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Abstract: A-type proanthocyanidins (PAC-As) are plant-derived natural polyphenols that occur as
oligomers or polymers of flavan-3-ol monomers, such as (+)-catechin and (−)-epicatechin, connected
through an unusual double A linkage. PAC-As are present in leaves, seeds, flowers, bark, and fruits
of many plants, and are thought to exert protective natural roles against microbial pathogens, insects,
and herbivores. Consequently, when tested in isolation, PAC-As have shown several biological effects,
through antioxidant, antibacterial, immunomodulatory, and antiviral activities. PAC-As have been
observed in fact to inhibit replication of many different human viruses, and both enveloped and
non-enveloped DNA and RNA viruses proved sensible to their inhibitory effect. Mechanistic studies
revealed that PAC-As cause reduction of infectivity of viral particles they come in contact with, as a
result of their propensity to interact with virion surface capsid proteins or envelope glycoproteins
essential for viral attachment and entry. As viral infections and new virus outbreaks are a major
public health concern, development of effective Broad-Spectrum Antiviral Agents (BSAAs) that
can be rapidly deployable even against future emerging viruses is an urgent priority. This review
summarizes the antiviral activities and mechanism of action of PAC-As, and their potential to be
deployed as BSAAs against present and future viral infections.

Keywords: polyphenols; proanthocyanidins; A-type linkage; human viruses; broad-spectrum antivi-
ral activity

1. Introduction

One of the most unsettling lessons that the Coronavirus disease 2019 (COVID-19)
pandemic has taught the world is its general unpreparedness for tackling a new respiratory
virus pandemic by a therapeutic approach [1]. Notwithstanding that the Severe Acute
Respiratory Syndrome Corona Virus 1 (SARS-CoV-1) (2003) [2], and the Middle East
Respiratory Syndrome Coronavirus (MERS-CoV) (2012) [3] outbreaks proved the risk of
the emergence of new zoonotic coronaviruses, the lack of already available and effective
Broad-Spectrum Antiviral Agents (BSAAs), rapidly deployable against the new SARS-CoV-
2, made it difficult in the beginning to reduce hospitalizations and deaths, as well as to slow
down the spread of COVID-19 [4]. Thus, new BSAAs that can be rapidly deployed against
future emerging respiratory viruses in humans, such as coronavirus and influenza virus,
are urgently needed. Such BSAAs might allow antiviral treatments to begin immediately
after the virus emergence, thus gaining time for the development of the new virus specific
vaccines and therapeutics [5].

BSAAs are compounds that inhibit the replication of a wide range of viruses, since
different viruses share similar biochemical pathways to synthetize their components and/or
exploit the same cellular molecules and pathways to replicate in the host [6]. Given the
substantial diversity in viral structures and replication strategies, the development of
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effective BSAAs has proven to be more difficult than that of the most approved antiviral
drugs (i.e., Direct-Acting Antivirals, DAAs), that inhibit only a specific virus-encoded target,
such as a polymerase or a protease. Nonetheless, in the last two decades the increasing
number of new viral outbreaks in humans has restated the critical need for molecules able
to implement the “one drug, multiple virus” paradigm, that is the inhibition of viruses
from different families by the same molecule. Thus, effective BSAAs could constitute an
essential weapon in the ultimate arsenal of available antiviral options, as they could provide
immediate therapeutic intervention against emerging and re-emerging viral threats.

Based on the target, BSAAs can then be categorized into two main types: (1) com-
pounds that target viral structures or enzyme activities, and thus belong to the more
general category of DAAs; and (2) compounds that affect host factors or cellular biochemi-
cal pathways essential for viral replication, and therefore defined as host-targeted antivirals
(HTAs) [7].

The main advantage of BSAAs over the most current approved virus-specific DAAs
that are likely inadequate for treating new emerging viruses, consists in their activity not
only against viruses belonging to different families, but also towards different genotypes
of the same virus species; therefore, they are potentially effective also against viruses not
yet emerged in humans. Because of this, BSAAs are suitable as first-line treatments for
emerging respiratory virus outbreaks or new sexually transmitted infections, thanks to their
rapid repositioning from one pandemic event to the next emerging one. Moreover, host-
targeted BSAAs have the inherent edge of a high barrier to the emergence and development
of viral drug resistance [6,7]. However, HTAs are burdened with the potential high risk
of cellular toxicity, as well as a poor in vitro-to-in vivo translation caused by the systemic
compensation of the effects of the blockage of a specific cellular pathway [6]. On the
other hand, BSAAs that directly target virus components, such as some DAA nucleoside
analogues, although endowed with a lesser potential for host cell toxicity compared to
host-targeted BSAA, are prone to the selection of drug-resistant strains [7]. Obviously, the
balancing, at least theoretically, of these disadvantages could be accepted in the design of
new BSAA-based intervention strategies depending on the threat posed by an emerging
viral infection, the characteristics of the causative agent, and the length of treatment, with
the final goal of increasing the BSAA’s therapeutic window [6].

Because the development of effective BSAAs remains a challenging task in drug
discovery, natural products have been considered as a unique source of chemical complexity
and diversity within which antiviral activities can be identified. Indeed, an increasing
body of evidence, based on robust molecular, biochemical and pharmacological studies,
indicates that a wide-range of natural products derived from plants show inhibitory effects
on the replication of many different viruses, thus having the potential to be deployed as
BSAAs against both current viruses and new emerging viral threats [8–10]. The bioactive
components of some of these plant extracts endowed with antiviral activity have been
identified as specific polyphenols, flavonoids, glucosides, terpenes, and alkaloids, and
the mechanisms of action and molecular targets for some of these molecules have been
elucidated [11,12]. Among the large category of natural polyphenols, proanthocyanidins
(PACs) characterized by unusual double A linkages of the component catechins monomers
(A-type PACs, PAC-As), have been reported to recapitulate the antibacterial and antiviral
effects of several plant extracts from which they were isolated and characterized [13–15].

This review focuses on A-type PACs as the bioactive chemical components of plant ex-
tracts with antiviral activities, with emphasis on their structure, natural origin, mechanism
of the antiviral actions including the molecular targets, and their potential to be developed
as BSAAs.

2. A-Type Proanthocyanidins’ Chemistry and Where They Can Be Found

It is known that plants biosynthesize bioactive molecules to fulfil their physiological
needs, such as defense against herbivores and pathogens, as well as for the interspecific al-
lelopathic competition with other plants [16]. Among these molecules, PACs are interesting
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bioactive polyphenols that derive from at least two or more 2-phenyl-3,4-dihydro-2H-
chromen-3-ol (flavan-3-ol) units which can be condensed through a single (B-type) or a
double (A-type) bond [17] (Figure 1). Flavan-3-ols have a saturated A-ring which makes
PACs non-planar molecules [18]. PACs are quite complex molecules with a variety of
structures because of the stereochemistry of flavanol heterocycle, the type of linkage among
the different units, and more importantly, the number and position of the hydroxyl groups
linked to the aromatic rings [19]. C–O bonds between the oxygen in position 7 (O7) of one
flavan-3-ol unit and the carbon in position 2 (C2) of another unit generate A-type PACs.
Because the hydroxyl group linked to the C-ring of each flavan-3-ol can be in either S or in
R configuration, different typologies of A-type PACs can be formed.
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Figure 1. Structure of proanthocyanidins showing A-type and B-type interflavanic bonds and the
position of A and C rings along with the numbers of carbons involved in the C–O bounds.

The biosynthesis, transport and polymerization of PACs, as well as the synthetic efforts
made to obtain both naturally occurring A-type PACs and their structurally simplified
analogues have been recently reviewed [19].

The distribution of natural PACs in plants is quite large and many red fruits contain
different amounts of these bioactive molecules. However, one of the major problems in PAC
quantification in plant extracts is the variability of used methods (e.g., the classical gravi-
metric methods, colorimetric methods based on acid butanol, the ethanol/butanol method,
the vanillin assay, and the Brunswick Laboratories 4-dimethylaminocinnamaldehyde or
BL-DMAC assay), which represents a bottleneck in the classification of natural sources
containing these active polyphenols. From an analytical point of view, HPLC coupled
to mass spectrometry, the Matrix-Assisted Laser Desorption/Ionization (MALDI), and
ion-mobility mass spectrometry are the best methods for the characterization of both the
type of bonds and degree of polymerization [20–23]. The BL-DMAC method is actually
the most widely used method, and although originally developed for the quantification of
PACs in cranberry extracts, it proved to be a reliable method also for quantification of PAC
in different plant sources [24–30].
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Restricting the natural sources of PACs to those characterized through the BL-DMAC
method, Mannino and co-workers [19] performed a meta-analysis that made it possible
to identify plant species belonging to 35 different families. The results showed that PACs
occur primarily in fruits and seeds, and less in fruit skins (with the exception of peanut
skins), leaves and resins. As expected, the meta-analysis showed that the most represented
plant family is the Ericaceae, and especially the genus Vaccinium with 10 different species
characterized by high contents of PACs. Other high-PAC species such as Styrax ramirezii
(fam. Styracaceae) and Carya illinoinensis (fam. Juglandaceae) were also identified. Owing
to the biological activities of A-Type PACs, we extended the search for plant sources that
mostly contain this type of PACs, and listed their source, biological activity, and chemical
properties in Table 1 below.

