
Università degli Studi di Torino

Scuola di Dottorato

Chaotic dynamics in complex and active fluids

Leonardo Puggioni



i
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Introduction

This thesis is based on the work carried out during the three years

of the doctoral cycle at Università di Torino, under the supervision of

professor Stefano Musacchio. It is focused on the theoretical study, by

means of extensive direct numerical simulations, of two different fluid sys-

tems, both of them characterized by a complex and chaotic behaviour at

low Reynolds number. The two system are diluted rigid polymer solu-

tions, described by the Doi-Edwards model, and dense bacterial suspen-

sions, modelled with the Toner-Tu-Swift-Hohenberg (TTSH) equation.

The first one is characterized by a chaotic flow similar to the elastic tur-

bulence observed in flexible polymers, while the second one exhibits a

regime called active turbulence, with peculiar patterns.

The structure of the thesis is the following:

• A short introduction to microhydrodynamics (Chapter 1), involving

common concepts to the two system.

• The first part, composed by six chapters, regarding the dilute so-

lutions of rigid rodlike polymers. Chapters 2, 3 and 4 constitute

a summary of the current knowledge about this topic, in particu-

lar Chapter 2 describes the peculiar features of polymer solutions,

Chapter 3 is centered on the rheological model we considered, and

Chapter 4 describes the Kolmogorov flow, which is the particular

configuration we adopted in our simulations. Chapters 5, 6 and 7

contain instead our original results. Chapter 5 involves our numer-

ical investigation of the chaotic flow generated by the Doi-Edwards

model at low Reynolds number, Chapter 6 includes our attempt to

vii



viii INTRODUCTION

study the linear stability of the Kolmogorov flow with rodlike poly-

mers, and Chapter 7 describes how the turbulent (high-Reynolds)

Kolmogorov flow is affected by polymers.

• The second part, composed by four chapters, on bacterial suspen-

sions. Chapter 8 is a very short introduction to the active matter

topic, and to active fluid models in particular. Chapter 9 is a sum-

mary of the previous literature about the TTSH model, with the

derivation and a description of its phenomenology. Our original re-

sults are in Chapters 10 and 11. In particular Chapter 10 contains

our investigation of the regime of flocking turbulence, while Chapter

11 describes how confinement induces the transition from flocking

turbulence to an ordered state constituted by a giant vortex.

• The appendices, with the description of our numerical methods (Ap-

pendix A) and a short introduction to Brownian motion (Appendix

B), which can help in the comprehension of the derivations of the

models.

List of publications

Part of the original work contained in this thesis has been published

in the following journal articles:

1. Puggioni, Leonardo, Guido Boffetta, and Stefano Musacchio. ”En-

hancement of drag and mixing in a dilute solution of rodlike poly-

mers at low Reynolds numbers.” Physical Review Fluids 7.8 (2022):

083301.

2. L. Puggioni, G. Boffetta, and S. Musacchio. ”Giant vortex dynamics

in confined bacterial turbulence.” Physical Review E 106.5 (2022):

055103.

In particular, Chapter 5 is based on publication 1, and most of the Chap-

ter 11 on publication 2. A further article, containing Chapter 10 and the

remaining of Chapter 11, has been just submitted. Chapters 6 and 7 are,

for now, unpublished.



Notations

Geometric quantities

• xxx: position

• t: time

• r: distance

• ra: ellipsoid aspect ratio

• a0 = (r2
a − 1) /(r2

a + 1): Jeffery geometrical factor

• nnn: ellipsoid director

• I: identity tensor

• kkk: wavevector

• Ψ: probability density function

General hydrodynamics quantities.

• ρ: density field

• uuu: fluid velocity field/coarse-grained bacterial velocity field

• p: pressure field

• ν: kinematic viscosity

• µ: dynamic viscosity

• ωωω =∇∇∇× uuu: vorticity field

ix



x NOTATIONS

• κκκ: velocity gradient tensor (κij = ∂jui)

• ΣΣΣ: strain-rate tensor (Σij = 1
2
(κij + κji))

• ΩΩΩ: rotation-rate tensor (Σij = 1
2
(κij − κji))

• σσσ: stress tensor/non-Newtonian stress tensor

• F, fff : external forcing

• RRR: polymer configuration tensor (Rij = 〈ninj〉)

• η: polymer feedback coefficient

• Re: Reynolds number

• E(k): energy spectrum

• kB: Boltzmann constant

• T : (absolute) temperature

• D: generic diffusion constant

Kolmogorov flow quantities

• K: forcing wavenumber

• F : forcing amplitude

• U : mean flow amplitude

• U0 = F/(νK2): laminar mean flow amplitude

• Πν : xy component of the Newtonian stress tensor

• Πr: xy component of the Reynolds stress tensor

• Πp: xy component of the polymer stress tensor

• S: Reynolds stress mean amplitude

• Σ: polymer stress mean amplitude

• f = F/(KU2): friction coefficient
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• s = S/U2: Reynolds stress coefficient

• σ = Σ/U2: polymer stress coefficient

• εI = 〈fff · uuu〉 = FU/2: mean energy input

• ε0 = FU0/2: laminar mean energy input

• εν = 〈ν|∇∇∇uuu|2〉: mean Newtonian dissipation rate

• εp = 〈σij∂jui〉: mean polymer dissipation rate

Bacterial turbulence quantities

• λ0: self-advection coefficient

• α, β: linear and cubic Landau forcing coefficients

• Γ0,Γ2: Swift-Hohenberg operator coefficients

• Λ = 2π
√

(2Γ2) /Γ0: vortex length scale

• U =
√
−α/β: flocking velocity scale

• R: confinement radius





Chapter 1

Microhydrodynamics: a short

summary

Both our numerical studies of rigid polymers solutions and bacterial

suspensions rely on continuum models that, partially or totally, are ob-

tained starting from a microscopical description. For this reason, it is

better to start this dissertation with a brief introduction to microhydro-

dynamics.

The dynamics of a Newtonian, incompressible fluid, is described by the

Navier-Stokes equation (NSE), [1] supplied with the null divergence con-

dition:

∂tu + u · ∇∇∇u = −∇∇∇p+ ν∇2u + f, ∇∇∇ · u = 0. (1.1)

Here, u is the velocity field, p the (kinematic) pressure, ν the (kinematic)

viscosity and f a general external forcing, which can include a great va-

riety of phenomena (mechanical forcing, buoyancy, non-inertial reference

frame and other). Since we are considering an incompressible fluid with

uniform density ρ, the latter does not appear in the equation.

The NSE corresponds to the momentum conservation equation for a

fluid, and it can derived both with a microscopical approach and a macro-

scopic one. [2]

1



2 1. Microhydrodynamics: a short summary

In the NSE different terms are therefore present, whose importance de-

pends on the particular typology of flow we are considering. A common

method adopted in fluid mechanics in order to understand which terms

can be neglected, is to non-dimensionalise the NSE and obtain one (or

more) non-dimensional quantity, whose value is an indication of relative

importance of the various terms.

In our general case, a flow is characterized by length L and velocity U

scales, that we can use to redefine spatial and temporal coordinates, and

the velocity field:

x = Lx′; t = (L/U)t′; u = Uu′. (1.2)

Substituting these quantities in the equation 1.1, we get:

UL

ν
(∂t′ + u′ · ∇∇∇′)u′ = −∇∇∇′p′ +∇′2u′ + f′. (1.3)

Neglecting for now the pressure (which in incompressible flow it is a

function of velocity field) and the external forcing, we can observe that

the ratio UL/ν, called Reynolds number (from Osborne Reynolds),

describes the the relative importance between the advection nonlinear

term and the viscous linear one. Since we are interested in microscopic

flows, we have L→ 0 by definition, and we can expect that also U is very

small. Therefore, in microscopic flows the left side of the equation 1.3 is

basically zero, and the velocity field obeys to the Stokes equation [3]

(SE) (now in the dimensional form):

∇∇∇p = ν∇2u + f, ∇∇∇ · u = 0. (1.4)

Differently from the NSE, the SE is a linear and time independent

equation: it is therefore symmetric under time reversal. This symmetry,

physically interpretable as absence of inertia, set a strong constraint on

microswimming strategies, [4] as we will see in section 1.3.
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1.1 Multipole expansion

We are interested in obtaining the velocity field u in presence of an

immersed body, such as a rod-like polymer or a swimming bacterium. Lin-

earity of equation 1.4 allows us to employ the same techniques adopted for

similar equations in other branches of physics. More in particular, we can

describe our velocity field in terms of a multipole expansion, similarly to

the one adopted in electrostatics to describe the potential, since linearity

of the equation implies that solutions obey to superposition principle. [3]

This is a technique especially suitable if we are interested in the far-field

flow caused by the body.

The starting point is to consider the equation 1.4 in an unbound do-

main, with a point-like forcing f(x) = δ(x−x′)F, where δ(x) is the Dirac

delta. The disturbance flow due to the forcing is obtained as:

u(x) =

∫
V

H (x − x ′) · f (x ′) d3x′. (1.5)

By definition H (r) is therefore the Green’s function of the Stokes equa-

tion, and it is called Oseen tensor (from Carl Wilhelm Oseen):

H (r) =
1

8πν

(
I

r
+

rr

r3

)
, (1.6)

so the fundamental solution of SE is:

u (x) = H (x − x ′) · F . (1.7)

The solution 1.7 is usually denoted as Stokeslet, although this term is

sometimes used as synonymous of the Oseen tensor.

The Stokeslet is therefore the fundamental solution of the Stokes equa-

tion, other singular solutions can be obtained differentiating it. One order

of differentiation gives us the dipole solution, while another one order the

quadrupole solution. They constitute the terms of order one and two

in the multipole expansion of the disturbance flow induced by an ob-

ject immersed in the fluid (while the order zero term is obviously the

Stokeslet). [5]
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In particular, as we will see in 1.3, the dipole solution, corresponding

to the situation with two point-like forcing, assumes great importance for

us. It is useful to decompose it in its symmetric and antisymmetric parts.

In particular, the symmetric one is called stresslet:

u
(S)
i (x ) =

1

8πν

(
xiδjk
r3
− xixjxk

r5

)
Sjk; (1.8)

while the antisymmetric one is called rotlet:

u
(R)
i (x ) =

1

8πν

εijkLjxk
r3

; (1.9)

where Sij and Li are the symmetric and the antisymmetric components

of the force moment: stress and torque. The graphical representation of

these velocity fields is shown in figure 1.1.

Figure 1.1: Elementary solutions, of order 0 and 1, of the Stokes equation. Image took

from [5].

We can note that the singular solution of order n decays with distance

r as 1/rn+1: for this reason high-order solutions are usually negligible.

1.2 Solid body motion and Jeffery equation

Multipole expansion with superposition of singular flows (stokeslets,

stresslets etc.) is not the only strategy to deal with the Stokes equa-

tion, in particular if we are considering a solid body immersed in the

fluid. One starting assumption is, since we are considering a vanishing

Reynolds number, to neglect the inertia of the object. This is a rea-

sonable assumption in microfluidics, [6] which allows us also to make an
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important assumption on the flow: if we consider a sufficient small spatial

scale, every flow can be approximated with its Taylor series, and so we

can consider a linear velocity field without loss of generality:

u = U∞ + κ · x ; (1.10)

where U∞ is a constant mean flow and κ is the rank-2 velocity gradient

tensor: κij = ∂jui, which can be decomposed into its symmetric (strain-

rate tensor) and antisymmetric (rotation-rate tensor) part:

Σij =
1

2
(κij + κji) , (1.11)

Ωij =
1

2
(κij − κji) . (1.12)

Since the equation (1.4) is linear, we expect a linear relationship between

forces and torques acting on the body, and the resulting velocity and

vorticity fields. The simplest case, a sphere with no-slip surface, was

considered by Stokes himself. [7] It can be shown that the viscous drag

force F exerted by the fluid on a spherical particle, with radius r, moving

with velocity u with respect to the fluid is: [8]

F = 6πµru . (1.13)

The quantity ζ = 6πµr is called friction coefficient, inverting the rela-

tionship we have the mobility coefficient ζ−1. In the case of anisotropic

shape, we have a more complex connection, but still linear (where N is

the torque): [3] (
F

N

)
=

(
A B

BT C

)
·

(
u

ΩΩΩ

)
, (1.14)

or its inverse: (
u

ΩΩΩ

)
=

(
a b

bT c

)
·

(
F

N

)
, (1.15)

where the quantities A, B, C... are second-order tensors. The exact com-

putation of these quantities is possible only for a regular and symmetric

shape.

For this reason, both for rigid elongated polymers and bacilliform bac-

teria it is convenient to consider an axis-symmetric ellipsoidal shape. In
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this case, if we define a versor n which denotes the orientation the ellip-

soid axis, it was demonstrated in 1922 by George Jeffery [9] that, under a

linear flow, its dynamics is described by the following equation (assuming

also buoyancy neutrality):

ṅ = Ω · n + a0 [ΣΣΣ · n − n (n ·ΣΣΣ · n)] ; (1.16)

where a0 is a geometrical factor dependent on the ellipsoid aspect ratio

ra:

a0 =
r2
a − 1

r2
a + 1

. (1.17)

Jeffery equation is currently adopted as the standard description of non-

inertial anisotropic particles in fluid flows. [6] The last term in the equa-

tion 1.16 assures non-extensibility, maintaining ‖n‖2 = 1:

1

2
∂t (n · n) = n ·Ω · n + a0 [n ·ΣΣΣ · n − n · n (n ·ΣΣΣ · n)] . (1.18)

Since n ·Ω · n = ninjΩij = 0, being the product of a symmetric tensor

with an antisymmetric tensor, we have:

1

2
∂t (n · n) = a0 (1− n · n) (n ·ΣΣΣ · n) , (1.19)

which implies that, if n · n = ‖n‖2 = 1 at t = 0, we will have ‖n‖2 =

1 ∀t > 0.

1.3 Swimming at low-Reynolds

We can define a swimmer as a body which deforms its surface in order

to obtain a net displacement, without relying on external factors. While

some microorganisms deform all their body in order to sustain movement

(for example amoebae), in many others, like rod-shaped bacteria, sper-

matozoa or micro-algae, the deformation occurs only in specific motile

appendages like cilia or flagella. [10]

Swimming in a low-Reynolds regime is characterized by some peculiar

properties. Absence of inertia implies a balance of forces and torques,

between the viscous and the external ones. Usually microorganisms are

force- and torque-free swimmers (in the sense that they are not subjected
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to external forces or torques), although there are exceptions (for example

nonneutrally buoyant cells for the case of non-zero force, or gravitac-

tic/magnetotactic organisms subjected to an external torque). [5]

Other important properties derive from the temporal symmetry of

equation (1.4). One is rate independence: the distance travelled by the

swimmer deforming its surface does not depend on the rate at which

the deformation occurs, but only on its geometry. Strictly related is

the so-called scallop theorem (enunciated by Purcell in 1977 [11]): if

the swimmer modifies its surface in a time-symmetric sequence of de-

formations, it can not achieve a net displacement. The theorem takes

its name from the typical behaviour of a scallop (see figure 1.2), which

opens and closes periodically its shell (a real scallop can actually swim

since its dimensions and its rate of deformation are such as to obtain an

high Reynolds-number flow). The microorganism therefore must deform

its body in a non-reciprocal way, which requires at least two degrees of

freedom (while a scallop has only one), in the case of bacteria this is usu-

ally achieved with rotating helical flagella. [4] Since the time reversibility

is not assured in a non-Newtonian fluid, in this case a net displacement

with a reciprocal deformation can be actually obtained. [12]

Figure 1.2: Reciprocal deformation of a scallop. Image adapted from [12].

The precise way a microswimmer deforms its body to obtain a net

motion, and the detailed velocity field around its surface, is a current
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research field, but is far beyond the scope of this chapter. We are inter-

ested in the far-field disturbance flow generated by the swimmer, which

at this level of approximation can be expressed in terms of the multipole

expansion. Since microswimmers are usually force- and torque-free, the

lowest order singularity is the stresslet, associated to a symmetric force

dipole, which, if the swimmer is axisymmetric with director n , can be

expressed as S = σ0nn . The sign of the coefficient σ0 depends on the

propulsion, in particular on the relative point of application of the net

thrust exerted by flagella on the fluid and the viscous drag exerted by

the fluid on the cell body: extensile swimmers, denoted pushers, have

σ0 < 0, while contractile ones have σ0 > 0 and they are denoted pullers.

Examples of pusher are bacteria and spermatozoa (which have flagella

on the back of their body), while microalgae have typically their flagella

on the front of their body, and therefore they are pullers. While experi-

mental studies with Escherichia coli have shown that the force dipole is

a good approximation for the flow generated by bacteria, [13] measure-

ments on Chlamydomonas reinhardtii pointed out that the time averaged

flow is better described by a three off-centered point forces, [14] two on

the flagella and one on the body (see figure 1.3).

Figure 1.3: Difference between the disturbance flow generated by a bacteria (Escherichia

coli) and by an alga (Chlamydomonas reinhardtii). Image took from [5].

We therefore expect a microswimmer suspension to have a modified

rheology from the fluid without swimmers, due to the averaged distur-

bance flow. If the concentration is not too high (otherwise more complex

behaviours happen) we expect an enhanced effective viscosity in the case

of pullers, and a reduced effective viscosity for pusher, due to the fact that

the disturbance flow in the former case opposes to external shear, while

in the latter case the the external shear is reinforced. This prediction has

been experimental verified, also comparing with the passive case of dead
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cells, [15] both for bacteria [16] and algae. [17]

Finally, it is worth to mention that bacteria, especially in the presence

of chemical gradients, exhibit a particular form of random motion called

run-and-tumble behaviour: they swim straightly for a certain amount of

time (which can vary from one to hundreds of seconds, depending both on

environmental conditions and strain of bacteria), and then they abruptly

change direction. [18] This is a separated, although somewhat similar,

phenomenon with respect to the Brownian motion due to thermal noise

of the fluid. [5]





Part I

Dilute solutions of rigid

polymers

11





Chapter 2

General properties of polymer

solutions

Polymer solutions are an example of complex fluid, which is a generic

class of systems with different behaviours. In particular, complex fluids

are usually characterized by a non-Newtonian rheology, which means that

the stress tensor is not simply a linear function of the shear rate as in a

Newtonian fluid, where (in the incompressible case) σσσ = µ
[
∇∇∇u + (∇∇∇u)T

]
.

Clearly, the non-Newtonian behaviour can take many different forms,

which can be grouped in some categories: [19]

• viscoelasticity: the stress tensor depends both on the shear rate and

on the deformation (the fluid has a memory);

• shear thinning/thickening: the viscosity depends on the shear rate,

i.e. the stress tensor is a nonlinear function of the shear rate;

• normal stress effects: in shear flows, in addiction to shear stresses,

there also an extra tension along the streamlines; [20]

• extensional thinning/thickening: in extensional flows the viscosity

depends on the flow strength, or it is different from the Newtonian

prevision with respect to shear viscosity (µE = 3µ).

Obviously these phenomena can be further divided into various sub-

categories (for example, we can have linear o nonlinear viscoelasticity)

13



14 2. General properties of polymer solutions

and combinations. These peculiar rheological properties bring to pecu-

liar fluid mechanics phenomenon, that we can not observe in Newtonian

fluids.

Figure 2.1: Left: example of possible functions of the shear stress in terms of the shear

rate. Right: Weissenberg effect, the fluid climbs a rotating rod inside it, contrary to the way

a Newtonian fluid would do. This phenomenon is due to normal stress effects. [19]

Among all the complex fluids we can list (blood, milk, mucus, mayon-

naise, ink, gels and colloids, and many others), dilute polymer solutions

are of interest in the fluid mechanics community since even minute concen-

trations of polymers can dramatically change the properties of turbulent

flows, or alter the stability of laminar flows. In the rheological context

we have two fundamental (idealised) paradigms: flexible and rigid poly-

mers. In the first one, polymer molecules are described as elastic strings

which interact with the fluid being stretched by the flow, and therefore

storing and releasing elastic energy. In the second one, the molecules are

modelled as small, thin and non-deformable rods, which are in rotational

equilibrium with the fluid velocity field, affecting the flow trough skin

friction effects. [21] Real polymers partly have both the properties, but

usually one of them is prevalent on the other. Typically, in literature,

”polymers” without other specifications means ”elastic polymers”, [22]

but many of these peculiar phenomenon can be obtained also with rigid

polymers.
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To perform numerical simulations of polymer solutions, several rheo-

logical models have been proposed. The simplest ones are the Oldroyd-B

model (and the strictly related FENE-P model, taking in account the

finite extensibility of molecules) for flexible polymers, [23] and the Doi-

Edwards [24] model for rigid rod-like polymers. The stress tensor is very

different between the two cases, but the general approach is the same:

the polymer configuration is described by a rank-2 tensor R, which is

advected by the velocity field u and convected by its gradient ∇∇∇u . The

velocity fluid field is in turn influenced by the polymer configuration,

since in the Navier-Stokes equation there is a non-Newtonian stress ten-

sor depending on R. To be more explicit, here it is the Oldroyd-B model

for dilute flexible polymers solutions:

∂tu + (u · ∇∇∇)u = −∇∇∇p+ ν∇2u +
2ην

τ
∇∇∇ ·R + f , (2.1a)

∂tR + (u · ∇∇∇)R = (∇∇∇u)T ·R + R · (∇∇∇u)− 2
R − I

τ
, (2.1b)

where η is a parameter proportional to polymer concentration and τ is the

polymer relaxation time. In this case, the non-Newtonian stress is elastic

and linear, in the Doi-Edwards model is instead viscous (proportional to

∇∇∇u) and quadratic in R. Another difference is in the equation describing

the evolution of R: in the flexible case, we have a relaxational term, while

for rigid polymers we have a term ensuring the conservation of the trace

of R (due to inextensibility of rigid polymers)..

Using these simple rheological models, it is possible to reproduce non-

trivial phenomena observed in experiments. In particular, the most signif-

icant ones are the polymer drag reduction at high-Reynolds number, [25]

and the elastic turbulence at low-Reynolds, [26], along other related phe-

nomena like viscoelastic instabilities, elasto-inertial turbulence and mod-

ified heat transfer in natural convection. [22]

2.1 Polymer drag reduction

An important feature of high-Reynolds flows is that a large amount of

kinetic energy is dissipated by an hydrodynamic drag due to turbulence,
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much larger than the amount that would be dissipated if the flow was

laminar. This behaviour can be parametrized by the drag coefficient,

or friction factor, which, in the case of a pipe with diameter R, across

a length L with a pressure drop ∆p, having fluid density ρ and mean

velocity U , is defined as: [27]

f =
∆p

ρU2

R

L
, (2.2)

which is proportional to 1/Re in laminar flows, while it reaches an asymp-

totic constant value for Re → ∞ in turbulent flows. Reducing the tur-

bulent drag, in order to obtain the same flow with a reduced forcing, is

therefore of great practical importance in many industrial processes.

In order to reduce the drag, many strategies can be employed, one is

to add polymer molecules in the fluid: it was indeed discovered, already

in 1949, [28] that even a minute amount of flexible polymers can strongly

reduce the turbulent drag. The most famous practical application of

polymer drag reduction is in the Trans-Alaska Pipeline system and in

other petroleum pipelines, where this phenomenon helps to reduce the

energy consumption of oil transport. [29]

Even now we do not have a complete theory explaining flexible polymer

drag reduction, [30] since the mechanism by which the viscoelasticity

affects a turbulent flow, if generating a large effective extensional viscosity

(Lumley’s theory [31]), or creating an elastic stress comparable to the

Reynolds one (De Gennes’ theory [32]), is not clear. This scenario is

further complicated by the fact that also solutions of polymers having a

negligible flexibility give rise to drag reduction, [21] although usually an

higher concentration is needed, [33] but both the theories of Lumley and

De Gennes cannot be applied in the case of rigid polymers.

Drag reductions by flexible and rigid polymers show some similarities,

but also differences. Considering wall-bounded flows, the effect of poly-

mers increases with the concentration, but it exists an asymptotic state,

called maximum drag reduction (MDR), that cannot be exceeded. [22]

In the MDR we have a logarithmic relationship between the normalized

distance from the wall y+ and the normalized mean velocity V +(y+), [34]
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similar (but obviously with different coefficients) to von-Karman log-law

in Newtonian turbulent flows:

V +
(
y+
)

=
1

κV

ln y+ +BV. (2.3)

This asymptotic law appears to be universal between flexible and rigid

polymer solutions, but the crossover at increasing concentration, between

the von-Karman law and the MDR law appears to be very dependent on

the typology of the solution. [21, 35] In particular, for flexible polymers,

at large values of Re the mean velocity profile follows the MDR until a

certain crossover point, beyond which it becomes parallel to von-Karman

law, and increasing the concentration corresponds to push the crossover

point towards larger values of y+. Instead, for rigid polymers, the veloc-

ity profile is a sort of ”interpolation” between the two logarithmic laws,

saturating to the MDR only at large concentrations (fig. 2.2).

Figure 2.2: Mean velocity profiles of turbulent channel flows with different concentrations

of polymer additives, in normalized units, compared with the asymptotic MDR curve, in the

case of flexible (left) and rigid (right) polymers. [21] We can observe that in the first case,

the curves follow the MDR asymptote until a certain crossover point, before to assume a

”von-Karman-like” profile, while in the second one the curves never follow the MDR and the

von-Karman laws, assuming an intermediate profile.

Another important difference between the two categories of additives

is at moderate Reynolds number (but not so moderate to have laminar

flow): rod-like polymers cause a drag enhancement, while for flexible poly-

mers the drag remains the same of the Newtonian case. [36] In channel

flows, a phenomenological theory explaining the common MDR asymp-
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tote for flexible and rigid polymers was proposed, in terms of an effective

viscosity, dependent on the distance from the walls. [37–39] The the-

ory has been verified with direct numerical simulations of the FENE-P

and Doi-Edwards model, [40, 41] and it explains also the different be-

haviour at moderate Reynolds: rodlike polymers generate an effective

uniform viscosity (larger than the Newtonian one), while flexible ones,

being coiled for moderate shear, do not alter significantly the rheology

of the fluid. [36] But this remains a phenomenological theory limited

to wall-bounded flows, and the relationship between drag reduction by

flexible and rigid polymers remains an active research area, both exper-

imentally and numerically. [30, 33, 42–45] Moreover, while the effect of

flexible polymers on turbulence has been numerically investigated also in

other typologies of flows, for example in a shear flow without walls, [46] in

homogenous isotropic turbulence [47–49] or in natural convection, [50,51]

a comparable study of the effect of rigid polymers in turbulent flows is

still missing.

