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Introduction

This thesis is based on the work carried out during the three years
of the doctoral cycle at Universita di Torino, under the supervision of
professor Stefano Musacchio. It is focused on the theoretical study, by
means of extensive direct numerical simulations, of two different fluid sys-
tems, both of them characterized by a complex and chaotic behaviour at
low Reynolds number. The two system are diluted rigid polymer solu-
tions, described by the Doi-Edwards model, and dense bacterial suspen-
sions, modelled with the Toner-Tu-Swift-Hohenberg (TTSH) equation.
The first one is characterized by a chaotic flow similar to the elastic tur-
bulence observed in flexible polymers, while the second one exhibits a
regime called active turbulence, with peculiar patterns.

The structure of the thesis is the following:

e A short introduction to microhydrodynamics (Chapter 1), involving

common concepts to the two system.

e The first part, composed by six chapters, regarding the dilute so-
lutions of rigid rodlike polymers. Chapters 2, 3 and 4 constitute
a summary of the current knowledge about this topic, in particu-
lar Chapter 2 describes the peculiar features of polymer solutions,
Chapter 3 is centered on the rheological model we considered, and
Chapter 4 describes the Kolmogorov flow, which is the particular
configuration we adopted in our simulations. Chapters 5, 6 and 7
contain instead our original results. Chapter 5 involves our numer-
ical investigation of the chaotic flow generated by the Doi-Edwards

model at low Reynolds number, Chapter 6 includes our attempt to

vii
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INTRODUCTION

study the linear stability of the Kolmogorov flow with rodlike poly-
mers, and Chapter 7 describes how the turbulent (high-Reynolds)

Kolmogorov flow is affected by polymers.

e The second part, composed by four chapters, on bacterial suspen-
sions. Chapter 8 is a very short introduction to the active matter
topic, and to active fluid models in particular. Chapter 9 is a sum-
mary of the previous literature about the TTSH model, with the
derivation and a description of its phenomenology. Our original re-
sults are in Chapters 10 and 11. In particular Chapter 10 contains
our investigation of the regime of flocking turbulence, while Chapter
11 describes how confinement induces the transition from flocking

turbulence to an ordered state constituted by a giant vortex.

e The appendices, with the description of our numerical methods (Ap-
pendix A) and a short introduction to Brownian motion (Appendix
B), which can help in the comprehension of the derivations of the

models.

List of publications

Part of the original work contained in this thesis has been published

in the following journal articles:

1. Puggioni, Leonardo, Guido Boffetta, and Stefano Musacchio. ”En-
hancement of drag and mixing in a dilute solution of rodlike poly-
mers at low Reynolds numbers.” Physical Review Fluids 7.8 (2022):
083301.

2. L. Puggioni, G. Boffetta, and S. Musacchio. ” Giant vortex dynamics
in confined bacterial turbulence.” Physical Review E 106.5 (2022):
055103.

In particular, Chapter 5 is based on publication 1, and most of the Chap-
ter 11 on publication 2. A further article, containing Chapter 10 and the
remaining of Chapter 11, has been just submitted. Chapters 6 and 7 are,

for now, unpublished.



Notations

Geometric quantities
e I: position
e {: time

r: distance

rq: ellipsoid aspect ratio

e ap = (r>—1) /(r2+1): Jeffery geometrical factor
e n: ellipsoid director

e I: identity tensor

e k: wavevector

e U: probability density function

General hydrodynamics quantities.

e p: density field

e u: fluid velocity field/coarse-grained bacterial velocity field
e p: pressure field

e : kinematic viscosity

e ;i dynamic viscosity

e w =V Xxu: vorticity field
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e k: velocity gradient tensor (k;; = 0;u;)
e X: strain-rate tensor (3;; = 3 (ki + ki)

e Q: rotation-rate tensor (3;; = (ki — k)

e 0: stress tensor/non-Newtonian stress tensor

e F. f: external forcing

e R: polymer configuration tensor (R;; = (n;n;))
e 7): polymer feedback coefficient

e Re: Reynolds number

e E(k): energy spectrum

e kp: Boltzmann constant

e T (absolute) temperature

e D: generic diffusion constant

Kolmogorov flow quantities

e K: forcing wavenumber

e [: forcing amplitude

e U: mean flow amplitude

e Uy = F/(vK?): laminar mean flow amplitude

e II,: zy component of the Newtonian stress tensor
e II,: xy component of the Reynolds stress tensor
e II,: xy component of the polymer stress tensor

e S: Reynolds stress mean amplitude

e >: polymer stress mean amplitude

o [ =F/(KU?): friction coefficient
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xi

e s = 5/U?: Reynolds stress coefficient

e 0 =X /U?: polymer stress coefficient

er = (f -u) = FU/2: mean energy input

g0 = FUy/2: laminar mean energy input

g, = (v|[Vu|?): mean Newtonian dissipation rate

e ¢, = (0;;0;u;): mean polymer dissipation rate

Bacterial turbulence quantities

e )\o: self-advection coefficient

«, B: linear and cubic Landau forcing coefficients

[y, I'y: Swift-Hohenberg operator coefficients

A =2m4/(2T'y) /Ty: vortex length scale
U = \/—a/p: flocking velocity scale

e R: confinement radius






Chapter 1

Microhydrodynamics: a short

sumimary

Both our numerical studies of rigid polymers solutions and bacterial
suspensions rely on continuum models that, partially or totally, are ob-
tained starting from a microscopical description. For this reason, it is
better to start this dissertation with a brief introduction to microhydro-

dynamics.

The dynamics of a Newtonian, incompressible fluid, is described by the
Navier-Stokes equation (NSE), [1] supplied with the null divergence con-

dition:
du+u-Vu=-Vp+vViu+f V.-u=0. (1.1)

Here, w is the velocity field, p the (kinematic) pressure, v the (kinematic)
viscosity and f a general external forcing, which can include a great va-
riety of phenomena (mechanical forcing, buoyancy, non-inertial reference
frame and other). Since we are considering an incompressible fluid with
uniform density p, the latter does not appear in the equation.

The NSE corresponds to the momentum conservation equation for a
fluid, and it can derived both with a microscopical approach and a macro-

scopic one. [2]
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In the NSE different terms are therefore present, whose importance de-
pends on the particular typology of flow we are considering. A common
method adopted in fluid mechanics in order to understand which terms
can be neglected, is to non-dimensionalise the NSE and obtain one (or
more) non-dimensional quantity, whose value is an indication of relative

importance of the various terms.

In our general case, a flow is characterized by length L and velocity U
scales, that we can use to redefine spatial and temporal coordinates, and
the velocity field:

x=L&; t=(L/U); u="Ud. (1.2)

Substituting these quantities in the equation 1.1, we get:

% (O +u -V = -V'p + V% + f. (1.3)

Neglecting for now the pressure (which in incompressible flow it is a
function of velocity field) and the external forcing, we can observe that
the ratio UL/v, called Reynolds number (from Osborne Reynolds),
describes the the relative importance between the advection nonlinear
term and the viscous linear one. Since we are interested in microscopic
flows, we have L. — 0 by definition, and we can expect that also U is very
small. Therefore, in microscopic flows the left side of the equation 1.3 is
basically zero, and the velocity field obeys to the Stokes equation [3]

(SE) (now in the dimensional form):

Vp =vViu+f V.-u=0. (1.4)

Differently from the NSE, the SE is a linear and time independent
equation: it is therefore symmetric under time reversal. This symmetry,
physically interpretable as absence of inertia, set a strong constraint on

microswimming strategies, [4] as we will see in section 1.3.



1.1 Multipole expansion

1.1 Multipole expansion

We are interested in obtaining the velocity field v in presence of an
immersed body, such as a rod-like polymer or a swimming bacterium. Lin-
earity of equation 1.4 allows us to employ the same techniques adopted for
similar equations in other branches of physics. More in particular, we can
describe our velocity field in terms of a multipole expansion, similarly to
the one adopted in electrostatics to describe the potential, since linearity
of the equation implies that solutions obey to superposition principle. [3]
This is a technique especially suitable if we are interested in the far-field
flow caused by the body.

The starting point is to consider the equation 1.4 in an unbound do-
main, with a point-like forcing flz) = 6(z— @) F, where §(x) is the Dirac

delta. The disturbance flow due to the forcing is obtained as:

u(x) = /VH (x — ') f (z')d®2. (1.5)

By definition H () is therefore the Green’s function of the Stokes equa-

tion, and it is called Oseen tensor (from Carl Wilhelm Oseen):

H(r) = 87% G + %) , (1.6)

so the fundamental solution of SE is:
u(r)=H (x—x')- F. (1.7)

The solution 1.7 is usually denoted as Stokeslet, although this term is
sometimes used as synonymous of the Oseen tensor.

The Stokeslet is therefore the fundamental solution of the Stokes equa-
tion, other singular solutions can be obtained differentiating it. One order
of differentiation gives us the dipole solution, while another one order the
quadrupole solution. They constitute the terms of order one and two
in the multipole expansion of the disturbance flow induced by an ob-
ject immersed in the fluid (while the order zero term is obviously the
Stokeslet). [5]
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In particular, as we will see in 1.3, the dipole solution, corresponding
to the situation with two point-like forcing, assumes great importance for
us. It is useful to decompose it in its symmetric and antisymmetric parts.

In particular, the symmetric one is called stresslet:

(S) 1 Ti0in  TTiXk '
i () = o (3 - B ) s (19
while the antisymmetric one is called rotlet:
1 eplix
R ijk k
w (@) = o= (1.9)

where S;; and L; are the symmetric and the antisymmetric components
of the force moment: stress and torque. The graphical representation of

these velocity fields is shown in figure 1.1.

5 k slel Stresslet Rotlet

f‘ \

//// M \

Figure 1.1: Elementary solutions, of order 0 and 1, of the Stokes equation. Image took
from [5].

We can note that the singular solution of order n decays with distance

n+1

rasl/r for this reason high-order solutions are usually negligible.

1.2 Solid body motion and Jeffery equation

Multipole expansion with superposition of singular flows (stokeslets,
stresslets etc.) is not the only strategy to deal with the Stokes equa-
tion, in particular if we are considering a solid body immersed in the
fluid. One starting assumption is, since we are considering a vanishing
Reynolds number, to neglect the inertia of the object. This is a rea-

sonable assumption in microfluidics, [6] which allows us also to make an
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important assumption on the flow: if we consider a sufficient small spatial
scale, every flow can be approximated with its Taylor series, and so we

can consider a linear velocity field without loss of generality:
u=U"+Kk-x; (1.10)

where U is a constant mean flow and k is the rank-2 velocity gradient
tensor: k;; = 0ju;, which can be decomposed into its symmetric (strain-

rate tensor) and antisymmetric (rotation-rate tensor) part:

1

Yij = 5 (Kij + Kji) , (1.11)
1

Qij = 5 (/‘iij — /iji) . (112)

Since the equation (1.4) is linear, we expect a linear relationship between
forces and torques acting on the body, and the resulting velocity and
vorticity fields. The simplest case, a sphere with no-slip surface, was
considered by Stokes himself. [7] It can be shown that the viscous drag
force F exerted by the fluid on a spherical particle, with radius r, moving

with velocity w with respect to the fluid is: [§]
F = 6ruru. (1.13)

The quantity ( = 6mur is called friction coefficient, inverting the rela-
tionship we have the mobility coefficient (~!. In the case of anisotropic

shape, we have a more complex connection, but still linear (where N is

the torque): [3]
(&)= e) )
— : , (1.14)
N B° C Q
u a b F
OGIE

where the quantities A, B, C... are second-order tensors. The exact com-

or its inverse:

putation of these quantities is possible only for a regular and symmetric
shape.
For this reason, both for rigid elongated polymers and bacilliform bac-

teria it is convenient to consider an axis-symmetric ellipsoidal shape. In
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this case, if we define a versor n which denotes the orientation the ellip-
soid axis, it was demonstrated in 1922 by George Jeffery [9] that, under a
linear flow, its dynamics is described by the following equation (assuming

also buoyancy neutrality):
n=Q-n+aewE n—n(n-X- n); (1.16)

where ag is a geometrical factor dependent on the ellipsoid aspect ratio

Ta-
21
r241

a

r

(1.17)

agp =

Jeffery equation is currently adopted as the standard description of non-
inertial anisotropic particles in fluid flows. [6] The last term in the equa-
tion 1.16 assures non-extensibility, maintaining ||n|/? = 1:

1

iﬁt(n-n):n~Q-n+a0[n-2~n—n~n(n-2-n)]. (1.18)
Since n - - n = n;n;; = 0, being the product of a symmetric tensor

with an antisymmetric tensor, we have:

1
§6t(n-n):ao(l—n-n)(n-E-n), (1.19)
which implies that, if n-n = ||n||*> = 1 at ¢t = 0, we will have ||n|?* =

1 Vi>0.

1.3 Swimming at low-Reynolds

We can define a swimmer as a body which deforms its surface in order
to obtain a net displacement, without relying on external factors. While
some microorganisms deform all their body in order to sustain movement
(for example amoebae), in many others, like rod-shaped bacteria, sper-
matozoa or micro-algae, the deformation occurs only in specific motile
appendages like cilia or flagella. [10]

Swimming in a low-Reynolds regime is characterized by some peculiar
properties. Absence of inertia implies a balance of forces and torques,
between the viscous and the external ones. Usually microorganisms are

force- and torque-free swimmers (in the sense that they are not subjected
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to external forces or torques), although there are exceptions (for example
nonneutrally buoyant cells for the case of non-zero force, or gravitac-
tic/magnetotactic organisms subjected to an external torque). [5]

Other important properties derive from the temporal symmetry of
equation (1.4). One is rate independence: the distance travelled by the
swimmer deforming its surface does not depend on the rate at which
the deformation occurs, but only on its geometry. Strictly related is
the so-called scallop theorem (enunciated by Purcell in 1977 [11]): if
the swimmer modifies its surface in a time-symmetric sequence of de-
formations, it can not achieve a net displacement. The theorem takes
its name from the typical behaviour of a scallop (see figure 1.2), which
opens and closes periodically its shell (a real scallop can actually swim
since its dimensions and its rate of deformation are such as to obtain an
high Reynolds-number flow). The microorganism therefore must deform
its body in a non-reciprocal way, which requires at least two degrees of
freedom (while a scallop has only one), in the case of bacteria this is usu-
ally achieved with rotating helical flagella. [4] Since the time reversibility
is not assured in a non-Newtonian fluid, in this case a net displacement

with a reciprocal deformation can be actually obtained. [12]

State A State B

Figure 1.2: Reciprocal deformation of a scallop. Image adapted from [12].

The precise way a microswimmer deforms its body to obtain a net

motion, and the detailed velocity field around its surface, is a current
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research field, but is far beyond the scope of this chapter. We are inter-
ested in the far-field disturbance flow generated by the swimmer, which
at this level of approximation can be expressed in terms of the multipole
expansion. Since microswimmers are usually force- and torque-free, the
lowest order singularity is the stresslet, associated to a symmetric force
dipole, which, if the swimmer is axisymmetric with director n, can be
expressed as S = oggnn. The sign of the coefficient oy depends on the
propulsion, in particular on the relative point of application of the net
thrust exerted by flagella on the fluid and the viscous drag exerted by
the fluid on the cell body: extensile swimmers, denoted pushers, have
0o < 0, while contractile ones have gq > 0 and they are denoted pullers.
Examples of pusher are bacteria and spermatozoa (which have flagella
on the back of their body), while microalgae have typically their flagella
on the front of their body, and therefore they are pullers. While experi-
mental studies with Escherichia coli have shown that the force dipole is
a good approximation for the flow generated by bacteria, [13] measure-
ments on Chlamydomonas reinhardtii pointed out that the time averaged
flow is better described by a three off-centered point forces, [14] two on

the flagella and one on the body (see figure 1.3).

a Ecoli 4_/ \_) b C. reinhardtii N k{—hﬁ' p/2
="
Pusher ~F.p 5 C —nr Puller e —)
7 <0 (\ /,-> 0,>0 _x == _f,p/2

Figure 1.3: Difference between the disturbance flow generated by a bacteria (Escherichia

coli) and by an alga (Chlamydomonas reinhardtii). Image took from [5].

We therefore expect a microswimmer suspension to have a modified
rheology from the fluid without swimmers, due to the averaged distur-
bance flow. If the concentration is not too high (otherwise more complex
behaviours happen) we expect an enhanced effective viscosity in the case
of pullers, and a reduced effective viscosity for pusher, due to the fact that
the disturbance flow in the former case opposes to external shear, while
in the latter case the the external shear is reinforced. This prediction has

been experimental verified, also comparing with the passive case of dead
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cells, [15] both for bacteria [16] and algae. [17]

Finally, it is worth to mention that bacteria, especially in the presence
of chemical gradients, exhibit a particular form of random motion called
run-and-tumble behaviour: they swim straightly for a certain amount of
time (which can vary from one to hundreds of seconds, depending both on
environmental conditions and strain of bacteria), and then they abruptly
change direction. [18] This is a separated, although somewhat similar,

phenomenon with respect to the Brownian motion due to thermal noise
of the fluid. [5]
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Dilute solutions of rigid

polymers
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Chapter 2

General properties of polymer

solutions

Polymer solutions are an example of complex fluid, which is a generic

class of systems with different behaviours. In particular, complex fluids

are usually characterized by a non-Newtonian rheology, which means that

the stress tensor is not simply a linear function of the shear rate as in a

Newtonian fluid, where (in the incompressible case) 6 = u [Vu + (V’U,)T] :

Clearly, the non-Newtonian behaviour can take many different forms,

which can be grouped in some categories: [19]

viscoelasticity: the stress tensor depends both on the shear rate and

on the deformation (the fluid has a memory);

shear thinning/thickening: the viscosity depends on the shear rate,

i.e. the stress tensor is a nonlinear function of the shear rate;

normal stress effects: in shear flows, in addiction to shear stresses,

there also an extra tension along the streamlines; [20]

extensional thinning/thickening: in extensional flows the viscosity
depends on the flow strength, or it is different from the Newtonian

prevision with respect to shear viscosity (ugp = 3u).

Obviously these phenomena can be further divided into various sub-

categories (for example, we can have linear o nonlinear viscoelasticity)

13
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and combinations. These peculiar rheological properties bring to pecu-
liar fluid mechanics phenomenon, that we can not observe in Newtonian

fluids.

Shear stress (1) [Pal

Pseudop|astic

Shear rate (y) [s]

Figure 2.1: Left: example of possible functions of the shear stress in terms of the shear
rate. Right: Weissenberg effect, the fluid climbs a rotating rod inside it, contrary to the way

a Newtonian fluid would do. This phenomenon is due to normal stress effects. [19]

Among all the complex fluids we can list (blood, milk, mucus, mayon-
naise, ink, gels and colloids, and many others), dilute polymer solutions
are of interest in the fluid mechanics community since even minute concen-
trations of polymers can dramatically change the properties of turbulent
flows, or alter the stability of laminar flows. In the rheological context
we have two fundamental (idealised) paradigms: flexible and rigid poly-
mers. In the first one, polymer molecules are described as elastic strings
which interact with the fluid being stretched by the flow, and therefore
storing and releasing elastic energy. In the second one, the molecules are
modelled as small, thin and non-deformable rods, which are in rotational
equilibrium with the fluid velocity field, affecting the flow trough skin
friction effects. [21] Real polymers partly have both the properties, but
usually one of them is prevalent on the other. Typically, in literature,
"polymers” without other specifications means ”elastic polymers”, [22]
but many of these peculiar phenomenon can be obtained also with rigid

polymers.
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To perform numerical simulations of polymer solutions, several rheo-
logical models have been proposed. The simplest ones are the Oldroyd-B
model (and the strictly related FENE-P model, taking in account the
finite extensibility of molecules) for flexible polymers, [23] and the Doi-
Edwards [24] model for rigid rod-like polymers. The stress tensor is very
different between the two cases, but the general approach is the same:
the polymer configuration is described by a rank-2 tensor R, which is
advected by the velocity field u and convected by its gradient Vu. The
velocity fluid field is in turn influenced by the polymer configuration,
since in the Navier-Stokes equation there is a non-Newtonian stress ten-
sor depending on R. To be more explicit, here it is the Oldroyd-B model

for dilute flexible polymers solutions:
2
atu+(u-V)u:—Vp+uV2u+$V-R+f, (2.1a)

8tR+(u-V)R:(Vu)T-R+R-(Vu)—2RT_I, (2.1b)

where 7 is a parameter proportional to polymer concentration and 7 is the
polymer relaxation time. In this case, the non-Newtonian stress is elastic
and linear, in the Doi-Edwards model is instead viscous (proportional to
Vu) and quadratic in R. Another difference is in the equation describing
the evolution of R: in the flexible case, we have a relaxational term, while
for rigid polymers we have a term ensuring the conservation of the trace
of R (due to inextensibility of rigid polymers)..

Using these simple rheological models, it is possible to reproduce non-
trivial phenomena observed in experiments. In particular, the most signif-
icant ones are the polymer drag reduction at high-Reynolds number, [25]
and the elastic turbulence at low-Reynolds, [26], along other related phe-
nomena like viscoelastic instabilities, elasto-inertial turbulence and mod-

ified heat transfer in natural convection. [22]

2.1 Polymer drag reduction

An important feature of high-Reynolds flows is that a large amount of

kinetic energy is dissipated by an hydrodynamic drag due to turbulence,
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much larger than the amount that would be dissipated if the flow was
laminar. This behaviour can be parametrized by the drag coefficient,
or friction factor, which, in the case of a pipe with diameter R, across
a length L with a pressure drop Ap, having fluid density p and mean
velocity U, is defined as: [27]

_ApR

f=hT 22)

which is proportional to 1/Re in laminar flows, while it reaches an asymp-
totic constant value for Re — oo in turbulent flows. Reducing the tur-
bulent drag, in order to obtain the same flow with a reduced forcing, is
therefore of great practical importance in many industrial processes.

In order to reduce the drag, many strategies can be employed, one is
to add polymer molecules in the fluid: it was indeed discovered, already
in 1949, [28] that even a minute amount of flexible polymers can strongly
reduce the turbulent drag. The most famous practical application of
polymer drag reduction is in the Trans-Alaska Pipeline system and in
other petroleum pipelines, where this phenomenon helps to reduce the
energy consumption of oil transport. [29]

Even now we do not have a complete theory explaining flexible polymer
drag reduction, [30] since the mechanism by which the viscoelasticity
affects a turbulent flow, if generating a large effective extensional viscosity
(Lumley’s theory [31]), or creating an elastic stress comparable to the
Reynolds one (De Gennes’ theory [32]), is not clear. This scenario is
further complicated by the fact that also solutions of polymers having a
negligible flexibility give rise to drag reduction, [21] although usually an
higher concentration is needed, [33] but both the theories of Lumley and
De Gennes cannot be applied in the case of rigid polymers.

Drag reductions by flexible and rigid polymers show some similarities,
but also differences. Considering wall-bounded flows, the effect of poly-
mers increases with the concentration, but it exists an asymptotic state,
called maximum drag reduction (MDR), that cannot be exceeded. [22]
In the MDR we have a logarithmic relationship between the normalized

distance from the wall y™ and the normalized mean velocity V*(y ™), [34]
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similar (but obviously with different coefficients) to von-Karman log-law

in Newtonian turbulent flows:
Vi (y") = LW y*" + By. (2.3)

Ry

This asymptotic law appears to be universal between flexible and rigid
polymer solutions, but the crossover at increasing concentration, between
the von-Karman law and the MDR law appears to be very dependent on
the typology of the solution. [21,35] In particular, for flexible polymers,
at large values of Re the mean velocity profile follows the MDR until a
certain crossover point, beyond which it becomes parallel to von-Karman
law, and increasing the concentration corresponds to push the crossover
point towards larger values of y*. Instead, for rigid polymers, the veloc-
ity profile is a sort of "interpolation” between the two logarithmic laws,

saturating to the MDR only at large concentrations (fig. 2.2).
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Figure 2.2: Mean velocity profiles of turbulent channel flows with different concentrations
of polymer additives, in normalized units, compared with the asymptotic MDR curve, in the
case of flexible (left) and rigid (right) polymers. [21] We can observe that in the first case,
the curves follow the MDR asymptote until a certain crossover point, before to assume a
?von-Karman-like” profile, while in the second one the curves never follow the MDR and the

von-Karman laws, assuming an intermediate profile.

Another important difference between the two categories of additives
is at moderate Reynolds number (but not so moderate to have laminar
flow): rod-like polymers cause a drag enhancement, while for flexible poly-
mers the drag remains the same of the Newtonian case. [36] In channel

flows, a phenomenological theory explaining the common MDR asymp-
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tote for flexible and rigid polymers was proposed, in terms of an effective
viscosity, dependent on the distance from the walls. [37-39] The the-
ory has been verified with direct numerical simulations of the FENE-P
and Doi-Edwards model, [40,41] and it explains also the different be-
haviour at moderate Reynolds: rodlike polymers generate an effective
uniform viscosity (larger than the Newtonian one), while flexible ones,
being coiled for moderate shear, do not alter significantly the rheology
of the fluid. [36] But this remains a phenomenological theory limited
to wall-bounded flows, and the relationship between drag reduction by
flexible and rigid polymers remains an active research area, both exper-
imentally and numerically. [30, 33, 42-45] Moreover, while the effect of
flexible polymers on turbulence has been numerically investigated also in
other typologies of flows, for example in a shear flow without walls, [46] in
homogenous isotropic turbulence [47-49] or in natural convection, [50,51]
a comparable study of the effect of rigid polymers in turbulent flows is

still missing.