Table 1. Natural sources of A-type PACs and biological properties.

Natural Source A-Type PACs Properties References

Adansonia digitata dimers antioxidant [31]

Aesculus turbinata procyanidins * antioxidant [32]

Aglaonema commutatum var.
maculatum trimers chemical composition [33]

Aglaonema crispum dimers chemical composition [33]

Arachis hypogaea dimers, trimers

cardiovascular diseases, dyslipidemia
antioxidant

prevention of pathogen infection
chemical composition

anti-inflammatory
antioxidant

[34]
[35]
[36]

[21,37–40]
[41]
[42]

Areca catechu dimer hypoglycemic [43]

Calluna vulgaris dimers, trimers chemical composition [44]

Cinnamomum cassia dimers, oligomers
oxidative conversion of B- to

A-procyanidins
antidiabetic

[45]
[46–48]

Cinnamomum japonica oligomers hypoglycemic [48]

Cinnamomum tamala oligomers antidiabetic [47,49]

Cinnamomum zeylanicum trimers, tetramers

multidrug resistance, biofilm
inhibitory activity

antiasthmatic, antiallergic
anti-inflammatory

antiallergic
attenuation of the reduction in

glutamate uptake
anti- vascular endothelial growth

factor (VEGF)
antidiabetic

prevention of neurodegeneration

[50]
[51]
[52]
[53]
[54]
[55]

[56,57]
[58]

Coffea arabica trimers chemical composition [59]

Crataegus pinnatifida var.
major procyanidins antioxidant [60]

Dimocarpus longan dimer health-beneficial bioactivity [61]

procyanidins antioxidant [62]

Ecdysanthera utilis monomers, dimers immunomodulator [63]

Ephedra equisetina procyanidins chemical composition [64]

Ephedra intermedia procyanidins chemical composition [64]
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Table 1. Cont.

Natural Source A-Type PACs Properties References

Ephedra sinica procyanidins chemical composition [64,65]

Gaultheria procumbens trimers antioxidant [66,67]

Ixora coccinea dimers antioxidant, antibacterial [68]

Laurus nobilis trimers antioxidant [69]

Litchi chinensis dimers, trimers

chemical composition
antioxidant

cardioprotection
alteration of oligomers in the

gastrointestinal system
bioavailability

antioxidant
absorption and urinary

excretion
bacterial bioconversions

[70–72]
[73]

[74,75]
[76]
[77]

[78–81]
[82]

[83,84]

Lotus americanus procyanidins chemical composition [85]

Malus domestica dimers antioxidant [86]

Mandevilla moricandiana trimers antioxidant [87]

Microbiota (faecal and gut) procyanidins

Inability to cleave A-type
linkages

preventing of biofilm
formation

antioxidant
degradation by human gut

microbiota

[88,89]
[90]
[91]
[92]

Paullinia cupana trimers Anti-inflammatory,
antioxidant [93,94]

Paullinia pinnata trimers, tetramers antihelminthic [95,96]

Pelargonium sidoides trimers antiadhesive [97]

Persea americana dimers, trimers, tetramers,
procyanidins chemical composition [98,99]

Pheonix dactylifera dimers chemical composition [100]

Pinus massoniana trimers, tetramers increased modulus of
elasticity of dentin [101]

Pinus pinaster dimers antioxidant, bactericidal [102]

Polygonum cuspidatum dimers chemical composition [103,104]

Prunus domestica dimers chemical composition
antioxidant

[99,105]
[86]

Prunus dulcis procyanidins chemical composition [106,107]

Prunus spinosa dimers, trimers chemical composition [44,108]

Pteris vittata procyanidins antioxidant [109]

Pyracantha fortuneana procyanidins antidiabetic [110]

Pyrus pyrifolia trimers chemical composition [111]

Rhizophora apiculata monomers chemical composition [112]

Rhizophora mangle procyanidins chemical composition [113]

Rhododendron ferrugineum trimers
vitality and the proliferation

rates of epithelial HaCaT
keratinocytes

[114]
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Table 1. Cont.

Natural Source A-Type PACs Properties References

Rhododendron formosanum trimers induction of autophagy
antioxidant

[115]
[116]

Ribes nigrum dimers bacterial growth and cell
adhesion [117]

Rubus idaeus procyanidins chemical composition [118]

Rumex obtusifolius trimers chemical composition [119]

Spatholobus suberectus procyanidins antioxidants, inhibitor of
breast cancer [120]

Tectaria macrodonta trimers chemical composition [33]

Theobroma cacao procyanidins
chemical composition

absorption
antioxidant

[37,121,122]
[123]
[124]

Vaccinium ashei dimers, dodecamers chemical composition [125]

Vaccinium consanguineum, monomers, dimers, trimers,
tetramers, procyanidins chemical composition [126]

Vaccinium corymbosum trimers antidiabetic [127]

Vaccinium floribundum monomers, dimers, trimers,
tetramers, procyanidins chemical composition [126]

Vaccinium macrocarpon monomers, dimers, trimers,
tetramers, procyanidins

chemical composition
urinary tract infections (UTIs)

antiaging
bioavailability

transported across Caco-2
cells

antioxidant
cardiovascular health

immune system

[30,128–136]
[14,15,23,137–147]

[148]
[149]
[150]
[151]
[152]
[153]

Vaccinium myrtillus dimers, trimers

antidiabetic
chemical composition

bacterial growth and cell
adhesion

[127]
[44,154]

[117]

Vaccinium oxycoccus monomers, dimers, trimers,
tetramers, procyanidins chemical composition [135]

Vaccinium poasanum monomers, dimers, trimers,
tetramers, procyanidins chemical composition [126]

Vaccinium vitis-idaea dimers, trimers chemical composition [44,135]

Vicia faba dimers chemical composition [155]

Vitis vinifera dimers, trimers, tetramers,
procyanidins

chemical composition
inhibition of

alpha-glucosidase
promotion of DNA repair in

dendritic cells in
UVB-exposed skin.

decreases the progression of
airway inflammation

antioxidant
control of lipid metabolism

immune system

[156]
[157]
[158]
[159]
[160]

[161–166]
[167–172]

* The term procyanidins indicates A-type PACs with degrees of polymerization (DP) 5 < DP < 12.
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A-type PACs from different natural sources have been observed to exert different
biological effects, such as antiviral (see below), antioxidant, antibacterial, and immunomod-
ulatory activities. Based on the data summarized in Table 1 and Table 2 (see below), we
performed a Principal Component Analysis (PCA) that correlates the presence (1) or the
absence (0) of different PAC-A degrees of polymerization with three main biological activity
(antiviral, antibacterial and antioxidant) by using a single linkage method, with Pearson
distances and a varimax rotation. The results of this PCA analysis that are depicted in
Figure 2 show that the antiviral activity of PAC-As is correlated primarily to the presence
of low-degrees of A-type PAC polymerization (from monomers to tetramers), whereas the
antibacterial activity (primarily against bacteria that cause Urinary Tract Infections, UTI)
was associated with the presence of dimeric and trimeric PAC-A. Most of the data sum-
marized in Table 1 show that plants that possess polymeric A-type PACs (from pentamers
to dodecamers) display antioxidant activity. This observation is confirmed by our PCA
analysis (Figure 2).
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Figure 2. Factor loading plot from the Principal Component Analysis (PCA) performed on data
summarized in Table 1 and Table 2 by considering the different degrees of PAC-A polymerization and
the three main biological effects. Antiviral activity is associated mainly with A-type PAC monomers,
dimers, trimers and tetramers. Antioxidant activity is correlated with A-type PAC polymers with
a degree of polymerization > 5. Antibacterial activity is correlated primarily to PAC-A dimers and
trimers. Varimax rotation; total variance explained by the three factors: 26% factor (1), 24% factor (2)
and 17% factor (3).

3. The Broad-Spectrum Antiviral Activity of A-Type PACs

In this section we focus on the activity of PACs as BSAAs, with particular reference
to A-type PACs. The studies that have identified A-type PACs as specific components
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responsible for the antiviral activities of several natural extracts are summarized below,
taking into consideration the human viruses for which the inhibitory activity has been
characterized. PAC-As with antiviral activity are listed in Table 2 and described in the
following paragraphs.

