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Abstract: Nanocomposite materials have recently attracted great attention for their wide range of
applications, such as in smart materials, flexible electronics, and deformation sensing applications.
Such materials make it possible to combine a polymer with functional fillers. In this study, flexible
artificial leathers, exhibiting insulating properties and containing 1.5 or 2wt.% of graphene oxide
(GO) in the polyurethane (PU) layer, were electrically activated via CO2 laser irradiation to obtain
conductive paths at the surface exposed to the laser beam. As the material retained its insulating
properties out of the irradiation areas, the laser scribing method allowed, at least in principle, a printed
circuit to be easily and quickly fabricated. Combining a variety of investigation methods, including
scanning electron microscopy (SEM), optical profilometry, IR and Raman spectroscopies, and direct
current (DC) and alternate current (AC) electrical measurements, the effects of the laser irradiation
were investigated, and the so-obtained electrical properties of laser-activated GO/PU regions were
elucidated to unveil their potential use in both static and dynamic mechanical conditions. In more
detail, it was shown that under appropriate CO2 laser irradiation, GO sheets into the GO/PU layer
were locally photoreduced to form reduced-GO (RGO) sheets. It was verified that the RGO sheets
were entangled, forming an accumulation path on the surface directly exposed to the laser beam. As
the laser process was performed along regular paths, these RGO sheets formed electrically conductive
wires, which exhibited piezoresistive properties when exposed to mechanical deformations. It
was also verified that such piezoresistive paths showed good reproducibility when subjected to
small flexural stresses during cyclic testing conditions. In brief, laser-activated GO/PU artificial
leathers may represent a new generation of metal-free materials for electrical transport applications
of low-current signals and embedded deformation sensors.

Keywords: GO; polyurethane leather; laser irradiation; conductive wires; piezoresistive properties;
morphology; structure; DC and AC transport properties

1. Introduction

The field of polymer nanocomposites has attracted great scientific and industrial inter-
est due to the numerous improvements achieved in the last few decades. The increased
properties of these materials, including flame resistance [1], gas barrier [2], mechanical
strength/stiffness [3], and electrical/thermal conductivity [4,5], are influenced by the im-
pressive combination of the polymer with one or more fillers and additives [6,7]. Electrical
conductivity in insulating polymers can be typically obtained by mixing the polymer with
conductive fillers or by blending it with intrinsic conductive polymers [8,9]. Among all
polymers, thermoset polyurethane (PU) is tailored to suit a wide variety of applications,
from soft and flexible foams to tough and hard materials, depending on the native pre-
cursors (i.e., isocyanate and polyol types) and how they are formulated and cured. For
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example, polyol has long and flexible segments, making it a soft and elastic polymer, while
tougher or more rigid polymers are formed with a higher amount of crosslinking [10]. The
main innovations in polyurethane composites come from the use of natural oils [11] and/or
the addition of nanofillers. Beyond typical fillers with micrometric dimensions having dif-
ferent spatial orientations and dispersion degrees at the microscale, nanofillers may result
in more homogeneous distribution in the polymer matrix at the nanoscale with a higher
interfacial contact area, thus allowing the most effective interactions between matrix and
nanoparticles [12]. Nanocarbons are an obvious choice for reinforcing polymer matrices and
simultaneously providing electrical and thermal conductivity to composite materials [13].
Within carbon nanofillers, graphene oxide (GO) is a well-known graphene derivative. GO
is represented by sp3 hybridized carbon atoms and oxygen functional groups (i.e., hydroxyl
and epoxy groups on the basal plane of sheets and carboxyl groups at their edges) in the
Lerf–Klinovski model [14,15]. According to this model, a GO sheet contains two kinds of
regions: aromatic regions with unoxidized benzene rings and six-membered ring aliphatic
regions. However, the presence of polar functionalities by interrupting the aromatic do-
mains makes GO hydrophilic and an electrical insulator [16]. Interestingly, GO nanosheets
can be finely dispersed in polar solvents [17]. More interestingly, GO can be thermally or
chemically reduced (RGO) to reconstruct the hexagonal lattice for restoring graphene’s
properties, including electrical conductivity [18,19].

