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Abstract

Publishing users’ sensitive information for research or statistical analysis, in a way that pre-
serves the privacy of an individual, is an active area of research. The current de facto stan-
dard of privacy is differential privacy. We focus on the notation of differential privacy. The
guarantee of differential privacy is that the outcome of a computation, whichever it is, will
not have a significant impact on no individual’s information. In this thesis, we study ran-
domization protocols for the aggregation of sensitive information in a differentially private
manner. Our proposed solution can be executed on a trusted or non-trusted data curator who,
as we will see, is the responsible for data aggregation in case data is collected from many
sources.

Our approach utilizes the randomized response technique in a novel manner: it provides
privacy guarantees to users during the data collection and at the same time preserves the
high-utility of the analysis. The randomised response technique protects the individual’s
data privacy by injecting a controlled amount of noise in data so that the original data is not
released as it is. The advantages of randomised response techniques are that the production
of the noisy outcome can be done "locally" where the user’s data reside, using local differen-
tial privacy. Local differential privacy ensures a privacy guarantee using differential privacy
and in addition, it also ensures that users’ information is never visible to anyone, neither to
the data curator who aggregates data from the sources.

In this thesis, we also explore the possible modifications of our proposed randomization
mechanism, since generating all the possible combinations of the attributes will be compu-
tationally expensive when the domain size is large. To reduce the computational cost; we
use low-degree Bayesian networks to reduce the attributes combinations in the contingency
tables by focusing only on the attribute having higher mutual information. In this work, we
present a privacy-preserving learning procedure that learns the structure of a Bayesian net-

work from the noisy data where the protection to the users’ data is ensured by the addition



of noise to the original data. In the second proposed version of our randomised protocol, we
utilize the learnt Bayesian networks to perturb the contingency tables that represent the low-
dimensional joint distribution of variables. We approximate the joint distribution of users’
data using the product of the set of lower-dimensional marginals. We use our modified ver-
sion of the randomization protocol to inject noise into each marginal to ensure differential
privacy, and then use these noisy marginals along with the Bayes network to construct an
approximation of the data distribution. We can also generate synthetic data by sampling tu-
ples from this approximated distribution. In this thesis, we also combine our randomization
protocol with another mechanism to insert noise in data, that is useful whenever the data has
discrete values, that is called the @ geometric mechanism. In this way we create a hybrid
randomization protocol which ensures a privacy guarantee while maximizing the utility in
the released data.

In this thesis, we also perform experiments on the use of Bayesian networks in practical
application domains. To this aim, we exploit the use of a controller area network (CAN-bus)
to monitor sensors on the buses of local public transportation in a big European city. The
aim is to advise fleet managers and policymakers on how to reduce fuel consumption so that
air pollution is controlled and public services are improved. We deploy heuristic algorithms
and exhaustive ones to generate Bayesian networks among the monitored variables. The aim
is to describe the relevant relationships between the variables, to discover and confirm the
possible cause—effect relationships. In addition we predict the fuel consumption dependent
on the contextual conditions of traffic, and enable an intervention analysis to be conducted
on the variables so that our goals of fuel reduction are achieved. We propose a validation
technique of the Bayesian networks based on the principle of Granger causality: it relies upon
the observations of the time series formed by the successive values of the variables in time.
We use the same method based on Granger causality as well, to rank the multiple Bayesian
networks obtained by the adoption of different discovery algorithms based on heuristics,
with the purpose to evaluate the alternative Bayesian networks and select the most promising

one.
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Chapter 1

Introduction

The data collected from smart devices, the Internet of Things (IoT), and Smart Homes can
be used for mining purposes and are potentially beneficial for organizations having a large
user base, such as Google, Amazon, and Samsung. Data collected from such devices have
become an invaluable asset for research purposes, statistical analysis, product designers,
and application developers. Such datasets contain personal and sensitive information about
individuals. For example, the dataset may contain medical profile data, genomics, financial
transactions, socioeconomic attributes, and geolocation data. When publishing such datasets
for statistical analysis, the data curator faces a tradeoff between data utility and data privacy.
On one hand, if the data curator publishes such data (or even some statistical information
about it), the outcome of the publication can be beneficial for the society and the population
like in applications for the early monitoring of emergencies, the support to elderly people
from remote and for improving the services of organizations having a large user base. On the
other hand, for legal and ethical reasons, the privacy of the individuals in the dataset should
be protected. Privacy-preserving data analysis aims to accommodate these objectives by
providing a balance between data utility and privacy.

In recent years, data breaches have resulted in the unintended disclosure of millions of
users’ sensitive information [2, 3, 4, 5]. Data breaches are sometimes immutable: once the
dataset is published, there is no repossess. Sometimes these breaches can be reduced. For
example, if someone stole my password, I can easily change it, I can easily block and reissue
a new credit card if it gets stolen. But, there might be situations where the data breaches
result in permanent damage. For example, suppose leaked data contains someone’s medical

history. There is no way the individual can change his medical diagnosis just because the
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data has been exposed in a data breach. Hence, data breaches are permanent, therefore, the
published data must be protected by any means.

Privacy-preserving data publishing means publishing sensitive information in such a
way that it can fulfill the research goal and at the same time it maintains the privacy of an
individual. The data owner collects the data and applies some modification techniques to
erase or modify the personally identifiable information to protect the sensitive information
of individuals. This modified data is then published to fulfill the research purposes. For
extensive acceptance, all data-driven applications must guarantee a high level of privacy
to their users and accuracy to their applications. Differential privacy is a current de facto
standard of privacy, which imposes a statistical requirement on the output of the published
data. A significant amount of work has been conducted in achieving this guarantee while
maximizing the utility of the released data, especially in the centralized trusted third-party
aggregator [6,7, 8, 9]. However, in recent years each participant in a centralized trusted ag-
gregator is allowed to ensure the differential privacy guarantee in the release of information
in isolation with respect to the other participants. This gives the mechanisms like Federated
Learning [10] and Local Differential Privacy (LDP) [11].

The mechanisms of local differential privacy promises statistical disclosure control using
differential privacy with a further assurance to the participants that their data is never visi-
ble to anyone and they retain plausible deniability of their private information. LDP solves
the privacy in a centralized trusted third-party data aggregator that collects randomized re-
sponses from the users. In this thesis, we propose that in the adoption of randomization
protocols we do not need and are not willing to rely on a trusted data curator because this
one is also a single point of failure in the mechanism of data collection and of machine
learning model creation. Randomized response mechanism randomized the outcome of the
data at the client machine locally, without compromising the users’ sensitive information.
According to the solution we propose, the curator can still build reliable prediction models
on the collected amount of randomized data. Our solution utilizes the randomized response
technique in a novel manner: it provides a privacy guarantee during the data collection and

simultaneously maximizes the data utility in statistical analysis.



CHAPTER 1. INTRODUCTION

1.1 Outline and Contributions

We divide the contribution of this thesis into four main parts. In the first part, we present our
randomize response block aggregation technique that utilizes randomize response to collect
the users’ sensitive information. In the second part, we combine our proposed model with
a geometric mechanism to build a sophisticated randomization technique that is not only a
privacy guarantee but also provides high utility in the released data. In the third part, we
characterize the notion of utility, both theoretically and by means of experimental analysis
in which we compare our protocol with traditional privacy-preserving mechanisms such as
differential privacy with Laplace distributed noise. In the last part, we present Bayesian
heuristic algorithms, driven by the BIC score and brute force with the purpose of comparing
the ability of the algorithms to converge to the same resulting networks. We evaluated their
results with the adoption of Granger causality, a third-party criterion, based on the time
series formed in time by the observed variables. Chapter 2 and 3 will cover the necessary
background, syntactical privacy preservation and failure, and differential privacy.

Chapter 2: Insecure Techniques: Exploring Approaches with Limited Semantic
Security
Chapter 2, We start by providing some of the traditional privacy-preserving models, their
drawbacks, and privacy issues. Specifically, we show some of the methods for the privacy-
preserving data publication practice of releasing datasets while protecting the privacy of
individuals whose data is included. The goal is to provide useful information while mini-
mizing the risk of re-identification or unauthorized access to sensitive data. It is important
to note that no method for privacy-preserving data publication is perfect. There is always
the possibility that an attacker could use sophisticated techniques to identify individuals in
an anonymized dataset. At the end, we provide some of the examples of significant privacy
breaches that have occurred in recent years:

Chapter 3:Differential Privacy
In Chapter 3, we discuss about differential privacy, its properties, characteristics, and some
well-known mechanism for achieving differential privacy. The central theme behind differ-
ential privacy is to add a controlled amount of noise to the output of the query in a way that
makes it impossible to tell whether a specific individual’s data was included or excluded in
the dataset. This is done by adding random noise to the data, which makes it difficult to

distinguish between the original data and noisy data. Most of the literature on differential



CHAPTER 1. INTRODUCTION

privacy focuses on the setting of centralized computations: where the server performs data
analysis and outputs aggregate information in a privacy-preserving manner. We work be-
yond this limitation and provide a mechanism in which the server/aggregator does not access
any client’s true values or even build a survey dataset in a privacy-preserving manner from
scratch.