Table 2. Antiviral activity of plants-derived PAC-As.

Natural Source A-Type PACs Virus and Mechanism of Action References

Alpinia zerumbet procyanidins * influenza A virus, inhibition of
attachment, virucidal [173,174]

Chamaecrista nictitans procyanidins HSV-1 and HSV-2, NA [175]

Cinnamomum cassia dimers, oligomers HIV-1, interaction with envelope
glycoproteins [176]

Cinnamomum zeylanicum trimers, tetramers
HIV-1, inhibition of attachment
HCV, inhibition of attachment

SARS-CoV, virucidal

[177]
[178]
[179]

Ixora coccinea trimers HIV-1, inhibition of Vpu activity;
HCV, NA [180]

Litchi chinensis dimers, trimers HSV-1 and Coxsackie virus
B3, NA [181]

Pinus maritima procyanidins

HIV-1, inhibition of entry and
replication

HCV, inhibition
of replication

[182]
[183]

Pomelia pinnata dimers HIV-1, inhibition of
integrase activity [184]

Sambucus nigra dimers HIV-1, interaction with envelope
glycoproteins [176]

Theobroma cacao dimers HSV and HIV, NA [124]

Vaccinium macrocarpon monomers, dimers, trimers,
tetramers, procyanidins

nairovirus, inhibition
of attachment [185]

influenza A and B virus,
inhibition of attachment [186,187]

and entry, virucidal
HSV-1 and HSV-2, inhibition

of entry [188]

human norovirus surrogates:
murine norovirus (MNV-1), feline

calicivirus (FCV-F9), virucidal
[189,190]

reovirus, NA [191]

rotavirus, inhibition of
attachment, interaction

with capsid proteins
[192,193]

Vaccinium myrtillus dimers, trimers SARS-CoV-2, inhibition of entry
and replication [194]

HA, NA [195]

HCV, inhibition of replication [196]

Vitis vinifera dimers, trimers, tetramers,
procyanidins

rotavirus, affecting
virion integrity

HIV-1, inhibition of entry by
down-modulation of

co-receptors

[193]
[197]

* The term procyanidins indicates A-type PACs with degrees of polymerization (DP) 5 < DP < 12; NA: not
available.
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3.1. Herpes Simplex Virus

Herpes Simplex Virus type 1 (HSV-1) and type 2 (HSV-2) cause lifelong infections
with periodic reactivations that are highly prevalent worldwide [198,199]. A wide range of
diseases result from HSV infections, from the most common cold sores and genital herpes, to
recurrent keratitis, and even life-threatening systemic infections and encephalitis [198,199].
Antiviral intervention is therefore needed for the therapy of these diseases. However,
the currently available DAAs cannot eliminate an established latent infection, and their
prolonged administration may lead to the occurrence of viral resistant strains as well as
toxicity [200]. Therefore, the development of new anti-HSV agents that may even prevent
the establishment of an HSV infection is a significant medical need [200].

In this regard, many different small molecules from plant extracts, such as polyphenols, ter-
penes, and flavonoids have been described as exerting an anti-HSV activity in vitro [201–203].
Among polyphenols, PACs have been identified as the bioactive anti-HSV agents through
chemical and biological characterization of fractions derived from several plant
extracts [175,204–208]. In some studies, the antiviral activity of PACs against both HSV-1
and HSV-2, was observed to stem from the ability of PACs to inhibit the virus attach-
ment to the cell surface and the subsequent entry into host cells [209,210]. Especially,
Gescher et al. [204] observed that the epicatechin-3-O-gallate-(4→8)-epicatechin-3-O-gallate,
a dimeric B-type PAC, isolated from an acetone-water extract obtained from the aerial
parts of Rumex acetosa, interacted directly with purified HSV-1 particles and provoked the
oligomerization of gD, an essential envelope glycoprotein required for the virus binding
to cellular receptors [211]. It was concluded that the R. acetosa-derived PAC-B2 inhibited
HSV-1 replication as a result of its ability to bind infectious viral particles and tampering
with gD, thus preventing efficient interactions with cell surface receptors [204].

As regards the anti-HSV activity of A-type PACs, in an early study, a series of PAC
dimers was isolated from an extract of a byproduct in cocoa production, and then tested
for antiviral activity by De Bruyne et al. [124]. Among the different PAC dimers examined,
the PAC-A1 or epicatechin-(4β→8, 2β→O→7)-catechin, and the PAC-A2 or epicatechin-
(4β→8, 2β→O→7)-epicatechin, were observed to exert the most potent inhibitory activity
against in vitro replication of HSV, inasmuch a 4-log reduction in viral titer was measured
in the presence of 100 µg/mL of either PAC-A1 or PAC-A2 compared to untreated controls
(16). Later, Xu et al., [181] isolated seven A-type PACs from an alcoholic extract of lychee
(Litchi chinensis) seeds, that were then examined for antioxidants and antiviral activities. In
this study, an anti-HSV-1 activity of a lychee-derived PAC-A2 was determined in Vero cells,
with an EC50 of 18.9 µg/mL, and a Specificity Index (SI) of 3.0 [181].

In a subsequent study, oligomeric A-type PACs fractionated from an extract of Chamae-
crista nictitans were observed to be related to the overall anti-HSV activity of the
extract [175].

More recently, we examined the suitability of a cranberry extract as a direct-acting
anti-HSV agent [188]. Analysis of the anti-HSV activity of purified fractions revealed that
the ability of the whole cranberry extract to hinder HSV replication was due to its high
content of type-A PACs. In fact, only the fraction that contained PAC-A dimers and small
amounts of trimers exerted an antiviral activity against HSV-1 and HSV-2 replication in
Vero cells, with EC50 of 19.2 and 6.8 µg/mL and SI of 9.5 and 27.6, respectively [188]. Then,
mechanistic investigations highlighted that the whole extract or its PACs-A-containing
fraction interacted with the envelope glycoproteins gD and gB, the fusion protein of the
HSV machinery for entry that carries out membrane fusion [211], thus causing a loss of
infectivity of HSV particles [188].

It is therefore possible to recapitulate a common mechanism of action of the anti-HSV
activity of both PAC-A and -B [188,209] that could depend from their ability to interact with
viral envelope glycoproteins. These interactions, in turn, may affect the functions of those
glycoproteins required for HSV attachment and entry, such as gD and gB, thus preventing
these initial phases of the HSV replication cycle.
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3.2. Human Immunodeficiency Virus (HIV)

Acquired Immunodeficiency Syndrome (AIDS), caused by the Human Immunode-
ficiency Virus 1 (HIV-1), is an immunosuppressive disease that creates susceptibility to
lethal opportunistic infections and malignancies [212]. Although many drugs have been
approved and increase the quality of the life of infected people, the high costs and the
life-long treatments makes therapy a hard goal in low-income countries. In addition, vi-
ral drug resistance prompts researchers to develop new antiviral agents. In this context,
several Authors investigated plant extracts to identify anti-HIV-1 activities [213]. Among
bioactive compounds able to interfere with HIV-1 infection, PAC-As have been identified as
candidates for new antivirals development. In 1999, De Bruyne and co-workers [124] eval-
uated the biological effects and antiviral activity of PAC-As and related polyphenols. They
reported that PAC-A1 and PAC-A2 were the most potent antiviral compounds, reducing
the HIV-1 cytopathic effects (CPE) in infected cells with EC50 of 14 and 5.8 µg/mL and SI of
10 and 24, respectively [124]. The anti-HIV-1 mechanism of PAC-As was then elucidated by
Fink and coworkers [176]. They observed that elderberry and cinnamon extracts incubated
with the virus during the infection step significantly reduced the number of foci of infected
cells, with an EC50 from 0.5 to 201 µg/mL for four different HIV-1 types. A direct binding
assay coupled with a mass spectrometry approach then showed that PAC-As interacted
with viral particles, thereby reducing the virus infectivity. The interaction of PAC-As with
HIV-1 particles followed a stoichiometric pattern, thus suggesting HIV-1 envelope glyco-
proteins as the specific viral target [176]. Furthermore, PAC-As also showed a synergistic
effect with the antiretroviral drug enfuvirtide, a drug interacting with the envelope gp41
subunit that blocks the fusion of the HIV-1 to target cells. Indeed, the PAC-As-mediated
antiviral activity, being not competitive with enfuvirtide, was suggested as being most
likely to target the gp120 subunit [176].