The addition of graphene, its derivatives, or other nanocarbons into polymers to form
polymer composites with ‘localized’ properties constitutes an even more advanced field of
innovation for the development of material-integrated sensors, whose functions (e.g., elec-
trical and/or sensor properties) are embedded in the composite materials [20–23]. Among
the most effective methods for undertaking localized processes on composite materials is
laser processing. For example, CO2 laser processing of polymers was initially used to cut
composites via high beam power (c.a. >100–300 W) [24]. More recently, the CO2 laser scrib-
ing process was adopted to electrically functionalize polymers under moderate laser power
(2–5 W) at the surface of polyimide (PI) without the presence of carbon nanofillers [25].
The authors reported the locally photothermal conversion of PI into graphene (i.e., LIG,
laser-induced graphene) for the fabrication of supercapacitors at the surface of the polymer
substrate. The fabrication of electrically percolating metal-free paths, thus retaining the insu-
lating properties outside the irradiation area, was also explored for carbon-nanotube-based
polymer composites for a laser power of c.a. 10–50 W [20,26,27]. Actually, the filamentous
structure of carbon nanotubes that appear ideal for making percolative paths has revealed a
few drawbacks, including production costs and environmental and toxicity issues that have
undoubtedly limited their use to this end. Other polymers and nanocarbons, including
nanographite and graphene, have also been explored, but the main constraint of carbon
wires is an electrical resistance as high as around 1 kΩ per cm of track [28] or smaller (c.a.
0.1–0.01 kΩ per cm of wire) [29].

In this work, the laser activation of the GO-filled PU leather surface to fabricate
electrically activated paths is reported for the first time. It will be shown that the effect
of laser is threefold: (i) photothermal reduction in the GO sheets of the outer PU leather
layer due to the strong interaction of GO sheets with the laser beam [19]; (ii) fabrication
of electrically conductive RGO paths inside an insulating matrix due to entangled RGO
sheets forming a continuous accumulation region when exposed to laser irradiation; and
(iii) testing of piezoresistive properties under cyclic flexural operations of laser-activated
regions. The results of this work pave the way for a wide range of new applications of PU-
based leathers, such as smart materials, flexible embedded electronics, and strain-sensing
applications [30–33].

2. Materials and Methods

Synthetic leather samples with the GO/PU nanocomposite layer were supplied by
Nanesa Srl and SPAC SpA. GO/PU composite leathers were treated using CO2 laser
equipment (FlyCO2/Towermark XL laser engraving machine, Lasit, Torre Annunziata
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(NA), Italy), consisting of a 10,6 µm wavelength laser beam, equipped with a scanning
head with focusing optics and 150 mm focal length (Lasit, Torre Annunziata (NA), Italy).
Electromagnetic emission with a maximum power of 100 W occurred in pulsed mode
(PWM type), at 5–15 kHz, generating a laser spot size of about 300 µm. Laser treatments
were conducted in static air, compressed air, or under N2 gas flow conditions. Before each
process, the focal lens was carefully cleaned with a cloth soaked in acetone. Operations
were carried out by varying the following process parameters: power (P), frequency (F)
in the 5–15 kHz range, writing speed (v), and repetition number (N), which defines the
number of irradiations along the same path.

The sample morphology and texture were investigated by means of an Evo50 SEM
(Zeiss, Oberkochen, Germany) equipped with an energy-dispersive X-ray (EDX) detector.
Morphological investigation was performed at an acceleration potential as low as 5–10 keV.
Samples were cryo-fractured to obtain cross-sections. Profilometry analysis was performed
using the Leica DCM81 confocal profilometer (Wetzlar, Germany) to evaluate the 3D
morphology of the conductive paths.

Thermogravimetric (TGA) analyses were performed by means of TA Q500 instrument
(TA Instruments, New Castle, DE, USA) from 20 ◦C to 700 ◦C (heating rate: 10 ◦C/min),
with an inert gas of nitrogen (flow rate of 40 mL/min), and then from a temperature of
700 ◦C to 800 ◦C in air (flow rate of 60 mL/min). This method was adopted to verify
polymer thermal resistance and carbon contents.

IR and Raman spectra were acquired on unperturbed and on laser-treated samples
through a Bruker Invenio (Billerica, MA, USA) FTIR spectrometer equipped with an ATR
unit and In Via Raman spectrometer (Renishaw plc, Wotton-under-Edge, UK) equipped
with a 20× objective and 244 nm and 785 nm laser lines. Laser power during the Raman
acquisitions was minimized (i.e., 1% or 5%) to avoid damaging the sample.