Chapter 4: Randomization Response Block Aggregation Model
In Chapter 4, we proposed a randomization response block aggregation model. In this pro-
posed technique, the natural and more general setting is when each client has multiple at-
tributes, and the server is interested in learning the joint distribution of subsets of these at-
tributes. In our approach we do not wish to harm the data owners in the sample by adopting
an approach of local differential privacy (LDP) rather than adopting the weaker global dif-
ferential privacy (GDP). With GDP there is the presence of one or more aggregators which
store the true data and could be single point of failures and be the goal of attacks. LDP is
stronger than GDP because it adds the restriction that even adversaries might have access to
the personal responses and they still will be unable to learn about the single users’ personal
data. In the proposed protocol, the private, randomized data of a respondent is generated
after the selection of subsets of the attributes. The values of these attribute subsets are com-
municated in a distributed environment to one or more aggregators. The single limitation is
that the individual respondent does not have to communicate the same attribute in multiple
subsets but just in one. The aggregator who receives the randomized data values from the
subset of attributes has the task of computation of contingency tables with the frequencies of
the observed values of the attribute subsets. Thanks to the protocol properties, we demon-
strate that it is possible to reconstruct with an acceptable accuracy the true joint probability
of the attribute subsets from the possibly noisy values, communicated by the individuals
using the randomization protocol. The values do not need to correspond to the true ones
for each individual, thanks to the deniability property of the protocol. Moreover, in our ran-
domized protocol, the randomization is local to the individual users, and there is no need
for a different, trusted organization to perform the randomizer or the addition of a verified
amount of noise.

Chapter 5: Randomized Response, a Modified Version and a-Geometric Mecha-
nism

In Chapter 5, will present the second version of our randomized response block aggregation
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protocol discussed in the first part. In this second version, we use Bayesian networks to limit
the joint distribution of variables at a lower-dimension to approximate the full-dimension of
the data. Hence it will reduce the overall computation time while preserving the utility of
the data in the synthetic dataset. Bayesian networks (BN) is employed also to perform an
assessment of the observed phenomena and to perform an intervention analysis on the causal
variables so that the monitored target can be improved. We construct a private Bayesian net-
work by executing the GreedyBayes algorithm [1] and collecting the randomized response
from the clients on the attribute-parent pairs identified by GreedyBayes. This phase will help
in limiting the number of attributes pairs in the contingency tables to be considered because
the remaining attribute pairs can be eliminated since they are considered as statistically in-
dependent by the Bayesian network produced by GreedyBayes. Once the Bayesian structure
is constructed, we launch our 2" version of the randomization protocol to focus on the fixed
numbers of attribute-parent pairs to collect randomized responses in the subspace of the at-
tributes that results dependent in the discovered BNs. We created synthetic data from the
differentially private Bayes structure, without explicitly materializing the full-dimensional
distribution.

Chapter 6: Bayesian Networks for Fuel Prediction and Reduction in Public Trans-
portation
In Chapter 6, we employ machine learning models, specifically, Bayesian networks, to ana-
lyze sensor data installed on the buses of a public transport company in a European city. The
sensors collect data about the vehicle and its use (acceleration, braking, speed, stop dura-
tions with the engine on, etc.) with some contextual information about the vehicle location
(such as altitude). An analysis of the sensor data using machine learning algorithms applied
using procedures of predictive maintenance can also be used to improve vehicle equipment
maintenance, with a reduction in costs due to stop times for faults and repair. The main con-
tribution of this work is to provide a BN on the variables monitored by sensors connected
in CAN-bus. These BNs show which variables we should change to control the fuel con-
sumption variable. Furthermore, BN also supports simulation of the behavior of the system.
We use the BIC score [12], a derivation of the likelihood of the data under the assumed
BN model, as a heuristic to evaluate the alternative networks. We revised them and com-
pared their solutions on the sensor data by providing a brute force alternative. Brute force

converges to the global optimum of the BIC score within the search space. The brute force
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alternative is possible (provided the number of variables is kept limited to some units) thanks
to the opportunity that high-performance computing gives us. It makes the workload effi-
cient by distributing the computation among multiple servers and CPUs, and their execution
in parallel. One novelty of our approach and the last, but not least, contribution of our work
is Granger causality. Granger causality and its statistical test employ vector auto-regression
(VAR) as a tool to predict the target in time with the aid of multiple variables (the variables
that are in the pathway from causes to the effect). In its essence, the statistical test in the
Granger causality method verifies that the prediction of the target, with the aid of the cause
variables, is better with a statistical significance guarantee, than without them. The appli-
cation of this latter criterion is possible only when the flow of values of these variables is
stored in time. Granger causality is commonly judged as a weaker principle than the stricter
principle of probabilistic dependency between cause and effect. With Granger causality, the
existence of a causality relation between cause and the effect is verified only in time thanks
to the ability of the cause to predict and anticipate the effect in time.
Chapter 7:Utility Privacy Trade-off in a Differential Private Mechanism
In the last Chapter 7, we model the notation of utility and privacy suitable for the contin-
gency tables. In the context of local differential privacy, there is a trade-off between utility
and privacy. The more randomness in the output of the randomized mechanism, the stronger
the individual privacy. On the other hand, this makes more noisy the aggregator’s estima-
tions. To characterize this utility and privacy trade-off, we need a confidence interval on
the probability of observed responses that measures the utility and privacy in the underlying
protocol. Using this confidence interval, we can identify a minimal level of privacy that a
protocol provides while maximizing its utility. We also perform differential private hypoth-
esis testing to evaluate the effect of Laplace noise on the presence/absence of an arc in a
Bayesian network.
Chapter 8
Chapter 8 concludes this dissertation and discusses a few interesting and non-trivial direc-

tions for future research.



Chapter 2

Insecure Techniques: Exploring
Approaches with Limited Semantic

Security

In recent years privacy-preserving data publishing has been a challenging task. Over the
years extensive research has been conducted in this domain. The data publisher aims to re-
lease the data without exposing sensitive information about the individuals. The publication
of such data set includes medical records, financial transactions, census reports, and so on,
to use in medical research and social and economic analysis. Hence the goal of privacy-
preserving data publishing is to publish sensitive information in such a way that it can be
utilised for the intended research and at the same time maintains the privacy of individu-
als. Formerly, many privacy models exist in the literature to protect the privacy of indi-
viduals. Such models include k-anonymity, I-diversity, t-closeness, and differential privacy

[13, 14, 15, 16].

2.1 Introduction

The privacy concept of any database is to limit the ability of an adversary to learn any new
information about a particular participant after accessing the database [17, 18]. The idea
behind this terminology is that the adversary’s knowledge about a particular individual re-
mains the same before and after accessing the data. However, this type of privacy assurance

is not practical due to the availability of background knowledge. Dwork [16] introduces a
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new concept of privacy preservation; the risk to one’s privacy should not significantly in-
crease as a result of participating in a database, for example, denial of one’s insurance due
to his participation in an insurance survey.

Privacy-preserving data publishing (PPDP) means publishing sensitive information in
such a way that it can fulfill the research goal and at the same time it maintains the privacy
of an individual. The data publishers (aggregators) collect the data and apply some modifi-
cation techniques to erase or modify the Personally Identifiable Information (PII) to protect
the sensitive information of individuals. This anonymized data is then published for the
intended purposes.

Personal Identifiable Information (PII)

Personally identifiable information (PII) or personal data is the information used to iden-
tify, distinguish or track an individual’s identity in the data. According to the data privacy
publishers, personally identifiable information can be categorized into four different classes
namely, Quasi-identifier, Explicit identifier, Sensitive, and Non-Sensitive attributes. Quasi-
identifiers are information that cannot uniquely identify an individual, but they can be linked
with other quasi-identifiers to create a unique identifier that can sufficiently distinguish an
individual. Information in quasi-identifiers includes postal code, birthday, and gender. Ex-
plicit information includes name or social security number which can be used to identify
any individual. Sensitive attributes include sensitive information about a person such as
his medical history or salary and non-sensitive attributes are all those attributes that are not
listed above [17].

PII is a piece of information that can be utilized all alone or can be linked with other
information to identify individuals. For example, name, date of birth, and social security
number [17]. The data curator, before releasing the data uses a De-identification process to
protect individual privacy while ensuring data utility. Many privacy-preserving techniques

have been proposed earlier: in the next Section, we will discuss them briefly.

2.2 Approaches with Limited Semantic Security

In recent years private data analysis has gained adequate popularity in the research com-
munity. Many private data learning and data publication models have been studied in the
literature [19, 20, 1, 21]. The main aim of all these models is to publish sensitive data to

preserve the privacy of individuals participating in the dataset while maximizing the utility
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of the data statistical analysis. It is interesting to highlight these approaches because the
issues raised by these models can be solved by differential privacy and some of them are the
building blocks for the definition of differential privacy.

In general, there are two main approaches to achieving privacy-preserving mechanisms.
The interactive or online and non-interactive or offline approach. In the interactive setting,
the data curator known as a trusted entity provides an interface through which the users
query the data and receive a noisy response [22]. The interactive setting is used when in-
formation about the queries is not known in advance, as this poses severe challenges to the
non-interactive model [23]. If the query information is known in advance, any interactive
solution poses a non-interactive solution. In this case, the data curator poses the known
queries and then publishes the results [24]. In a non-interactive setting, the curator sanitized
the published data by modifying the key identifiers. This modification of key identifiers is
known as anonymization or de-identification. In the next section, we will discuss some of
the approaches for data anonymization.

Data anonymization is a technique of protecting individual identity by removing, mask-
ing, or encrypting identifiers that link the users whose data are stored in the database. Through
the data anonymization process, you can mask the PII such as name, address, and social se-
curity numbers, which allows us to keep the data but makes the source anonymous. Data
anonymization enables data controllers to publish data among departments within the same
company or among different companies while focusing on reducing the risk of unintended
data disclosure. Although, data anonymization removes the individuals identifier, attackers
can use the de-anonymization process to retrace the data anonymization process [2]. Since
data usually passes through multiple sources—some available to the public, de-anonymization
techniques can cross-reference the sources and reveal personal information. For example
the Netflix Prize competition released the users’ rates on movies [3] and AOL released
anonymized search queries [4].

