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Abstract

We present a novel implementation of an iterative solver for the solution of Poisson’s equation in the PLUTO code for
astrophysical fluid dynamics. Our solver relies on a relaxation method in which convergence is sought as the steady-state
solution of a parabolic equation, whose time discretization is governed by the Runge–Kutta–Legendre (RKL) method.
Our findings indicate that the RKL-based Poisson solver, which is both fully parallel and rapidly convergent, has the
potential to serve as a practical alternative to conventional iterative solvers such as the Gauss–Seidel and successive
overrelaxation methods. Additionally, it can mitigate some of the drawbacks of these traditional techniques. We
incorporate our algorithm into a multigrid solver to provide a simple and efficient gravity solver that can be used to obtain
the gravitational potentials in self-gravitational hydrodynamics. We test our implementation against a broad range of
standard self-gravitating astrophysical problems designed to examine different aspects of the code. We demonstrate that
the results match excellently with analytical predictions (when available), and the findings of similar previous studies.

Unified Astronomy Thesaurus concepts: Computational methods (1965); Gravitation (661); Hydrodynamical
simulations (767)

1. Introduction

Elliptical partial differential equations (PDEs) are crucial in
numerous mathematical and physical problems. One prime
example is Poisson’s equation, which emerges naturally in many
contexts such as gravity, incompressible flows, electromagnetism,
thermal conduction, the divergence-cleaning procedure in magne-
tohydrodynamics, and several others. In this sense, the develop-
ment of efficient and fast solvers for such PDEs represents one of
the primary goals in computational physics. In particular, solving
Poisson’s equation for the gravitational potential for a given mass
distribution is of great interest in those astrophysical environments
where self-gravitational forces play a crucial role, such as the
formation of stars (Ostriker et al. 2001; McKee & Ostriker 2007),
planet formation (Boss 1997; Rice et al. 2005), supernova
explosions (Nordhaus et al. 2010; Couch et al. 2013), the
evolution of galaxies (Mo et al. 2010), and the structure formation
(Bertschinger 1998) in the Universe. Thus, the accurate representa-
tion of self-gravity is critical for achieving realistic and reliable
results in the numerical modeling of such systems.

The need for solving Poisson’s equation has led to the
development of various algorithms with different levels of
complexity and applicability. One can rely on direct solvers such
as the fast Fourier transform (FFT) method to achieve a solution
accurate up to the round-off error. On the other hand, the
traditional relaxation methods such as Gauss–Seidel (G-S) or
successive overrelaxation (SOR) are also of great interest due to
their simplicity of implementation (see Press et al. 1992 for
details). Over the past two decades, there has been an increasing
interest in these iterative methods due to the advancement of
massively parallel computers. Since one generally does not need
the solution to be accurate up to the round-off error (as provided
by the FFT method), iterative methods are preferred for practical
purposes as iterations can be stopped early when the iteration error

of the solution drops below the truncation error. Although these
iterative solvers suffer from a slow convergence rate for long-
wavelength modes (Press et al. 1992), the usage of a multigrid
scheme can improve the convergence rate drastically
(Brandt 1977; Briggs et al. 2000). The multigrid method uses a
hierarchy of grids with decreasing spatial resolution to correct the
error in the guess solution on the finest grid. The usage of coarser
grids ensures that the long-wavelength modes of the error on the
finer grids appear short on the coarser ones, and thus can be
damped down efficiently. Thus, the multigrid method consists of
three primary elements: (i) a smoothing operator on the finer grids
that damps small-wavelength (high-frequency) modes, smoothing
out the solution; (ii) some restriction and prolongation operators to
map different quantities between grids; and (iii) an efficient
Poisson solver on the coarsest grid, which is necessary for solving
the error equation (Trottenberg et al. 2000).
While the G-S and SOR methods are commonly used in several

codes for the coarsest grid solver, both pose certain limitations. In
particular, the G-S algorithm converges very slowly, whereas the
convergence rate of the SOR method heavily depends on the
optimal choice of the overrelaxation parameter (ω), which is
typically problem dependent and difficult to derive analytically
(Press et al. 1992). Furthermore, none of the methods achieves full
parallelization, meaning that all grid points within the computa-
tional domain cannot be updated simultaneously during a single
iteration step. Rather, the updates are accomplished in an
alternating odd–even pattern, requiring twice the amount of
parallel communication between processors compared to a fully
parallel algorithm, which incurs additional computational over-
heads (Trottenberg et al. 2000).
In this study, we present a new Poisson solver for the PLUTO

code3 (Mignone et al. 2007, 2012) for self-gravitational
astrophysical fluids. The method is implemented within a
multigrid V-cycle algorithm structure and it takes advantage of
the accelerated super-time-stepping (STS) technique based on
the Runge–Kutta–Legendre (RKL) method used for solving
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parabolic PDEs (Meyer et al. 2012, 2014; Vaidya et al. 2017),
by viewing Poisson’s equation as the steady-state solution of a
parabolic equation. RKL time-stepping methods are optimized
for stability rather than accuracy, so that a single time step,
consisting s number of substages, can be taken as much larger
compared to the time step permitted by a standard explicit
method, and it increases monotonically with s (Meyer et al.
2014). In theory, a sufficiently high s can produce a steady-
state solution in a single iteration, but the convergence rate
does not necessarily increase monotonically with increasing s.
In fact, we demonstrate that there exists an optimal value of s
that produces the maximum convergence rate, which depends
only on the domain size and boundary conditions and it can be
analytically derived. An optimized RKL-based Poisson solver
exhibits a much higher convergence rate than the G-S method
and can become competitive with the SOR scheme. Moreover,
it eliminates the uncertainties associated with the optimal
overrelaxation parameter (ω) of the SOR algorithm. In addition,
the RKL method is fully parallelizable, allowing all grid points
to be updated simultaneously during a single iteration, which
results in a lower parallel communication overhead, making the
scheme well suited for massively parallel systems.

The article is organized as follows. In Section 2, we describe the
basic V-cycle multigrid algorithm, its individual components, and
the boundary conditions. Section 3 outlines how gravity is coupled
with hydrodynamics. In Section 4, we present the accuracy of the
Poisson solver and the gravity module as a whole for a wide
variety of standard self-gravitating astrophysical problems. The
chosen problems are designed to showcase the accuracy of various
aspects of the code, including energy conservation, variation in the
equation of state (EOS), momentum conservation, and boundary
conditions. Finally, we summarize our findings in Section 5.

2. The Algorithm

2.1. The Iterative Multigrid Algorithm

The core idea of the multigrid technique is to use a hierarchy
of grids with geometrically decreasing mesh sizes. The method
solves a system of discrete equations on a given grid iteratively,
through constant interactions with a series of coarser grids. In
this method, the coarser grids are used to find the error in the
approximate solution which can be used to obtain a better guess
solution for the next iteration, traditionally called the correction
scheme multigrid method (Briggs et al. 2000; Trottenberg et al.
2000). In the following, we briefly summarize the scheme.

Suppose we wish to solve the following elliptic equation,

f , 1F = ( )

where  is a linear elliptic operator and f is the source function
defined in some domain Ω. Let us assume, our domain is to be
discretized into Nx, Ny, and Nz grid points with a grid spacing of
h. This discretized domain is be denoted as Ωh, where the grid
points are represented by xi= ih, yj= jh, and zk= kh. Similarly,
if we have a discretization of Ω with Nx/2, Ny/2, and Nz/2
points and a grid spacing of 2h, we represent it as Ω2h. Then,
the discretization of Equation (1) on Ωh can be written as

f . 2h h hF = ( )

Let us assume that the guess to the solution of Equation (2) at
the first iteration is Ψh. Then the error can be found as

e , 3h h h= F - Y ( )

where Φh is the exact solution of Equation (2). Now, the
residual can be defined as

r f . 4h h h h= Y - ( )

Interestingly, since h is a linear operator, the error eh satisfies

e r . 5h h h= - ( )

Thus, instead of relaxing the original solution Φh with an
arbitrary guess solution, we can relax Equation (5) with a
specific guess eh= 0.
Now, if we expand eh into a discrete Fourier series, it can be

shown that the long-wavelength modes of eh converge very
slowly, whereas the oscillatory or short-wavelength modes of
eh can be reduced more easily (Press et al. 1992; Briggs et al.
2000; Trottenberg et al. 2000). Thus, if we restrict the error to a
coarser grid (Ω2h) from the original grid (Ωh), the long-
wavelength modes of the error will appear as short-wavelength
modes on the coarser grid, which can be reduced by a large
factor with each iteration (Briggs et al. 2000). Once, we get the
solution for e2h on Ω2h, it can be interpolated back to the fine
grid to calculate the approximated solution eh˜ of the error. Then
the guess to the solution is updated by

e . 6h h h
newY = Y + ˜ ( )

