsoid; (ii) it is an 
under-estimation of the actual area since slope (local or average) is not 
considered; (iii) it is affected by an error that depends on the precision of 
the horizontal coordinates of the vertices defining polygon boundary. 

To formalize the problem one has to consider that a n-sided flat 
polygon is made of n vertices (P1, P2, …, Pn) described by two co-
ordinates Pi = (xi, yi) connected by straight segments (vectors) in a 
closed loop (P1 = Pn+1). The area is ordinarily computed in GIS by the 
so-called Gauss’ formula (Eq. 1) where vertices are sorted counter-
clockwise (Zubaer et al., 2020). 

A = 0.5
∑

xi(yi+1 − yi− 1) (1)  

where xi and yi are the horizontal coordinates of the i-th vertex. 

2.2. Accuracy of polygon vertex positioning 

With reference to the above-mentioned problem, it is worth to stress 
that the proposed methodology can be only applied to bi-dimensional 
vector maps as implemented and managed by ordinary GIS software. 
Therefore, the work assumes the geometric approximation given by the 
vector layer (necessarily a sequence of straight segments) as the refer-
ence one. The number of vertexes, and consequently the polygon 
approximation of the mapped shape from the real world, depends on 
vector map providers and data quality check verified during the map 
validation stage. Shape approximation given by maps of real objects 
depends on the “nominal scale” the map was intended for when pro-
duced. Consequently, the number of vertices used to draw the map is 
assumed as satisfying approximation requirements imposed, natively, 
by the scale of the map. Consequently, only the horizontal positioning 
(and the related accuracy, σxy) is considered. This should be reported in 
the metadata of the maps or, eventually, deduced from the nominal scale 
the map is intended for. Since σxy is the ordinary accuracy measure 
supplied (or deduced) with maps, one has to go back to the disjointed 
values of errors affecting singularly x (σx) and y (σy) horizontal co-
ordinates. Since no other assumption can be done, one has to admit that 
σx = σy =

σxy̅̅
2

√ . 
Horizontal spatial accuracy of a map can be defined as the standard 

deviation of the errors affecting the horizontal coordinates, of a sample 
of check points from the map, whose x and y coordinates are compared 
with the correspondent ones from a reference source. This can corre-
spond to ground surveyed points (by total station or GNSS), photo-
grammetrically derived points or, directly, maps showing an accuracy 
(or nominal scale) significantly higher than the one of the map to be 
evaluated. 

Going back to polygon area computation, one can say that σxy de-
pends on the nominal scale of the considered map. Often, digital maps 
are supplied together with metadata directly reporting σxy. Alterna-
tively, it can be derived referring to national standards for map pro-
duction that relate it to the nominal scale of the map. 

S. De Petris et al.                                                                                                                                                                                                                               
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In this case, σxy can be obtained with regards to reference values 
defined in the drawing domain of maps (φxy), and corresponding to the 
minimum mapping size (line width of the drawing). φxy can be easily 
converted into the correspondent σxy by multiplying it per the nominal 
map scale. 

For instance, the National Map Accuracy Standards for Horizontal 
Accuracy (Budget UB of the, 1947) assumes: (1) for map scale >1:20,000 
➔ φxy = 0.508 mm; (2) for map scale smaller or equal to 1:20,000 ➔ φxy 
= 0.847 mm. In this work φxy was set to 0.200 mm (Gomarasca, 2004). 
The following examples can help the reader to better get the point: if φxy 
= 0.2 mm, for a 1:10,000 scale map σxy = 2 m; for a 1:25,000 scale map 
σxy is 5 m, etc. 

2.3. Modelling area uncertainty 

A great variety of scientific applications use measurements (e.g. 
sizes, distances) coming from GIS tools operating on geographical data. 
Area computation is one of the most common operations that such ap-
plications require and, therefore, an associated value of its precision, is 
desirable. As previously mentioned, authors retain that an approach 

based on the modelling of the theoretical expected uncertainty is the 
most achievable one. The statistical tool for giving such an estimate is 
the variance propagation law (VPL, eq. 2). It enables the modelling of 
the relationship between the variance of direct measures (coordinates of 
polygon vertices) contributing to area computation and the variance of 
the area itself. 