There are several approaches to achieve data anonymization, data masking (use altered
values to hide private data), generalization (intentionally delete some of the identifiers to
make it less identifiable), Pseudonymization (replace private with fake identifiers), data
swapping (shuffling and permutation of private identifiers), data perturbation (adding ran-
dom noise), and synthetic data (algorithmically generated information that has no connection

to true data).
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2.2.1 Privacy Using K-Anonymity

To deal with the inadequacy of simple data anonymization methods, Samarati and Sweeney
proposed K-Anonymity [13]. Well-known model to protect individual privacy. k-Anonymization
is often referred to as the power of '"hiding in the crowd"'. Individuals’ sensitive informa-
tion is pooled in a larger group, meaning information in the group could correspond to any
single participant, thus hiding the identity of the individual or individuals in question. The
keyword K in k-anonymization is referred to the number of times each attribute combina-
tion appears in the database. A k-anonymized dataset promises that each individual in the
database is similar to at least another k-1 other records on the possible identifiable attribute.
K-anonymization protects the data from de-anonymization using linkage attacks.

K-anonymization can be implemented using Generalization and Suppression. In gen-
eralization, we substitute a specific attribute with a broader category. For example age at-
tribute can be generalized into an different age groups (i.e. grouping ‘Age: 25°, ‘Age: 30’,
and ‘Age: 35 into ‘Age Group: 25-35’). In suppression, we remove the attribute value
from the dataset or mask the attribute value with an **’. We can also substitute the entire
column of the database with an **’ or replace the entire column with other specific values.
For example, Table 2.1 shows 3-anonymous generalization and suppression technique. The
adversary knows Alice’s zip code, age, and gender (47677, 29, F) as shown in Table 2.1a;
after anonymization we obtain Table 2.1b and the adversary does not know which one of the
first 3 records corresponds to Alice’s record.

Machanavajjhala et al. [14] show that k-anonymity does not guarantee strong privacy. It
does not provide privacy if the adversary has some background knowledge or if the sensitive

attribute lacks diversity in an equivalence class.

2.2.2 Attacks against K-anonymity

Although k-anonymity provides a promising approach to protect the sensitive attributes of
an individual using a simple wide array of algorithms, unfortunately, the solution provided
by K-anonymity can still be vulnerable to attacks if the adversary has some background

knowledge. Such attacks include:

e Background knowledge attack: In this attack, an advisory links one or more quasi-

identifiers with the sensitive attribute to limit the set of possible values for the sensitive
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Quasi identifier Sensitive attribute
Age | Gender | Zipcode Disease
29 F 47677 Heart disease
22 F 47602 Heart disease
27 M 47678 Heart disease
43 M 47905 Cancer
52 F 47909 Flu
47 M 47906 Heart disease
(a) Microdata
Quasi identifier Sensitive attribute
Age Gender | Zipcode Disease
2% * 476%* Heart disease
2% * 476%* Heart disease «
2% * 476%* Heart disease
[43,52] * 4790%* Cancer
[43,52] * 4790%* Flu
[43.52] * 4790* Heart disease

(b) K-Anonymization table

Table 2.1: Example of k-Anonymity using generalization and suppression techniques: (a)
shows microdata, and (b) shows 3-anonymous data; column Age and Zipcode anonymized
using generalization and Gender is anonymized using suppression

attribute. For example, the advisory knowledge about the ratio of heart patients is low

in Japan, thus limiting the values of a sensitive attribute of patients’ disease.

e Homogeneity Attack: The advisory can predict the value of a sensitive attribute
among the set of k-records if the diversity of the attribute values is limited. For exam-
ple, with reference to the example shown in Table 2.1a if the attacker knows Alice’s
zip code is 47678 and her age is 27, he can determine she is suffering from heart

disease.

2.2.3 [-Diversity

L-diversity is an extension of k-anonymity. The drawbacks of k-anonymity are overcome by
[-diversity hence protecting the sensitive attributes against inference attacks. To achieve data
privacy, [-diversity performs group-based anonymization by working on the granularity of
the data representation. In a table that satisfies the [-diversity property, in the group in which
a tuple shares similar quasi-identifiers there are at least [-diverse well-represented values for
the sensitive attributes. The core principle of [-diversity stated that: the [-diversity of an
equivalence class holds if the equivalence class contains at least | "well-represented" values

for the sensitive attribute. A data table is said to be an /-diversity table if it contains a number
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of distinct values for the sensitive attributes equal to the /-diversity parameter. Table 2.2
illustrates an example of 2-diverse table: if we have four types of diseases, then according to
2-diversity the records in the equivalence class should expose the sensitive value as no less
then two of the four possible values so as to avoid the possibility of an homogeneity attack

based on the sensitive attribute.

Quasi-identifiers Sensitive attribute > -diverse

Age Gender | Zipcode Disease
Under 30 * 476%* Heart disease
Under 30 * 476%* Heart disease QI: Group 1
Under 30 * 476%* Flu
Over 40 * 479%* Heart Disease
Over 40 * 479%* Heart Disease QI: Group 2
Over 40 * 479%* Cancer

Table 2.2: Example of 2-diverse table

Machanavajjhala et al. [14] also define other variants of /-Diversity.

1. Distinct I-diversity: This variant is the simplest among the other two and defines that

there must be at least 1-distinct values of the sensitive attributes.

2. Recursive (c, I) diversity: Recursive diversity ensures that the least frequent values

do not appear too rarely and most frequent values do not appear too frequently.

3. Entropy /-diversity: Formally, the entropy of an equivalent class E for a particular

sensitive attribute with domain d can be defined as:

H(E)=- 2 pr(E,d)-log - pr(E,d)
deD

where pr(E, c) is the probability of an attribute having the value d in group E. A
dataset is entropy [-diversity if, for each group E the entropy H(E) > log L.
Attacks against /-diversity

Although [-diversity resolves the limitations of k-anonymity, however, this technique is not

immune to disclosure attacks. Li et al. [15] demonstrated two attack models on /-diversity.

e Skewness attack: L-diversity does not consider the overall distribution of sensitive

values. For example, QI group 1 from the Table 2.2 has two out of three patients
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with heart disease. If an advisory links a particular patient to that group, that indi-
vidual can be considered to have a 66% probability of having heart disease, rather, it
is considerably less likely to identify the same from the entire database. The cost of
[-diversity in this scenario is information loss, as many of the 'non-sensitive’ records

will have been removed from the Table to meet the /-diversity criterion.

e Similarity attack: L-diversity does not consider semantic meanings of sensitive val-
ues, which means when the equivalence class has different but semantically similar
values in the sensitive attribute. For example, if patients in a 3-diverse dataset where
the disease is a sensitive attribute having values (lung cancer, stomach cancer, and
liver cancer) an adversary can infer that an individual has cancer by linking him to

that group.

2.2.4 t-Closeness

L-diversity overcomes the shortcoming of k-anonymity, however, it has its limitations. It is
very difficult to achieve [-diversity for a large database’s size, many equivalent classes will
be needed to satisfy /-diversity. The [-diversity approach is insufficient to prevent sensitive
attribute disclosure which led to the proposal of another privacy definition called -Closeness
proposed by Li et al. [12]. t-Closeness anonymized data by keeping each quasi-identifiers
sensitive attribute close to their distribution in the database. If the distance between the dis-
tribution of a sensitive attribute within an equivalence class and its distribution in the whole
table is not greater then the threshold ¢, then the equivalence class is said to have t-closeness.
If all equivalence classes within a table have t-closeness then the table is t-closeness. Li et at.
[15] use Earth Mover Distance [25] to calculate the semantic relationships among sensitive
attributes.

For example, let P and QO denote the distribution of sensitive attributes and all the at-
tributes in the database respectively. Given a threshold ¢, the equivalent class satisfies #-

closeness if the distance between P and Q is less than or equal to ¢.
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2.3 Privacy Issues and Failures

Online service provider like Facebook!, Google?, Amazon?, etc,. collect and store as much
data as possible, either because they want to improve the users experience, accuracy of pre-
diction in their recommendation systems, or to materialize the stored data by selling it to
third parties. Data collected by online services which is not considered necessary might
disintegrate the user’s expectation about privacy. Online services can build sophisticated
models of users’ personality from the collected data without the user consent raises ethical,
privacy, and security issues*,’>. Cambridge Analytica Ltd (CA) is a political consulting firm
that combines user profiles, data brokerage, data mining, and data analysis with the goal to
achieve a strategic communication during certain specific events, such as the electoral pro-
cesses®. In March 2018, several news agencies reported news about Cambridge Analytica
business practices. It was uncovered that Cambridge Analytica required personal informa-
tion of Facebook users from the third party, who collected this data for research purposes
from Facebook. It was investigated that Cambridge Analytica was exploiting users’ private
information of users to gain political advancement for some politician.

According to the previous studies [26, 27], the majority of US citizens can be identified
by combining information from different databases by joining them using the values of quasi-
identifiers, such as gender, date of birth, and zip code, thus disclosing sensitive information
in the released data. Adversary’s background knowledge makes the privacy preservation
models vulnerable. As discussed in the previous section, these privacy techniques do not
provide privacy guarantees and are vulnerable because of the adversary background knowl-
edge. We will discuss some of the anonymization fiascos, which led to the identification of
individuals.