Thus, we can utilize these concepts recursively across a hierarchy
of grids with geometrically decreasing mesh sizes to carry out an
entire multigrid cycle. In order to transfer data between grids with
different mesh spacings, we need to define restriction and
prolongation operators. Fine-to-coarse grid interpolation is done
through the restriction operator () while the inverse process is
achieved using the coarse-to-fine prolongation operator (). We
will discuss these in detail in Section 2.2.
One of the simplest forms of multigrid cycles is the V-cycle,

which is schematically shown in Figure 1. The V-cycle algorithm
initially approximates the solution by performing Npre smoothing
iterations on the finest grid level (l= 0). The residual is then
restricted to the next coarse level, where anotherNpre smoothing
iterations are carried out. This process of restriction followed by
smoothing is repeated until the coarsest level is reached (down-
stroke), where we solve the correction equation with a fast iterative
solver. Subsequently, the correction solution is prolongated to the
next fine level, which is utilized to adjust the solution. Using the
modified solution, Npost number of smoothing operations are
performed. The sequence of prolongation and smoothing steps
persists until the correction is incorporated into the solution at the
finest grid level (upstroke). The whole procedure forms a V-cycle,
which is repeated until the desired convergence level is reached. In
the following, we give the V-cycle multigrid algorithm that
contains L number of levels (see Briggs et al. 2000; Trottenberg
et al. 2000, for details).
do {

1. At l= 0, performNpre relaxation on f0 0 0F = .
2. for (l= 1 to l< L){
2a. Compute the residual: r fl l l l1 1 1 1= F -- - - - .
2b. Calculate f l by performing restriction on r l−1:

f rl l 1= -( ) .
2c. Set the guess solution for this level to zero: δΦl= 0.
2d. If l< L− 1

i. Perform
Npre relaxation on f , with 0 onl l l l ld dF = - F = ¶W .

ii. l← l+ 1

2
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2e. Else if l= L− 1, solve fl l ldF = - with a fast
iterative solver.

}
3. for (l= L− 2 to l> 0){
3a. Perform prolongation of δΦl+1 to correct δΦl:

l l l 1d d dF ¬ F + F +( ) .
3b. Perform Npost relaxations on f , withl l l ld dF = - F =

0 on l¶W .
3c. l← l− 1.

}
4. At l= 0,
4a. Correct the finest grid solution: 0 0 1dF ¬ F + F( )
4b. Perform Npost relaxation on f0 0 0F = .

} while (residual is above the specified tolerance level)
From the above steps, we see that, at the coarsest level of the

multigrid hierarchy, we need a very efficient iterative solver to
estimate the solution of the error equation, which is sometimes
called the “kernel” of the iterative multigrid algorithm. We
discuss this in detail in Section 2.2.4.

2.2. Operator Definitions

Spatial discretization can be based on either staggered or
cell-centered meshes, but the structure of different operators
and the treatment of boundary conditions change accordingly
(Trottenberg et al. 2000). For application purposes, we adopt in
what follows a multigrid algorithm that makes use of a cell-
centered discretization, essential in devising the iterative
multigrid algorithm, as discussed in Section 2.1.

2.2.1. Discretization of the Laplace Operator

In Section 2.1, we discussed how the iterative multigrid
algorithm works for any general linear elliptic PDE. However,
in this paper, our primary goal is to implement a multigrid
solver for Poisson’s equation for gravitational potential, which
has the following form,

G4 , 72 p r F = ( )

where ∇2 is the Laplace operator. We use a second-order
accurate five-point (in 2D) or seven-point (in 3D) stencil for the
discretization of the Laplace operator on a particular grid level
L. For two dimensions, the discretization is given by
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and for three dimensions,
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where ΔxL, ΔyL, and ΔzL are the grid spacings along x-, y-,
and z-directions on the Lth level.

2.2.2. Restriction Operator

As discussed in Section 2.1, a restriction operator ( h
h
2 ) is

needed that maps or restricts the error from the fine grid (Ωh) to
the coarse grid (Ω2h). Here, we adopt the simple second-order
accurate four-point average for two dimensions (Trottenberg
et al. 2000). Application of h

h
2 to a fine grid (Ωh) function

rh(x, y) at coarse grid point (x, y) äΩ2h yields

10
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In Figure 2(a), we show a simple stencil of the fine (black lines)
and coarse grids (red lines). The values are defined at the center
of the cells. From Equation (10), the coarse grid value E is
simply given by

E h g e f
1

4
, 11= + + +( ) ( )

where g, h, e, and f are the fine grid values at the specified
location in Figure 2(a).
In three dimensions, the restriction operator can be easily

extended from the 2D counterpart by considering an eight-point
average, which reads
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Figure 1. A schematic diagram of the multigrid V-cycle algorithm.
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From Figure 2(b), the coarse grid value A can be obtained by

A a b d c e f h g
1

8
. 13= + + + + + + +( ) ( )

2.2.3. Prolongation Operator

In order to transfer the coarse grid correction to the fine grid,
we use the second-order accurate cell-centered prolongation
operator shown in Figure 2. In two dimensions, with reference
to Figure 2(a), the values at fine grid points are calculated as

a A B C D

b A B C D

c A B C D

d A B C D

1

16
9 3 3 ,

1

16
3 9 3 ,

1

16
3 9 3 ,

1

16
3 3 9 , 14

= + + +

= + + +

= + + +

= + + +

( )

( )

( )

( ) ( )

where a, b, c, and d are the fine grid values at the cell centers
and A, B, C, and D are the coarse grid cell-centered values as
depicted in Figure 2(a). In three dimensions, we can easily
extend the prolongation operator, by inspecting Figure 2(c),
where the cell-centered fine grid value a can be obtained as
follows,

a A B D E C F H G
1

64
27 9 9 9 3 3 3 ,

15

= + + + + + + +( )

( )

where A, B, C, D, E, F, G, and H are the cell-centered coarse
grid values.

2.2.4. Smoothing Operator and Kernel Solver

The two most important components of the iterative
multigrid algorithm are the smoothing operator which is used
to smooth out the solution error on the finer grids, and the
coarsest grid solver (or the kernel solver), which solves the

error equation on the coarsest level for the given boundary
conditions. For the smoothing operations, the G-S relaxation
method with red–black ordering (GS–RB) has been shown to
be one of the best methods available in the literature (Press
et al. 1992; Trottenberg et al. 2000) and it will also be our
method of choice. The GS–RB solver has been used in several
(magneto-) hydrodynamic codes where a multigrid algorithm is
used for solving Poisson’s equation (Ziegler 2005; Ricker 2008;
Almgren et al. 2010; Guillet & Teyssier 2011; Wang &
Yen 2020). In the GS–RB scheme, cell values are updated in
two passes, with each pass covering half of the computational
domain according to the colors of a checkerboard pattern (red
or black).
For the coarsest grid direct solver, there are various

algorithms ranging from iterative solvers to the conjugate
gradient method and FFT. Traditionally, iterative methods are
employed as kernel solvers owing to their simplicity of
implementation. Still, one important criterion for choosing a
particular solver is the degree of parallelization as it can
degrade the overall performance of a highly parallelized code.
The traditional relaxation ω-Jacobi scheme (Trottenberg et al.
2000) is fully parallel (i.e., the operator can be applied to all
grid points simultaneously and new values are mutually
exclusive) but has a very poor convergence rate.
The GS–RB method has a relatively better convergence rate

than the ω-Jacobi method, but it becomes inefficient as the
domain becomes larger and it is also half-parallel.4 The ω-GS–
RB or the SOR method can be designed to improve the
convergence rate by choosing an optimal value of ω. However,
the efficiency of this method heavily depends on the over-
relaxation parameter (ω), which is typically problem depen-
dent. A slight deviation from the true value of ω can degrade
the convergence rate considerably.
In this work, we propose a novel approach for the solution of

Poisson’s equation based on the RKL method for solving
parabolic differential equations (Meyer et al. 2012, 2014;

Figure 2. Visual representations of the restriction () and prolongation ( ) operators in 2D (a) and 3D (b) and (c). The uppercase letters in red represent the value
cell-centered values of the coarse grid and the lowercase black letters are the same for the fine grid. If we consider panel (a), in order to calculate the coarse grid value
E, we simply take the average of the fine grid values e, f, g, and h that are closest to E (Equation (11)). Conversely, the fine grid value a can be estimated by taking the
weighted sum of the four nearest coarse grid values A, B, C, and D (Equation (14)). Likewise, the 3D restriction operator (depicted in panel (b)) performs an averaging
operation on the eight closest fine grid values (as expressed in Equation (13)). On the other hand, the 3D prolongation operator (illustrated in panel (c)) calculates the
weighted sum of the eight nearest coarse grid points (as indicated in Equation (15)).

4 In the GS–RB method, one iteration consists of two half-steps. Thus, only
half of the total grid points inside the computational domain can be updated
simultaneously. This implies the method is half-parallel (see Trottenberg et al.
2000 for details).
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Vaidya et al. 2017). The RKL method is a class of STS
methods that have been developed to deal with the restrictive
time step of an explicit scheme for parabolic equations of the
form ∂u/∂t=Mu. This allows us to consider a larger time step
(τ) than the maximum permissible explicit parabolic time step
(Δtpar) without affecting the stability of the solution. For the s-
stage RKL method, the maximum possible time step ( maxt ) can
be shown to be,

t
s s

2
, 16max par

2
t = D

+ ( )

where t 2par maxlD = ∣ ∣ is the explicit parabolic time step ( maxl
is the maximum eigenvalue of the elliptic operator M). As
Poisson’s equation can be sought as the steady-state manifesta-
tion of the following inhomogeneous parabolic equation,

t
, 172 r

¶F
¶

=  F - ( )

we can easily take advantage of the RKL technique to solve for
the gravitational potential Φ in Equation (17) in the t→∞ limit
with much larger time steps than allowed by explicit methods.
While this could (in principle) be obtained within a single time
step τ using a very large value of s, it does not ensure a
monotonically increasing convergence rate with growing value
of s.