σ2
y =

(
∂y
∂x1

)2

• σ2
x1
+

(
∂y
∂x2

)2

• σ2
x2
+…+

(
∂y
∂xn

)2

• σ2
xn
+ 2

∑n− 1

i=1

×
∑n

j=i+1

(
∂y
∂xi

)(
∂y
∂xj

)

COV(i, j) (2)  

where y = f (x1, x2, …, xn) is the dependent variable, xi the i-th inde-
pendent variable and σ2

xi
its variance (supposed known); COV(i, j) is the 

covariance between the i-th and j-th independent variables. 
Direct measures involved in area (A) computation are the co-

ordinates of polygon vertices (i.e. x, y). Area uncertainty can be there-
fore computed with reference to eq. 1 and eq. 2. If no significant 
correlation is assumed to exist between the independent variables, area 
uncertainty (σA) can be computed according to eq. 3. 

Fig. 1. Procedure implemented in QGIS to map polygons area uncertainty.  
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σA =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

0.25 • σ2
x,y

∑N

i=1

[
(xi− 1 − xi+1)

2
+ (yi− 1 − yi+1)

2 ]

√
√
√
√

=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

0.25 • σ2
x,y

∑N

i=1
l2
(i− 1,i+1)

√
√
√
√ (3)  

where N is the number of vertices; xi, yi are the i-th vertex coordinates; 
l(i− 1,i+1) is the length of the vector linking the x and y coordinates of the 
vertices preceding and following the i-th one; σx,y is the planimetric 
accuracy of the map, in this work set as σx,y =

φxy•s̅̅
2

√ where s is the nominal 
map scale and φxy = 0.2 mm. In order to explore the theoretical sensi-
tivity of σA to s and to the length of vectors linking polygon vertices, a 
self-developed routine was implemented in R vs 4.1.1. All the possible 
combinations were tested by varying s in the range [10,1,000,000] and 
the quantity 

∑N
i=1l2

(i− 1,i+1) in the range [10,1,000,000] m2. 
To make operational σA computation, the following procedure was 

applied in QGIS vs 3.16.11 (https://qgis.org) sequentially using built-in 
algorithms like field calculator or geometry conversions (Fig. 1): (i) 
initially, a unique identifier was assigned to each polygon; (ii) polygons 
were converted to lines and lines to segments (following polygon 
vertices); (iii) the length of segments was computed and recorded as new 
attribute in the layer table; (iv) the sum of squared lengths was 
computed according to the previously assigned polygon identifier and 
the result assigned to the correspondent polygon by table join; (v) given 
σxy (depending of the nominal scale of the map) eq. 3 was applied 
through the field calculator tool. 

2.4. Suggesting operational implications 

To make clear the operational implications of σA into the agro- 
forestry sector two paradigmatic case studies were reported assuming 
the same area of interest (AOI, Fig. 2). This includes two large Italian 
provinces, namely Torino (6827 km2) and Cuneo (6905 km2). They 
develop between 150 m and 3600 m (a.m.s.l.) and can be somehow 
assumed as representative of a typical Italian rural landscape. 

2.4.1. Case study 1: Forest biomass mapping 
Ordinarily forest biomass estimation is computed starting from 

ground surveys aimed at measuring (in few representative points) the 
unit biomass (i.e., m3ha− 1). This has then to be referred to the entire 
forest area according to local forest types (Hunter et al., 2013; Somogyi 
et al., 2007). An error in forest area measure will therefore affect final 
biomass estimates since it results from unit biomass per forest area. For 
this analysis the Piemonte region forest map (FM) was adopted. FM is a 
polygon vector layer updated 2016 and representing the boundaries of 
forested areas in AOI. It maps >70 forest types (Camerano et al., 2017) 
corresponding to about 44,900 parcels (500,647 ha). Its nominal scale is 
1:10000, therefore a σx,y for this layer can be assumed equal to 2 m. The 
average value of forest biomass was estimated to be 175 m3ha− 1 (Got-
tero et al., 2007). 