2.2 Elastic turbulence

The elastic turbulence can be considered as the diametrically opposite
phenomenon to drag reduction. Although the fact the viscoelastic stresses
can trigger instabilities in laminar flows was already known, [52-54] in
2000-2001 a new phenomenon was discovered in flexible polymer solu-
tions: a chaotic flow at low Reynolds numbers, showing several similar-
ities with inertial turbulence at high Reynolds. [55-57] In particular it
was observed a large increase in the hydrodynamic drag, a broad range of
active spatial (and temporal) scales (corresponding to a power-law energy
spectrum) and a massive increase of mixing rate, compared to a similar
Newtonian flow at the same Reynolds number. [26] For this reason, this
regime was called ”elastic turbulence”, although we can observe also sev-
eral important differences with the "real” fluid turbulence, for example
the absence of the energy cascade. More in general, in this regime inertial

effects are (usually) negligible.
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Figure 2.3: Sketches of the experimental apparatus used to firstly observe elastic turbulence:
Taylor-Coutte [55] (top) and curvilinear channel [56] (bottom).

After the original experimental observations in Taylor-Couette [55]
(fluid confined between two parallel rotating disks) and curvilinear chan-
nel [56] configurations (fig. 2.3), numerical simulations of the Oldroyd-
B and FENE-P models in unbounded domains, [58,59] wall bounded
channel flows with a periodic array of obstacles, [60] or in Taylor-Coutte
flows [61,62] predicted the emergence of a chaotic flows, which can be re-
produced also with a low-dimensional shell model. [63] Some theoretical
predictions have been also formulated starting from the Oldroyd-B model
and assuming an uniaxial stress tensor o;; = B;B;: in this case, the set
of hydrodynamical equations assumes a form similar to the one of the
magnetohydrodynamics (MHD) approximation in plasma physics, with
B; having a role similar to the one of the magnetic field. [64] Predictions
of this theory and results from numerical simulations are usually compati-
ble with the elastic turbulence observed in experiments, although in some

cases there are quantitative discrepancies (for example, in the relative
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weight of elastic and viscous stresses), which have been attributed to in-
accurate approximations, over-simplified models or the effect of walls. [26]

The similarity with MHD equations predicts also the existence of elas-
tic waves, analogous to the Alfvén waves in plasmas. [65] Their existence
in the transition to elastic turbulence was later supported by numerical
simulations of the Oldroyd-B model in a boundaries-free domain, [66] and
it was finally confirmed in a recent experiment with a channel flow. [67]

Another regime was discovered in 2013, the elasto-inertial turbulence.
[68] In this case, the inertial effects are important, and the flow remains
qualitatively distinct from both the elastic turbulence and the drag re-
duction. The relationship of this phenomenon with the other two regimes
is still an open question. [69]

Although all the experiments about elastic turbulence (until now) in-
volve flexible polymers, and also the proposed theoretical explanations
rely on the elasticity of polymers, recent two-dimensional numerical sim-
ulations, in periodic domains, of rod-like polymers with the Doi-Edwards
model, predicted the emergence of a chaotic flow. [70,71] This regime
appears to be qualitatively similar the one simulated with the Oldroyd-
B model, but with some quantitative differences: for example, while for
the flexible polymers we have a power-law spectrum with an exponent
comprised between —3 and —4, in the case of rigid polymers an expo-
nent between —4 and —5 is predicted. A further investigation of this
regime, both in two- and three- dimensional domains will be the subject

of chapter 5.



Chapter 3

The Doi-Edwards model

The model which describes the behaviour of a dilute solution of rod-
like polymers is the one developed by M. Doi and S.F. Edwards, [24]
partially based also on results about rheological behaviour of suspensions
of ellipsoidal particles by H. Brenner [72] and by E. J. Linch and L. G.
Leal. [73,74]

This model considers the case of non-deformable and extremely thin
molecules, which therefore can only rotate and translate. The suspen-
sion is assumed to be dilute (average distance between polymers much
larger than the length of a single polymer), hence every rod can rotate
freely without interference by other polymers, and uniform: the rods are

homogeneously distributed in the solvent fluid.

3.0.1 Rotational motion

The idea from Doi and Edwards was to consider macromolecules as
an ensemble of Brownian beads, subjected to bounds, following previous
works by Kirkwood. [75] In particular, for rigid elongated polymers they
considered the ”shish-kebab” model, which means that the elongated rod,
with length L and diameter b, is approximated as an ensemble of N = L/b
aligned spherical beads (see Fig. 3.1). This fact implies that, if the center
of the rod is located at position x, the a-th bead (with —N/2 < a < N/2)
it will be located at &, = x + abn, where n is the unit vector denoting

the rod orientation. Similarly, if v is the center of mass velocity, and w
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the polymer angular velocity, the bead will move as:
Vo, =V -+ W X abn. (3.1)

If the rod is very thin (we will consider the case with aspect ratio r, —
o0), we can neglect the rotation around m, and so, if we suppose that it
is subjected to an external torque IN, both N and w are perpendicular
to n. With small N, we can assume linearity and parallelism between w
and N:

w=—N, (3.2)

where (. is the rotational friction coefficient.

\ N2

Ve
PN
N\
b -2

Figure 3.1: ”Shish kebab” model for elongated rigid polymers. [24]

The coefficient ¢, can be computed using the shish kebab model. The
idea is to express the velocity of every bead in terms of the mobility

tensor, which takes in account the hydrodynamic interactions between



23

the beads, and therefore to sum on over them, in order to obtain the
total force and torque acting on the rod. It can be shown that we have:

mul?

C7":31n(L/2b)'

(3.3)

We can express the external torque in terms of a potential U: defining

the rotational operator R as:
0
R=nx— 3.4
" on (34)

we have N = —RU.

In our case, we can assume that the only potential to which the rods
are subjected, is the thermodynamic one due to Brownian motion U =
kpT In W, where ¥(x, n,t) is the probability density function of the rods
(see also Appendix B).

Now, we have to take in account the effect of the velocity field of the
solvent fluid. Since we are in the Stokes regime, and since the fact that
a very thin rods can be seen as an extremely elongated prolate ellipsoid,

the orientation will obey to the Jeffery equation (with ap = 1):
n=k-n—(nn:K)n. (3.5)

The angular velocity due to the flow is therefore wop = nxn = nx (k- n).
Putting together hydrodynamics and Brownian contributions, we have:

w:—gnwﬂmmw+nxmqn. (3.6)

The Smoluchowski equation for the rotational motion will therefore
have the form:

ov

ot

where D, = kgT/(, is the rotational diffusion constant.

—“R(wWU)=R(D,RV —n x(k-n)¥), (3.7)

3.0.2 Translational motion

Now we consider the translational motion. If the rod is moving with

velocity v, it will be subjected an hydrodynamic drag F, dependent on
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v. But, since the rod is anisotropic, the relationship between F and v is
a function of the angle between n and v, since the fluid will exert more
resistance if the rod is transverse with respect the motion. It is therefore
convenient to decompose the velocity in the components parallel and

perpendicular to n, v = v + v, in order to express the drag as:
F = CHVII +(1vy. (38)

¢y and (1 can be obtained applying the Kirkwood theory at the shish-
kebab model similarly to (,, and their value is:
2mp L
CH In (L/b) ’ CL CH ( )
Since we can formulate the velocities as v = (v-n)nand v, = v—vj,

we can obtain an expression of drag in terms of the orientation versor n:
F=(nn -v+( (I-nn). (3.10)

This last relationship can be inverted in order to express v in terms of F:

1 1
V= {—nn%——(l—nn)] -F, (3.11)
q C1
and, finally, we can also add the motion due to the fluid flow:
1 1
vV = {—nn+—(1—nn)} ‘F+kKk-x. (3.12)
q C1

If we assume that the only forcing to which the rod is subjected is
the one due the Brownian motion, we can express v in terms of the
thermodynamic potential W:

v = [%”nn—l—é(l—nn)] -%(kBTln\Il)—l—n-m. (3.13)

Defining the translation diffusion constants D) = kgT/ ¢ and D, =
kT /(. , we finally obtain the complete Smoluchowski equation for rota-

tional and translational motion:

ov 0
) 5 = —a—% . (V\I/g— R (w¥) =
L
=5 [D”nn—{—DL(I—nn)} %—%[(nm)ﬂl}
+R(D,RY —n x (k-n) V). (3.14)
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3.0.3 Stress tensor

It can be demonstrated that, in a system with holonomic constraints
(like the rigidity of the rods), the additional stress tensor UEJI-D ) due to the
presence of polymers can be decomposed in a term proportional to the
velocity gradient tensor k, called viscous, and a term non (explicitly)
dependent on k, called elastic.

UEJ}»D) = O'Z(JE) + O'g/), ag/) = Ajjriki. (3.15)

Phenomenologically, the viscous stress vanishes instantaneously when
the external flow is stopped, and it is related to the energy dissipation,
while the elastic stress vanishes only when the system reaches the equi-
librium, and it is related to the change in free energy caused by a virtual
deformation.

In particular, if 0.4 is the variation in the free energy density A due
to a displacement from r; to r; + de;;7;, we have 0 A = O'Z-(]-E)(s&'j. Since in
our system the only potential between polymers is the thermodynamic

one, the free energy density is (where pp is the number of rods in unit

volume):
A= ppk:BT/ dn¥In ¥, (3.16)
1%
and therefore
1%

In order to calculate 0¥, we can use the Smoluchowski equation (3.14),
which, for an instantaneous deformation is dominated by the velocity

gradient k;; = d¢;;/dt:

ov

EQ—R-(nx(n-n)\D), = W~—-TR-(nx (e n)V).

(3.18)
Inserting 0¥ into 0.4, and integrating by parts:

SA = ppkBT/dn (n x (66 - n) V) RY = ppkBT/dn\I/R-(n X (0€-m)).

(3.19)
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Since R;n; = €;jxnk, where €, is the Levi Civita tensor, we have (in

three dimensions):

1
R - (n X (56 . n)) = _3561']' (nmj — 5(52]) , (320)
and therefore:
1 1
0A = 3ppkBT55ij /dn\If (nmj - 56”) = 3,0pk:BT5€ij<ninj - 552>
(3.21)

Hence we have the elastic component of the stress, due to the Brownian
motion of the rods:

1 1
where the quantity R = (nn) = [dnV (nn) is the polymer configu-
ration tensor, corresponding (or its traceless version R — (1/3)I) to the
nematic order parameter of liquid crystal theory. The elastic stress there-
fore opposes the deviation with respect to the state of thermodynamic

equilibrium, with all the rods randomly oriented.

Instead, if W is the hydrodynamic energy dissipation due to the fric-
tion of the rods with the surrounding fluid, it is related to the viscous
stress by the relationship W = ki]-cri(]‘-/ ), Using the shish-kebab model, the
work done by the frictional force on the a-th bead is F, - v,. Since the
rod rotates with angular velocity w = n X (k - n), the velocity of the a-th
bead relative to the fluid is:

vi=ab(wxn—k-n)=ab([nx(k-n)]xn—k-n)=—an(k:nn).

(3.23)
Since the frictional force acting on the a-th bead is F, = {yv, (not consid-
ering the hydrodynamic interaction between beads), the energy dissipated

by unit of space and time is:

N/2
W =p, Z(F “Va) = pp Z a2b2<("7 : nn)2> = PpGetr (K : nn)2>'
a a=—N/2

(3.24)
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If we take in account the hydrodynamic interaction, we have (g, = (/2.

The viscous stress is therefore:

1
al-(;-/) = §PpCr/fkl (ninjngng). (3.25)

3.0.4 Closure approximation and field equations

We are now interested in obtain closed equations viable to be simu-
lated, in order to effectively investigate the phenomenology described by
the Doi-Edwards model. From the Smoluchowski equation for the rota-

tional motion, we can obtain the evolution of the configuration tensor

Rz‘ji
DR;; Dy
DAy _ / niny . dn, (3.26)

where the partial derivative 0; is replaced by the material derivative D; =
0y +u -V in order to take in account the transport by the fluid flow.
Hence we have (it is important to notice that the non-Browian part of
the evolution can be obtained directly from the Jeffery equation):
OR;;
ot

+ upOkRij = KigRij + Rigkjr — 2Rk (ningngny) — 2D, (3R — 045) -

(3.27)
We can observe a problem: in order to compute the temporal evolution of
the second order moment (n;n;) = R;; we need to know the fourth order
moment (u;u;uiw). But to compute the evolution of the fourth order
momentum we need to know the sixth order momentum, and so on. This
infinite hierarchy of equations is denoted closure problem, and it is quite
common in statistical physics. We therefore want to express (n;n;nmny)
in terms of R;;, both in the equation for the evolution of R;; and in the
viscous stress tensor.

Such a relationship is defined closure approximation, and it must sat-
isfy two fundamental properties: to alter the predictions of the model
as little as possible, and to be feasible to be numerically implemented.
Probably the most simple one is the one proposed by Doi and Edwards
themselves [24]:

(ninjngng) kg = A(ngng) (neng) kg + B(ngng) (njng) (kg + ki), (3.28)
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that we want to be exact for the traces:
(niningmy) kg = Alning) (ngny)y kg + B{ngng) (nimy) (ki + ki) - (3.29)
This implies A = 1 and B = 0, and therefore the Doi-Edwards closure is:
(ningngng) kg =~ (ning) (ngng) kg = Rij (Oyur) Rig. (3.30)

This is a very simple closure, which has the important advantage of pre-
serving the symmetry (R;; = R;;) and trace (R;; = 1) of the configuration
tensor. A certain number of more complicated closures have been pro-
posed through the years. [76-79] As an example, the hybrid closure by

Advani and Tucker [76] consists in:
(nmjnkm> = fRinkl -+ (1 — f) Az’jkl; (331)

1
Aijig = 35 (040Kt + 0ir0j1 + 0ird k)
1
+? (Rijok + Rirdji + Riubjk + Riidij + Rjudix + Rjkda) - (3.32)

We shall adopt the Doi-Edwards closure. In literature it is common
to neglect the elastic component of the stress, and to express the product
between friction factor and polymer density in terms of a normalized
single feedback coefficient 7. [21,41,70] With this assumption, we finally
have the equations describing the dynamics of a dilute solution of rod-like

polymers, according the Doi-Edwards model:
(O 4+ upOp) u; = —0;p + v0®u; + Opow + fi, (3.33a)

((9,5 + uk(?k) Ri]’ = (&gul) Rk]—l-le (&Cuj)—QRl] (Rklﬁluk)—QDr (BRU — 51]) s
(3.33D)
&ui = O, 045 = 61/77Rij (Rklaluk) . (333(3)

According [24], the equations (3.33) are valid also in the semi-diluted
regime, but with a different dependence of coefficients on shape and den-

sity.
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3.1 Hinch and Leal rheological theory

The rheological theory of Hinch and Leal [73,74] is strictly related to
the one of Doi and Edwards. Contrarily to the latter, in this theory rigid
polymers are not approximated as a sequence of small beads (an approach
adopted by Doi and Edwards also for other typologies of polymers), but
with axis-symmetric ellipsoids (spheroids), taking advantage of the fact
that for such a regular shape it is possible to obtain many exact results.
In particular is based on the calculation of the resistance and mobility
functions and their consequences on the rheology of the solvent, an ap-
proach which started from the PhD thesis of Albert Einstein, who, in
the meantime he upset the foundations of physics, also found the time
to compute the effective viscosity of a suspension of spherical particles at

first order in the sphere volume fraction c: [80]

5
Hefr = Ko (1 + §C) . (334)

After Einstein, other important scholars carried on these studies, in par-
ticular Jeffery, Giesekus, Bretherton and Batchelor, right up to the theory
of Hinch and Leal. Also in this case the dynamics of the system is de-
scribed by the configuration tensor R?;;, on which an additional stress o;;
depends. The equation for R;; is identical to the one establishes by Doi
and Edwards, but it is generalized to the case of generic aspect ratio r,
(the velocity gradient tensor k is therefore decomposed into its symmetric

¥ and anti-symmetric  parts):

D T
E(nn) =Q-(nn) + (nn) - Q

+ao (- (nn) + (nn) - L7 — (nnnn) : £) — 2D, (3(nn) — 1), (3.35)

where ag = (r> — 1)/(r? + 1) is the Jeffery geometrical factor. The bulk
stress o instead has a more generic form (obtained originally by Giesekus
[81]):

o =2uc2A(nnnn) : ¥+ 2B ((nn) - X+ X (nn)) + CE + FD,(nn)].
(3.36)
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Here, A, B,C" and F' are geometrical factors depending on aspect ratio

rq. For elongated rods, in the limit r, — oo we have:

2 _ 2
= r | B:3(2r) 1/2’ C—2 F= 3r '
4(In(2r)) — 3/2 72 In(2r)—1/2
(3.37)

The fact that B — 0, differently from A and F', is compatible with the Doi
and Edwards model. Instead C' # 0 implies also a change in the effective

Newtonian viscosity, an effect not considered in [24]. Apparently there
is a difference also in the form of the Brownian stress, but V - (nn) =
V- ((nn) —1).

If r, = 1 (spherical particles) we have A = B = F = 0 and C =
5/2, thus recovering the Einstein relationship. A suspension of spherical
particles is therefore still a Newtonian fluid, with a viscosity modified
with respect the bare solvent one.

Finally, for discoidal particles (r, — 0) we have all the coefficients
different from 0, and in particular A/B — 5/2. Therefore, a dilute sus-
pension of rigid disks would have a dynamic similar to the one described
in (3.33), with a change of sign in the terms depending on &;; in the
equation for R;; and a non-Newtonian viscous stress with an additional

term:
2

A similar theory was proposed also by Brenner [72], with a more com-
plicated dependency of the coefficients on the aspect ratio. While for
asymptotic r, the coefficients of the two theories are equivalent, there are

differences for finite r,.



Chapter 4
Kolmogorov flow

This chapter is not explicitly related to polymer solutions, but it de-
scribes the configuration we selected to investigate them.

The particular configuration we decided to use is the so-called Kol-
mogorov flow. [82] It was conceived by A. N. Kolmogorov, who described
it, along other problems in mathematical physics, in a seminar in 1958-59,
and it was published by V. I. Arnold and L. D. Meshalkin in 1960. [83]

Kolmogorov was interested in the transition from laminar to turbulent
flow, due to increasing of Reynolds number. For this reason, he proposed

an ideal setting, characterized by:
e periodic boundary conditions and absence of solid bodies;
e sinusoidal (or cosinusoidal) forcing: f = F (sin(Kz2),0,0).

Periodic boundary conditions are usually employed in the study of fun-
damental properties of turbulence, in order to disregard effects due to
interaction with walls. The sinusoidal forcing induces a simple laminar

solution:
u = Uy (sin(Kz),0,0), with Uy = F/ (vK?), (4.1)

which permits to perform analytic studies about the flow.
The Kolmogorov flow is clearly an ideal setting (although it is possible
to experimentally realize a sinusoidal forcing using electromagnetic fields

[84,85]), useful if we are interested in bulk properties of shear flows: it
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can be considered a channel flow without boundaries, [86] that, due to
this feature, can represent also a good approximation of some geophysical

flows. [87,88]
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Figure 4.1: Sketch of an experimental magnetohydrodynamic realization of the Kolmogorov

flow, using a solution of copper sulphate as fluid. [84]

Linear stability of 4.1 was already investigated in 1961 [89]: the lam-
inar flow becomes unstable to transverse large-scale (i.e. larger than
forcing scale 1/K) perturbations if Reynolds number (defined using Uy as
velocity scale and 1/ K as spatial scale) exceeds the threshold | Re. = V2|

After the first paper regarding linear stability, [89] a large number of
studies has followed: from analytical and numerical investigation on the
states resulting from the instability, [90-92] to numerical simulation of
the fully turbulent state at high Reynolds, [86,93], but also various gen-
eralizations: compressible flows, [94] Rossby waves presence, [87] strat-
ified flows, [95] confinement, [96] advection of passive particles [97] or
microswimmers, [98,99] and non-Newtonian fluids, such as viscoelastic
polymer solutions (with linear and non-linear stability analysis, [100,101]

and observations of elastic turbulence, [58] elastic waves [66] and polymer
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drag reduction [46]) and dusty flows. [102,103]

Stability analyses are usually performed in two-dimensions, due to
Squire’s theorem which states that for parallel flows the most unstable
perturbations are two-dimensional, [104] while other studies can be per-
formed both in two or three dimension, since dimensionality of the system
can strongly affect the flow dynamics (especially in fully developed tur-
bulence, where 2D and 3D flows are qualitatively different [105]). In two
dimensions (2D), our convention is to define = as the mean flow direction
and y as the mean gradient direction, while in three-dimension (3D) z is
the mean flow direction, y the "neutral” one (no dependence on y in the
laminar solution) and z the mean gradient one.

One of the most interesting features of the Kolmogorov flow is that
the sinusoidal profile of velocity field is maintained also in the turbulent
regime, [86] or in other chaotic flows. [58] If we denote with overbar the
averaging along time, mean flow and neutral directions (z and y) in the

Newtonian turbulent regime we will have (using a cosinusoidal forcing):
u (x,t) = [Ucos(Kz),0,0]. (4.2)

Even more interesting is the fact that also the x — z component of the

second order moment of the velocity is monochromatic:
Uz, (x,t) = Ssin (Kz), (4.3)

which means that, if we consider the (stationary) momentum budget

(obtained averaging Eq. 1.1 along ¢,z and y):
011, = o011, + f.., (4.4)
where viscous and Reynolds stress are defined as:
11, = vd.7, 11, = Uy, (4.5)

the momentum budget equation will become an algebraic relationship

between coefficients:

SK +vK*U = F. (4.6)
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This relationship is sometimes non-dimensionalised by defining the fric-
tion factor f = F//(KU?) and the Reynolds stress coefficient s = S/U?:

1
f = @ + s. (4.7)

In the laminar flow, being u, = 0, we have s = 0 and therefore
f = 1/Re, while in 3D fully developed turbulent flows [86] it has been
numerically shown that asymptotically (Re 2 160) we have:

b b—1
f:f0+E — 5= fo+ Re

(4.8)
with fo ~ 0.124 and b ~ 5.75 (see Fig. 4.2).
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Figure 4.2: Asymptotic scaling, as a function of Reynolds number Re of non-dimensional
coefficients f = FL/U? and s = S/U? (here denoted as o) in the turbulent Kolmogorov flow,
as shown in [86]. The dissipation factor 8 = €L/U,ms as a function of Re is shown in the

inset, compared to the laminar value Siam = 1/Re.

In non-Newtonian fluids the relationship 4.4 will be enriched by supple-
mentary terms related to non-Newtonian stresses, but the monochromatic
behaviour will be still present. [58,70,102]



Chapter 5

Chaotic flows at low-Reynolds

number

5.1 Introduction

As it has been described in chapter 2, recent two-dimensional numeri-
cal simulations have shown that rigid rod-like polymers originate, at low
Reynolds number, a chaotic regime similar to elastic turbulence, [70] in-
cluding the enhancement of mixing. [71]

While in turbulent flows at high-Reynolds numbers the dimensionality
of the system has dramatic consequences on the dynamics, such as the
reversal of the turbulent cascade of kinetic energy, [106,107] the behaviour
of chaotic flows at low Reynolds is expected to be qualitatively similar in
2D and 3D. This feature implies the possibility to use 2D studies for the
modelling of 3D applications, since it offers us considerable advantages,
such as the reduction of the computational cost and the simplification of
experimental setups. Nonetheless, quantitative discrepancies between 2D
and 3D results can be observed, due to the change of dimensionality. An
example of this discrepancy has been recently noted in numerical studies
of Rayleigh-Taylor convection in porous media, with a faster growth of the
mixing layer in two dimensions, related to density plumes more elongated
and thinner in 2D than in the 3D case [108,109]. In order to evaluate the
validity of 2D studies of low Reynolds flows, the comparison of 3D and

35
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2D studies is therefore crucial.

The purpose of our study is therefore the extension to three dimen-
sional (3D) flows of the investigation of the chaotic regime in viscous so-
lutions of rod-like polymers. In particular, here we present the results of
numerical simulations in 3D of the rheological model considered in [70,71]
together with two-dimensional (2D) simulations performed with identical
parameters for comparison. We find that the qualitative phenomenology
of 2D and 3D systems is similar, in particular increasing the concentration
of polymers we find an enhancement of the flow resistance, which can be
quantified by the friction factor, as well as an increased mixing efficiency.
The latter property is investigated by measuring the decay rate of the
variance of a scalar field passively transported by the flow. Nonetheless,
between 3D and 2D simulations quantitative differences are revealed by
an accurate comparison. In particular the effects of polymers in 2D is
observed to be stronger than in 3D. An interpretation of this dimensional
effect, in terms of the rotational degrees of freedom of polymers, is of-
fered. We also discuss the possibility of a mapping between the 2D and

3D results obtained by rescaling the concentration of polymers.