2.2 Elastic turbulence

The elastic turbulence can be considered as the diametrically opposite

phenomenon to drag reduction. Although the fact the viscoelastic stresses

can trigger instabilities in laminar flows was already known, [52–54] in

2000-2001 a new phenomenon was discovered in flexible polymer solu-

tions: a chaotic flow at low Reynolds numbers, showing several similar-

ities with inertial turbulence at high Reynolds. [55–57] In particular it

was observed a large increase in the hydrodynamic drag, a broad range of

active spatial (and temporal) scales (corresponding to a power-law energy

spectrum) and a massive increase of mixing rate, compared to a similar

Newtonian flow at the same Reynolds number. [26] For this reason, this

regime was called ”elastic turbulence”, although we can observe also sev-

eral important differences with the ”real” fluid turbulence, for example

the absence of the energy cascade. More in general, in this regime inertial

effects are (usually) negligible.
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Figure 2.3: Sketches of the experimental apparatus used to firstly observe elastic turbulence:

Taylor-Coutte [55] (top) and curvilinear channel [56] (bottom).

After the original experimental observations in Taylor-Couette [55]

(fluid confined between two parallel rotating disks) and curvilinear chan-

nel [56] configurations (fig. 2.3), numerical simulations of the Oldroyd-

B and FENE-P models in unbounded domains, [58, 59] wall bounded

channel flows with a periodic array of obstacles, [60] or in Taylor-Coutte

flows [61,62] predicted the emergence of a chaotic flows, which can be re-

produced also with a low-dimensional shell model. [63] Some theoretical

predictions have been also formulated starting from the Oldroyd-B model

and assuming an uniaxial stress tensor σij = BiBj: in this case, the set

of hydrodynamical equations assumes a form similar to the one of the

magnetohydrodynamics (MHD) approximation in plasma physics, with

Bi having a role similar to the one of the magnetic field. [64] Predictions

of this theory and results from numerical simulations are usually compati-

ble with the elastic turbulence observed in experiments, although in some

cases there are quantitative discrepancies (for example, in the relative
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weight of elastic and viscous stresses), which have been attributed to in-

accurate approximations, over-simplified models or the effect of walls. [26]

The similarity with MHD equations predicts also the existence of elas-

tic waves, analogous to the Alfvén waves in plasmas. [65] Their existence

in the transition to elastic turbulence was later supported by numerical

simulations of the Oldroyd-B model in a boundaries-free domain, [66] and

it was finally confirmed in a recent experiment with a channel flow. [67]

Another regime was discovered in 2013, the elasto-inertial turbulence.

[68] In this case, the inertial effects are important, and the flow remains

qualitatively distinct from both the elastic turbulence and the drag re-

duction. The relationship of this phenomenon with the other two regimes

is still an open question. [69]

Although all the experiments about elastic turbulence (until now) in-

volve flexible polymers, and also the proposed theoretical explanations

rely on the elasticity of polymers, recent two-dimensional numerical sim-

ulations, in periodic domains, of rod-like polymers with the Doi-Edwards

model, predicted the emergence of a chaotic flow. [70, 71] This regime

appears to be qualitatively similar the one simulated with the Oldroyd-

B model, but with some quantitative differences: for example, while for

the flexible polymers we have a power-law spectrum with an exponent

comprised between −3 and −4, in the case of rigid polymers an expo-

nent between −4 and −5 is predicted. A further investigation of this

regime, both in two- and three- dimensional domains will be the subject

of chapter 5.



Chapter 3

The Doi-Edwards model

The model which describes the behaviour of a dilute solution of rod-

like polymers is the one developed by M. Doi and S.F. Edwards, [24]

partially based also on results about rheological behaviour of suspensions

of ellipsoidal particles by H. Brenner [72] and by E. J. Linch and L. G.

Leal. [73, 74]

This model considers the case of non-deformable and extremely thin

molecules, which therefore can only rotate and translate. The suspen-

sion is assumed to be dilute (average distance between polymers much

larger than the length of a single polymer), hence every rod can rotate

freely without interference by other polymers, and uniform: the rods are

homogeneously distributed in the solvent fluid.

3.0.1 Rotational motion

The idea from Doi and Edwards was to consider macromolecules as

an ensemble of Brownian beads, subjected to bounds, following previous

works by Kirkwood. [75] In particular, for rigid elongated polymers they

considered the ”shish-kebab” model, which means that the elongated rod,

with length L and diameter b, is approximated as an ensemble of N = L/b

aligned spherical beads (see Fig. 3.1). This fact implies that, if the center

of the rod is located at position x , the a-th bead (with −N/2 < a < N/2)

it will be located at x a = x + abn , where n is the unit vector denoting

the rod orientation. Similarly, if v is the center of mass velocity, and w

21
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the polymer angular velocity, the bead will move as:

va = v + w× abn . (3.1)

If the rod is very thin (we will consider the case with aspect ratio ra →
∞), we can neglect the rotation around n , and so, if we suppose that it

is subjected to an external torque N, both N and w are perpendicular

to n . With small N, we can assume linearity and parallelism between w

and N:

w =
1

ζr
N, (3.2)

where ζr is the rotational friction coefficient.

Figure 3.1: ”Shish kebab” model for elongated rigid polymers. [24]

The coefficient ζr can be computed using the shish kebab model. The

idea is to express the velocity of every bead in terms of the mobility

tensor, which takes in account the hydrodynamic interactions between
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the beads, and therefore to sum on over them, in order to obtain the

total force and torque acting on the rod. It can be shown that we have:

ζr =
πµL3

3 ln (L/2b)
. (3.3)

We can express the external torque in terms of a potential U : defining

the rotational operator R as:

R = n × ∂

∂n
, (3.4)

we have N = −RU .

In our case, we can assume that the only potential to which the rods

are subjected, is the thermodynamic one due to Brownian motion U =

kBT ln Ψ, where Ψ(x ,n , t) is the probability density function of the rods

(see also Appendix B).

Now, we have to take in account the effect of the velocity field of the

solvent fluid. Since we are in the Stokes regime, and since the fact that

a very thin rods can be seen as an extremely elongated prolate ellipsoid,

the orientation will obey to the Jeffery equation (with a0 = 1):

ṅ = κκκ · n − (nn : κκκ)n . (3.5)

The angular velocity due to the flow is therefore w0 = n×ṅ = n×(κκκ · n).

Putting together hydrodynamics and Brownian contributions, we have:

w = − 1

ζr
R (kBT ln Ψ) + n × (κκκ · n) . (3.6)

The Smoluchowski equation for the rotational motion will therefore

have the form:

∂Ψ

∂t
= −R (wΨ) = R (DrRΨ− n × (κκκ · n) Ψ) , (3.7)

where Dr = kBT/ζr is the rotational diffusion constant.

3.0.2 Translational motion

Now we consider the translational motion. If the rod is moving with

velocity v, it will be subjected an hydrodynamic drag F, dependent on
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v. But, since the rod is anisotropic, the relationship between F and v is

a function of the angle between n and v, since the fluid will exert more

resistance if the rod is transverse with respect the motion. It is therefore

convenient to decompose the velocity in the components parallel and

perpendicular to n , v = v‖ + v⊥, in order to express the drag as:

F = ζ‖v‖ + ζ⊥v⊥. (3.8)

ζ‖ and ζ⊥ can be obtained applying the Kirkwood theory at the shish-

kebab model similarly to ζr, and their value is:

ζ‖ =
2πµL

ln (L/b)
, ζ⊥ = 2ζ‖. (3.9)

Since we can formulate the velocities as v‖ = (v · n)n and v⊥ = v−v‖,

we can obtain an expression of drag in terms of the orientation versor n :

F = ζ‖nn · v + ζ⊥ (I− nn) . (3.10)

This last relationship can be inverted in order to express v in terms of F:

v =

[
1

ζ‖
nn +

1

ζ⊥
(I− nn)

]
· F, (3.11)

and, finally, we can also add the motion due to the fluid flow:

v =

[
1

ζ‖
nn +

1

ζ⊥
(I− nn)

]
· F + κκκ · x . (3.12)

If we assume that the only forcing to which the rod is subjected is

the one due the Brownian motion, we can express v in terms of the

thermodynamic potential Ψ:

v =

[
1

ζ‖
nn +

1

ζ⊥
(I− nn)

]
· ∂
∂r

(kBT ln Ψ) + κκκ · x . (3.13)

Defining the translation diffusion constants D‖ = kBT/ζ‖ and D⊥ =

kBT/ζ⊥, we finally obtain the complete Smoluchowski equation for rota-

tional and translational motion:

∂Ψ

∂t
= − ∂

∂x
· (vΨ)−R (wΨ) =

=
∂

∂x
·
[
D‖nn +D⊥ (I− nn)

]
· ∂Ψ

∂x
− ∂

∂x
· [(κκκ · x ) Ψ]

+R (DrRΨ− n × (κκκ · n) Ψ) . (3.14)
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3.0.3 Stress tensor

It can be demonstrated that, in a system with holonomic constraints

(like the rigidity of the rods), the additional stress tensor σ
(P )
ij due to the

presence of polymers can be decomposed in a term proportional to the

velocity gradient tensor κκκ, called viscous, and a term non (explicitly)

dependent on κκκ, called elastic.

σ
(P )
ij = σ

(E)
ij + σ

(V )
ij , σ

(V )
ij = Aijklκkl. (3.15)

Phenomenologically, the viscous stress vanishes instantaneously when

the external flow is stopped, and it is related to the energy dissipation,

while the elastic stress vanishes only when the system reaches the equi-

librium, and it is related to the change in free energy caused by a virtual

deformation.

In particular, if δA is the variation in the free energy density A due

to a displacement from ri to ri + δεijrj, we have δA = σ
(E)
ij δεij. Since in

our system the only potential between polymers is the thermodynamic

one, the free energy density is (where ρP is the number of rods in unit

volume):

A = ρPkBT

∫
V

dnΨ ln Ψ, (3.16)

and therefore

δA = ρPkBT

∫
V

dn (δΨ ln Ψ + δΨ) . (3.17)

In order to calculate δΨ, we can use the Smoluchowski equation (3.14),

which, for an instantaneous deformation is dominated by the velocity

gradient κij = δεij/δt:

∂Ψ

∂t
' −R · (n × (κκκ · n) Ψ) , =⇒ δΨ ' −R · (n × (δεεε · n) Ψ) .

(3.18)

Inserting δΨ into δA, and integrating by parts:

δA = ρpkBT

∫
dn (n × (δεεε · n) Ψ)·RΨ = ρpkBT

∫
dnΨR·(n × (δεεε · n)) .

(3.19)
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Since Rinj = εijknk, where εijk is the Levi Civita tensor, we have (in

three dimensions):

R · (n × (δεεε · n)) = −3δεij

(
ninj −

1

3
δij

)
, (3.20)

and therefore:

δA = 3ρpkBTδεij

∫
dnΨ

(
ninj −

1

3
δij

)
= 3ρpkBTδεij〈ninj −

1

3
δij〉.

(3.21)

Hence we have the elastic component of the stress, due to the Brownian

motion of the rods:

σ
(E)
ij = 3ρpkBTδ〈ninj −

1

3
δij〉 = 3ρpkBT

(
Rij −

1

3
δij

)
, (3.22)

where the quantity R = 〈nn〉 =
∫
dnΨ (nn) is the polymer configu-

ration tensor, corresponding (or its traceless version R − (1/3)I) to the

nematic order parameter of liquid crystal theory. The elastic stress there-

fore opposes the deviation with respect to the state of thermodynamic

equilibrium, with all the rods randomly oriented.

Instead, if W is the hydrodynamic energy dissipation due to the fric-

tion of the rods with the surrounding fluid, it is related to the viscous

stress by the relationship W = kijσ
(V )
ij . Using the shish-kebab model, the

work done by the frictional force on the a-th bead is Fa · va. Since the

rod rotates with angular velocity w = n×(κκκ · n), the velocity of the a-th

bead relative to the fluid is:

va = ab (w× n − κκκ · n) = ab ([n × (κκκ · n)]× n − κκκ · n) = −abn (κκκ : nn) .

(3.23)

Since the frictional force acting on the a-th bead is Fa = ζ0va (not consid-

ering the hydrodynamic interaction between beads), the energy dissipated

by unit of space and time is:

W = ρp
∑
a

〈F · va〉 = ρp

N/2∑
a=−N/2

a2b2〈(κκκ : nn)2〉 = ρpζstr〈(κκκ : nn)2〉.

(3.24)
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If we take in account the hydrodynamic interaction, we have ζstr = ζr/2.

The viscous stress is therefore:

σ
(V )
ij =

1

2
ρpζrκkl〈ninjnknl〉. (3.25)

3.0.4 Closure approximation and field equations

We are now interested in obtain closed equations viable to be simu-

lated, in order to effectively investigate the phenomenology described by

the Doi-Edwards model. From the Smoluchowski equation for the rota-

tional motion, we can obtain the evolution of the configuration tensor

Rij:
DRij

Dt
=

∫
ninj

DΨ

Dt
dn , (3.26)

where the partial derivative ∂t is replaced by the material derivative Dt =

∂t + u · ∇ in order to take in account the transport by the fluid flow.

Hence we have (it is important to notice that the non-Browian part of

the evolution can be obtained directly from the Jeffery equation):

∂Rij

∂t
+ uk∂kRij = κikRkj +Rikκjk − 2κkl〈ninjnknl〉 − 2Dr (3Rij − δij) .

(3.27)

We can observe a problem: in order to compute the temporal evolution of

the second order moment 〈ninj〉 = Rij we need to know the fourth order

moment 〈uiujukul〉. But to compute the evolution of the fourth order

momentum we need to know the sixth order momentum, and so on. This

infinite hierarchy of equations is denoted closure problem, and it is quite

common in statistical physics. We therefore want to express 〈ninjnlnk〉
in terms of Rij, both in the equation for the evolution of Rij and in the

viscous stress tensor.

Such a relationship is defined closure approximation, and it must sat-

isfy two fundamental properties: to alter the predictions of the model

as little as possible, and to be feasible to be numerically implemented.

Probably the most simple one is the one proposed by Doi and Edwards

themselves [24]:

〈ninjnknl〉κkl ' A〈ninj〉〈nknl〉κkl +B〈nink〉〈njnl〉 (κkl + κlk) , (3.28)
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that we want to be exact for the traces:

〈nininknl〉κkl = A〈nini〉〈nknl〉κkl +B〈nink〉〈ninl〉 (κkl + κlk) . (3.29)

This implies A = 1 and B = 0, and therefore the Doi-Edwards closure is:

〈ninjnknl〉κkl ' 〈ninj〉〈nknl〉κkl = Rij (∂luk)Rkl. (3.30)

This is a very simple closure, which has the important advantage of pre-

serving the symmetry (Rij = Rji) and trace (Rii = 1) of the configuration

tensor. A certain number of more complicated closures have been pro-

posed through the years. [76–79] As an example, the hybrid closure by

Advani and Tucker [76] consists in:

〈ninjnknl〉 = fRijRkl + (1− f)Aijkl, (3.31)

with f = 1− 27 det (Rij) and

Aijkl = − 1

35
(δijδkl + δikδjl + δilδjk)

+
1

7
(Rijδkl +Rikδjl +Rilδjk +Rklδij +Rjlδik +Rjkδil) . (3.32)

We shall adopt the Doi-Edwards closure. In literature it is common

to neglect the elastic component of the stress, and to express the product

between friction factor and polymer density in terms of a normalized

single feedback coefficient η. [21, 41,70] With this assumption, we finally

have the equations describing the dynamics of a dilute solution of rod-like

polymers, according the Doi-Edwards model:

(∂t + uk∂k)ui = −∂ip+ ν∂2ui + ∂kσik + fi, (3.33a)

(∂t + uk∂k)Rij = (∂kui)Rkj+Rik (∂kuj)−2Rij (Rkl∂luk)−2Dr (3Rij − δij) ,
(3.33b)

∂iui = 0, σij = 6νηRij (Rkl∂luk) . (3.33c)

According [24], the equations (3.33) are valid also in the semi-diluted

regime, but with a different dependence of coefficients on shape and den-

sity.
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3.1 Hinch and Leal rheological theory

The rheological theory of Hinch and Leal [73, 74] is strictly related to

the one of Doi and Edwards. Contrarily to the latter, in this theory rigid

polymers are not approximated as a sequence of small beads (an approach

adopted by Doi and Edwards also for other typologies of polymers), but

with axis-symmetric ellipsoids (spheroids), taking advantage of the fact

that for such a regular shape it is possible to obtain many exact results.

In particular is based on the calculation of the resistance and mobility

functions and their consequences on the rheology of the solvent, an ap-

proach which started from the PhD thesis of Albert Einstein, who, in

the meantime he upset the foundations of physics, also found the time

to compute the effective viscosity of a suspension of spherical particles at

first order in the sphere volume fraction c: [80]

µeff ' µ0

(
1 +

5

2
c

)
. (3.34)

After Einstein, other important scholars carried on these studies, in par-

ticular Jeffery, Giesekus, Bretherton and Batchelor, right up to the theory

of Hinch and Leal. Also in this case the dynamics of the system is de-

scribed by the configuration tensor Rij, on which an additional stress σij

depends. The equation for Rij is identical to the one establishes by Doi

and Edwards, but it is generalized to the case of generic aspect ratio ra

(the velocity gradient tensor κκκ is therefore decomposed into its symmetric

ΣΣΣ and anti-symmetric ΩΩΩ parts):

D

Dt
〈nn〉 = ΩΩΩ · 〈nn〉+ 〈nn〉 ·ΩΩΩT

+a0

(
ΣΣΣ · 〈nn〉+ 〈nn〉 ·ΣΣΣT − 〈nnnn〉 : ΣΣΣ

)
− 2Dr (3〈nn〉 − I) , (3.35)

where a0 = (r2
a − 1)/(r2

a + 1) is the Jeffery geometrical factor. The bulk

stress σσσ instead has a more generic form (obtained originally by Giesekus

[81]):

σσσ = 2µc [2A〈nnnn〉 : ΣΣΣ + 2B (〈nn〉 ·ΣΣΣ + ΣΣΣ · 〈nn〉) + CΣΣΣ + FDr〈nn〉] .
(3.36)
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Here, A,B,C and F are geometrical factors depending on aspect ratio

ra. For elongated rods, in the limit ra →∞ we have:

A =
r2

4 (ln (2r))− 3/2
, B =

3 (2r)− 1/2

r2
, C = 2, F =

3r2

ln (2r)− 1/2
.

(3.37)

The fact that B → 0, differently from A and F , is compatible with the Doi

and Edwards model. Instead C 6= 0 implies also a change in the effective

Newtonian viscosity, an effect not considered in [24]. Apparently there

is a difference also in the form of the Brownian stress, but ∇ · 〈nn〉 =

∇ · (〈nn〉 − I).

If ra = 1 (spherical particles) we have A = B = F = 0 and C =

5/2, thus recovering the Einstein relationship. A suspension of spherical

particles is therefore still a Newtonian fluid, with a viscosity modified

with respect the bare solvent one.

Finally, for discoidal particles (ra → 0) we have all the coefficients

different from 0, and in particular A/B → 5/2. Therefore, a dilute sus-

pension of rigid disks would have a dynamic similar to the one described

in (3.33), with a change of sign in the terms depending on κij in the

equation for Rij and a non-Newtonian viscous stress with an additional

term:

σij = 6νη

[
Rij (Rkl∂luk) +

2

5
(Rik∂kuj +Rkj∂kui)

]
. (3.38)

A similar theory was proposed also by Brenner [72], with a more com-

plicated dependency of the coefficients on the aspect ratio. While for

asymptotic ra the coefficients of the two theories are equivalent, there are

differences for finite ra.



Chapter 4

Kolmogorov flow

This chapter is not explicitly related to polymer solutions, but it de-

scribes the configuration we selected to investigate them.

The particular configuration we decided to use is the so-called Kol-

mogorov flow. [82] It was conceived by A. N. Kolmogorov, who described

it, along other problems in mathematical physics, in a seminar in 1958-59,

and it was published by V. I. Arnold and L. D. Meshalkin in 1960. [83]

Kolmogorov was interested in the transition from laminar to turbulent

flow, due to increasing of Reynolds number. For this reason, he proposed

an ideal setting, characterized by:

• periodic boundary conditions and absence of solid bodies;

• sinusoidal (or cosinusoidal) forcing: f = F (sin(Kz), 0, 0).

Periodic boundary conditions are usually employed in the study of fun-

damental properties of turbulence, in order to disregard effects due to

interaction with walls. The sinusoidal forcing induces a simple laminar

solution:

u = U0 (sin(Kz), 0, 0) , with U0 = F/
(
νK2

)
, (4.1)

which permits to perform analytic studies about the flow.

The Kolmogorov flow is clearly an ideal setting (although it is possible

to experimentally realize a sinusoidal forcing using electromagnetic fields

[84, 85]), useful if we are interested in bulk properties of shear flows: it

31
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can be considered a channel flow without boundaries, [86] that, due to

this feature, can represent also a good approximation of some geophysical

flows. [87,88]

Figure 4.1: Sketch of an experimental magnetohydrodynamic realization of the Kolmogorov

flow, using a solution of copper sulphate as fluid. [84]

Linear stability of 4.1 was already investigated in 1961 [89]: the lam-

inar flow becomes unstable to transverse large-scale (i.e. larger than

forcing scale 1/K) perturbations if Reynolds number (defined using U0 as

velocity scale and 1/K as spatial scale) exceeds the threshold Rec =
√

2 .

After the first paper regarding linear stability, [89] a large number of

studies has followed: from analytical and numerical investigation on the

states resulting from the instability, [90–92] to numerical simulation of

the fully turbulent state at high Reynolds, [86, 93], but also various gen-

eralizations: compressible flows, [94] Rossby waves presence, [87] strat-

ified flows, [95] confinement, [96] advection of passive particles [97] or

microswimmers, [98, 99] and non-Newtonian fluids, such as viscoelastic

polymer solutions (with linear and non-linear stability analysis, [100,101]

and observations of elastic turbulence, [58] elastic waves [66] and polymer
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drag reduction [46]) and dusty flows. [102,103]

Stability analyses are usually performed in two-dimensions, due to

Squire’s theorem which states that for parallel flows the most unstable

perturbations are two-dimensional, [104] while other studies can be per-

formed both in two or three dimension, since dimensionality of the system

can strongly affect the flow dynamics (especially in fully developed tur-

bulence, where 2D and 3D flows are qualitatively different [105]). In two

dimensions (2D), our convention is to define x as the mean flow direction

and y as the mean gradient direction, while in three-dimension (3D) x is

the mean flow direction, y the ”neutral” one (no dependence on y in the

laminar solution) and z the mean gradient one.

One of the most interesting features of the Kolmogorov flow is that

the sinusoidal profile of velocity field is maintained also in the turbulent

regime, [86] or in other chaotic flows. [58] If we denote with overbar the

averaging along time, mean flow and neutral directions (x and y) in the

Newtonian turbulent regime we will have (using a cosinusoidal forcing):

u (x , t) = [U cos (Kz) , 0, 0] . (4.2)

Even more interesting is the fact that also the x− z component of the

second order moment of the velocity is monochromatic:

uxuz (x , t) = S sin (Kz) , (4.3)

which means that, if we consider the (stationary) momentum budget

(obtained averaging Eq. 1.1 along t, x and y):

∂zΠr = ∂zΠν + fx, (4.4)

where viscous and Reynolds stress are defined as:

Πν = ν∂zux, Πr = uxuz, (4.5)

the momentum budget equation will become an algebraic relationship

between coefficients:

SK + νK2U = F. (4.6)
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This relationship is sometimes non-dimensionalised by defining the fric-

tion factor f = F/(KU2) and the Reynolds stress coefficient s = S/U2:

f =
1

Re
+ s. (4.7)

In the laminar flow, being uz = 0, we have s = 0 and therefore

f = 1/Re, while in 3D fully developed turbulent flows [86] it has been

numerically shown that asymptotically (Re & 160) we have:

f = f0 +
b

Re
=⇒ s = f0 +

b− 1

Re
, (4.8)

with f0 ' 0.124 and b ' 5.75 (see Fig. 4.2).

Figure 4.2: Asymptotic scaling, as a function of Reynolds number Re of non-dimensional

coefficients f = FL/U2 and s = S/U2 (here denoted as σ) in the turbulent Kolmogorov flow,

as shown in [86]. The dissipation factor β = εL/Urms as a function of Re is shown in the

inset, compared to the laminar value βlam = 1/Re.

In non-Newtonian fluids the relationship 4.4 will be enriched by supple-

mentary terms related to non-Newtonian stresses, but the monochromatic

behaviour will be still present. [58, 70,102]



Chapter 5

Chaotic flows at low-Reynolds

number

5.1 Introduction

As it has been described in chapter 2, recent two-dimensional numeri-

cal simulations have shown that rigid rod-like polymers originate, at low

Reynolds number, a chaotic regime similar to elastic turbulence, [70] in-

cluding the enhancement of mixing. [71]

While in turbulent flows at high-Reynolds numbers the dimensionality

of the system has dramatic consequences on the dynamics, such as the

reversal of the turbulent cascade of kinetic energy, [106,107] the behaviour

of chaotic flows at low Reynolds is expected to be qualitatively similar in

2D and 3D. This feature implies the possibility to use 2D studies for the

modelling of 3D applications, since it offers us considerable advantages,

such as the reduction of the computational cost and the simplification of

experimental setups. Nonetheless, quantitative discrepancies between 2D

and 3D results can be observed, due to the change of dimensionality. An

example of this discrepancy has been recently noted in numerical studies

of Rayleigh-Taylor convection in porous media, with a faster growth of the

mixing layer in two dimensions, related to density plumes more elongated

and thinner in 2D than in the 3D case [108,109]. In order to evaluate the

validity of 2D studies of low Reynolds flows, the comparison of 3D and

35
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2D studies is therefore crucial.

The purpose of our study is therefore the extension to three dimen-

sional (3D) flows of the investigation of the chaotic regime in viscous so-

lutions of rod-like polymers. In particular, here we present the results of

numerical simulations in 3D of the rheological model considered in [70,71]

together with two-dimensional (2D) simulations performed with identical

parameters for comparison. We find that the qualitative phenomenology

of 2D and 3D systems is similar, in particular increasing the concentration

of polymers we find an enhancement of the flow resistance, which can be

quantified by the friction factor, as well as an increased mixing efficiency.