More recently, the anti-HIV-1 activity of the cinnamon-derived compound IND02, that
contains A-type PAC trimers and pentamers, was reported [177]. Using surface plasmon
resonance, the authors showed that IND02 and IND02-trimer bind to gp120 of HIV-1 types
that use CXCR4 (X4, lympho-tropic strain) or CCR5 (R5, macrophage-tropic strain) as
co-receptors [177]. Because HIV-1 infection requires multiple interactions of the gp120
with host molecules, such as heparansulfate (HS), the viral receptor CD4, and the R5/X4
co-receptors, the potential of IND02 to interfere with different interaction stages of HIV-1
attachment and entry was investigated. IND02 and IND02 trimer were observed to inhibit
the gp120-HS binding in a concentration-dependent manner, while only IND02 affected the
gp120-CD4 interaction, as well as the binding of gp120 of R5- and X4-tropic viruses. These
results suggested that IND02 could interact with the gp120’s CD4 binding domain of both
R5 and X4-tropic viruses, probably to the protein domains involved in interactions with
co-receptors. Finally, the antiviral activity of IND02 was confirmed in a biological assay by
its addition during the infection step of activated human peripheral blood mononuclear
cells (PBMCs) with a panel of clinically relevant primary strains, for which low micromolar
EC50 values were observed [177].

Of note, Suedee and colleagues reported a new anti-HIV-1 mechanism PAC-As. With
the aim to investigate the anti-integrase (IN) activity of some Thai medicinal plant extracts,
they discovered that PAC-A2 derived from a leaf extract of Pometia pinnata inhibited the
HIV-1 enzyme with an IC50 value of 30.1 µM. However, this result was obtained from
an in vitro enzymatic assay, and no evidence of this PAC-A2 activity in the context of
HIV-1 infection was reported [184]. Moreover, Tietjen et al. [180] identified the ixoratannin
A-2 as HIV-1 inhibitor with an EC50 value of 35 µM. Ixoratannin A-2 is a doubly linked
A-type PAC trimer isolated from the Ixora coccinea shrub collected in western Nigeria,
and it was suggested that ixoratannin A-2 might inhibit the ion channel activity of the
viral protein Vpu [180]. More recently, and relevant to this hypothesis, a computational
study indicated that ixoratannin A-2 might interact with several human and viral proteins,
included Vpu [214], thus supporting Tietjen et al.’s hypothesis [180].
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Additional studies reported that plant-derived procyanidins other than PAC-As can
affect HIV-1 infection. For example, Nair and co-workers [197], reported that grape seed
extract-derived PACs inhibited HIV-1 infection by downregulating the co-receptors on
the surface of PBMCs [197]. In addition, Feng et al. [182] reported that a procyanidin-rich
extract from French maritime pine not only affected HIV-1 virus entry but also its genome
replication. Because the prominent biochemical alteration induced in target cells by the
French maritime pine consists of an overexpression of the Mn-superoxide dismutase, an
intracellular antioxidant protein, its involvement was suggested in the overall anti-HIV-1
activity [182]. Thus, the modulation of some stress-induced cellular pathways by PACs
may represent an additional strategy to counteract HIV-1 infections.

3.3. Chronic Hepatitis Viruses

Hepatitis B virus (HBV) and Hepatitis C virus (HCV) are a major cause of liver disease
worldwide. HBV is an enveloped double stranded DNA virus (Hepadnaviridae) while
HCV is a enveloped positive-strand RNA virus (Flaviviridae), both characterized by hepatic
tropism. Transmission happens through intra-family contacts among infants, by sexual or
parenteral contact or by the vertical route. For both viruses, after a possible acute phase,
viral infection may progress in chronicity. During chronic infection, viral cytopathic effects
combined with the cell damage due to the immune response may promote liver cirrhosis
and hepatocellular carcinoma [215]. Although effective therapies for the treatment of HBV
and HCV infection are available, with a clear improvement of patient treatments and the
cure of the infection, at least for HCV, the high costs of the therapy and the risk of drug
failure still prompt to the search and development of new drugs.

Many efforts have been addressed to the identification of natural products as cheaper
and more accessible sources of new anti-HBV agents [216]. With the aim of discovering
potential anti-HBV molecules, Tsukuda and co-workers [217] identified PACs as HBV in-
hibitors. PACs inhibited HBV infection both in cell lines and in primary human hepatocytes
by blocking viral particles’ attachment to target cells (EC50 of ~8 µM) without any effect on
viral genome replication and cell viability. Using biochemical assays, it was observed that
PACs interacted with the preS1 region of the viral glycoprotein. In addition, PACs showed
an anti-HBV effect against multiple viral genotypes and one viral isolate resistant to the
approved antiviral drug entecavir. In contrast to other known molecules that interfere with
the HBV life cycle, the antiviral activity of PACs directly targets the viral particle, thus
acting as a virucidal agent.

Concerning HCV, Takeshika et al. [196,218] reported that purified PACs (PAC-B pri-
marily) from blueberry leaves inhibited HCV RNA replication (EC50 0.087 µg/mL, SI 212).
This antiviral activity was evaluated using an HCV subgenomic expression system, while
the adhesion/internalization stages of viral particles were not investigated. However, it
was observed that blueberry leaf-derived PACs interacted with the heterogeneous nuclear
ribonucleoprotein A2/B1 that is indispensable for HCV subgenome expression. Moreover,
the anti-HCV activity was found dependent on the polymerization level of PACs, reaching
the maximum efficacy with a polymerization degree between 8 and 9 [196,218]. Similarly, Li
and coworkers [219] reported that PAC-B1 purified from a cinnamon bark extract inhibited
HCV RNA synthesis in a concentration-dependent manner in Huh-7 cells, but it did not
interfere with viral entry or receptor expression [219]. As for HIV-1, a French maritime
pine extract was reported to inhibit HCV. Since oxidative stress has been identified as a key
mechanism of HCV-induced pathogenesis, Ezzikouri et al. [183] evaluated the antiviral
properties of a French maritime pine extract in both in vitro and in vivo models. Using
HCV replicon cell lines, the authors reported both the inhibition of the HCV replication
(EC50 ~ 40 µg/mL) and the reduction of ROS [183]. In addition, treatment of infected
chimeric mice with the same extract suppressed HCV replication and showed a synergistic
effect with interferon-alpha [183].

Regarding PAC-A, the cinnamon-derived compound IND02 was tested in Huh7.5.1
cells and primary human hepatocytes (PHH) by using HCV and HCV pseudoparticles [178].
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IND02, added to target cells for one hour before viral infection, showed a concentration-
dependent inhibitory effect against both the wild type virus and a difficult-to-treat HCV
strain, characterized by enhanced cell entry efficiency and poor neutralization by neutral-
izing antibodies [178]. To shed light on the stage of the HCV replication cycle affected
by IND02, the authors used HCV pseudoparticles and a subgenomic replicon system to
investigate IND02 activity on virus entry and replication, respectively. The results showed
that IND02 markedly inhibited the first stage of infection in a way that overlapped with the
inhibitory activity of the anti-CD81 antibody that targets the HCV cell entry factor CD81.
Then, a kinetics experiment showed that IND02 inhibited HCV infection when added after
HCV attachment to target cells, thus suggesting an interference with the internalization of
adsorbed virus particles or with the membrane fusion step [178].

Finally, the anti-HIV-1 ixoratannin A-2, a PAC-A trimer from the Ixora coccinea [180],
was observed to also inhibit HCV replication in Huh-7 cells with an EC50 of 23.0 µM.

Interestingly, PAC-A and PAC-B seem to target different stages of the HCV replication
cycle by acting mainly at the level of viral entry or viral RNA replication, respectively.

3.4. Enteric Viruses

Enteric viruses are a major cause of morbidity and mortality, especially among chil-
dren in developing countries [220]. Different families of human viruses include agents
that target the gastrointestinal tract to cause gastroenteritis, diarrhea, and hepatitis [220].
Members of the Picornaviridae (e.g., enterovirus, hepatitis A virus, Aichi virus), Reoviridae
(e.g., rotavirus), Caliciviridae (e.g., norovirus), Astroviridae (e.g., astrovirus), Hepeviridae
(e.g., hepatitis E virus) and Adenoviridae (e.g., adenovirus 40 and 41) are in fact major
enteric viral pathogens [220–222]. These viruses represent a major public health concern
worldwide, as they are transmitted through contaminated water or food, shed in high
amounts within feces, and remain stable for a long time in the environment [220–222].

Accordingly, natural extracts of fruits, such as grapes and berries, have been tested
extensively against enteric viruses to identify antiviral activities that may be exploited to
develop new preventive or therapeutic agents, and thus to alleviate the burden of foodborne
gastrointestinal viral diseases [223]. However, only for a few enteric viruses A-type PACs
were observed to reproduce the antiviral activity of fruit extracts in which they have been
characterized [191,224].