5.2 Model and simulations

In order to describe a dilute solution of rigid rod-like polymers, we
considered the Doi-Edwards model [24] (described in chapter 3):

Oru; + upOpu; = —0ip + vO%u; + o + fi, (5.1a)

atRij + ukﬁka = (8kuz)Rk] + le(akuj) — 2Rij (aluk)Rkl, (51b)

where u (z,t) is the velocity field, R (z,t) the polymer configuration ten-
sor, p (z,t) the kinematic pressure, v the kinematic viscosity, f (z,t) the
external forcing, and o;; = 6vnR;;(0jux) Ry the polymer stress tensor.
We recall that equation (5.1b) should also contain a term related to the
orientational diffusion of polymers [24]. However, if the characteristic
Brownian rotational time ¢ g is much larger than the dynamical rotational

time ¢, determined by the velocity gradients, we can disregard the ef-
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fects of Brownian rotations of the rods. [110] The dynamical time can be
estimated as t;, ~ (L?/v)Re™!, where L is the characteristic scale of the
flow and Re is the Reynolds number, while, for an elongated particle of
length ¢ and aspect ratio r, in a solvent with density p at temperature
T, the Brownian time is given by tp = (wpvl?) / (3kgT (In(r,) — 0.8))
where kg is the Boltzmann constant [24]. If we consider an experiment in
a microchannel of width L =~ 1 mm at Re =~ 1, with rigid fibers of length
¢ =5 pum and aspect ratio r = 10 in water at 7' = 300 K, the dynamical
time t;, =~ 1 s is much smaller than the Brownian time ¢tz ~ 20 s. Having
these applications in mind, in the following we disregard the Brownian
term.

We considered here a 3D viscous shear flow sustained by the Kol-
mogorov body force (described in chapter 4) f(zx) = (F cos(Kz),0,0),
where F' is the amplitude and K is the wavenumber of the force. In
absence of polymers (n = 0) this force generates a stationary laminar
solution u(z) = (U cos(Kz2),0,0) with Uy = F/(K?v), which is linearly
stable if the Reynolds number Re = Uy/(vK) is smaller than the critical
value Re, = v/2 [89]. The laminar solution of (5.1a) with 7 > 0 is the
same Kolmogorov flow (Ujcos(Kz2),0,0) with amplitude Uy = F/(K?v)
independent on the polymer concentration (at variance with viscoelastic
models in which the presence of polymers affects the amplitude of the
laminar flow [46]). In this case from the (5.1b) we have, for the confor-
mation tensor, R;3 = R3 = 0 and 0,R;; = 0, i.e. polymers oriented in
the x — y plane and their orientation can be a function only of the y and

z coordinates.

5.2.1 Numerical simulations

We integrated (5.1) on a triply periodic domain of size L = 27, by
using a pseudo-spectral code which discretizes the velocity and confor-
mation tensor fields on a regular grid of N3 = 2563 gridpoints. Since
(5.1) contains terms which are cubic in the fields, a 1/2 dealiasing is
required at each time step [111]. Time integration is performed with a

fourth-order Runge-Kutta scheme [112] with implicit integration of the
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linear dissipative terms, and the time step is fixed by the resolution of
the rotational dynamics of the conformation tensor. Numerical methods

are described in a more detailed way in Appendix A.

In all our ensemble of simulations the viscosity is set to v = 1 and
the flow is sustained by the Kolmogorov force f(z) = (F cos(Kz),0,0),
with forcing wavenumber K = 4 and forcing amplitude F' = 12 K3, which
implies that, in absence of polymers (n = 0), the laminar flow is linearly
stable with Reynolds number Re = Uy/(vK) = 1. The feedback coeffi-
cient is varied from n = 5 to n = 8. Experimentally this corresponds, for
the case of an aqueous solution of xanthan gum, to concentrations in the
range of 73 — 102 wppm. [36] We considered values of 1 small enough to
be in the dilute regime, but also large enough to ensure that the system
is far from the transition from the laminar to the chaotic flow observed
in [70].

We added a diffusive term k9?R;; with £ = 4 x 1073 to eq. (5.1b)
in order to prevent the emergence of numerical instabilities [113]. All
the quantities are made dimensionless by using the forcing wavenumber
K, the amplitude of the laminar velocity Uy and the laminar time-scale
To = 1/(KUp). In order to have a quantitative comparison between
the 2D and the 3D versions of the model, we also performed additional
numerical simulations of (5.1) in a two dimensional periodic domain with

the same parameters of the 3D runs.

The velocity field at time ¢t = 0 is initialized to the fixed-point laminar
solution, while the components of the tensor R are initially distributed
randomly with isotropic distribution. The time evolution of the kinetic
energy E = 1(|u[?) is shown in Figure 5.1 for two simulations with n =
6 and n = 8 (here and in the following () denotes the average over
the whole volume). Injecting the polymers the velocity field is strongly
affected, with the energy almost reduced to zero. Energy further increases
back almost to the laminar value (at ¢ ~ 2007; in Fig. 5.1) where the
instabilities due to polymers develop, with the system eventually reaching
a statistically stationary chaotic state (at t > 5007p). In this regime the

energy is considerably smaller than the one of the laminar flow Ey =
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%Ug, and it displays rapid oscillations whose frequency increases with
the polymer concentration, while the average value of E decreases at

increasing 7).

E/E,

0.0

0O 400 800 1200 1600 2000
T,

Figure 5.1: Kinetic energy E, normalized with the laminar energy Ey, for two simulations
in 3D with n = 6 (blue dashed line) and n = 8 (red solid line). In both cases the initial
condition is the laminar fixed point with E(0) = Ej.

For each value of the parameters, a set of three independent simu-
lations, with different realizations of the initial random configuration of
the conformation tensor, is performed. While the properties of the ini-
tial transient are strongly depending on the realization, the subsequent
chaotic regime displays statistically equivalent properties between differ-
ent realizations, and they are averaged to increase the statistical accuracy
of the results. All the results we presented are obtained in this statisti-

cally stationary regime.

Figure 5.2 shows three sections of the velocity components u,,u, and u,
in the plane x — z at fixed y from a simulation with n = 7 in the stationary
chaotic flow. The structure of the Kolmogorov flow remains visible in the
u, field, with superimposed irregular fluctuations at small scales which
are clearly more evident in the wu, and wu, fields, where the mean flow
is absent. We remark that the fluctuations in the u, field qualitatively

resemble the elastic waves observed in viscoelastic flows. [66,67]
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—

Figure 5.2: Vertical sections in the z — z plane of the velocity components u,, uy, v, (from
left to right) in the 3D chaotic regime for 7 = 7. The color scale ranges from —3u; (black)

to 3u} (white), where u are the rms values of the velocity fluctuations.

5.3 Results

5.3.1 Statistics of the velocity

As we already described in Chapter 4, the most relevant feature of
the Kolmogorov flow is that, also in the chaotic and in the turbulent
regimes, it maintains a monochromatic mean flow (u,) = U cos(Kz).
This property is confirmed even in the presence of rigid polymers, as
shown in Fig. 5.3, where the average velocity profile, from the simulations
at different concentrations, is plotted. We note that the amplitude of the
mean flow is significantly reduced with respect to the laminar solution,
consistently with the energy trends shown in Fig. 5.1, as a consequence
of the chaotic motion induced by polymers.

This property therefore allows us to decompose the velocity field in a

mean (monochromatic) component and fluctuations as
u(z) =U(cos(Kz),0,0)+ u'(x) (5.2)

Table 5.1 reports the values of the (root-mean-square) rms velocity fluc-
tuations, together with the amplitude of the mean flow and other relevant
quantities we will consider.

Figure 5.4 confirms that the amplitude of the mean flow is signifi-
cantly reduced with respect to the laminar case and that this effect be-
comes more relevant at increasing values of the concentration parameter

1. The rms values of velocity fluctuations appear, on the contrary, to do
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0 /2 T 3n/2 2%

Figure 5.3: Profiles of the mean velocity (us(z)) averaged over z, y and time, in 3D
simulations with different values of 1. The solid black line corresponds to the laminar solution
of the Newtonian fluid at n = 0.

/ / /!
U S Y Uy, U, u, €1 €y Ep

2.87 0.10 4.40 0.64 0.12 0.40 91.9 74.8 17.1
2.74 0.10 5.02 0.63 0.13 0.39 87.2 68.6 18.6
2.63 0.10 5.57 0.64 0.16 0.39 83.2 63.6 19.6
2.48 0.09 6.08 0.69 0.18 0.40 78.8 58.3 20.6

o N o oS

Table 5.1: Parameters of the 3D simulations. U is the amplitude of the mean longitudinal
velocity, S the amplitude of the mean Reynolds stress and X that of the mean polymer stress.
ul, uy, and u’, are the rms values of the three components of velocity fluctuations. ¢; is the

mean energy input, €, the viscous energy dissipation and €, the mean polymer dissipation.

not have a relevant dependence on 1. We observe also that fluctuations
along streamwise direction u! are the strongest, followed by those in the
z direction, while fluctuations in the spanwise direction w; are signifi-
cantly smaller. These results suggest that, even in the chaotic regime,

the dynamics of the flow remains approximately two-dimensional.

5.3.2 Drag and momentum budget

The momentum budget can give us a better comprehension of the

effect of the polymers on the flow. By averaging the first component of
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Figure 5.4: Mean velocity profiles U (black diamonds) and components of rms velocity
fluctuations (u}, blue squares, u; green triangles, u/ red circles) in 3D simulations with

different values of 7.

(5.1) over x, y in stationary conditions we obtain the stress budget
0,11, =0, (II, +11,) + fa. (5.3)

where II, = w,u, is the Reynolds stress, II, = v0,u, the viscous stress,
and II, = o, the polymer stress. In the statistically stationary state all

these quantities display a monochromatic profile

II, = Ssin(Kz), II, = —vKUsin(Kz), II, = —¥sin(Kz),
(5.4)

and therefore (5.3) becomes an algebraic equation for the coefficients
SK +vK?U + YK = F. (5.5)

Dividing all the terms of (5.5) by KU? we obtain the dimensionless version
of the momentum budget, where we define the friction coefficient f =
F/(KU?), which quantifies the ratio between the work done by the force
and the kinetic energy of the mean flow, the Reynolds stress coefficient
s = S/U? and the polymer stress coefficient o = ¥ /U?:

1
f:§—|—5—|—0 (5.6)
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In the laminar solution we have s = ¢ = 0 and f = 1/Re. Figure
5.5 shows that the increase of the polymers concentration produces an
enhancement of the friction factor with respect to the laminar case, which
is mostly due to the increment of the polymer stress and partly also to
a weaker growth of the viscous stress. The Reynolds stress remains in
all cases negligible, showing that inertial terms do not contribute to the

transfer of momentum.

4

f, 1/Re, o, s

Figure 5.5: Friction factor f (black diamonds) normalized viscous stress 1/Re (blue
squares), polymer stress coefficient o (red circles) and Reynolds stress coefficient s (green
triangles), as function of 7. Filled symbols are for the three-dimensional DNS, empty ones

are for the two-dimensional DNS.

By definition, the Reynolds number Re and the drag coefficient f
are linked by f = Reo/Re?, where Rey = Uy/Kv = F/K3/? is the
Reynold number of the laminar solution. Polymers therefore exert two
complementary effects: they reduce the Reynolds number of the flow
and increase its resistance. We notice also that the contribution of the
polymer stress (o< 1/Re?) is dominant compared to that of the viscous
stress (o< 1/Re) to the increase of the drag coefficient. This is clearly
shown in Figure 5.6 in which the friction factor f is plotted as a function
of Re for the different values of . Since both f and Re have not an explicit

dependence on 7, points corresponding to simulations at the same F' and
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v lie on the same line Rey/Re?. The point at Re = 1 corresponds to
the laminar fixed point, which is stable in the absence of polymers. We
remark that this plot is done keeping fixed the forcing F', so the different
Reynolds numbers are due to the different mean velocities produced at
various 7. The inset of Fig. 5.6 instead shows how the effective viscosity
Verr = F/(K?U) increases as a function of the mean shear rate 4 = KU,
obtained by varying the amplitude F' of the forcing at fixed polymer
concentration (data from two-dimensional simulations). In this range of

values, the polymer solution displays a shear-thickening behaviour.
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Figure 5.6: Friction factor f as a function of Re in the 3D (blue, filled symbols) and 2D
(red, empty symbols) simulations at concentrations 7 = 5 (squares), n = 6 (circles), n = 7
(triangles), n = 8 (diamonds). The black asterisk at Re = 1 represents the laminar fixed
point at 7 = 0. The dashed line represents the curve f = Reo/Re? while the dotted line is
the laminar law f = 1/Re. Inset: effective viscosity vers as a function of the mean shear

rate ¥ for 2D simulations with n = 5.

5.3.3 Energy budget

From the analysis of the energy budget we get additional information
regarding the effects of polymers on the flow. If we multiply (5.1) by u,
and we integrate over the volume, we obtain the balance equation for the

mean kinetic energy (we remark that, unlike he case of elastic polymers,
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we cannot associate a deformation energy to rigid polymers, in absence
of Brownian effects [24])
d
dt
where e; = (f - u) = FU/2 is the mean energy input, ¢, = (v |Vul|?)

(E) =¢er — e, — &, (5.7)

the mean viscous dissipation rate, and ¢, = (0;;0;u;) is an additional
dissipation of kinetic energy due to the coupling with polymers. We
remark that the local values of the term o,;0;u; can be either positive or
negative, meaning that polymers can locally either give or subtract energy
from the flow. Nonetheless the volume average of ¢, is always negative,
indicating that the global effect of polymers is dissipative. Physically,
this is due to the fact that the coupling between rods and the fluid is due
to viscous forces at the molecular scale, whose mean effect is to dissipate

a fraction of the kinetic energy [24] (see also Chapter 3).

0.8

0.6

M-

0.4

gleg, &/eg, €pfeg

Figure 5.7: Mean values of energy input ¢; (black diamonds), viscous dissipation £, (blue
squares) and polymer dissipation €, (red circles), as function of n. Filled symbols are for the

three-dimensional DNS, empty ones are for the two-dimensional DNS.

In the statistical stationary state, averaging over sufficiently long times,
the energy can be assumed constant, and therefore the energy balance
reduces to e; = €, + €,. These quantities are displayed in Fig. 5.7, nor-

malized with the mean energy input of the laminar flow g = FUy/2. We
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can observe a slight increase in the polymer dissipation as the concentra-
tion coefficient increases, but the main effect of polymers appears to be
a suppression of the energy input provided by the constant forcing, as a
consequence of the reduction of the mean flow amplitude. This result is
consistent with the data plotted in Fig. 5.1, showing that kinetic energy
is reduced at increasing polymer concentration. Figure 5.7 indicates that
for all values of 7, energy is mostly dissipated by viscosity. Therefore we
expect that the small scale properties of the flow are weakly affected by

the polymer concentration.
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Figure 5.8: Time averaged, kinetic energy spectra as a function of wavenumber from 3D

simulations with different values of 7.

In order to investigate in details this point, in Fig. 5.8 we plot the ki-
netic energy spectra in stationary conditions and for the different values
of concentration. Note the peak of the spectra at the forcing wavenum-
ber K (the only active wavenumber in the laminar case). We observe
very small variations of the spectrum with 7, mostly concentrated at
small wavenumbers (since the total energy changes with 7). At large
wavenumbers the spectra shows a power law behaviour F (k) ~ k=% with
a ~ 4.8, which indicates the presence of fluctuations at all scales. The

fact that the power spectrum is steeper than £~ indicates that the ve-
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locity field is smooth in this regime, similarly to what observed in elastic
turbulence [55, 58].

5.3.4 Mixing properties

Since we noted the presence of velocity fluctuations over a wide range
of spatial scales, we expect that this fact causes a strong influence on the
mixing efficiency of the flow. In order to address this point we investigated
the mixing of a passive scalar by simultaneously integrating equation for
a scalar field 6(z,t) transported by the velocity field u obtained from
Egs. (5.1)

040 + 0,0 = DO (5.8)

where D is the molecular diffusivity, which we set to D = 2 x 1073 in
all the simulations. The integration of the Equation (5.8), obtained with
the same pseudo-spectral method discussed in Appendix A, starts at an
arbitrary time in the stationary regime of chaotic flow. We considered a
monochromatic initial condition for 6, having the same periodicity of the
mean flow 0(z,0) = 6y cos(Kz). With this initial condition, in absence
of polymers, the mixing is due exclusively to molecular diffusion, since
the gradients of the scalar field V8 are orthogonal to the laminar velocity
field. In particular, for n = 0 the variance of the scalar field (as well as
the variance of its gradients) decays exponentially as (6%) oc ((V0)?)
exp (—fot), with By = 2DK?2.

The presence of polymers causes a strong enhancement of the mix-
ing, which is illustrated by the vertical sections of # fields displayed in
Fig.5.9. At variance with the diffusive case at n = 0 in which the scalar
field remains monochromatic, here we observe the formation of thin scalar
filaments, which rapidly transfer the scalar fluctuations to small dissipa-
tive scales, ultimately leading to a strong enhancement in the mixing
efficiency.

A quantitative evaluation of the mixing properties is provided by the
temporal evolution of the variance of 6 and V6 shown in Figure 5.10.
Here and in the following, the results presented are averaged over 13

independent simulations of Equation (5.8), starting from the same initial



48

5. Chaotic flows at low-Reynolds number

Figure 5.9: Vertical section in the x — z plane at fixed y = 0 of the scalar field 6 for the 3D
simulation with 7 = 8 at different times. From left to right: ¢ = 0, ¢t = 3270, t = 6470.

condition #(z,0) and different velocity fields. The decay of (#*) in the
chaotic regime induced by the polymers is much faster with respect to the
case 1 = 0. We can observe the same result for the long-time decay of the
variance of scalar gradients ((V6)?), even though the chaotic advection
of the scalar field causes an initial increase of its gradients (this effect
is clearly seen in Fig 5.9). For the concentration values considered in
our study, we are not able to observe a clear dependence of the mixing

efficiency on 7.
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Figure 5.10: Decay of the variance of the scalar field (%) (left panel) and of the scalar
gradients (V6)?) (right panel) for the different values of 7 in 3D simulations. Solid black line

represents the diffusive exponential decay in absence of polymers.

The instantaneous exponential decay rate of the scalar variance 3, =

—% log(6?) can be expressed, using (5.8), as

5y (1) = L 1og(8?) = 2D<(<Ve§§ )

which can be directly compared with the decay rate due to molecular

(5.9)
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Figure 5.11: Instantaneous exponential decay rate (B, (t) for different values of n in 3D

simulations (left panel) and 2D simulations (right panel).

diffusion By = 2DK?.

The decay rate 3, reaches a maximum value after a very short time,
corresponding to the maximum development of thin filaments of the scalar
field. At longer time, since both (6?) and ((V#)?) decay exponentially,
Bp approaches an almost constant value, about three times larger than
Bo (see Fig. 5.11) which gives us a good quantification of the increased
mixing efficiency. We note that the ratio ,/8y is proportional to the
square of the ratio between the large scale of the scalar field 1/K and the
typical scale of its gradients ((0%)/((V#)2))'/2.

5.3.5 Comparison between 2D and 3D

According the results presented so far, we can assert that the properties
of the chaotic flow, which is obtained from 3D numerical simulations of
the model (5.1) for a dilute solution of rigid rods, are qualitatively similar
to those reported in previous numerical studies in 2D domains [70, 71].
In particular, we observed that the fluctuations of the y-component of
the velocity w,, which is transverse both to the streamwise direction of
the mean flow z and to the direction of its gradient z, remain consid-
erably smaller than those of u, and w, (see Figure 5.4). This confirms
that the dynamics of the three-dimensional system is substantially two-
dimensional, and that the properties of the chaotic flow are qualitatively

independent on its dimensionality.
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In order to perform a qualitative comparison between the properties
of the 3D and 2D flows, we also performed a new set of 2D simulations
of the system of equations (5.1) with the same parameters of the 3D
simulations. The comparison of the mean flow and velocity fluctuations,
reported in Figure 5.12, clearly shows that the effects of polymers are
more pronounced in 2D than in 3D. Keeping fixed the value of the polymer
concentration 7, we notice that the velocity fluctuations are more intense
in 2D than in 3D. Similarly, the reduction of the amplitude U of the mean
flow, with respect to the laminar solution Uy, is stronger in 2D than in
3D. It is worth to notice that 2D and 3D curves of U and «/, as a function
of 1, appear to be almost parallel, which is an indication of the fact that

the effect of dimensionality is systematic and not dependent on 7.
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Figure 5.12: Amplitudes of mean velocity profiles U (blue squares) and rms velocity fluc-
tuations u,.,,s (red circles) as a function of 7 in 3D (filled symbol) and 2D (empty symbols)

simulations.

In Figure 5.5 we report the comparison of the momentum balance.
Also in this case we observe that the values of the friction factor in 2D
are systematically higher than in 3D at fixed 7. In both cases, the en-
hancement of the drag is mostly due to the increase of the polymer stress,
with a subdominant contribution due to the increase of the viscous New-

tonian stress. The combined effect of increased friction factor and reduced
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Reynolds number can be observed in Figure 5.6, where the deviation from
the Newtonian point f = 1 is stronger for the 2D simulations. Consider-
ing the energy balance, the reduction of the amplitude of the mean flow
causes a reduction of the energy injection rate ; in 2D simulations with
respect to the 3D ones at fixed n (see Figure 5.7). This phenomenon
is balanced by a reduction of the viscous dissipation rate ¢,, while the

energy dissipation due to polymers remains almost unchanged.

In summary, we can conclude that the effects of rod-like polymers
in viscous flows in three-dimensions is significantly weaker than in two-
dimensions. We believe that the origin of this difference can be probably
attributed to the different rotational degrees of freedom of the rods. In
2D, the rotation of the polymers can occur only in the z — 2z plane, im-
plying that, during the rotation, the R,, component of the conformation
tensor is non-zero, and therefore the polymers are oriented in the di-
rection of the gradient of the mean flow (the z-direction). Conversely,
in 3D they can rotate also in the z — y plane, indeed in the stationary
regime the average values of R,, and R, appear to be very similar, but
the polymer rotations in the x — z and x — y planes have very different
consequences on the polymer stress tensor o;;. We remind that o;; is
proportional to the product of the configuration tensor R;; and the ve-
locity gradient tensor d;u;. In the case of the laminar Kolmogorov flow
u(z) = (Uycos(Kz),0,0), the only component of the velocity gradient
which is non-zero is 0,u,. As a consequence, there is no stress induced by
rotations in the z —y plane (which is allowed only in 3D). This means that
in the case of the chaotic flow, the gradients of velocity in the y-direction
originates are due only to the fluctuating part of the velocity field, and
therefore they are significantly smaller than those in the z-direction. As
a result, the polymer stress in 3D is on average weaker than in 2D flow

with the same 7.

We obtained an heuristic estimate of the dimensional dependence of
the average polymer stress, considering the formal expression of the stress
tensor in d-dimensions [24] 0;; = 2dvnR;;(0yuy) Ry, which is derived un-

der the assumption of isotropy of the conformation tensor R;; = d;;/d in
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the limit of zero shear. Even though this hypothesis is not fulfilled in the
case of the Kolmogorov flow, since the non-vanishing mean shear induces
a preferential alignment of the rods in the direction of the mean flow, we
can suppose that simulations in 2D and 3D can be simply mapped by
rescaling the polymer concentration as n*? = (2/3)n3P. We tested this
prediction by comparing two simulations in 2D, with reduced parameters
n*P = 4 and n?P = 5.33, with the corresponding simulations in 3D with
3P = 6 and 3P = 8. In both cases, we noticed that the rescaling of the
concentration reduces the difference between the amplitude of the mean
flow in 2D and 3D below 3%. Therefore, although the rescaling is not
exact, it still provides a simple and useful empirical rule to translate 2D
results for 3D applications, at least for this flow. This mapping also sup-
ports the interpretation of the dimensional effects reported in our study
in terms of the different rotational degrees of freedom of the rods.

Finally we compare the mixing properties of 2D and 3D flows by inte-
grating the transport equation (5.8) for a two-dimensional scalar field 6
transported by the 2D flow. Initial conditions and diffusion coefficient are
identical to those of 3D simulations. In Figure 5.11 we show the temporal
trends of the instantaneous exponential decay rate (3, (t) obtained in the
2D simulations, which appear to be very similar to those obtained in 3D
simulations: this is in agreement with the observation that the intensity
of velocity fluctuations, which causes the mixing, is very similar as well
(see Fig. 5.12).