In fact, although increasing the value of s improves the
convergence rate of the RKL operator, we find that there exists
an optimal value of s (sopt) for which the convergence rate of an
RKL-based Poisson solver is the highest, and any further
increment of s degrades the convergence rate. This value of sopt
depends only on the domain size and the boundary conditions,
which remove the uncertainty of the optimal overrelaxation
parameter ω in the SOR algorithm. In Appendix A, we derive
the convergence property of the RKL-based Poisson solver in
detail. Another advantage of the RKL scheme is that it is fully
parallel, i.e., the calculation of the cell values at the current
time step entirely depends on the previous step, thus a single
communication between processors is enough to update all the
points during a single iteration. Therefore, being fully parallel,
highly optimized, and specifically not fine tuned, the RKL-
based Poisson solver can be an alternative to traditional
relaxation methods for solving Poisson’s equation. For
instance, in Appendix B, we demonstrate the comparative
performance of the G-S, SOR, and RKL methods for a 3D
problem. We find that the RKL scheme not only achieves a
given residual level in the least amount of time but also exhibits
a significantly lower parallel communication overhead com-
pared to the G-S and SOR methods. Hence, in the multigrid
algorithm described in this paper, we use the RKL-based
Poisson solver for the coarsest grid kernel solver.

2.3. Boundary Conditions

For the cell-centered multigrid method, the boundary points
need special attention as for the cell-centered discretization,
with no grid points laying along the boundary (see the green
line in Figure 2(a), which lies along the cell edges). For a
Dirichlet-type boundary condition, linear extrapolation is used
to specify solution values at the centers of ghost cells. For
example, for the two boundaries at the start and end points of x-

axis, we have

2 , 18j k j k j k0, , 1
2

, , 1, ,F = F - F ( )

2 , 19N j k N j k N j k1, , 1
2

, , , ,x x xF = F - F+ + ( )

where j k1
2

, ,F and N j k1
2

, ,x
F + are the potential values at the edges

of the first and last active cells, respectively, corresponding to
the physical boundaries, which are specified by the user. The
ghost cells along the y- and z-axes can be filled in a similar
way. Notice that the boundary conditions must be specified at
the beginning of the relaxation procedure only on the finest
level (l= 0). As we are solving the error equations on levels
other than the finest one, the error along the boundary should
be zero for a Dirichlet-type boundary condition. Thus the ghost
cell values at the levels with l> 0 will be

e e e e, and . 20j k j k N j k N j k0, , 1, , 1, , , ,x x= - = -+ ( )

In the case of periodic boundary conditions (let us say along
the x-axis), left ghost cells are filled by copying the last active
cell values along the x-axis and vice-versa for the right ghost
cells,

. 21j k N j k0, , , ,xF = F ( )

The same periodic boundary conditions (Equation (21)) are
also employed at the coarser levels (l> 0).
The periodic boundary condition for gravitational potential,

however, requires some modifications of Poisson’s equation
(Equation (7)). Let Φ be the solution of Equation (7) in the
domain Ω with periodic boundary conditions. Direct applica-
tion of Gauss’ theorem upon integrating yields

n
dV dS. 222ò ò F =

¶F
¶W ¶W

( )

Now, for a periodic boundary condition on Φ, the right-hand
side of Equation (22) vanishes, which implies

dV 0. 232ò  F =
W

( )

Thus, if Φ satisfies Equation (7), we must have

dV 0. 24ò r =
W

( )

However, the mass density ρ can never be less than 0
physically.5 Thus, it is impossible to satisfy Equation (24)
without modifying the source term. The usual way to overcome
this issue is to subtract the mean value of the density from the
source term, as any infinite homogeneous density distribution
does not affect the potential (Binney & Tremaine 1987;
Kiessling 1999; Falco et al. 2013). Hence, we can subtract the
mean homogeneous density and calculate the potential due to
the fluctuation. This leads to the following modification of the
source term in Equation (7),

dV

dV
, where . 25

ò

ò
r r r r

r
 - = W

W

¯ ¯ ( )

5 This is analogous to the well-known contradiction in the linear stability
analysis of such systems, popularly known as Jeans’ Swindle (Binney &
Tremaine 1987).
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Equation (25) ensures that Equation (24) is satisfied, thus
implying the convergence of the multigrid algorithm is
guaranteed. We also subtract the average from the residual
on all the coarser levels (l> 0) explicitly (Ricker 2008). This
ensures that the convergence rate of the multigrid algorithm is
not affected by the nonzero uniform component of the residuals
for the periodic boundary condition.

3. Coupling Gravity with Hydrodynamics

The effect of self-gravity is generally treated by adding
source terms in Euler’s equations, which are given by

v
t

0, 26
r

r¶
¶

+ =· ( ) ( )

v
vv I g

t
p , 27

r
r r¶

¶
+ + =

( ) · [ ] ( )

v v g
E

t
E p , 28t

t r¶
¶

+ + =· [( ) )] · ( )

G4 , 292 p r F = ( )

where ρ is the mass density, v is the velocity, p is the thermal
pressure, g=−∇Φ is the acceleration due to gravity and Et is
the total energy density given by

v
E e

2
. 30

2
r

r
= + ( )

The above equations are combined with an EOS ρe= ρe(p, ρ)
to provide the closure. Thus, the change in momentum and
energy due to self-gravity is contributed by the source terms in
the momentum (Equation (27)) and energy (Equation (28))
equations, respectively. In order to compute gravitational
acceleration g from the potential (Φ), we use a fourth-order
finite difference approximation, e.g.,

g
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x
x

4

3 2
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3 4
. 31
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D
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There have been recent developments for not treating gravity
as a source term but in a fully conservative fashion where the
momentum and energy equations are evolved by the diver-
gence of a gravitational stress tensor and a gravitational energy
flux, as the traditional source-term-based approach does not
guarantee the explicit conservation of energy and momentum
(e.g., Jiang et al. 2013). This approach explicitly conserves the
energy and the momentum of the system to machine accuracy.
However, some studies (Springel 2010; Katz et al. 2016;
Hanawa 2019; Mullen et al. 2021) argue that if the equations
are formulated in a conservative manner the source-term-based
approach can give a similar level of accuracy. Nonetheless, all
of these schemes require that the error in the gravitational
potential must be on the order of the round-off error (Mullen
et al. 2021), which can be achieved by the FFT algorithm but is
generally not possible for an iterative Poisson solver like the
multigrid method. The small amount of residual in the solution
obtained by an iterative method cannot ensure the round-off
error level accuracy of the energy and momentum. Moreover,
the conservative approach requires solving Poisson’s equation

in multiple stages along withan underlying time-stepping
scheme (e.g., RK2 or RK3), which can become computation-
ally expensive. Therefore, in this work, we follow the
traditional source-term-based approach with some level of
approximation.
If we consider Equations (26)–(28) in the following form,

U
T S

t
, where . , 32¶

¶
= = - + ( ) 

then the semidiscrete RK2 method advances Equation (32) as

U U t , 33n n= + D ( )*

U U U t
1

2
, 34n n1 = + +D+ ( ) ( )* *

U
t

2
, 35n n= +

D
+( ) ( ) *

where Un is the solution of the conservative variables at the nth
step and n is the corresponding right-hand side array.
Note that the calculation of * at the last stage requires the

gravitational potential at the predictor stage (*). This demands
solving Poisson’s equation twice during a single RK2 step,
which will be computationally expensive. Some codes use an
extrapolation technique to compute the gravitational potential
at the intermediate stage by linearly extrapolating the value of
the potential at t n and t n−1 (e.g., Bryan et al. 1995; Fryxell
et al. 2000). However, in the PLUTO implementation, we
provide the user with the option to choose between two
alternatives: (i) solving Poisson’s equation at each intermediate
step, as explained earlier, or (ii) assuming that the potential
remains constant within a single time step and using the
acceleration gn at all intermediate stages to advance the solution
to the n 1 th+( ) step. The later approximation is valid if the
change in density during a time step is not dramatic and may
fail for a region undergoing gravitational collapse toward a
singularity. However, the benchmarks considered in Section 4
demonstrate excellent agreement with analytical predictions
(when available) and with many prior studies by various
authors, even for a cloud undergoing gravitational collapse to a
singularity.

4. Test Results

In this section, we verify our implementation against
standard astrophysical problems involving self-gravity. A list
of different tests with the primary goals of each of the problems
is summarized in Table 1. While some of these tests have been
investigated by means of adaptive mesh refinement (AMR)
techniques, here we focus attention on the convergence
property of the multigrid RKL solver on a static grid.

4.1. Accuracy Tests for a 3D Model Problem

We first begin with the accuracy of the Poisson solver
described in Section 2. To accomplish this, we consider a 3D
model problem with a known analytical solution, namely


r

r

r
r r

r r
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where ρ0= 1 and r0= 0.25. For simplicity, we set G= 1. The
analytical solution of Equation (36) can be derived as
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where M r32 1050 0
3pr= is the mass of the sphere. The

gravitational acceleration (g) corresponding to this potential
(Equation (37)) is given by
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We consider the computational domain of (x, y, z) ä [−0.5,
0.5] with different resolutions (N= 16, 32,..,1024 along each
dimension) at the finest level (l= 0) and boundary conditions at
the finest level specified using the exact solution
(Equation (37)). We employ the maximum possible number
of coarse levels L (including the finest level) such that N/(2L−1)
is an even number and each processor contains at least one
active cell (excluding the ghost cells) of the coarsest level
(l= L− 1). For the best performance, we use N 2pre = and
Npost= 1 in the multigrid algorithm presented in Section 2.1.