The latter property is investigated by measuring the decay rate of the

variance of a scalar field passively transported by the flow. Nonetheless,

between 3D and 2D simulations quantitative differences are revealed by

an accurate comparison. In particular the effects of polymers in 2D is

observed to be stronger than in 3D. An interpretation of this dimensional

effect, in terms of the rotational degrees of freedom of polymers, is of-

fered. We also discuss the possibility of a mapping between the 2D and

3D results obtained by rescaling the concentration of polymers.

5.2 Model and simulations

In order to describe a dilute solution of rigid rod-like polymers, we

considered the Doi-Edwards model [24] (described in chapter 3):

∂tui + uk∂kui = −∂ip+ ν∂2ui + ∂kσik + fi, (5.1a)

∂tRij + uk∂kRij = (∂kui)Rkj +Rik(∂kuj)− 2Rij(∂luk)Rkl, (5.1b)

where uuu (xxx, t) is the velocity field, RRR (xxx, t) the polymer configuration ten-

sor, p (xxx, t) the kinematic pressure, ν the kinematic viscosity, fff (xxx, t) the

external forcing, and σij = 6νηRij(∂luk)Rkl the polymer stress tensor.

We recall that equation (5.1b) should also contain a term related to the

orientational diffusion of polymers [24]. However, if the characteristic

Brownian rotational time tB is much larger than the dynamical rotational

time tL, determined by the velocity gradients, we can disregard the ef-
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fects of Brownian rotations of the rods. [110] The dynamical time can be

estimated as tL ≈ (L2/ν)Re−1, where L is the characteristic scale of the

flow and Re is the Reynolds number, while, for an elongated particle of

length ` and aspect ratio ra in a solvent with density ρ at temperature

T , the Brownian time is given by tB = (πρν`3) / (3kBT (ln (ra)− 0.8))

where kB is the Boltzmann constant [24]. If we consider an experiment in

a microchannel of width L ≈ 1 mm at Re ≈ 1, with rigid fibers of length

` = 5 µm and aspect ratio r = 10 in water at T = 300 K, the dynamical

time tL ≈ 1 s is much smaller than the Brownian time tB ≈ 20 s. Having

these applications in mind, in the following we disregard the Brownian

term.

We considered here a 3D viscous shear flow sustained by the Kol-

mogorov body force (described in chapter 4) fff(xxx) = (F cos(Kz), 0, 0),

where F is the amplitude and K is the wavenumber of the force. In

absence of polymers (η = 0) this force generates a stationary laminar

solution uuu(xxx) = (U0 cos(Kz), 0, 0) with U0 = F/(K2ν), which is linearly

stable if the Reynolds number Re = U0/(νK) is smaller than the critical

value Rec =
√

2 [89]. The laminar solution of (5.1a) with η > 0 is the

same Kolmogorov flow (U0 cos(Kz), 0, 0) with amplitude U0 = F/(K2ν)

independent on the polymer concentration (at variance with viscoelastic

models in which the presence of polymers affects the amplitude of the

laminar flow [46]). In this case from the (5.1b) we have, for the confor-

mation tensor, Ri3 = R3i = 0 and ∂xRij = 0, i.e. polymers oriented in

the x− y plane and their orientation can be a function only of the y and

z coordinates.

5.2.1 Numerical simulations

We integrated (5.1) on a triply periodic domain of size L = 2π, by

using a pseudo-spectral code which discretizes the velocity and confor-

mation tensor fields on a regular grid of N3 = 2563 gridpoints. Since

(5.1) contains terms which are cubic in the fields, a 1/2 dealiasing is

required at each time step [111]. Time integration is performed with a

fourth-order Runge-Kutta scheme [112] with implicit integration of the
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linear dissipative terms, and the time step is fixed by the resolution of

the rotational dynamics of the conformation tensor. Numerical methods

are described in a more detailed way in Appendix A.

In all our ensemble of simulations the viscosity is set to ν = 1 and

the flow is sustained by the Kolmogorov force fff(xxx) = (F cos(Kz), 0, 0),

with forcing wavenumber K = 4 and forcing amplitude F = ν2K3, which

implies that, in absence of polymers (η = 0), the laminar flow is linearly

stable with Reynolds number Re = U0/(νK) = 1. The feedback coeffi-

cient is varied from η = 5 to η = 8. Experimentally this corresponds, for

the case of an aqueous solution of xanthan gum, to concentrations in the

range of 73− 102 wppm. [36] We considered values of η small enough to

be in the dilute regime, but also large enough to ensure that the system

is far from the transition from the laminar to the chaotic flow observed

in [70].

We added a diffusive term κ∂2Rij with κ = 4 × 10−3 to eq. (5.1b)

in order to prevent the emergence of numerical instabilities [113]. All

the quantities are made dimensionless by using the forcing wavenumber

K, the amplitude of the laminar velocity U0 and the laminar time-scale

T0 = 1/(KU0). In order to have a quantitative comparison between

the 2D and the 3D versions of the model, we also performed additional

numerical simulations of (5.1) in a two dimensional periodic domain with

the same parameters of the 3D runs.

The velocity field at time t = 0 is initialized to the fixed-point laminar

solution, while the components of the tensor R are initially distributed

randomly with isotropic distribution. The time evolution of the kinetic

energy E = 1
2
〈|uuu|2〉 is shown in Figure 5.1 for two simulations with η =

6 and η = 8 (here and in the following 〈·〉 denotes the average over

the whole volume). Injecting the polymers the velocity field is strongly

affected, with the energy almost reduced to zero. Energy further increases

back almost to the laminar value (at t ' 200T0 in Fig. 5.1) where the

instabilities due to polymers develop, with the system eventually reaching

a statistically stationary chaotic state (at t ≥ 500T0). In this regime the

energy is considerably smaller than the one of the laminar flow E0 =
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1
2
U2

0 , and it displays rapid oscillations whose frequency increases with

the polymer concentration, while the average value of E decreases at

increasing η.
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Figure 5.1: Kinetic energy E, normalized with the laminar energy E0, for two simulations

in 3D with η = 6 (blue dashed line) and η = 8 (red solid line). In both cases the initial

condition is the laminar fixed point with E(0) = E0.

For each value of the parameters, a set of three independent simu-

lations, with different realizations of the initial random configuration of

the conformation tensor, is performed. While the properties of the ini-

tial transient are strongly depending on the realization, the subsequent

chaotic regime displays statistically equivalent properties between differ-

ent realizations, and they are averaged to increase the statistical accuracy

of the results. All the results we presented are obtained in this statisti-

cally stationary regime.

Figure 5.2 shows three sections of the velocity components ux,uy and uz

in the plane x−z at fixed y from a simulation with η = 7 in the stationary

chaotic flow. The structure of the Kolmogorov flow remains visible in the

ux field, with superimposed irregular fluctuations at small scales which

are clearly more evident in the uy and uz fields, where the mean flow

is absent. We remark that the fluctuations in the ux field qualitatively

resemble the elastic waves observed in viscoelastic flows. [66, 67]
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Figure 5.2: Vertical sections in the x− z plane of the velocity components ux, uy, uz (from

left to right) in the 3D chaotic regime for η = 7. The color scale ranges from −3u′i (black)

to 3u′i (white), where u′i are the rms values of the velocity fluctuations.

5.3 Results

5.3.1 Statistics of the velocity

As we already described in Chapter 4, the most relevant feature of

the Kolmogorov flow is that, also in the chaotic and in the turbulent

regimes, it maintains a monochromatic mean flow 〈ux〉 = U cos(Kz).

This property is confirmed even in the presence of rigid polymers, as

shown in Fig. 5.3, where the average velocity profile, from the simulations

at different concentrations, is plotted. We note that the amplitude of the

mean flow is significantly reduced with respect to the laminar solution,

consistently with the energy trends shown in Fig. 5.1, as a consequence

of the chaotic motion induced by polymers.

This property therefore allows us to decompose the velocity field in a

mean (monochromatic) component and fluctuations as

u (x ) = U (cos (Kz) , 0, 0) + u ′(x ) (5.2)

Table 5.1 reports the values of the (root-mean-square) rms velocity fluc-

tuations, together with the amplitude of the mean flow and other relevant

quantities we will consider.

Figure 5.4 confirms that the amplitude of the mean flow is signifi-

cantly reduced with respect to the laminar case and that this effect be-

comes more relevant at increasing values of the concentration parameter

η. The rms values of velocity fluctuations appear, on the contrary, to do
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Figure 5.3: Profiles of the mean velocity 〈ux(z)〉 averaged over x, y and time, in 3D

simulations with different values of η. The solid black line corresponds to the laminar solution

of the Newtonian fluid at η = 0.

η U S Σ u′x u′y u′z εI εν εp

5 2.87 0.10 4.40 0.64 0.12 0.40 91.9 74.8 17.1

6 2.74 0.10 5.02 0.63 0.13 0.39 87.2 68.6 18.6

7 2.63 0.10 5.57 0.64 0.16 0.39 83.2 63.6 19.6

8 2.48 0.09 6.08 0.69 0.18 0.40 78.8 58.3 20.6

Table 5.1: Parameters of the 3D simulations. U is the amplitude of the mean longitudinal

velocity, S the amplitude of the mean Reynolds stress and Σ that of the mean polymer stress.

u′x, u′y and u′z are the rms values of the three components of velocity fluctuations. εI is the

mean energy input, εν the viscous energy dissipation and εp the mean polymer dissipation.

not have a relevant dependence on η. We observe also that fluctuations

along streamwise direction u′x are the strongest, followed by those in the

z direction, while fluctuations in the spanwise direction u′y are signifi-

cantly smaller. These results suggest that, even in the chaotic regime,

the dynamics of the flow remains approximately two-dimensional.

5.3.2 Drag and momentum budget

The momentum budget can give us a better comprehension of the

effect of the polymers on the flow. By averaging the first component of
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Figure 5.4: Mean velocity profiles U (black diamonds) and components of rms velocity

fluctuations (u′x blue squares, u′y green triangles, u′z red circles) in 3D simulations with

different values of η.

(5.1) over x, y in stationary conditions we obtain the stress budget

∂zΠr = ∂z (Πν + Πp) + fx, (5.3)

where Πr = uxuz is the Reynolds stress, Πν = ν∂zux the viscous stress,

and Πp = σxz the polymer stress. In the statistically stationary state all

these quantities display a monochromatic profile

Πr = S sin(Kz), Πν = −νKU sin(Kz), Πp = −Σ sin(Kz),

(5.4)

and therefore (5.3) becomes an algebraic equation for the coefficients

SK + νK2U + ΣK = F. (5.5)

Dividing all the terms of (5.5) byKU2 we obtain the dimensionless version

of the momentum budget, where we define the friction coefficient f =

F/(KU2), which quantifies the ratio between the work done by the force

and the kinetic energy of the mean flow, the Reynolds stress coefficient

s = S/U2 and the polymer stress coefficient σ = Σ/U2:

f =
1

Re
+ s+ σ (5.6)
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In the laminar solution we have s = σ = 0 and f = 1/Re. Figure

5.5 shows that the increase of the polymers concentration produces an

enhancement of the friction factor with respect to the laminar case, which

is mostly due to the increment of the polymer stress and partly also to

a weaker growth of the viscous stress. The Reynolds stress remains in

all cases negligible, showing that inertial terms do not contribute to the

transfer of momentum.

 0

 1

 2

 3

 4

 5  6  7  8

f,
 1

/R
e
, 

σ
, 
s

η

Figure 5.5: Friction factor f (black diamonds) normalized viscous stress 1/Re (blue

squares), polymer stress coefficient σ (red circles) and Reynolds stress coefficient s (green

triangles), as function of η. Filled symbols are for the three-dimensional DNS, empty ones

are for the two-dimensional DNS.

By definition, the Reynolds number Re and the drag coefficient f

are linked by f = Re0/Re
2, where Re0 = U0/Kν = F/K3ν2 is the

Reynold number of the laminar solution. Polymers therefore exert two

complementary effects: they reduce the Reynolds number of the flow

and increase its resistance. We notice also that the contribution of the

polymer stress (∝ 1/Re2) is dominant compared to that of the viscous

stress (∝ 1/Re) to the increase of the drag coefficient. This is clearly

shown in Figure 5.6 in which the friction factor f is plotted as a function

ofRe for the different values of η. Since both f andRe have not an explicit

dependence on η, points corresponding to simulations at the same F and
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ν lie on the same line Re0/Re
2. The point at Re = 1 corresponds to

the laminar fixed point, which is stable in the absence of polymers. We

remark that this plot is done keeping fixed the forcing F , so the different

Reynolds numbers are due to the different mean velocities produced at

various η. The inset of Fig. 5.6 instead shows how the effective viscosity

νeff ≡ F/(K2U) increases as a function of the mean shear rate γ̇ = KU ,

obtained by varying the amplitude F of the forcing at fixed polymer

concentration (data from two-dimensional simulations). In this range of

values, the polymer solution displays a shear-thickening behaviour.
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Figure 5.6: Friction factor f as a function of Re in the 3D (blue, filled symbols) and 2D

(red, empty symbols) simulations at concentrations η = 5 (squares), η = 6 (circles), η = 7

(triangles), η = 8 (diamonds). The black asterisk at Re = 1 represents the laminar fixed

point at η = 0. The dashed line represents the curve f = Re0/Re
2 while the dotted line is

the laminar law f = 1/Re. Inset: effective viscosity νeff as a function of the mean shear

rate γ̇ for 2D simulations with η = 5.

5.3.3 Energy budget

From the analysis of the energy budget we get additional information

regarding the effects of polymers on the flow. If we multiply (5.1) by u ,

and we integrate over the volume, we obtain the balance equation for the

mean kinetic energy (we remark that, unlike he case of elastic polymers,
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we cannot associate a deformation energy to rigid polymers, in absence

of Brownian effects [24])

d

dt
〈E〉 = εI − εν − εp, (5.7)

where εI = 〈f · u〉 = FU/2 is the mean energy input, εν = 〈ν |∇u |2〉
the mean viscous dissipation rate, and εp = 〈σij∂jui〉 is an additional

dissipation of kinetic energy due to the coupling with polymers. We

remark that the local values of the term σij∂jui can be either positive or

negative, meaning that polymers can locally either give or subtract energy

from the flow. Nonetheless the volume average of εp is always negative,

indicating that the global effect of polymers is dissipative. Physically,

this is due to the fact that the coupling between rods and the fluid is due

to viscous forces at the molecular scale, whose mean effect is to dissipate

a fraction of the kinetic energy [24] (see also Chapter 3).
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Figure 5.7: Mean values of energy input εI (black diamonds), viscous dissipation εν (blue

squares) and polymer dissipation εp (red circles), as function of η. Filled symbols are for the

three-dimensional DNS, empty ones are for the two-dimensional DNS.

In the statistical stationary state, averaging over sufficiently long times,

the energy can be assumed constant, and therefore the energy balance

reduces to εI = εν + εp. These quantities are displayed in Fig. 5.7, nor-

malized with the mean energy input of the laminar flow ε0 = FU0/2. We
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can observe a slight increase in the polymer dissipation as the concentra-

tion coefficient increases, but the main effect of polymers appears to be

a suppression of the energy input provided by the constant forcing, as a

consequence of the reduction of the mean flow amplitude. This result is

consistent with the data plotted in Fig. 5.1, showing that kinetic energy

is reduced at increasing polymer concentration. Figure 5.7 indicates that

for all values of η, energy is mostly dissipated by viscosity. Therefore we

expect that the small scale properties of the flow are weakly affected by

the polymer concentration.
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Figure 5.8: Time averaged, kinetic energy spectra as a function of wavenumber from 3D

simulations with different values of η.

In order to investigate in details this point, in Fig. 5.8 we plot the ki-

netic energy spectra in stationary conditions and for the different values

of concentration. Note the peak of the spectra at the forcing wavenum-

ber K (the only active wavenumber in the laminar case). We observe

very small variations of the spectrum with η, mostly concentrated at

small wavenumbers (since the total energy changes with η). At large

wavenumbers the spectra shows a power law behaviour E (k) ∼ k−α with

α ' 4.8, which indicates the presence of fluctuations at all scales. The

fact that the power spectrum is steeper than k−3 indicates that the ve-
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locity field is smooth in this regime, similarly to what observed in elastic

turbulence [55,58].

5.3.4 Mixing properties

Since we noted the presence of velocity fluctuations over a wide range

of spatial scales, we expect that this fact causes a strong influence on the

mixing efficiency of the flow. In order to address this point we investigated

the mixing of a passive scalar by simultaneously integrating equation for

a scalar field θ(xxx, t) transported by the velocity field uuu obtained from

Eqs. (5.1)

∂tθ + uk∂kθ = D∂2θ (5.8)

where D is the molecular diffusivity, which we set to D = 2 × 10−3 in

all the simulations. The integration of the Equation (5.8), obtained with

the same pseudo-spectral method discussed in Appendix A, starts at an

arbitrary time in the stationary regime of chaotic flow. We considered a

monochromatic initial condition for θ, having the same periodicity of the

mean flow θ(xxx, 0) = θ0 cos(Kz). With this initial condition, in absence

of polymers, the mixing is due exclusively to molecular diffusion, since

the gradients of the scalar field ∇θ are orthogonal to the laminar velocity

field. In particular, for η = 0 the variance of the scalar field (as well as

the variance of its gradients) decays exponentially as 〈θ2〉 ∝ 〈(∇θ)2〉 ∝
exp (−β0t), with β0 = 2DK2.

The presence of polymers causes a strong enhancement of the mix-

ing, which is illustrated by the vertical sections of θ fields displayed in

Fig.5.9. At variance with the diffusive case at η = 0 in which the scalar

field remains monochromatic, here we observe the formation of thin scalar

filaments, which rapidly transfer the scalar fluctuations to small dissipa-

tive scales, ultimately leading to a strong enhancement in the mixing

efficiency.

A quantitative evaluation of the mixing properties is provided by the

temporal evolution of the variance of θ and ∇θ shown in Figure 5.10.

Here and in the following, the results presented are averaged over 13

independent simulations of Equation (5.8), starting from the same initial
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Figure 5.9: Vertical section in the x− z plane at fixed y = 0 of the scalar field θ for the 3D

simulation with η = 8 at different times. From left to right: t = 0, t = 32T0, t = 64T0.

condition θ(xxx, 0) and different velocity fields. The decay of 〈θ2〉 in the

chaotic regime induced by the polymers is much faster with respect to the

case η = 0. We can observe the same result for the long-time decay of the

variance of scalar gradients 〈(∇θ)2〉, even though the chaotic advection

of the scalar field causes an initial increase of its gradients (this effect

is clearly seen in Fig 5.9). For the concentration values considered in

our study, we are not able to observe a clear dependence of the mixing

efficiency on η.
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Figure 5.10: Decay of the variance of the scalar field 〈θ2〉 (left panel) and of the scalar

gradients 〈∇θ)2〉 (right panel) for the different values of η in 3D simulations. Solid black line

represents the diffusive exponential decay in absence of polymers.

The instantaneous exponential decay rate of the scalar variance βp =

− d
dt

log〈θ2〉 can be expressed, using (5.8), as

βp (t) = − d

dt
log〈θ2〉 = 2D

〈(∇θ)2〉
〈θ2〉

(5.9)

which can be directly compared with the decay rate due to molecular
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Figure 5.11: Instantaneous exponential decay rate βp (t) for different values of η in 3D

simulations (left panel) and 2D simulations (right panel).

diffusion β0 = 2DK2.

The decay rate βp reaches a maximum value after a very short time,

corresponding to the maximum development of thin filaments of the scalar

field. At longer time, since both 〈θ2〉 and 〈(∇θ)2〉 decay exponentially,

βp approaches an almost constant value, about three times larger than

β0 (see Fig. 5.11) which gives us a good quantification of the increased

mixing efficiency. We note that the ratio βp/β0 is proportional to the

square of the ratio between the large scale of the scalar field 1/K and the

typical scale of its gradients (〈θ2〉/〈(∇θ)2〉)1/2.

5.3.5 Comparison between 2D and 3D

According the results presented so far, we can assert that the properties

of the chaotic flow, which is obtained from 3D numerical simulations of

the model (5.1) for a dilute solution of rigid rods, are qualitatively similar

to those reported in previous numerical studies in 2D domains [70, 71].

In particular, we observed that the fluctuations of the y-component of

the velocity uy, which is transverse both to the streamwise direction of

the mean flow x and to the direction of its gradient z, remain consid-

erably smaller than those of ux and uz (see Figure 5.4). This confirms

that the dynamics of the three-dimensional system is substantially two-

dimensional, and that the properties of the chaotic flow are qualitatively

independent on its dimensionality.
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In order to perform a qualitative comparison between the properties

of the 3D and 2D flows, we also performed a new set of 2D simulations

of the system of equations (5.1) with the same parameters of the 3D

simulations. The comparison of the mean flow and velocity fluctuations,

reported in Figure 5.12, clearly shows that the effects of polymers are

more pronounced in 2D than in 3D. Keeping fixed the value of the polymer

concentration η, we notice that the velocity fluctuations are more intense

in 2D than in 3D. Similarly, the reduction of the amplitude U of the mean

flow, with respect to the laminar solution U0, is stronger in 2D than in

3D. It is worth to notice that 2D and 3D curves of U and u′, as a function

of η, appear to be almost parallel, which is an indication of the fact that

the effect of dimensionality is systematic and not dependent on η.
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Figure 5.12: Amplitudes of mean velocity profiles U (blue squares) and rms velocity fluc-

tuations u′rms (red circles) as a function of η in 3D (filled symbol) and 2D (empty symbols)

simulations.

In Figure 5.5 we report the comparison of the momentum balance.

Also in this case we observe that the values of the friction factor in 2D

are systematically higher than in 3D at fixed η. In both cases, the en-

hancement of the drag is mostly due to the increase of the polymer stress,

with a subdominant contribution due to the increase of the viscous New-

tonian stress. The combined effect of increased friction factor and reduced
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Reynolds number can be observed in Figure 5.6, where the deviation from

the Newtonian point f = 1 is stronger for the 2D simulations. Consider-

ing the energy balance, the reduction of the amplitude of the mean flow

causes a reduction of the energy injection rate εI in 2D simulations with

respect to the 3D ones at fixed η (see Figure 5.7). This phenomenon

is balanced by a reduction of the viscous dissipation rate εν , while the

energy dissipation due to polymers remains almost unchanged.

In summary, we can conclude that the effects of rod-like polymers

in viscous flows in three-dimensions is significantly weaker than in two-

dimensions. We believe that the origin of this difference can be probably

attributed to the different rotational degrees of freedom of the rods. In

2D, the rotation of the polymers can occur only in the x − z plane, im-

plying that, during the rotation, the Rzz component of the conformation

tensor is non-zero, and therefore the polymers are oriented in the di-

rection of the gradient of the mean flow (the z-direction). Conversely,

in 3D they can rotate also in the x − y plane, indeed in the stationary

regime the average values of Ryy and Rzz appear to be very similar, but

the polymer rotations in the x − z and x − y planes have very different

consequences on the polymer stress tensor σij. We remind that σij is

proportional to the product of the configuration tensor Rij and the ve-

locity gradient tensor ∂iuj. In the case of the laminar Kolmogorov flow

uuu(xxx) = (U0 cos(Kz), 0, 0), the only component of the velocity gradient

which is non-zero is ∂zux. As a consequence, there is no stress induced by

rotations in the x−y plane (which is allowed only in 3D). This means that

in the case of the chaotic flow, the gradients of velocity in the y-direction

originates are due only to the fluctuating part of the velocity field, and

therefore they are significantly smaller than those in the z-direction. As

a result, the polymer stress in 3D is on average weaker than in 2D flow

with the same η.

We obtained an heuristic estimate of the dimensional dependence of

the average polymer stress, considering the formal expression of the stress

tensor in d-dimensions [24] σij = 2dνηRij(∂luk)Rkl, which is derived un-

der the assumption of isotropy of the conformation tensor Rij = δij/d in
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the limit of zero shear. Even though this hypothesis is not fulfilled in the

case of the Kolmogorov flow, since the non-vanishing mean shear induces

a preferential alignment of the rods in the direction of the mean flow, we

can suppose that simulations in 2D and 3D can be simply mapped by

rescaling the polymer concentration as η2D = (2/3)η3D. We tested this

prediction by comparing two simulations in 2D, with reduced parameters

η2D = 4 and η2D = 5.33, with the corresponding simulations in 3D with

η3D = 6 and η3D = 8. In both cases, we noticed that the rescaling of the

concentration reduces the difference between the amplitude of the mean

flow in 2D and 3D below 3%. Therefore, although the rescaling is not

exact, it still provides a simple and useful empirical rule to translate 2D

results for 3D applications, at least for this flow. This mapping also sup-

ports the interpretation of the dimensional effects reported in our study

in terms of the different rotational degrees of freedom of the rods.

Finally we compare the mixing properties of 2D and 3D flows by inte-

grating the transport equation (5.8) for a two-dimensional scalar field θ

transported by the 2D flow. Initial conditions and diffusion coefficient are

identical to those of 3D simulations. In Figure 5.11 we show the temporal

trends of the instantaneous exponential decay rate βp (t) obtained in the

2D simulations, which appear to be very similar to those obtained in 3D

simulations: this is in agreement with the observation that the intensity

of velocity fluctuations, which causes the mixing, is very similar as well

(see Fig. 5.12).
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Multi-scale stability analysis

In order to better understand the transition from laminar to chaotic

regime at low Reynolds number, we tried to perform a linear stability

analysis of the Kolmogorov flow with rigid rod-like polymers. In par-

ticular, we considered a multiple-scale analysis [114, 115] similar to the

one that was adopted for the same flow with flexible polymers. [100] Our

starting point is the Squire’s theorem, [104] which states that for parallel

flows the most unstable perturbations are two-dimensional. This allows

us to disregard the neutral direction: x will be the flow direction, and y

the shear one.

Writing again the equations of the Doi-Edwards model: [24]

∂iui = 0, (6.1a)

∂tui + uj∂jui = −∂ip+ ν∇2ui − 6ην∂jRij (Rkl∂luk) + fi, (6.1b)

∂tRij + uk∂kRij = Rkj∂kui +Rik∂kuj − 2Rij (Rkl∂luk) , (6.1c)

we can combine the incompressibility condition with the equation for the

velocity field, in order to obtain an equation for the pressure field:

∇2p+ ∂iuj∂jui − 6ην∂i∂jRij (Rkl∂luk) = 0. (6.2)

Assuming a cosinusoidal forcing fx = F cos(Ky), the laminar solution

is:

ux = U cos (Ky) , uy = 0, p = 0, Rxx = 1, Rxy = 0, Ryy = 0.