Chapter 6
Multi-scale stability analysis

In order to better understand the transition from laminar to chaotic
regime at low Reynolds number, we tried to perform a linear stability
analysis of the Kolmogorov flow with rigid rod-like polymers. In par-
ticular, we considered a multiple-scale analysis [114,115] similar to the
one that was adopted for the same flow with flexible polymers. [100] Our
starting point is the Squire’s theorem, [104] which states that for parallel
flows the most unstable perturbations are two-dimensional. This allows
us to disregard the neutral direction: x will be the flow direction, and y
the shear one.

Writing again the equations of the Doi-Edwards model: [24]
Oyu; = 0, (6.1a)
Oyu; + uj0ju; = —0ip + vV2u; — 6nvo; R;j (RiOur) + fi, (6.1b)
O Rij + w0k Rij = RyjOpu; + RipOru; — 2R, (RiOuy,) (6.1c)

we can combine the incompressibility condition with the equation for the

velocity field, in order to obtain an equation for the pressure field:
V2p + @uj@jui — 677u8z8]Rw (Rklﬁluk) =0. (62)

Assuming a cosinusoidal forcing f, = F cos(Ky), the laminar solution

1S:

uy; =Ucos(Ky), u,=0, p=0, Ry,,=1 R, =0, R,, =0

93



54

6. Multi-scale stability analysis

In order to have a simpler notation, we call u, = v and u, = v, and
we apply a generic perturbation to the system (assuming v’ < U and
R < 1):

u="U cos(Ky) +, v=1 p=7,
Ryx =1+ R, R,, =R, Ry, = R;y. (6.4)

T xy?

All the perturbations have to respect the periodicity of the base flow,
in order to be physically acceptable. Substituting (6.4) into (6.1), and
keeping only linear terms in the perturbations, we have the six linearised
equations:

O’ + U cos(Ky)o,u' — UK sin(Ky)v' + 0,p’
—vV?u — 6nrd, (0,u' — UK sin(Ky)R,,) =0 (6.5a)
o' + U cos(Ky)0,v' + 9,p — vV =0 (6.5b)
V2 — 2UK sin(Ky)d,v' — 6nrd? (0,u' — UK sin(Ky)R,,)  (6.5¢)
R, + U cos(Ky)d, R, =0, (6.5d)
R, + U cos(Ky)0, R, + UK sin(Ky)R,, — 0,v" =0, (6.5¢)
R, + U cos(Ky)o.R,, = 0. (6.5f)
We can see that the R/, component does not influence the other quanti-

ties, so we disregard its equation. R;y instead appears also in the equation
for R

l’y7
order perturbation, since the tensor R;; is quadratic in the perturbation

but, from physical consideration, we can consider R;y as a second-

of the director n;. For this reason we also set R;y =0.

At this point, further assumptions simplify our computation. We
choose to consider only large-scale perturbations (in the Newtonian situ-
ation, it can be demonstrated that the flow is always linearly stable for
small-scale perturbations), for which we expect that perturbation evolves
on time scales much larger than base flow typical time scale. Moreover,
we expect a diffusive behaviour at large scales, which implies a quadratic
relationship between space and time.

The core idea of the multiple scale analysis is therefore to consider the

variables related to the base flow (fast variables) as independent from the
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variables related to the perturbation evolution (slow variables). Therefore
this method can work only if there is a clear separation between scales of
base flow and perturbation, otherwise it can give wrong predictions.

If we denote as € the ratio between small and large spatial scale (separa-
tion between scales therefore implies € < 1), we define the slow variables
as X = ex, Y = ey, T = €*t, which implies that differential operators will

become:
Oy = 0y +€0x, 0y — 0y +edy, O — O+ e20r. (6.6)

The fact that the base flow does not depend on ¢ and z allows us to
disregard the 0, and 0; terms, and the Laplacian operator will have this
form:

V2 — 05 + 20,0y + €2(0% + 0%). (6.7)
In order to further simplify the notation, we rename I, = R'. We make
another assumption: we consider only transverse perturbations (which
are the most unstable in the Newtonian case), so we can neglect also the
slow variable Y, and the equation for u/, since v’ does not appear into
the other equations. With this hypothesis we expand the perturbations

in terms of e:

p, = pO(y7X> T) + €p1(an7 T) + 52])2 (y7X7 T) + o (688‘)
v = UO(y7X7 T) + €U1(y,X7 T) + 62U2 (y7X7 T) T (68b)
R = RO(y7Xa T) + ERl(y7X7 T) + €2R2 (y7X7 T) + o (68C)

and we substitute the perturbation into the linearised equations (6.5),

until the second order in e:

e20rvy + €U cos(Ky)0x (vo + ev1) + 0, (po + ep1 + €p2)
—v(e20% + 8;)(1)0 + evy + €2vy) = 0, (6.9a)

(€20% + 83)(190 + epy + €2py) — 2U Kesin(Ky)Ox (vo + evy)

—6nre’UK sin(Ky)0% Ry =0,  (6.9b)

20rRy + €U cos(Ky)Ox (Ry + €Ry) — edx(vg + evy + vy + ...) = 0.
(6.9¢)

Now, we can analyse the terms having the same dependence on e.
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Zero-th order

Oypo — V@jvo =0 (6.10a)
py =0 (6.10b)
0=0 (6.10c)

We do not have any information about Ry, while pg can not depend on .
Although a linear dependence of py on y would be admitted by 85])0 =0,
it would violate the periodicity of the system. For the same reason, also

vp can not depend on y:

pOICO(X,T), ’l}ozb()(X,T), ROIRo(y,X,T). (611)

First order

UK cos(Ky)0xvy + Oyp1 — V@Zvl =0 (6.12a)
85]91 —2UK sin(Ky)0xvy =0 (6.12b)
U cos(Ky)Ox Ry — Oxvg =0 (6.12¢)

From the second equation we obtain p;:
2U
m=ca(X,T)— 37d sin(Ky)0xby, (6.13)

and we substituted it into the first one, so we have v;:

U
v =0 (X, T)+ e cos(Ky)0xby. (6.14)
From the third one we instead obtain informations about Ry:
axbo b()

axRo = RO +’I"0(Z/,T). (615)

U cos(Ky)’ ~ Ucos(Ky)

Second order

Orvg + U cos(Ky)0xv1 + Oypa — 1/85112 — v0%vy =0, (6.16a)
O2py + Oxpo — 2UK sin(Ky)dxv1 — 6nrU K sin(Ky)0x Ry = 0, (6.16b)
OrRo + U cos(Ky)Ox Ry — Oxv; = 0. (6.16¢)
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In the second equation, we substitute v; and 0y Ry using the informa-

tion we have from the first order:

U2
a§p2 = 0%co + 2UK sin(Ky)O0xb, + 2% sin(Ky) cos(Ky)d5bo

+6nv K tan(Ky)oxby, (6.17)
and we integrate, in order to obtain J,ps:

2

20K?

Oyp2 = —2U cos(Ky)0x by — cos(2K5) 0% by — 6nv(In | cos(Ky)|)0% bo
(6.18)
where, in order to not violate the periodicity, we set dxcog = 0. If we

substitute J,p2, vo and v; into the first equation, we get:

U? U?
Orby — U cos(Ky)0xby + e cos?(Ky)0% by — o] cos(2Ky)0% bo—
—6nv(In | cos(Ky)|)0% b — vOjvs — vd3by = 0

(6.19)

Similarly to the study in [100], at this point we average on the period

in the y direction. Since we know that:

1 2w 1 2w 1
— cos(x)dx = 0, — cos?(x)dr = =,
2m Jo 2m Jo 2
1 27 1 27
In| cos(z)|dr = —In 2, cos(2x)dz =0, (6.20)

2 J 2r Jo

we obtain a relationship about the temporal evolution of the perturbation
bo (in the Kolmogorov flow, U/(vK?) is an alternative expression of the

Reynolds number):
Orby = v (1 - %RGQ - 61n(2)n) 0% b. (6.21)
Hence, the flow is stable if:
1— %R& —61n(2)n >0, (6.22)

corresponding to a critical Reynolds number:

Re. = /2/1—6nn2|. (6.23)
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In absence of polymers (1 = 0) we recover the Newtonian value Re. = /2.
Unfortunately, our numerical simulations do not agree with the prediction
at n > 0, implying that some of our hypothesis, for example the scale
separation, are not valid in the context of Kolmogorov flow with rod-like

polymers.



Chapter 7

Turbulent flows at
high-Reynolds number

As it has been described in chapter 2, turbulent flows are affected
by small amounts of flexible polymers, in particular we can observe a
strong reduction of the hydrodynamic drag. [22,25] This behaviour has
been extensively investigated in pipe and channel flows, but, in order
to obtain a clearer picture of the effect of flexible polymers, also in ho-
mogenous turbulence, [47,48,116] in thermal convection, [50,51] and in
a shear flow without walls (the Kolmogorov flow). [46] In particular, in
the Kolmogorov flow, it was observed an increase of the mean velocity
profile, corresponding to drag reduction also in absence of walls. On the
contrary, despite also rigid rod-like polymers alter wall-bounded flows
in a similar way, [39,41] no analogous studies have been performed so
far on the effect of rigid polymers in absence of walls. For this reason,
we performed a study of the Kolmogorov flow with rod-like polymers at
high-Reynolds numbers, and we found that, differently from the case with
flexible polymers, in absence of walls rigid polymers cause the suppression
of turbulent fluctuations without a corresponding increase of mean flow,

which instead appears slightly reduced.

99
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7.1 Model and simulations

A dilute solution of rigid rod-like polymers can be described using the
Doi-Edwards model [24]:

Oty + upOpt; = — iD + 1/62%- + Opoi + fz‘, (71&)

OrRij + w0 Rij = (Opui) Rij + Rir(Oku;) — 2Ry (Oyur) Ry, (7.1b)

where u (z,t) is the incompressible (0;u; = 0) velocity field, R (z,t) the
polymer configuration tensor, p (z,t) the kinematic pressure, v the kine-
matic viscosity, f (z,t) the external forcing, and o;; = 6vnR;;(Oyuy) R
the polymer stress tensor (more details in chapter 3). Additional terms
regarding Brownian rotations can be safely disregarded in turbulent flows,
since their characteristic time is very much greater than the large eddy
turnover time of the flow. In order for equations (7.1) to be valid, the
polymer length has to be significantly smaller than the Kolmogorov length
of the flow. Both the conditions are easily met by commercial available
rigid-rod like polymers. [110] f(z) = (F cos(Kz),0,0) is the Kolmogorov
forcing, where F' is the amplitude and K is the wavenumber. It induces
a monochromatic mean flow, (u,) = Ucos(Kz), where U = F/(vK?)
in the laminar regime. A quantitative investigation of the relationship
between F' and U (and therefore the Reynolds number Re = U/ (vK)) in
the Newtonian turbulent regime has been presented in [86].

We integrated equations (7.1) in a cubic periodic domain of size L = 27
discretized on a regular grid of N3 = 2562 gridpoints, using a pseudospec-
tral code with 1/2 dealising, due to the cubic nonlinearities. [111] Time
integration is performed with a 4th order Runge-Kutte scheme, [112] with
an implicit integration of linear dissipative terms. A diffusive term k9*R;;
has been added to eq. (7.1b) in order to improve numerical stability. [113]
More details on numerical methods are provided in Appendix A

We set v = k = 1072 and K = 1. We performed a total of four
different simulations: two with F' = 0.016 and two with F' = 0.032,
which, combined with the other parameters we choose, in the Newtonian

turbulent regime correspond respectively to Re ~ 340 and Re =~ 480.
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[86] For every value of forcing, we performed one simulation without
polymers (n = 0) and another one with n = 6. In order to have a
coherent comparison, also Newtonian simulations are subjected to 1/2

dealiasing.

7.2 Results and discussions

Our simulations confirms the monochromaticity of the turbulent Kol-
mogorov flow, both with polymers and without. Decomposing the veloc-

ity field into a a mean component and fluctuations:

u(xz)=U (cos(Kz),0,0) + u'(x) (7.2)

we can compare the amplitude of mean velocity profiles, with or with-

out polymers, for the two different forcing we considered.
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Figure 7.1: Mean velocity profiles for F' = 0.016 (left) and F' = 0.032 (right). Red solid
lines correpond to 1 = 6, blue dashed line to n = 0.

Profiles in fig. 7.1 clearly indicate that rigid polymers do not cause an
increase of the mean flow: at Re ~ 340 the flow appears to be unchanged,
while at Re ~ 480 we can even observe a decrease, hence some form of
drag enhancement. It is a very different situation from the one in wall
bounded flows, where it is well known that also rod-like polymers cause
drag reduction, and from flexible polymers, which in an analogous setting
cause an increase of the mean flow. If we compute the friction factor,
which in Kolmogorov flow assumes the form f = F/(KU?), we have

indeed, respectively for the flow without or with the polymers, f = 0.1399
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vs f =0.1402 at Re ~ 340, and f = 0.1323 vs f = 0.1479 at Re =~ 480.
We recall that, asymptotically, in the Newtonian turbulent regime we
have f oc Re™t. [86]

Other informations about the flows can be obtained from the velocity
fluctuations w’. We observe that the root-mean-squared (rms) values of
the fluctuation velocity field, in all the three directions, are significantly
reduced in the flow with the polymers compared with the Newtonian one
(see Table 7.1). This fact suggests that the rodlike polymers inhibit the

turbulent motion.

F f U ul, u,, u, 10%; 10%, 10%,

Ui

0 0.016 0.1399 0.338 0.181 0.149 0.164 2.70 2.7 -
6 0.016 0.1402 0.338 0.174 0.136 0.148 2.69 1.24 1.45
0
6

0.032 0.1323 0.492 0.254 0.215 0.250 7.88 7.88 -
0.032 0.1479 0.465 0.241 0.200 0.227 7.40 3.36 4.04

Table 7.1: Parameters of the simulations: F' amplitude of the forcing, f friction factor, U
amplitude of the mean flow, u},u; and u, rms value of the velocity fluctuations, £; mean

energy input, €, mean viscous dissipation and €, mean polymer dissipation.

This hypothesis is confirmed by energy spectra. In particular fig. 7.2
clearly shows that the small-scale motion is strongly suppressed by poly-

mers, while at large scales the spectra appear to be almost unchanged.
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Figure 7.2: Mean kinetic energy spectra for F' = 0.016 (left) and F' = 0.032 (right). Red
solid lines correponds to 1 = 6, blue dashed line to n = 0. Pointed black line represents the

o k=03 Kolmogorov’s law.

The small-scale behaviour we see is compatible with spectra observed

in a very recent experimental work about drag reduction in pipe flow, [117]
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where a o< k=3 law was proposed for inertial range in flows with polymers.
In our simulations, the inertial range is probably too small to evaluate
the power-law behaviour, but it still appears to be compatible to the
observations in [117]. However, the large scale behaviour is obviously
different, since in [117] the phenomenon of drag reduction is observed.

A different small-scale behaviour in spectra, between the Newtonian
and the non-Newtonian flows, means that dissipation is strongly affected
by polymers. The total energy budget in our system is:

%(E) =€;— €, — Ep, (7.3)
where £; = (f - u) = FU/2 is the mean energy input, &, = (v |Vu/|?) the
mean dissipation rate due to Newtonian viscosity, and €, = (0;;0;u;) the
one due to polymers. If we average over a sufficient long time, the total
energy can be considered constant, and so we have e; = ¢, +¢,. The
values we obtained (Table 7.1) confirm that the dissipation is strongly
affected by polymers, since in the non-Newtonian case more than half of
the energy is dissipated by the polymer stress.

In order to explain the difference between our simulations without
walls, and the ones in channel flows (and the experiments) where drag
reduction is observed, we can consider the momentum budget. Averaging

the Eq. (7.1a) over z,y and time, we have
011, =0, (11, +11,) + fa, (7.4)

where II, = v0,u, the viscous Newtonian stress, I, = 7., the polymer
non-Newtonian stress and I, = u,u, is the Reynolds stress. In the case
of Kolmogorov flow we have that all these quantities have a sinusoidal

profile:

I, = vo,u, = —KUsin(Kz), I, =5,, = —Xsin(K=z),
II, = wzu, = —Ssin(Kz). (7.5)
This fact means that, if we consider the average profile, not only the

mean Newtonian stress II, is proportional to the mean shear rate 0,u,
(which is trivially the definition of Newtonian fluid), but that also the
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(which, instead, is not trivial) mean polymer stress II, is proportional
to the mean shear rate: this means that, for the mean flow, the fluid
remains Newtonian, with a modified value of the viscosity. This is a very
different situation from wall-bounded flows, where the theory predicts
a non-uniform effective polymer viscosity, [39,41] confirmed by recent
experiments [30] which observed a "near-wall lubricating layer”, i.e. a
very small effective viscosity near the walls. This is probably related also
to the fact that in bounded flows polymers appear to be strongly aligned
with the mean flow near the walls, [41,110] i.e. Ryp =~ 1> R_yy, R,., while
in our simulations we have everywhere R,, < 0.4 and R,,, R.. = 0.3, a
situation that in bounded flows is observed far from the boundaries, in
the turbulent bulk.

The absence of drag reduction we observed is therefore probably due
with the absence of the lubricating layer, induced by the strong align-
ment of polymers, caused by solid walls. It is important to remark that
the effective Newtonian behaviour we observed is valid at large scales in
the mean flow, but not for the fluctuating small scale motion, where we
can not assume a constant effective viscosity. This fact is confirmed by
the energy spectra (and partially by the rms values of velocity fluctua-
tions, which take in account both large-scale and small-scale turbulent
motion), which reveal important qualitative differences between the flows
with and without polymers. The similarities between the large wavenum-
bers behaviour of our spectra, and experimental spectra from [117], can
be instead explained by the fact that we expect the small scale turbulent

motion to be less influenced by walls.
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Chapter 8

Introduction to active fluids

An important chapter of statistical physics of these last decades is
the study of active matter. It can be defined as an out-of-equilibrium
system composed by a certain number of constituent elements, which
convert some forms of external energy (for example, chemical energy) into
some forms of motion or forces. The crucial difference with other forms
of out-of-equilibrium systems is that the energy is injected individually
by every individual entity, thus breaking the time-reversal symmetry at
local scale. [118] As a comparison, also the inertial turbulence in fluids
is a out-of-equilibrium phenomenon, but it is generated by an external
forcing acting globally, or at the boundaries of the domain. For this
reason, the study of active matter has attracted the interest of scientists
from very different research fields, as a paradigm of a novel class of out-
of-equilibrium phenomena. [119]

Examples of active matter in nature go from human crowds [120]
and bird flocks [121] to fish schools, [122] from microswimmers suspen-
sions [123] to epithelial tissues [124] and microtubule-kinesin mixtures.
[125] Synthetic active matter includes particles powered by electric fields
(Quincke rollers [126]) or chemical activity (Janus particles [127]). Ac-
cording this definition, also systems whose components are not self-propelling
can be considered active matter, if the external energy is applied at indi-

vidual scale: an example is vibrated granular matter. [128]

Given such a wide variety of systems, several different approaches to
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Figure 8.1: Examples of active matter exhibiting collective motion: starling flock (left),
circular flock of Quincke rollers [126] (center) and active turbulence in microtubule-kinesin
mixture [129] (right).

study active matter exist, from which a huge number of models derives,
since many of these systems have different basic symmetries and fun-
damental properties, thus preventing a unified description. We are in-
terested in systems whose properties (related in particular to collective
behaviour) can be investigated with a continuum approach, which allows
us to employ numerical methods and conceptual instruments from fluid

mechanics. Such models are therefore denoted as active fluids.

A great number of active fluid models exists, a first fundamental classi-
fication is about their symmetry. Some systems exhibit directional order
(similar to the ferromagnetic order in solid state physics), while others
show a preferred orientation 7, but with a n — —n symmetry (analogous
to nematic phase of liquid crystals). The first ones are the polar active
fluids, with a vectorial order parameter, while the second ones are the
nematic active fluids, with a rank-2 tensorial order parameter. Other
forms include scalar active matter (without a preferential alignment) and
chiral active fluids (not invariant under parity inversion). [130] The po-
lar /nematic behaviour is usually due to the symmetry of the constituent
particles, with the nematic systems usually composed by "head-tail” sym-
metric rods, but in some cases, polar particles can still exhibit a nematic
order, if the alignment interactions do not distinguish the polarity. For
this reasons, in some system we have both nematic and polar effects,
which would requires the use of both vectorial and tensorial order param-
eters, [131,132] although usually the dominant dynamics can be obtained

using only one order parameter.
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The best-known examples of polar fluids are microswimmers suspen-
sions, [123] Quincke rotors [126] and flocking birds, [133,134] while the
nematic symmetry is typical of microtubules suspensions, [135] crawling
bacteria [136] (which are an example of polar particles exhibiting nematic
order) and cell tissues. [124] The different symmetries generate peculiar
phenomena: in polar fluids we can have emergence of flocking behaviour,
while in nematic system a great importance is given to the dynamics of
topological defects. Forms of spatio-temporal chaos are present in both
of categories: for their apparent resemblance with turbulent flows, they
are usually denoted as active turbulence. [137] To be more precise, ac-
tive turbulence is a class of different phenomena, related by some common
features (like power-law energy spectra, a complex spatio-temporal struc-
ture, absence of energy cascade), but with important differences between
them.

Another fundamental distinction is between ’dry’ and ’wet’ models:
dry models are the ones where the solvent dynamics (or the explicit in-
teraction with a substrate) is not explicitly considered, thus the equations
do not conserve the momentum. Obviously, in the reality every active sys-
tem conserves the momentum, but in some cases this can be neglected.
For example, an herd of animals moving above a field exchanges momen-
tum with the terrain, but in order to investigate the collective motion
of the herd it is not necessary to consider the global system animals +
terrain. The distinction dry-wet is therefore more related to the point of

view on the system, than the system itself.

In general, we can distinguish two principal approaches in the formu-
lation of the hydrodynamics equations of the models: [137] the first one
is phenomenological, starting with a Navier-Stokes-like equation, with
terms reproducing the principal features, while the second one is based
on liquid crystal models, built from symmetries and conservation laws,
although the distinction between these two approaches is not always ev-
ident. The first one is particularly adopted for polar models (Toner-Tu
model [138] and its variations, but also generalized Navier-Stokes equa-

tions [139]), while the second one is the standard in the study of active
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nematic, [125] although a research field in polar active liquid crystal also
exists. [140]

8.1 Toner-Tu model

The Toner-Tu model is the archetype of the description of flocking
phenomena with a polar active fluid model. It was originally proposed
in 1995 [133], as a continuum version of the discrete Vicsek model, [141]
which can be considered an XY model for ferromagnetism, with motile
spins. The fundamental hallmark of the Vicsek model is the fact that it
exhibits a phase transition towards a long-range ordered phase, in two
spatial dimensions, with non-zero thermal noise, thus violating the fun-
damental Mermin-Wagner-Hohenberg theorem. [142, 143] This theorem
states that, in a two-dimensional model with short-range interactions, at
thermal equilibrium (with non-zero temperature), it is impossible to have
a spontaneous symmetry breaking (if the symmetry is continuous), since
thermal fluctuations would destroy the ordered phase. The reason why
in the 2D Vicsek model (and in its continuum version) we can have the
spontaneous breaking of the rotational symmetry is due to the motility
(the only real difference between the Vicsek and the standard XY model),
which drives the system away from the thermal equilibrium. [138,144] In
this case, ordered phase means a coordinate collective motion in a par-
ticular direction, i. e. flocking.

Toner and Tu considered the most general equation of motion for the
density p and the polarization/velocity w, consistently with the sym-
metries of the system, keeping only the lowest order in gradients and

temporal derivatives:

Op+V-(up) =0, (8.1a)

du+ X (u-V)u+ MV (Ju]?) + 2 (V-u)u =
au — f|lu)’*u — VP —u(u-VP)
+DV(V-u) + Dy (u-V)>u+ DrVu+f. (8.1b)



8.1 Toner-Tu model

71

Here we can observe some resemblances with the compressible Navier-
Stokes equation, but also several important differences. Since in this
system we do not have Galilean invariance, in the advective term we can
have all the combinations of one spatial gradient and two velocities that
transform as vectors: this is different from NS, where the momentum
conservation implies \g = 1 and A\; = Ay = 0. The au — §||ul|* term is
taken form the Landau theory of phase transitions, [145] and it causes the
spontaneous symmetry breaking if v > 0. Together with the standard
isotropic pressure P;, we have also an anisotropic one P», both of them
are function of the local density and the magnitude of the local velocity.
The diffusivity coefficients D play the role of viscosities, while f is an
external forcing, which in the original model corresponds to a random
"thermal” noise (where A is a constant value and 7, j denote the Cartesian

components):
(fi (z,t) f; (2, t) = Adjo (x —x") o (t —t'). (8.2)

The spontaneous breaking of the rotational symmetry, and therefore
the establishment of the long-range ordered phase was investigated us-
ing methods from the statistical mechanics, in particular the dynamical
renormalization group. [144,146] The analysis showed that in d > 4 di-
mensions, the dynamics is analogous to spin systems at equilibrium, while
for d < 4 the long distance behaviour is strongly out-of-equilibrium, con-
firming the spontaneous symmetry breaking in d = 2, forbidden at equi-
librium by the Mermin-Wagner-Hohenberg theorem. In particular, it was
highlighted the fundamental role of nonequilibrium nonlinearities (the A
terms) in the stabilization of the ordered phase.