In Figure 3, we show the error in the numerical solution of the
potential (left) and the x-component of the acceleration vector for a

10243 box calculation of the problem described above. The
acceleration has been calculated from the potential using
Equation (31). In both cases, we observe that the error is of the
order of the discretization error ( x 102 6D » -( ) ). To be more
quantitative, we define the L2 norm (|| · ||2) of the quantity i j k, , as

V
dV

1
, 39

i j k
i j k i j k2

, ,
, ,

2
, ,

1 2

å= ⎡

⎣
⎢

⎤

⎦
⎥∣∣ ∣∣ ( ) ( ) 

where dVi,j,k is the volume of the cell with index (i, j, k) and V
is the total volume of the computational domain. In the left
panel of Figure 4, we show the L2 norm of the absolute error,
defined as (||Φnum−Φe||)/||Φe||, in the numerical solution of
the potential (red square) as a function of the finest grid
resolution (the black dashed line represents the second-order
predicted accuracy). As expected, our numerical results match
the second-order convergence for the considered resolutions.
The right panel of Figure 4 displays the L2 norm of the residual
of the numerical solution at the mth V-cycle (blue circles) as a
function of the number of V-cycle iterations (m) for the 5123

case. We also show the L2 norm of the absolute error
(||Φm−Φe||/||Φe||) as a function of iteration number (red
squares). It is worth noting that every multigrid V-cycle
diminishes the error norm by approximately one order of
magnitude, i.e., the convergence factor is about 10. Likewise,
the absolute error is also reduced by a similar factor initially
and after 4–5 V-cycles, it quickly attains the truncation error
value. Thus, we only need just a few numbers of V-cycles for a

Table 1
List of Numerical Tests Considered Here to Examine the Accuracy of the Self-gravity Module

Test Name Primary Goal Resolution

Accuracy Test Test for the numerical accuracy of the Poisson solver 163–10243

Jeans Instability Test for self-gravity with periodic boundary condition 1283

Adiabatic Collapse of a Sphere Check for energy conservation, shock formation, and virialization 10243

Collapse of an isothermal nonrotating uniform sphere Test for the accuracy of the self-gravity module for a sphere undergoing gravita-
tional collapse to a singularity

5123

Collapse of an isothermal rotating uniform sphere Check for angular momentum conservation and disk formation 5123

Collapse of an isothermal nonrotating sphere with azimuthal
density perturbation

Test for cloud fragmentation and binary structure formation 5123

Figure 3. Error in the numerical result of the potential (left) and x-component of the acceleration (right) for the 3D model problem (Section 4.1). In both instances, we
observe that the error magnitude is approximately 10−6 at the considered resolution of 10243, which aligns with the discretization error ( x2D( ) ).
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problem to attain accuracy of the order of truncation.
Furthermore, if the solution at the previous step is used as
the guess for the current step, it just takes 2–3 V-cycles to
converge to an error level of max 10m m 1 6F - F <W

- -∣ ∣ ,
where Φm is the solution at the mth V-cycle.

4.2. Jeans Instability Test

There exist very few problems with periodic gravity that
have analytical solutions and the Jeans instability test is one of
them (Hubber et al. 2006, 2018). This problem can be used to
test the accuracy of the periodic boundary conditions imposed
for the gravitational potential. We briefly describe the problem
below (see Hubber et al. 2006 for a detailed description).

We start from an infinite uniform medium with density ρ0
and isothermal sound speed cs, initially at rest. By linearizing
the isothermal Euler equations (i.e., Equations (26)–(29), and
replacing Equation (28) with p cs

2r= ) with a small density
perturbation ρ1(r, t)= Aρ0e

i( k. r±ω t), one finds that there exists
a critical value of the wavenumber (kJ) below which ω becomes
imaginary and the perturbations grow exponentially in time by
the action of gravity. The corresponding wavelength (λJ)
associated with kJ is called the Jeans length, given by

c

G
, 40J

s
2

0

l
p
r

= ( )

which divides the oscillating short-wavelength perturbations
from collapsing long-wavelength modes. The time period of
the oscillating stable modes (λ< λJ) can be derived as (Hubber
et al. 2006)
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Similarly, the collapse timescale (defined as the time taken by
the perturbation to grow by a factor cosh 1( )) of the unstable
wavelengths (λ> λJ) is given by Hubber et al. (2006):

T
G

1

4
. 42col

0

1 2

J
1 2p r

l
l l

=
-l ⎜ ⎟

⎛
⎝

⎞
⎠ ( )

( )

For the simulation setup, we consider a box with 1283 zones,
extending from −1 to 1 along each direction with a uniform

background density ρ0 superimposed with a sinusoidal
perturbation of amplitude Aρ0 along the x-direction,

r A
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The medium is set to be at rest initially with ρ0= 1 and
A= 0.01. With this numerical setup, we perform several
simulations with different values of λ/λJ covering both
oscillatory and collapsing modes. We use the same value of
the wavelength (λ= 2) of the perturbation for all the
simulations and adjust the sound speed which changes the
Jeans length (Equation (40)), yielding an effective range of
values of λ/λJ. For computing the oscillation timescale from
the simulations, we first find the time evolution of the density at
point (x, y, z)= (0, 0, 0), which is a sinusoidal function in time.
Then we calculate the period of oscillation by finding the
consecutive local minima or maxima of the sinusoidal function.
We consider three such periods of oscillation and take the
average value, which gives the oscillation timescale. For the
collapsing modes, the timescales are estimated by calculating
the time it takes the density at (x, y, z)= (0, 0, 0) to increase
from the initial value Aρ0 to a value of A cosh 10r ( ).
In the left panel of Figure 5, we show the results from our

simulation with different values of λ/λJ. The purple stars and
red circles represent the oscillation timescales and characteristic
collapse timescale for the oscillating modes (λ< λJ) and
growing modes (λ< λJ), respectively. The blue lines are the
corresponding analytical solutions (Equations (41) and (42)).
The black dashed line marks the λ= λJ threshold, where the
oscillation/collapse timescale tends to infinity. All the time-
scales are normalized to the freefall time (tff), which is given by

t
G

3

32
. 44ff

p
r

= ( )

It is evident that our simulation results exhibit strong agreement
with the analytical prediction across the entire range, with an
error of less than 1% (as shown in the right panel). It is
important to acknowledge that the analytical solution to this
problem strictly holds for linearized Euler’s equations. There-
fore, the amplitude of the perturbations (defined by the

Figure 4. Left: the L2 norm of the absolute error in the numerical solution of the potential as a function of the resolution of the finest grid level. The black dashed line
is x 2D(( ) ) . Right: the L2 norm of the residual (blue circles) at mth (scaled to the L2 norm of the initial residual assuming Φ = 0) V-cycle iteration and the L2 norm of
the absolute error at the mth iteration step (red square) as a function of the number of V-cycles (m). The residual at different steps have been calculated using
Equation (4).
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parameter A) must be significantly smaller than the background
density. For a large-amplitude perturbation, for instance,
A= 0.1 as considered by Hubber et al. (2006, 2018), some
terms in Euler’s equations cannot be neglected. Thus, the
timescale calculated from the simulations will deviate from the
analytical solutions (Equations (41) and (42)).

4.3. Collapse of an Adiabatic Gas Sphere (Evrard Collapse)

One very interesting problem that includes self-gravity is the
collapse of an initially cold gas cloud, originally proposed by
Evrard (1988). This test problem has been considered for
validating the implementation of self-gravity and energy
conservation in smoothed particle hydrodynamics (SPH) codes
by many authors (e.g., Hernquist & Katz 1989; Springel et al.
2001; Wadsley et al. 2004; Springel 2005, 2010; Hopkins 2015;
Grudić 2021, and many more) but has been rarely used in grid
codes. Here, we use our grid-based method to simulate the
problem. The cloud is initially at rest and the density profile is
given by

/M R r r R2 , if ,
0, otherwise,

45
2

r p= ⎧
⎨⎩

( ) ( )

where M= 1 and R= 1. Although in the original
SPH formulation the density of the background medium is
set to 0, we employ here a value of 10−4 to avoid vacuum
conditions in a grid-based code like PLUTO. The initial thermal
energy per unit mass of the cloud is set to uth= 0.05, which is
very small compared to the gravitational binding energy (ug) of
the cloud (ug= 0.6, assuming G= 1). The adiabatic index of
the gas is set to be γ= 5/3.