Latanya Sweeney [13] showed that an individual’s information can be easily re-identified

by linking the anonymously released data with the publicly available data (e.g., voter regis-

'Facebook. URL https://www.Facebook.com

2Google Inc URL https://www.Google.com

3 Amazon URL https://www.amazon.com

“Davies. Ted Cruz using firm that harvested data on millions of unwitting Facebook users (11 De-
cember 2015). URL https://www.theguardian.com/us-news/2015/dec/11/senator-ted-cruz-president-campaign-
facebook-user-data

SBrannelly. Trump Campaign Pays Millions to Overseas Big Data Firm (4 November 2016). URL
https://www.nbcnews.com/storyline/2016-election-day/trump-campaign-pays-millions-overseas-big-data-firm-
n677321

®Ingram. Factbox: Who is Cambridge Analytica and what did it do? (20 March 2018) URL
https://www.reuters.com/article/us-facebook-cambridge-analytica-factbox/factbox-who-is-cambridge-
analytica-and-what-did-it-do-idUSKBN1GWO07F
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tration list) and background knowledge about the individual. She successfully re-identified
the Massachusetts governor William Weld’s by associating background knowledge (such as
an address, zip code, birth date, and gender) with the anonymized data released by the Mas-
sachusetts Group Insurance Commission (GIC). She demonstrated that de-identified data
could often be re-identified with the help of other available information, such as publicly
available data or data from other sources. This means that de-identification alone may not
be sufficient to guarantee anonymity. [26, 2].

American Online (AOL) released 20 million search logs of their users for research pur-
poses: these search logs contain users’ search history of three months. AOL anonymized
these search logs by replacing the key identifiers such as username and IP address with
unique identification numbers so that the researchers can relate the searches to that of the
individuals. However, the username, his social security number, and even more sensitive
information were disclosed based on all the searches made by that particular user. An arti-
cle "A Face Is Exposed for AOL Searcher No. 4417749" was published New York Times’
revealing the identity of one of the users, and subsequently, many other users were identified.
Within a week, AOL removed the search logs from their server and apologized, saying the
team published it for the benefit of academic research and published without any authoriza-
tion. But copies of the detailed records continue to circulate online, emphasizing how much
information people unintentionally reveal by just using search engines and how risky it can
be for search engine companies like Google, Yahoo, Bing, and AOL to publish such data.

Netflix, the world’s largest video streaming service provider published an anonymized
dataset of 100 million movies rating from 500,000 subscribers. They aimed to improve their
recommendation system. They removed the user’s personal information and anonymized the
user IDs, ratings, and dates on which users rated the movie. Narayanan and Shmatikov [28,
29] demonstrated that users’ personal information can be disclosed if the adversary combines
data from the Internet Movie Database (IMDB) as a piece of background knowledge.

The above-stated anonymization issues demonstrate that protecting individual private
information is a challenging task and it can become more challenging if the adversary has
sufficient background information that is even not anticipated by the data publisher. Hence
we need a better, accurate, and robust privacy-preserving technique to protect data leak-

age and disclosure of individuals’ private information in the worst-case scenarios where the

"Michael Barbaro. A Face Is Exposed for AOL Searcher No. 4417749 (9 August 2006). URL
https://www.nytimes.com/2006/08/09/technology/09aol.html
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adversary has some background knowledge.

The current state-of-the-art standard for privacy is Differential privacy proposed by
Dwork [22]. Differential privacy (DP) provides strong mathematical promises on an indi-
vidual’s privacy, interpreted as a statistical property of the output of a query on the database
when the individual is included in the database and when he is not. To achieve privacy, ran-
dom noise is added in the query mechanism that responds to requests from the users/analysts.
The privacy guarantee of a randomization technique is quantified by the privacy parameter.
This privacy parameter controls how different the probabilities are when the randomization
query returns the same result in two different situations: when the individual is included in
the query response and when he is not.

Differential privacy provides a privacy guarantee against background knowledge attacks
and can neutralize the linkage attacks as discussed before. Therefore, differential privacy

has been considered a promising privacy-preserving technique.
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Chapter 3

Differential Privacy

3.1 Introduction

In this chapter, we will discuss differential privacy and its notations. In particular, we will
explain the notations and some useful properties of the most common mechanisms used to
achieve differential privacy. In this chapter, we will cover some of the relevant literature

which revolves around differential privacy and it will help us to establish our work.

3.2 Differential Privacy

The acceptance of modern data collection applications depends on the privacy guaranteed to
the end-users. As a consequence of the extensive data collection performed by the curators, a
massive amount of data is available whose existence triggers sophisticated attacks on the data
storage. Any application that hopes to withstand such sophisticated attacks should provide
rigorous privacy guarantees. The current de facto standard is differential privacy [30, 31].
Differential privacy (DP) provides firm mathematical promises on an individual’s privacy,
interpreted as a statistical property of the output of a query on the database when the indi-
vidual is included in the database and when not. To protect the individual’s privacy, noise is
added either on the data or in the query mechanism (M) that answers requests from the user-
s/analysts on the data. The privacy guarantee of the randomization mechanism is quantified
by the parameter of the privacy budget e that controls how different can be the probabilities
that the randomization query mechanism returns the same result in two different situations

in which a single individual is included in the database and in which the individual is not
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included.

3.2.1 Databases and Queries

Let us consider a database/dataset (we will use these two terms interchangeably) D as being
a collection of records from finite data universe X. We can also represent a database D by
its histograms: D € NI*I_ in which each entry D, denotes the number of elements in the
database D of type i € X (the symbol N represents the set of all non-negative integers,
including zero). The core importance of differential privacy is the notation of neighboring
databases. The two databases D; ~ D, are neighbors if they differ by one individual row,

record, or tuple.

Definition 3.2.1 (Neighboring databases [30, 31]. ). Two databases D, D, are neighbors
or neighboring if they differ in at most one individual row, i.e, the distance between two
neighboring databases D\, D, will be their €| distance and it will be equal to 1. The ¢
distance between two databases D, and D, is denoted by || D, — D, ||| which measures how

many records D, differs from D,.

The two databases D, ~ D, can also be neighboring datasets if they differ only in the
value or a tuple . This type of neighboring dataset is presented in the literature to simplify
the task of differential privacy, Dwork et al [23].

A randomization mechanism M : NI¥! — R takes an input from the database D € NI¥!
and returns an output from some Range that belongs to R (the domain of the reals). Infor-
mally, this mechanism represents the output of a statistical query on the database. Its output
is probabilistic so that if you run the mechanism twice it will not return the same output.
The mechanism is designed to be probabilistic so that from its output the user cannot infer
with certainty anything about the database content. The mechanism M (D) is presented as a
stochastic method whose output is probabilistic and this probabilistic behavior is the essence
of the privacy protection for the individual’s data in the database. Informally, this random-
ization mechanism is said to be differentially private if the probability distribution M(D,)
on database D, produces approximately the same output as from the probability distribu-
tion on M(D,), for every D, L D,. We can also say that this randomization mechanism
should be indifferent to the presence or absence of any one tuple ¢ in the input database,

More formally,
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Definition 3.2.2. (Differential privacy [30, 31]). The definition is due to Dwork et al [30,
31]. A randomized mechanism M with domain N\X! is (e, 8)-differentially private if for all
S C Range(M) and for all Dy, D, € N'¥| such that | D; — D, ||, < 1:

Pr[M (D) € S| <exp(e)Pr [M (D,) € S| +5 3.1)

Where the probability space is over the flip of a coin of the randomization mechanism M.
If 6 = 0, we say that this randomization M is e-differentially private. The above equation

can be rewritten as,

[Pr(M(D)) € )|
[Pr(M(D,) € )|

<exp(e) ER (3.2)

(e, 0)—differential privacy ensures that for every run of the mechanism M(D)), the out-
put observed is almost equally likely to be observed on every neighboring database D,, at
the same time. Mathematically, equation 3.2 states that the ratio between the probabilities
of the randomized function M on the database D, and the neighboring database D, must be
bounded by (—¢, €). The closer € to 0, the more difficult for an attacker to determine an indi-
vidual’s private information. From the definition, € is a privacy budget or privacy parameter
that controls the strength of differential privacy in the output. The higher value of epsilon
the lower the protection of privacy while smaller € yields stronger protection of privacy. We
can also say that this privacy budget € is a knob that controls the privacy and utility in the
output database. Higher protection of privacy deteriorates the utility of the data, whereas
lower protection of privacy increases the utility but decreases the protection of privacy of
the data given in the output of the randomized mechanism M. Typically the value of epsilon
are 0.01, 0.1, or possibly In2 or In 3 as suggested by, Dwork [32]. When epsilon is small,

exp =~ 1 +e.

3.3 Achieving Differential Privacy

A real-valued function f : NI*I — R will satisfy differential privacy by adding a carefully
chosen random noise into the output value. The magnitude of the injected noise can be
adjusted based on the global sensitivity and local sensitivity of a function, or the upper bound

of the amount of noise added to any individual tuple returned by a mechanism in response
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to a query on that tuple.

3.3.1 Global Sensitivity

The global sensitivity is the maximum difference in the output of a query on two neighboring

datasets, formally:

Definition 3.3.1 (Global sensitivity [31]). The global sensitivity of a real-valued function
£ NI®¥l — R2 s the smallest number A f of difference of f when f is applied to any pairs
D,, D, € N\¥! that differ in at most one single entry. The global sensitivity of function f is

given by:

Af = max | £(D) - F(DY, (33)

where: ||-||; is the £| norm.
This sensitivity Af is a Lipschitz condition! on f: if the Hamming metric dj(,-) on
NI¥!, then for all pairs of databases D, D, € NI¥! :
|£(D) = £(Dy,

R £ R T oD

Global sensitivity depends on the property of the function f alone and it is independent of
the input databases D; and D,. A real-valued function f can be e—differentially private
by injecting random noise drawn from Laplace distribution with zero mean and % scale
in the mechanism response, or by application of the exponential distribution function to the
response, controlled by a utility function for answering queries with arbitrary utilities [30].

In our thesis, we will always use the first typology of noise addition.