The Toner-Tu is a very generic model, from which numerous variations
have been then derived. The first one, already in [144], is the anisotropic
version, where a motion along a plain is favoured over motion in other di-
rections: this is the case, for example, of birds flocks, since gravity breaks
the symmetry between horizontal and vertical directions. If we relax the
"mass” conservation condition, adding a source term in equation (8.1a),

we have the case of Malthusian flocks, [147-149] which corresponds to
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the situation where the motile particles can reproduce and die. On the
other direction, if we assume incompressible flocks the equation (8.1a) is
reduced to V- u = 0, a case that has been extensively studied both from
a statistical physics [150-152] and a fluid mechanics [153-155] point of
view. Recently, several works have been published for the case where,
along or in place of thermal noise (annealed disorder), there is quenched
disorder, which means a forcing random in space but constant in time
(representing, for example, a ”dirt” domain). This kind of noise destroys
ordering in equilibrium systems in d < 4: for the compressible Toner-Tu
model, it has been shown that long-ranged order is possible also for d = 3,
while for d = 2 only quasi-long-ranged order can happen (which means
velocity correlation functions with an algebraic decay), a situation how-
ever different from the equilibrium case (where only short-ranged order is
possible). [156,157] For the incompressible situation, we have instead true
long-ranged order with quenched disorder also for d = 2. [158-160] Other
generalizations include for example the study in a curved surface [161]
or the introduction of an additional ”spin” field (in the sense of internal
angular momentum) to be more accurate in the description of real birds
flocks. [162]

In particular, an incompressible version with a negative ”viscosity”,
and a fourth-order "hyperviscosity”, was introduced in 2012 in order to
describe dense bacterial suspensions. [123] This is the object of our inves-

tigation, and it will be described in the next chapter.



Chapter 9

Bacterial turbulence and
TTSH model

One of the most simple examples of active fluid (at least regarding
the experimental realization) are dense bacterial suspensions. Bacteria
(although bacteria constitute an enormous and extremely
variegated ensemble of organisms, we will consider elongated rod-shaped
flagellated swimmers like Bacillus subtilis, Escherichia coli or Serratia
marcescens) are usually pusher-like microswimmers, [5] which, when im-
mersed in dilute environments, exhibit a particular motion denoted as
‘run and tumble’ behaviour. [18] But when they are grouped in dense
package, they can display very complex phenomena, due to various forms
of collective behaviour. In particular we will consider the so-called bacte-
rial turbulence, an example of active turbulence.

In 2004, in dense quasi-2D suspensions of B. subtilis, the presence
of coherent structures constituted by swimming bacteria was observed
for the first time: [163] in particular, on scales much larger than sin-
gle cells, the researchers observed ”high-speed jets straddled by vortex
streets” (see Fig. 9.1). A very interesting feature of this regime was also
the fact that these large-scale structures have a much larger speed than
the single bacteria self-propulsion. Vortices and jets were reminiscent
of two-dimensional inertial turbulence, [105,107] so already in that arti-

cle the authors coined the therm ”bacterial turbulence”, although they
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were aware that also important differences to high-Reynolds flows were

present.

Figure 9.1: First experimental observation of bacterial turbulence. The white scale bar is

35um. Image taken from [163].

In the subsequent years several investigations followed, with the obser-
vation of further phenomena, like confinement-induced self-organization
[164] or even a sort of supefluidity [16,165] (in the sense of negligible
viscosity) caused by bacterial activity. This phenomenon, culminating
even in a negative viscosity, it has been related on the onset of bacterial
turbulence. [18]

From our point of view, the most important work was an experimental-
numerical paper in 2012, [123] where, together with an in-depth exper-
imental quantitative study of bacterial turbulence, an effective contin-
uum model was suggested. They proposed an incompressible version of
Toner-Tu model for the coarse-grained collective velocity, with a negative
effective viscosity (therefore a fourth-order hyperviscosity is necessary for
stability reasons):

V-u=0, (9.1a)

du+ X (u-V)u=-Vp— (a+8lul’) u+ToVu+ Vi (9.1b)
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In the original paper also the A\ V||u||* term from TT was present,
but, since in this case the velocity field is incompressible, this term can
be incorporated in the effective pressure term, and therefore in subsequent
papers usually is not displayed.

The equation (9.1) combines the TT terms (self-propulsion with a
non unitary coefficient, and Landau forcing) with a double Laplacian, a
distinctive element from the Swift-Hohemberg equation for pattern for-
mation. [166] For this reason the model is denoted as Toner-Tu-Swift-
Hohemberg (TTSH) equation, [137] although it is sometimes called with
more generic names like "mean-bacterial velocity equation” or ”bacterial
turbulence equation”.

Since this model does not describe explicitly the solvent fluid dynamics
(and it does not conserve the momentum), it should be considered a
dry model. However, works focused on derivation of TTSH model from
microswimmers dynamics [167,168] showed that the coefficients take into
account, at least as a first approximation, hydrodynamic interactions. It
is also important to remark that, in this model, u has the double role
of collective velocity and polar order parameter, since it is assumed that
rod-shaped bacteria move in their symmetry axis direction, and also that
they have approximately the same self-propulsion speed.

From the coefficients in (9.1) we can obtain space and velocity scales.
In particular, the quantity A = ZW\/M, emerging from the in-
stability of null-field state (see section 9.1), corresponds to the length
scale of vortices. The presence of this fixed scale, well observed in ex-
periments (where A ~ 20 — 50um is found), indicates that this system
is strongly non-scale invariant, a very important difference with iner-
tial turbulence. [105] Regarding velocity scale, in this case we have two
possibilities, depending on what is more important between the Landau

potential or the Swift-Hohenberg operator in the dynamics of the flow we

U= _70‘ V= \/rig (9.2)

In the TTSH model we therefore have 5 different coefficients, but we

are considering:
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can simplify our parameter space. It is a common procedure to main-
tain fixed the value of A (and therefore the values of I'y and I's) and
B, while exploring the phase diagram varying A\g and «. Regarding A,
we can identify two different strategies: setting A = 27 with I’y = —2
and I' = —1, [169-171], that we will call normalization A, or setting
o = —0.045 and Ty = T3, [123,172-174] that we will call normalization
B. Regarding the value of a and [,the situation is more complicated:
while in normalization B is common to adopt § = 0.5, in normalization
A the situation is more intricate: it is possible to find § = 0.01 [169] or
f = 1.6 [171] and « can be re-expressed as a — 1 or even 1 — a.. For
Ao, being non-dimensional, we do not have such ambiguities. We chose
to consider normalization A with § = 0.01, without re-definition of a (so
a < 0 means forcing and « > 0 friction).

The TTSH model is a simplified effective model, thus having several
limitations. For these reasons, in the last years two different extensions
have been proposed: a two-fields version, in order to investigate also
the dynamics of the solvent fluid, and a compressible version, since the
incompressibility hypothesis is not always physically justified. The first
one was elaborated especially in order to relate the phenomenological
coefficients to microscopic parameters, [167, 168] and it will be better
described in section 9.2. The second one was proposed in order to unify
the description of bacterial turbulence with the one of motility-induced
phase separation, [175,176] and it includes a non-trivial density field,
described by an advection-diffusion equation. In this version, velocity
and polarization are not the same field, since, although they are still
parallel, self-propulsion speed is assumed to be dependent on density,
which affects the ratio of their moduli, as well as the effective coefficient

a (see equation (9.3)).
dip ==V -[v(p) p] + DV?p (9.3a)

1
0+ (p- V)P = 5V [0 (p) pl = (a (o) + Bllp|1*) p+ ToVp+TV'p,
(9.3b)
1 2

v(p) = —c|p =5 (Pmas = pmin) | +vo,  alp)=ao(pc—p). (9:3¢)
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9.1 Linear stability

Equation 9.1, with periodic boundary conditions, has two uniform
steady solution: the isotropic disordered state (w,p) = (0,py) and, for
a < 0, the manifold of globally ordered states (u,p) = (uo, po), where ug
is a vector with arbitrary orientation and modulus |jug|| = U = \/—a/B.
In both cases, py is a constant pressure. It is trivial that for o < 0 the
ordered state is favourite over the disordered one, it is an example of
spontaneous symmetry breaking. The following analysis is aimed to un-
derstand the stability of uniform states over non-uniform perturbations.
It was originally displayed in the supplementary of [123] and extended
in [177], and in the subsequent years other studies, more rigorous from a
mathematical point of view, have deepened the topic (along other related
issues, like wellposedness of the model). [178-180]

Disordered state

We will consider the equation 9.1 in a two-dimensional domain with
periodic boundary conditions. We start considering the disordered state
(o > 0), setting the perturbation as (g,7n) (with n < pg), and we linearize
the TTSH equation around the perturbed solution:

V.e=0, (9.4a)
e = —Vn — ag + TV’ + [, Vie. (9.4b)

Now, it is natural to consider a monochromatic perturbation (with

k #0):

(e,m) = (&,7) e™ =, (9:5)

in order to obtain an algebraic relationship (where k = ||k||):
k-é=0, (9.6)
o0& = —iki) — (o + Tok® — Tok*) €. (9.6b)

Multiplying the second equation for k, to satisfy the incompressibility

we must have 77 = 0, and therefore we get a dispersion relationship:

o (k) = — — FokQ + F2k4. (97)
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Now, since we already assumed 'y < 0 and o > 0, the sign of I'y is
crucial: if I'y > 0, we have o < 0 for every k, and therefore the disordered
state is always linearly stable. But, if 'y < 0 (i.e. for a negative effective
viscosity) we obtain an unstable band of modes: (k) > 0 for k* < k* <
kzi, with

To| (1 1 ally . 1[Dof”
o ol (L L f <a,=-2 (98
ST (2 ie) toeseSanr ©9

This means that, if misaligning effects between swimmers (parametrized
by a positive value of «) are not too much intense, the uniform disordered
will be substituted by a non-uniform state corresponding to bacterial
turbulence. In particular, if we derive the relationship 9.7 with respect
to k, we obtain the most unstable mode k. = m. Since this one
is the mode corresponding to the maximum perturbation growth, this
instability selects the establishment of structures with particular length

scale:

2T QFQ
AN=—=2m/—. 9.9
W T (9.9)
For this reason A is called vortex length scale, since vortices are the
coherent structures originated by the instability (see figure 9.2). This
mechanism of pattern formation is precisely the one described by the

Swift-Hohemberg equation.

Polar state

For the polar state (o < 0), we can adopt a similar procedure. In this
case, the perturbed solution is (ug + €, po + 1), and, since in this case we
do not have rotational symmetry, it is convenient to explicitly define a
reference frame. We can set the z-axis as the orientation, and therefore

decompose the perturbation in parallel and perpendicular components:

ug+e=(U+epeL). (9.10)
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Figure 9.2: Vorticity fields (from direct numerical simulations) emerging from the instability
(using a very small random perturbation) of the disordered state (a > 0), during the linear
regime (left) and during the non-liner regime at later times (right). We can clearly observe
the isotropic pattern expected from the stability analysis, from which the vortices originate.

Own work

Linearizing around this perturbed solution (recalling that U?3 = —«) we

get a slightly more complicated equation:

V.e=0, (9.11a)
O + Ao (uo - V)e = =Vn + 20e €, + [yWV% + 'L Vie. (9.11Db)

Considering also in this case a monochromatic perturbation:
(epper,m) = (8,6L,7) e®=t, (9.12)

the algebraic relationship is now:

k-e=0, (9.13a)

o€ = —ikn + Ag, (9.13b)
where A is a 2 X 2 matrix:
2ac 0

A= g‘ o)~ (Tok? = okt - ixohU) T (9.14)

If we multiply the second equation with ik and we use the incompress-

ibility relationship, we obtain:

. k- (Ae
n= —z%. (9.15)
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At this point we can define another matrix A | as:
A =II(k)A, with IL;; = 65 — kik;, (9.16)
which allows us to express equation 9.13b as:
o€ =A ¢ (9.17)

Eigenvalues of A provide us the dispersion relationship:

2

k2
o (k) € {0, PM?+PM#+2aW

The second eigenvalue in 9.18 is what interests us, and its corre-

XUk} (9.18)

sponding eigenvector is (—k,, k;). We have maximum R [0 (k)] for k =
(0, m), and therefore <—m , 0) as eigenvector. This means
that the polar uniform state is always unstable if I'y < 0, and that we
have the establishment of elongated coherent structures transverse with
respect to mean flow (corresponding to the vorticity streaks observed in
simulations), having a wavelength A along the mean flow direction (see
figure 9.3).

Figure 9.3: Vorticity fields (from direct numerical simulations) emerging from the instability
(using a very small random perturbation) of the polar state (o < 0), during the linear regime
(left) and during the non-liner regime at later times (right). Mean flow goes horizontally
from left to right. We can clearly observe the transverse pattern expected from the stability

analysis, not completely destroyed by non-linear terms. Own work

This stability analysis is therefore important because, in addition to
the problem of stability itself, it explains the principal features of struc-

tures that we can observe in simulations also at strongly nonlinear regimes.
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In particular, the structures originated by the instability of polar state
will have great importance in our study of the flocking turbulence and

the circular flocking we observed (see Chapters 10 and 11).

9.2 Derivation of the TTSH model

A first phenomenological derivation of TTSH, from general considera-
tions, was presented in [123,177]. Some years later, in [167,168] a more
rigorous derivation was proposed, from microscopic dynamics. In this
case, the TTSH model emerges from a two-fields (solvent and bacteria
velocities) model, in the limit of weak coupling between swimmers and

fuid.

9.2.1 Phenomenological derivation

Originally, [123,177] the TTSH model was proposed according two
hypothesis:

e at high densities, bacteria suspensions have an incompressible dy-

namics;

e the interesting dynamics can be captured by a single vectorial field
having the double role of coarse-grained velocity and mean orienta-

tion.

The first hypothesis is implemented with a divergence-free field V-u = 0.

The second one leads to a generalized Navier-Stokes equation:
Oi+u-V)u=-Vp— (a+8lul’)u+V-E (9.19)

where the (a + S||u||?) terms is inherited from Toner-Tu model in order
to describe aligning interactions, p is a Lagrangian multiplier assuring
incompressibility and E is an effective rate of strain tensor. Then, a

closure of E in terms of velocity field is postulated:

El'j = Fo (@u] + @uz) + FQVQ (8ZUJ + @uz) + Sqij (920)
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where ¢;; = wu; — (6;;/d) ||[u]* is a mean-field approximation of the
nematic active stress tensor in d dimensions. [181] From general hydro-
dynamics arguments it is assumed that we have S < 0 for pusher-like
swimmers, while S > 0 for puller-like ones. [182] It is also assumed that
the ”viscosity” T'y can be negative (in order to destabilize the uniform
state), and so also I'y < 0 for stability reasons.

So, if we substitute the expression (9.20) into equation (9.19), and we
define:

AM=1-—2S5, A\ = —=5/d, (9.21)
we obtain the standard TTSH model

dutXo (u-V)u=—-Vp+\V|ul’— (a+B|lu?) u+ToVutIViu.
(9.22)

As anticipated, we can redefine pressure in order to include the A\; term:
p—Mul* — p (9.23)

So Ag > 1 corresponds to pushers suspensions, while Ay < 1 should
correspond to pullers, although at 2022 there are no experimental works
proving that the dynamics of a pullers suspension can be simulated with
the TTSH model having Ay < 1.

9.2.2 Derivation in terms of microscopic parameters

Although it was immediately proved, comparing simulations to ex-
periments, that the TTSH model can describe pusher-like dense suspen-
sions, [123,183] a clear link between phenomenological coefficients and
microscopic physical quantities was missing. A first attempt to resolve
this problem was presented in 2016, [167] and expanded in 2018. [168]
Since it requires very long calculations, only fundamental aspects of this

derivation will be described in this section.

In this subsection, u denote the solvent fluid velocity field, differently

from the rest of the chapter.
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Swim and interactions

The starting point is to assume that, at large distances, microswim-
mers can be represented as cylindrical rods moving, with constant velocity
vp, along their mean axis direction, n causing a flow that can be modelled
as a stresslet, i. e. a force-dipole. A swimmer will therefore exert a force
F = + fyn, with positive sign for pullers and negative one for pushers.

It is then necessary to model interactions between swimmers, crucial in
dense suspensions. In the coarse-grained description in [168], authors dis-
tinguished between short range alignment interactions and far-field hydro-
dynamic interactions (see Fig. 9.4). Short-range ones are parametrized
by an effective potential, and it is assumed that they are of two differ-
ent typologies. Authors postulated that there is a activity-driven polar
alignment due to near-field hydrodynamic interactions, and a passive ne-
matic alignment due to steric effects. The ansatz chosen for the potential
between the p-esim and the v-esim swimmer is:

& (n, Y, ) = — 20 i v (¢, — riv) — % (n*-n")? O (e, — ™),

2

(9.24)
where r*¥ is the distance between the swimmers, vy and v, are the mag-
nitude of active and passive interactions, © is the Heaviside function,
and €, and ¢, are the ranges of these interactions. ¢, = ¢, = € will be
assumed for simplicity. The first term is multiplied by vy in order to
depend on activity. The fact that the first term depends on the scalar
product m* - n”, while the second one on its square, indicates that the
first one induces a polar alignment, while the second one a nematic order.
Far-field hydrodynamic interactions will be instead included in the stress

tensor, and therefore in the fluid velocity field.

Langevin and Fokker-Planck

At this point, we consider the equations of motion for a single swimmer.
We have two Langevin equations, one for the translational motion, and

one for the rotational one:

d
EXH =von" + u (X" t) + V2DE" (1), (9.25a)
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Figure 9.4: Coarse-grained interactions between microswimmers, according [168].

%n“ (t) =Q (X" t)-nt+ (I —n*n")-

[apE (XF,t) - nt (t) — Viu® (n) + 729" (1)] . (9.25b)

As we can see, the equation for the center of mass contains self-propulsion,
advective transport and thermal noise &, while rotational motion is a
modified version of the Jeffery equation, with a term due to short-range
interactions (with ® (n) = £, ,¢ (n*, n”,r*")) and another term 7 due
to thermal noise. D and 7 are the Brownian diffusivities, while agq is the
geometrical Jeffery factor, assumed to be identical to the one for passive
particles.

From these Langevin equations, we want to obtain a continuum de-
scription. We therefore define a one-particle probability distribution
P (x,n,t), first three moments of the distribution will be, respectively,

the scalar, polar and nematic (made traceless) order parameter:

p(x,t) = /an(w,n,t), (9.26)

P(x,t)= /an(m,n,t)n, (9.27)

(9.28)

Q.'I —

Q(z,t) = </dn73 (z,n,t) nn) -
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The corresponding Fokker-Planck equation to the Langevin equations
(9.25a) and (9.25b) is:

OP(x,n,t)=—V-[(vyn +u)P]+ DV*P

V., {(Q-n—i—aol'[(n)-E-n—ln)P]%—

%vnvn : [ (n)-T7 (n) P] +C@ [@], (9.29)

where II (n) is the orthogonal projector I—mnn. The last term of equation

(9.29) is the two-particles interaction integral, depending on short-range

potential ® and the two-particles probability distribution P (z, n; ', n';t).

Expressing this term in a simple form requires several approximation and

long calculations, authors of [168] at the end obtained:

OP (xz,n,t) =V -[(von + u) P] + DV*P

—Va [(Q-n—l—aoﬂ(n)-ﬂ-n—ln

el ()7 (5P) + T ) (5Q) ) P+
%vnvn [ (n)-T" (n)P], (9.30)

with:
J ()= (Aa+ BV’ +CVY) (), (9.31)

where Ay, By and Cj are geometrical factors depending on interaction

range € and dimensionality d.

Stress tensor

Now, in order to close equation (9.30) we have to consider how the
solvent velocity wu is affected by microswimmers. We assume, since bac-
teria swim at very low Reynolds number, u to be described by Stokes

equation, with a extra non-Newtonian stress o due to swimmers:
pViu —Vp+ V-0 =0, V-u=0. (9.32)

Here p* is the effective viscosity, which takes into account the effect

of swimmers volume fraction ¢ to the Newtonian viscosity. Usually a
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Batchelor-Einstein relationship [80,184] is assumed:
1= pio (L4 kie + ksc?) (9.33)

where, for pusher-like swimmers, the coefficients k; have to be fitted with
experimental data. The non-Newtonian stress tensor is composed by an
active 6% and a passive o part. The active component is defined as
V.0 = f, where f is the force density deriving from bacteria swimming,
that we can express using a multipole expansion, which averaged through

P (x, n,t) becomes:
o’ =~ —fo[C1 (pam) + (V- (pann) + V'V : (pnnnn) +
GVVV .- (pannnn) + ... ], (9.34)

where (; are coeflicients dependent on dipole length. The passive stress
can be instead computed from liquid crystal theory, [185] and it depends

on the nematic order parameter (and higher-order terms):
o~ pIQ ... (9.35)

where 9 is a concentration dependent parameter.

Field equations

From the Fokker-Planck equation we want to obtain simpler equations
for the order parameters, viable to be numerically simulated. Averaging

equation (9.30) over m we obtain a continuity equation for the density p:
op=—V-[p(veP + u)] + DV?p. (9.36)

Here comes one of the fundamental hypothesis of the TTSH model:
negligibility of density fluctuations (p = constant). This implies
V- (voP + u) = 0, and since we know that solvent velocity is incompress-

ible (V-u = 0), this means that also the polarization P is incompressible:
V.P=0. (9.37)

Multiplying equation (9.30) with n and averaging, we obtain the equa-
tion for P. Knowing that p = constant, mnm = Q + I/d and the fact that
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u (and its derivatives 2 and X) are already averaged quantities, we get:

(8t+u-V)P:Q-P+a02-P—v0V-Q+DV2P—lP—QOE:m
T

d

J (P) —1v0pQ - J (P) + mpJ (Q) - P —71pJ (Q) : mnm.
(9.38)

+Yovop

Similar arguments lead to the equation for the nematic tensor Q:

B, +u-V)Q=2(2-P)°" + 24y (- P)*" — 0y (V- 7mm)°"
+DV*Q — §Q + 27:202 — ap (2 : mmam)®"

T
+230v0p (J (P) P)*" — 2y9u0p (-J (P) - mmm)>"

#2710 (1(Q) Q) + 1T (Q) = p (7 (Q) 7)™, (939

where ST" means ”symmetric-traceless”. As it usual in moment equations,
now we have a standard closure problem: computing evolution of P and Q
requires knowledge of high-order moments. We therefore want to express
these quantities in terms of P and Q, and then, since we know from
experiments that in bacterial suspensions polar effects are dominant over
nematic ones, to express Q in terms of P.

Regarding high-order moments, authors of [168] adopted the Hand

closure, [186] which means:
(mam)°" = (aam)°" = (mann)®" = 0. (9.40)

In order to relate Q to P a modified version of Doi closure for passive

nematics [24] was proposed:
Q = ¢ (PP)*" + \(X, (9.41)

where the term proportional to ¥ should take in account velocity gradi-
ents generated by active particles. The coefficients ¢ and A are related to
microscopic parameters, and are obtained imposing 9;Q = 0 in equation
(9.39), keeping only linear terms in Q and ¥ or quadratic in P.

After long calculations, applying these closures and neglecting higher

order derivatives, finally we have the equations for the fluid velocity u
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and polarization P:

2, _ Jop [ ( . i) P.VP 2\ v2p
Viu lor? SHE! ol qP - VP + (& + &V V + Vpess,
(9.42a)

(Or+u-V+ AP - V)P =
(Q+kX)-P —Vp* —aP — B|P|°P + T\ VP + I[L,V'P.  (9.42b)

As we can see, the equation for the polarization is an extended version
of TTSH model with additional terms related to solvent velocity and its
derivatives, while in the Stokes equation we see how the solvent fluid is
influenced by swimmers.

Effective pressures p.¢s and p* are given by the sum of a term propor-
tional to ordinary pressure and a term proportional to ||P||? (correspond-
ing to the A\; term), also the viscosity is modified by activity. The total
velocity field of bacteria is therefore w = u + vy P.