DC electrical measurements on GO/PU leathers before and after processing were
performed using both two-probe and four-probe methods connected with a Keithley 2420
source meter (Keithley Instruments, Solon, OH, USA). Ag paste was used to make elec-
trodes, which were connected with Cu wires working as connecting leads. Impedance
properties were measured by means of a potentiostatic electrochemical impedance spec-
troscopy (EIS) SP-150 potentiostat (BioLogic Science Instruments, Vaucanson, France) in
the range of 1 Hz–900 kHz at 10 mV oscillation. The EIS Spectrum Analyzer 1.0 package
(Minsk, Belarus) [34] was used for impedance data interpretation and for extracting the
equivalent circuit models.

The piezoresistive properties of laser-irradiated regions were obtained under a three-
point bending flexural test of samples induced by an Instron 5544 Series dynamometer
(Instron, Norwood, MA, USA). The instrument allowed making repeated cycles of flex-
ural tests (N = 100, 500 and 1000) with different upward and downward speeds (50 and
100 mm/s) and with maximum deflections at the center of the samples (4 mm or 5 mm).
The corresponding changes in resistance (R) values were monitored by means of a Keithley
2700E digital multimeter (Keithley Instruments, Solon, OH, USA).

Aging tests were carried out in the climatic chamber (ACS-Angelatoni Challenge 600
Environmental Chamber, Angelantoni, Massa Martana, Italy). Three tracks of the sample
GO/PU were spaced out to avoid possible contact between them and connected with Cu
wires. Thermal treatment from 20 to 80 ◦C (heating rate = 1 ◦C/min) was carried out.

3. Results and Discussion
3.1. Morphology, Structure, and Thermal Analysis of GO/PU-Based Leather

The multilayered structure of the leather is shown in Figure 1. The outermost layer
consisted of a GO (1.5 or 2 wt.%)-loaded PU layer c.a. 600 µm and two different PVC layers,
one foamed and one more compact c.a. 800 and 200 µm in thickness, respectively.
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Figure 1. Multilayered leather: (a) SEM cross-sectional view; (b) representation of the layer structure
and composition. In the inset of (a), a picture of flexible layered leather is shown.

Finally, underneath the compact PVC layer, there was a PU underlayer of variable
thickness for the good appearance and touching of synthetic leather. The structure and
composition of the different layers had a soft texture; the material is flexible and soft to the
touch, suitable for covering surfaces. This complex structure represents a good material for
housing integrated electronics [30].

TGA/DTGA analyses of the GO and 2 wt.% GO-loaded PU layer are shown in
Figure 2a and b, respectively.
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Figure 2. TGA (blue curves) and DTGA (red curves) plots of GO sheets (a) and 2 wt.% GO-loaded
PU leather layer (b), obtained under N2 (up to 700 ◦C) or air flow (from 700 ◦C up to 800 ◦C). In
the insets of (a,b), the isothermal treatment of GO at 20 ◦C under N2 gas flow and the thermograms
zoomed in to the 170–195 ◦C interval for the GO-loaded PU leather layer are shown, respectively.