Rotavirus is a genus of non-enveloped, segmented double-stranded RNA viruses of
the Reoviridae family. They are the major cause of acute gastroenteritis (AGE) in infants and
young children worldwide, and the leading cause of viral diarrheal mortality with about
200,000 children under the age of 5 each year [225,226]. Even though implementation of
rotavirus vaccination, as part of the routine childhood immunization program, proved to
be effective in reducing AGE in countries where vaccines are used routinely, millions of
children in several high-burden countries still lack access to rotavirus vaccine. Therefore,
in the absence of effective control measures or treatment strategies, food extracts and juices
endowed with anti-rotavirus activity may be of interest to control the infection and spread
of AGE in those countries [223].

In this regard, in an early study, a cranberry juice was investigated for antiviral
activity against the simian rotavirus SA-11 and found to protect monkey epithelial MA-
104 cells from lytic infection. This antiviral effect was associated with the juice-mediated
inhibition of the SA-11 hemagglutination activity, thus suggesting an interference of the
juice’s components with adsorption of the rhesus rotavirus to the surface of host cells [192].
Subsequently, the same authors observed that dimeric and polymeric A-type PACs isolated
from the cranberry extract indeed determined the loss of SA-11 viral capsid integrity in
cell-free suspension, as measured by quantitative antigen capture assay of the virion VP6
protein [193]. Ultrastructural studies by transmission electron microscopy (TEM) then
allowed visualization of a direct interaction of the A-type PACs with SA11 viral particles
that were observed to be aggregated by the addition of PAC-As. It was therefore suggested
that A-type PACs, by binding to and damaging rotavirus capsid proteins, affected the virus’
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ability to attach to the host epithelial cell receptors, and in doing so they determined a
reduction of viral infectivity [193].

Human noroviruses (HuNoVs) are non-enveloped single-stranded RNA positive
viruses belonging to the Caliciviridae family [227]. HuNovs spread through the fecal-oral
route and are the leading causative agent of AGE worldwide, with about 700 million
cases and 200,000 deaths per year, and the second leading cause of AGE in children after
rotavirus [228,229]. HuNoV infections therefore represent a major public health concern
with considerable societal and economic outcomes. At present, however, no vaccines or
antiviral agents have been licensed for prevention or treatment of HuNoV infections [230].

As for rotavirus, fruit extracts from different plants, such as cranberry, blueberry,
pomegranate, and grape have been tested for anti-HuNoV activity. However, given the
lack of a robust and reproducible cell system for in vitro HuNoV cultivation, surrogate
caliciviruses, such as the feline calicivirus-F9 (FCV-F9) and the murine norovirus-1 (MNV-1)
have been used extensively for investigating NoVs replication and pathogenesis, as well
as in antiviral assays [231]. Using these animal caliciviruses, cranberry, blueberry and
raspberry juices were observed to reduce infectivity of both FCV-F9 and MNV-1 as tested
in virucidal assays [189,190,195,232,233]. As reported above, cranberries mainly contain A-
type PAC, while blueberries contain mostly B-type PACs [145]; therefore, the two PAC types
purified from the corresponding fruits were tested for anti-calicivirus activity, and found
to reproduce the inhibitory activity of the corresponding juice, thus indicating that PACs
characterized by both A-type and B-type linkages exerted antiviral activity against human
enteric viral surrogates [189,190,233]. Especially, TEM analysis on FCV-9 particles exposed
to PAC-As revealed major morphological alterations of capsid structure, thus suggesting
the ability of cranberry’s type-A PACs to bind to the capsid proteins and altering virion
structure in a manner such that the viral infectivity was compromised [190].

Taken together, the available data on the mechanism of action of A-type PACs against
enteric viruses confirm the ability of these polyphenols to interact with proteins of the viral
surface, thus causing alterations that, in turn, affect severely the virus’ ability to attach
and/or enter into target cells. It is therefore tempting to envisage that PAC-As could
potentially be exploited for the treatment and/or prevention of foodborne viral diseases.

3.5. Respiratory Viruses

The ongoing COVID-19 pandemic is proving that respiratory viral infections are a
leading cause of morbidity and mortality worldwide, and a major societal and healthcare
problem [234,235]. In fact, respiratory viruses replicate within the respiratory apparatus
causing a broad range of respiratory tract infection (RTI) outcomes, ranging from asymp-
tomatic to acute life-threatening diseases. These viruses spread through the respiratory
secretions from an infected individual with three different mechanisms: direct/indirect
contact, droplet spray, or aerosol (airborne transmission) [236]. RNA viruses are the pre-
dominant cause of RTIs in humans and include: influenza viruses (IV), parainfluenza
viruses (PIV), metapneumoviruses (MPV), respiratory syncytial viruses (RSV), human
rhinoviruses (hRV), enteroviruses, and human coronaviruses (hCoV). Among DNA viruses,
adenoviruses (AdV), human bocavirus (hBoV), and reactivating herpesviruses in immuno-
suppressed individuals, can cause RTIs [234–236].

Although inhibitory activities against several of the above respiratory viruses have
been described for many medicinal plant-derived extracts [237–239], PACs have been
identified as the bioactive antiviral agents only in a few studies in which their inhibitory
activity has been characterized against IVs and hCoVs.

Influenza remains a major public health challenge and, every year worldwide, IVs
cause around 1 billion infections, 3–5 million of severe RTIs, and 290,000–650,000 respiratory
deaths [240–242]. Even though seasonal vaccines represent the most effective measure for
prevention and control of IV infections, antiviral agents are beneficial to reduce the burden
of complications and case-fatality rates. However, the limited arsenal of anti-influenza
drugs brings about challenges in the therapeutic management of influenza [241]. Therefore,
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new anti-influenza agents, effective against different IVs resulting from antigen variation,
are urgently required and therefore intensely investigated.

To meet this need, PAC-enriched extracts derived from fruits and herbs have been
examined in recent years as direct-acting anti-IV compounds [173,174,186,187,243,244].
Accordingly, oligomeric PAC-A and PAC-B were identified as the main antiviral principle
of plant extracts. In a study, the dimeric proanthocyanidin epicatechin-3-O-gallate-(4b→8)-
epicatechin-3′-O-gallate (procyanidin B2-di-gallate) was identified as the primary antiviral
compound of an extract of garden sorrel (Rumex acetosa) able to inhibit influenza A viruses
(IAV) H1N1, both laboratory strains and clinical isolates. Procyanidin B2-di-gallate was
then proved to physically interact with the envelope hemagglutinin (HA) glycoprotein
as alterations of electrophoretic mobility and immunoreactivity were observed [243]. The
envelope of IAV contains two major glycoproteins, IAV hemagglutinin (HA) and neu-
raminidase (NA), that are essential for efficient infection and viral release from host cells. It
was therefore suggested that PAC-B2 may interfere with the receptor binding pocket of HA
and consequently affect the IV attachment to host cells. Specific penetration assays indeed
confirmed that the PAC-B2 interfered with IAV entry [243]. In silico docking studies then
indicated that procyanidin B2-di-gallate was predicted to interact with the receptor binding
site of HA. In subsequent studies, PACs isolated from an extract of Alpinia zerumbet, an
aromatic and medicinal plant, were observed to reduce the infectivity of the IAV H1N1
laboratory strain PR/8/34 in virucidal assays, thus indicating a direct interaction with
viral particles [173]. The composition of A. zerumbet-derived PAC (AzPAC) was then deter-
mined and PAC-B2 and -B5 were identified as its major antiviral components. Interestingly,
AzPAC was observed in quenching assays to strongly interact with recombinant HA and
NA, and to affect the secondary structure of these viral glycoproteins in circular dichroism
experiments [235]. It was therefore suggested that the impairment of IV replication caused
by AzPAC was due to its direct interaction with IV envelope proteins in a manner that
affected their function, thus preventing the attachment phase of the IV infection [174].

Regarding the anti-IV activity of A-type PACs, we have observed that a cranberry
extract containing a high content of A-type dimers and trimers, potently inhibited the
in vitro replication of both IAV and influenza B virus (IBV) [186]. Mechanistic studies
revealed that this cranberry extract blocked the attachment and entry phases of IAV and
IBV into target cells and exerted a virucidal activity against both IVs. These biological
effects resulted from the ability of the extract to interact with the HA1 ectodomain of
HA, as demonstrated by alteration of recombinant HA1 electrophoretic mobility with
the occurrence of high molecular weight aggregates. Then, a detailed in silico docking
simulation analysis indicated that among the different components of the chemical profile
of the cranberry extract, PAC-A2 exhibited the best docking propensity to bind the HA
protein with an affinity below 10 nM [186]. Subsequent docking simulation tests predicted
the ability of PAC-A2 to bind first within the internal grooves of the HA structure by
forming hydrogen bonds with phenylalanine and tryptophan residues, and then to other
residues on the HA surface. These in silico predictions were then verified by fluorescence
spectroscopy experiments that confirmed a direct interaction between the recombinant HA1
protein and purified PAC-A2. Importantly, purified AC-A2 was observed to potently inhibit
both IAV and IVB replication with at about 5-log of reduction in viral titers, and to cause a
complete loss of infectivity of IV particles in virucidal assays [186]. These antiviral assays
therefore confirmed PAC-A2 as the major active anti-IV component of the cranberry extract.
We concluded that the interactions of PAC-A2 with HA and the subsequent alterations in
the viral protein function, determined the loss of infectivity of IV particles, thus preventing
infection [186].