2.4.2. Case study 2: Common agricultural policy (CAP) payments 
implications 

The CAP supports farming activities through economic grants with 
the aim of improving crop productivity, ensuring safe food production 
and contrasting climate change effects through a sustainable manage-
ment of natural resources (Roederer-Rynning, 2010). In the CAP 
framework, since 2018 farmers are called to submit a Geo Spatial Aid 
Application (GSAA) to access the grants. GSAA include the interactive 
mapping of cultivated parcels by farmers that are merged to generate a 
map (AP, agricultural parcels) showing the actual agricultural context 
used along the CAP administrative procedures. AP correspond to a 
vector layer containing structured information about farmers, fields 
(land use, location, and size) and required grants (Sarvia et al., 2022a,b). 
In the most of cases the economic value of CAP contributions is related to 
the size of fields and, consequently to their area. To assess the effect of 
area uncertainty in CAP payments a total of 50,615 GSAAs were 
considered in AOI. Assuming AP nominal scale consistent with the one 
from Cadastre (i.e. 1:2000), the correspondent σx,y can be set equal to 
0.4 m. It is worth to outline that the average unit value of CAP payment 
(basic + greening payment) in AOI in 2022 was 300 € ha− 1. 

Fig. 2. AOI extension and terrain elevation. In grey Italian boundaries. Reference frame is World Geodetic System 1984 Universal Transverse Mercator 32 N (WGS84 
/ UTM32N). 
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2.5. Area uncertainty vs polygon geometry 

With reference to FM and AP, σA was computed in QGIS adopting the 
previously mentioned workflow (Fig. 1). The correspondent area rela-
tive uncertainty (urel) was also calculated as the ratio between σA and 
polygon area. The Kolmogorov-Smirnov (KS; Stephens, 1970) one-tailed 
test was used to compare the urel cumulative frequency distributions 
from the two dataset (CDFFM and CDFAP). This was intended for 
assessing how map scale (and therefore its precision) can affect the 
uncertainty of area computation. In particular, KS was built testing the 
following hypothesis: CDFFM > CDFAP. 

To investigate if size and shape of polygon features somehow con-
dition area accuracy some ordinary metrics from landscape ecology 
were used to qualify polygon (patch) shape. A wide range of metrics 
were defined (Baker and Cai, 1992; McGarigal and Marks, 1995; Riitters 
et al., 1995). For this work, five metrics were selected and tested against 
σA: (i) Area (A); (ii) Perimeter (P); (iii) number of vertices (V); (iv) 
Maximum Diameter (Dmax); (v) Shape Index (SI [m− 1]). It is worth to 
remind that Dmax represents the maximum distance between two 
vertices of a polygon (Lang and Blaschke, 2007); conversely, SI is a 
synthetic parameter describing shape complexity (Demetriou et al., 
2013; Wentz, 1997). High SI values indicate complex, or elongated, 
shapes; low SI values indicate compact and isotropic shapes. SI is sen-
sitive to size being inversely proportional to the polygon area. 

The above mentioned metrics were computed for both FM and AP 
and related to σA through an ordinary multivariate regression Multiple 
linear regression analysis is frequently used to model the relationship 
linking a collection of predictors (xj) to an outcome, or response variable 
(y). The “relative importance” of predictors can be explored through the 
so-called relative weights analysis (RWA). Researchers frequently look 
at the regression coefficients, or the zero-order correlations, to deter-
mine the relative importance of predictors (weights) (Gordon, 1968; 
Thompson and Borrello, 1985). Zero-order correlation quantify the 

contribution of the single predictor, with no regards about eventual 
other predictors. Differently, coefficients of regression define the 
amount of contribution given by a predictor to the response variable 
when it is combined with other predictors. If predictors are uncorre-
lated, their weights correspond to the R2 from the related univariate 
regression. In this case, the sum of the single Ri