As the initial thermal pressure support is negligible
compared to the gravitational force, the gas freely falls toward
the center of the sphere. The adiabatic EOS results in a pressure
buildup in the central region. Eventually, a bounce back occurs,
where a strong shock propagates outwards through the infalling
outer part of the sphere. If a zero-gradient boundary condition
is applied, this shock exits the computational domain, leading
to a reduction in the total energy due to the outflowing matter.
However, as we are interested in the conservation of energy, we

employ reflective boundary conditions at all the boundaries.
This choice ensures that the shock remains within the
boundaries and gets reflected back whenever it reaches a
boundary. Furthermore, to safeguard the virialized sphere from
the impact of the reflected shock, we confine our computational
domain to the range of (x, y, z) ä [−2, 2]. We perform the
simulation up to t= 3 and confirm that the reflected shock does
not reach the virialized sphere until the end of the simulation.
The formation of the shock is shown in Figure 6, where a slice

cut of the density (left) and pressure (right) distributions in the x–y
plane at t= 1.1, overlaid with the local velocity field (white
arrows), is represented. As the shock sweeps throughout the entire
domain, the system virializes and eventually settles into a
hydrostatic equilibrium. The problem involves the conservation
of gravitational to kinetic and thermal energy and it is thus
particularly sensitive to the code’s ability to conserve total energy.
In Figure 7, we show radial profiles (blue circles) of the

density (left), radial velocity (middle), and entropy (right) at
t= 0.8 (after the formation of the outward shock). For
reference, we depict results from a very-high-resolution (8192
grid points) spherically symmetric 1D piecewise parabolic
method (PPM) calculation of the problem (red solid lines),
similar to the computation done by Steinmetz & Mueller
(1993), which has been used as a common benchmark by
numerous authors. In our 1D calculations, we compute the
gravitational potential (Φ) by explicitly integrating the density
field at each time step and imposing the boundary condition Φ
(r)= 0 as r→∞ . Thus, the high-resolution 1D PPM
calculation can be considered as a reference solution to the
problem as there is no analytical solution available. We see that
the results obtained from the 3D simulation conducted in
Cartesian geometry exhibit very good agreement with the 1D
results. The shock structure in every plot is captured correctly
as well as the pre- and postshock regions.
Figure 8 presents the temporal evolution of thermal (green),

kinetic (red), gravitational (blue), and total (black) energy
densities as the sphere goes through different phases of
evolution. We can readily observe the conversion of gravita-
tional energy to kinetic energy (first) and then to the thermal
energy of the gas. Throughout the entire evolution, the total
energy remains well conserved, with an error of less than 0.4%.

Figure 5. Left: the characteristic timescales for the evolution of a sinusoidal perturbation in the Jeans instability test. The x-axis represents the wavelength (λ) of the
plane-wave perturbation in units of Jeans length (λJ) and the y-axis is the corresponding timescale for oscillation (or collapse) in units of the freefall time (tff). The blue
line in the λ < λJ region represents the oscillation timescale (Equation (41)) as a function of λ of the oscillating modes and in the λ > λJ region it shows the
characteristic collapse timescale (Equation (42)) of the collapsing modes. The black dashed line marks the λ = λJ point, where the oscillation/collapse timescale tends
to infinity. The purple stars and the red circles are the corresponding results from the simulations, which agree very well with the analytical prediction. Right: the errors
of the numerical results. The quantity ΔT is defined as ΔT = Tnum − Tana, where Tana and Tnum are the analytical and numerically calculated timescales, respectively.
We find that the error in the numerical result for the considered range of λ/λJ is less than 1%.
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Upon virialization of the sphere, the kinetic energy reaches
zero, and the total energy is shared between the thermal and
gravitational energies.

4.4. Isothermal Collapse Tests

We now consider the collapse of an isothermal gas sphere
using various initial configurations, i.e., a nonrotating uniform
cloud (Section 4.4.1), a rotating uniform cloud (Section 4.4.2),
and a rotating cloud with an azimuthal perturbation
(Section 4.4.3). While the dynamical evolution of these
systems is best described within the AMR framework, we still
show that—at moderate resolution (5123)—our gravity module
successfully reproduces the main features of the results. We use
a 3D cubic box for all the simulations and the gravitational
potential at the boundary is calculated using multipole
expansion up to l= 4 (Mandal et al. 2021) that is supplied to
the Poisson solver as a Dirichlet-type boundary condition. For
the hydrodynamics, outflow boundary conditions are used at all
boundaries.

4.4.1. Nonrotating Uniform Sphere

First, we consider the collapse of a uniform nonrotating cold
gas sphere, originally proposed by Truelove et al. (1998) and

Figure 6. A slice of the density (left) and pressure (right) distributions in the x–y plane at t = 1.1. The white arrows represent the local velocity field. We can clearly
see the shock in both the density and pressure structures, which is going outward through the still infalling outer part.

Figure 7. Radial profile of the density (left), velocity (middle), and entropy function (right, defined as P/ργ) for the adiabatic collapse problem (Evrard collapse) at
time t = 0.8. The solid red lines in each plot are the results from a very-high-resolution (4096 grid points) spherically symmetric 1D PPM calculation of the same
problem, similar to the calculation by Steinmetz & Mueller (1993), which can be taken as a reference solution of the problem. We see that the results from the 3D
calculation in Cartesian geometry (blue circles) excellently match with the 1D PPM results in both the pre- and postshock regions, and the shock profile is well
recovered in the 3D simulation.

Figure 8. Top: evolution of the kinetic (red), gravitational (blue), thermal
(green), and total (black) energies with time for the adiabatic collapse problem.
Dimensionless units are considered for both energy and time. Bottom: the
fractional error of the total energy as a function of time. Conservation of the
total energy is quite good during the whole evolution, with an error 0.4%.

10

The Astrophysical Journal Supplement Series, 268:40 (20pp), 2023 September Mandal, Mukherjee, & Mignone



used to test the accuracy of the grid-based code NIRVANA
(Ziegler 2005). The initial conditions consist of a gas sphere of
radius R= 7.8× 1015 cm with density ρcl= 10−15 g cm−3

placed in a background medium of density ρb= 0.01ρcl. The
isothermal sound speed inside the gas is set to
cs= 0.167 km s−1. This is an excellent problem as it provides
an analytic solution in the pressureless (T= 0) case, which
consists of self-similar evolution. However, as we cannot
model a pressureless and infinite medium, the solution consists
of a rarefaction wave traveling radially inward from the cloud
surface superimposed on a self-similar collapse. At any time,
the region inside the rarefaction wave remains uniform and the
density increases self-similarly, which can be described by the
analytical solution (Truelove et al. 1998). This is illustrated in
the left panel of Figure 9, where we show a slice of the density
distribution in the x–y plane and the velocity field (white
arrows) at t= 0.963tff. The central density plateau is clearly
visible, which still follows the pressureless solution and is
unaffected by the rarefaction front. The medium with a radially
decreasing density beyond the central plateau represents the
outer part of the sphere which has been affected by the inward
rarefaction wave that initially appeared at the cloud surface. At

t= tff, it approaches a singular state of infinite density, and the
temperature of the medium is chosen in such a way that the
collapse occurs before the rarefaction wave reaches the cloud
center. The time to build up a density ρ inside the rarefaction
wave can be derived analytically (see Truelove et al. 1998),

t
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In the right panel of Figure 9, we compare the analytical
expectation (Equation (46), blue dashed line) with our numerical
results (red circles). It is evident that our numerical results align
remarkably well with the analytical prediction across the entire
range of density and time. In the simulation, the density increases
by more than five orders of magnitude at 0.9982tff and the code
breaks at 0.99994tff as we cannot numerically reach the singular
state. The primary difference between our results and those of
Truelove et al. (1998) is that their solution features a time delay
with respect to the analytic solution. This is due to the image
boundary conditions they used for the gravitational potential,

Figure 9. Left: midplane slice of the density distribution in the x–y plane for the nonrotating isothermal collapse problem at t = 0.963tff. The white arrows show the
local velocity field. The density values are normalized to the initial cloud density (ρc). Right: time to reach density ρ for the nonrotating isothermal collapse test (red
circles). The blue dashed line represents the analytical solution (Equation (46)).

Figure 10. Cuts of the density (left) and the radial velocity field (right) along the x-axis of the left panel of Figure 9. The red solid lines are the results of the simulation.
The blue dashed lines show the analytical solutions, which are only valid inside the rarefaction front.
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which mimics the existence of neighboring clouds that oppose the
collapse by the attracting force. As the image cloud separation is
increased in their study, the time delay decreases. In our
simulation, on the other hand, we use the Dirichlet boundary
conditions for the gravitational potential, which are calculated from
multipole expansion considering Φ(r)→ 0 as r→∞ . This better
represents an isolated system and eventually leads to better
agreement with the analytical solution. A similar result is also
reported by Ziegler (2005), where they have also used multipole
expansion to specify the boundary conditions and found no time
delay compared to the analytical solution.

We can also derive the mass (Mrf), size (rrf), and the radial
velocity (v(r, ρ)) of the unaffected region inside the rarefaction

wave as functions of central density (see Truelove et al. 1998
for the derivation). The mass inside the rarefaction wave at a
density ρ is given as
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where M is the mass of the cloud and v GM R2ff = is the
freefall velocity. Thus, from Equation (47), we can easily
calculate the radius of the central region inside the rarefaction
front (rrf) to be
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From energy conservation, the flow velocity can be expressed
as a function of the radius r and of the density ρ (Truelove et al.
1998),
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Figure 10 displays cuts of the density (left) and radial velocity
(right) along the x-axis at t= 0.963tff. The red solid lines in
both panels represent the results from our simulation while the
blue dashed lines are the corresponding analytical solutions,
valid inside the rarefaction front. For both cases, the simulation
results agree well with the analytical prediction inside the
rarefaction front.