The TGA plot of GO sheets thermally treated under inert conditions (Figure 2a, blue
dotted curve) showed weight loss occurring from room temperature to 550 ◦C. Upon
isothermal treatment at 20.1 ◦C for 60 min (inset of Figure 2a), weight loss of about 10%
was observed. In addition, residual weight for GO was 79, 58, 51 and 43 wt.% at 165, 196,
250, and 550 ◦C, respectively. From the related DTGA weight loss derivative (Figure 2a, red
dotted curve), maxima at 68, 186, and at 247 ◦C were observed. It is noteworthy that weight
loss occurring at lower temperatures (< c.a. 120 ◦C) mainly refers to physiosorbed water on
the GO surface, while the remarkable weight stepdown up to 200 ◦C, matching a maximum
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in the DTGA plot centered at 186 ◦C, can be attributed to the decomposition of labile oxygen
functional groups (i.e., hydroxyl and carboxylic acid groups) occurring during thermal
reduction in GO [35]. The TGA plot of the 2 wt.% GO-loaded PU layer (Figure 2b, blue-
dotted curve) showed an apparently sharp TGA profile, with a remarkable loss in weight
from about 200 ◦C up to 440 ◦C (with several convoluted DTGA bands forming maxima at
308 and 381 ◦C, as shown in Figure 2b, red-dotted curve). The band envelope was assigned
to the decomposition of urethane bonds and of ester groups occurring at lower (200–350 ◦C)
and higher (350–450 ◦C) temperatures [36], respectively. At higher temperatures, the DTGA
plot was more linear up to 700 ◦C. At 700 ◦C, a second remarkable loss in weight was
observed after switching from nitrogen to air flow. This high-temperature weight loss
(2,2 wt.%) can be attributed to the combustion of the formed RGO nanosheets. A deeper
investigation of the DTGA signal (inset of Figure 2b, red curve) revealed a very broad
signal with a maximum centered at 185 ◦C, corresponding to the weight loss also coming
from thermal reduction in GO.

In conclusion, from the TGA experiments, it was possible to observe that thermal
reduction in GO sheets also formed RGOs in the GO-loaded PU layer. The residual content
(c.a. 2.2 wt.%), obtained from the TGA plot at 800 ◦C is very close to the value of GO
in the PU layer (i.e., 2 wt.%), with the contribution of char residues coming from the PU
aromatic domains. It will be shown (see ATR spectra) that aromatic domains in PU are low
in quantity.

3.2. CO2 Laser Treatments on the GO-Loaded PU Layer

It is known that the interaction of laser with carbon-filler-loaded polymers (CNTs,
graphene, GNPs, GOs, graphite fibers) may originate numerous physical/chemical pro-
cesses on the polymer and on the carbon phases [27,37]. Such processes may have many
effects on material properties, including electrical properties [20,26,28].

CO2 laser processing was performed on the GO-based PU layer of leathers containing
1.5 and 2 wt.% of GO. A preliminary series of laser treatments was performed on laser-
irradiated paths 10 mm in length by adopting different laser parameters, including laser
power (P) and scribing speed (S), with the aim of achieving the optimum electrical charac-
teristics (i.e., lower resistance). Repeated irradiations (N) were also performed. Results are
shown in Figure 3.

In Figure 3b, the scribing with speeds between 20 and 100 mm/s is illustrated. From
this figure, it is clear that by increasing the writing speed, the resistance (R) increased by 1–2
orders of magnitude and that the difference between GO 2 wt.% and 1,5 wt.%-loaded PU is
small at low writing speeds (25 mm/s), while it increases significantly at higher speeds
(≥75 mm/s). In any case, R is always lower for GO/PU with GO 2 wt.%. In Figure 3c, laser
writing with different laser power is illustrated. From this figure, it is clear that by increasing
the laser power, resistance R decreases, and that composition plays a crucial role. In fact, the
decrease in resistance is significantly larger for PU with GO 2 wt%, even at moderate laser
power for a single irradiation path, for writing speed = 30 mm/s, and for the selected laser
power intervals. In Figure 3d, the effects of repeated writing along the same 10 mm path and
of laser power are illustrated. The process is much more complex if several irradiations are
repeated along the same path and considering different writing speeds. Laser irradiation is
a very complex phenomenon that can simultaneously produce several thermally activated
effects, including melting, vaporization, depolymerization, retro-polymerization, and
polymer decomposition processes, as well as ablation and pyrolysis of the polymer and
fillers [38,39]. Partial combustion of carbonaceous components is also possible under inert
flow conditions when the processing environment is not sealed. Some of these effects may
be more favorably directed toward certain processes by some of the process parameters,
such as laser power (P) at the sample surface, speed (S), and repetition (N). Although this
topic is very broad and goes beyond the scope of this paper, we can conclude that the
effect of repeatedly writing along the same path resulted in a drop in electrical resistance
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R by about two orders of magnitude. The decrease in resistance R was observed to be
remarkably higher at the lower laser power and for the first 10–15 repeated irradiations.