The disastrous consequence of COVID-19 indeed confirm that emerging coronaviruses
are an indisputable major health threat, as proved by more than 600 million cases of
COVID-19, including 6.5 million deaths worldwide [245]. In the last two decades, in fact,
in addition to the endemic hCoVs (OC43, HKU1, 229E, and NL63), three highly-pathogenic
hCoV, namely the severe acute respiratory syndrome coronavirus (SARS-CoV) in 2003,
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the Middle East respiratory coronavirus (MERS-CoV) in 2012, and SARS-CoV-2 in 2019
emerged as a result of zoonotic outbreaks [246]. These facts proved the urgent need for
BSAAs that could be deployed against future hCoVs that could emerge in the future. For
this purpose, plant extracts can be evaluated as sources of new anti-hCoV agents.

In an early study, Zhuang et al. [179] observed that a fraction of a cinnamon bark
extract reduced the in vitro SARS-CoV replication so that the virus was exposed to the
extract before cell infection. Among the chemicals purified from this fraction, PAC-A2
exerted the most potent inhibitory activity on SARS-CoV replication; thus, a virucidal effect
was hypothesized as the event responsible for inhibition of infection [179].

With regard to SARS-CoV-2, a PAC-A-rich fraction from the leaves of rabbit-eye blue-
berry (Vaccinium virgatum Aiton) has been reported recently by Sugamoto et al. [194] to
potently inhibit SARS-CoV-2 replication in Vero E6 cells (EC50 1 µg/mL). For SARS-CoV-2,
the maximum inhibitory effect was measured when the virus was treated with the PAC-A-
rich fraction prior to infection, thus indicating that it could be administered as preventative
treatment [194]. Interestingly, the PAC-A-rich fraction was observed to inhibit also the
enzymatic activity of both the angiotensin-converting enzyme 2 (ACE2) receptor, which is
the essential cell receptor for SARS-CoV-2, and the viral main protease chymotrypsin-like
cysteine protease (3CLpro or Mpro), which is fundamental for processing viral polypro-
teins [246]. These findings suggest different inhibitory effects of the PAC-A-rich fraction
against SARS-CoV-2. Indeed, the interference of PAC-As with viral particles and the cell
surface receptor could result in the prevention of infection, while their direct-acting activity
against Mpro may contribute to the overall antiviral activity after infection [194].

In addition to the thoroughly studied IV and hCoVs, the antiviral activity of PAC-As,
in particular of the PAC-A2 dimer, was also observed for respiratory viruses of veterinary
interest. In a first study, PAC-A2 purified from the bark of Aesculus hippocastanum was found
to inhibit the in vitro replication of the Canine distemper virus (CDV), a Morbillivirus of the
family of Paramyxoviridae that affects domestic and wild canines and other carnivores, and
causes respiratory and systemic infections [247]. Time-of-addition experiments indicated
the ability of PAC-A2 to exert its inhibitory activity during both early and late phases of the
CDV replication cycle [248]. In a following investigation, lychee seeds-derived PAC-A2 was
observed to exert a potent antiviral activity against the Porcine reproductive and respiratory
syndrome virus (PRRSV) in alveolar macrophages, that represent the primary in vivo target
cell type of PRRSV infection [249]. PRRSV is a single-stranded positive-sense RNA virus
of the family of Arteriviridae and an endemic swine pathogen that causes pneumonia in
piglets and growing pigs, thus determining one of the most economically costly diseases
in the pig industry [250]. Although the specific mechanism of action against PRRSV was
not detailed, PAC-A2 was monitored to prevent PRRSV replication by affecting both viral
entry and progeny virus release. It was therefore suggested that PAC-A2 could be used to
develop preventative and/or treatment interventions for PRRSV infections [250].

3.6. Non-Respiratory Emerging and Highly Pathogenic Viruses

Emerging viral infections represent a major concern for public health caused by both
respiratory viruses and other zoonotic viral agents, as proved by the number of outbreaks
and epidemics/pandemics occurring since the year 2000 [251,252]. Natural products have
been tested against a number of such emerging viruses with the aim of developing control
strategies; however, very limited information is available regarding the antiviral activity of
PACs, and in particular PAC-A, as reported below.

One of the most deadly emerging viral diseases is the Ebola virus disease (EVD),
caused by infection with Ebola virus (EBOV), an enveloped single-stranded RNA negative
virus belonging to Filoviridae family [253]. EVD is characterized by hemorrhagic fever,
shock from fluid loss and multi-organ failure with a high case fatality rate. However,
there are no approved small molecules-based drugs for its effective treatment [254]. Sev-
eral efforts have been advanced for the development of anti-EBOV agents targeting viral
entry or viral genome replication [255,256]. The most advanced small molecule to treat
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EVD is remdesivir, a high cost broad-spectrum RdRp inhibitor available only for intra-
venous use, and thus difficult to use in the context of the low-income countries affected
by EVD. Regarding natural products able to inhibit EBOV infection, a few reports have
demonstrated the efficacy of PACs and their monomeric flavan-3-ols. In particular, the
flavan-3-ol monomers gallic acid and epigallocatechin-3-gallate (EGCG) were reported to
inhibit EBOV entry [257]. Time-of-addition assay in fact revealed that gallic acid likely
interfered with the GP-mediated fusion in the late endosomes, while EGCG was found
to inhibit the endoplasmic reticulum chaperone HSPA5, a host protein required for Ebola
virus replication [257,258].

More recently, the screening of more than 500 extracts of medicinal plants collected
in China allowed the identification of an anti-EBOV activity in a Maesa perlarius extract.
Dimeric PAC and several flavan-3-ol monomers within this extract were found to be
potent EBOV entry inhibitors at low micromolar concentrations. By docking analysis and
microscale thermophoresis technology, the authors determined that these compounds
exhibited virucidal potency by interacting with EBOV glycoprotein, and the most efficient
antiviral compound was the PAC-B2 [259].

Dengue fever is caused by a flavivirus and represents one of the major public health
concerns affecting almost 400 million people worldwide; it is endemic in at least
100 countries in the tropics and subtropics [260] The Dengue virus (DENV) is transmitted
through the bite of female Aedes aegypti or Aedes albopictus mosquitoes. Human infection
can range from asymptomatic cases to a severe disease characterized by severe plasma
leakage leading to shock, bleeding or organ impairment [260]. Neither vaccines nor spe-
cific antivirals are available. Plant extracts were proposed as source of antivirals to treat
Dengue fever [261]. In particular, Kimmel and co-workers [261] evaluated the antiviral
effect of oligomeric PACs derived from unripe apple peels (rich in PAC-B) using cultured
human PBMC derived from healthy subjects. Addition of purified oligomeric PACs (trimers
and tetramers), immediately after the infection, reduced viral titer of 1.5 log. It was also
observed that these PACs directly interacted with DENV particles, thus reducing virus
infectivity. Finally, the authors reported that unripe apple peels-derived PACs also mod-
ulated the innate immune response in infected PBMCs, likely contributing to the overall
inhibition of DENV replication in target cells [261].

Mayaro virus (MAYV) is an emerging mosquito-borne alphavirus (Togaviridae) affect-
ing individuals in permanent contact with forested areas in tropical South America. This
enveloped virus with single-stranded, positive-sense RNA genome causes nonspecific
febrile illness and long-lasting arthritis/arthralgia [262]. MAYV diffusion is increasing and
is a potential candidate to cause large-scale epidemics; therefore, the design and devel-
opment of candidates for anti-MAYN viral drugs are urgently needed [263]. To this end,
many strategies have been applied to identify antiviral molecules, including the use of
plant extracts [263]. In particular, PACs obtained from methanol extraction of Maytenus
imbricata (Celastraceae) roots showed a concentration-dependent virucidal effect on MAYV.
This compound acted directly in MAYV particles and not on host cells as their treatment
before infection did not show any antiviral effect. Interestingly, experiments with dialyzed
virus suggested an irreversible inhibition of viral infectivity upon PACs treatment, thus
suggesting a strong interaction between PACs and viral envelope or physical damage of
the virion [264].