3.3.2 Smooth Sensitivity

The global sensitivity defined in section 3.3 is a worst-case measure of how much of the
output of a function f will be changed by changing a single row in the input. Hence global

sensitivity is a function of the computation itself and it is independent of actual data. Global

!'The function A f is Lipschitz with respect to D on the domain NI¥! if there is some constant K such that
| f(D,)- f(D,)| < K|D,— D,| for every pair of points D, and D, in NI¥!. The constant K is called the Lipschitz
constant for A f on the domain NI,
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sensitivity emphasizes the function output by changing any possible value in the input. Con-
sequently, inputs that are very rare in practice could lead to a higher sensitivity. Hence in case
a lower amount of noise was added, it could eventually leak sensitive information. Smooth
sensitivity proposed in [33], addresses the above cited problem with global sensitivity. The
proposed solution suggested using a smooth bound on local sensitivity, rather than control-
ling the noise scale based on global sensitivity. Local sensitivity of a function is represented
as LA f and it estimates the maximum difference in the output of the function f when run

on true data D and neighboring database D,.

Definition 3.3.2. Local sensitivity [33]
Local sensitivity of a function f at x, with respect to €| metric, f : NI¥I — R4 is given

by:

Laf= —max /GO =l (3.5

(x.y):d(x.y)=
Where x and y belong to X" (that are specific tuples values of the database domain). The
local sensitivity is identical to the global sensitivity for the query functions count and range.
Global sensitivity from Definition 3.3.1 is observed as:

Af = max LAf(x) (3.6)

for any x
3.3.3 Setting of Privacy Parameter ¢

The core component of any differentially private algorithm is setting the level of privacy
parameter €. The amount of privacy in any DP mechanism can be controlled using €. It can
also express the privacy loss measured by the DP mechanism. Consequently, the DP mech-
anism does not declare how much data become "anonymous". Alternatively, € is thought of
as an auxiliary risk an individual is exposed to by participating in the data analysis.

Setting an appropriate value of € is an open and unsolved problem. Additionally, what
represents a "good" value of ¢ is context-dependent [34]. In the literature, many researchers
reasoned on the strategies of the setting of €, such as calculating the advisory advantage [35],
using economical approach [36], and calculating the Bayesian posterior belief of the adver-
sary [37]. Dwork [31] suggests setting the value of € as low as possible: typically it ranges

between 0.01, 0.1, In2 or In 3. Still, there is no silver bullet for setting e.

21



CHAPTER 3. DIFFERENTIAL PRIVACY

Maximum Privacy Maximum Utility
(Release no data) (Release all data)

Figure 3.1: Overview of privacy and utility trade-off, where the size and placement of col-
ored dots depend on context and the actor viewing the spectra

Selecting € is a trade-off between privacy and utility between participants and the ad-
visory. The advisory wants to maximize the utility of the data and on the contrary, the
individual’s main concern is to maximize her privacy. Setting an ideal value of privacy bud-
get € is a challenging task so both of these parties (participants and advisory) should agree
upon which ranges are acceptable. Ideally, the green dots illustrated in Figure 3.1. Hence,

setting e is mainly dependent on the data case under consideration.

3.3.4 Centralized vs Local Setting

Differential privacy can be achieved using different settings and environments where the dif-
ferential private algorithm is executed. In this section, we will discuss two major differential
private environments: the centralized setting and local differential privacy (LDP).

In a centralized differential privacy setting, originally presented in [31], the data from
each source is stored in the centralized server before the differential private algorithm is ex-
ecuted, as shown in Figure 3.2. When the analysts query the data, the server or the curator
randomizes the query result with a differentially private algorithm and sends the random-
ized response to protect individual privacy. The number of responses depends on the privacy
budget € allocated to the analysts, and once the budget expires the curator stops all responses
to protect privacy strength. This budget allocation is related to the composability property
of differential privacy. We will discuss composition techniques in section 3.3.5. The cen-
tralized setting is also called Interactive differential privacy.

In the local differential privacy (LDP) setting, each participant executes a differentially
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4& Ynll
“p— ]

f(X)+noise

Figure 3.2: Raw data & from each individual is collected in a centralized server, for each
query f(X) on the data is responded under differential privacy (f(X) + noise)

private algorithm on their data locally before sending the perturbed data to the centralized
server. In the LDP model, we do not need to store all the sensitive information at a centralized
location. Hence, protecting the data from being potential honeypots for hackers. As such,
local models inherently protect against data breaches. The LDP setting is also called Non-

interactive differential privacy, as illustrated in Figure 3.3.

3.3.5 Composition Techniques

Typically, analysts wish to generate multiple separate statistics on a single dataset. In such a
case, each subsequent query might disclose some information about the individuals partici-
pating in the dataset. In fact, after multiple responses are returned, the privacy parameter €
will necessarily degrade.

Consider computing the same statistic using a randomized mechanism. The average of
the responses given by each instance of the mechanism will converge to the true answer. We
cannot avoid the fact that the robustness of the privacy guarantee will degrade with the con-
secutive use of queries. The following theorems (sequential composition, parallel composi-

tion, and post-processing) show how the privacy parameter € composes when differentially
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Figure 3.3: Each individual’s data X is randomized under differential privacy algorithm
(f (&) + noise) locally before their data is gathered in a centralized database

private subroutines are combined.

Theorem 3.3.1 (Sequential composition [31]). Let a randomized mechanism M NI¥I -
R, be e,-differentially private, and let M, : N¥I — R, be e,-differentially private algo-
rithm. Then their sequential composition, defined to be M, : N¥l = R, X R, by the

mapping: M, , = (M (D), M,(D)) is (¢, + €,)-differentially private.
The sequential composition can be applied repeatedly to obtain the following lemma:

Lemma 3.3.2. Let a randomized mechanism M; : NX! — R be e,-differentially private for
i € [k]. Then if My : NXT =TT R, is defined to be My (D) = (M (D), =, M (D)),
then My, is (Zf; | €)-differentially private.

In situations when the sequence of queries is executed on non-interactive databases, we
can apply the parallel composition technique. The maximum privacy budget e would provide
strong privacy guarantees in this composability. For example, suppose we have d disjoint

subsets partitioned from the database D and have d randomization algorithm M. Then,

Theorem 3.3.3 (Parallel composition [31]). Let D € NI¥l e a dataset and k be a positive

integer. Fori € [k], let X; C X, let a randomization algorithm M; . DN X; - R, be a ;-
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differentially private algorithm executed on X; C X, such that Vi, j, |Xi n&x j| = () whenever
i # j, and each individual data is contained in exactly one of the Xl.’ s. Then the parallel

composition of My, -+, M is max{e; : i € [k]}-differentially private.

The concept behind parallel composition is to divide the dataset into disjoint chunks
and run a differentially private mechanism on each chunk independently. Each individual’s
data appears in exactly one of the chunks since the chunks are disjoint - so even if there
are k disjoint chunks in total, the differentially private mechanism runs exactly once on
each individual’s data. If M(&)) satisfies e—differential privacy, and we split X into k dis-
joint subsets such that X;U, ---,UX, = X, then the mechanism that releases all the results

M(X)), -+, M(X,) satisfies e—differential privacy.

3.3.6 Post-Processing

Another useful characteristic of differential privacy is that the output of any differentially
private algorithm is also differentially private after "post-processing”. The post-processing

provided privacy guarantees until and unless it does not "dip" back to the true data.

Theorem 3.3.4 (Post-processing [30]). Let a randomized algorithm M : NI¥I = R be
e-differentially private, and let f : R — R’ be an arbitrary deterministic mapping. Then

foM : NI¥l = R is also e-differential private.

3.4 Mechanisms of Differential Privacy

There are various ways to design differentially private algorithms, or techniques can be made
differentially private by calibrating them to adhere to definition 3.2.2. It is beyond the scope
of this thesis to introduce all differentially private algorithms. Instead, we will introduce
three of the most commonly used techniques to achieve differential privacy in this section.
First, the technique used in the centralized model includes Laplace mechanism and Expo-
nential mechanism. Next, Randomized response which is typically used in the local setting.
Table 3.1 outlines the characteristics of the three most commonly used differential private

mechanisms.
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Mechanism type Deployment mode Response data type

. Centralized .
Laplace mechanism . Numerical
(Interactive)
. Local .
Randomized response . Categorical
(Non-Interactive)
. . Centralized .
Exponential mechanism . Categorical
(Interactive)

Table 3.1: Comparison of differentially private mechanisms with their deployment mode
and response data type

3.4.1 Laplace Mechanism

The Laplace mechanism is one of the most common and early methods used to achieve
differential privacy [31]. A random noise drawn from the Laplace distribution (centered at 0)
with scale % is added to each query response. Each query result is perturbed appropriately

using Laplace noise to achieve differential privacy.

Theorem 3.4.1 (Laplace mechanism [31]). Let Af be the sensitivity of a function f
NI*l — Rk The Laplace mechanism M(D, f(-),€) = f(D) + Xy, -+, Y,), where Y; is

i.i.d. random variable drawn from Lap(%).

3.4.2 Randomized Response

Randomized response proposed by Warner in 1965 in [38] is a data collection technique on
sensitive or embarrassing data, where the respondent hesitates to provide a true answer. This
technique can be used to inject random noise into the output of a function.