2 values from the i-th 
predictor is equal to the R2 of the complete multivariate regression 
model. Unfortunately, predictors are frequently inter-correlated (multi- 
collinearity) making regression coefficients inadequate (Budescu, 
1993a). In this case, Ri

2 do not sum to R2. Different RWA techniques have 
been therefore proposed to address this problem. The proposed solution 
is based on the possibility of measuring the amount of variance of the 
dependent variable that is explained by the single predictor partici-
pating to the multivariate model (Blackwell et al., 2000; LeBreton and 
Tonidandel, 2008; Tonidandel and LeBreton, 2010). This approach re-
lies on the concept of “dispersion importance” (Anderson et al., 2006; 
Maliene et al., 2018), i.e. the proportion of the variance in y accounted 
for by xj (predictor). 

To take care of this potential situation, polygon metrics multi-
collinearity was verified according to the variance inflation factors 
analysis (Hsieh et al., 2003) and condition index (Senaviratna and 
Cooray, 2019). Given the existence of multicollinearity among pre-
dictors, their contribution to σA was estimated using 2 different RWA 
methods available in R, namely the “olsrr” (Hebbali and Hebbali, 2017) 
and “relaimpo” (Groemping and Matthias, 2018) packages. The adoption 
of two different methods was proposed to better support our deductions 
about the geometric features weights onto area uncertainty. The first 
method, proposed by Lindemann, Merenda and Gold (LMG) (Budescu, 
1993b), is based on the computation of the squared semipartial corre-
lation r2

y(xj |x1,…,xj− 1)
(also called Type I, predictor variables added-in- 

order. The squared semipartial correlation for each succeeding predic-
tor is then used to calculate the increment in the coefficient of deter-
mination at each stage. The Type I squared semipartial correlation value 

Fig. 3. Theoretical scenarios of σA obtained through VPL at different map scales and polygon sizes.  
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for predictor xj, however, relies on when it enters the model when the p 
predictors are mutually correlated. To take care about this problem, 
LMG computes the unweighted average of the r2

y(xj |x1,…,xj− 1)
over all 

possible p! orderings of how the p predictors can sequentially enter the 
model one-at-a-time (Chao et al., 2008). The second method is based on 
the covariance matrix decomposition and it is called the Johnson’s 
Relative Weight (JRW) (Johnson, 2000). LMG and JWRI indices were 
compared to assess if weights estimates led to the same rank for 
predictors. 

3. Results 

3.1. Modelling area uncertainty 

Uncertainty of polygon area computed through the Gauss’s formula 
(eq. 1) was estimates suing VPL. In the first part of this work, a theo-
retical simulation was achieved to test sensitivity of σA to s and 
∑N

i=1l2
(i− 1,i+1) values. s and 

∑N
i=1l2

(i− 1,i+1) were iteratively changed in the 
range [10− 1,000,000] and [10–1,000,000], respectively. Results are 
shown in Fig. 3 where it can be noted that σA increases more rapidly for 
smaller map scales when moving from small polygons to larger ones. 

Fig. 4. (a) FM polygon area uncertainty map and related pdf; (b) AP polygon area uncertainty map and related pdf. Reference frame is WGS84/UTM 32 N.  
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3.2. Operational consequences 

The workflow of Fig. 1 was implemented in QGIS environment and 
applied to two paradigmatic maps commonly used in the agro-foresty 
sector, namely FM and AP. Fig. 4a and b show spatial distribution of 
area uncertainty for FM and AP, respectively. Correspondent probability 
density function (pdf), namely pdfFM and pdfAP, are also reported. 
Comparing figures it can be easily noticed that: (i) agricultural (AP) and 
forestry (FM) landscape are characterised by polygons showing signifi-
cantly different sizes. AM majorly contains small parcels, FM bigger 
ones; (ii) pdfFM shows an exponential trend where more than the 40% of 
polygons present a σA value of 2000 m2 while the remaining polygons 
are characterised by having a σA value between 150 and 2000 m2. 
Conversely, considering pdfAP (Fig. 4b), a mesokurtic distribution can be 
observed. Specifically, the σA is between 10 and 400 m2, and it can be 
observed that most polygons are characterised by having a σA of around 
100 m2. 