Crimean-Congo hemorrhagic fever virus (CCHFV) is an enveloped single-stranded
negative sense RNA virus with a tri-segmented genome belonging to the Nairoviridae
family. CCHFV causes an emerging tick-borne viral disease widely distributed across
Africa, Southern Europe, the Middle East and Asia. Human infections can present as
a spectrum from the absence of symptoms through mild signs, to severe hemorrhagic
illness with a fatality rate up to 30% [265]; there is no FDA-approved vaccine or specific
antiviral [266]. In 2018, CCHF was included in the WHO Blueprint list of priority diseases
to promote the research for vaccines and drugs [267]. Nevertheless, to date very few
papers reporting the discovery of anti-CCHF agents have been published [268]. In this
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regard, we have recently reported that a cranberry (V. macrocarpon Aiton) extract rich in
PAC-As inhibits CCHFV infection [185]. To investigate the antiviral mechanism of this
cranberry extract, we used the Hazara virus, a nairovirus model of CCHFV that can be
handled in Biosafety Level (BSL)-2 Laboratories, instead of BSL-4 required for CCHFV.
Time-of-addition experiments showed that the cranberry extract inhibited viral infection
by targeting early stages of the replication cycle. In particular, specific viral attachment
assays indicated that the main antiviral mechanism is the inhibition of virus attachment
to target cells, thus suggesting interactions between bioactive PAC-As and Hazara virus
glycoproteins. This hypothesis was further supported by the observation of a virucidal
activity of the extract when incubated with HAZV particles before the infection of cells [185].

Overall, PACs, and in some cases PAC-As, have been reported to inhibit non-respiratory
emerging viruses by affecting primarily the early step of viral replication cycles, likely as a
consequence of alterations of the functions of viral proteins required for attachment and/or
entry into host cells.

4. Biological Activities of PAC-As Other than the Antiviral Effects

In many cases, the antiviral action of PAC-A has been associated also with other im-
portant properties of these polyphenols, such as the antioxidant, antibacterial, antidiabetic,
antihypoglycemic, cardioprotectant, and immunomodulatory activities. Therefore, the
following paragraphs will summarize these properties as a compendium of the biological
activity of PAC-A.

4.1. Antioxidant Activity

In general, the antioxidant activity of a PAC-A-containing plant extract increases with
increasing degrees of A-type PAC polymerization [269], as we noticed in our PCA analysis
(Figure 2). A-type PACs may reduce oxidative stress by acting as free radical scavengers,
and by affecting signaling pathways associated with cellular oxidative stress homeosta-
sis [18]. In the Malvaceae family, a radical-scavenging effect was shown in Adansonia
digitata pericarp (fruit wall) fruits, which contained an A-type PAC trimer [31], whereas
in cocoa (Theobroma cacao) epicatechin-containing dimers showed a strong antioxidant
power [124]. In the Sapindaceae family, Aesculus turbinata polyphenol polymers with
doubly linked A-type interflavans linkages exhibit potent antioxidant activities [32], while
in Litchi chinensis A-type dimers and trimers qualify the fruit stones and the pericarp of
this plant as a raw material for polyphenol extracts exerting significant antioxidant prop-
erties [78–81]. In the same family, Dimocarpus longan contains PAC trimers-octamers that
show promising antioxidant activities which could be applied as potential functional food
components [62]. In the Fabaceae family, peanut (Arachis hypogaea) skin A-type PACs were
effective against H2O2-induced oxidative stress damage in prostate cancer DU145 cells [35],
and thus they have been proposed as an inexpensive source of antioxidants for use as
functional ingredients in foods or dietary supplements [42]. In the same family, Spatholobus
suberectus fractions enriched in PAC monomers and oligomers exerted antioxidant activity
in MCF-7 breast cancer cells [120]. In the Rosaceae, apple (Malus domestica) extracts showed a
high antioxidant potential using 2,2-diphenyl-1-picrylhidrazyl (DPPH) and oxygen radical
absorbance capacity (ORAC) methods, whereas in plum (Prunus domestica) the antioxidant
activity was even higher [86]. In the Ericaceae, cranberry (Vaccinium macrocarpon) radical
scavenging and antioxidant activities were attributable to their composition of PACs [151],
while in Gaultheria procumbens the leaf antioxidant activity was found to change according
to the harvesting season [66,67]. Finally, in grapevine (Vitis vinifera, Vitaceae) glial cul-
tures pretreated with grape seed-derived type-A PACs showed improved viability after
H2O2-induced oxidative stress [160].

4.2. Antibacterial Activity

Cranberry (Vaccinium macrocarpon, Ericaceae)-derived PACs are unique in their struc-
ture with a higher percentage of A-type bonds, compared with PACs from other commonly
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consumed fruits [270]. It is well known that cranberry extracts and juices have an anti-
bacterial effect and are thus traditionally used to treat cystitis and UTIs [15,137–141,147],
such as those caused by uropathogenic Escherichia coli [271]. In the same plant genus, V.
myrtillus-derived A2-type PACs contained in juices were effective against bacterial strains
of Asaia lannensis and Asaia bogorensis [117]. The same effects were found also in Ribes ni-
grum (Grossulariaceae family) [117]. A. hypogaea skin extracts display anti-microbial activity
due to its A-type PAC content, able to prevent pathogen infection [36]. A-type PACs of
Cinnamomum zeylanicum (Lauraceae family) were effective against uropathogenic E. coli
multidrug-resistant strains and showed a marked antibiofilm activity [50]. Adhesion of
Streptococcus pyogenes to human airway epithelial (HEp-2) cells was found to be inhibited by
A-type PACs contained in Pelargonium sidoides (Geraniaceae family) extracts [97], whereas
Pinus pinaster (Pinaceae family) bark extracts containing A-type PAC dimers showed bacte-
ricidal actions against Staphylococcus aureus and E. coli [102].

4.3. Antidiabetic and Hypoglycemic Activity

A recent meta-analysis revealed that there is a significant effect of PAC supplemen-
tation on blood glucose levels and, once in the liver, PACs oligomers may modulate
hepatocyte functions and interfere with glucose uptake and metabolism [19]. In the fam-
ily Lauraceae, the genus Cinnamomum contains A-type PACs that exerted hypoglycemic
effects. In C. cassia, the main A-type PAC oligomers could reverse palmitic acid-induced
dysfunction of glucose-stimulated insulin secretion in primary cultured islets, improved
the insulin concentration in the blood and pancreas, and (as C. japonica) improved insulin
sensitivity in type 2 diabetes mellitus [46–48]. A-type PAC oligomers of C. tamala im-
proved the insulin concentration in the blood and pancreas [47], whereas C. zeylanicum
A-type PACs potentiated insulin action, and may be beneficial in the control of glucose
intolerance and diabetes [56,57]. In the Ericaceae family, the A-type doubly linked PAC
trimers of V. corymbosum and V. myrtillus acted as antidiabetic substances [127], whereas in
Areca catechu (Arecaceae family) the presence of A-type PACs ameliorates the streptozocin-
induced hyperglycemia by regulating gluconeogenesis [43]. Excellent inhibitory effects on
α-glucosidase were found in extracts of Pyracantha fortuneana (Rosaceae family), and these
effects were due to the alteration of the active site catalytic configuration of the enzyme in
such a manner as to reduce substrate binding affinity [110].

4.4. Lipid Lowering Effects and Cardiovascular Protection

PACs can interfere with lipid metabolism affecting intestinal absorption of lipids [272]
and liver secretion of chylomicrons and lipoproteins [19]. For instance, PAC-A2 significantly
reduces cellular lipid accumulation and restricts ox-LDL-induced cellular oxidative stress
and inflammation [273]. Grape seed (V. vinifera, Vitaceae)-derived PACs can regulate lipid
metabolism and significantly decreased the expression of pro-inflammatory cytokines, thus
exerting hypolipidemic and potential anti-inflammatory effects in the liver [164]. The con-
sumption of grape seed PACs has been related to lower oxidized low-density lipoprotein
particles and LDL cholesterol [161,163], to improve dyslipidemia associated with a high-fat
diet, mainly by repressing lipogenesis and VLDL assembly in the liver [162]. Furthermore,
grape seed PACs exerted a pronounced effect on the cholesterol and triglyceride levels [165]
and, by inhibiting oxidation of LDL, showed an antiatherosclerotic activity [166]. On the
other hand, A-type PACs of peanut (A. hypogaea) skin extracts exert protection against
hepatic steatosis induced in rats fed with a high-fat diet by inhibiting the absorption of
dietary lipid and chylomicron secretion by enterocytes [34]. Litchi (L. chinensis, Sapindaceae)
pericarp-derived extracts rich in PAC-As have cardioprotection effects on myocardial is-
chemia injury and lower serum malondialdehyde contents in high-fat/cholesterol-dietary
hamsters [74,75]. Mandevilla moricandiana (Apocynaceae family) A-type PAC trimers have
been observed to induce a concentration-dependent vasodilation on aortic rings through
the NO pathway, with the involvement of histamine H1 and estrogen ER alpha recep-
tors [87]. Finally, A-type PACs of cranberry (V. macrocarpon) have been reported to inhibit
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platelet aggregation and adhesion, to inhibit enzymes involved in lipid and lipoprotein
metabolism, to induce endothelium-dependent vasorelaxation, and to increase reverse
cholesterol transport and decrease total and LDL cholesterol [152].