Suppose we are asked to collect a survey: the survey questions might include some
embarrassing or illegal behaviors (e.g. do you smoke, or did you file your tax last year).
There is a chance that respondents are not truthful and the data curator might end up with
the wrong estimations. To solve the problem, the protocol of collection of responses was
simply modified: before answering, the respondent is instructed to flip a coin in secret and
respond "Yes" if the coin is "Head", otherwise asked to respond truthfully. Randomization
response provides deniability for any "Yes", since a "Yes" response might be the outcome
of a coin coming up "Head". This strong deniability property can be generalized to both the
"Yes" and "No" answers by further modifying the protocol. When the first coin is "Head"
the respondent is asked to flip a second coin whose outcome will determine if the answer

is "Yes" or "No". In this way, both answers become deniable. Intuitively, the randomized
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response permits that privacy is obtained by the process. Dwork and colleagues proposed
the model of differential privacy [30] in which the mechanism that controls the random-
ization protocol that produces the output is related to the parameter e: lower the parameter
value, better the privacy level. We will show that the above-described randomized response
protocol satisfies the properties required by differential privacy and it corresponds to a ran-
domization mechanism that is (In 3, 0)-differentially private. This level of privacy degrades
if the survey is repeated many times by the same respondent. So, in order to maintain a
strong privacy guarantee with a high utility we need a better data collection mechanism that

preserves privacy as we present in this thesis.

3.4.3 Exponential Mechanism

The exponential mechanism [39] is the natural building block for answering non-numerical
queries to preserve differential privacy. In the exponential mechanism, there is a scoring/u-
tility function u : NI*l x R — R which maps database/output pairs to a utility score.
For a database D the user prefers that the exponential mechanism outputs » € R with the

maximum possible utility score.

Theorem 3.4.2 (The Exponential mechanism [39]). For a fixed database D, choose r € R

with probability proportional to exp w. Where u(D, r) is a utility function, € is the

u

privacy parameter, and Au is the sensitivity of the function given as:

Au= Dy, r) —u(D;, 37
’ Dl,thrlllE)iDzug rr%a}?l“( 1»7) = u(Dy, 1) 3.7)

In the exponential mechanism, a randomized algorithm M(D, u, R) outputs an element

r € R with probability proportional to:

e-u(D,r)
exXp A«

e-u(D,r)

ZrER €Xp A«

Pr[M(D,u,R) ~r] = (3.8)

Mathematically, from equation 3.8 the probability of outputting r will increase expo-
nentially with the utility function. To ensure e-differential privacy, the maximum change in
the utility function u corresponds to the single element change in the sensitivity of the func-
tion Au. In equation 3.8, D is a dataset with discrete attribute values. If D had continuous

attribute values, we would have to replace summation with integral.
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Complicated privacy-preserving mechanisms have been developed by combining Laplace
and Exponential mechanisms. Multiplicative weighted approach for attractively releasing
synthetic data [40]. The medium mechanism, which categorizes queries as "easy" or "hard,"
based on whether a majority of databases consistent with previous answers to hard queries
would provide an accurate answer (in which case the user already "knows the answer").
Easy queries are answered by using the corresponding median value, while hard queries are
answered in the same way as the Laplace mechanism [41]. The Gaussian mechanism uses
Gaussian noise to achieve soft differential privacy, which has also been discussed in the liter-
ature besides Laplace and Exponential mechanism [30]. Generalized Gaussian mechanisms

for special cases which draw noise from Laplace or Gaussian distributions [42].

3.4.4 Applications of Differential Privacy

In theory, any query response can be made differentially private. However, in practice, some
queries are better suited based on the utility and accuracy trade-off. In this section, we will
discuss various families of counting queries and differentially private mechanisms to produce

the output of these queries.

Counting queries

Counting query is an extremely powerful class of queries. It captures many standard data
mining tasks and basic statistics in the database. They are sometimes in the fractional form
(fraction of the elements in the database that satisfies property P), sometimes with weights
(linear form), and sometimes in more complex form (e.g., apply / : N¥! — {0,1}. For-
mally, a counting query on a tuple from the universe X = {X}, X,, ---, Xy } takes the form

q . X - {0,1}, and applied to a database of tuples returns the sum value given by:

aD)= Y q(D;-X).
tuple j
The sensitivity of the counting query is 1 (adding or removing a single individual in
the database will change a count by at most 1). The e-differential privacy can be achieved
for counting queries by adding noise scaled to 1/¢ independent of the size of the database.
The noise is drawn from the Laplace distribution Lap(1/€). The sensitivity of a fixed but

arbitrary list of m vector-valued counting queries is m. The e-differential privacy can be

28



CHAPTER 3. DIFFERENTIAL PRIVACY

achieved by adding Laplace noise scaled to m/e to the true answer to each query response.

Range/Histogram queries

Histograms provide a complete statistical summary of the database in numerical form. Given
a data universe X = {&|,X,, -, X5} and X; € R, for each i histogram queries merge
neighbouring counts into m bins over the integer domain [1, |X]]. A histogram is valid
if and only if all the bins completely cover the domain [1, |X'|] without overlapping. The
sensitivity of a histogram query is 1 because the cells in a histogram are disjoint and adding
or removing a single individual in the database will change the count by at most 1. The e-
differentially private histogram queries can be achieved by adding Laplace noise scaled to

(1/e€) to each true cell count.

k-way Marginals

Contingency tables are a particular case of histogram queries. They refer to the projection
onto the subset of the attributes in the database. The counts in the table are the marginals;
each marginal is associated with a subset of attributes and called k-way marginals when
at most k < d attributes are used. These tables represent the association between many
different and possibly overlapping attributes. The query sensitivity on contingency tables
can be either 1 or 2, depending on how you view the removal of a single individual from
the dataset. Suppose the individual is removed from the dataset: then the sensitivity is
1 because it will affect only one cell in the contingency table. On the other hand, if the
individual changes its attribute value, the maximum difference is 2, one leaving the cell and
adding it to another cell.

Our proposed randomization mechanism injects a controlled amount of noise into the
contingency tables, which we will discuss in Section 4.4. Contingency tables provide a con-
cise way to represent the conditional dependencies between variables in a Bayesian network
and are useful for performing probabilistic inference and updating beliefs based on observed
evidence. Additionally, we use the low-degree Bayesian network to reduce the combinations
in the contingency tables by focusing only on the attribute having higher mutual informa-
tion, discussed in Section 5.2.3. We also use the contingency tables in the utility-privacy
tradeoff of the privacy mechanism and experimentally show the effect of Laplace noise on

the dependence structure of the variables in the Bayesian network, covered in Section 7.3
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and 7.4.

Categorical queries

Adding numerical noise in query responses containing categorical attributes is not practi-
cally possible. In such scenarios, we can use the exponential mechanism to add noise to the

query output, as discussed in Section 3.4.3.
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Chapter 4

Randomized Response Block

Aggregation Protocol

The data collected from smart devices, the Internet of Things (IoT), and Smart Homes can be
used for mining purposes and potentially benefit the organization with a large user base, such
as Google, Amazon, and Samsung. The data collected from personal devices is intrinsically
private and should be collected through a privacy-guaranteed mechanism to ensure privacy
breaches. Local differential privacy solves privacy problems by collecting randomized re-
sponses from each user, and it does not need to rely on a trusted data aggregator/curator.
The curator can still build reliable prediction models on the collected amount of random-
ized data. Our approach utilizes the randomized response technique in a novel manner: it
guarantees privacy to users during the data collection and simultaneously preserves the high
utility of the analysis. Our proposed method can be seen as a particular case of synthetic data
generation by producing contingency tables (marginals) in a privacy-preserving mechanism.
This chapter will describe our randomized response techniques and discuss the motivating
applications domains. We will justify why the protocol satisfies the property of differential

privacy and utility guarantees theoretically and through experimental analysis.

4.1 Introduction

Data collected from smart devices, including mobile phones, home applications, wearables,
sensors, and vehicles, have become invaluable assets for product designers and application

developers. Companies collect data from end-users and use them to tailor their products
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and services, including third-party advertising, developers’ advertising or marketing, prod-
uct personalization, analytics for customer retention, application functionality, and for other
multiple purposes. For instance, collecting user data for analytics to assess consumer behav-
ior, such as determining the efficacy of product features, planning new ones, or determining
the audience size and characteristics. Data collected from smart devices are used to enable
better-informed decisions.

The problem with massive data collection is that collecting sensitive personal data poses
a significant security risk to people’s privacy rights. To get accurate information from the
individuals, the data collection process should enforce robust privacy-preservation mecha-
nisms and consider the collected data’s utility. We introduce a novel data collection protocol
with randomized responses to achieve data collection with privacy guarantees. The protocol
occurs in a non-trusted, third-party data aggregator/curator. Our proposed method provides
strong privacy guarantees combined with a high data utility, as this work shows.

Our privacy-preservation randomized response is built on the idea of randomized re-
sponse proposed by Warner in 1965 [38], a data collection technique on sensitive or embar-
rassing data, where the respondent hesitates to provide a true answer. This technique can be
used to inject random noise into the output of a function.

As discussed in Section 3.4.2, surveys generated using randomized responses allow easy
computations of correct population statistics while protecting the individual’s privacy. The
survey respondent is asked to flip two fair coins in secret; if the first coin is "Head", the re-
spondent is asked to flip a second coin whose outcome will determine if the answer is "Yes"
or "No". It is simple to see that in a situation where both "Yes" and "No" answers can be de-
nied (flipping two fair coins), the true number of "Yes" answers can be accurately estimated
by 2(P — 0.25), where P is the proportion of "Yes" responses. This estimation requires
absolute adherence to the randomization protocol, which may not hold for human subjects
and may even be difficult for algorithmic implementations [43]. A case analysis of the two
fair coin flips makes it clear that the respondents will, on average, give the correct response
75% of the time. Importantly, for one-time collection, the aforementioned randomization
mechanism provides /n(3)—differential privacy guarantee (In(0.75/(1 — 0.75)) = In(3)), ir-
respective of attacker’s prior knowledge [31]. This level of privacy degrades if the survey
is repeated many times by the same respondent. So, to maintain a strong privacy guaran-

tee with a high utility, we need a better data collection mechanism that preserves privacy,
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output true value for Attr;

(73 q output Attr; =1

1 —¢ ™ output Attr; =0
https://www.overleaf.com/project/5fc2c1cal 1bb2d0d9c2ecdc4

Figure 4.1: The flow of the randomized protocol and two flips of the coins, under the as-
sumption that the attribute Att; is binary.

as we present in this thesis. The contingency table, constructed after the collection of the
responses from the population, will be close to the truth if the probability of the successful
random event in the protocol (a parameter that we will denote by ¢) is equal to the probability
of the true attribute value associated to that event (P(Attr; = 1)). This observation motivates
the proposal of our protocol. The flow of our randomization protocol is shown in Figure 4.1.
Notice that in our proposed protocol, the flow of the operations is slightly different than in
the original one proposed by Warner [38]. In our protocol, the true response occurs after
the flip of the first coin is "Head" and the randomized one occurs after the flip of the second
coin.