Fig. 5 shows the urel values distributions of both AP and FM. On 
average, FM’s urel values are higher than AP’s;specifically the average 
urel value results to be 0.01% and 0.025% for AP and FM respectively. 

It is worth to note that in general small urel values exist (i.e., < 0.2%). 
KS test proved how urel values distributions of FM is significantly greater 
than AP one (D+ = 0.025, p < 0.001) highlighting how, independently 
form polygon area, map scale can significantly affect urel. Nevertheless, a 
variability exists in urel values for both FM and AP (CV% was 7% and 
15% respectively). This variability was further explored by assess how 
polygon geometric features can affect σA. 

4. Exploring uncertainty vs polygon geometric features 

A multivariate regression model was fitted for both AP and FM using 
ordinary least squares involving A, P, V, Dmax and SI as predictors and σA 
as outcome variable. Concerning AP, the regression model resulted into 
a R2 equal to 0.869 (F = 59,770.5, p < 0.001) while for FM a R2 equal to 
0.854 (F = 59,209.1, p < 0.001) was founded. Fig. 6 shows high cor-
relation values among regression model predictors. Only SI resulted 
poorly correlated with both predictors and σA. Multicollinearity analysis 
performed using the condition index of FM and AP regression models 

resulted equal to 12.47 and 14.61 respectively highlighting a moderate 
multicollinearity and poor conditioned regression systems. Additionally, 
medium-high VIFs were founded (Fig. 6) highlighting a multi-
collinearity especially due to P and Dmax. It is interesting how both FM 
and AP regression models shows very similar condition indices, VIFs and 
Pearson’s correlation values, supporting the hypothesis that indepen-
dently from the map scale and type of polygon, σA is affected by polygon 
geometric features. Nevertheless, not all geometric features equally in-
fluence σA. To explore how single predictors, affect polygon area error 
two different RWAs were performed. 

In Fig. 7 are reported the relative weights of polygon geometric 
features onto σA. From this data, we can see that both LMG and JRW 
have generated the same predictor’s importance ranking. This is notable 
since this ranking is independent from map scale and map type. In fact, 
Fig. 7a and b report similar weights. In particular, the most affecting 
geometric feature is the Dmax accounting for the 50% of variance of σA in 
the FM context while it results to be around 40% for the agricultural one. 
The second one is the P, accounting for the 30% in both FM and AM 
context. These two geometric features summed can describe >80% and 
70% of σA in the FM and AM context respectively. Otherwise, the 
smallest weight is the SI, accounting for <2%. A and V have very similar 
weight (between 10 and 15%). 

5. Discussions 

From the error model reported in eq. 3, we can note that polygon 
area uncertainty is directly proportional to the sum of squared segments 
lengths of polygon (

∑N
i=1l2

(i− 1,i+1)) and one-quarter of the square posi-
tional error (σ2

xy). This implies that polygons having equal size (area and 
perimeter) can show different area error according to the following 
interpretative key: less segments define the polygon higher is the area 
uncertainty. This dependency suggests how polygon digitalization pro-
cess (photointerpretation/delineation) or image segmentation play a 
key role on σA and can greatly improve area-related estimates accuracy. 
Moreover, to explore the theoretical sensitivity of σA to both s and 
∑N

i=1l2
(i− 1,i+1), all possible combinations were computed and σA scenarios 

reported in Fig. 4. It is interesting to note how polygons having similar 
∑N

i=1l2
(i− 1,i+1) show a negative exponential behavior according to map 

scale. In fact, higher s-value (i.e., low detailed maps) higher the uncer-
tainty. Unexpectedly, this behavior changed significantly with polygon 
having small 