4.4.2. Rotating Uniform Cloud

As the second test of the isothermal collapse problem, we
consider the collapse of a rotating uniform cloud originally
proposed by Norman et al. (1980) and later investigated by

Figure 11. Slice of the density distribution in the x–y (left) and x–z (right) planes for the rotating uniform sphere test at t = 1.26tff. Arrows in each plot represent the
velocity field.

Figure 12. The SAM (K ) spectrum at different times for the rotating uniform
cloud collapse test. The y-axis represents the total mass inside the cloud with
SAM less than or equal to K normalized to the initial total mass of the cloud.
The red, green, and blue lines are the spectrum calculated from the simulation
at t = 0, 0.53, and 1.07tff. The black line show the theoretical estimate
(Equation (50)).
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various authors (Boss & Myhill 1992; Truelove et al. 1998;
Ziegler 2005). This problem is particularly useful to verify the
ability to conserve the angular momentum by numerical codes.
The initial conditions comprise a uniform spherical gas sphere
of mass M= 1Me and radius R= 7.01× 1016 cm, giving
density ρ0= 1.26× 10−18 g cm−3. The cloud has a temperature
of T= 5 K and rotates with uniform angular velocity
Ω= 3.04× 10−13 rad s−1. This yields an initial ratio of the
thermal to gravitational energy of α= 0.54 and a ratio of the
rotational to gravitational energy of β= 0.08. The surrounding
medium is initialized with a constant density of ρb= 0.01ρ0.

As shown by Norman et al. (1980), poor conservation of
angular momentum can produce an artificial ring-like structure
instead of a disk in the process of collapse. On the other hand,
if the conservation is adequate, the sphere forms a disk with an

increasingly high central density as it evolves. In Figure 11, we
show a slice of the density distribution in the x–y (left) and x–z
(right) planes at t= 1.26tff. From a first inspection, our results
are qualitatively comparable to those of Truelove et al. (1998)
and Ziegler (2005). We can clearly see a disk has been formed
and the velocity field in the x–z plane shows that the collapse is
progressing toward a singular state. No evidence of a ring
structure has been found until the end of the simulation. Thus,
the angular momentum is conserved quite well, although it is
not explicitly designed to be in our scheme. A better method to
quantify the conservation of angular momentum is the
calculation of the spectrum of specific angular momentum
(SAM; symbol K ) at different times as proposed by Norman
et al. (1980), which is defined by the total mass inside the cloud
less than or equal to a given value of K. For an ideal (inviscid)
fluid, this distribution remains conserved and, for an initially
rotating uniform cloud, the analytical form of the spectrum is
given by Truelove et al. (1998),

M M
K

R
1 1 , 50K 2

3 2

= - -
W

⎡
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⎛
⎝

⎞
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⎤
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( )

where Ω is the uniform angular velocity of the cloud. Ideally,
the minimum and maximum extent of K should be K 0min =
(corresponding to the rotation axis) and K Rmax

2= W (corresp-
onding to the surface of the sphere). However, due to finite
resolution, any structure below the resolution of the simulation
Δx cannot be resolved, which corresponds to
K x 10 cm smin

2 18.2 2 1~ WD = - for our setup. Note that,
due to the inability to resolve the density and velocity structures
at this small scale, the numerical result may not agree with the
analytical solution. However, if the angular momentum is
conserved, then the shape of the distribution should not change
with time irrespective of the initial shape. Thus, we compare
the distributions at different times in Figure 12, where we show
the SAM spectrum from our simulation at t= 0 (red),
t= 0.53tff (green), and t= 1.07tff (blue). For reference, the

Figure 13. Left: slice of the log density distribution in the x–y plane for the rotating perturbed cloud problem at t = 1.24tff, roughly when the two structures become
gravitationally bound and undergo gravitational collapse independently. Right: only the central 2 × 1016 cm region of the left panel just to clearly show the structures.

Figure 14.Maximum density in the simulation box as a function of time for the
perturbed uniform cloud test.
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corresponding analytical estimate (Equation (50)) is also
plotted in black. We notice the SAM distributions at different
times agree satisfactorily at larger values of K within 1%
error, except for the distribution at a later stage (blue), where
the evolution is believed to be affected by the surrounding low-
density medium of the cloud and the average fractional error in
the numerical distribution is about ∼10%.

4.4.3. Rotating Cloud with Azimuthal Perturbation

Lastly, we consider a very demanding problem of fragmen-
tation of an initially perturbed rotating cloud first proposed by
Boss & Bodenheimer (1979) and employed by several authors
(e.g., Burkert & Bodenheimer 1993; Truelove et al.
1997, 1998; Klein 1999; Springel 2005; Ziegler 2005; Hubber
et al. 2018; Grudić 2021) in different versions. The original
Boss & Bonenheimer test consisted of an isothermal uniform
cloud subjected to a 50% initial azimuthal m= 2 mode
perturbation in density. However, Burkert & Bodenheimer
(1993) introduced the same problem with a 10% initial
perturbation in density and showed that the evolution and
subsequent fragmentation of such a small perturbation are more
challenging to simulate and constitute a good benchmark for a
numerical code. This is the version we adopt here, which
consists of an isothermal spherical cloud with sound speed
cs= 0.167 km s−1, mass M= 1Me, and with a radius of
R= 5× 1016 cm. The cloud rotates with an angular velocity of
ω= 7.4× 10−13 rad s−1, which gives energy ratios of α= 0.26
and β= 0.16. The uniform density of the cloud is modified by
an azimuthal m= 2 mode perturbation in the following way,

r R

r R

1 0.1 cos 2 , if ,

0, if ,
510r

r f
=

+
>

⎧
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[ ( )] ( )

where f is the azimuthal angle around the rotation axis and
ρ0= 3.82× 10−18 g cm−3 is the underlying constant density.
The density of the medium outside the sphere is set to be
0.01ρ0.

Figure 13 illustrates an equatorial slice of the density
distribution (left panel) and a close-up of the central structure
(right panel) at t= 1.24tff. An elongated bar-like structure has
formed connecting two high-density regions. The velocity field
demonstrates that there are converging gas flows toward the
center of mass of each structure as a result of gravitational
collapse. This can be seen in Figure 14, where we show the
maximum density inside the simulation box as a function of
evolution time. Similar behavior has also been reported by Bate
& Burkert (1997), Springel (2005), and Grudić (2021).
However, we find that in our case the collapse proceeds at a
somewhat slower rate when compared to Springel (2005) and
Grudić (2021) owing to the limited resolution near the
collapsing regions. The low-resolution runs of the same test
problem in Springel (2005) also exhibit similar behavior.

It is worth noting that the problem at hand exhibits a
significant range of dynamics. This necessitates the use of high
resolution in the vicinity of the collapsing structure to witness
the fragmentation collapse into a singular state, as illustrated in
the works of Truelove et al. (1998) and Ziegler (2005). Here,
the employment of a uniform Cartesian grid prevents the
computations from reproducing the elongation and subsequent
gravitational collapse to a singular state. From this perspective
our results are fairly consistent with those of Bate & Burkert

(1997) and Springel (2005) and adequately reproduce the major
features of the test problem despite the limited resolution.

5. Summary

We have presented a novel implementation of an iterative
method for solving Poisson’s equation based on the RKL time-
stepping scheme developed for solving parabolic PDEs. Our
solver utilizes a relaxation scheme to achieve convergence on
the solution of an elliptic problem sought as the steady-state
solution of a parabolic equation, whose time discretization is
governed by the RKL scheme. The algorithm is part of a
V-cycle multigrid method and it has been implemented as a
simple and efficient gravity solver in the PLUTO code, to
address self-gravitational hydrodynamics. We demonstrate that
our approach offers a potential substitute to conventional
iterative techniques like G-S or SOR, given its significantly
superior convergence rate when compared to the G-S scheme,
while also removing the uncertainties connected to the optimal
overrelaxation parameter in the SOR method. Besides, being a
fully parallel algorithm, our method incurs a lower commu-
nication overhead between processors compared to G-S or
SOR, which are half-parallel (see Appendix B for the
performance of these solvers for a model problem).
We have employed our methodology to perform a

comprehensive set of astrophysical test problems, designed to
assess different aspects of the code. In a 3D static problem, we
have verified that the solver achieves second-order accuracy for
both the potential and force, as expected. Our calculations of
the timescales for the collapsing and oscillating modes of the
Jeans instability test agree well with the theoretical expecta-
tions, with errors of less than 1%. The shock structures
observed in the density, velocity, and entropy functions of the
adiabatic collapse problem match closely with those obtained
from a highly resolved 1D PPM calculation, which serves as a
reference solution. Moreover, our code conserves the total
energy up to 1%, for the adiabatic collapse problem. We have
tracked the collapse of a uniform nonrotating sphere and
observed that the central density increases by ∼five orders of
magnitudes and the corresponding timescale matches very well
with the analytical prediction. In the collapse of a rotating
uniform sphere, which encompasses a density increase of six
decades, we have achieved angular momentum conservation up
to 1%. However, at the later stage, the conservation degrades
(∼10%) due to the effect from the surrounding medium. Lastly,
we have reported the fragmentation and subsequent formation
of binary structures of an initially perturbed rotating sphere
where the density increases by more than six orders of
magnitude, and the results favorably compare to those obtained
by previous investigators. Although the test problems con-
sidered here can benefit even more from the employment of
AMR, we have demonstrated that our gravity module can
reproduce the major features of the results using a uniform
static grid already at moderate resolution.
Future extensions to AMR require changes to the cycling

strategy in the multigrid algorithm and to the treatment of the
boundary layers for each multigrid level, which are well
developed by many authors (Ricker 2008; Guillet & Teys-
sier 2011; Wang & Yen 2020). Smoothing, restriction, and
prolongation operators as well as the coarsest grid solver
should not be affected by the introduction of AMR.
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Appendix A
Convergence Property of the RKL-based Poisson Solver