4.5. Immunomodulatory Activity

Proanthocyanidin rich foods can markedly influence the immune responses to enteric
infections. Mechanistic studies have demonstrated that dietary PACs exert direct modu-
latory effects on immune cell signaling, by boosting the recruitment of immune cells and
suppressing the amount of pro-inflammatory cytokines. Some anti-inflammatory effects
of PAC stem from a direct modulation of mucosal immune cells [274]. The prebiotic effect
of PAC has been speculated to be primarily responsible for their anti-inflammatory and
immunomodulatory activity [275,276]. Some pathologies, like psoriasis, involve inflam-
matory mechanisms that interact with immune homeostasis and prevent autoimmune
diseases by suppressing immune responses [167]. Grape seed (V. vinifera) extracts contain-
ing PACs have been reported to act on the immune system by regulating the differentiation
of inflammatory T cells and possess the ability of multidirectional regulation of immu-
nity by maintaining the dynamic balance of immunity in psoriasis [168,277]. Dietary V.
vinifera-derived PACs promote the DNA repair-dependent stimulation of the immune
system following the functional activation of dendritic cells and effector T cells [169–172],
whereas V. macrocarpon PACs improve immune function and modify cytokine and signal
transduction pathways [153]. Grape seed PACs were found to attenuate TNF-alpha and
IL-1 beta-induced IL-6 production, and decreased IL-17-stimulated ERK 1/2, p38, and
JNK MAPK activities in A549 human pulmonary epithelial cells [278]. Grape seed ex-
tracts were also found to inhibit the NF-kappa B pathway in human prostate carcinoma
DU145 cells [279]. Finally, transcription of inflammatory factors such as myeloperoxidase,
interleukin (IL)-1 beta, IL-6, and tumor necrosis factor alpha (TNF-alpha) was also down-
regulated in lung tissue by grape seed PACs [280]. Overall, these data indicate a potential
immunomodulatory effect of PACs.

5. Conclusions

The devastating consequence of COVID-19 is indisputable evidence of the need for
BSAAs effective also against viruses that may emerge from future zoonoses. Indeed, the
availability of an antiviral arsenal that includes such BSAAs would make it possible to
immediately protect human populations from an emerging viral disease, while waiting for
the development of the new virus specific vaccines and DAAs.

The exploitation of natural products to derive BSAAs can meet this urgent need.
However, some critical issues must be faced, such as the production of highly active and
standardized extracts, the identification of the bioactive components responsible for the
antiviral activity, and the characterization of the mechanism(s) of action, which is often
related to a synergistic cooperation among different components. The studies we have
reviewed here suggest that A-type PACs can overcome these hurdles, and highlight facts
that sustain the feasibility of PAC-As as BSAAs candidates.

Firstly, the main mechanism of the antiviral action of PAC-As appears to be the
same for most of the viruses examined regardless of whether they are non-enveloped or
enveloped DNA or RNA viruses, thus making PAC-As suitable for interventions against
new or hitherto unrecognized viruses. Indeed, when examined in detail, the BSAA activity
of PAC-As has proven to originate from the inhibition of the virus attachment to the surface
of target cells. In many studies, this anti-adhesive effect of PAC-As has been associated
with their ability to interact directly with those virion capsid proteins or glycoproteins
that are essential for attachment and entry, thus preventing access to their normal binding
partners on target cells. This general mechanism of the antiviral activity of PAC-As could
result from the natural propensity of polyphenols to bind and aggregate proteins [281,282].
In this regard, it has been proposed that different types of chemical interactions, such as
hydrogen bonding, van der Waals and electrostatic interactions, or even covalent linkages
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may contribute to the formation of protein-polyphenol complexes [282]. The endurance of
electrophoretic mobility alterations induced by PAC-A dimers and trimers on HSV gD and
gB, as well as on IV HA1, upon boiling of protein samples in SDS sample buffer, sustains the
view that the exposure of purified viral glycoproteins to PAC-As results in the formation of
covalent linkages between PAC-As molecules and viral proteins [186,188]. These covalent
interactions may result in protein-protein crosslinking, as most PACs have two or more
reactive quinone moieties [283]; this would explain the smearing and disappearance of
glycoprotein bands that we and others have observed in electrophoretic mobility shift assay
experiments with purified viral glycoproteins [186,188,204,215,243].

Taken as a whole, the PAC-As-protein interactions may lead to alterations of viral
capsid or envelope protein structures and functions, or to masking/blocking their binding
sites to cellular receptors, eventually resulting in the inhibition of binding of the viral
particles to cell receptors (Figure 3). Accordingly, this mechanism of action advocates the
potential application of PAC-As-containing agents as BSAAs in the treatment or prevention
of current viral infections, as well as in the preparedness for future emerging viral threats.
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Secondly, given the virucidal activity of PAC-As, it is possible to envisage that PAC-
As-containing formulations would allow inactivation of a broad range of infecting viruses
and therefore prevention of many viral diseases. For example, considering the significant
global incidence, morbidity, and mortality rates of both viral RTIs and sexually transmitted
infections (STIs), the development of new, safe, attachment/entry inhibitors based on PAC-
A-containing agents could provide a realistic method of antiviral intervention, as well as
blocking virus shedding and transmission by close personal contact. Regarding RTIs, local
application of formulations rich in PAC-As in the upper respiratory tract, administered
as tablets or chewing gums or through inhaling devices, would allow the inactivation of
infecting virus and thus prevention of infection [283]. Likewise, PAC-As-containing topical
microbicides to be applied directly to the genital tract would prevent the establishment
of a viral STI, such as HSV or HIV-1 [284,285]. Furthermore, the topical use of PAC-As-
based formulations (as aerosolized suspensions or creams) would overcome limitations
that might occur due to unsatisfactory PAC-As levels in the blood following systemic
treatments. However, such formulations must satisfy the two fundamental requirements of
efficacy and safety. Regarding the toxicity of PAC-As, we have recently observed that when
tested for effects on the viability of human cells, different purified PAC-As were found to
be safe with noteworthy low cytotoxicity values [286]. Moreover, from this perspective,
the widespread use of different formulations of dried cranberry extracts, naturally rich
in PAC-As [146], for the prevention of urinary tract infections (UTIs) sustains the high
safety profile of PAC-As-containing products to develop broad-spectrum antiviral agents
of natural origin suitable to prevent infections [287,288]. Interestingly, the antibacterial
activity of PAC-As could be valuable also for the prevention of bacterial superinfections of
the respiratory tract that may follow viral RTIs (due to both virus- and immune-mediated
damage of the respiratory mucosa).

Thirdly, in many low- and middle-income countries, antiviral drugs are often beyond
the reach of the people who need them most or are unavailable. Therefore, for those health
systems a reliable, affordable, and high-quality supply of low cost antivirals could be
essential to control viral infections [289]. Economic models indicate that in developing
countries manufacturers of pharmaceuticals and phytopharmaceuticals should be able
to charge substantially lower prices with respect to industrialized countries, without
impairing their profits and with no reduction of the therapeutic power. Although in middle-
income and developing countries prices are already substantially discounted, compared
to developed countries, an economic foundation for fair antiviral drug pricing could be
based on widely available BSAAs with low costs of production [290]. Low-cost production
PAC-A-based BSAAs could be therefore of particular interest to those low-income countries
where viral RTIs or sexually transmitted diseases still have a high incidence. In this
perspective, the development of PAC-A-rich phytocomplexes as new BSAAs, could not
only be advantageous from an economic point of view compared to more expensive
purification procedures or chemical synthesis of specific PAC-A molecules, but could allow
better exploitation of the synergistic and holistic effects of different bioactive PACs naturally
present in a plant-derived extract [19,27]. Thus, a PAC-A-enhanced phytocomplex could be
the most suitable candidate for both preclinical and clinical development of PAC-A-based
BSAA, owing to the presence of the most active components that contribute to the overall
antiviral activity of the plant extract.

Taken together, these considerations support the suitability of A-type PACs to con-
stitute the antiviral active agent of plant-derived formulations for the development of
effective BSAAs, that can be rapidly deployable against current viral infections and future
emerging viruses.
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