∑N
i=1l2

(i− 1,i+1). In fact, for small 
∑N

i=1l2
(i− 1,i+1) values, σA is 

poorly affected by scale. For example, a polygon having 
∑N

i=1l2
(i− 1,i+1) =

1000 m2 shows σA equal to 300 m2 for all scale values. While a polygon 
having 

∑N
i=1l2

(i− 1,i+1) = 90,000 m2 shows σA values range of one-order of 
magnitude according to s-values (e.g., from 300 m2 for large scale, up-to 
3000 m2 for small-scale). This suggest that in general area estimates 
from large polygons with few vertices should be carefully considered, 
especially if area-related estimates are adopted into operative workflows 
(i.e., for cadastral/tax purposes). RWA proved how σA is mainly affected 
by Dmax and P independently from the adopted map. Higher values of 
these geometric features higher the area error. This is also proved by 
high positive correlation coefficients with σA (Fig. 6). This result may be 
explained by the fact that Dmax and P are metrics perfectly related to 
∑N

i=1l2
(i− 1,i+1); as supported also by theoretical scenarios, higher the 

lengths of the polygon segments higher the error. Interestingly, polygons 
having same Dmax and P but more vertices can generate better area es-
timates. This outcome indicates that a more detailed polygon generated 
by a dense polygon drawing (many vertices) or by an automatic image 
segmentation procedure can lead to a better area result. Unexpectedly, 
no significant relationship exists between SI and σA. Ordinarily, SI de-
scribes how far a polygon is from an isotropic (circle) geometry, this 
implies that anisotropic polygons do not necessary result into a worst 
area estimate. 

Fig. 5. Boxplots of FM and AM urel. KS test highlights how urel values distri-
butions of FM is significantly greater than AP one. 

S. De Petris et al.                                                                                                                                                                                                                               



Ecological Informatics 81 (2024) 102617

8

To give an idea how this outcome can affect deductions based on 
polygon vector data in the agro-forestry sector, in this work AP and FM 
were used. As mentioned in the previous sections, the agricultural sector 
and the correspondent farmers’ activities are supported at European 
level through the CAP. Contributions value can be diverse and depend 
on the practices adopted by farmers. The amount of the contribution is 
not only influenced by the type of activity carried out, but also by the 
area on which the activity is applied. Consequently, not being aware of 
the uncertainty of a plot may result in a higher or lower payment than is 
really due. In this regard, given that AP urel is 0.01% (median value of 
Fig. 5) and that 50,615 fields with a total area of 21,103.8 ha were 

considered, the AOI σA of AP turns out to be 2.11 ha. Consequently, 
knowing that within AOI average CAP payments made in 2022 
amounted to about 300 € ha− 1, and considering the 2.11 ha uncertainty 
derived from the calculation of the area of the plots, a value of 633.11 € 
may have been over- or underestimated. Naturally, this value is not very 
high, but the conditions change when all CAP applications made at 
European level are considered. For example, a total of 157 million 
hectares (belonging to approximately 9.1 million farms across Europe) 
were included in the CAP application for European subsidies in 2020 
(www.ec.europa.eu). Consequently, by applying the results obtained 
within the study area to the European territory, keeping the value of 

Fig. 6. Correlogram and VIF analysis of outcome (σA) and predictors variables involved in the multivariate regression models. (a) FM correlogram and VIFs; (b) AP 
correlogram and VIFs. 
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urel equal to 0.01%, the σA of AP at the European level turns out to be 
15,700 ha. Therefore, applying a CAP contribution worth 300 € ha− 1, it 
can be assumed that a total of 4.7 million euro could be over- or 
underestimated. 