On the basis of all these considerations, it emerged that 2 wt.% GO-loaded PU was the
most efficiently processed sample by the laser, and it was subjected to further analyses. In
particular, the morphological and structural characteristics of the conductive traces were
investigated.
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3.3. Morphology and Structure of Laser-Irradiated Regions

The morphology and structure of laser-irradiated leather via single-pass irradiation
(N = 1) with 10 W and with a speed of 30 mm/s are shown in Figure 4.
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(c) low- and (d) high-magnification cross-sectional views of the GO/PU layer. In the inset of (c), an
optical 3D profilometry image of the path is illustrated.

From the top-view SEM images (Figure 4a,b), the effects of the laser beam forming a
c.a. 1 mm wide path on the surface of the sample are illustrated (Figure 4a), while from the
enlarged SEM image (Figure 4b), it is clear that in the central area of the laser-illuminated
path, there are nanosheets with a basal size of 20–40 µm forming a continuous network
along the entire path. Two cross-sectional SEM images are shown in Figure 4c,d. By
comparing these two images with cross-sectional SEM images of the untreated sample
(Figure 1a), it is clear that a groove in the GO/PU layer, c.a. 200–300 µm in depth in its
central region, was formed as a consequence of laser treatment (Figure 4c and inset therein).
Furthermore, in the region, laser-irradiated leather comprised nanosheets and patches of
an irregular shape forming a network that is several microns thick. The appearance outside
the groove wall was the same as that generally observed below the percolation threshold
for polymer composites containing isolated graphene sheets and platelets [40,41].

The morphology and structure of laser-irradiated leather via multiple-pass irradiation
(N = 15) along the same path by 10 W and with a speed of 30 mm/s are illustrated in
Figure 5.
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Similar patterns were observed for polymer composites containing nanocarbons irra-
diated by 5–50W CO2 laser power [20,26–29]. From the top-view SEM images (Figure 5a,b),
the effects of laser irradiation forming on the surface of a sample path c.a. 1,8 mm wide
are illustrated in Figure 5a, while from the enlarged top-view SEM image (Figure 5b), it
was clear that the multiple-pass irradiated path constituted nanosheets with a basal size of
20–40 µm forming a continuous layer along the entire path. Cross-sectional SEM images
are shown in Figure 5c,d. By comparing these two SEM images with cross-sectional SEM
images obtained by a single-pass irradiation path (Figure 5c,d), it was clear that laser irradi-
ations repeated on the same area caused a deeper groove in the GO/PU layer (Figure 5c
and inset therein). Furthermore, the nanosheet layer in the irradiated path was as thick as
40–150 µm, and it was remarkably higher in the central portion of the irradiated region
(Figure 5d). Based on the aforementioned results, we can state that (i) electrical resistance R
can be measured after laser irradiation, and (ii) R decreased with the thickness and width
of this layer consisting of nanosheets. However, nothing was inferred about the nature of
the nanosheets after laser treatment by microscopies, and a spectroscopic investigation was
performed.

3.4. IR and Raman Spectroscopies of the GO-Loaded PU Layer before and after Laser Treatment

The ATR and Raman spectra of the 2 wt.% GO-loaded PU layer before and after laser
irradiation are shown in Figure 6a.
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The IR spectrum of untreated PU leather (Figure 6a, black line) shows an absorption
band at 3326 cm−1 and a band envelope at 2958 (shoulder), 2929, and 2861 cm−1, which
are associated with N–H and aliphatic symmetric/asymmetric CH2 stretchings [42]. A
band with a maximum at 1727 and shoulder at 1700 cm−1 can be assigned to free C=O
and H–bonded C–O stretching [31], respectively. Furthermore, absorptions at 1632 and
1590 cm−1 indicate the aromatic ring skeleton (C=C) of PU [43]. C–N bondings in PU
have distinctive IR bands at 1539 and 1257 cm−1 [31]. Additional bands at 1461, 1167,
and 1139 cm−1 can be assigned with alkoxy C–O, alcoholic (C–OH), and epoxy O–C–O
stretching, respectively [36,44]. No adsorption band assigned to the isocyanate region of
the prepolymer was found (c.a. 2312 cm−1), thus indicating complete PU crosslinking [36].
The IR spectrum of the PU surface on the laser-irradiated path (Figure 6b, blue line)
exhibits absorption peaks of different relative intensities at 1725, 1462, 1432, 1359, 1171,
and 959 cm−1, associated with the O- and N- functional groups, which are indicative of
a certain degree of degradation and evolving oligomers [45] induced by localized laser
heating [46]. No significative variation of the aromatic ring skeleton bands can be observed
(c.a. 1640–1550 cm−1), as also reported for PU containing 1–3 wt% graphene [47]. This
may be attributed to the fact that the IR spectroscopy of conjugated C–sp2 bonding is
greatly affected by the presence of both chemical and physical defects, such as polar groups
at the surface [48]. To this purpose, Raman spectroscopy was adopted to shed light on
the carbon components of composite leather. The Raman spectra of GO/PU before and
after laser irradiation are shown in Figure 6b. The main Raman fingerprints of GO/PU
at 2925, 1612, 1441, and 1376 cm−1 are associated with the symmetric stretching vibration
of −CH2 [49–51], C=C aromatic breathing mode vibrations, bending vibration of −CH2,
and D-band of GO [50,51], respectively. The D-band is associated with structural disorder,
and its intensity is inversely related to crystallinity [49]. There is also a contribution of the
G peak (E2g mode) of GO with maximum c.a. 1585 cm−1 [50] to the main broad feature.
The situation after laser irradiation was remarkably different. The band at 2925 cm−1