We see a huge number of coefficients: &; are geometrical factors related
to swimmers dipole length, the other ones are combinations of the vari-
ous microswimmers properties. To handle this parameter space, authors
of [168] proposed also a normalization scheme, in order to express all the
parameters in terms of five non-dimensional quantities, which quantify
the weight of principal factors. Assuming that nematic effects are neg-
ligible (7; = ¥ = 0), as well as the translation diffusivity D, these non

dimensional parameters are:

e persistence number P, = wvgr/¢ (where ¢ is the bacterial length),

quantifying the importance of rotational Brownian effects;

o feedback coefficient cp = fopl?/(10pcssv0), measuring the effect of

activity on solvent fluid;

e interaction coefficient ¢; = gﬂrp’yovoe?’, estimating the strength of

polar alignment between swimmers;
e ratio /¢ between bacterial length and interaction range;

o Jeffery factor ay.
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With this scheme, adopting ¢, £/v, and vy as space, time and velocity

scales, the proposed values for the coefficients in the polarization equation

are:
1—c¢r 33 3 2
- — 2% =2 (14 ZagPer ),
« P B 5D 0 5( —|—3a0 CF)
3 cr 1 /eN2¢c  ag agp
=2 1--) r:-(-) a_Bp Ty= -2 pen
" 5a°< 3 "“To\e) BT 15T T

(9.43)

Importance of coefficient ¢y can be understood looking at normalized

version of solvent equation:
1
Viu = cp [6c1P - VP + V°P + 2—8V4P} + VDeys- (9.44)

Here cp multiplies all terms depending on polarization: it means that,
if cp < 1 (for example, in the case of large effective viscosity, possible in
very dense suspensions), the solvent fluid is not significantly affected by
microswimmers motion. If also external forcing is not present, the solvent
fluid will be (macroscopically) at rest (u = @ = X = 0), and therefore
dynamics of polarization P is decoupled from the solvent. In this case,
equation (9.42b) reduces to the standard TTSH model.

A further extension of this model was proposed in [187], where the
presence an external field affecting the polarization field was considered.
At 2022 [187] and [188] (a work focused on comparison with experiments)
remain the only application of this two-fields model. A mathematical

analysis of the extended model was also performed in [189)]

9.3 General phenomenology

Since its introduction in 2012, [123] the TTSH model has been subject
to numerous studies which highlighted its rich phenomenology. In this

section, a brief review of existing literature is present.

9.3.1 Mesoscale turbulence

The first regime described is the so called mesoscale turbulence. It is a

isotropic and homogeneous state, emerging directly from the instability of
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the disordered state, characterized by the presence of many vortices with
fixed spatial length (the A scale of the instability), which move chaotically.
This was exactly the state for whose simulation the TTSH model was first
proposed in 2012 (see figure 9.5). A study from 2013 [183] showed that
a similar state can be observed (and simulated) also in 2D slice of 3D
systems (at 2022 it remains the only study about TTSH model in three
dimensions). In simulations, this state is obtained with A\ around 3.5 (the
value commonly adopted) and values of alpha that go from positive (but
lower than threshold value «; in order to have the instability of uniform
state) to slightly negative. It is important to notice that changing the
value of a causes some quantitatively changes in the flow, but many

qualitatively features are maintained.
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Figure 9.5: Flow streamlines and vorticity fields from quasi-2D B. subtilis suspensions (left)
and from 2D simulations of TTSH model (right). [123]

Here, the term mesoscale is due to the fact that these structures are
not on a macroscopic scale (A ~ 20—50um), but they are still an order of
magnitude greater than single swimmers. The (qualitatively) turbulent-
like behaviour, but also its differences from "real” fluid turbulence, is
visible from kinetic energy spectra (see figure 9.6). We can observe the
presence of many active scales, but the power-laws are completely differ-
ent from the k~5/3 of Kolmogorovian turbulence. In particular, in the first
paper about TTSH model, [123] it was observed a peak around k = 0.1k,
where k; is the wavenumber corresponding to individual bacterial scale,

(and therefore near 27/A), with a k%3 law on larger scales, and k=53 on
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smaller scales. However, further numerical studies [172,173,190] clarified
that this power laws are not universal, but they depend (especially on
larger scales) on the value of «, and also that the peak position moves

towards left (larger scales) with decreasing .
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Figure 9.6: Left: kinetic energy spectra from 2D numerical simulations, compared to ones
obtained by quasi-2D and 3D dense suspensions of B. subtilis. [123] Right: comparison be-
tween kinetic energy spectra obtained from numerical simulations with different values of
a. [172]

One of major differences between active and inertial turbulence is in
the energy budget. One of the key features of high-Reynolds flow is the
energy cascade (inverse in 2D, direct in 3D), corresponding to a range of
scales with a constant energy flux, caused by advection term. [105] An
investigation on energy budget in mesoscale turbulence was performed
in [169,172]. If Ej is the energy associated to Fourier mode k, its temporal

evolution obeys to:
OBy =2 (—a —Tok® + Iok") By + TR + T (9.45)

Linear terms are trivial: I'g term injects energy around the scale A,
while T’y dissipates it at high-wavenumbers (small spatial scales). The
a term injects or dissipates energy at all scales, according to its sign.
The cubic non-linearity acts as a large scale friction, with a non-constant
coefficient (proportional to total energy Ey): it was shown in [172] that,

in the stationary regime, the cubic term can be approximated as:

Tcub ~ _SBEtotEk- (946)
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The advective non-linearity has a more complicated behaviour: it trans-
fers energy from intermediate scales (near A, where the injection of energy
due to I'y is stronger) towards large scales (see fig. 9.7). This energy trans-
fer is probably crucial in shaping the mesoscale state, since it explains
how the spectrum peak can move at wavenumbers smaller than 27 /A
when changing the value of « (and, from our simulations, the weight of
advection term in energy budget is maximum in the transient from the
linear instability to the stationary regime). But a constant (and station-
ary) energy (or enstrophy) flux lacks: we do not have an inertial range
in bacterial turbulence. Absence of energy cascade is common to other

forms of active turbulence, [191-194] as well as elastic turbulence. [26]
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Figure 9.7: Spectral contributions to energy budget in the stationary mesoscale turbulent

state, with @ < 0. The I' coefficients here are defined with opposite sign. Image taken
from [172].

Probably, the more noticeable differences caused by changing the value
of a (still in mesoscale turbulence regime) are observed in velocity and
vorticity distributions, as it was highlighted in the paper. [173]. Using the
normalization B, they compared the flow at a = 4 (low energy) with the

one at @« = —1 (high energy), and they found that, while at low energy
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we have distributions that are almost Gaussian (especially the velocity),
at high energy the velocity distribution is still close to Gaussian (but
with relevant sub-Gaussian tails) and the vorticity one is strongly not-

Guassian, even at its center (see figure 9.8).
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Figure 9.8: Velocity u (left) and vorticity w (right) distributions in the mesoscale turbulence
regime computed and compared to Gaussian ones in [173]. Top: high energy (a < 0) regime,

bottom: low energy (a > 0) regime.

Finally, several works [173,174,190,195,196] investigated Lagrangian
properties of mesoscale turbulence, simulating the transport of tracer

(point-like) particles, which dynamics is simply given by:

—p U (x;(t),1). (9.47)

All these papers agree on the fact that, if we compute the mean-squared

displacement (MSD) of a large ensemble of particles:

N

(A%) (1) = = 3 [ (o + 1) — 2 (10)) (9.48)

=1
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we have, for small ¢, a ballistic behaviour (i.e. (Az?) o t?), while for
large t we can observe a diffusive trend (i.e. (Ax?) o< t). This behaviour
is qualitatively identical at various a;, but the crossover time 7. between
ballistic and diffusive region shows a non-monotonic dependence in «,
with a minimum in o = 0 (see figure 9.9). Transition from the diffu-
sive to super-diffusive behaviour at large « is indeed one of the signals
which indicate the transition to a different regime than the mesoscale
turbulence. [174,195]
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Figure 9.9: Mean-squared displacement of passive tracers in mesoscale turbulence regime.
In the inset the non-monotonic dependence of crossover time 7. in « is shown. Image taken
from [190].

9.3.2 Stationary square lattice

Mesoscale turbulence emerges because of self-advection term, that
chaotically ”"mixes” the structures generated by linear instability of the
disordered state. For this reason, if we ”shut oft” this term setting Ay = 0,
we obtain a regular state, composed by square vortices, with wave num-
(1 —«)/f and k. (as it

was shown in [169]). In this case, we simply have a classical phenomenon

ber k. = 2w /A and amplitude proportional to

of pattern formation, described by a Swift-Hohenberg-like equation. A
recent numerical work [197] demonstrates that this state is stable also for

Ao # 0 under a certain threshold (depending on «) A*, and investigates
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the transition between the stationary lattice and the mesoscale turbu-
lence. In particular, they observed a qualitatively change in transport
properties of Lagrangian tracers: for Ay < A\* particles are trapped into
closed loops, while for A\g > A\* they are advected in irregular trajecto-
ries. Quantitatively, after the ballistic region, the MSD remains almost
constant in the first case, not exhibiting the diffusive behaviour of the

second case (see figure 9.10)
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Figure 9.10: Left: flow streamlines and vorticity field in the stationary square lattice state.
Right: mean-squared-displacement of Lagrangian tracers below and above the transition from

stationary lattice to mesoscale turbulence. Both images taken from [197].

9.3.3 Active vortex lattice

Increasing the self-advection to very strong values it is possible to ob-
serve the emergence of another forms of vortex lattice, but very different
from the stationary one previously described. In particular, there are two
different forms of active vortex lattice (AVL) that have been simulated
with the TTSH model: the spontaneous one, and the weakly constrained

one.

The spontaneous AVL is a state observed for A\g 2 6 (with small « fric-
tion) in periodic domains without obstacles, originally announced in [169]
and analyzed in details in [198]. This regime (until now) has not been

observed in bacterial suspensions, but it shows similarities with a state
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observed in sperm cells suspensions. [199] It was found that, with extreme
strength of self-advection, the mesoscale turbulent state, where vortices
with opposite handedness coexist, is not stable. After a long time tran-
sient, the system spontaneously break the vortices symmetry: one sign
of vorticity prevails, resulting in a regular triangular lattice of same-sign
vorticity, surrounded by a ”sea” of opposite vorticity. In the case of
a very large domain, this spontaneous symmetry breaking (SSB) is not
uniform, with the establishment of clusters with opposite sign (and also
different lattice orientation), separated by small boundaries of mesoscale
turbulence. It is important to notice that this state is very different from
the stationary square lattice, also because its wavelength is not the one
(A) predicted by linear stability analysis, but it is greater than it (on the
order of 1.7 —1.8A), and it slightly depends on intensity of the « friction.
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Figure 9.11: Left: snapshot of the vorticity field in the spontaneous active vortex lattice
phase. Right: Transition from the AVL to the turbulent state (and vice versa), parametrized
by the ratio between time spent in the AVL phase and the total time, changing the parameter
Ao (top) or the parameter . In the first case we have coexistence, in the second (in the left

side) hysteresis. It is important to notice that the parameter a here defined corresponds to

our a — 1.Images taken from [198]

This state does not exist if the friction due to the a-term is too strong,

but also if it is too weak (the boundary value, depending on A, is close
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to the change of sign of «). It it interesting to notice that the transition
mechanism between the turbulent and the AVL phase depends on the
fact we change A\ or if we change «. In the first case, we have a region
of coexistence between the two phases, with the system that intermit-
tently switches between turbulence and AVL. In the second one, we have
hysteresis: if we go from AVL to turbulence, the transition value of « is
different from the value necessary to go from turbulence to AVL. These
behaviours can be quantified by the ratio between the time spent in the
AVL phase and the total time (see figure 9.11).

The weakly constrained AVL has quite different features. In this case,
we still have a periodic domain, but also a periodic array of small obsta-
cles, which can alter significantly the dynamics of the system. A combined
experimental-numerical study of 2020 [170] investigated the effect of small
pillars (which occupy only a negligible fraction of the domain) disposed in
various typologies of lattices, having wavelength comparable to A. In this
paper, the authors found that, around an optimal lattice constant, the
mesoscale turbulent state is stabilized into a regular pattern. In particu-
lar, in the case of Kagome lattice (fig. 9.12), another case of spontaneous
symmetry breaking was observed: the emergence of a net rotational flow
around the arrangement of pillars, thus breaking the mirror symmetry
of the lattice (with both the configurations equiprobable). In this case,
there is the emergence of a vortex pattern composed by six small vortices
rotating in the same direction, surrounded by six larger vortices rotating
in the other one. In a subsequent (only numerical) paper of 2022 [171],
focused about square lattices, the authors associated to every elementary
cell of the grid a +1 value, according the sign of the mean vorticity com-
puted in that cell, in order to map the system in an antiferromagnetic spin
model. Using standard instruments from statistical mechanics (like or-
der parameters and correlation functions), they showed a transition from
an ordered ”antiferromagnetic” phase to a disordered phase, for \g 2 9,
and especially that this phenomenon corresponds to a second-order phase
transition, in the same class of universality of the Ising model, with g

having the role of an effective temperature.
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Figure 9.12: Left: flow streamlines and vorticity field in Kagoma lattice, with highlighted
the closed loop having non-zero net circulation (black circles correspond to pillars). [170]
Right: transition from ordered ferromagnetic phase to disordered phase at increasing Ao, in

a square lattice arrangement. [171]

9.3.4 Flocking turbulence

As in the Toner-Tu model, having @ < 0 means having a net polar
aligning interaction between swimmers, which should lead to a polar state,
a manifestation of flocking. But in the TTSH model we have also the
destabilizing effect due to I'y < 0, which not only destabilizes the uniform
polar state, but it "tries” to suppress every attempt to flocking. This is
the reason why the mesoscale turbulent state is stable also at moderate
negative a;, with most all its properties qualitatively unchanged compared
to positive a. In the supplementary of [123], a criterion was proposed.
We can define two different time scales, related to Landau potential and

Swift-Hohenberg operator:

1 [Ty
Ta = ——, T

== 9.49
) o (9.49)

and therefore their ratio will be an (very approximate) indication of which

term will prevail. We expect that the isotropic mesoscale state will be
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unstable if:

oy, — —a> 1% (9.50)

T ITs|
As we will see in Chapter 10, this is a very crude estimate, which overes-
timates the value of o necessary to cause qualitative changes in the flow
properties. As observed in [174,195,200], when the « forcing is relevant
we can notice a modification in fluid structures, in particular filaments
(defined by authors wvorticity streaks) emerge next to usual vortices, and
some vortices appear to be more dominant than others. Apparently, the
domain is now divided in regions where the system is locally flocking,
characterized by polar order (so, where the Landau potential is dominat-
ing), and regions with mesoscale turbulence (where the Swift-Hohenberg
operator suppresses the flocking tendency). These regions (both of them)

are not steady, instead they move and deform chaotically.
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Figure 9.13: Left: vorticity field in the flocking turbulence regime. Right: transition from
diffusive to superdiffusive behaviour in the transport of Lagrangian tracers (normalization B

of a coefficient). Images taken from [174]

An important feature of this different regime is the observation of
anomalous diffusion in the transport of Lagrangian particles: at large
times, we have Ax? oc t#/3 [174]. Later investigations showed that this
phenomenon is probably due to the fact that these streaky regions advect
tracers much farther than the vortical regions. [195] Eulerian properties

of this regime will be the subject of our investigation in chapter 10.






Chapter 10

From homogeneous to flocking

turbulence

10.1 Introduction

As we have seen in the previous chapter, in the TTSH model the
linear stability analysis [178] predicts that the regime of uniform flocking
(which is present in the original Toner-Tu model) is destabilized by the
Swift-Hohenberg operator, and therefore it cannot observed in the TTSH
model. Nonetheless, recent works [174,195,200]. have shown that, if
the aligning potential is sufficiently strong, the TTSH model displays the
emergence of an inhomogeneous regime characterized by the presence of
large-scale, isolated vortices, surrounded by regions of small vortices and
elongated vortical structures, called vorticity streaks.

In this chapter, a detailed investigation of the inhomogeneous regime
of large-scale vortices is presented. We show that these structures origi-
nate from local attempts to organize the flow in configurations of circular
flocking induced by the aligning potential. The interactions between the
flocking vortices give rise to a regime that we call flocking turbulence. By
means of an extensive exploration of the parameter space we highlight
the importance of the interplay between the Landau force and the non-
linear advection term to induce the transition from the regime of isotropic

mesoscale turbulence towards the regime of flocking turbulence.

101
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10.2 Model and numerical methods

The Toner-Tu-Swift-Hohenberg (TTSH) model describes the effective
dynamics of a dense suspension of elongated pusher-like microswimmers
as a polar active fluid, governed by an incompressible Navier-Stokes-like

equation for the coarse-grained collective velocity field u:
O+ M - Vu = —Vp — (a + Blul> + ToV2 + [, VHu . (10.1)

The pressure term Vp ensures the incompressibility of the flow, V-u = 0,
since in dense suspensions one can neglect density fluctuations. The co-
efficients Ao, o, 3,15, 'y are phenomenological parameters related to the
properties of the microswimmers, the surrounding fluid and their inter-
action (see also Chapter 9).

Equation (10.1) is numerically integrated by a standard pseudo-spectral
method in the vorticity-velocity formulation with a 1/2 dealising for the
cubic nonlinearity, and a 4th order Runge-Kutta time stepping. Con-
finement in a circular domain is imposed by the penalization method
[201,202], which consists in modelling the region outside the domain as
a porous medium with vanishing permeability. To this aim, the term
—IM(x)u is added to (10.1), where 7 is the permeability time and the
mask field M(x) is equal to 0 and 1 respectively inside and outside a
circular domain of radius R [203].

We performed two main sets of simulations. In the first we fix Ay = 3.5
and vary both R = {16, 23,32,63}A and o = {—0.25, —0.50, —0.75, —1.00,
—1.25,—1.50,—1.75,—2.00}, while in the second set we fix both @ =
—1.00 and R = 63A, and vary \g = {2.0,2.5,3.0,3.5,4.0,4.5,5.0,7.0}. An
additional set of 269 simulations was performed with A\ = 3.5, « = —1.50
and R = 16A in order to study the transition time to the circular flocking
state. The domains with radius R = 63A, R = {31,23}A and R = 16A
are embedded in squared periodic domains of size L = {160, 80,40} A with
numerical resolutions N = {2048,1024, 512} respectively. In all the sim-
ulations the values of the other parameters are fixed as follows: 5 = 0.01,
I'y = 2, 'y = 1. The characteristic scale is A = 27w. The permeability

time of the penalization term is 7 = 0.001.
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We identify vortices by means of the standard Okubo-Weiss parameter
[204,205] Q = (8§y¢)2 —(024)) (021), where ¢ is the stream function (i.e.
u = (0,0, —0,0) and w = —V?¢ is the vorticity). Q < 0 corresponds
to vortical regions, while @ > 0 to regions dominated by shear. Vortices
are defined as connected regions of the space where Q < —Q* and the
threshold value Q* is chosen as 3 times the root mean squared (rms)
value of the Q field. We checked that our results do not depend on the
precise value of @*. We remark that the Okubo-Weiss criterion has been
already used in TTSH simulations for the study of Lagrangian properties
[195,196].

10.3 Transition towards flocking turbulence

In order to study the effect of the intensity of the aligning potential
on the dynamics of the system, we performed a first set of simulations
varying the strength of the Toner-Tu term in the range from a = —0.25
to a = —2. In all the simulations, the initial condition is a vanishing
velocity field, with a small random perturbation.

The early stage of the evolution of the system is driven by the linear
term Lu = —au—I'y,V?u—TI,V*u and it is characterized by an exponen-
tial growth of the rms values of the velocity and vorticity, in agreement
with the predictions of the linear stability analysis [177]. This phase ends
when the nonlinear terms become relevant. The cubic dumping term of
the Laudau force arrests the exponential growth and the self-advection
term destabilizes the stationary pattern created by the Swift-Hohenberg
term, thus inducing a mesoscale turbulence state [197]. This regime is
characterized by an homogeneous, disordered population of small vortices
(see Fig. 10.1 top). The vortices are uniformly distributed in the circular
domain, with a high vortex number density n (defined as the number of
vortices per unit area).

For moderate negative values of o (=1 < a < 0) the regime of
mesoscale turbulence is statistically stable: once the system reaches it, it

remains there forever. This is confirmed by the temporal evolution of the
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Figure 10.1: Vorticity fields w (left) and stream function ¢ (right), in the stationary regimes
of the simulations with o = —0.25 (top), & = —1.00 (center) and o = —1.75 (bottom). Here
Ao = 3.5 and R = 63A.
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Figure 10.2: Time evolution of the rms velocity urms (left), rms vorticity wrms (center)
and vortex density n (right) in the numerical simulations with o = —0.25 (green solid line),
a = —1.00 (red dotted line) and o = —1.75 (blue dashed line). Here A\g = 3.5 and R = 63A.
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Figure 10.3: Time evolution of the rms velocity urms (left), rms vorticity wrms (center)
and vortex density n (right) in the numerical simulations with Ao = 2.0 (green solid line),
Ao = 3.5 (red dotted line) and Ag = 5.0 (blue dashed line). Here « = —1.00 and R = 63A.

rms velocity Uy, Tms vorticity wy.,.s, and vortex density n, which remain

stationary in time (after the initial transient) as shown in Fig. 10.2).

For o = —1 the regime of uniform mesoscale turbulence is not stable
anymore. It undergoes a slow evolution during which the number of vor-
tices diminishes (see Fig. 10.2 left). The decrease of the vortex density is
accompanied by a simultaneous decrease of the rms vorticity, which sug-
gests that the average vorticity of each individual vortex remains almost
constant in time. At long times (¢t > 50A/U), the system achieves an in-
homogeneous, statistically steady state, characterized by the presence of
isolated vortices and elongate filaments called vorticity streaks [174] (see
Fig. 11.1 center). The flow is organized in large-scale structures, which
are evident in the stream function.

Increasing further the strength of the aligning potential (i.e. for a <
—1) the system evolves toward a strongly inhomogeneous state, composed
by few large vortices (see Fig. 11.1 bottom). Each vortex is surrounded by
a wide region of circular motion with constant speed U = \/T/ﬂ . The
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Figure 10.4: Asymptotic values of rms velocity urms (left), rms vorticity wrms (center) and
vortex density n (right) as a function of « in the numerical simulations with Ag = 3.5 and
R = 63A.

vorticity streaks are observed in the peripheral regions of these vortices,
and they are preferentially aligned in the transverse direction with respect
to the circular motion. The emergence of large-scale structures in the
flow is clearly visible in the stream function. Local dense vortex clusters
are still present between these structures and close to the boundary of
the domain. During the evolution of the system toward this asymptotic
state, we observe a decrease of the rms vorticity and vortices density (see

Fig. 10.2), while the rms velocity increases slowly in time.

The formation of this state can be understood as follows. At large neg-
ative values of «, the strong Landau force promotes the development of
local attempt to organize the flow in states of circular flocking. This pro-
cess occurs independently in different regions of the domain, producing
large vortices with either positive or negative sign. The Swift-Hohenberg
operator is not anymore capable to suppress completely the flocking ten-
dency of the system, but it is still able to destabilize the peripheral re-
gions of the vortices. Indeed, linear stability analysis of a global polar
state predicts the appearance of a transverse pattern with respect to the
mean flow with wavelength A [177]. The streaks observed in Fig. 10.1
bottom) correspond to this pattern, distorted by the advection produced
by the other vortices. Since this regime is characterized by the chaotic

interaction between the flocking vortices, we call it flocking turbulence.

The non-linear self-advecting term Agu - Vu plays a crucial role in
the development of the flocking turbulence. To address this issue, we

performed a second set of simulations keeping fixed o = —1 and varying
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Figure 10.5: Asymptotic values of rms velocity urms (left), rms vorticity wrms (center) and
vortex density n (right) as a function of Ag in the numerical simulations with o = —1.00 and
R = 63A.

Ao in the range from 2 to 7. The temporal evolution of the rms velocity,
vorticity and vortex density is shown in Fig. 10.3 for three different values
of Ag. While the rms velocity is almost unaffected by the change of A\, the
rms vorticity and vortex density reach different asymptotic values which
decrease at increasing \g. This is qualitatively similar to what observed

at increasing the intensity of || (see Fig. 10.2).

The dependence of the asymptotic, stationary values of rms velocity,
vorticity and vortex density as a function of the parameter v and )\ is
shown in Figs. 10.4 and 10.5 respectively. The transition from the two
regimes of mesoscale and flocking turbulence is evident in the dependence
of the u,,s on . In the regime of flocking turbulence, at large negative
values of a the ratio between u,,,s and U = \/T/ﬁ is almost constant,
meaning that u,,,s grows proportionally to \/H . Conversely, at small
values of « the ratio w,.,s/U increases, in agreement with the results of
previous studies of the mesoscale turbulence regime [190]. We find that
Urms 18 almost independent of A\g. This is consistent with the observation
that the self-advection term conserves the energy, and therefore the value

of \g is not expected to affect the energy balance.

Both the rms vorticity and the vortex density decrease by increasing
the magnitude of |a], in agreement with the qualitative observation that
the number of vortices decreases as shown in Fig. 10.1. A similar be-
haviour is observed also by increasing the strength of the self-advection:
Larger values of \y correspond to lower w,.,,s and n. The above results sug-

gest that the transition from mesoscale turbulence to flocking turbulence
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Figure 10.6: Kinetic energy spectra, averaged in the stationary regimes of the simulations
with fixed Ao = 3.5 (left) and fixed @ = —1.00 (right). Here R = 63A.

is not solely due to the increase of the strength of the aligning potential
a, but it requires also a strong enough self-advection (i.e. non-linearity).