Similar small AP urel values were found by Bogaert et al. (2005). They 
present a theoretical framework for assessing errors in area measure-
ments of planar polygonal surfaces, suitable for both correlated and 
independent measurements, while working with CAP applications pro-
vided by farmers. Specifically, they found an area error ranging from 1% 
to 5% for typical EU field sizes alerting about the area uncertainty 
implications. 

Considering the forest context, σA turns out to be also very important 
for biomass estimation, such parameter, for example, is widely used to 
derive the carbon sequestration estimation (Shi and Liu, 2017). Conse-
quently, if the forest area uncertainty is not considered could compro-
mise the biomass estimation and the corresponding carbon 
sequestration estimates. Moreover, as we have seen from the previous 
paragraphs, σA is strongly affected by the maximum diameter and 
perimeter, parameters that are often high in this context. In this regard, 
since urel is on average 0.025% and in the study area we have considered 
44,900 fields, corresponding to a total area of 500,600 ha, the AOI σA of 
FP turns out to be about 125 ha. At this point, knowing that in AOI the 
average value of forest biomass is 175 m3ha− 1, the biomass value that 
may have been over- or underestimated result to be equal to 21,900 m3. 

These small urel values are in line with those reported by previous 
studies on forest area uncertainty. In particular, Næset (1999) conducted 
research on a 717 ha forest in Åmot, southeast Norway, analyzing how 
errors by photointerpreters in defining forest stand boundaries affect 
area estimates, land use categorization, and total timber volume. Their 
findings indicate an average area underestimation of 2%. Moreover, 
they highlighted how these small area error propagates into a wood 
volume estimate error. 

Finally, this work proposes and assess a method to compute the area 
uncertainty derived by polygon vector layer (map) obtained, possibly, 
by official providers whose generation is unknown. Rarely, metadata 
reports the survey technique (GNSS, LiDAR, photogrammetric process-
ing, or editing from orthoimages) which is at the basis of map produc-
tion. In this framework, a limitation of proposed method concerns the 
correlation of the measurement errors in the polygon vertexes as re-
ported by some authors (De Bruin, 2008; Heuvelink et al., 2007). It is 
worth to additionally stress that this type of error strictly depends on 
survey geometric design making impossible to be properly modelled. 
Consequently, no hypothesis about spatial error correlation can be done. 
The only reasonable assumption we can do is to access map metadata 
and look for an explicit definition of the map horizontal accuracy or, if 
not present, to deduce it from the nominal scale of the provided data. 
Given these limitations, the proposed method assumes the uncertainty of 
vertexes positioning correspondent to the one defined in metadata or 

deducible by the nominal scale of the processed map. This is therefore 
propagated along the area formula, thus enabling the generalization of 
the method for all types of spatial data independently from the survey 
technique. 

6. Conclusions 

In this work a statistical based (i.e., VPL) approach to estimate the 
error involved in area calculations on polygon vector maps was pro-
posed. Subsequently, a workflow was proposed and implemented in 
QGIS environment allowing to map σA and explore its spatial variability. 
Moreover, the relationship between area error and polygon geometric 
features was analyzed by using a multivariate regression and RWA. 
Results proved that two main factors condition polygon area calculation: 
the geometric accuracy of the image (or map) and the geometry of the 
polygon. It was demonstrated that polygons having longer segments 
generate low accurate area estimates that the same polygons with the 
same perimeter or area but having many segments. RWA highlighted 
how polygons having higher Dmax and P values have higher σA. Finally, 
to highlight the operative implications while working with area error in 
agro-forestry sector, two case studies involving different maps (in terms 
of scale and polygon features) were explored. Results show that urel 
median values of about 0.01% and 0.02% were founded in AP and FM 
respectively. These errors can potentially alter the deductions based on 
polygon area measure with great operative consequences. Finally, the 
authors believe that an area uncertainty evaluation performed with 
proposed workflow and implemented in QGIS can provide meaningful 
information for both researchers and professionals in a wide range of 
applications, such as decision making, spatial data quality assessment 
and a proper quantification of area error can improve reliability of many 
results involving spatial data. 
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