decreased in intensity, while the band at c.a. 1600 cm−1 was eroded, exhibiting a shoulder
at 1612 cm−1 and a narrow peak at 1585 cm−1.

After further laser treatments (N = 10), the PU features disappeared, and Raman
spectra were fully dominated by carbon fingerprints (Figure 6b, green and blue lines) and
in accordance with the Raman spectra of PU containing 1–3 wt.% of graphene, whose PU
fingerprints decreased in intensity or disappeared with increasing the graphene loading [47].
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As for G- and D-fingerprints, the G-band was narrowed and shifted to 1581 cm−1, while
the D-band decreased in intensity. In addition, the D-band at 1620 cm−1, corresponding to
an intra-valley resonance with the G-band in the presence of impurities [50] appeared at
the increasing laser treatment (N = 15). All these observations indicated that laser treatment
was responsible for the remarkable chemical modification of the irradiated path, with
partial polymer decomposition and with the formation of reduced-GO (RGO) sheets. The
decomposition of such PU was thermally observed from 200 ◦C, as observed from the TGA
plot (Figure 2). On the other hand, the reduction in GO promoted by CO2 laser irradiation
is in accordance with several studies [46,51,52]. While qualitative identification of Raman
spectra is possible, a more quantitative approach including IG/ID evaluation is not possible
due to the complex band envelope in the Raman spectra before laser irradiation. However, a
decreased IG/ID with increasing irradiation time can be attributed to the gradual decreased
intensity of the D-band. Interestingly, the G- and D-bands together with the absence of
second-order fingerprints (2D and D+G bands) were informative of a multilayer structure
of reduced-GO sheets that contain a certain degree of structural disorder [51]. Furthermore,
according to the SEM images shown in Figures 4 and 5, it was concluded that after laser
treatment, the irradiated paths were made of a continuous 3D envelope of reduced-GO
sheets. In the following paragraphs, the effects of laser treatment with the resulting
formation of reduced-GO paths will be analyzed from an electrical viewpoint.

3.5. DC and AC Electrical Properties before and after Laser Processing

In Figure 7, the DC and AC electrical properties of laser-irradiated paths are illustrated.
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Figure 7. DC and AC electrical properties of a 60 mm conductive laser-irradiated path as obtained by
four-probe measurements (electrical measurements by four 10 mm spaced electrodes): (a) I–V graph
of the conductive track (red curve), as compared to GO/PU polymer composite leather (GO 2 wt.%)
(black curve); (b–d) Bode magnitude and phase and Nyquist plots for the same conductive path (red
points) in the 1 Hz–900 kHz frequency range, respectively. EIS-fitted curves (B/N points) are shown
for comparison in (b–d); (e) schematic representation describing capacitance (C) and resistance (R)
elements of the RGO sheets in the conductive paths after laser irradiation according to frequency
responses.