The RKL method is a class of STS methods that has been
developed to deal with the restrictive time step for an explicit
scheme for parabolic equations (Meyer et al. 2012, 2014). This
allows us to consider a much longer time step (τ) than the
maximum permissible explicit parabolic time step (Δtpar)
without affecting the solution. The parabolic diffusion equation
can be written in the following form,

M
du

dt
u t , A1= ( ) ( )

where M is a symmetric, constant coefficient matrix resulting
from the space discretization of the parabolic operator. The
STS methods are a class of stabilized Runge–Kutta methods
where one time step (τ) consists of additional substeps (s) to
ensure stability. The solution after one τ step can be expressed
in terms of the amplification factor Rs as

Mu t R u t . A2st t+ =( ) ( ) ( ) ( )

The stability of the solution is guaranteed if |Rs(τλ)|� 1 for all
λ, where λ is the eigenvalues of M. Now the amplification
factor Rs(τλ), also known as the stability polynomial for an s-
stage STS scheme, can be defined as

R t1 , A3s
i

s

i
1

tl l= + D
=

( ) ( ) ( )

with ti
s

i1 tå D == . Matching the coefficients in
Equation (A3) with the analytic expansion of Equation (A1),
as given by
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gives the temporal accuracy of the solution.
In RKL methods, shifted Legendre polynomials are used as

stability polynomials. For a general s-stage RKL scheme, the
stability polynomials are chosen as

R a b P w w , A5s s s s 0 1tl tl= + +( ) ( ( )) ( )

where w0= 1 for all RKL methods. For a first-order RKL
scheme, as= 0, bs= 1, and w1= 2/(s2+ s). In the rest of the
derivation, we consider only the first-order RKL technique.
Thus, for simplicity, whenever “RKL” is mentioned it implies
the first-order RKL method. Therefore, the stability polynomial

of an s-stage RKL scheme takes the following form,
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Thus, the jth stage of an s-stage RKL scheme can be expressed
in terms of the corresponding stability polynomial as
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where u( n) represents the solution at the beginning of the τ-
step, uj denotes the solution at the jth intermediate step, and
u( n+1) corresponds to the solution after advancing one τ-step.
Throughout the text, we use subscripts to represent the
intermediate steps within one τ-step and the superscripts refer
to each τ-step.
In order to calculate the stability polynomials, we can use the

three-point recursion relation of Legendre polynomials,
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Replacing x= 1+ 2τλ/(s2+ s), we can easily show that the
stability polynomials of the RKL methods obey the following
recursion relation,
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Using Equation (A9), one can write the s-stage RKL scheme
for M as follows,
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where the coefficients μj, νj, and jm̃ can be obtained from the
recursion relation (Equation (A9)) and given by
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The stability condition of Legendre polynomials provides the
maximum permissible time step τ for an s-stage RKL method.
Legendre polynomials are bounded within the range [−1, 1],
and therefore, to ensure solution stability, the condition

w1 11 maxt l- -( ∣ )∣ must hold true. Here, maxl represents
the maximum (negative) eigenvalue of the operator M. This
condition determines the maximum value of τ applicable to an6 http://plutocode.ph.unito.it
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s-stage RKL scheme, yielding,
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where t 2par maxlD = ∣ ∣ is the explicit parabolic time step.

A.1. Poisson Equation as a Limiting Case of the Diffusion
Equation

A simple extension of the diffusion equation (Equation (A1))
can be made to accommodate a time-independent source term
(f) on the right-hand side,

M f
du

dt
u t . A13= -( ) ( )

The initial solution u reaches equilibrium as t→∞ and du/
dt→ 0, which essentially becomes the solution of Poisson’s
equation, i.e.,

M fu 0. A14- = ( )

Thus, successively applying one τ-step to the previous step of
Equation (A13) until t→∞ gives the solution of Poisson’s
equation for a given source term f.

To fit the source term (f) in the intermediate stages of an s-
stage RKL, we replace MYj→MYj− f in Equation (A10),
which takes the following form,
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Using Equation (A15), it can be shown that the solution of
Equation (A13) after one τ step in an s-stage RKL scheme can
be written as

M F M fu P w u w w1 , A16n
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where F is a polynomial of degree (s− 1). Therefore,
Equation (A16) can be thought of as one iteration from u( n) to
u( n+1) with the RKL iteration matrix

R MP w1 . A17s s,RKL 1t= +( ) ( )

Thus, starting from a guess solution u(0), we can successively
apply Equation (A16) until m steps, for which
|u(m)− u(m−1)|< 10−d, where 10−d is some specified tolerance
level.

A.2. Convergence Criteria

Consider the initial guess solution of Equation (A16) is u(0),
and we apply one iteration step. Then, the solution after one τ
step is

R F M fu u w w . A18s s
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,RKL
0
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Now, if v is the exact solution of Equation (A14), then the
iteration steps do not change the solution, i.e.,

R F M fv v w w . A19s s,RKL 1 1 1t t= - - ( ) ( )( )

Subtracting Equation (A18) from Equation (A19), we get
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where e( j)=v− u( j) is the error in the approximated solution at
the jth step. Thus, it is possible to reduce the error from the
previous step, if and only if
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where || · ||p refers to the p-norm of the matrix. Now, if we
consider p= 2 (the Euclidean norm), then for the symmetric
matrix Rs,RKL, we have
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where ρ(Rs,RKL) is the spectral radius of matrix Rs,RKL which is
defined as

R Rmax , A23s s,RKL ,RKLr l=( ) ∣ ( )∣ ( )

where λ(Rs,RKL) are the eigenvalues of Rs,RKL. Thus, from
Equations (A21) and (A22), we find that the convergence to the
exact solution for any initial guess solution is possible through
successive iterations, if and only if
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So, after m iterations, the error in the mth approximation is
given by
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Therefore, if we want to reduce the initial error by an order of
d, we must need
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The minimum number of iterations (m) needed to reduce the
initial error by d orders of magnitude in an s-stage RKL method
is given by
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A.3. Spectral Analysis

In order to find the spectral radius of the RKL iteration
matrix (Rs,RKL), we have to find how the eigenvalues
(λk,RKL(s)) behave. From Equation (A17), we note that
Rs,RKL is a polynomial of M. Thus, if λk,M is the kth eigenvalue
of M, then the eigenvalues of Rs,RKL is given by

s P w1 . A28k s k,RKL 1 ,Ml tl= +( ) ( ) ( )

We first consider a 1D problem with grid points at j= 0, 1,
KN with a grid spacing of Δx. The M matrix for this problem
is given by
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The eigenvalues of M are
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Also, it can be easily shown that the eigenvectors of M are
given by
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where Λk,j,M is the jth component of the kth eigenvector of the
M operator. Interestingly, the eigenvectors of M are simply the
Fourier modes in 1D.
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2l = D{ } ( ) ), the eigenvalues of Rs,RKL are
given by
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From the properties of the Legendre polynomials, we know that
Ps(x) is a symmetric and antisymmetric function when s is even
or odd, respectively. Thus, λk,RKL(s) has the following
property:
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Therefore, for calculating the spectral radius for Rs,RKL, we can
only consider 1� k� N/2 eigenmodes and the spectral radius
of Rs,RKL can be expressed as
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In Figure 15, the absolute values of the eigenvalues of Rs,RKL,
denoted by λk,RKL(s), are plotted as a function of k for various
values of s. It can be observed that for small values of s, the
maximum eigenvalue (which is essentially the spectral radius)
of Rs,RKL is associated with the longest-wavelength mode or
the k= 1 mode. However, as s increases beyond a certain
threshold, the maximum eigenvalue shifts to the first few k-
modes, and this phenomenon repeats itself due to the highly
oscillatory nature of the Legendre polynomials at large s.
Therefore, it can be inferred that the first few k-modes
determine the maximum eigenvalue of the Rs,RKL operator
for different values of s.

In the top-left panel of Figure 16, we plot the variation of
λk,RKL(s) as a function of s for the first seven eigenmodes of
Rs,RKL. It is apparent that the maximum eigenvalue is not solely
determined by a single eigenmode. Rather, different eigen-
modes dominate at different values of s, and this behavior
oscillates. Additionally, we find that the first six modes, i.e.,
1� k� 6, are sufficient for calculating the maximum eigenva-
lue for 1D problems. Therefore, the spectral radius does not
exhibit a monotonically decreasing trend with increasing s, as
evidenced by the bottom-left panel of Figure 16. Nevertheless,
ρ(Rs,RKL) approaches zero asymptotically as s→∞.