(6.3)

53
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In order to have a simpler notation, we call ux = u and uy = v, and

we apply a generic perturbation to the system (assuming u′ � U and

R′xx � 1):

u = U cos(Ky) + u′, v = v′, p = p′,

Rxx = 1 +R′xx, Rxy = R′xy, Ryy = R′yy. (6.4)

All the perturbations have to respect the periodicity of the base flow,

in order to be physically acceptable. Substituting (6.4) into (6.1), and

keeping only linear terms in the perturbations, we have the six linearised

equations:

∂tu
′ + U cos(Ky)∂xu

′ − UK sin(Ky)v′ + ∂xp
′

−ν∇2u− 6ην∂x
(
∂xu

′ − UK sin(Ky)R′xy
)

= 0 (6.5a)

∂tv
′ + U cos(Ky)∂xv

′ + ∂yp
′ − ν∇2v = 0 (6.5b)

∇2p′ − 2UK sin(Ky)∂xv
′ − 6ην∂2

x

(
∂xu

′ − UK sin(Ky)R′xy
)

(6.5c)

∂tR
′
xx + U cos(Ky)∂xR

′
xx = 0, (6.5d)

∂tR
′
xy + U cos(Ky)∂xR

′
xy + UK sin(Ky)R′yy − ∂xv′ = 0, (6.5e)

∂tR
′
yy + U cos(Ky)∂xR

′
yy = 0. (6.5f)

We can see that the R′xx component does not influence the other quanti-

ties, so we disregard its equation. R′yy instead appears also in the equation

for R′xy, but, from physical consideration, we can consider R′yy as a second-

order perturbation, since the tensor Rij is quadratic in the perturbation

of the director ni. For this reason we also set R′yy = 0.

At this point, further assumptions simplify our computation. We

choose to consider only large-scale perturbations (in the Newtonian situ-

ation, it can be demonstrated that the flow is always linearly stable for

small-scale perturbations), for which we expect that perturbation evolves

on time scales much larger than base flow typical time scale. Moreover,

we expect a diffusive behaviour at large scales, which implies a quadratic

relationship between space and time.

The core idea of the multiple scale analysis is therefore to consider the

variables related to the base flow (fast variables) as independent from the
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variables related to the perturbation evolution (slow variables). Therefore

this method can work only if there is a clear separation between scales of

base flow and perturbation, otherwise it can give wrong predictions.

If we denote as ε the ratio between small and large spatial scale (separa-

tion between scales therefore implies ε� 1), we define the slow variables

as X = εx, Y = εy, T = ε2t, which implies that differential operators will

become:

∂x → ∂x + ε∂X , ∂y → ∂y + ε∂Y , ∂t → ∂t + ε2∂T . (6.6)

The fact that the base flow does not depend on t and x allows us to

disregard the ∂x and ∂t terms, and the Laplacian operator will have this

form:

∇2 → ∂2
y + 2ε∂y∂Y + ε2(∂2

X + ∂2
Y ). (6.7)

In order to further simplify the notation, we rename R′xy = R′. We make

another assumption: we consider only transverse perturbations (which

are the most unstable in the Newtonian case), so we can neglect also the

slow variable Y , and the equation for u′, since u′ does not appear into

the other equations. With this hypothesis we expand the perturbations

in terms of ε:

p′ = p0(y,X, T ) + εp1(y,X, T ) + ε2p2 (y,X, T ) + ..., (6.8a)

v′ = v0(y,X, T ) + εv1(y,X, T ) + ε2v2 (y,X, T ) + ..., (6.8b)

R′ = R0(y,X, T ) + εR1(y,X, T ) + ε2R2 (y,X, T ) + ..., (6.8c)

and we substitute the perturbation into the linearised equations (6.5),

until the second order in ε:

ε2∂Tv0 + εU cos(Ky)∂X(v0 + εv1) + ∂y(p0 + εp1 + ε2p2)

−ν(ε2∂2
X + ∂2

y)(v0 + εv1 + ε2v2) = 0, (6.9a)

(ε2∂2
X + ∂2

y)(p0 + εp1 + ε2p2)− 2UKε sin(Ky)∂X(v0 + εv1)

−6ηνε2UK sin(Ky)∂2
XR0 = 0, (6.9b)

ε2∂TR0 + εU cos(Ky)∂X(R0 + εR1)− ε∂X(v0 + εv1 + ε2v2 + ...) = 0.

(6.9c)

Now, we can analyse the terms having the same dependence on ε.
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Zero-th order

∂yp0 − ν∂2
yv0 = 0 (6.10a)

∂2
yp0 = 0 (6.10b)

0 = 0 (6.10c)

We do not have any information about R0, while p0 can not depend on y.

Although a linear dependence of p0 on y would be admitted by ∂2
yp0 = 0,

it would violate the periodicity of the system. For the same reason, also

v0 can not depend on y:

p0 = c0(X,T ), v0 = b0(X,T ), R0 = R0(y,X, T ). (6.11)

First order

UK cos(Ky)∂Xv0 + ∂yp1 − ν∂2
yv1 = 0 (6.12a)

∂2
yp1 − 2UK sin(Ky)∂Xv0 = 0 (6.12b)

U cos(Ky)∂XR0 − ∂Xv0 = 0 (6.12c)

From the second equation we obtain p1:

p1 = c1(X,T )− 2U

K
sin(Ky)∂Xb0, (6.13)

and we substituted it into the first one, so we have v1:

v1 = b1(X,T ) +
U

νK2
cos(Ky)∂Xb0. (6.14)

From the third one we instead obtain informations about R0:

∂XR0 =
∂Xb0

U cos(Ky)
, ⇒ R0 =

b0

U cos(Ky)
+ r0(y, T ). (6.15)

Second order

∂Tv0 + U cos(Ky)∂Xv1 + ∂yp2 − ν∂2
yv2 − ν∂2

Xv0 = 0, (6.16a)

∂2
yp2 + ∂2

Xp0 − 2UK sin(Ky)∂Xv1 − 6ηνUK sin(Ky)∂2
XR0 = 0, (6.16b)

∂TR0 + U cos(Ky)∂XR1 − ∂Xv1 = 0. (6.16c)
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In the second equation, we substitute v1 and ∂XR0 using the informa-

tion we have from the first order:

∂2
yp2 = ∂2

Xc0 + 2UK sin(Ky)∂Xb1 + 2
U2

νK
sin(Ky) cos(Ky)∂2

Xb0

+6ηνK tan(Ky)∂2
Xb0, (6.17)

and we integrate, in order to obtain ∂yp2:

∂yp2 = −2U cos(Ky)∂Xb1−
U2

2νK2
cos(2Ky)∂2

Xb0−6ην(ln | cos(Ky)|)∂2
Xb0

(6.18)

where, in order to not violate the periodicity, we set ∂Xc0 = 0. If we

substitute ∂yp2, v0 and v1 into the first equation, we get:

∂T b0 − U cos(Ky)∂Xb1 +
U2

νK2
cos2(Ky)∂2

Xb0 −
U2

2νK2
cos(2Ky)∂2

Xb0−

−6ην(ln | cos(Ky)|)∂2
Xb0 − ν∂2

yv2 − ν∂2
Xb0 = 0

(6.19)

Similarly to the study in [100], at this point we average on the period

in the y direction. Since we know that:

1

2π

∫ 2π

0

cos(x)dx = 0,
1

2π

∫ 2π

0

cos2(x)dx =
1

2
,

1

2π

∫ 2π

0

ln | cos(x)|dx = − ln 2,
1

2π

∫ 2π

0

cos(2x)dx = 0, (6.20)

we obtain a relationship about the temporal evolution of the perturbation

b0 (in the Kolmogorov flow, U/(νK2) is an alternative expression of the

Reynolds number):

∂T b0 = ν

(
1− 1

2
Re2 − 6 ln(2)η

)
∂2
Xb0. (6.21)

Hence, the flow is stable if:

1− 1

2
Re2 − 6 ln(2)η ≥ 0, (6.22)

corresponding to a critical Reynolds number:

Rec =
√

2
√

1− 6η ln 2 . (6.23)
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In absence of polymers (η = 0) we recover the Newtonian value Rec =
√

2.

Unfortunately, our numerical simulations do not agree with the prediction

at η > 0, implying that some of our hypothesis, for example the scale

separation, are not valid in the context of Kolmogorov flow with rod-like

polymers.



Chapter 7

Turbulent flows at

high-Reynolds number

As it has been described in chapter 2, turbulent flows are affected

by small amounts of flexible polymers, in particular we can observe a

strong reduction of the hydrodynamic drag. [22, 25] This behaviour has

been extensively investigated in pipe and channel flows, but, in order

to obtain a clearer picture of the effect of flexible polymers, also in ho-

mogenous turbulence, [47, 48, 116] in thermal convection, [50, 51] and in

a shear flow without walls (the Kolmogorov flow). [46] In particular, in

the Kolmogorov flow, it was observed an increase of the mean velocity

profile, corresponding to drag reduction also in absence of walls. On the

contrary, despite also rigid rod-like polymers alter wall-bounded flows

in a similar way, [39, 41] no analogous studies have been performed so

far on the effect of rigid polymers in absence of walls. For this reason,

we performed a study of the Kolmogorov flow with rod-like polymers at

high-Reynolds numbers, and we found that, differently from the case with

flexible polymers, in absence of walls rigid polymers cause the suppression

of turbulent fluctuations without a corresponding increase of mean flow,

which instead appears slightly reduced.

59
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7.1 Model and simulations

A dilute solution of rigid rod-like polymers can be described using the

Doi-Edwards model [24]:

∂tui + uk∂kui = −∂ip+ ν∂2ui + ∂kσik + fi, (7.1a)

∂tRij + uk∂kRij = (∂kui)Rkj +Rik(∂kuj)− 2Rij(∂luk)Rkl, (7.1b)

where uuu (xxx, t) is the incompressible (∂iui = 0) velocity field, RRR (xxx, t) the

polymer configuration tensor, p (xxx, t) the kinematic pressure, ν the kine-

matic viscosity, fff (xxx, t) the external forcing, and σij = 6νηRij(∂luk)Rkl

the polymer stress tensor (more details in chapter 3). Additional terms

regarding Brownian rotations can be safely disregarded in turbulent flows,

since their characteristic time is very much greater than the large eddy

turnover time of the flow. In order for equations (7.1) to be valid, the

polymer length has to be significantly smaller than the Kolmogorov length

of the flow. Both the conditions are easily met by commercial available

rigid-rod like polymers. [110] fff(xxx) = (F cos(Kz), 0, 0) is the Kolmogorov

forcing, where F is the amplitude and K is the wavenumber. It induces

a monochromatic mean flow, 〈ux〉 = U cos (Kz), where U = F/(νK2)

in the laminar regime. A quantitative investigation of the relationship

between F and U (and therefore the Reynolds number Re = U/ (νK)) in

the Newtonian turbulent regime has been presented in [86].

We integrated equations (7.1) in a cubic periodic domain of size L = 2π

discretized on a regular grid of N3 = 2563 gridpoints, using a pseudospec-

tral code with 1/2 dealising, due to the cubic nonlinearities. [111] Time

integration is performed with a 4th order Runge-Kutte scheme, [112] with

an implicit integration of linear dissipative terms. A diffusive term κ∂2Rij

has been added to eq. (7.1b) in order to improve numerical stability. [113]

More details on numerical methods are provided in Appendix A

We set ν = κ = 10−3 and K = 1. We performed a total of four

different simulations: two with F = 0.016 and two with F = 0.032,

which, combined with the other parameters we choose, in the Newtonian

turbulent regime correspond respectively to Re ≈ 340 and Re ≈ 480.
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[86] For every value of forcing, we performed one simulation without

polymers (η = 0) and another one with η = 6. In order to have a

coherent comparison, also Newtonian simulations are subjected to 1/2

dealiasing.

7.2 Results and discussions

Our simulations confirms the monochromaticity of the turbulent Kol-

mogorov flow, both with polymers and without. Decomposing the veloc-

ity field into a a mean component and fluctuations:

u (x ) = U (cos (Kz) , 0, 0) + u ′(x ) (7.2)

we can compare the amplitude of mean velocity profiles, with or with-

out polymers, for the two different forcing we considered.
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Figure 7.1: Mean velocity profiles for F = 0.016 (left) and F = 0.032 (right). Red solid

lines correpond to η = 6, blue dashed line to η = 0.

Profiles in fig. 7.1 clearly indicate that rigid polymers do not cause an

increase of the mean flow: at Re ≈ 340 the flow appears to be unchanged,

while at Re ≈ 480 we can even observe a decrease, hence some form of

drag enhancement. It is a very different situation from the one in wall

bounded flows, where it is well known that also rod-like polymers cause

drag reduction, and from flexible polymers, which in an analogous setting

cause an increase of the mean flow. If we compute the friction factor,

which in Kolmogorov flow assumes the form f = F/(KU2), we have

indeed, respectively for the flow without or with the polymers, f = 0.1399
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vs f = 0.1402 at Re ≈ 340, and f = 0.1323 vs f = 0.1479 at Re ≈ 480.

We recall that, asymptotically, in the Newtonian turbulent regime we

have f ∝ Re−1. [86]

Other informations about the flows can be obtained from the velocity

fluctuations uuu′. We observe that the root-mean-squared (rms) values of

the fluctuation velocity field, in all the three directions, are significantly

reduced in the flow with the polymers compared with the Newtonian one

(see Table 7.1). This fact suggests that the rodlike polymers inhibit the

turbulent motion.

η F f U u′x u′y u′z 103εI 103εν 103εp

0 0.016 0.1399 0.338 0.181 0.149 0.164 2.70 2.71 -

6 0.016 0.1402 0.338 0.174 0.136 0.148 2.69 1.24 1.45

0 0.032 0.1323 0.492 0.254 0.215 0.250 7.88 7.88 -

6 0.032 0.1479 0.465 0.241 0.200 0.227 7.40 3.36 4.04

Table 7.1: Parameters of the simulations: F amplitude of the forcing, f friction factor, U

amplitude of the mean flow, u′x, u
′
y and u′z rms value of the velocity fluctuations, εI mean

energy input, εν mean viscous dissipation and εp mean polymer dissipation.

This hypothesis is confirmed by energy spectra. In particular fig. 7.2

clearly shows that the small-scale motion is strongly suppressed by poly-

mers, while at large scales the spectra appear to be almost unchanged.

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

E
(k

)

k

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

E
(k

)

k

Figure 7.2: Mean kinetic energy spectra for F = 0.016 (left) and F = 0.032 (right). Red

solid lines correponds to η = 6, blue dashed line to η = 0. Pointed black line represents the

∝ k−5/3 Kolmogorov’s law.

The small-scale behaviour we see is compatible with spectra observed

in a very recent experimental work about drag reduction in pipe flow, [117]
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where a ∝ k−3 law was proposed for inertial range in flows with polymers.

In our simulations, the inertial range is probably too small to evaluate

the power-law behaviour, but it still appears to be compatible to the

observations in [117]. However, the large scale behaviour is obviously

different, since in [117] the phenomenon of drag reduction is observed.

A different small-scale behaviour in spectra, between the Newtonian

and the non-Newtonian flows, means that dissipation is strongly affected

by polymers. The total energy budget in our system is:

d

dt
〈E〉 = εI − εν − εp, (7.3)

where εI = 〈f · u〉 = FU/2 is the mean energy input, εν = 〈ν |∇u |2〉 the

mean dissipation rate due to Newtonian viscosity, and εp = 〈σij∂jui〉 the

one due to polymers. If we average over a sufficient long time, the total

energy can be considered constant, and so we have εI = εν + εp. The

values we obtained (Table 7.1) confirm that the dissipation is strongly

affected by polymers, since in the non-Newtonian case more than half of

the energy is dissipated by the polymer stress.

In order to explain the difference between our simulations without

walls, and the ones in channel flows (and the experiments) where drag

reduction is observed, we can consider the momentum budget. Averaging

the Eq. (7.1a) over x, y and time, we have

∂zΠr = ∂z (Πν + Πp) + fx, (7.4)

where Πν = ν∂zux the viscous Newtonian stress, Πp = σxz the polymer

non-Newtonian stress and Πr = uxuz is the Reynolds stress. In the case

of Kolmogorov flow we have that all these quantities have a sinusoidal

profile:

Πν = ν∂zux = −KU sin(Kz), Πp = σxz = −Σ sin(Kz),

Πr = uxuz = −S sin(Kz). (7.5)

This fact means that, if we consider the average profile, not only the

mean Newtonian stress Πν is proportional to the mean shear rate ∂zux

(which is trivially the definition of Newtonian fluid), but that also the
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(which, instead, is not trivial) mean polymer stress Πp is proportional

to the mean shear rate: this means that, for the mean flow, the fluid

remains Newtonian, with a modified value of the viscosity. This is a very

different situation from wall-bounded flows, where the theory predicts

a non-uniform effective polymer viscosity, [39, 41] confirmed by recent

experiments [30] which observed a ”near-wall lubricating layer”, i.e. a

very small effective viscosity near the walls. This is probably related also

to the fact that in bounded flows polymers appear to be strongly aligned

with the mean flow near the walls, [41,110] i.e. Rxx ≈ 1� Ryy, Rzz, while

in our simulations we have everywhere Rxx . 0.4 and Ryy, Rzz & 0.3, a

situation that in bounded flows is observed far from the boundaries, in

the turbulent bulk.

The absence of drag reduction we observed is therefore probably due

with the absence of the lubricating layer, induced by the strong align-

ment of polymers, caused by solid walls. It is important to remark that

the effective Newtonian behaviour we observed is valid at large scales in

the mean flow, but not for the fluctuating small scale motion, where we

can not assume a constant effective viscosity. This fact is confirmed by

the energy spectra (and partially by the rms values of velocity fluctua-

tions, which take in account both large-scale and small-scale turbulent

motion), which reveal important qualitative differences between the flows

with and without polymers. The similarities between the large wavenum-

bers behaviour of our spectra, and experimental spectra from [117], can

be instead explained by the fact that we expect the small scale turbulent

motion to be less influenced by walls.
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Chapter 8

Introduction to active fluids

An important chapter of statistical physics of these last decades is

the study of active matter. It can be defined as an out-of-equilibrium

system composed by a certain number of constituent elements, which

convert some forms of external energy (for example, chemical energy) into

some forms of motion or forces. The crucial difference with other forms

of out-of-equilibrium systems is that the energy is injected individually

by every individual entity, thus breaking the time-reversal symmetry at

local scale. [118] As a comparison, also the inertial turbulence in fluids

is a out-of-equilibrium phenomenon, but it is generated by an external

forcing acting globally, or at the boundaries of the domain. For this

reason, the study of active matter has attracted the interest of scientists

from very different research fields, as a paradigm of a novel class of out-

of-equilibrium phenomena. [119]

Examples of active matter in nature go from human crowds [120]

and bird flocks [121] to fish schools, [122] from microswimmers suspen-

sions [123] to epithelial tissues [124] and microtubule-kinesin mixtures.

[125] Synthetic active matter includes particles powered by electric fields

(Quincke rollers [126]) or chemical activity (Janus particles [127]). Ac-

cording this definition, also systems whose components are not self-propelling

can be considered active matter, if the external energy is applied at indi-

vidual scale: an example is vibrated granular matter. [128]

Given such a wide variety of systems, several different approaches to

67



68 8. Introduction to active fluids

Figure 8.1: Examples of active matter exhibiting collective motion: starling flock (left),

circular flock of Quincke rollers [126] (center) and active turbulence in microtubule-kinesin

mixture [129] (right).

study active matter exist, from which a huge number of models derives,

since many of these systems have different basic symmetries and fun-

damental properties, thus preventing a unified description. We are in-

terested in systems whose properties (related in particular to collective

behaviour) can be investigated with a continuum approach, which allows

us to employ numerical methods and conceptual instruments from fluid

mechanics. Such models are therefore denoted as active fluids.

A great number of active fluid models exists, a first fundamental classi-

fication is about their symmetry. Some systems exhibit directional order

(similar to the ferromagnetic order in solid state physics), while others

show a preferred orientation n̂ , but with a n̂ → −n̂ symmetry (analogous

to nematic phase of liquid crystals). The first ones are the polar active

fluids, with a vectorial order parameter, while the second ones are the

nematic active fluids, with a rank-2 tensorial order parameter. Other

forms include scalar active matter (without a preferential alignment) and

chiral active fluids (not invariant under parity inversion). [130] The po-

lar/nematic behaviour is usually due to the symmetry of the constituent

particles, with the nematic systems usually composed by ”head-tail” sym-

metric rods, but in some cases, polar particles can still exhibit a nematic

order, if the alignment interactions do not distinguish the polarity. For

this reasons, in some system we have both nematic and polar effects,

which would requires the use of both vectorial and tensorial order param-

eters, [131,132] although usually the dominant dynamics can be obtained

using only one order parameter.
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The best-known examples of polar fluids are microswimmers suspen-

sions, [123] Quincke rotors [126] and flocking birds, [133, 134] while the

nematic symmetry is typical of microtubules suspensions, [135] crawling

bacteria [136] (which are an example of polar particles exhibiting nematic

order) and cell tissues. [124] The different symmetries generate peculiar

phenomena: in polar fluids we can have emergence of flocking behaviour,

while in nematic system a great importance is given to the dynamics of

topological defects. Forms of spatio-temporal chaos are present in both

of categories: for their apparent resemblance with turbulent flows, they

are usually denoted as active turbulence. [137] To be more precise, ac-

tive turbulence is a class of different phenomena, related by some common

features (like power-law energy spectra, a complex spatio-temporal struc-

ture, absence of energy cascade), but with important differences between

them.

Another fundamental distinction is between ’dry’ and ’wet’ models:

dry models are the ones where the solvent dynamics (or the explicit in-

teraction with a substrate) is not explicitly considered, thus the equations

do not conserve the momentum. Obviously, in the reality every active sys-

tem conserves the momentum, but in some cases this can be neglected.

For example, an herd of animals moving above a field exchanges momen-

tum with the terrain, but in order to investigate the collective motion

of the herd it is not necessary to consider the global system animals +

terrain. The distinction dry-wet is therefore more related to the point of

view on the system, than the system itself.

In general, we can distinguish two principal approaches in the formu-

lation of the hydrodynamics equations of the models: [137] the first one

is phenomenological, starting with a Navier-Stokes-like equation, with

terms reproducing the principal features, while the second one is based

on liquid crystal models, built from symmetries and conservation laws,

although the distinction between these two approaches is not always ev-

ident. The first one is particularly adopted for polar models (Toner-Tu

model [138] and its variations, but also generalized Navier-Stokes equa-

tions [139]), while the second one is the standard in the study of active
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nematic, [125] although a research field in polar active liquid crystal also

exists. [140]

8.1 Toner-Tu model

The Toner-Tu model is the archetype of the description of flocking

phenomena with a polar active fluid model. It was originally proposed

in 1995 [133], as a continuum version of the discrete Vicsek model, [141]

which can be considered an XY model for ferromagnetism, with motile

spins. The fundamental hallmark of the Vicsek model is the fact that it

exhibits a phase transition towards a long-range ordered phase, in two

spatial dimensions, with non-zero thermal noise, thus violating the fun-

damental Mermin-Wagner-Hohenberg theorem. [142, 143] This theorem

states that, in a two-dimensional model with short-range interactions, at

thermal equilibrium (with non-zero temperature), it is impossible to have

a spontaneous symmetry breaking (if the symmetry is continuous), since

thermal fluctuations would destroy the ordered phase. The reason why

in the 2D Vicsek model (and in its continuum version) we can have the

spontaneous breaking of the rotational symmetry is due to the motility

(the only real difference between the Vicsek and the standard XY model),

which drives the system away from the thermal equilibrium. [138,144] In

this case, ordered phase means a coordinate collective motion in a par-

ticular direction, i. e. flocking.

Toner and Tu considered the most general equation of motion for the

density ρ and the polarization/velocity u, consistently with the sym-

metries of the system, keeping only the lowest order in gradients and

temporal derivatives:

∂tρ+∇ · (uρ) = 0, (8.1a)

∂tu + λ0 (u · ∇)u + λ1∇
(
‖u‖2

)
+ λ2 (∇ · u)u =

αu − β‖u‖2u −∇P1 − u (u · ∇P2)

+D1∇ (∇ · u) +D2 (u · ∇)2 u +DT∇2u + f . (8.1b)
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Here we can observe some resemblances with the compressible Navier-

Stokes equation, but also several important differences. Since in this

system we do not have Galilean invariance, in the advective term we can

have all the combinations of one spatial gradient and two velocities that

transform as vectors: this is different from NS, where the momentum

conservation implies λ0 = 1 and λ1 = λ2 = 0. The αu − β‖u‖2 term is

taken form the Landau theory of phase transitions, [145] and it causes the

spontaneous symmetry breaking if α > 0. Together with the standard

isotropic pressure P1, we have also an anisotropic one P2, both of them

are function of the local density and the magnitude of the local velocity.

The diffusivity coefficients D play the role of viscosities, while f is an

external forcing, which in the original model corresponds to a random

”thermal” noise (where ∆ is a constant value and i, j denote the Cartesian

components):

〈fi (x , t) fj (x ′, t′)〉 = ∆δijδ (x − x ′) δ (t− t′) . (8.2)

The spontaneous breaking of the rotational symmetry, and therefore

the establishment of the long-range ordered phase was investigated us-

ing methods from the statistical mechanics, in particular the dynamical

renormalization group. [144, 146] The analysis showed that in d > 4 di-

mensions, the dynamics is analogous to spin systems at equilibrium, while

for d < 4 the long distance behaviour is strongly out-of-equilibrium, con-

firming the spontaneous symmetry breaking in d = 2, forbidden at equi-

librium by the Mermin-Wagner-Hohenberg theorem. In particular, it was

highlighted the fundamental role of nonequilibrium nonlinearities (the λ

terms) in the stabilization of the ordered phase.