Further insights on this transition are given by the distribution of ki-
netic energy among different spatial scales, which is quantified by the
energy spectrum FE (k), shown in Fig. 10.6. In the mesoscale turbu-
lence regime, E (k) is peaked around a characteristic wavenumber k4, ~
27 /A, Increasing the energy input (i.e. increasing the magnitude of |a|)
the peak of the spectrum shifts towards smaller wavenumbers k.. <
27 /A, in agreement with previous findings [172,173,190].

In the regime of flocking turbulence (for |a| 2 1), we observe a qualita-
tive change in the spectrum. The energy spectrum develops a power-law
behaviour F(k) ~ k~° at intermediate wavenumbers k., < k < 27/A,
with a spectral slope § which is close to the theoretical value § = 3/2
predicted and observe in [200]. At large, negative values of o we observe
a slight increase of the spectral slope 0, which exceeds the value 3/2. At
the same time, the wavenumber k,,,, becomes almost constant and it is
close to the smallest available wavenumber, i.e. the inverse of the size of
the circular domain. As we will discuss in the next Section, these effects
are due to the confinement.

Interestingly, we find that the decrease of peak of the energy spectrum
kmaz and the development of the intermediate power-law behaviour is ob-
served also at increasing the parameter \y at fixed «. This is a further

clue that the transition from mesoscale to flocking turbulence is deter-
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Figure 10.7: Autocorrelations functions of the velocity field Cy(r) in the stationary regimes
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Figure 10.8: Velocity correlation length &, in the stationary regimes of the simularions with
fixed Ao = 3.5 (left) and fixed & = —1.00 (right). Here R = 63A.

mined by the interplay between the Landau force and the self-advection
term.

The growth of the integral scale of the flow, signalled by the reduction
of k,.qz, can be quantified by the analysis of the autocorrelation functions
of the velocity field
(u(z) - u(x'))

(lu@)P)

with r = ||z —2'||, and angular brackets indicating average over space and

Cyu(r) = (10.2)

time (in the stationary regime). We remark that correlation functions are
a well established tool for the study of flocking phenomena [206].

The velocity autocorrelation function, plotted in Fig. 10.7, displays
a negative minimum which allows to define a velocity correlation scale

¢ given by the first zero crossing of C,. The dependence of £ on the
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parameters « and g is reported in Fig. 10.8. Both reducing « at fixed
Ao and increasing Ay at fixed o we observe a sharp increase of £ from
values comparable to A to values of the order 30A, which indicates the
transition from the mesoscale regime to the flocking turbulence. At large
values of A and large negative values of a we also observe a saturation of
the correlation scale to an asymptotic value £ ~ 30A which is comparable
with the radius of the circular domain (R = 63A).

10.4 Role of confinement

The saturation of correlation length and of the peak of the energy
spectrum k., reveals that the geometrical confinement of the bacterial
turbulence influences significantly its dynamics. In this section we pursue
the investigation of the effects of the confinement presenting the results of
simulations of the TTSH model in circular domains at varying the radius
R of the domain.

In Figure 10.9 we show the temporal evolution of the rms velocity,
vorticity and vortex density for a set of simulations in the regime of
flocking turbulence with parameters a« = —1.75 and Ay = 3.5. The radius
of the domain is varied from R = 16A to R = 63A. Increasing the
confinement, i.e. reducing R, we observe a decrease of the asymptotic
values of u,,,s and an increase of w,.,,s and n. This effects can be ascribed
to the interactions of the flow with the no-slip boundary. The friction with
the boundary dissipates part of the energy, thus reducing u,,,s. Close to
the boundaries, the energy dissipation is accompanied by the production
of small vortices, which causes an increase of w,,,s and of the total number
of vortices. These effects are stronger for the cases with smaller radius
R, because of the larger ratio between the perimeter and the area of the
domain.

In Fig. (10.10) we compare the asymptotic stationary values of s,
wrms and n as a function of the domain size R, in the regime of mesoscale
turbulence (v = —0.25), in the transition regime (o = —1.00) and in

the regime of flocking turbulence (« = —1.75). The parameter \g =
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Figure 10.9: Time evolution of the rms velocity urms (left), rms vorticity wrms (center)
and vortex density n (right) in the simulations with different values of confinement radius:
R = 63A (green solid line), R = 31A (red dotted line), R = 23A (orange dotted-dashed line)
and R = 16A (blue dashed line). Here o = —1.75 and Ao = 3.5.
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Figure 10.10: Asymptotic values of the rms velocity urms (left), rms vorticity wrms (center)

and vortex density n (right) as a function of the confinement radius R. Here \o = 3.5.

3.5 is fixed for all the simulations. The asymptotic values presented in
Fig. (10.10) are normalized with the corresponding values s, Wrmso
and ng obtained in another set of simulations with identical parameters,
performed in a large square domain with size L = 160A and periodic BCs,

which is the typical setup for the numerical studies of the TTSH model.

The effects of the confinement are qualitatively similar for all the
regimes: Reducing R we observe a reduction of u,,,s and an increase
of w,ms and n. Nonetheless, we observe significant quantitative differ-
ences. In the case of mesoscale turbulence (v = —0.25) the values of
Urms, Wrms and n varies weakly with R and they remains close to those
of the simulations with periodic BCs. Conversely, the values obtained in
the flocking turbulence regime displays a strong dependence on R.

The weak influence of the confinement on the mesoscale turbulence
can be explained by the observation that in this regime the correlation
length & of the velocity field is approximately one order of magnitude

smaller than R. Therefore the effects of the confinement are restricted to
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a small region close to the boundary. In the intermediate case (v = —1)
the correlation length £ is larger than in the mesoscale turbulence (see
Fig.10.8) and the effects of the confinement are stronger. In the flocking
turbulence regime (v = —1.75) the values of s, Wrms and n change
abruptly when the radius R becomes smaller than the correlation length
& =~ 30A.

The effects of the confinement manifest also in the energy spectra.
In Fig. 10.11 we compare the spectral slope ¢ of the energy spectrum
measured in simulations with different R and «. In the set of simulations
with o = —1.25 the slope is almost independent of R and its value is close
to the theoretical prediction 3/2 [200]. The independence of the spectra
from R is observed also for a > —1.25 (not shown), which confirms that
the effects of the confinement on the regime of mesoscale turbulence are

weak.
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Figure 10.11: Spectral exponent ¢ as a function of confinement radius R, in the simulations
with Ao = 3.5 and o = —2.00 (orange diamonds), a = —1.75 (blue squares), a = —1.50, (red

circles) and a = —1.25 (green triangles).

In the regime of flocking turbulence the spectral slope ¢ varies sig-
nificantly with R and «. Decreasing the radius R we find that § grows
up to an asymptotic value which increases with |a|. We argue that the

steepening of the energy spectrum due to the confinement can be related
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to some process of spectral energy condensation, i.e., of the accumulation
of energy in the lowest mode accessible to the system, whose wavelength
is comparable to the size of the domain. This explains the discrepancy
between the slope of the energy spectra observed in our simulations and
the results reported in [200]. The trend of the values of § at increasing R
suggests the conjecture that the spectral slope attains an universal value

d = 3/2 in the limit of unconfined, infinite domain.

10.5 Discussions

The data from our simulations, combined with the results reported
in [200], suggest that, in the TTSH model, we have a transition between
a homogeneous regime denoted as mesoscale turbulence to another one,
with qualitatively different features, that we have called flocking turbu-
lence. For moderate values of a we have smooth variations in quantita-
tive properties of the system (position of the peak of energy spectra [172],
crossover time in the transport of Lagrangian particles, [190] etc.), simply
due to more energy inside the system, but going beyond a certain thresh-
old a., the real nature of the Landau forcing (o + 3|u|?) w appears, with
consequent abrupt variations in the mean enstrophy, energy spectra and
correlation functions. This term is not simply a forcing which injects
energy into the system, but, since u represents also the order parameter
of the system, it also induces a spontaneous symmetry breaking (SSB)
in the velocity field, pushing all the swimmers to propel in the same di-
rection with the same speed U = \/T/ﬁ. Therefore, for a < a,, in
the system we can observe the formation of some large vortices (quite
different from the small vortices in mesoscale turbulence) with constant
speed U, which are nothing else than regions where the SSB happens in
an independent way. If the dynamics of the system was driven only by
the Landau terms, we would observe the transition at o, = 0, but in this
model we have also the Swift-Hohenberg (SH) operator (I'yV? + ['yV*) u
which, if I'y > 0, which always destabilizes the polar ordered state. [177]

Our study demonstrated that the self-advection term Aqu-Vu plays an
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important role in this transition. In particular, we find that the transition
towards the flocking turbulence can be realized also keeping fixed o and
increasing the strength of the self advection coefficient Ag.

These observations can be rationalized by considering the time scales
of the different terms of the TTSH model. The characteristic time scale
of the Landau force 7, of the SH term 7 and of the self-advection term
Ty are: r

To = —é, T = F—g, T = _ozi)\o . (10.3)
The expression of 7, follows from the consideration that, while the typical
intensity of the velocity U is determined by the Landau force, the velocity
field in (5.1) is advected by the rescaled velocity A\gU. We note that for
Ao > 1, (which corresponds to the case of pusher-like swimmers considered
here), the self-advection time 7, is shorter that 7.

The transition from the mesoscale is expected to occur when m ~
min(7,, 7). Since we have 7, < 7,, the condition for the transition can
be written as r2

arg ~ —=2 . (10.4)
Iy
Our prediction refines the criterion proposed in the Supplementary

of [123], considering the role of self-advection. For fixed Ay = 3.5 the
relation (10.4) give the critical value o, ~ —1.14, while for fixed o =
—1 we get \. >~ 4, which are both in quantitative agreement with our
numerical findings. If we consider the normalization adopted in [200], we
have a, ~ —6.3, close to the value a. ~ —5 they reported.

The crucial role of the self-advection coefficient Ay is not surpris-
ing, since, in other regions of the parameter space compared to those
we have analyzed, it has been shown not only that varying Ay we have
the transition from a stationary pattern to the chaotic mesoscale turbu-
lence, [169,197] but also the emergence of an out-of-equilibrium active
vortex lattice [169,198] or, in the presence of a periodic array of obsta-
cles, the occurrence of an order-disorder second-order phase transition in
the Ising universality class, with an effective temperature proportional
to Ag. [171] However, it is important to recall that the role of the self-
advection in the TTSH model is quite different to the role of in the usual
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Navier-Stokes equation, and that, despite some common features (like
power-law energy spectra or intermittent behavior [200]), the classic high-
Reynolds turbulence and the flocking turbulence regime we described are
two very different phenomena (as well as forms of active turbulence in
other systems [191-194]). The former is due to the inertia of the fluid,
which, when it dominates over the viscosity, triggers the emergence of
the energy cascade, i.e. a constant flux of energy across the scales of the
system. The latter is caused by a spontaneous symmetry breaking of the
system, where the self advection has the role to suppress the instabilities
due to the SH term, and the energy is injected simultaneously on all the

scales of the system.






Chapter 11

The giant vortex

11.1 Introduction

In the previous chapter we studied bacterial flocking turbulence in a
confined domain, but this is a regime that we can observe also with peri-
odic boundary conditions, which is only slightly affected by confinement.
Nonetheless, it has been shown that in active fluids confining bound-
aries can induce the emergence of coherent structures, qualitatively dif-
ferent from the ones we can observe in periodic domains. [164,207-209] In
particular, considering experiments with bacterial suspensions, the con-
finement in circular micro-wells can induce the formation of a rectified
vortex. [164,210,211] Here, by means of extensive numerical simulations
of the TTSH model [123,183] (see also Chapter 9), we show that geo-
metrical confinement can induce the transition from the chaotic regime
of flocking turbulence to a novel regime, characterized by the formation
of a giant vortex surrounded by an annular region of elongated vorticity
structures. We also highlight that this state has larger size and different
velocity profile with respect to the vortical structures reported in previ-
ous studies [131,164,210] and that it originates from a different process
which involves complex interactions between the chaotic flow and the

boundaries.

117
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11.2 Model and simulations

We modelled a dense bacterial suspension by mean of the TTSH model,

where the coarse-grained collective velocity field u obeys to:
ou+u-Vu=—-Vp— (a+Bul?+ToV:+ TV . (11.1)

The pressure gradient Vp ensures the incompressibility of the flow, V-u =
0, which is valid for dense suspensions, and the parameters Ay, a, 5, g, 'y
are determined by the properties of the microswimmers (more details in
Chapter 9).

Numerical methods are the same adopted in Chapter 9: we integrated
equation (11.1) in a two-dimensional circular domain of radius R, using a
dealiased pseudospectral method, with an implicit Runge-Kutta scheme
for time integration and a penalization term in order to implement the
no-slip boundary conditions. Simulation parameters are reported in Table
11.1.

R N2 o}
Al | 16A | 512 x 512 | -2.00
A2 -1.75
A3 -1.5
A4 -1.25
B1 | 23A | 1024 x 1024 | -2.00
B2 -1.75
B3 -1.5
C1 | 31A | 1024 x 1024 | -2.00
C2 -1.75
C3 -1.5

Table 11.1: Values of coefficient a, confinement radius R and numerical resolution N?, for
the three sets of simulations (A, B, C). All the simulations are performed with parameters
Ao =3.5,8=0.01,Ig =2, =1, 7 = 0.001, and grid spacing Ax = 5/64A.

For the analysis, we decompose the velocity field in the radial and

angular components u = u,7” + u,@ which define the radial and angular

2

kinetic energies E, = 3(u?) and E, = 3(u?) (here and in the following,

(-) denotes spatial average over the circular domain of radius R).
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11.3 Emergence of the giant vortex

As an initial condition, we considered a null velocity field seeded with
an infinitesimal random perturbation. At the beginning of the simulation,
phenomenologically lead by the Swift-Hohenberg term, the swimmers or-
ganize in a large number of small-scale vortices, with equal probability of
positive and negative vorticity and homogeneous and isotropic spatial dis-
tribution. This state corresponds to the mesoscale turbulence, therefore
the statistical properties of the flow are identical to those observed in sim-
ulations with periodic boundary conditions [172,173,190]. Since we are
considering values of a beyond the threshold o, we defined in the previous
chapter, the mesoscale turbulence is not stable: after a short time, the
system evolves towards the regime of flocking turbulence, characterized
by the presence of multiple large-scale vortices, which move chaotically
and are surrounded by regions of vorticity streaks (see Fig. 11.1, left

panel).
5.0

2.5

r0.0

-—2.5

=5.0

Figure 11.1: Vorticity field for the simulation with R = 31A and a = —1.75 at t = 210A/U
(left) and t = 550A /U (right).

During this chaotic regime we observe an approximate equipartition
(with strong temporal fluctuations) between the radial and angular com-
ponents of the kinetic energy (see Fig. 11.2 left panel). At later times,
the system displays a rapid increase of E, accompanied by the decrease

of F,, which indicates the transition to a novel regime characterized by
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Figure 11.2: (left) Temporal evolution of the radial and angular components of the kinetic
energy E, (blue, dashed line), E, (red, solid line) normalized with Ey = $U”. Simulation
at R = 31A and a« = —1.75. (right) Temporal evolution of the angular momentum M
normalized with Mo = %UR for the simulation at R = 31A and o« = —1.75. The inset shows
the evolution of the angular momentum for an ensemble of simulation with different initial
conditions with o = —1.50 and R = 16A.

E

¢
organize in a state of circular flocking, that is, a stationary, single, giant

~ Fy = %U 2 and FE, ~ 0. This means that the swimmers self-

vortex which spans the whole domain (see Fig. 11.1 right panel), similar
to that observed in experiments of bacterial suspension in a viscoelastic
fluid [212].

The formation of this large-scale structure corresponds to a symmetry
breaking of the angular momentum of the flow M = (r xu). As shown in
the right panel of Figure 11.2, the values of M display strong fluctuations
around zero before the formation of the giant vortex. With the ultimate
transition to circular flocking, M saturates to a constant value |M| ~
M, = %U R with definite sign. The transition times, from the chaotic
regime of flocking turbulence to the stationary giant-vortex state, appears
to be unpredictable, since we observed a strong variability, changing the
initial random perturbation (see the inset in the right panel of Figure
11.2). The variability of transition time will be discussed further in this
chapter.

In Figure 11.3 we compare the energy spectra E(k)before and after the
transition (the spectra correspond to the fields shown in Figure 11.1). Be-
fore the transition, we find that the intermediate regime is characterized

by the turbulent-like power-law energy spectrum E(k) ~ k~¢, that we dis-
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cussed in the previous chapter, where the spectral slope ( >~ —2 observed
in our simulations is steeper than the value —3/2 reported in [200] be-
cause of confinement. After the formation of the giant vortex, we observe
a spectral condensation of the energy in the lowest mode, accompanied
by a depletion of the energy spectrum at intermediate wavenumbers. At

wavenumbers k 2 2w /A the spectrum remains almost unchanged.

k/(2m/A)

Figure 11.3: Energy spectra for the simulation with R = 31A and o = —1.75 at t = 210A/U
(blue, solid line) and t = 550A/U (red, dashed line). The black, dash-dotted line represents
the slope k2.

We can quantify the degree of order of the collective motion of the
swimmers in the giant vortex adopting the vortex order parameter [164,
210,211] (VOP) which is defined as ® = ((Ju-@|)/{(|u|) —2/7)/(1 —2/7).
A velocity field oriented in the angular direction uw || ¢ gives & = 1,
while & = 0 corresponds to random-oriented velocity. The values of ®
measured in the late stage are very close to 1, (see Figure 11.4), which
indicates that the motion of the swimmers is highly ordered. The degree
of order increases reducing the radius R of the domain and increasing |a|.

The temporal evolution of ® provide us a good criterium fo the evalua-
tion of the transition time. For this purpose, we performed an additional
ensemble of 269 simulations of the case A3, at fixed a« = —1.50, A\g = 3.5

and R = 16A (we chose the smallest domain in order to reduce the com-
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Figure 11.4: Mean value of the vortex order parameter ® as a function of a for R = 16A

(green triangles), R = 23A (red circles), R = 31A (blue squares).

putation time), with different initial random perturbations. We assume
as evidence of the transition the fact that the VOP exceeds the threshold
value of @, = 0.95.
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Figure 11.5: Temporal evolution of the vortex order parameter ®, for an ensemble of

simulations with A\g = 3.5, « = —1.50 and R = 16A, with different initial conditions.

From Figure 11.5 we can notice the metastable nature of the flocking

turbulence regime: this ultimate transition to the circular flocking can
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require an unpredictable transient time in order to happen: it is frequent
that, before the giant vortex state is achieved, the system goes through
several failed attempts, with one of the larger vortices which, after reach-
ing a size greater than that of the other one, suddenly inverts its growth

process.

p(x) (V)
3
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Figure 11.6: Probability density function p(7¢) of the transition time 7¢ to the circular

flocking state, with R = 16A, o = —1.50 and Ao = 3.5. The black dashed line represents the

—1
slope 7, ~.

We observed almost two orders of magnitude in the variability of the
transition time 7,. The probability density function we computed (fig.
11.6) shows a maximum around 7 ~ 400A/U, and it seems to be com-
patible with a 7, decay in the range ~ 500 — 40007;/(A/U), before an

apparent cut-off at larger times.

Unfortunately we do not have a theory which could predict such a law,
or a different one, since this ultimate transition appears to be strongly
out-of-equilibrium. However, it is reasonable to expect that the statistic
of the transition time depends on the parameters o, \g and R, but an
investigation in that sense would require larger ensembles of simulations,

with an extensive exploration of the parameter space.
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11.4 Radial profiles of the giant vortex

If we consider the time-averaged, mean radial vorticity profile of the
1

2mr

law behaviour @(r) o 1/r in the region A < r < R — A far from the

giant vortex w(r) = Jw(@)o(Jr'] — r)d*r" we can observe a power
boundaries and from the center (Figure 11.7). We can derive a theoretical
prediction for @(r) by assuming that the radial component of the velocity
vanishes, v, = 0, and that the angular component depends only on r as
u, = r€(r), where Q(r) is the angular velocity. The resulting vorticity
field is w = V x u = 2Q(r) 4+ r0,82(r). Inserting these expressions in
the equation for the vorticity, which is obtained by taking the curl of
Eq. (11.1), and imposing the stationarity condition, one gets the following

equation for Q(r)
(a+ToV2 + TV (2Q 4+ 70,Q) + Bri0%(4Q + 3r9,Q) = 0. (11.2)

We also assume that the Swift-Hohenberg term is negligible for r» >
A, this assumption is justified a posteriori, since the Swift-Hohenberg
operator applied to a vorticity field @(r) = £U/r gives subleading terms
of order O((r/A)™3) which are negligible for » > A. In this case, the
equation (11.2), admits the power-law solution Q(r) = ¢r? with ¢ =
+y/—a/p and v = —1. This gives a prediction for the radial profiles
of velocity w(r) = £U¢ and vorticity @w(r) = £U/r, which is in perfect
agreement with our numerical findings (see Figure 11.7).

Beside the giant vortex, Figure 11.1 also shows the presence of vor-
ticity fluctuations in an annular region close to the boundary. These
elongated structures, slightly leaned in the direction of the mean flow of
the vortex, correspond to the same vorticity streaks we noticed in the
flocking turbulence regime. Since they have a typical transverse width of
the order of A, the average number of streaks in a domain of radius R is
therefore N ~ 2R\/m.

The intensity of the vorticity fluctuations can be quantified by the
RMS vorticity profile @,s(r) = (w?(r))*/? which is shown in Figure 11.7.
Vorticity fluctuations are absent in the central region of the vortex, in

which @,,,s(r) coincides with the mean radial profile |@(r)|. They appear
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Figure 11.7: Radial profiles of the vorticity, w(r) (empty symbols), and of the RMS vorticity,
Wrms(r) (filled symbols), for simulations with R = 31A, @ = —1.5 (blue squares), a« = —1.75
(red circles) and oo = —2 (green triangles). The black line is the prediction |[@(r)| = U/r.

at larger r, as shown by the increase of @,,s(r) which reaches an almost

constant plateau close to the boundary @y,s(r) ~ U/A.

Further details on the statistics of the streaks are revealed by the
profiles of radial and angular velocity fluctuations defined as ul(r) =
(u2(r))"/? and ul(r) = (u_i(r) — w,%(r))Y?, shown in Figure 11.8. The
radial component is predominant in the velocity field of the streaks. Close
to the boundary, the ratio between the intensities of radial and angular
fluctuations is almost constant u_}/u_zo ~ 4.2. The intensity of velocity

fluctuations decays at increasing the distance from the boundary R — r.

The width of the region in which the streaks are present can be quan-
tified as the distance ¢ from the boundary at which the radial profile of
the order parameter exceeds a given threshold value ®(R —§) = @y, (see
Fig. 11.9). The values of 0 (with ®;, = 0.9995) are reported in the inset
of Figure 11.9. We find that 0 increases monotonically increasing the
radius R of the circular domain and decreasing the parameter |«|. The
scaling of 9 as a function of the parameters of the model and of the radius

R remains an open question which deserves further theoretical studies.
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Figure 11.8: Radial profiles of the radial and tangential components of the velocity fluctu-
ations, u/.(r) (empty symbols) and u/,((r) (filled symbols), as a function of the distance from
the boundary for a = —1.75, R = 31A (blue squares), o = —1.5, R = 23A (red circles) and
a = —1.25, R = 16A (green triangles).

11.5 Discussions

The formation of the giant vortex surrounded by streaks is strictly re-
lated to the phenomenon of flocking turbulence described in [174,195,200]
and in the previous chapter. In this regime we have the competition be-
tween the Toner-Tu term, composed by Landau potential and the self-
propulsion term, and the Swift-Hohenberg operator. While the former
promote the development of a flocking state, in which all the bacteria
swim in the same direction with a constant speed, [133] the latter destabi-
lize this collective ordered motion, with the formation of vorticity streaks
in the transverse direction with respect to the mean flow [177] (see also
the linear stability analysis of the global polar state in section 9.1). A
possible explanation of our findings is that the confinement in circular do-
mains permits to one of the larger vortices which characterize the flocking
turbulence, i.e. one of the manifestation of the spontaneous symmetry
breaking of the system, to prevail on the others, extending its symmetry

breaking from a limited region to all the domain. The vorticity produc-
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Figure 11.9: Radial profiles of the vortex order parameter, ®(r), for simulations with
R = 31A, a = —1.5 (blue squares), a« = —1.75 (red circles) and o = —2 (green triangles).
The black dashed line is the threshold value ®:5, = 0.9995 used to define the width § of the
region in which the streaks are present. Inset: Width § of the annular regions of the streaks
as a function of a for R = 16A (green triangles), R = 23A (red circles), R = 31A (blue

squares).

tion due to friction forces near the boundary probably triggers the global
symmetry breaking of the angular momentum facilitating the formation

of the giant vortex.