In order to reduce the initial error to any value, a single s-
stage RKL iteration is required by selecting a suitably high
value that results in a spectral radius close to zero. The top-
right panel of Figure 16 demonstrates this, displaying the
minimum number of τ steps, mRKL (Equation (A26)), needed to
decrease the initial error by a factor of two. It is evident that
mRKL decreases with an increase in s and exhibits an oscillatory
behavior similar to the spectral radius, which approaches 1 as
s→∞. While it may seem that increasing s indefinitely would
result in faster convergence, it is important to note that each τ
step in an s-stage RKL iteration consists of s substages. As a
result, if a problem achieves a certain tolerance level in mRKL τ-
steps, it actually requires meff= s×mRKL single-loop itera-
tions. Therefore, if the rate of decrease in mRKL is slower than
the rate of increase in s, then after a certain value of s, meff

begins to increase as s increases. As a result, there exists an
optimal value of s (sopt) at which the RKL iteration converges
the fastest. This is depicted in the bottom-right panel of
Figure 16, where it is clear that meff initially decreases with
increasing s, but begins to oscillate after s= 35. The value of
meff reaches its global minimum value at s= 56.
Ideally, the theoretical value of sopt can be found by the

following equation:

R

dm

ds

d

ds

s d

0,

log
0. A35

s s

s s s
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Finding an analytical expression for sopt from Equation (A35)
is highly challenging in the absence of a closed-form
expression for ρ(Rs,RKL). Nevertheless, sopt can be computed
numerically for a given problem prior to commencing the
iterative process. As can be seen from the bottom panels of
Figure 16, the optimal value of s is where the value of
ρ(Rs,RKL) is at its minimum within the range 1� s� N.
Additionally, the top-left panel of Figure 16 demonstrates that
the first six k-modes determine the spectral radius of the Rs,RKL

operator. Thus, we find the value of sopt in the following two
steps:

1. First we compute the spectral radius ρ(Rs,RKL) as a
function of s in the range 1� s� N using Equation (A34)
where k is restricted to 1� k� 6.

Figure 15. The absolute values of the eigenvalues (λk,RKL(s)) of the RKL
iteration matrix (Rs,RKL) as a function of k for different values of s.
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2. Then we find for what value s the above computed
spectral radius has the minimum value. This will give
sopt.

The process described above is a general approach for
determining the value of sopt for a 1D problem. However, it
can be further optimized by limiting the range of s used in the
computation of the spectral radius in step 1. As can be observed
from the top-left panel of Figure 16, the first few values of s are
redundant. We know that sopt lies between the first zero of
λ1,RKL(s) and N. Thus, restricting the s-range to [first zero of
λ1,RKL(s) � s�N] will reduce the number of operations
required to calculate the value of sopt. The procedure for
identifying the first zero of λk,RKL(s) will be outlined in
Appendix A.4.

A.4. An Accelerated RKL Scheme

From the top-left panel of Figure 16, we notice that each
Fourier mode or k-mode of the error has a unique optimal value
of s denoted by sk,opt. At sk,opt, the kth eigenvalue or λk,RKL(s)
has a value near zero, and this occurs at the first zero of
λk,RKL(s). Therefore, instead of selecting a universal s for the
entire spectrum, we can choose sk,opt for each k-mode and
decrease the corresponding error individually. The approach is
to commence the τ iteration with s= sk,opt, where we choose
k= N/2 at the initial iteration. Subsequently, after each τ-step,
decrease k by one, i.e., k= kprev− 1, and use the corresponding
sk,opt value. This progression continues until we reach k= 1. If
we still have not achieved the specified tolerance, we use
s= s1,opt for the remaining iterations until the desired tolerance
level is reached. This is because, during these accelerated
iterations, starting from k=N/2 to k= 1, all the short-
wavelength modes of the error are reduced below the tolerance
level. Consequently, the remaining residual corresponds to the
longest wavelength (k= 1) of the error. Therefore, we use s1,opt
for the rest of the iterations, which yields the fastest

convergence. We show the simplified algorithm in the
following:

k=N/2
while (res>tol)
s=s_opt(k)
Iterate(s)
k=k-1
if k<1
k=1

To determine sk,opt for a specific k-mode, we can numerically
compute the first zero of P k Ncoss p( [ ]) using Equation (A32).
However, we can also use the asymptotic form of the Legendre
polynomials to obtain the value of sk,opt numerically. For

1 cos 1d q- + < < (with δ a small positive fixed number),
the asymptotic form of P coss q( ) is given by Temme (2014),

P J s scos
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2
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where J0(x) is the zeroth Bessel function of the first kind. Thus,
from Equation (A32) the eigenvalues of Rs,RKL can be
approximated as

s J s
k

Nsin

1

2
, where .
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Although the validity of Equation (A37) is limited to large
values of s, we observe in Figure 17 that it agrees well with the
analytical values for 1� k� N/2. The top panel of Figure 17
displays the eigenvalues (λk,RKL(s)) for k= 1 (red), 5 (cyan),
and 32 (yellow) as a function of s, represented by solid lines.
The dotted lines in the same panel correspond to the

Figure 16. Top left: |λk,RKL(s)| as a function of s for the first seven eigenmodes. Bottom left: the spectral radius (ρ(Rs,RKL)) of the Rs,RKL operator. Top right:
minimum number of τ steps required to reduce the initial error by an order of two in an s-stage RKL scheme as a function of s. Bottom right: total number of single-
loop iterations (meff = s × mRKL) required for the same convergence as a function of s.
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approximation ( sk,RKL
apprxl ( )) for the respective k-modes. The

bottom panel shows the difference between λk,RKL(s) and
sk,RKL

apprxl ( ) for k= 1 (black), 5 (blue), and 32 (green).
For a given k value, θ is constant in Equation (A37).

Therefore, the first zero of sk,RKL
apprxl ( ) corresponds to the first

zero of J0(x). It is known that the first zero of J0(x) occurs at
x≈ 2.4048. Hence, we can obtain the optimal value of s for the
kth mode as follows:

s
k
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where Round(p) is defined as the nearest integer value of the
real number p. In the top panel of Figure 17, we show sk,opt
(horizontal dashed–dotted line) for k= 1 (black), 5 (blue), and
32 (green). We see that Equation (A38) represents the first zero
of the corresponding λk,RKL(s) very well.

Once we have obtained the optimal value of s (sk,opt) for each
k using Equation (A38), we can use it to perform the
accelerated RKL iterations discussed earlier in this section.
Figure 18 displays the optimal value of s as a function of the
wavenumber k. We observe that sk,opt is symmetric about
k= N/2 as expected. Additionally, a single sk,opt value
corresponds to multiple wavenumbers, particularly for high k-
modes. Consequently, one τ-iteration with such an sk,opt value
can simultaneously reduce the error for the corresponding k-
values. Thus, there is no need to iterate the solution for each k-
mode separately in the accelerated scheme discussed above. If
sk,opt= sk+1,opt for some k, we can skip the iteration for that k
and proceed to the next k value. An example of the algorithm is
presented below:

k=N/2
s_old=0

(Continued)

while (res>tol)
s=s_opt(k)
if s==s_old and k!=1
pass
else
Iterate(s)
s_old=s
k=k-1
if k<1
k=1

Appendix B
Performance Test for Different Iterative Solvers

Within this section, we present the comparative performance
of the G-S, SOR, and RKL methods (without the application of
multigrid acceleration) in solving the 3D problem discussed in
Section 4.1. The optimal overrelaxation parameter (ω) in the
SOR algorithm is obtained by the following expression (Press
et al. 1992):

2

1 1
, B1

J
2

w
r

=
+ -

( )

where ρJ is the spectral radius of the Jacobi iteration matrix. For
a 3D grid of size J× L×K with grid spacing (Δx, Δy, Δz) and
Dirichlet boundary conditions, ρJ is given by
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We consider a box with 1283 zones for the calculation,
which was distributed between 128 CPUs. The CPUs used
were Intel(R) Xeon(R) Gold 6326, whose base clock
frequency is 2.90 GHz. The parallel communications between

Figure 17. Top: the analytic (solid) and approximated (dotted) values of λk,
RKL(s) as a function of s for k = 1, 5, and 32. To calculate the approximation
we use Equation (A37). The dashed–dotted lines represent the value of sk,opt
(Equation (A38)) for k = 1 (red), 5 (blue), and 32 (green), i.e, the value of s
where the first zero of the corresponding λk,RKL(s) occurs. Bottom: the error in
the approximation, i.e., s sk k,RKL ,RKL

apprxl l-∣ ( ) ( )∣ as a function of s for k = 1
(black), 5 (blue), and 32 (green). We notice that the error in the approximation
(Equation (A37)) is 1% even for k = 32.

Figure 18. sk,opt as a function of wavenumber (k).
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the CPUs were performed with the message passing interface
(MPI) using the publicly available Open MPI v4.1.5 library
with the Infiniband EDR interconnect.

Figure 19 displays the total time taken by various solvers to
bring the maximum residual error below 10−10, as indicated by
the red bars. The corresponding time spent in MPI commu-
nications throughout the entire execution is also illustrated by
the blue bars. The results clearly demonstrate that, in terms of
the total execution time, the RKL method outperforms the SOR
and G-S techniques by a factor of roughly 2 and 15,
respectively. As previously mentioned, the communication
overheads for the SOR and G-S solvers are considerably
higher, comprising approximately 23% of the total execution
time. On the other hand, the time spent during parallel
communications in the RKL scheme amounts to only around
13% of the total time.
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