The Toner-Tu is a very generic model, from which numerous variations

have been then derived. The first one, already in [144], is the anisotropic

version, where a motion along a plain is favoured over motion in other di-

rections: this is the case, for example, of birds flocks, since gravity breaks

the symmetry between horizontal and vertical directions. If we relax the

”mass” conservation condition, adding a source term in equation (8.1a),

we have the case of Malthusian flocks, [147–149] which corresponds to
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the situation where the motile particles can reproduce and die. On the

other direction, if we assume incompressible flocks the equation (8.1a) is

reduced to ∇ ·u = 0, a case that has been extensively studied both from

a statistical physics [150–152] and a fluid mechanics [153–155] point of

view. Recently, several works have been published for the case where,

along or in place of thermal noise (annealed disorder), there is quenched

disorder, which means a forcing random in space but constant in time

(representing, for example, a ”dirt” domain). This kind of noise destroys

ordering in equilibrium systems in d < 4: for the compressible Toner-Tu

model, it has been shown that long-ranged order is possible also for d = 3,

while for d = 2 only quasi-long-ranged order can happen (which means

velocity correlation functions with an algebraic decay), a situation how-

ever different from the equilibrium case (where only short-ranged order is

possible). [156,157] For the incompressible situation, we have instead true

long-ranged order with quenched disorder also for d = 2. [158–160] Other

generalizations include for example the study in a curved surface [161]

or the introduction of an additional ”spin” field (in the sense of internal

angular momentum) to be more accurate in the description of real birds

flocks. [162]

In particular, an incompressible version with a negative ”viscosity”,

and a fourth-order ”hyperviscosity”, was introduced in 2012 in order to

describe dense bacterial suspensions. [123] This is the object of our inves-

tigation, and it will be described in the next chapter.



Chapter 9

Bacterial turbulence and

TTSH model

One of the most simple examples of active fluid (at least regarding

the experimental realization) are dense bacterial suspensions. Bacteria

(although bacteria constitute an enormous and extremely

variegated ensemble of organisms, we will consider elongated rod-shaped

flagellated swimmers like Bacillus subtilis, Escherichia coli or Serratia

marcescens) are usually pusher-like microswimmers, [5] which, when im-

mersed in dilute environments, exhibit a particular motion denoted as

’run and tumble’ behaviour. [18] But when they are grouped in dense

package, they can display very complex phenomena, due to various forms

of collective behaviour. In particular we will consider the so-called bacte-

rial turbulence, an example of active turbulence.

In 2004, in dense quasi-2D suspensions of B. subtilis, the presence

of coherent structures constituted by swimming bacteria was observed

for the first time: [163] in particular, on scales much larger than sin-

gle cells, the researchers observed ”high-speed jets straddled by vortex

streets” (see Fig. 9.1). A very interesting feature of this regime was also

the fact that these large-scale structures have a much larger speed than

the single bacteria self-propulsion. Vortices and jets were reminiscent

of two-dimensional inertial turbulence, [105, 107] so already in that arti-

cle the authors coined the therm ”bacterial turbulence”, although they
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were aware that also important differences to high-Reynolds flows were

present.

Figure 9.1: First experimental observation of bacterial turbulence. The white scale bar is

35µm. Image taken from [163].

In the subsequent years several investigations followed, with the obser-

vation of further phenomena, like confinement-induced self-organization

[164] or even a sort of supefluidity [16, 165] (in the sense of negligible

viscosity) caused by bacterial activity. This phenomenon, culminating

even in a negative viscosity, it has been related on the onset of bacterial

turbulence. [18]

From our point of view, the most important work was an experimental-

numerical paper in 2012, [123] where, together with an in-depth exper-

imental quantitative study of bacterial turbulence, an effective contin-

uum model was suggested. They proposed an incompressible version of

Toner-Tu model for the coarse-grained collective velocity, with a negative

effective viscosity (therefore a fourth-order hyperviscosity is necessary for

stability reasons):

∇ · u = 0, (9.1a)

∂tu + λ0 (u · ∇)u = −∇p−
(
α + β‖u‖2

)
u + Γ0∇2u + Γ2∇4u . (9.1b)
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In the original paper also the λ1∇‖u‖2 term from TT was present,

but, since in this case the velocity field is incompressible, this term can

be incorporated in the effective pressure term, and therefore in subsequent

papers usually is not displayed.

The equation (9.1) combines the TT terms (self-propulsion with a

non unitary coefficient, and Landau forcing) with a double Laplacian, a

distinctive element from the Swift-Hohemberg equation for pattern for-

mation. [166] For this reason the model is denoted as Toner-Tu-Swift-

Hohemberg (TTSH) equation, [137] although it is sometimes called with

more generic names like ”mean-bacterial velocity equation” or ”bacterial

turbulence equation”.

Since this model does not describe explicitly the solvent fluid dynamics

(and it does not conserve the momentum), it should be considered a

dry model. However, works focused on derivation of TTSH model from

microswimmers dynamics [167,168] showed that the coefficients take into

account, at least as a first approximation, hydrodynamic interactions. It

is also important to remark that, in this model, u has the double role

of collective velocity and polar order parameter, since it is assumed that

rod-shaped bacteria move in their symmetry axis direction, and also that

they have approximately the same self-propulsion speed.

From the coefficients in (9.1) we can obtain space and velocity scales.

In particular, the quantity Λ ≡ 2π
√

(2Γ2) /Γ0, emerging from the in-

stability of null-field state (see section 9.1), corresponds to the length

scale of vortices. The presence of this fixed scale, well observed in ex-

periments (where Λ ∼ 20 − 50µm is found), indicates that this system

is strongly non-scale invariant, a very important difference with iner-

tial turbulence. [105] Regarding velocity scale, in this case we have two

possibilities, depending on what is more important between the Landau

potential or the Swift-Hohenberg operator in the dynamics of the flow we

are considering:

U =

√
−α
β
, V =

√
Γ3

0

Γ2

. (9.2)

In the TTSH model we therefore have 5 different coefficients, but we
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can simplify our parameter space. It is a common procedure to main-

tain fixed the value of Λ (and therefore the values of Γ0 and Γ2) and

β, while exploring the phase diagram varying λ0 and α. Regarding Λ,

we can identify two different strategies: setting Λ = 2π with Γ0 = −2

and Γ = −1, [169–171], that we will call normalization A, or setting

Γ0 = −0.045 and Γ2 = Γ3
2, [123, 172–174] that we will call normalization

B. Regarding the value of α and β,the situation is more complicated:

while in normalization B is common to adopt β = 0.5, in normalization

A the situation is more intricate: it is possible to find β = 0.01 [169] or

β = 1.6 [171] and α can be re-expressed as α − 1 or even 1 − α. For

λ0, being non-dimensional, we do not have such ambiguities. We chose

to consider normalization A with β = 0.01, without re-definition of α (so

α < 0 means forcing and α > 0 friction).

The TTSH model is a simplified effective model, thus having several

limitations. For these reasons, in the last years two different extensions

have been proposed: a two-fields version, in order to investigate also

the dynamics of the solvent fluid, and a compressible version, since the

incompressibility hypothesis is not always physically justified. The first

one was elaborated especially in order to relate the phenomenological

coefficients to microscopic parameters, [167, 168] and it will be better

described in section 9.2. The second one was proposed in order to unify

the description of bacterial turbulence with the one of motility-induced

phase separation, [175, 176] and it includes a non-trivial density field,

described by an advection-diffusion equation. In this version, velocity

and polarization are not the same field, since, although they are still

parallel, self-propulsion speed is assumed to be dependent on density,

which affects the ratio of their moduli, as well as the effective coefficient

α (see equation (9.3)).

∂tρ = −∇ · [v (ρ)p] +D∇2ρ (9.3a)

∂tp+λ0 (p · ∇)p = −1

2
∇ [v (ρ) ρ]−

(
α (ρ) + β‖p‖2

)
p +Γ0∇2p+Γ2∇4p,

(9.3b)

v (ρ) = −c
[
ρ− 1

2
(ρmax − ρmin)

]2

+ v0, α (ρ) = α0 (ρc − ρ) . (9.3c)



9.1 Linear stability 77

9.1 Linear stability

Equation 9.1, with periodic boundary conditions, has two uniform

steady solution: the isotropic disordered state (u , p) = (0, p0) and, for

α < 0, the manifold of globally ordered states (u , p) = (u0, p0), where u0

is a vector with arbitrary orientation and modulus ‖u0‖ = U ≡
√
−α/β.

In both cases, p0 is a constant pressure. It is trivial that for α < 0 the

ordered state is favourite over the disordered one, it is an example of

spontaneous symmetry breaking. The following analysis is aimed to un-

derstand the stability of uniform states over non-uniform perturbations.

It was originally displayed in the supplementary of [123] and extended

in [177], and in the subsequent years other studies, more rigorous from a

mathematical point of view, have deepened the topic (along other related

issues, like wellposedness of the model). [178–180]

Disordered state

We will consider the equation 9.1 in a two-dimensional domain with

periodic boundary conditions. We start considering the disordered state

(α > 0), setting the perturbation as (εεε, η) (with η � p0), and we linearize

the TTSH equation around the perturbed solution:

∇ · εεε = 0, (9.4a)

∂tεεε = −∇η − αεεε+ Γ0∇2εεε+ Γ2∇4εεε. (9.4b)

Now, it is natural to consider a monochromatic perturbation (with

k 6= 0):

(εεε, η) = (ε̂εε, η̂) eik ·x+σt, (9.5)

in order to obtain an algebraic relationship (where k = ‖k‖):

k · ε̂εε = 0, (9.6a)

σε̂εε = −ik η̂ −
(
α + Γ0k

2 − Γ2k
4
)
ε̂εε. (9.6b)

Multiplying the second equation for k , to satisfy the incompressibility

we must have η̂ = 0, and therefore we get a dispersion relationship:

σ (k) = −α− Γ0k
2 + Γ2k

4. (9.7)
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Now, since we already assumed Γ2 < 0 and α > 0, the sign of Γ0 is

crucial: if Γ0 > 0, we have σ < 0 for every k, and therefore the disordered

state is always linearly stable. But, if Γ0 < 0 (i.e. for a negative effective

viscosity) we obtain an unstable band of modes: σ(k) > 0 for k2
− < k2 <

k2
+, with

k2
± =

|Γ0|
|Γ2|

(
1

2
±

√
1

4
− α|Γ2|
|Γ0|2

)
, if α < αs ≡

1

4

|Γ0|2

|Γ2|
. (9.8)

This means that, if misaligning effects between swimmers (parametrized

by a positive value of α) are not too much intense, the uniform disordered

will be substituted by a non-uniform state corresponding to bacterial

turbulence. In particular, if we derive the relationship 9.7 with respect

to k, we obtain the most unstable mode kc =
√

Γ0/2Γ2. Since this one

is the mode corresponding to the maximum perturbation growth, this

instability selects the establishment of structures with particular length

scale:

Λ =
2π

kc
= 2π

√
2Γ2

Γ0

. (9.9)

For this reason Λ is called vortex length scale, since vortices are the

coherent structures originated by the instability (see figure 9.2). This

mechanism of pattern formation is precisely the one described by the

Swift-Hohemberg equation.

Polar state

For the polar state (α < 0), we can adopt a similar procedure. In this

case, the perturbed solution is (u0 + εεε, p0 + η), and, since in this case we

do not have rotational symmetry, it is convenient to explicitly define a

reference frame. We can set the x-axis as the orientation, and therefore

decompose the perturbation in parallel and perpendicular components:

u0 + εεε =
(
U + ε‖, ε⊥

)
. (9.10)
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Figure 9.2: Vorticity fields (from direct numerical simulations) emerging from the instability

(using a very small random perturbation) of the disordered state (α > 0), during the linear

regime (left) and during the non-liner regime at later times (right). We can clearly observe

the isotropic pattern expected from the stability analysis, from which the vortices originate.

Own work

Linearizing around this perturbed solution (recalling that U2β = −α) we

get a slightly more complicated equation:

∇ · εεε = 0, (9.11a)

∂tεεε+ λ0 (u0 · ∇)εεε = −∇η + 2αε‖ex + Γ0∇2εεε+ Γ2∇4εεε. (9.11b)

Considering also in this case a monochromatic perturbation:(
ε‖, ε⊥, η

)
=
(
ε̂‖, ε̂⊥, η̂

)
eik ·x+σt, (9.12)

the algebraic relationship is now:

k · ε̂εε = 0, (9.13a)

σε̂εε = −ik η̂ + Aε̂εε, (9.13b)

where A is a 2× 2 matrix:

A =

(
2α 0

0 0

)
−
(
Γ0k

2 − Γ2k
4 + iλ0kxU

)
I. (9.14)

If we multiply the second equation with ik and we use the incompress-

ibility relationship, we obtain:

η̂ = −ik · (Aε̂
εε)

k2
. (9.15)
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At this point we can define another matrix A⊥ as:

A⊥ = ΠΠΠ (k) A, with Πij = δij − kikj, (9.16)

which allows us to express equation 9.13b as:

σε̂εε = A⊥ε̂εε. (9.17)

Eigenvalues of A⊥ provide us the dispersion relationship:

σ (k) ∈ {0,−Γ0k
2 + Γ2k

4 + 2α
k2
x

k2
− iλ0Ukx} (9.18)

The second eigenvalue in 9.18 is what interests us, and its corre-

sponding eigenvector is (−ky, kx). We have maximum < [σ (k)] for k =(
0,
√

Γ0/2Γ2

)
, and therefore

(
−
√

Γ0/2Γ2, 0
)

as eigenvector. This means

that the polar uniform state is always unstable if Γ0 < 0, and that we

have the establishment of elongated coherent structures transverse with

respect to mean flow (corresponding to the vorticity streaks observed in

simulations), having a wavelength Λ along the mean flow direction (see

figure 9.3).

Figure 9.3: Vorticity fields (from direct numerical simulations) emerging from the instability

(using a very small random perturbation) of the polar state (α < 0), during the linear regime

(left) and during the non-liner regime at later times (right). Mean flow goes horizontally

from left to right. We can clearly observe the transverse pattern expected from the stability

analysis, not completely destroyed by non-linear terms. Own work

This stability analysis is therefore important because, in addition to

the problem of stability itself, it explains the principal features of struc-

tures that we can observe in simulations also at strongly nonlinear regimes.
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In particular, the structures originated by the instability of polar state

will have great importance in our study of the flocking turbulence and

the circular flocking we observed (see Chapters 10 and 11).

9.2 Derivation of the TTSH model

A first phenomenological derivation of TTSH, from general considera-

tions, was presented in [123, 177]. Some years later, in [167, 168] a more

rigorous derivation was proposed, from microscopic dynamics. In this

case, the TTSH model emerges from a two-fields (solvent and bacteria

velocities) model, in the limit of weak coupling between swimmers and

fluid.

9.2.1 Phenomenological derivation

Originally, [123, 177] the TTSH model was proposed according two

hypothesis:

• at high densities, bacteria suspensions have an incompressible dy-

namics;

• the interesting dynamics can be captured by a single vectorial field

having the double role of coarse-grained velocity and mean orienta-

tion.

The first hypothesis is implemented with a divergence-free field ∇·u = 0.

The second one leads to a generalized Navier-Stokes equation:

(∂t + u · ∇)u = −∇p−
(
α + β‖u‖2

)
u +∇ · E (9.19)

where the (α + β‖u‖2) terms is inherited from Toner-Tu model in order

to describe aligning interactions, p is a Lagrangian multiplier assuring

incompressibility and E is an effective rate of strain tensor. Then, a

closure of E in terms of velocity field is postulated:

Eij = Γ0 (∂iuj + ∂jui) + Γ2∇2 (∂iuj + ∂jui) + Sqij (9.20)
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where qij = uiuj − (δij/d) ‖u‖2 is a mean-field approximation of the

nematic active stress tensor in d dimensions. [181] From general hydro-

dynamics arguments it is assumed that we have S < 0 for pusher-like

swimmers, while S > 0 for puller-like ones. [182] It is also assumed that

the ”viscosity” Γ0 can be negative (in order to destabilize the uniform

state), and so also Γ2 < 0 for stability reasons.

So, if we substitute the expression (9.20) into equation (9.19), and we

define:

λ0 = 1− S, λ1 = −S/d, (9.21)

we obtain the standard TTSH model

∂tu+λ0 (u · ∇)u = −∇p+λ1∇‖u‖2−
(
α + β‖u‖2

)
u +Γ0∇2u+Γ2∇4u .

(9.22)

As anticipated, we can redefine pressure in order to include the λ1 term:

p− λ1‖u‖2 → p. (9.23)

So λ0 > 1 corresponds to pushers suspensions, while λ0 < 1 should

correspond to pullers, although at 2022 there are no experimental works

proving that the dynamics of a pullers suspension can be simulated with

the TTSH model having λ0 < 1.

9.2.2 Derivation in terms of microscopic parameters

Although it was immediately proved, comparing simulations to ex-

periments, that the TTSH model can describe pusher-like dense suspen-

sions, [123, 183] a clear link between phenomenological coefficients and

microscopic physical quantities was missing. A first attempt to resolve

this problem was presented in 2016, [167] and expanded in 2018. [168]

Since it requires very long calculations, only fundamental aspects of this

derivation will be described in this section.

In this subsection, u denote the solvent fluid velocity field, differently

from the rest of the chapter.
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Swim and interactions

The starting point is to assume that, at large distances, microswim-

mers can be represented as cylindrical rods moving, with constant velocity

v0, along their mean axis direction, n causing a flow that can be modelled

as a stresslet, i. e. a force-dipole. A swimmer will therefore exert a force

F = ±f0n , with positive sign for pullers and negative one for pushers.

It is then necessary to model interactions between swimmers, crucial in

dense suspensions. In the coarse-grained description in [168], authors dis-

tinguished between short range alignment interactions and far-field hydro-

dynamic interactions (see Fig. 9.4). Short-range ones are parametrized

by an effective potential, and it is assumed that they are of two differ-

ent typologies. Authors postulated that there is a activity-driven polar

alignment due to near-field hydrodynamic interactions, and a passive ne-

matic alignment due to steric effects. The ansatz chosen for the potential

between the µ-esim and the ν-esim swimmer is:

φ (nµ,nν , rµν) = −γ0v0

2
nµ · nνΘ (εa − rµν)−

γ1

4
(nµ · nν)2 Θ (εp − rµν) ,

(9.24)

where rµν is the distance between the swimmers, γ0 and γ1 are the mag-

nitude of active and passive interactions, Θ is the Heaviside function,

and εa and εp are the ranges of these interactions. εa = εp = ε will be

assumed for simplicity. The first term is multiplied by v0 in order to

depend on activity. The fact that the first term depends on the scalar

product nµ · nν , while the second one on its square, indicates that the

first one induces a polar alignment, while the second one a nematic order.

Far-field hydrodynamic interactions will be instead included in the stress

tensor, and therefore in the fluid velocity field.

Langevin and Fokker-Planck

At this point, we consider the equations of motion for a single swimmer.

We have two Langevin equations, one for the translational motion, and

one for the rotational one:

d

dt
Xµ = v0n

µ + u (Xµ, t) +
√

2Dξξξµ (t) , (9.25a)



84 9. Bacterial turbulence and TTSH model

Figure 9.4: Coarse-grained interactions between microswimmers, according [168].

d

dt
nµ (t) = ΩΩΩ (Xµ, t) · nµ + (I− nµnµ) ·[

a0ΣΣΣ (Xµ, t) · nµ (t)−∇nµΦ (n) + τ−1/2ηηηµ (t)
]
. (9.25b)

As we can see, the equation for the center of mass contains self-propulsion,

advective transport and thermal noise ξξξ, while rotational motion is a

modified version of the Jeffery equation, with a term due to short-range

interactions (with Φ (n) = Σµ,νφ (nµ,nν , rµν)) and another term ηηη due

to thermal noise. D and τ are the Brownian diffusivities, while a0 is the

geometrical Jeffery factor, assumed to be identical to the one for passive

particles.

From these Langevin equations, we want to obtain a continuum de-

scription. We therefore define a one-particle probability distribution

P (x ,n , t), first three moments of the distribution will be, respectively,

the scalar, polar and nematic (made traceless) order parameter:

ρ (x , t) =

∫
dnP (x ,n , t) , (9.26)

P (x , t) =

∫
dnP (x ,n , t)n , (9.27)

Q (x , t) =

(∫
dnP (x ,n , t)nn

)
− I

d
. (9.28)
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The corresponding Fokker-Planck equation to the Langevin equations

(9.25a) and (9.25b) is:

∂tP (x ,n , t) = −∇ · [(v0n + u)P ] +D∇2P

−∇n

[(
ΩΩΩ · n + a0ΠΠΠ (n) ·ΣΣΣ · n − 1

τ
n

)
P
]

+

1

2τ
∇n∇n :

[
ΠΠΠ (n) ·ΠΠΠT (n)P

]
+ C(2) [Φ] , (9.29)

where ΠΠΠ (n) is the orthogonal projector I−nn . The last term of equation

(9.29) is the two-particles interaction integral, depending on short-range

potential Φ and the two-particles probability distribution P (x ,n ;x ′,n ′; t).

Expressing this term in a simple form requires several approximation and

long calculations, authors of [168] at the end obtained:

∂tP (x ,n , t) = −∇ · [(v0n + u)P ] +D∇2P

−∇n

[(
ΩΩΩ · n + a0ΠΠΠ (n) ·ΣΣΣ · n − 1

τ
n

+ γ0v0ΠΠΠ (n) · J (ρP) + γ1ΠΠΠ (n) · J (ρQ) · n
)
P
]
+

1

2τ
∇n∇n :

[
ΠΠΠ (n) ·ΠΠΠT (n)P

]
, (9.30)

with:

J () =
(
Ad +Bd∇2 + Cd∇4

)
() , (9.31)

where Ad, Bd and Cd are geometrical factors depending on interaction

range ε and dimensionality d.

Stress tensor

Now, in order to close equation (9.30) we have to consider how the

solvent velocity u is affected by microswimmers. We assume, since bac-

teria swim at very low Reynolds number, u to be described by Stokes

equation, with a extra non-Newtonian stress σσσ due to swimmers:

µ∗∇2u −∇p+∇ · σσσ = 0, ∇ · u = 0. (9.32)

Here µ∗ is the effective viscosity, which takes into account the effect

of swimmers volume fraction c to the Newtonian viscosity. Usually a
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Batchelor-Einstein relationship [80,184] is assumed:

µ∗ = µ0

(
1 + k1c+ k3c

2
)

(9.33)

where, for pusher-like swimmers, the coefficients ki have to be fitted with

experimental data. The non-Newtonian stress tensor is composed by an

active σσσa and a passive σσσp part. The active component is defined as

∇ ·σσσa = f, where f is the force density deriving from bacteria swimming,

that we can express using a multipole expansion, which averaged through

P (x ,n , t) becomes:

σσσa ≈ −f0 [ζ1 (ρnn) + ζ2∇ · (ρnnn) + ζ3∇∇ : (ρnnnn) +

ζ4∇∇∇ : · (ρnnnnn) + . . . ] , (9.34)

where ζi are coefficients dependent on dipole length. The passive stress

can be instead computed from liquid crystal theory, [185] and it depends

on the nematic order parameter (and higher-order terms):

σσσp ≈ ρϑQ + . . . (9.35)

where ϑ is a concentration dependent parameter.

Field equations

From the Fokker-Planck equation we want to obtain simpler equations

for the order parameters, viable to be numerically simulated. Averaging

equation (9.30) over n we obtain a continuity equation for the density ρ:

∂tρ = −∇ · [ρ (v0P + u)] +D∇2ρ. (9.36)

Here comes one of the fundamental hypothesis of the TTSH model:

negligibility of density fluctuations (ρ = constant). This implies

∇· (v0P + u) = 0, and since we know that solvent velocity is incompress-

ible (∇·u = 0), this means that also the polarization P is incompressible:

∇ ·P = 0. (9.37)

Multiplying equation (9.30) with n and averaging, we obtain the equa-

tion for P. Knowing that ρ = constant, nn = Q + I/d and the fact that
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u (and its derivatives ΩΩΩ and ΣΣΣ) are already averaged quantities, we get:

(∂t + u · ∇) P = ΩΩΩ ·P + a0ΣΣΣ ·P− v0∇ ·Q +D∇2P− 1

τ
P− a0ΣΣΣ : nnn

+γ0v0ρ
d− 1

d
J (P)− γ0v0ρQ · J (P) + γ1ρJ (Q) ·P− γ1ρJ (Q) : nnn .

(9.38)

Similar arguments lead to the equation for the nematic tensor Q:

(∂t + u · ∇) Q = 2 (ΩΩΩ ·P)ST + 2a0 (ΣΣΣ ·P)ST − v0 (∇ · nnn)ST

+D∇2Q− 3

τ
Q +

2a0

d
ΣΣΣ− a0 (ΣΣΣ : nnnn)ST

+2γ0v0ρ (J (P) P)ST − 2γ0v0ρ (·J (P) · nnn)ST

+2γ1ρ (J (Q) ·Q)ST +
2γ1ρ

d
J (Q)− γ1ρ (J (Q) : nnnn)ST , (9.39)

where ST means ”symmetric-traceless”. As it usual in moment equations,

now we have a standard closure problem: computing evolution of P and Q

requires knowledge of high-order moments. We therefore want to express

these quantities in terms of P and Q, and then, since we know from

experiments that in bacterial suspensions polar effects are dominant over

nematic ones, to express Q in terms of P.

Regarding high-order moments, authors of [168] adopted the Hand

closure, [186] which means:

(nnn)ST = (nnn)ST = (nnnnn)ST = 0. (9.40)

In order to relate Q to P a modified version of Doi closure for passive

nematics [24] was proposed:

Q = q (PP)ST + λKΣΣΣ, (9.41)

where the term proportional to Σ should take in account velocity gradi-

ents generated by active particles. The coefficients q and λK are related to

microscopic parameters, and are obtained imposing ∂tQ = 0 in equation

(9.39), keeping only linear terms in Q and ΣΣΣ or quadratic in P.

After long calculations, applying these closures and neglecting higher

order derivatives, finally we have the equations for the fluid velocity u
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and polarization P:

∇2u =
f0ρ

µeff

[
ξ1

(
1− ϑ

f0ξ1

)
qP · ∇P +

(
ξ2 + ξ4∇2

)
∇2P

]
+∇peff ,

(9.42a)

(∂t + u · ∇+ λ0P · ∇) P =

(ΩΩΩ + κΣΣΣ) ·P−∇p∗ − αP− β‖P‖2P + Γ0∇2P + Γ2∇4P. (9.42b)

As we can see, the equation for the polarization is an extended version

of TTSH model with additional terms related to solvent velocity and its

derivatives, while in the Stokes equation we see how the solvent fluid is

influenced by swimmers.

Effective pressures peff and p∗ are given by the sum of a term propor-

tional to ordinary pressure and a term proportional to ‖P‖2 (correspond-

ing to the λ1 term), also the viscosity is modified by activity. The total

velocity field of bacteria is therefore w = u + v0P.