In Figure 7a, DC current–voltage (I–V) properties obtained by four-wire resistance
measurements on the laser-irradiated path are compared with the bulk properties of
GO/PU polymer composite leather (2 wt.% of GO). In this figure, a linear dependence
between the current and the voltage drop within a ±10 V interval is shown as compared to
the GO/PU polymer composite leather. It is clear that the laser-irradiated paths were the
only electrically conductive regions, while the surface not treated with laser and the bulk
of the GO/PU leather were both insulating. It is worth mentioning that the linearity and
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ohmic behavior suggest the formation of a continuous path, which is usually observed for
carbon-based polymer composites under DC measurements over the electrical percolation
threshold [4,6,7,53,54]. The laser-irradiated region can be described as a linear resistance
component with moderate electrical resistance, which is calculated to be c.a. 320 per 10 mm
of track linear length as obtained from the slope of the red curve. No relevant variations
between four-probe and two-probe DC resistance measurements were obtained. Together
with the confirmation of DC electrical properties, and for a more complete investigation,
impedance measurements were also performed in the small-frequency domain to model
electrical properties with the structure of the conducting paths and with junctions between
different conductive particles.

Figure 7b and c display Bode magnitude and phase shift plots, which illustrate the
frequency dependence in the 1 Hz–900 kHz interval for a 60 mm conductive laser-irradiated
path (four 10 mm spaced electrodes in the central path region). The AC electrical properties
in the lower-frequency domain (Bode magnitude plot, Figure 7b) showed that impedance
magnitude |Z| was constant and did not depend on the frequency until a critical value,
which was estimated to be about 100 kHz (see the tangent lines’ intersection shown in
Figure 7b). Furthermore, the impedance phase angle (ϕ) was near 0◦ until the critical
frequency value (Figure 7c). Taken together, these two simultaneous observations are
representative of carbon-based composites with filler concentrations above the percolation
threshold (Φc) [55,56] and corroborate the fact that conductive paths included not only a
resistive component but also a capacitive phase.

In Figure 7d, a Nyquist diagram in the 1 Hz–900 kHz frequency interval is shown.
In this plot, real impedance Z’ versus imaginary impedance Z” for a 10 mm conductive
laser-irradiated path is illustrated. Ohmic conduction behavior occurred at the lower
frequencies, and capacitive effects were neglected, while the higher frequency domain of
the spectrum exhibited a semicircle shape with a Z” maximum at c.a. 545 kHz. In this
regard, the contribution at high frequencies of individual capacitive effects, which are
frequency-dependent, occurred between the conductive RGO sheets and contributed to the
overall impedance from the critical frequency that is calculated to be about 100 kHz. The
contribution of such coupling capacitances between conductive sheets was, however, very
limited compared to that of compounds with filler concentrations below Φc [20,55].

The Nyquist (Cole–Cole representation) and the Bode plots were well-matched by an
equivalent circuit model consisting in resistance (R1) in series with additional resistance
(R2) and capacitance (C) in parallel (Inset of Figure 7d). A physical interpretation of this
equivalent circuit model can be made based on several features. Firstly, the imperfect
contact between RGO and electrode materials (i.e., contact resistance, Rs) contributes to
R1 together with the intrinsic resistance of RGO along the sheets. Secondly, the overall
structure of the RGO sheet scaffold, including sheet proximity and junctions, originates
capacitance C and contributes to the R and C elements in parallel, respectively (Figure 7e).
Furthermore, high-frequency signals through conventional and unconventional conductors
are affected to a certain extent by skin effects (i.e., current density is higher near the surface
of the conductor), which alters the operative transport characteristics [57].

3.6. Piezoresistive Properties

The piezoresistive properties of GO/PU (2 wt.% GO) after laser irradiation were
determined for specimens 20 × 60 mm in size via the three-point-bending method during
repeated cycles of displacement (D) of 4 and 5 mm using 50 and 100 mm s−1 as cycling
speeds. Piezoresistive curves for D = 4 mm and cycling speeds of 50 and 100 mm/s are
illustrated for the first 100 cycles (Figure 8a,b).
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Figure 8. Piezoresistive response of the 60 mm laser-irradiated conductive tracks in the 2 wt.%
GO-loaded PU composites measured by the 3-point bending method for 4 mm of displacement for
different cycling speeds. Variation of ∆R/R0 (red line) for 100 loading/unloading cycles (black line)
using (a) 50 mm/s and (b) 100 mm/s. ∆R/R0 variation in the first and last 10 loading/unloading
cycles of (a,b) is shown in the top and bottom insets, respectively.