In our proposed technique, the natural and more general setting is when each client has
multiple attributes, and the server is interested in learning the joint distribution of subsets
of these attributes. Knowledge of the joint distribution of subsets opens the way to pow-
erful descriptive and predictive analytical models such as statistical inferential models and
Bayesian Networks. They allow the user-analyst to make and test hypotheses on the proper-
ties of a population, even on the root causes of observed phenomena, having observed just a
sample. In our approach, we do not wish to harm the data owners in the sample, especially
in the case they are in a limited number. We adopt an approach of local differential privacy
(LDP) rather than the weaker global differential privacy (GDP).

With GDP, one or more aggregators store the actual data and could be a single point of
failure and be the goal of attacks. LDP is stronger than GDP because it adds the restriction
that even if adversaries had access to the personal responses since the responses are ran-
domized, the adversaries still would be unable to learn about the single users’ data. In the

proposed protocol, a respondent’s private, randomized data is generated after selecting sub-
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sets of the attributes. The values of these attribute subsets are communicated in a distributed
environment to one or more aggregators. As a final step, the aggregator who receives the
randomized data values from the subset of attributes has the task of computation of con-
tingency tables with the frequencies of the observed values of the attribute subsets. The
single limitation to generating randomized responses is that the individual respondent does
not have to communicate the same attribute in multiple subsets but just in one. If the same
attribute were involved in more than one randomized response, the system should remember
its emitted value to enforce its consistency among the responses. If that were not the case,
the adversaries would quickly determine the true responses from the “fake” ones because
the true values would have a higher probability of being observed than the “fake” ones.

Thanks to the protocol properties, we demonstrate that it is possible to reconstruct the
true joint probability of the attribute subsets from the possibly noisy values communicated
by the individuals using the randomization protocol. The transmitted values do not need to
correspond to the true ones for each individual, in virtue of the deniability property of the
protocol. Moreover, in our randomized protocol, the randomization is local to the individual
users, and there is no need for a different, trusted organization to perform the randomizer or
add a verified amount of noise.

Finally, we will show that the data collected at the aggregator provides a high utility
value. The tasks of analytics computation and inferential learning require knowledge of
the existing dependencies between attributes. Our proposed solution gives guarantees, at
certain confidence levels, that the statistical dependencies observed in the reconstructed data
correspond to the true ones. The proposed solution relies on a combination of sophisticated
machine learning modeling and numerical optimization with hypothesis tests, as we will see
in Section 4.6.

Apple uses LDP protocols to collect data on the personal uses of the iOS keyboards [44].
RAPPOR [45] by Google uses a randomized response technique [38] to provide LDP in the
Chrome browser. RAPPOR uses Randomized Response as a core functionality to aggregate
users’ responses, such as yes/no questions, and provides e—LDP guarantees. LDP core idea
is to aggregate randomized responses from the users without collecting sensitive personal
information. The data collection protocol we propose in this thesis is unlike other differential
privacy models [16, 31] that provide robust DP but still collect sensitive information in a data

store. Thus they expose data to the risk of attacks and require data protection on single points
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of failure. LDP avoids collecting users’ sensitive information in the first place, thus ensuring

strong privacy guarantees to the users and the aggregator.

4.1.1 The Motivating Application Domain

Our randomized response data aggregation is a general approach for privacy-preserving data
collection from distributed devices, which can be used in various contexts. The frequencies
of values of the attribute subsets collected by the aggregator might be considered noisy ta-
bles, contingency tables, or marginals. These tables are considered as a workhorse for data
analysis [46]. The statistics generated by these tables are essential in analyzing the true dis-
tribution of data and identifying correlations between different attributes. These tables can
also be used for query analysis and answering queries on the data. Many machine learning
tasks and inference algorithms must capture accurate correlations from these contingency ta-
bles. These algorithms include predictive text modeling [47] and association rule mining for
classification, which work on the low-order marginals as a pre-processing step [48]. Direct
sampling for multivariate distributions is very costly. These algorithms rely on low-order
marginals as a building block and compute accurate approximations by the Maximum Likeli-
hood principle and vine-copulas [49, 50]. Our proposed method generates low-dimensional
tables on m attributes (m-way). We can generate even lower-dimensional contingency ta-
bles from these lower-dimensional ones by further marginalizing the existing ones. We call
these further contingency tables higher-level if we show them organized in a lattice, as shown
in Figure 4.2. We propose to apply linear programming to the m-way contingency tables to
make consistent the marginals of the higher level ones (k-way contingency tables, with k<m).
This approach is also followed by [46].

Our proposed method is a perfect candidate for private Bayesian learning. The gener-
ated noisy tables can be used to test the validity of the hypothesis of statistical dependence
between attributes by subjecting them to statistical hypothesis testing. We can use these
tables to answer more complex analyses, such as analyzing the probabilistic relation be-
tween various attributes, explaining the causal relationships between variables involved in
an observed phenomenon, and modeling the relationships between variables by Bayesian
Networks. Bayesian networks solve complex probabilistic dependency problems, whose di-
mension grows exponentially, exploiting the conditional independence between variables

entailed by influence chains. The assumptions of conditional independence and the collec-
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{Age, Region}

{Age, Region, Education}

Figure 4.2: Lattice structure of contingency tables on three variables { Age, Region, Educa-
tion}. As {Age} C {Region, Education}, contingency table { Age} can be computed either
from {Age, Region} or from {Age, Education}

tion of the combinations of values of the sets of variables that are instead dependent permit
the probabilistic inference of the interesting variables in an acceptable amount of time. Such
probabilistic models are derived from the conditional probability tables (CPTs), which are
derived directly from the marginals in contingency tables.

Our proposed technique can also be applied to the private collection of up-to-date crowd-
sourced statistics. Collecting personal data from clients is considered a violation of end-
users privacy. On the other hand, not collecting such data will also be unfavorable to the
users. If the operator cannot collect the correct statistic, they cannot improve their prod-
ucts or services and meet the users’ expectations. The operator can only collect high-order
statistics using privacy-preserving mechanisms to resolve privacy risks. Unfortunately, few
existing practical techniques provide, at the same time, both guarantees of maintaining the
utility of the data for analysis and protecting the end-users’ privacy. Therefore, to reduce the
concerns about privacy, these operators rely on pragmatic information processing: for exam-
ple, removing unique identifiers [13], performing regular deletion in data storage of users’
data after a certain time period [51], implementing access-control and auditing policies on
data access [52]. However, these approaches have limitations in providing provably-strong
privacy guarantees. Our protocol can help such operators to handle these challenges and the

potential privacy pitfalls.

36



CHAPTER 4. RANDOMIZED RESPONSE BLOCK AGGREGATION PROTOCOL

4.2 Related Work

Privacy-preserving data statistics are often considered in a centralized setting. The data
stored at a central place or the output of a query on the data itself is perturbed by adding a
random noise using a random variable from Laplace distribution or applying the Exponential
mechanism to the output of the queries. These perturbation techniques reduce the risk for an
individual to be identified [30, 53]. However, in the classical approach, with true data in the
database, individual privacy is still not guaranteed from external attacks (e.g., by the pres-
ence of not secure data centers) or internal adversaries (e.g., eavesdropping). Our approach
is based instead on the decentralized setting with local differential privacy. Each client ran-
domizes its own true values using a randomization mechanism (possibly implemented in
certified, simple applications for random number generation installed locally). The noisy
values are then sent on the network to the aggregator without needing to be protected. Data
are then aggregated by the aggregator to produce the desired statistics and thus reducing,
even more, the risk of data breaches.

A multitude of approaches exist: they combine randomized response techniques [38] to
create sophisticated noise addition mechanisms which are both privacy-guaranteed by DP
with an extra assurance that their sensitive information is never visible to data aggregators;
still, each user maintains "plausible deniability" of any sensitive information [44, 45, 54, 55,
56]. In randomized response techniques, the users who own a private bit of information flip
it with some predefined probabilities to have plausible deniability of their response. Google
RAPPOR [45] collects users’ data in a private setting, where the responses (i.e., the users’
URLs) are mapped to a Bloom filter using a hash function. RAPPOR implements a two-step
randomization technique: first, by mapping the user string onto a Bloom filter using a hash
function, and second by flipping each bit in the Bloom filter with given probabilities. RAP-
POR provides strong privacy against Longitudinal attacks, i.e., if the attacker links several
successive answers collected in time from a single user. The privacy of RAPPOR depends
on the size of the Bloom filter and on the number of hash functions. This number linearly
increases with the expected number of users’ strings. For accurate estimations, RAPPOR
requires a high sample size and can only be used on the frequency of users’ strings whose
domain is already known. Besides a simple counting of these strings, a follow-up method
proposed in [56] extended the ability of RAPPOR to estimate the frequencies of unknown

users’ strings that are frequent across the users’ distribution. However, these techniques
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have some limitations: first, RAPPOR accuracy decreases with the increasing number of at-
tributes; it cannot compute aggregates on numeric attributes (e.g., the average login time of
users). PRIVAPPROX [57] uses the same perturbation technique as RAPPOR but requires
a smaller sample size and is designed for stream data analytics.