We see a huge number of coefficients: ξi are geometrical factors related

to swimmers dipole length, the other ones are combinations of the vari-

ous microswimmers properties. To handle this parameter space, authors

of [168] proposed also a normalization scheme, in order to express all the

parameters in terms of five non-dimensional quantities, which quantify

the weight of principal factors. Assuming that nematic effects are neg-

ligible (γ1 = ϑ = 0), as well as the translation diffusivity D, these non

dimensional parameters are:

• persistence number Pr = v0τ/` (where ` is the bacterial length),

quantifying the importance of rotational Brownian effects;

• feedback coefficient cF = f0ρ`
2/(10µeffv0), measuring the effect of

activity on solvent fluid;

• interaction coefficient cI = 8
9
πτργ0v0ε

3, estimating the strength of

polar alignment between swimmers;

• ratio ε/` between bacterial length and interaction range;

• Jeffery factor a0.
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With this scheme, adopting `, `/v0 and v0 as space, time and velocity

scales, the proposed values for the coefficients in the polarization equation

are:

α =
1− cI
Pr

, β =
3

5

c2
I

Pr
, λ0 =

3

5

(
1 +

2

3
a0PrcF

)
,

κ =
3

5
a0

(
1− cI

3

)
Γ0 =

1

10

(ε
`

)2 cI
Pr
− a0

15
PrcF Γ2 = − a0

420
PrcF .

(9.43)

Importance of coefficient cF can be understood looking at normalized

version of solvent equation:

∇2u = cF

[
6cIP · ∇P +∇2P +

1

28
∇4P

]
+∇peff . (9.44)

Here cF multiplies all terms depending on polarization: it means that,

if cF � 1 (for example, in the case of large effective viscosity, possible in

very dense suspensions), the solvent fluid is not significantly affected by

microswimmers motion. If also external forcing is not present, the solvent

fluid will be (macroscopically) at rest (u = ΩΩΩ = ΣΣΣ = 0), and therefore

dynamics of polarization P is decoupled from the solvent. In this case,

equation (9.42b) reduces to the standard TTSH model.

A further extension of this model was proposed in [187], where the

presence an external field affecting the polarization field was considered.

At 2022 [187] and [188] (a work focused on comparison with experiments)

remain the only application of this two-fields model. A mathematical

analysis of the extended model was also performed in [189]

9.3 General phenomenology

Since its introduction in 2012, [123] the TTSH model has been subject

to numerous studies which highlighted its rich phenomenology. In this

section, a brief review of existing literature is present.

9.3.1 Mesoscale turbulence

The first regime described is the so called mesoscale turbulence. It is a

isotropic and homogeneous state, emerging directly from the instability of
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the disordered state, characterized by the presence of many vortices with

fixed spatial length (the Λ scale of the instability), which move chaotically.

This was exactly the state for whose simulation the TTSH model was first

proposed in 2012 (see figure 9.5). A study from 2013 [183] showed that

a similar state can be observed (and simulated) also in 2D slice of 3D

systems (at 2022 it remains the only study about TTSH model in three

dimensions). In simulations, this state is obtained with λ0 around 3.5 (the

value commonly adopted) and values of alpha that go from positive (but

lower than threshold value αs in order to have the instability of uniform

state) to slightly negative. It is important to notice that changing the

value of α causes some quantitatively changes in the flow, but many

qualitatively features are maintained.

Figure 9.5: Flow streamlines and vorticity fields from quasi-2D B. subtilis suspensions (left)

and from 2D simulations of TTSH model (right). [123]

Here, the term mesoscale is due to the fact that these structures are

not on a macroscopic scale (Λ ∼ 20−50µm), but they are still an order of

magnitude greater than single swimmers. The (qualitatively) turbulent-

like behaviour, but also its differences from ”real” fluid turbulence, is

visible from kinetic energy spectra (see figure 9.6). We can observe the

presence of many active scales, but the power-laws are completely differ-

ent from the k−5/3 of Kolmogorovian turbulence. In particular, in the first

paper about TTSH model, [123] it was observed a peak around k = 0.1k`,

where k` is the wavenumber corresponding to individual bacterial scale,

(and therefore near 2π/Λ), with a k5/3 law on larger scales, and k−8/3 on
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smaller scales. However, further numerical studies [172,173,190] clarified

that this power laws are not universal, but they depend (especially on

larger scales) on the value of α, and also that the peak position moves

towards left (larger scales) with decreasing α.

Figure 9.6: Left : kinetic energy spectra from 2D numerical simulations, compared to ones

obtained by quasi-2D and 3D dense suspensions of B. subtilis. [123] Right : comparison be-

tween kinetic energy spectra obtained from numerical simulations with different values of

α. [172]

One of major differences between active and inertial turbulence is in

the energy budget. One of the key features of high-Reynolds flow is the

energy cascade (inverse in 2D, direct in 3D), corresponding to a range of

scales with a constant energy flux, caused by advection term. [105] An

investigation on energy budget in mesoscale turbulence was performed

in [169,172]. If Ek is the energy associated to Fourier mode k, its temporal

evolution obeys to:

∂tEk = 2
(
−α− Γ0k

2 + Γ2k
4
)
Ek + T adv

k + T cub
k . (9.45)

Linear terms are trivial: Γ0 term injects energy around the scale Λ,

while Γ2 dissipates it at high-wavenumbers (small spatial scales). The

α term injects or dissipates energy at all scales, according to its sign.

The cubic non-linearity acts as a large scale friction, with a non-constant

coefficient (proportional to total energy Etot): it was shown in [172] that,

in the stationary regime, the cubic term can be approximated as:

T cub ≈ −8βEtotEk. (9.46)
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The advective non-linearity has a more complicated behaviour: it trans-

fers energy from intermediate scales (near Λ, where the injection of energy

due to Γ0 is stronger) towards large scales (see fig. 9.7). This energy trans-

fer is probably crucial in shaping the mesoscale state, since it explains

how the spectrum peak can move at wavenumbers smaller than 2π/Λ

when changing the value of α (and, from our simulations, the weight of

advection term in energy budget is maximum in the transient from the

linear instability to the stationary regime). But a constant (and station-

ary) energy (or enstrophy) flux lacks: we do not have an inertial range

in bacterial turbulence. Absence of energy cascade is common to other

forms of active turbulence, [191–194] as well as elastic turbulence. [26]

Figure 9.7: Spectral contributions to energy budget in the stationary mesoscale turbulent

state, with α < 0. The Γ coefficients here are defined with opposite sign. Image taken

from [172].

Probably, the more noticeable differences caused by changing the value

of α (still in mesoscale turbulence regime) are observed in velocity and

vorticity distributions, as it was highlighted in the paper. [173]. Using the

normalization B, they compared the flow at α = 4 (low energy) with the

one at α = −1 (high energy), and they found that, while at low energy
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we have distributions that are almost Gaussian (especially the velocity),

at high energy the velocity distribution is still close to Gaussian (but

with relevant sub-Gaussian tails) and the vorticity one is strongly not-

Guassian, even at its center (see figure 9.8).

Figure 9.8: Velocity u (left) and vorticity ω (right) distributions in the mesoscale turbulence

regime computed and compared to Gaussian ones in [173]. Top: high energy (α < 0) regime,

bottom: low energy (α > 0) regime.

Finally, several works [173, 174, 190, 195, 196] investigated Lagrangian

properties of mesoscale turbulence, simulating the transport of tracer

(point-like) particles, which dynamics is simply given by:

dx i (t)

dt
= u (x i (t) , t) . (9.47)

All these papers agree on the fact that, if we compute the mean-squared

displacement (MSD) of a large ensemble of particles:

〈∆x2〉 (t) =
1

N

N∑
i=1

[x i (t0 + t)− x i (t0)]2 , (9.48)
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we have, for small t, a ballistic behaviour (i.e. 〈∆x2〉 ∝ t2), while for

large t we can observe a diffusive trend (i.e. 〈∆x2〉 ∝ t). This behaviour

is qualitatively identical at various α, but the crossover time τc between

ballistic and diffusive region shows a non-monotonic dependence in α,

with a minimum in α = 0 (see figure 9.9). Transition from the diffu-

sive to super-diffusive behaviour at large α is indeed one of the signals

which indicate the transition to a different regime than the mesoscale

turbulence. [174,195]

Figure 9.9: Mean-squared displacement of passive tracers in mesoscale turbulence regime.

In the inset the non-monotonic dependence of crossover time τc in α is shown. Image taken

from [190].

9.3.2 Stationary square lattice

Mesoscale turbulence emerges because of self-advection term, that

chaotically ”mixes” the structures generated by linear instability of the

disordered state. For this reason, if we ”shut off” this term setting λ0 = 0,

we obtain a regular state, composed by square vortices, with wave num-

ber kc = 2π/Λ and amplitude proportional to
√

(1− α)/β and kc (as it

was shown in [169]). In this case, we simply have a classical phenomenon

of pattern formation, described by a Swift-Hohenberg-like equation. A

recent numerical work [197] demonstrates that this state is stable also for

λ0 6= 0 under a certain threshold (depending on α) λ?, and investigates
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the transition between the stationary lattice and the mesoscale turbu-

lence. In particular, they observed a qualitatively change in transport

properties of Lagrangian tracers: for λ0 < λ? particles are trapped into

closed loops, while for λ0 > λ? they are advected in irregular trajecto-

ries. Quantitatively, after the ballistic region, the MSD remains almost

constant in the first case, not exhibiting the diffusive behaviour of the

second case (see figure 9.10)

Figure 9.10: Left : flow streamlines and vorticity field in the stationary square lattice state.

Right : mean-squared-displacement of Lagrangian tracers below and above the transition from

stationary lattice to mesoscale turbulence. Both images taken from [197].

9.3.3 Active vortex lattice

Increasing the self-advection to very strong values it is possible to ob-

serve the emergence of another forms of vortex lattice, but very different

from the stationary one previously described. In particular, there are two

different forms of active vortex lattice (AVL) that have been simulated

with the TTSH model: the spontaneous one, and the weakly constrained

one.

The spontaneous AVL is a state observed for λ0 & 6 (with small α fric-

tion) in periodic domains without obstacles, originally announced in [169]

and analyzed in details in [198]. This regime (until now) has not been

observed in bacterial suspensions, but it shows similarities with a state
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observed in sperm cells suspensions. [199] It was found that, with extreme

strength of self-advection, the mesoscale turbulent state, where vortices

with opposite handedness coexist, is not stable. After a long time tran-

sient, the system spontaneously break the vortices symmetry: one sign

of vorticity prevails, resulting in a regular triangular lattice of same-sign

vorticity, surrounded by a ”sea” of opposite vorticity. In the case of

a very large domain, this spontaneous symmetry breaking (SSB) is not

uniform, with the establishment of clusters with opposite sign (and also

different lattice orientation), separated by small boundaries of mesoscale

turbulence. It is important to notice that this state is very different from

the stationary square lattice, also because its wavelength is not the one

(Λ) predicted by linear stability analysis, but it is greater than it (on the

order of 1.7−1.8Λ), and it slightly depends on intensity of the α friction.

Figure 9.11: Left : snapshot of the vorticity field in the spontaneous active vortex lattice

phase. Right : Transition from the AVL to the turbulent state (and vice versa), parametrized

by the ratio between time spent in the AVL phase and the total time, changing the parameter

λ0 (top) or the parameter α. In the first case we have coexistence, in the second (in the left

side) hysteresis. It is important to notice that the parameter α here defined corresponds to

our α− 1.Images taken from [198]

This state does not exist if the friction due to the α-term is too strong,

but also if it is too weak (the boundary value, depending on λ0, is close
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to the change of sign of α). It it interesting to notice that the transition

mechanism between the turbulent and the AVL phase depends on the

fact we change λ or if we change α. In the first case, we have a region

of coexistence between the two phases, with the system that intermit-

tently switches between turbulence and AVL. In the second one, we have

hysteresis: if we go from AVL to turbulence, the transition value of α is

different from the value necessary to go from turbulence to AVL. These

behaviours can be quantified by the ratio between the time spent in the

AVL phase and the total time (see figure 9.11).

The weakly constrained AVL has quite different features. In this case,

we still have a periodic domain, but also a periodic array of small obsta-

cles, which can alter significantly the dynamics of the system. A combined

experimental-numerical study of 2020 [170] investigated the effect of small

pillars (which occupy only a negligible fraction of the domain) disposed in

various typologies of lattices, having wavelength comparable to Λ. In this

paper, the authors found that, around an optimal lattice constant, the

mesoscale turbulent state is stabilized into a regular pattern. In particu-

lar, in the case of Kagome lattice (fig. 9.12), another case of spontaneous

symmetry breaking was observed: the emergence of a net rotational flow

around the arrangement of pillars, thus breaking the mirror symmetry

of the lattice (with both the configurations equiprobable). In this case,

there is the emergence of a vortex pattern composed by six small vortices

rotating in the same direction, surrounded by six larger vortices rotating

in the other one. In a subsequent (only numerical) paper of 2022 [171],

focused about square lattices, the authors associated to every elementary

cell of the grid a ±1 value, according the sign of the mean vorticity com-

puted in that cell, in order to map the system in an antiferromagnetic spin

model. Using standard instruments from statistical mechanics (like or-

der parameters and correlation functions), they showed a transition from

an ordered ”antiferromagnetic” phase to a disordered phase, for λ0 & 9,

and especially that this phenomenon corresponds to a second-order phase

transition, in the same class of universality of the Ising model, with λ0

having the role of an effective temperature.
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Figure 9.12: Left : flow streamlines and vorticity field in Kagoma lattice, with highlighted

the closed loop having non-zero net circulation (black circles correspond to pillars). [170]

Right : transition from ordered ferromagnetic phase to disordered phase at increasing λ0, in

a square lattice arrangement. [171]

9.3.4 Flocking turbulence

As in the Toner-Tu model, having α < 0 means having a net polar

aligning interaction between swimmers, which should lead to a polar state,

a manifestation of flocking. But in the TTSH model we have also the

destabilizing effect due to Γ0 < 0, which not only destabilizes the uniform

polar state, but it ”tries” to suppress every attempt to flocking. This is

the reason why the mesoscale turbulent state is stable also at moderate

negative α, with most all its properties qualitatively unchanged compared

to positive α. In the supplementary of [123], a criterion was proposed.

We can define two different time scales, related to Landau potential and

Swift-Hohenberg operator:

τα = − 1

α
, τΓ =

|Γ2|
Γ2

0

, (9.49)

and therefore their ratio will be an (very approximate) indication of which

term will prevail. We expect that the isotropic mesoscale state will be
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unstable if:
τα
τΓ

. 1, =⇒ −α &
Γ2

0

|Γ2|
. (9.50)

As we will see in Chapter 10, this is a very crude estimate, which overes-

timates the value of α necessary to cause qualitative changes in the flow

properties. As observed in [174, 195, 200], when the α forcing is relevant

we can notice a modification in fluid structures, in particular filaments

(defined by authors vorticity streaks) emerge next to usual vortices, and

some vortices appear to be more dominant than others. Apparently, the

domain is now divided in regions where the system is locally flocking,

characterized by polar order (so, where the Landau potential is dominat-

ing), and regions with mesoscale turbulence (where the Swift-Hohenberg

operator suppresses the flocking tendency). These regions (both of them)

are not steady, instead they move and deform chaotically.

Figure 9.13: Left : vorticity field in the flocking turbulence regime. Right : transition from

diffusive to superdiffusive behaviour in the transport of Lagrangian tracers (normalization B

of α coefficient). Images taken from [174]

An important feature of this different regime is the observation of

anomalous diffusion in the transport of Lagrangian particles: at large

times, we have ∆x2 ∝ t4/3 [174]. Later investigations showed that this

phenomenon is probably due to the fact that these streaky regions advect

tracers much farther than the vortical regions. [195] Eulerian properties

of this regime will be the subject of our investigation in chapter 10.





Chapter 10

From homogeneous to flocking

turbulence

10.1 Introduction

As we have seen in the previous chapter, in the TTSH model the

linear stability analysis [178] predicts that the regime of uniform flocking

(which is present in the original Toner-Tu model) is destabilized by the

Swift-Hohenberg operator, and therefore it cannot observed in the TTSH

model. Nonetheless, recent works [174, 195, 200]. have shown that, if

the aligning potential is sufficiently strong, the TTSH model displays the

emergence of an inhomogeneous regime characterized by the presence of

large-scale, isolated vortices, surrounded by regions of small vortices and

elongated vortical structures, called vorticity streaks.

In this chapter, a detailed investigation of the inhomogeneous regime

of large-scale vortices is presented. We show that these structures origi-

nate from local attempts to organize the flow in configurations of circular

flocking induced by the aligning potential. The interactions between the

flocking vortices give rise to a regime that we call flocking turbulence. By

means of an extensive exploration of the parameter space we highlight

the importance of the interplay between the Landau force and the non-

linear advection term to induce the transition from the regime of isotropic

mesoscale turbulence towards the regime of flocking turbulence.

101
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10.2 Model and numerical methods

The Toner-Tu-Swift-Hohenberg (TTSH) model describes the effective

dynamics of a dense suspension of elongated pusher-like microswimmers

as a polar active fluid, governed by an incompressible Navier-Stokes-like

equation for the coarse-grained collective velocity field uuu:

∂tuuu+ λ0uuu · ∇∇∇uuu = −∇∇∇p− (α + β|uuu|2 + Γ0∇2 + Γ2∇4)uuu . (10.1)

The pressure term∇∇∇p ensures the incompressibility of the flow,∇∇∇·uuu = 0,

since in dense suspensions one can neglect density fluctuations. The co-

efficients λ0, α, β,Γ2,Γ4 are phenomenological parameters related to the

properties of the microswimmers, the surrounding fluid and their inter-

action (see also Chapter 9).

Equation (10.1) is numerically integrated by a standard pseudo-spectral

method in the vorticity-velocity formulation with a 1/2 dealising for the

cubic nonlinearity, and a 4th order Runge-Kutta time stepping. Con-

finement in a circular domain is imposed by the penalization method

[201, 202], which consists in modelling the region outside the domain as

a porous medium with vanishing permeability. To this aim, the term

− 1
τ
M(x)u is added to (10.1), where τ is the permeability time and the

mask field M(x) is equal to 0 and 1 respectively inside and outside a

circular domain of radius R [203].

We performed two main sets of simulations. In the first we fix λ0 = 3.5

and vary bothR = {16, 23, 32, 63}Λ and α = {−0.25,−0.50,−0.75,−1.00,

−1.25,−1.50,−1.75,−2.00}, while in the second set we fix both α =

−1.00 and R = 63Λ, and vary λ0 = {2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 7.0}. An

additional set of 269 simulations was performed with λ0 = 3.5, α = −1.50

and R = 16Λ in order to study the transition time to the circular flocking

state. The domains with radius R = 63Λ, R = {31, 23}Λ and R = 16Λ

are embedded in squared periodic domains of size L = {160, 80, 40}Λ with

numerical resolutions N = {2048, 1024, 512} respectively. In all the sim-

ulations the values of the other parameters are fixed as follows: β = 0.01,

Γ0 = 2, Γ2 = 1. The characteristic scale is Λ = 2π. The permeability

time of the penalization term is τ = 0.001.
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We identify vortices by means of the standard Okubo-Weiss parameter

[204,205] Q =
(
∂2
xyψ
)2−(∂2

xψ)
(
∂2
yψ
)
, where ψ is the stream function (i.e.

uuu = (∂yψ,−∂xψ) and ω = −∇2ψ is the vorticity). Q < 0 corresponds

to vortical regions, while Q > 0 to regions dominated by shear. Vortices

are defined as connected regions of the space where Q ≤ −Q? and the

threshold value Q? is chosen as 3 times the root mean squared (rms)

value of the Q field. We checked that our results do not depend on the

precise value of Q?. We remark that the Okubo-Weiss criterion has been

already used in TTSH simulations for the study of Lagrangian properties

[195,196].

10.3 Transition towards flocking turbulence

In order to study the effect of the intensity of the aligning potential

on the dynamics of the system, we performed a first set of simulations

varying the strength of the Toner-Tu term in the range from α = −0.25

to α = −2. In all the simulations, the initial condition is a vanishing

velocity field, with a small random perturbation.

The early stage of the evolution of the system is driven by the linear

term Lu = −αu−Γ2∇2u−Γ4∇4u and it is characterized by an exponen-

tial growth of the rms values of the velocity and vorticity, in agreement

with the predictions of the linear stability analysis [177]. This phase ends

when the nonlinear terms become relevant. The cubic dumping term of

the Laudau force arrests the exponential growth and the self-advection

term destabilizes the stationary pattern created by the Swift-Hohenberg

term, thus inducing a mesoscale turbulence state [197]. This regime is

characterized by an homogeneous, disordered population of small vortices

(see Fig. 10.1 top). The vortices are uniformly distributed in the circular

domain, with a high vortex number density n (defined as the number of

vortices per unit area).

For moderate negative values of α (−1 . α < 0) the regime of

mesoscale turbulence is statistically stable: once the system reaches it, it

remains there forever. This is confirmed by the temporal evolution of the
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Figure 10.1: Vorticity fields ω (left) and stream function ψ (right), in the stationary regimes

of the simulations with α = −0.25 (top), α = −1.00 (center) and α = −1.75 (bottom). Here

λ0 = 3.5 and R = 63Λ.
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Figure 10.2: Time evolution of the rms velocity urms (left), rms vorticity ωrms (center)

and vortex density n (right) in the numerical simulations with α = −0.25 (green solid line),

α = −1.00 (red dotted line) and α = −1.75 (blue dashed line). Here λ0 = 3.5 and R = 63Λ.
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Figure 10.3: Time evolution of the rms velocity urms (left), rms vorticity ωrms (center)

and vortex density n (right) in the numerical simulations with λ0 = 2.0 (green solid line),

λ0 = 3.5 (red dotted line) and λ0 = 5.0 (blue dashed line). Here α = −1.00 and R = 63Λ.

rms velocity urms, rms vorticity ωrms, and vortex density n, which remain

stationary in time (after the initial transient) as shown in Fig. 10.2).

For α = −1 the regime of uniform mesoscale turbulence is not stable

anymore. It undergoes a slow evolution during which the number of vor-

tices diminishes (see Fig. 10.2 left). The decrease of the vortex density is

accompanied by a simultaneous decrease of the rms vorticity, which sug-

gests that the average vorticity of each individual vortex remains almost

constant in time. At long times (t > 50Λ/U), the system achieves an in-

homogeneous, statistically steady state, characterized by the presence of

isolated vortices and elongate filaments called vorticity streaks [174] (see

Fig. 11.1 center). The flow is organized in large-scale structures, which

are evident in the stream function.

Increasing further the strength of the aligning potential (i.e. for α .

−1) the system evolves toward a strongly inhomogeneous state, composed

by few large vortices (see Fig. 11.1 bottom). Each vortex is surrounded by

a wide region of circular motion with constant speed U =
√
−α/β. The
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Figure 10.4: Asymptotic values of rms velocity urms (left), rms vorticity ωrms (center) and

vortex density n (right) as a function of α in the numerical simulations with λ0 = 3.5 and

R = 63Λ.

vorticity streaks are observed in the peripheral regions of these vortices,

and they are preferentially aligned in the transverse direction with respect

to the circular motion. The emergence of large-scale structures in the

flow is clearly visible in the stream function. Local dense vortex clusters

are still present between these structures and close to the boundary of

the domain. During the evolution of the system toward this asymptotic

state, we observe a decrease of the rms vorticity and vortices density (see

Fig. 10.2), while the rms velocity increases slowly in time.

The formation of this state can be understood as follows. At large neg-

ative values of α, the strong Landau force promotes the development of

local attempt to organize the flow in states of circular flocking. This pro-

cess occurs independently in different regions of the domain, producing

large vortices with either positive or negative sign. The Swift-Hohenberg

operator is not anymore capable to suppress completely the flocking ten-

dency of the system, but it is still able to destabilize the peripheral re-

gions of the vortices. Indeed, linear stability analysis of a global polar

state predicts the appearance of a transverse pattern with respect to the

mean flow with wavelength Λ [177]. The streaks observed in Fig. 10.1

bottom) correspond to this pattern, distorted by the advection produced

by the other vortices. Since this regime is characterized by the chaotic

interaction between the flocking vortices, we call it flocking turbulence.

The non-linear self-advecting term λ0uuu · ∇∇∇uuu plays a crucial role in

the development of the flocking turbulence. To address this issue, we

performed a second set of simulations keeping fixed α = −1 and varying
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Figure 10.5: Asymptotic values of rms velocity urms (left), rms vorticity ωrms (center) and

vortex density n (right) as a function of λ0 in the numerical simulations with α = −1.00 and

R = 63Λ.

λ0 in the range from 2 to 7. The temporal evolution of the rms velocity,

vorticity and vortex density is shown in Fig. 10.3 for three different values

of λ0. While the rms velocity is almost unaffected by the change of λ0, the

rms vorticity and vortex density reach different asymptotic values which

decrease at increasing λ0. This is qualitatively similar to what observed

at increasing the intensity of |α| (see Fig. 10.2).

The dependence of the asymptotic, stationary values of rms velocity,

vorticity and vortex density as a function of the parameter α and λ0 is

shown in Figs. 10.4 and 10.5 respectively. The transition from the two

regimes of mesoscale and flocking turbulence is evident in the dependence

of the urms on α. In the regime of flocking turbulence, at large negative

values of α the ratio between urms and U =
√
−α/β is almost constant,

meaning that urms grows proportionally to
√
|α|. Conversely, at small

values of α the ratio urms/U increases, in agreement with the results of

previous studies of the mesoscale turbulence regime [190]. We find that

urms is almost independent of λ0. This is consistent with the observation

that the self-advection term conserves the energy, and therefore the value

of λ0 is not expected to affect the energy balance.

Both the rms vorticity and the vortex density decrease by increasing

the magnitude of |α|, in agreement with the qualitative observation that

the number of vortices decreases as shown in Fig. 10.1. A similar be-

haviour is observed also by increasing the strength of the self-advection:

Larger values of λ0 correspond to lower ωrms and n. The above results sug-

gest that the transition from mesoscale turbulence to flocking turbulence
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Figure 10.6: Kinetic energy spectra, averaged in the stationary regimes of the simulations

with fixed λ0 = 3.5 (left) and fixed α = −1.00 (right). Here R = 63Λ.

is not solely due to the increase of the strength of the aligning potential

α, but it requires also a strong enough self-advection (i.e. non-linearity).

Further insights on this transition are given by the distribution of ki-

netic energy among different spatial scales, which is quantified by the

energy spectrum E (k), shown in Fig. 10.6. In the mesoscale turbu-

lence regime, E (k) is peaked around a characteristic wavenumber kmax '
2π/Λ, Increasing the energy input (i.e. increasing the magnitude of |α|)
the peak of the spectrum shifts towards smaller wavenumbers kmax <

2π/Λ, in agreement with previous findings [172,173,190].