From these curves, it is clear that ∆R/R0 decreased more rapidly in the first 10–20 de-
formation cycles, and then it progressively become more stable (see top and bottom insets in
Figure 8a,b). We can associate this rapid decrease in ∆R/R0 with a plastic deformation. Fur-
thermore, the piezoresponse and displacement variation were observed to be synchronous,
with ∆R/R0 maxima corresponding to the maximum deformations. A broadly similar
decreasing trend for the first 100 cycles was observed when the speed was 100 mm s−1

(Figure 8b). However, under these conditions, there were significant differences in the
definition of piezoresistive characteristics for both the first and the last 10 cycles. Notwith-
standing the synchronization between the piezoresistive signal and elongation, the ∆R/R0
profile was more asymmetrical and distorted. This asymmetry corresponded with the dis-
placement return. Remarkably, the dimensional recovery of the material was too slow when
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the speed was 100 mm s−1, but this behavior was less than 20 per cent of the piezoresistive
signal magnitude observed in each cycle.

The piezoresistive curves in the first 100 cycles for D = 4 and 5 mm and cycling speeds
of 50 mm/s are compared in Figure 9a,b.
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respectively.

From these curves, it is clear that the higher displacement (5 mm) affected the piezore-
sponse, which decreased more rapidly in the first 10–20 cycles of deformation but continued
to decrease in the last 10 cycles of 100. Although the piezoresponse and displacement
variations were still observed to be correlated, the ∆R/R0 peaks were observed to be highly
asymmetric. In addition to strong cycle asymmetry, there was a second rebound peak cor-
responding to the displacement return, which was much more defined in the last 10 cycles
(Figure 9b, inset at the bottom). It is worth mentioning that the piezoresistive behavior
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was remarkably affected by the higher deformation, and that during the unloading step,
the presence of rebound peaks can be attributed to the rearrangement of the percolation
paths of RGO with the formation of new paths and destruction of old RGO sheet networks,
as observed by other authors [58–60]. Furthermore, a small contribution to piezoresistive
response in all these tests, determined by geometric shape variation, cannot be excluded.

A duration test was performed to evaluate the piezoresistive response for 500 defor-
mation cycles using a cycling speed of 50 mm/s and a displacement of 4 mm (Figure 10).
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Figure 10. ∆R/R0 duration test (red line) for 500 loading/unloading cycles (black line) using a
cycling speed of 50 mm/s for a displacement of 4 mm. The ∆R/R0 variation in the first and last
10 loading/unloading cycles is shown in the top and bottom insets, respectively.

From this figure, it is clear that ∆R/R0 rapidly decreased in the first 10–20 deformation
cycles due to a plastic deformation. Then, it was more constant (see top and bottom
insets in Figure 10) up to 500 cycles. Notwithstanding the synchronization between the
piezoresistive signal and displacement, the ∆R/R0 profile was a bit asymmetrical. This
asymmetry corresponded with the displacement return regions.

4. Conclusions

In this study, flexible PU-based leathers containing 1,5 and 2 wt.% GO in the polymer
matrix with insulating properties were electrically activated by CO2 laser processing to
fabricate conductive paths at the surface exposed to the laser beam. By combining different
investigation methods, including SEM, optical profilometry, and IR and Raman spectro-
scopies, the effects of laser irradiation on the GO/PU leather were revealed. Furthermore,
DC and AC electrical measurements were adopted to show their potential use under static
and dynamic conditions. In more detail, it was shown that under appropriate CO2 laser
irradiations, GO sheets in the GO/PU layer were locally photoreduced to form entangled
RGO sheets, creating an accumulation region at the surface directly exposed to the laser
beam. When the laser process was performed along regular paths, these RGO sheets formed
electrically conductive wires, which exhibited piezoresistive properties when exposed to
mechanical deformation. It was verified that these piezoresistive regions functioned quite
linearly when subjected to small bending stresses. The piezoresistive properties were
sufficiently effective for stress monitoring and showed durable properties when subjected
to repeated bending cycles (N ≥ 500). In summary, laser-activated GO/PU artificial leathers
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may represent a new generation of metal-free materials for low-current electrical signal
transport applications and embedded deformation sensors.
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