Despite this simple interpretation, the formation of the giant vortex,
is a highly non-trivial process which is far from being fully understood.
As shown in Figure 11.5, the final state with a single vortex is achieved
after a long, metastable regime of flocking turbulence in which several
large-scale vortices compete with each other to prevail, with a strong
variability of the duration of this intermediate regime. This confirms the
complexity of this process and suggests that the transition to the giant
vortex may have a stochastic nature, with a broad distribution of the

transition times, as shown in Figure 11.6.
We remark that the phenomenon presented here differs deeply from
those previously reported in experiments [164,210] and numerical simula-

tions [131] of confined bacterial suspensions. The confining scale in these



128 11. The giant vortex

studies is much smaller than in our case, and the rectified vortex orig-
inates directly from the linear instabilities of the steady, no-flow state.
Moreover, they found a double vortex with a non-monotonic radial profile
of the azimuthal velocity [131], Conversely, the giant vortex observed in
our study displays a uniform profile of azimuthal velocity surrounded by
an annular region of vorticity streaks, and it is produced by a non-linear
mechanism, related to the interaction of the flocking turbulence regime,
itself generated by a non-trivial competition between a large scale ten-
dency to flock and a small scale destabilization, with the boundaries. This
process requires a domain large enough to allow for the development of
the chaotic regime which precedes the transition to the giant vortex. Our

simulations show that a domain with radius R = 16A is sufficient for this

purpose.
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Figure 11.10: Vorticity field in late stage of the simulation with R = 31A and o = —1.50,
which displays a giant vortex whose core consists of a binary rotating system of two small,

equal-sign vortices.

The exact determination of the range of values of R/A in which the
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giant vortex forms remains an open question. At fixed o and \g we
find that there is a maximum size of the domain which allows for the
formation of the giant vortex. Nonetheless, it is extremely difficult to
determine the precise value of this maximum size, because of the strong
variability of the transition times. For values of R close to the maximum
size, we observed in same cases the formation a giant vortex whose core
consists of a binary rotating system of two small, equal-sign vortices (see
Figure 11.10). Increasing further the radius R the system apparently
remains in the flocking turbulent state, which none of the large-scale
vortices managing to incorporate the other ones and therefore to extend

its spontaneous symmetry breaking to all the domain.






Conclusions

The numerical investigations reported in this thesis constitute an ad-
vancement in the study of two different examples of chaotic flows, which
are characterized by a ”"turbulent- like” behavior at low Reynolds num-

bers.

Regarding the dilute rigid polymer solutions, we confirmed the emergence
of a chaotic flow at low Reynolds number, with increased flow resistance
and enhanced mixing efficiency, similar to the elastic turbulence observed
with flexible polymers. The phenomenology observed is qualitatively in-
dependent on the dimensionality, but we found that, for the same values
of the parameters, the effects are stronger in the 2D case. This differ-
ence is explained in terms of the different rotational degrees of freedom
of the rods. Further numerical studies at higher resolution and/or with
a different numerical scheme would allow to reach more realistic values
of the parameters. Especially an experimental verification is required: a
viable experimental realization could be performed with a dilute solution
of polymers of length ¢ ~ 2—5um (e.g., xantam gum) with concentrations
of about 100 wppm in a microchannel of width L ~ 2mm, with a setup
similar to the one considered in elastic turbulence experiments [26,55,57].
Typical velocities in these experiments are of the order of U ~ 6mm/s,
which ensures the stability of the laminar flow in absence of polymers.
Apart from this investigation, we also tried to perform an analytic
study of the linear stability of the Kolmogorov flow with rod-like poly-
mers, but our result is not compatible with data from numerical simu-

lations, implying that some of the approximations we made, especially

131
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the use of multiple scales method, are not valid. On the contrary, the
numerical investigation at high-Reynolds number appears to be compat-
ible with experimental studies. In fact, our observation of drag reduc-
tion absence in an unbounded shear flow agrees with the hypothesis that
drag reduction in rigid polymer solution is due to the establishment of
an effective "lubricating layer” near the walls. [30] Moreover, also the
small-scale behaviour we observe appears to be compatible with recent
experimental studies. [117] Further investigations, with additional values
of Reynolds number and/or polymer concentration, or even in the homo-
geneous isotropic case, would help to clarify the effect of rodlike polymers

on turbulent fows.

In the study of dense bacterial suspensions we considered the case of
strong aligning interactions between the swimmers, in confined circu-
lar domains. In the first part of our work, we explored the parameter
space of the model, and we found that the model displays two different
regimes, which are observed respectively at moderate and large inten-
sity of alignment. In the former case, the velocity field consists of an
homogeneous dense population of small vortices which move chaotically.
This regime is known in the literature as mesoscale turbulence. Increas-
ing the intensity of the aligning force we observe the emergence of the
flocking turbulence regime, characterized by an inhomogeneous flow with
large-scale vortices surrounded by regions of uniform circular motion, al-
ternated with regions of elongated vortical structures called streaks. The
regime of mesoscale turbulence occurs if the alignment interactions are
weaker than the destabilization effects. In this case the swimmers cannot
develop large flocks. Conversely, when the combined action of alignment
interactions and self-advection is dominant, we observe the spontaneous
formation of local circular flocks. Since the velocity field represents also
the order parameter of the system, we can interpret the formation of
these coherent structures with constant speed as a spontaneous break-
ing of the local rotational symmetry, occurring independently in different

regions of the domain. We highlighted the out-of-equilibrium nature of
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this transition, and provided a criterium in order to estimate the thresh-
old parameters between the two regimes. Finally, we investigated also
the effects of the confinement in the circular domain. Our results show
that these effects become relevant when the radius of the domain is of
the order of the correlation scale of the flow, which is the case of flocking
turbulence, while in the regime of mesoscale turbulence the flow is weakly
affected by the confinement. Further investigations about the transition
could be carried out using the same techniques from statistical physics
adopted for other versions of the Toner-Tu model. [146, 150, 156, 159]

In the second part of our investigation we described the fact that con-
finement can induce an ulterior transition, from the regime of flocking
turbulence to an ordered state of circular flocking, which corresponds to
a single giant vortex which extends over the entire domain. In this case,
the local spontaneous symmetry breaking of the velocity field becomes a
global symmetry breaking of the total angular momentum of the system.
We characterized the properties of this regime, in particular of the mean
circular flow (which can be analytically predicted) and the radial fluctu-
ations, and we also investigated the statistics of the transition, finding
that we have a huge variability for the time required to the emergence
of this state. This variability, and the fact that the system usually re-
quires several attempts in order to evolve in this ultimate state, shows the
complexity of this transition, and the metastable nature of the flocking
turbulence state. Further investigations are required, in order to relate
the parameters of the model with the statistics of the transition, the
properties of the radial fluctuations and the confinement scale required

to induce the emergence of the giant vortex.

Moreover, other informations, both for the flocking turbulence and
the giant vortex regimes, could be obtained by experimental studies. A
quantitative correspondence between our simulations and a feasible exper-
imental setup can be established by matching the parameters of the TTSH
model with the typical values of the characteristic scale A and velocity U
of the collective bacterial motion which are observed in experiments (e.g.,
in [123,183,213]). As an example, by fixing A ~ 25um and U ~ 50um/s
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the values of the radius R of the circular domain considered in our stud-
ies correspond in physical units to the range R ~ (400 — 1600)um, the
values of the parameter « are in the range —a ~ (0.5 — 1.8)s™! and the
typical time required to observe the formation of the giant vortex is of the
order of minutes. These spatial and temporal scales are easily accessible
in experiments of dense bacterial suspensions, such as those of Bacillus

subtilis.
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Numerical methods.

The problem of the integration of Navier-Stokes equation (NSE), and
other hydrodynamical related equations, has generated over the years a
large number of different approaches and methods. A first difference be-
tween the possible approaches with the problem is if we want to integrate
NSE with the greatest possible precision, or if we accept some approx-
imate model to describe part of the flow (usually, the smaller scales).
The first approach is clearly preferable in a scientific work, but can be
extremely expensive in terms of computation resources, thus not feasi-
ble for many practical applications (especially for complicated domains).
The first approach, that we choose, is one of the Direct Numerical Sim-
ulations (DNS), where everything that is not explicitly simulated does
not exist, while for the second one, depending on the level of approxima-
tion, we have for example Large-Eddies-Simulations (LES) and Reynolds-
Averaged-Navier-Stokes (RANS). To perform DNS, a large number of
methods exist. The choice can depend on the physics of the problem (for
example, compressible vs incompressible flows), on the boundary con-
ditions, and on other elements. We adopted a pseudo-spectral method
for the spatial integration, and an implicit Runge-Kutta scheme for the
time evolution. For the implementation of the boundary conditions in

the confined TTSH model, we used a penalization method.
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A.1 The pseudo-spectral algorithm

The idea behind the spectral methods [111] is that, if we have an
unknown function u(z) (neglecting for the moment the temporal depen-

dence), obeying to generic integral-differential equation:
Au = f(z), (A1)

it can be easy to obtain a good approximation (and, in some particular
cases, an exact solution) of u(x) if we express the unknown in terms of a

sum of N + 1 basis function ¢, ()

u(z) ~uy (x) = andy (z). (A.2)

The coefficients a,, have to be chosen in order to minimize the residual

function (which is zero in the case of exact solution):
R(z,ap,...,an) = Au — f(z). (A.3)

According [111], pseudospectral methods are the one where the coeffi-
cients a, are found imposing that the residual function is equal to zero
for N selected value of z, called ”collocation” or ”interpolation” points.
These points are clearly the grid points of our domain, and we expect
that uy(z) converges to u(zx) for increasing N.

The choice of the basis functions ¢, (x) is strictly related to the do-
main and to the boundary conditions. If we have a periodic domain,
the natural choice is to adopt an ordinary Fourier series, while if the do-
main is bounded the Chebyshev polynomials are a better option, and,
on a spherical surface, spherical harmonics are the natural answer. In
a multi-dimensional domain, it is also possible to expand in a direction
with a certain basis and in another direction with a different one: this
is commonly adopted in channel flow simulations, where there is period-
icity along two directions, so Fourier basis, and walls in the third one,
so Chebyshev (see for example [41]). For our code we adopted a Fourier
basis.

The principal reason which make spectral method particularly suitable

is the fact that the Fourier transform converts differential operator into
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algebraic multiplication:
Ouf(x) = ikf(k), (A4)

which is particularly convenient especially if we need to invert a differ-
ential operator (for example, if we want to obtain the velocity field from

the vorticity), a task particularly expensive to be done in physical space:

[0 =Ve@) = am=T0 ()

On the other side, nonlinear operations, such as the advection or the non-
Newtonian stress in the Doi-Edwards model, become much more compli-
cated in Fourier space, since products in physical space are associated to
convolutions in spectral space. The strategy behind our code is to switch
between physical and spectral space, performing differential /integral op-
erations in Fourier space and products in real space. This is a convenient
way of working if the computation cost required to perform the Fourier
transforms is reduced with respect the computation cost of performing
the convolutions in the spectral space (or the integral in the real space).
Luckily, the huge number of applications for the Fourier analysis stimu-
lated the ideation of a large number of ”Fast Fourier Transform” (FFT)
algorithms, [112] allowing us to actually apply this strategy. Anyway,
the evaluation of Fourier series remains the most computationally expen-
sive part of our code: this means that optimizing the algorithm consists
principally in minimize the number of Fourier transforms.

As an example, this is how we compute the advection term in two
dimensions (taking advantage that, for an incompressible flow, we have
(u-Vw=V":(wu)):

e we start with the vorticity @ in Fourier space;

e we compute the two components of the velocity:

i, = ke, (A.6)

. :zky@
k2 Y k2

Uy

e we anti-transform w, i, and 4, into the real space;

e we compute the two products wu, and wuy;
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e we transform the two products in the Fourier space

e we finally obtain the advection term in Fourier space applying the

divergence operator:

—

V- (wu) = ik,0u, + ikywuy,. (A.7)

This procedure has to be done for each one of the N +1 Fourier modes:
this means that we have converted one PDE into N +1 ODEs, with every

Fourier mode that is then made to evolve independently in time.

Finally, we have to mention two important issues of the pseudospectral
methods. The first one is that, in order to be accurate, they require
the field u(x) to be smooth. In our case, this can be addressed simply
increasing the spatial resolution, but it makes these methods unsuitable
when strong gradients are expected (for example, in compressible flows

with shock waves).

The second one, strictly related, is the aliasing problem. If we sample
uniformly the function u(x) with N points, in the Fourier space we have
wavenumbers k,, with n € [—-N/2, N/2]. The nonlinear terms generate
modes that should not be contained in the wavenumber grid (|n| > N/2),
but the FFT spuriously moved them into the range [—-N/2, N/2]. In the
context of computational fluid dynamics, it was observed for the first time
by Philips in 1956: his General Circulation Model developed an instability
after a certain period of time, independently from the integration step.
[214] In 1959 he proposed a solution: since the break-up of the simulation
was generated by a quadratic nonlinearity, filtering out all the modes with
|n| > N/4 would eliminated the instability, at the cost of halving the
effective resolution. [215] In 1971 Orszag pointed out that filtering the
modes with |n| > N/3 was sufficient in order to prevent instability. [216]
Since in our code, both in Doi-Edwards and TTSH model, we are dealing

with cubic nonlinearities, we have to filter at |n| > N/4.
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A.2 Implicit Runge-Kutta

As we already mentioned, the pseudospectral method converts one
PDE in the physical space into N+1 ODEs in the Fourier space (assuming
for simplicity only one spatial dimension). One of the most famous family
of numerical scheme for the resolution of initial value first-order ODEs is
the one of Runge-Kutta methods. [217,218] Considering a generic ODE

&= f(t,2) (A.8)

we start from the Euler method, that is simply the discretization of the

definition of derivative (where At is the time step):

Since this method is not very accurate and quite unstable, the idea of the
Runge-Kutta schemes is to take one (or more) trial step to the midpoint
of the interval, to eliminate the first-order error term. [112] The most

simple Runge-Kutta scheme, the second-order one, is therefore:

k1= f(ti,z;);
At At
ky = f (ti+ 7,$i+ 7’@) ;

Increasing the number of intermediate steps we further reduce the error:
this is a good strategy if it allows us to increase the time step enough
to counterbalance the increase of evaluations of the right-hand-side of
equation (A.8). In our case, we found that the best choice was the fourth-
order version (RK4):
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ki = f(ti,x;);
ko= f <ti+%,xi+%k1);
ks = f <ti+%,xi+%k2);
ky = f(t; + At,x; + Atks) ;
Tiy1 = x; + % (k1 +2ko + 2ks + ky) . (A.11)

We further modify the algorithm since the RK schemes are required
only to solve nonlinear equations, since the solution of a linear ODE
i = Lz (t) can be analytically expressed as z (t) = x(0)e“!. In our case,
since our equations include one (or more) linear term, we can integrate
exactly this terms, and use RK4 only for the non-linear parts, in order to
be more accurate. This is called implicit Runge-Kutta.

In general, hydrodynamics equations can be expressed as:
Ox = F (x) + Lz, (A.12)

where F' is the nonlinear operator (including advection, polymer stress,
cubic damping etc.) while £ is the linear one, corresponding to vk? in
the Navier-Stokes equation and to —a — I'gk? — I'sk* in the TTSH model.

In order to integrate exactly the linear part, we set:
x = ye~', = g = e “F(eFy) = g(t,y). (A.13)

Applying the RK4 scheme to the equation y = g(t,y), and re-expressing

the k coefficients in terms of z we have:

ky = e FHF (X)) = e FH P (ay),

hy = e LAY p (Lt Ay2), o LltitAt2) % At) _

— o LtiAY2) (ecAt/2xi X eLAt/Q%F(l,i)) ’
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ks = e Lti+AL/2) p <€E(ti+At/2)yi + ec(ti+At/2)%At> _

— e*ﬁ(tiJrAt/Q)F <6£At/2$i + %F (eﬁAt/Ql_i + eﬁAt/2%F<xi))> ’

_ LAY (6£Atxi 1 L2 Ay (eﬁAt/in
+ HF eﬁAt/in _i_eLAt/QgF(xi) )
2 2
In order to obtain a manageable expression, we re-define the arguments
of nonlinear operator:

At At
b=y, by = eFAl2 (:zc + 7F (b*;)) , i = eFA 2 4 7F (b3),

b = eLAl? (eLAt/Qxi + AtF (b)) .
Therefore, y;,4 is:

AV . - i - " - *
Yit1 = yi‘*‘Fe_ul (F(b1) + 2e LAtﬂF(bz) +2e LAt/2F<bs) te LAtF(sz)) ’
(A.14)

LAY multiplying the previous

and, since we know that z;11 = y;11€

relationship for e£+4% we finally get:

At
Ti = x50 4 3 (e“21F (b7) + 2eFA2F (b3) 4 2e5A2F () + F (b)) -
(A.15)

A.3 The penalization method

The pseudo-spectral method with Fourier basis is very simple to im-
plement it and very efficient. For this reason, it is natural to ask whether
it can also be applied in non-periodic domains, or with obstacles. This
can be obtained using the penalization method, proposed originally in
1984 [201]: the idea is to define a function M (z), which is equal to zero
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inside the ”true” domain, and equal to 1 into the walls/obstacles (in
all the solid volume, not only in the boundary surface). In the Navier-
Stokes equation a term —(1/7)Mu is therefore added: this correspond
to a Brinkman model for porous media [219] with a strong permeability
difference between the fluid and the solid domain. The validity of this
method has been mathematically investigated in [220,221], where it was
demonstrated that the penalized incompressible Navier-Stokes equation
converges towards the Navier-Stokes equation with no-slip boundary con-
ditions inside the fluid domain (i.e vanishing velocity on the surface of
the wall), and towards the Darcy law in the solid domain (velocity pro-
portional to the pressure gradient). This method has been then applied
to the study of turbulence in two and three dimensions. [202,203,222].
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Brownian motion

Brownian motion is a typical phenomenon which occurs in microhy-
drodynamics. It is due to the fact that, if we consider a mesoscale object
(7. e. micrometric size), although it is correct to describe the surround-
ing medium as a continuum fluid, it will be subjected to an incessant
"bombing” by the molecules composing the fluid, due to their thermal
agitation. This fact is obviously true also for macroscopic objects, but in
that case the difference in scale between the molecules of the fluid and the
macroscopic object is so large that single collisions are completely irrele-
vant for the larger object (although it is still affected by their cumulative
sum, which corresponds to the thermal bath). Instead, if the object is
not large enough, it will perform an irregular and incessant motion, even

if the system is at thermodynamic equilibrium.

The phenomenon is named after the botanist Robert Brown, who ob-
served it in 1827 studying at microscope particles of pollen suspended in
water, and then also in inorganic matter, in order to clarify if it was due
to active swimming. [223] The first physical interpretation was provided
by Einstein during his Annus mirabilis, [224] and it was later extended
by Sutherland, [225] Smoluchowski [226] and Langevin, [227] who formu-
lated an alternative (but equivalent) description. [228] These works were
a milestone in the history of physics, since they provided one of the first
examples of fluctuation-dissipation relationships, an experimental demon-

stration of atoms existence and an archetype of stochastic process. Here
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we are interested on its physical side, since it has a great importance in

the rheology of suspensions.

B.1 Langevin formulation

The Langevin description of the Brownian motion is focused on the
single particle motion. In absence of external driving or other effects, the
Newton’s second law for a spherical particle with mass m suspended in a
fluid is (assuming, for simplicity, only one spatial dimension):

2

millT;E =— Z—j + f(1), (B.1)
where ( is the friction coefficient (equal to 67ur for a spherical no-slip
particle, where r is the radius), describing the hydrodynamic drag on the
particle, and f(t) is the forcing due to the impacts of the solvent molecules
with the sphere. Pretending to know every single impact is impossible
and useless, the idea is therefore to modelling f(¢) as a stochastic noise,
taking in account the unpredictability of molecular motion. The simplest

choice is a Gaussian white noise (where v = & is the velocity):

(f®) =0,  (fO)f)) =Tst=t),  (f@Oz(t)) =0,  {f(t)(t)) =0.
(B.2)

The noise strength I' can be obtained imposing the thermal equilibrium,

and therefore the energy equipartition theorem. If we rewrite the equation

(B.1) in terms of velocity v, we have as formal solution: [228]
I /
v(t) = v(0)e /™t 4 — / dt'e= (/MU= g (¢, (B.3)
m Jo

Taking the square of v and averaging, the cross term is proportional to
(v(0)f(t')) and therefore equal to 0, while the second order integral can

be solved as:

]. t ! t 1"
- /0 g e~ (C/m)(t—t) /0 ==Y £ F (1)) =
(B.4)
1 t t
* / g e—(C/m) (1) / e~ (1 _ gy =

(1 — e 2¢/myt
m? J, ; = %m (1 e )

(B.5)
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Hence the mean-squared velocity is:

(V*()) = (0*(0)e 2™ 4 —— (1 — e7>C/m) | (B.6)

2(m
and, since in the limit ¢ — oo we expect the equipartition theorem, being

at equilibrium, we have:

o) = 22

This fundamental relationship tells us that the thermal fluctuations must

— I = 2CksT. (B.7)

be balanced by viscous dissipation in order to be at equilibrium.

Going back to equation (B.1) for the position x, since (f(t)) = 0 we
have a null mean displacement: (x(t)) = 0. Instead, if we consider the
mean-squared displacement (z%(¢)) the situation is different. Multiplying
eq. (B.1) by x we can re-express it as:

2.2 2
%dd; —mv® = _gddit +af(t).
Taking the average, and using the equipartition theorem, we have:
m d d{z?) gd(ﬁ)

(B.8)

= kT B.9
2dt dt 2 dt B (B.9)
thus, integrating:
d<I2> ZkBT —(¢/m
TR (1 — e &/miy (B.10)
2%kpT
) = 22T (1= 24 Zemiamn), (B.11)

The solution tells us that we have two different regimes, separated by the
time scale ¢ /m. For t — 0, expanding the exponential as e™* ~ 1—t+?/2,

we have the ballistic regime:

kgT
w20 = 2L, (B.12)
while for ¢ — oo we have the diffusive regime:
2kpT
(z%(t)) = 75 t=2Dt, (B.13)

where we have defined the diffusion constant D, whose importance will
be more evident in the Smoluchowski formulation. The factor 2 is related
to the dimensionality of the system, it is replaced by a factor 6 in three

dimensions.
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B.2 Smoluchowski formulation

The Smoluchowski approach studies the system defining a probabil-
ity density function W (z,t) for the Brownian particles. In the diffusive
regime, W is therefore described by a diffusion equation (in order to de-
scribe also the ballistic regime at small times, a further second-order time

derivative is needed):
ov_
ot Ox2

At equilibrium the diffusion constant D is the same defined in the Langevin

(B.14)

formulation. This is due to the fact that, for non-interacting particles (di-
luted), the distribution is equivalent, a part from the normalization, to
the concentration field. Since at thermodynamic equilibrium we expect
a Boltzmann distribution

U, o< eks%, (B.15)

where V' is the a thermodynamic potential representing the osmotic pres-
sure, and since at equilibrium the flux due to the osmotic force must be

balanced by a diffusion flux:
—-D—=-V— (B.16)

we must have D = kgT' /(. This is the fundamental Einstein relationship,
which connects the mass transport of the particles and the momentum
transport of the fluid (since the friction coefficient ¢ depends on the vis-
cosity p).

The equation (B.14) can be generalized to the case where a generic

potential is present U is present:

o 01 ov  oU
i = B.1
ot axg(B oz ax)’ (B.17)
which lead us to define a free energy density for the system:
AY] = / {2} (kT U + U) . (B.18)

It can demonstrated that the time derivative of A is always negative,

unless ¥ = W, when it is equal to zero.
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Another generalization it is in case of interacting particles. If L,,, is
the interaction matrix between the n-th and the m-th particle, and x,
and z,, are their corresponding positions, we have:

ov 0 ov ou

e = mzm a_anmn (kBTM + %) ) (B.19)
where the friction coefficient ( is included in L,,,. In this way we can also
take in account the hydrodynamic interactions between the particles, i.e.
the fact the motion of a particle modifies the fluid velocity field affecting
the other ones. In this case, neglecting finite size effects, L,,, is the Oseen
tensor H (r, — r,,). The generic equation for the probability density

function is usually denoted also as Fokker-Planck equation.

B.3 Rotational Brownian motion

Until now we considered only translational Brownian motion, the only
one present in the case of spherical particles. In the case particles are
anisotropic, thermal fluctuations of the fluid induce also a rotational
Brownian motion. If, for example, we consider an ellipsoid with n as
orientation axis, this versor can fluctuate on the surface of the sphere
defined as ||n|| = 1. The mathematical treatment of rotational Brown-
ian motion is analogous to the translational one, with a Langevin and a
Smoluchowski formulation. It is important to observe that the rotational
diffusivity constant (time™!) is dimensionally different from the transla-
tional diffusivity constant (length?/time). [24]
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