In the regime of flocking turbulence (for |α| & 1), we observe a qualita-

tive change in the spectrum. The energy spectrum develops a power-law

behaviour E(k) ∼ k−δ at intermediate wavenumbers kmax � k � 2π/Λ,

with a spectral slope δ which is close to the theoretical value δ = 3/2

predicted and observe in [200]. At large, negative values of α we observe

a slight increase of the spectral slope δ, which exceeds the value 3/2. At

the same time, the wavenumber kmax becomes almost constant and it is

close to the smallest available wavenumber, i.e. the inverse of the size of

the circular domain. As we will discuss in the next Section, these effects

are due to the confinement.

Interestingly, we find that the decrease of peak of the energy spectrum

kmax and the development of the intermediate power-law behaviour is ob-

served also at increasing the parameter λ0 at fixed α. This is a further

clue that the transition from mesoscale to flocking turbulence is deter-
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mined by the interplay between the Landau force and the self-advection

term.

The growth of the integral scale of the flow, signalled by the reduction

of kmax, can be quantified by the analysis of the autocorrelation functions

of the velocity field

Cuuu(r) =
〈uuu(xxx) · uuu(xxx′)〉
〈|uuu(xxx)|2〉

; (10.2)

with r = ‖xxx−xxx′‖, and angular brackets indicating average over space and

time (in the stationary regime). We remark that correlation functions are

a well established tool for the study of flocking phenomena [206].

The velocity autocorrelation function, plotted in Fig. 10.7, displays

a negative minimum which allows to define a velocity correlation scale

ξ given by the first zero crossing of Cuuu. The dependence of ξ on the
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parameters α and λ0 is reported in Fig. 10.8. Both reducing α at fixed

λ0 and increasing λ0 at fixed α we observe a sharp increase of ξ from

values comparable to Λ to values of the order 30Λ, which indicates the

transition from the mesoscale regime to the flocking turbulence. At large

values of Λ and large negative values of α we also observe a saturation of

the correlation scale to an asymptotic value ξ ≈ 30Λ which is comparable

with the radius of the circular domain (R = 63Λ).

10.4 Role of confinement

The saturation of correlation length and of the peak of the energy

spectrum kmax reveals that the geometrical confinement of the bacterial

turbulence influences significantly its dynamics. In this section we pursue

the investigation of the effects of the confinement presenting the results of

simulations of the TTSH model in circular domains at varying the radius

R of the domain.

In Figure 10.9 we show the temporal evolution of the rms velocity,

vorticity and vortex density for a set of simulations in the regime of

flocking turbulence with parameters α = −1.75 and λ0 = 3.5. The radius

of the domain is varied from R = 16Λ to R = 63Λ. Increasing the

confinement, i.e. reducing R, we observe a decrease of the asymptotic

values of urms and an increase of ωrms and n. This effects can be ascribed

to the interactions of the flow with the no-slip boundary. The friction with

the boundary dissipates part of the energy, thus reducing urms. Close to

the boundaries, the energy dissipation is accompanied by the production

of small vortices, which causes an increase of ωrms and of the total number

of vortices. These effects are stronger for the cases with smaller radius

R, because of the larger ratio between the perimeter and the area of the

domain.

In Fig. (10.10) we compare the asymptotic stationary values of urms,

ωrms and n as a function of the domain size R, in the regime of mesoscale

turbulence (α = −0.25), in the transition regime (α = −1.00) and in

the regime of flocking turbulence (α = −1.75). The parameter λ0 =
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Figure 10.9: Time evolution of the rms velocity urms (left), rms vorticity ωrms (center)

and vortex density n (right) in the simulations with different values of confinement radius:

R = 63Λ (green solid line), R = 31Λ (red dotted line), R = 23Λ (orange dotted-dashed line)

and R = 16Λ (blue dashed line). Here α = −1.75 and λ0 = 3.5.
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Figure 10.10: Asymptotic values of the rms velocity urms (left), rms vorticity ωrms (center)

and vortex density n (right) as a function of the confinement radius R. Here λ0 = 3.5.

3.5 is fixed for all the simulations. The asymptotic values presented in

Fig. (10.10) are normalized with the corresponding values urms0, ωrms0

and n0 obtained in another set of simulations with identical parameters,

performed in a large square domain with size L = 160Λ and periodic BCs,

which is the typical setup for the numerical studies of the TTSH model.

The effects of the confinement are qualitatively similar for all the

regimes: Reducing R we observe a reduction of urms and an increase

of ωrms and n. Nonetheless, we observe significant quantitative differ-

ences. In the case of mesoscale turbulence (α = −0.25) the values of

urms, ωrms and n varies weakly with R and they remains close to those

of the simulations with periodic BCs. Conversely, the values obtained in

the flocking turbulence regime displays a strong dependence on R.

The weak influence of the confinement on the mesoscale turbulence

can be explained by the observation that in this regime the correlation

length ξ of the velocity field is approximately one order of magnitude

smaller than R. Therefore the effects of the confinement are restricted to
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a small region close to the boundary. In the intermediate case (α = −1)

the correlation length ξ is larger than in the mesoscale turbulence (see

Fig.10.8) and the effects of the confinement are stronger. In the flocking

turbulence regime (α = −1.75) the values of urms, ωrms and n change

abruptly when the radius R becomes smaller than the correlation length

ξ ≈ 30Λ.

The effects of the confinement manifest also in the energy spectra.

In Fig. 10.11 we compare the spectral slope δ of the energy spectrum

measured in simulations with different R and α. In the set of simulations

with α = −1.25 the slope is almost independent of R and its value is close

to the theoretical prediction 3/2 [200]. The independence of the spectra

from R is observed also for α > −1.25 (not shown), which confirms that

the effects of the confinement on the regime of mesoscale turbulence are

weak.
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Figure 10.11: Spectral exponent δ as a function of confinement radius R, in the simulations

with λ0 = 3.5 and α = −2.00 (orange diamonds), α = −1.75 (blue squares), α = −1.50, (red

circles) and α = −1.25 (green triangles).

In the regime of flocking turbulence the spectral slope δ varies sig-

nificantly with R and α. Decreasing the radius R we find that δ grows

up to an asymptotic value which increases with |α|. We argue that the

steepening of the energy spectrum due to the confinement can be related
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to some process of spectral energy condensation, i.e., of the accumulation

of energy in the lowest mode accessible to the system, whose wavelength

is comparable to the size of the domain. This explains the discrepancy

between the slope of the energy spectra observed in our simulations and

the results reported in [200]. The trend of the values of δ at increasing R

suggests the conjecture that the spectral slope attains an universal value

δ = 3/2 in the limit of unconfined, infinite domain.

10.5 Discussions

The data from our simulations, combined with the results reported

in [200], suggest that, in the TTSH model, we have a transition between

a homogeneous regime denoted as mesoscale turbulence to another one,

with qualitatively different features, that we have called flocking turbu-

lence. For moderate values of α we have smooth variations in quantita-

tive properties of the system (position of the peak of energy spectra [172],

crossover time in the transport of Lagrangian particles, [190] etc.), simply

due to more energy inside the system, but going beyond a certain thresh-

old αc, the real nature of the Landau forcing (α + β|u |2)u appears, with

consequent abrupt variations in the mean enstrophy, energy spectra and

correlation functions. This term is not simply a forcing which injects

energy into the system, but, since uuu represents also the order parameter

of the system, it also induces a spontaneous symmetry breaking (SSB)

in the velocity field, pushing all the swimmers to propel in the same di-

rection with the same speed U =
√
−α/β. Therefore, for α < αc, in

the system we can observe the formation of some large vortices (quite

different from the small vortices in mesoscale turbulence) with constant

speed U , which are nothing else than regions where the SSB happens in

an independent way. If the dynamics of the system was driven only by

the Landau terms, we would observe the transition at αc = 0, but in this

model we have also the Swift-Hohenberg (SH) operator (Γ0∇2 + Γ2∇4)u

which, if Γ0 > 0, which always destabilizes the polar ordered state. [177]

Our study demonstrated that the self-advection term λ0uuu·∇uuu plays an
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important role in this transition. In particular, we find that the transition

towards the flocking turbulence can be realized also keeping fixed α and

increasing the strength of the self advection coefficient λ0.

These observations can be rationalized by considering the time scales

of the different terms of the TTSH model. The characteristic time scale

of the Landau force τα, of the SH term τΓ and of the self-advection term

τλ are:

τα = − 1

α
, τΓ =

Γ2

Γ2
0

, τλ = − 1

αλ0

. (10.3)

The expression of τλ follows from the consideration that, while the typical

intensity of the velocity U is determined by the Landau force, the velocity

field in (5.1) is advected by the rescaled velocity λ0U . We note that for

λ0 > 1, (which corresponds to the case of pusher-like swimmers considered

here), the self-advection time τλ is shorter that τα.

The transition from the mesoscale is expected to occur when τΓ ∼
min(τα, τλ). Since we have τλ < τα, the condition for the transition can

be written as

αλ0 ∼ −
Γ2

0

Γ2

. (10.4)

Our prediction refines the criterion proposed in the Supplementary

of [123], considering the role of self-advection. For fixed λ0 = 3.5 the

relation (10.4) give the critical value αc ' −1.14, while for fixed α =

−1 we get λc ' 4, which are both in quantitative agreement with our

numerical findings. If we consider the normalization adopted in [200], we

have αc ∼ −6.3, close to the value αc ∼ −5 they reported.

The crucial role of the self-advection coefficient λ0 is not surpris-

ing, since, in other regions of the parameter space compared to those

we have analyzed, it has been shown not only that varying λ0 we have

the transition from a stationary pattern to the chaotic mesoscale turbu-

lence, [169, 197] but also the emergence of an out-of-equilibrium active

vortex lattice [169, 198] or, in the presence of a periodic array of obsta-

cles, the occurrence of an order-disorder second-order phase transition in

the Ising universality class, with an effective temperature proportional

to λ0. [171] However, it is important to recall that the role of the self-

advection in the TTSH model is quite different to the role of in the usual
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Navier-Stokes equation, and that, despite some common features (like

power-law energy spectra or intermittent behavior [200]), the classic high-

Reynolds turbulence and the flocking turbulence regime we described are

two very different phenomena (as well as forms of active turbulence in

other systems [191–194]). The former is due to the inertia of the fluid,

which, when it dominates over the viscosity, triggers the emergence of

the energy cascade, i.e. a constant flux of energy across the scales of the

system. The latter is caused by a spontaneous symmetry breaking of the

system, where the self advection has the role to suppress the instabilities

due to the SH term, and the energy is injected simultaneously on all the

scales of the system.





Chapter 11

The giant vortex

11.1 Introduction

In the previous chapter we studied bacterial flocking turbulence in a

confined domain, but this is a regime that we can observe also with peri-

odic boundary conditions, which is only slightly affected by confinement.

Nonetheless, it has been shown that in active fluids confining bound-

aries can induce the emergence of coherent structures, qualitatively dif-

ferent from the ones we can observe in periodic domains. [164,207–209] In

particular, considering experiments with bacterial suspensions, the con-

finement in circular micro-wells can induce the formation of a rectified

vortex. [164, 210, 211] Here, by means of extensive numerical simulations

of the TTSH model [123, 183] (see also Chapter 9), we show that geo-

metrical confinement can induce the transition from the chaotic regime

of flocking turbulence to a novel regime, characterized by the formation

of a giant vortex surrounded by an annular region of elongated vorticity

structures. We also highlight that this state has larger size and different

velocity profile with respect to the vortical structures reported in previ-

ous studies [131, 164, 210] and that it originates from a different process

which involves complex interactions between the chaotic flow and the

boundaries.

117
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11.2 Model and simulations

We modelled a dense bacterial suspension by mean of the TTSH model,

where the coarse-grained collective velocity field uuu obeys to:

∂tuuu+ uuu · ∇∇∇uuu = −∇∇∇p− (α + β|uuu|2 + Γ0∇2 + Γ2∇4)uuu . (11.1)

The pressure gradient∇∇∇p ensures the incompressibility of the flow,∇∇∇·uuu =

0, which is valid for dense suspensions, and the parameters λ0, α, β,Γ0,Γ2

are determined by the properties of the microswimmers (more details in

Chapter 9).

Numerical methods are the same adopted in Chapter 9: we integrated

equation (11.1) in a two-dimensional circular domain of radius R, using a

dealiased pseudospectral method, with an implicit Runge-Kutta scheme

for time integration and a penalization term in order to implement the

no-slip boundary conditions. Simulation parameters are reported in Table

11.1.

R N2 α

A1 16Λ 512× 512 -2.00

A2 -1.75

A3 -1.5

A4 -1.25

B1 23Λ 1024× 1024 -2.00

B2 -1.75

B3 -1.5

C1 31Λ 1024× 1024 -2.00

C2 -1.75

C3 -1.5

Table 11.1: Values of coefficient α, confinement radius R and numerical resolution N2, for

the three sets of simulations (A, B, C). All the simulations are performed with parameters

λ0 = 3.5, β = 0.01, Γ0 = 2, Γ2 = 1, τ = 0.001, and grid spacing ∆x = 5/64Λ.

For the analysis, we decompose the velocity field in the radial and

angular components uuu = urr̂rr + uϕϕ̂ϕϕ which define the radial and angular

kinetic energies Er = 1
2
〈u2

r〉 and Eϕ = 1
2
〈u2

ϕ〉 (here and in the following,

〈·〉 denotes spatial average over the circular domain of radius R).
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11.3 Emergence of the giant vortex

As an initial condition, we considered a null velocity field seeded with

an infinitesimal random perturbation. At the beginning of the simulation,

phenomenologically lead by the Swift-Hohenberg term, the swimmers or-

ganize in a large number of small-scale vortices, with equal probability of

positive and negative vorticity and homogeneous and isotropic spatial dis-

tribution. This state corresponds to the mesoscale turbulence, therefore

the statistical properties of the flow are identical to those observed in sim-

ulations with periodic boundary conditions [172, 173, 190]. Since we are

considering values of α beyond the threshold αc we defined in the previous

chapter, the mesoscale turbulence is not stable: after a short time, the

system evolves towards the regime of flocking turbulence, characterized

by the presence of multiple large-scale vortices, which move chaotically

and are surrounded by regions of vorticity streaks (see Fig. 11.1, left

panel).

Figure 11.1: Vorticity field for the simulation with R = 31Λ and α = −1.75 at t = 210Λ/U

(left) and t = 550Λ/U (right).

During this chaotic regime we observe an approximate equipartition

(with strong temporal fluctuations) between the radial and angular com-

ponents of the kinetic energy (see Fig. 11.2 left panel). At later times,

the system displays a rapid increase of Eϕ accompanied by the decrease

of Er, which indicates the transition to a novel regime characterized by
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Figure 11.2: (left) Temporal evolution of the radial and angular components of the kinetic

energy Er (blue, dashed line), Eϕ (red, solid line) normalized with E0 = 1
2
U2. Simulation

at R = 31Λ and α = −1.75. (right) Temporal evolution of the angular momentum M

normalized with M0 = 2
3
UR for the simulation at R = 31Λ and α = −1.75. The inset shows

the evolution of the angular momentum for an ensemble of simulation with different initial

conditions with α = −1.50 and R = 16Λ.

Eϕ ' E0 ≡ 1
2
U2 and Er ' 0. This means that the swimmers self-

organize in a state of circular flocking, that is, a stationary, single, giant

vortex which spans the whole domain (see Fig. 11.1 right panel), similar

to that observed in experiments of bacterial suspension in a viscoelastic

fluid [212].

The formation of this large-scale structure corresponds to a symmetry

breaking of the angular momentum of the flow M = 〈rrr×uuu〉. As shown in

the right panel of Figure 11.2, the values of M display strong fluctuations

around zero before the formation of the giant vortex. With the ultimate

transition to circular flocking, M saturates to a constant value |M | '
M0 ≡ 2

3
UR with definite sign. The transition times, from the chaotic

regime of flocking turbulence to the stationary giant-vortex state, appears

to be unpredictable, since we observed a strong variability, changing the

initial random perturbation (see the inset in the right panel of Figure

11.2). The variability of transition time will be discussed further in this

chapter.

In Figure 11.3 we compare the energy spectra E(k)before and after the

transition (the spectra correspond to the fields shown in Figure 11.1). Be-

fore the transition, we find that the intermediate regime is characterized

by the turbulent-like power-law energy spectrum E(k) ∼ k−ζ , that we dis-
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cussed in the previous chapter, where the spectral slope ζ ' −2 observed

in our simulations is steeper than the value −3/2 reported in [200] be-

cause of confinement. After the formation of the giant vortex, we observe

a spectral condensation of the energy in the lowest mode, accompanied

by a depletion of the energy spectrum at intermediate wavenumbers. At

wavenumbers k & 2π/Λ the spectrum remains almost unchanged.
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Figure 11.3: Energy spectra for the simulation with R = 31Λ and α = −1.75 at t = 210Λ/U

(blue, solid line) and t = 550Λ/U (red, dashed line). The black, dash-dotted line represents

the slope k−2.

We can quantify the degree of order of the collective motion of the

swimmers in the giant vortex adopting the vortex order parameter [164,

210,211] (VOP) which is defined as Φ = (〈|uuu · ϕ̂ϕϕ|〉/〈|uuu|〉− 2/π)/(1− 2/π).

A velocity field oriented in the angular direction uuu ‖ ϕ̂ϕϕ gives Φ = 1,

while Φ = 0 corresponds to random-oriented velocity. The values of Φ

measured in the late stage are very close to 1, (see Figure 11.4), which

indicates that the motion of the swimmers is highly ordered. The degree

of order increases reducing the radius R of the domain and increasing |α|.
The temporal evolution of Φ provide us a good criterium fo the evalua-

tion of the transition time. For this purpose, we performed an additional

ensemble of 269 simulations of the case A3, at fixed α = −1.50, λ0 = 3.5

and R = 16Λ (we chose the smallest domain in order to reduce the com-
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Figure 11.4: Mean value of the vortex order parameter Φ as a function of α for R = 16Λ

(green triangles), R = 23Λ (red circles), R = 31Λ (blue squares).

putation time), with different initial random perturbations. We assume

as evidence of the transition the fact that the VOP exceeds the threshold

value of Φthr = 0.95.
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Figure 11.5: Temporal evolution of the vortex order parameter Φ, for an ensemble of

simulations with λ0 = 3.5, α = −1.50 and R = 16Λ, with different initial conditions.

From Figure 11.5 we can notice the metastable nature of the flocking

turbulence regime: this ultimate transition to the circular flocking can



11.3 Emergence of the giant vortex 123

require an unpredictable transient time in order to happen: it is frequent

that, before the giant vortex state is achieved, the system goes through

several failed attempts, with one of the larger vortices which, after reach-

ing a size greater than that of the other one, suddenly inverts its growth

process.
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Figure 11.6: Probability density function p (τt) of the transition time τt to the circular

flocking state, with R = 16Λ, α = −1.50 and λ0 = 3.5. The black dashed line represents the

slope τ−1
t .

We observed almost two orders of magnitude in the variability of the

transition time τt. The probability density function we computed (fig.

11.6) shows a maximum around τt ∼ 400Λ/U , and it seems to be com-

patible with a τ−1
t decay in the range ∼ 500 − 4000τt/(Λ/U), before an

apparent cut-off at larger times.

Unfortunately we do not have a theory which could predict such a law,

or a different one, since this ultimate transition appears to be strongly

out-of-equilibrium. However, it is reasonable to expect that the statistic

of the transition time depends on the parameters α, λ0 and R, but an

investigation in that sense would require larger ensembles of simulations,

with an extensive exploration of the parameter space.
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11.4 Radial profiles of the giant vortex

If we consider the time-averaged, mean radial vorticity profile of the

giant vortex ω(r) = 1
2πr

∫
ω(rrr′)δ(|rrr′| − r)d2r′ we can observe a power

law behaviour ω(r) ∝ 1/r in the region Λ . r . R − Λ far from the

boundaries and from the center (Figure 11.7). We can derive a theoretical

prediction for ω(r) by assuming that the radial component of the velocity

vanishes, ur = 0, and that the angular component depends only on r as

uϕ = rΩ(r), where Ω(r) is the angular velocity. The resulting vorticity

field is ω = ∇∇∇ × uuu = 2Ω(r) + r∂rΩ(r). Inserting these expressions in

the equation for the vorticity, which is obtained by taking the curl of

Eq. (11.1), and imposing the stationarity condition, one gets the following

equation for Ω(r)

(α + Γ0∇2 + Γ2∇4)(2Ω + r∂rΩ) + βr2Ω2(4Ω + 3r∂rΩ) = 0. (11.2)

We also assume that the Swift-Hohenberg term is negligible for r �
Λ, this assumption is justified a posteriori, since the Swift-Hohenberg

operator applied to a vorticity field ω(r) = ±U/r gives subleading terms

of order O((r/Λ)−3) which are negligible for r � Λ. In this case, the

equation (11.2), admits the power-law solution Ω(r) = crγ with c =

±
√
−α/β and γ = −1. This gives a prediction for the radial profiles

of velocity uuu(r) = ±Uϕ̂ϕϕ and vorticity ω(r) = ±U/r, which is in perfect

agreement with our numerical findings (see Figure 11.7).

Beside the giant vortex, Figure 11.1 also shows the presence of vor-

ticity fluctuations in an annular region close to the boundary. These

elongated structures, slightly leaned in the direction of the mean flow of

the vortex, correspond to the same vorticity streaks we noticed in the

flocking turbulence regime. Since they have a typical transverse width of

the order of Λ, the average number of streaks in a domain of radius R is

therefore N ' 2R
√

Γ0/2Γ2.

The intensity of the vorticity fluctuations can be quantified by the

RMS vorticity profile ωrms(r) = (ω2(r))1/2 which is shown in Figure 11.7.

Vorticity fluctuations are absent in the central region of the vortex, in

which ωrms(r) coincides with the mean radial profile |ω(r)|. They appear
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Figure 11.7: Radial profiles of the vorticity, ω(r) (empty symbols), and of the RMS vorticity,

ωrms(r) (filled symbols), for simulations with R = 31Λ, α = −1.5 (blue squares), α = −1.75

(red circles) and α = −2 (green triangles). The black line is the prediction |ω(r)| = U/r.

at larger r, as shown by the increase of ωrms(r) which reaches an almost

constant plateau close to the boundary ωrms(r) ' U/Λ.

Further details on the statistics of the streaks are revealed by the

profiles of radial and angular velocity fluctuations defined as u′r(r) =

(u2
r(r))

1/2 and u′ϕ(r) = (u2
ϕ(r) − uϕ

2(r))1/2, shown in Figure 11.8. The

radial component is predominant in the velocity field of the streaks. Close

to the boundary, the ratio between the intensities of radial and angular

fluctuations is almost constant u′r/u
′
ϕ ' 4.2. The intensity of velocity

fluctuations decays at increasing the distance from the boundary R− r.

The width of the region in which the streaks are present can be quan-

tified as the distance δ from the boundary at which the radial profile of

the order parameter exceeds a given threshold value Φ(R− δ) = Φthr (see

Fig. 11.9). The values of δ (with Φthr = 0.9995) are reported in the inset

of Figure 11.9. We find that δ increases monotonically increasing the

radius R of the circular domain and decreasing the parameter |α|. The

scaling of δ as a function of the parameters of the model and of the radius

R remains an open question which deserves further theoretical studies.
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Figure 11.8: Radial profiles of the radial and tangential components of the velocity fluctu-

ations, u′r(r) (empty symbols) and u′ϕ((r) (filled symbols), as a function of the distance from

the boundary for α = −1.75, R = 31Λ (blue squares), α = −1.5, R = 23Λ (red circles) and

α = −1.25, R = 16Λ (green triangles).

11.5 Discussions

The formation of the giant vortex surrounded by streaks is strictly re-

lated to the phenomenon of flocking turbulence described in [174,195,200]

and in the previous chapter. In this regime we have the competition be-

tween the Toner-Tu term, composed by Landau potential and the self-

propulsion term, and the Swift-Hohenberg operator. While the former

promote the development of a flocking state, in which all the bacteria

swim in the same direction with a constant speed, [133] the latter destabi-

lize this collective ordered motion, with the formation of vorticity streaks

in the transverse direction with respect to the mean flow [177] (see also

the linear stability analysis of the global polar state in section 9.1). A

possible explanation of our findings is that the confinement in circular do-

mains permits to one of the larger vortices which characterize the flocking

turbulence, i.e. one of the manifestation of the spontaneous symmetry

breaking of the system, to prevail on the others, extending its symmetry

breaking from a limited region to all the domain. The vorticity produc-
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Figure 11.9: Radial profiles of the vortex order parameter, Φ(r), for simulations with

R = 31Λ, α = −1.5 (blue squares), α = −1.75 (red circles) and α = −2 (green triangles).

The black dashed line is the threshold value Φthr = 0.9995 used to define the width δ of the

region in which the streaks are present. Inset: Width δ of the annular regions of the streaks

as a function of α for R = 16Λ (green triangles), R = 23Λ (red circles), R = 31Λ (blue

squares).

tion due to friction forces near the boundary probably triggers the global

symmetry breaking of the angular momentum facilitating the formation

of the giant vortex.

Despite this simple interpretation, the formation of the giant vortex,

is a highly non-trivial process which is far from being fully understood.

As shown in Figure 11.5, the final state with a single vortex is achieved

after a long, metastable regime of flocking turbulence in which several

large-scale vortices compete with each other to prevail, with a strong

variability of the duration of this intermediate regime. This confirms the

complexity of this process and suggests that the transition to the giant

vortex may have a stochastic nature, with a broad distribution of the

transition times, as shown in Figure 11.6.

We remark that the phenomenon presented here differs deeply from

those previously reported in experiments [164,210] and numerical simula-

tions [131] of confined bacterial suspensions. The confining scale in these
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studies is much smaller than in our case, and the rectified vortex orig-

inates directly from the linear instabilities of the steady, no-flow state.

Moreover, they found a double vortex with a non-monotonic radial profile

of the azimuthal velocity [131], Conversely, the giant vortex observed in

our study displays a uniform profile of azimuthal velocity surrounded by

an annular region of vorticity streaks, and it is produced by a non-linear

mechanism, related to the interaction of the flocking turbulence regime,

itself generated by a non-trivial competition between a large scale ten-

dency to flock and a small scale destabilization, with the boundaries. This

process requires a domain large enough to allow for the development of

the chaotic regime which precedes the transition to the giant vortex. Our

simulations show that a domain with radius R = 16Λ is sufficient for this

purpose.

Figure 11.10: Vorticity field in late stage of the simulation with R = 31Λ and α = −1.50,

which displays a giant vortex whose core consists of a binary rotating system of two small,

equal-sign vortices.

The exact determination of the range of values of R/Λ in which the



11.5 Discussions 129

giant vortex forms remains an open question. At fixed α and λ0 we

find that there is a maximum size of the domain which allows for the

formation of the giant vortex. Nonetheless, it is extremely difficult to

determine the precise value of this maximum size, because of the strong

variability of the transition times. For values of R close to the maximum

size, we observed in same cases the formation a giant vortex whose core

consists of a binary rotating system of two small, equal-sign vortices (see

Figure 11.10). Increasing further the radius R the system apparently

remains in the flocking turbulent state, which none of the large-scale

vortices managing to incorporate the other ones and therefore to extend

its spontaneous symmetry breaking to all the domain.





Conclusions

The numerical investigations reported in this thesis constitute an ad-

vancement in the study of two different examples of chaotic flows, which

are characterized by a ”turbulent- like” behavior at low Reynolds num-

bers.

Regarding the dilute rigid polymer solutions, we confirmed the emergence

of a chaotic flow at low Reynolds number, with increased flow resistance

and enhanced mixing efficiency, similar to the elastic turbulence observed

with flexible polymers. The phenomenology observed is qualitatively in-

dependent on the dimensionality, but we found that, for the same values

of the parameters, the effects are stronger in the 2D case. This differ-

ence is explained in terms of the different rotational degrees of freedom

of the rods. Further numerical studies at higher resolution and/or with

a different numerical scheme would allow to reach more realistic values

of the parameters. Especially an experimental verification is required: a

viable experimental realization could be performed with a dilute solution

of polymers of length ` ≈ 2−5µm (e.g., xantam gum) with concentrations

of about 100 wppm in a microchannel of width L ≈ 2mm, with a setup

similar to the one considered in elastic turbulence experiments [26,55,57].

Typical velocities in these experiments are of the order of U ≈ 6mm/s,

which ensures the stability of the laminar flow in absence of polymers.

Apart from this investigation, we also tried to perform an analytic

study of the linear stability of the Kolmogorov flow with rod-like poly-

mers, but our result is not compatible with data from numerical simu-

lations, implying that some of the approximations we made, especially
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the use of multiple scales method, are not valid. On the contrary, the

numerical investigation at high-Reynolds number appears to be compat-

ible with experimental studies. In fact, our observation of drag reduc-

tion absence in an unbounded shear flow agrees with the hypothesis that

drag reduction in rigid polymer solution is due to the establishment of

an effective ”lubricating layer” near the walls. [30] Moreover, also the

small-scale behaviour we observe appears to be compatible with recent

experimental studies. [117] Further investigations, with additional values

of Reynolds number and/or polymer concentration, or even in the homo-

geneous isotropic case, would help to clarify the effect of rodlike polymers

on turbulent flows.

In the study of dense bacterial suspensions we considered the case of

strong aligning interactions between the swimmers, in confined circu-

lar domains. In the first part of our work, we explored the parameter

space of the model, and we found that the model displays two different

regimes, which are observed respectively at moderate and large inten-

sity of alignment. In the former case, the velocity field consists of an

homogeneous dense population of small vortices which move chaotically.

This regime is known in the literature as mesoscale turbulence. Increas-

ing the intensity of the aligning force we observe the emergence of the

flocking turbulence regime, characterized by an inhomogeneous flow with

large-scale vortices surrounded by regions of uniform circular motion, al-

ternated with regions of elongated vortical structures called streaks. The

regime of mesoscale turbulence occurs if the alignment interactions are

weaker than the destabilization effects. In this case the swimmers cannot

develop large flocks. Conversely, when the combined action of alignment

interactions and self-advection is dominant, we observe the spontaneous

formation of local circular flocks. Since the velocity field represents also

the order parameter of the system, we can interpret the formation of

these coherent structures with constant speed as a spontaneous break-

ing of the local rotational symmetry, occurring independently in different

regions of the domain. We highlighted the out-of-equilibrium nature of
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this transition, and provided a criterium in order to estimate the thresh-

old parameters between the two regimes. Finally, we investigated also

the effects of the confinement in the circular domain. Our results show

that these effects become relevant when the radius of the domain is of

the order of the correlation scale of the flow, which is the case of flocking

turbulence, while in the regime of mesoscale turbulence the flow is weakly

affected by the confinement. Further investigations about the transition

could be carried out using the same techniques from statistical physics

adopted for other versions of the Toner-Tu model. [146,150,156,159]

In the second part of our investigation we described the fact that con-

finement can induce an ulterior transition, from the regime of flocking

turbulence to an ordered state of circular flocking, which corresponds to

a single giant vortex which extends over the entire domain. In this case,

the local spontaneous symmetry breaking of the velocity field becomes a

global symmetry breaking of the total angular momentum of the system.

We characterized the properties of this regime, in particular of the mean

circular flow (which can be analytically predicted) and the radial fluctu-

ations, and we also investigated the statistics of the transition, finding

that we have a huge variability for the time required to the emergence

of this state. This variability, and the fact that the system usually re-

quires several attempts in order to evolve in this ultimate state, shows the

complexity of this transition, and the metastable nature of the flocking

turbulence state. Further investigations are required, in order to relate

the parameters of the model with the statistics of the transition, the

properties of the radial fluctuations and the confinement scale required

to induce the emergence of the giant vortex.

Moreover, other informations, both for the flocking turbulence and

the giant vortex regimes, could be obtained by experimental studies. A

quantitative correspondence between our simulations and a feasible exper-

imental setup can be established by matching the parameters of the TTSH

model with the typical values of the characteristic scale Λ and velocity U

of the collective bacterial motion which are observed in experiments (e.g.,

in [123,183,213]). As an example, by fixing Λ ' 25µm and U ' 50µm/s
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the values of the radius R of the circular domain considered in our stud-

ies correspond in physical units to the range R ' (400 − 1600)µm, the

values of the parameter α are in the range −α ' (0.5 − 1.8)s−1 and the

typical time required to observe the formation of the giant vortex is of the

order of minutes. These spatial and temporal scales are easily accessible

in experiments of dense bacterial suspensions, such as those of Bacillus

subtilis.



Appendix A

Numerical methods.

The problem of the integration of Navier-Stokes equation (NSE), and

other hydrodynamical related equations, has generated over the years a

large number of different approaches and methods. A first difference be-

tween the possible approaches with the problem is if we want to integrate

NSE with the greatest possible precision, or if we accept some approx-

imate model to describe part of the flow (usually, the smaller scales).

The first approach is clearly preferable in a scientific work, but can be

extremely expensive in terms of computation resources, thus not feasi-

ble for many practical applications (especially for complicated domains).

The first approach, that we choose, is one of the Direct Numerical Sim-

ulations (DNS), where everything that is not explicitly simulated does

not exist, while for the second one, depending on the level of approxima-

tion, we have for example Large-Eddies-Simulations (LES) and Reynolds-

Averaged-Navier-Stokes (RANS). To perform DNS, a large number of

methods exist. The choice can depend on the physics of the problem (for

example, compressible vs incompressible flows), on the boundary con-

ditions, and on other elements. We adopted a pseudo-spectral method

for the spatial integration, and an implicit Runge-Kutta scheme for the

time evolution. For the implementation of the boundary conditions in

the confined TTSH model, we used a penalization method.
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A.1 The pseudo-spectral algorithm

The idea behind the spectral methods [111] is that, if we have an

unknown function u(x) (neglecting for the moment the temporal depen-

dence), obeying to generic integral-differential equation:

Au = f(x), (A.1)

it can be easy to obtain a good approximation (and, in some particular

cases, an exact solution) of u(x) if we express the unknown in terms of a

sum of N + 1 basis function φn(x)

u (x) ≈ uN (x) =
N∑
n=0

anφn (x) . (A.2)

The coefficients an have to be chosen in order to minimize the residual

function (which is zero in the case of exact solution):

R(x, a0, . . . , aN) = Au− f(x). (A.3)

According [111], pseudospectral methods are the one where the coeffi-

cients an are found imposing that the residual function is equal to zero

for N selected value of x, called ”collocation” or ”interpolation” points.

These points are clearly the grid points of our domain, and we expect

that uN(x) converges to u(x) for increasing N .

The choice of the basis functions φn(x) is strictly related to the do-

main and to the boundary conditions. If we have a periodic domain,

the natural choice is to adopt an ordinary Fourier series, while if the do-

main is bounded the Chebyshev polynomials are a better option, and,

on a spherical surface, spherical harmonics are the natural answer. In

a multi-dimensional domain, it is also possible to expand in a direction

with a certain basis and in another direction with a different one: this

is commonly adopted in channel flow simulations, where there is period-

icity along two directions, so Fourier basis, and walls in the third one,

so Chebyshev (see for example [41]). For our code we adopted a Fourier

basis.

The principal reason which make spectral method particularly suitable

is the fact that the Fourier transform converts differential operator into
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algebraic multiplication:

∂xf(x) → ikf̂(k), (A.4)

which is particularly convenient especially if we need to invert a differ-

ential operator (for example, if we want to obtain the velocity field from

the vorticity), a task particularly expensive to be done in physical space:

f(x) = ∇2g(x) =⇒ ĝ (k) =
f̂ (k)

k2
. (A.5)

On the other side, nonlinear operations, such as the advection or the non-

Newtonian stress in the Doi-Edwards model, become much more compli-

cated in Fourier space, since products in physical space are associated to

convolutions in spectral space. The strategy behind our code is to switch

between physical and spectral space, performing differential/integral op-

erations in Fourier space and products in real space. This is a convenient

way of working if the computation cost required to perform the Fourier

transforms is reduced with respect the computation cost of performing

the convolutions in the spectral space (or the integral in the real space).

Luckily, the huge number of applications for the Fourier analysis stimu-

lated the ideation of a large number of ”Fast Fourier Transform” (FFT)

algorithms, [112] allowing us to actually apply this strategy. Anyway,

the evaluation of Fourier series remains the most computationally expen-

sive part of our code: this means that optimizing the algorithm consists

principally in minimize the number of Fourier transforms.

As an example, this is how we compute the advection term in two

dimensions (taking advantage that, for an incompressible flow, we have

(u · ∇)ω = ∇ · (ωu)):

• we start with the vorticity ω̂ in Fourier space;

• we compute the two components of the velocity:

ûx =
iky
k2
ω̂, ûy =

−ikx
k2

ω̂; (A.6)

• we anti-transform ω̂, ûx and ûy into the real space;

• we compute the two products ωux and ωuy;
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• we transform the two products in the Fourier space

• we finally obtain the advection term in Fourier space applying the

divergence operator:

∇̂ · (ωu) = ikxω̂ux + ikyω̂uy. (A.7)

This procedure has to be done for each one of the N+1 Fourier modes:

this means that we have converted one PDE into N+1 ODEs, with every

Fourier mode that is then made to evolve independently in time.

Finally, we have to mention two important issues of the pseudospectral

methods. The first one is that, in order to be accurate, they require

the field u(x) to be smooth. In our case, this can be addressed simply

increasing the spatial resolution, but it makes these methods unsuitable

when strong gradients are expected (for example, in compressible flows

with shock waves).

The second one, strictly related, is the aliasing problem. If we sample

uniformly the function u(x) with N points, in the Fourier space we have

wavenumbers kn with n ∈ [−N/2, N/2]. The nonlinear terms generate

modes that should not be contained in the wavenumber grid (|n| > N/2),

but the FFT spuriously moved them into the range [−N/2, N/2]. In the

context of computational fluid dynamics, it was observed for the first time

by Philips in 1956: his General Circulation Model developed an instability

after a certain period of time, independently from the integration step.

[214] In 1959 he proposed a solution: since the break-up of the simulation

was generated by a quadratic nonlinearity, filtering out all the modes with

|n| > N/4 would eliminated the instability, at the cost of halving the

effective resolution. [215] In 1971 Orszag pointed out that filtering the

modes with |n| > N/3 was sufficient in order to prevent instability. [216]

Since in our code, both in Doi-Edwards and TTSH model, we are dealing

with cubic nonlinearities, we have to filter at |n| > N/4.
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A.2 Implicit Runge-Kutta

As we already mentioned, the pseudospectral method converts one

PDE in the physical space into N+1 ODEs in the Fourier space (assuming

for simplicity only one spatial dimension). One of the most famous family

of numerical scheme for the resolution of initial value first-order ODEs is

the one of Runge-Kutta methods. [217,218] Considering a generic ODE

ẋ = f(t, x) (A.8)

we start from the Euler method, that is simply the discretization of the

definition of derivative (where ∆t is the time step):

xi+1 = xi + ∆tf(ti, xi). (A.9)

Since this method is not very accurate and quite unstable, the idea of the

Runge-Kutta schemes is to take one (or more) trial step to the midpoint

of the interval, to eliminate the first-order error term. [112] The most

simple Runge-Kutta scheme, the second-order one, is therefore:

k1 = f (ti, xi) ;

k2 = f

(
ti +

∆t

2
, xi +

∆t

2
k1

)
;

xi+1 = xi + ∆tk2. (A.10)

Increasing the number of intermediate steps we further reduce the error:

this is a good strategy if it allows us to increase the time step enough

to counterbalance the increase of evaluations of the right-hand-side of

equation (A.8). In our case, we found that the best choice was the fourth-

order version (RK4):
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k1 = f (ti, xi) ;

k2 = f

(
ti +

∆t

2
, xi +

∆t

2
k1

)
;

k3 = f

(
ti +

∆t

2
, xi +

∆t

2
k2

)
;

k4 = f (ti + ∆t, xi + ∆tk3) ;

xi+1 = xi +
∆t

6
(k1 + 2k2 + 2k3 + k4) . (A.11)

We further modify the algorithm since the RK schemes are required

only to solve nonlinear equations, since the solution of a linear ODE

ẋ = Lx (t) can be analytically expressed as x (t) = x(0)eLt. In our case,

since our equations include one (or more) linear term, we can integrate

exactly this terms, and use RK4 only for the non-linear parts, in order to

be more accurate. This is called implicit Runge-Kutta.

In general, hydrodynamics equations can be expressed as:

∂tx = F (x) + Lx, (A.12)

where F is the nonlinear operator (including advection, polymer stress,

cubic damping etc.) while L is the linear one, corresponding to νk2 in

the Navier-Stokes equation and to −α−Γ0k
2−Γ2k

4 in the TTSH model.

In order to integrate exactly the linear part, we set:

x = yeLt, ⇒ ẏ = e−LtF (eLty) ≡ g(t, y). (A.13)

Applying the RK4 scheme to the equation ẏ = g(t, y), and re-expressing

the k coefficients in terms of x we have:

k1 = e−LtiF (eLtiyi) = e−LtiF (xi),

k2 = e−L(ti+∆t/2)F

(
eL(ti+∆t/2)yi + eL(ti+∆t/2)k1

2
∆t

)
=

= e−L(ti+∆t/2)F

(
eL∆t/2xi + eL∆t/2 ∆t

2
F (xi)

)
,
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k3 = e−L(ti+∆t/2)F

(
eL(ti+∆t/2)yi + eL(ti+∆t/2)k2

2
∆t

)
=

= e−L(ti+∆t/2)F

(
eL∆t/2xi +

∆t

2
F

(
eL∆t/2xi + eL∆t/2 ∆t

2
F (xi)

))
,

k4 = e−L(ti+∆t)F
(
eL(ti+∆t)yi + eL(ti+∆t)k3∆t

)
=

= e−L(ti+∆t)F

(
eL∆txi + eL∆t/2∆tF

(
eL∆t/2xi

+
∆t

2
F

(
eL∆t/2xi + eL∆t/2 ∆t

2
F (xi)

)))
.

In order to obtain a manageable expression, we re-define the arguments

of nonlinear operator:

b∗1 = xi, b∗2 = eL∆t/2

(
xi +

∆t

2
F (b∗1)

)
, b∗3 = eL∆t/2xi +

∆t

2
F (b∗2) ,

b∗4 = eL∆t/2
(
eL∆t/2xi + ∆tF (b∗3)

)
.

Therefore, yi+1 is:

yi+1 = yi+
∆t

6
e−Lti

(
F (b∗1) + 2e−L∆t/2F (b∗2) + 2e−L∆t/2F (b∗3) + e−L∆tF (b∗4)

)
,

(A.14)

and, since we know that xi+1 = yi+1e
L(ti+∆t), multiplying the previous

relationship for eL(ti+∆t) we finally get:

xi+1 = xie
L∆t +

∆t

6

(
eL∆tF (b∗1) + 2eL∆t/2F (b∗2) + 2eL∆t/2F (b∗3) + F (b∗4)

)
.

(A.15)

A.3 The penalization method

The pseudo-spectral method with Fourier basis is very simple to im-

plement it and very efficient. For this reason, it is natural to ask whether

it can also be applied in non-periodic domains, or with obstacles. This

can be obtained using the penalization method, proposed originally in

1984 [201]: the idea is to define a function M(x ), which is equal to zero
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inside the ”true” domain, and equal to 1 into the walls/obstacles (in

all the solid volume, not only in the boundary surface). In the Navier-

Stokes equation a term −(1/τ)Mu is therefore added: this correspond

to a Brinkman model for porous media [219] with a strong permeability

difference between the fluid and the solid domain. The validity of this

method has been mathematically investigated in [220, 221], where it was

demonstrated that the penalized incompressible Navier-Stokes equation

converges towards the Navier-Stokes equation with no-slip boundary con-

ditions inside the fluid domain (i.e vanishing velocity on the surface of

the wall), and towards the Darcy law in the solid domain (velocity pro-

portional to the pressure gradient). This method has been then applied

to the study of turbulence in two and three dimensions. [202,203,222].
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Brownian motion

Brownian motion is a typical phenomenon which occurs in microhy-

drodynamics. It is due to the fact that, if we consider a mesoscale object

(i. e. micrometric size), although it is correct to describe the surround-

ing medium as a continuum fluid, it will be subjected to an incessant

”bombing” by the molecules composing the fluid, due to their thermal

agitation. This fact is obviously true also for macroscopic objects, but in

that case the difference in scale between the molecules of the fluid and the

macroscopic object is so large that single collisions are completely irrele-

vant for the larger object (although it is still affected by their cumulative

sum, which corresponds to the thermal bath). Instead, if the object is

not large enough, it will perform an irregular and incessant motion, even

if the system is at thermodynamic equilibrium.

The phenomenon is named after the botanist Robert Brown, who ob-

served it in 1827 studying at microscope particles of pollen suspended in

water, and then also in inorganic matter, in order to clarify if it was due

to active swimming. [223] The first physical interpretation was provided

by Einstein during his Annus mirabilis, [224] and it was later extended

by Sutherland, [225] Smoluchowski [226] and Langevin, [227] who formu-

lated an alternative (but equivalent) description. [228] These works were

a milestone in the history of physics, since they provided one of the first

examples of fluctuation-dissipation relationships, an experimental demon-

stration of atoms existence and an archetype of stochastic process. Here
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we are interested on its physical side, since it has a great importance in

the rheology of suspensions.

B.1 Langevin formulation

The Langevin description of the Brownian motion is focused on the

single particle motion. In absence of external driving or other effects, the

Newton’s second law for a spherical particle with mass m suspended in a

fluid is (assuming, for simplicity, only one spatial dimension):

m
d2x

dt2
= −ζ dx

dt
+ f(t), (B.1)

where ζ is the friction coefficient (equal to 6πµr for a spherical no-slip

particle, where r is the radius), describing the hydrodynamic drag on the

particle, and f(t) is the forcing due to the impacts of the solvent molecules

with the sphere. Pretending to know every single impact is impossible

and useless, the idea is therefore to modelling f(t) as a stochastic noise,

taking in account the unpredictability of molecular motion. The simplest

choice is a Gaussian white noise (where v = ẋ is the velocity):

〈f(t)〉 = 0, 〈f(t)f(t′)〉 = Γδ(t−t′), 〈f(t)x(t′)〉 = 0, 〈f(t)v(t′)〉 = 0.

(B.2)

The noise strength Γ can be obtained imposing the thermal equilibrium,

and therefore the energy equipartition theorem. If we rewrite the equation

(B.1) in terms of velocity v, we have as formal solution: [228]

v(t) = v(0)e(−ζ/m)t +
1

m

∫ t

0

dt′e−(ζ/m)(t−t′)f(t′). (B.3)

Taking the square of v and averaging, the cross term is proportional to

〈v(0)f(t′)〉 and therefore equal to 0, while the second order integral can

be solved as:

1

m2

∫ t

0

dt′e−(ζ/m)(t−t′)
∫ t

0

dt′′e−(ζ/m)(t−t′′)〈f(t′)f(t′′)〉 =

(B.4)

1

m2

∫ t

0

dt′e−(ζ/m)(t−t′)
∫ t

0

dt′′e−(ζ/m)(t−t′′)Γδ (t′ − t′′) =
Γ

2ζm

(
1− e−2(ζ/m)t

)
.

(B.5)
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Hence the mean-squared velocity is:

〈v2(t)〉 = 〈v2(0)〉e−2(ζ/m)t +
Γ

2ζm

(
1− e−2(ζ/m)t

)
, (B.6)

and, since in the limit t→∞ we expect the equipartition theorem, being

at equilibrium, we have:

〈v2〉 =
kBT

m
=⇒ Γ = 2ζkBT. (B.7)

This fundamental relationship tells us that the thermal fluctuations must

be balanced by viscous dissipation in order to be at equilibrium.

Going back to equation (B.1) for the position x, since 〈f(t)〉 = 0 we

have a null mean displacement: 〈x(t)〉 = 0. Instead, if we consider the

mean-squared displacement 〈x2(t)〉 the situation is different. Multiplying

eq. (B.1) by x we can re-express it as:

m

2

d2x2

dt2
−mv2 = −ζ

2

dx2

dt
+ xf(t). (B.8)

Taking the average, and using the equipartition theorem, we have:

m

2

d

dt

d〈x2〉
dt

+
ζ

2

d〈x2〉
dt

= kBT, (B.9)

thus, integrating:

d〈x2〉
dt

=
2kBT

ζ

(
1− e−(ζ/m)t

)
, (B.10)

〈x2(t)〉 =
2kBT

ζ

(
t− m

ζ
+
m

ζ
e−(ζ/m)t

)
. (B.11)

The solution tells us that we have two different regimes, separated by the

time scale ζ/m. For t→ 0, expanding the exponential as e−t ' 1−t+t2/2,

we have the ballistic regime:

〈x2(t)〉 =
kBT

m
t2, (B.12)

while for t→∞ we have the diffusive regime:

〈x2(t)〉 =
2kBT

m
t ≡ 2Dt, (B.13)

where we have defined the diffusion constant D, whose importance will

be more evident in the Smoluchowski formulation. The factor 2 is related

to the dimensionality of the system, it is replaced by a factor 6 in three

dimensions.
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B.2 Smoluchowski formulation

The Smoluchowski approach studies the system defining a probabil-

ity density function Ψ (x, t) for the Brownian particles. In the diffusive

regime, Ψ is therefore described by a diffusion equation (in order to de-

scribe also the ballistic regime at small times, a further second-order time

derivative is needed):
∂Ψ

∂t
= D

∂2Ψ

∂x2
(B.14)

At equilibrium the diffusion constantD is the same defined in the Langevin

formulation. This is due to the fact that, for non-interacting particles (di-

luted), the distribution is equivalent, a part from the normalization, to

the concentration field. Since at thermodynamic equilibrium we expect

a Boltzmann distribution

Ψeq ∝ e
V
kBT , (B.15)

where V is the a thermodynamic potential representing the osmotic pres-

sure, and since at equilibrium the flux due to the osmotic force must be

balanced by a diffusion flux:

−D∂Ψ

∂x
=

1

ζ
Ψ
∂V

∂x
, (B.16)

we must have D = kBT/ζ. This is the fundamental Einstein relationship,

which connects the mass transport of the particles and the momentum

transport of the fluid (since the friction coefficient ζ depends on the vis-

cosity µ).

The equation (B.14) can be generalized to the case where a generic

potential is present U is present:

∂Ψ

∂t
=

∂

∂x

1

ζ

(
kBT

∂Ψ

∂x
+
∂U

∂x

)
, (B.17)

which lead us to define a free energy density for the system:

A [Ψ] =

∫
d{x}Ψ (kBT ln Ψ + U) . (B.18)

It can demonstrated that the time derivative of A is always negative,

unless Ψ = Ψeq, when it is equal to zero.
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Another generalization it is in case of interacting particles. If Lmn is

the interaction matrix between the n-th and the m-th particle, and xn

and xm are their corresponding positions, we have:

∂Ψ

∂t
=
∑
m,n

∂

∂xn
Lmn

(
kBT

∂Ψ

∂xm
+

∂U

∂xm

)
, (B.19)

where the friction coefficient ζ is included in Lmn. In this way we can also

take in account the hydrodynamic interactions between the particles, i.e.

the fact the motion of a particle modifies the fluid velocity field affecting

the other ones. In this case, neglecting finite size effects, Lmn is the Oseen

tensor H (rn − rm). The generic equation for the probability density

function is usually denoted also as Fokker-Planck equation.

B.3 Rotational Brownian motion

Until now we considered only translational Brownian motion, the only

one present in the case of spherical particles. In the case particles are

anisotropic, thermal fluctuations of the fluid induce also a rotational

Brownian motion. If, for example, we consider an ellipsoid with n as

orientation axis, this versor can fluctuate on the surface of the sphere

defined as ‖n‖ = 1. The mathematical treatment of rotational Brown-

ian motion is analogous to the translational one, with a Langevin and a

Smoluchowski formulation. It is important to observe that the rotational

diffusivity constant (time−1) is dimensionally different from the transla-

tional diffusivity constant (length2/time). [24]
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si è solamente limitato a svolgere il normale ruolo del supervisor, ma ha

sempre dimostrato di avere a cuore la buona riuscita del mio dottorato,

sia da un punto di vista strettamente scientifico, che dal punto di vista

umano nel suo complesso.

Un altro contributo di grande importanza è quello di Guido, non

solo per il suo apporto scientifico diretto, ma anche per la fiducia che

mi ha sempre dimostrato e, soprattutto, per aver sempre incoraggiato

un’atmosfera familiare nel gruppo, che ha reso indimenticabile l’esperienza

di questi anni.
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