Apple implements privacy in their iOS to collect user statistics through users sketching.
This is done to reduce the dimensionality of huge domains [44, 58]. Microsoft collects
users’ app statistics privately using rounding and memorization techniques [59]. Wang et
al. [60] proposed an optimization technique to reduce the variance in noisy responses. Their
technique utilized the asymmetric randomization response and hashing function to achieve
noisy responses. Kairouz et al. [61, 62] propose the optimal generalizations of randomized
responses to estimate the frequency of a single categorical attribute; they use it to generate
a histogram or to calculate the peaks in the inputs (heavy hitters). Their proposed technique

can solve the problem of measuring a one-dimensional marginal distribution.

4.3 Preliminaries

We consider a setting where each client owns a set of attributes. The centralized server
wishes to collect and store these attributes in a privacy persevering manner to protect the
privacy of each client participating in the data collection. The server or curator can then re-
lease these privacy-guaranteed attributes as a joint distribution on these attributes. This joint
distribution is materialized as a k-way contingency table on a subset of k attributes. These
joint distributions can be utilized in Bayesian structure learning, statistical analysis, and var-
ious machine learning models computation. These privacy-preserving multi-dimensional
distributions are frequently implemented using LDP setting in [46, 63, 64, 65] where the
server adds noise using Laplace distribution. These tables are then released for further sta-

tistical analysis or machine learning model computation.

4.3.1 Notations

We consider a dataset D with d attributes A = (4, A,, .-, A;). We use g; to denote a spe-
cific value of A; and | A;| to denote the attribute cardinality (i.e., distinct values). Each row

in the dataset represents a single user or client u (we will use these terms interchangeably)
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(a) Dataset consists of 6 attributes (Age, Region, Edu-

cation, Occupation, Sex, Transportation) (b) Contingency table with 2 attributes T
SNo | A R E |0 |S|T y v | Tprlvl |
! adult | big high | emp | M | car (adult, car) 2
v* adult | big high | emp | F | train (adult, train) 1
v? adult | small | high | emp | F | other (adult, other) 1
v’ adult | small | high | self | F | car (old, car) 0
v’ old big uni | emp | F | train (old, train) 3
® old small | uni | self | M | other (old, other) 1
v’ old small | uni | self | M | train (young, car) )
v® old small | high | self | M | train (young, train) 0
v’ young | big uni | self | M | car (young, other) 0
!0 young | small | high | emp | F | car

(d) Marginal table for Age.

(c) Marginal table for Region
’ 0 ‘ TR [U] ‘ ’ v ‘ TA [U] ‘
(big, %) 1 (x*, adult) 4
(small, *) 6 (x,0ld) 4
(x,young) 2

Table 4.1: Example of a dataset, contingency table, and the marginals

having one or more values for each attribute !. Thus a specific client is represented by a
d—dimensional vector, denoted by v = {vy, ---, v, } such that v; € Dom(A4;) that we denote
by [a;] for each attribute A;. Given a subset A C A of k attributes, we use T to denote a k-
way contingency table, where T, = {(wl LWy, -, Wgq) © w; belongs to the cartesian product
of Dom(A,), if A; € A, otherwise w; =x } to represent all possible combinations of values
(denoted as C) of the attributes in A. The symbol * is a convenient notation indicating the
corresponding attribute is not present in A.

We can also generate a k-way marginal table over A, where each cell in the marginal
table is calculated by aggregating over the cell values in T that have the same values on the
attributes in A. We will also use a symbol T[] to denote every entry in the table, T [w;]

for a specific cell value, and T, [0] the sum of all the cells in Ty.

Example 4.3.1. Database D in Table 4.1a has six attributes: Age = {adult, old, young}; Re-
gion = {big, small}; Education = {high, uni}; Occupation = {emp, self}; Sex = {M, F}; and
Transportation = {car, train, other}, to be aggregated with the count aggregation function
applied to subsets of their values. Table 4.1b shows a contingency table over a set of two

attributes. Table 4.1c and Table 4.1d show contingency tables viewed as marginalizations

'In case of more values for the same attribute, the user is represented in the database by multiple rows so
that in each row we have atomic values for the attributes.
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of a dataset on subsets of the attribute dimensions, creating sets of cells with the associated

aggregated measures.

4.4 Randomized Response Block Aggregation

In this section, we will discuss in detail our proposed method Randomized Response Block
Aggregation (RRBA) for aggregating randomized responses from the clients. This noisy
data representation is then published to the server for successive analysis, including hypoth-
esis testing, predictive and probabilistic modeling, and other sophisticated machine learning
tasks. Our method is inspired by the randomized response technique [38], which ensures
e—LDP.

Before querying the end-users on the clients’ devices and collecting their randomized
responses, the aggregator selects a set of attributes A C A on which the server wishes
to learn some joint distribution. The aggregator generates disjoint subsets of k attributes
taken from the original set of d attributes A to form a certain number of size-k tables called
views V. The subsets V form separate views on the sample population. The union of these
views should be as large as possible, leaving out the smallest set of attributes that cannot be
included in any view of cardinality equal to k. On these views, we will query a single client
for his/her values by using our randomization protocol.

The aggregator arbitrarily selects a combination of views from the possible ones for
querying the single client whose attribute values could be randomized in his/her response:
this arbitrary selection that changes for each client provides an extra layer of protection in
the randomization protocol. These views privately publish a synopsis of the entire dataset.
Successively, we can reconstruct any higher-order marginals from these views. To show
how to assign attributes into views, we show an example where d = 5 and the attributes
are {A, A,, -+, A5} with k = 2 combinations of distinct attributes per view. This is the list
of alternative possibilities for each individual. Each alternative is a view composed of two

disjoint sets of attributes of cardinality 2 each.

Vi =1{A1 4y, A3 A4}, V) = (Ay A5, Ay A5}, V3 = [A1 A3, Ay As ),

Vi =1{A1A4, A3As} Vs = (A As, Ay Ay}
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For the first view V}, we left out the attribute A5, for the second one A, and so on. Just
a single one because it could not be paired with another one without allowing repetition of
one attribute in the same view. If the first alternative is selected, the view is formed by the
two combinations of attributes { A;A,} and {A3A,}.

We will use the symbol C to denote a single combination in a view and T~ to denote a
contingency table built on the combination C.

Both combinations are considered for the same individual. The attributes in any com-
bination are randomized together, thus keeping intact possible statistical dependencies be-

tween them, as shown in Example 4.4.1.

Example 4.4.1. Consider the survey dataset in Table 4.1a. Suppose the server selects the
first view V| = {AR, EOY} for the individual. In that case, the combination of these at-
tributes is represented as C| = {(adult, big), (adult, small), (old, big), (old, small), (young,
big), (young, small)} and C, = {(high, emp), (high, self), (uni, emp), (uni, self)}. The ran-
domized responses are collected on these combinations in the contingency tables T using

our randomization protocol.

This step is necessary because the randomization protocol must not generate multiple
times randomized values of the same attribute from the same individual. Indeed, if an eaves-
dropper observed the multiple outcomes of the same attribute, even if in combination with
other ones, it would observe with higher probability the true attribute values, thus distin-
guishing the true from the randomized ones. An alternative solution would be to maintain
the value generated for each attribute in the internal memory of the clients’ devices. But
this solution is not always possible for all devices and would require a large memory size
for data sets with many attributes. Another reason this latter solution is not preferable is
that the generated values for the joint distributions of the attributes would break the possible
statistical dependencies among the attributes. The generated values of the attributes already
communicated in other views would be generated in an independent way w.r.t. the attributes
in the view, thus spoiling the validity of the reconstructed statistics.

Observe that no attribute in a combination repeats itself in the same view, and any pair
of attributes is assigned in at least one view. We can generate any k—way contingency ta-
ble from these views. Since independent noise is added to these views, marginalizing two
different contingency tables generated from these views to obtain the same marginals would

likely give different results. To make consistent the tables generated from these views, we
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perform the constraint optimization technique discussed in Section 4.4.3.

We have two different versions of our protocol. In the first version, the aggregator selects
arbitrary combinations from a view V; € V. The aggregator sends this combination as
a question, such as: "What is your age and Which region do you belong to" or "What is
your age, your region, and your gender"). Clients’ responses are collected in a randomized
mechanism to ensure that either randomly selected responses or true responses are collected
by the aggregator. In the second version, we divide the clients into groups called blocks
B. We then perform randomized data aggregation in parallel within the blocks. Once all
responses are collected, the aggregator moves to the next block until all blocks are executed.
Before the next block is processed, the probability distribution used to generate random

responses is updated to be closer to the true one. This is done by updating the probability

distribution with the responses collected in the previous block.

Example 4.4.2. Consider the database D in Table 4.1a with six attributes. We show how we
assign each attribute into views so that each view covers the maximum number of attribute
combinations such that no attribute in a view repeats itself and any pair of attributes is

assigned in at least one view.

V, = {AR,EO, ST},V, = {AE,RS,O0T},V; = {AT, RE,0S},

V, = {AO,RT,ES},Vs = {AS, RO, ET}

Three attributes are included within a single view without repetition. We have a total of
five views (V|, V5, -+, V5s) to cover all the possible combinations of attributes.
Now suppose we have only five attributes in the abovementioned database D then the

Sformulation of the views is given as:

Vi ={AR, EO},V, ={RE,O0S8},V; = {AE, RS},

Vy={AO,ES}, Vs ={AS, RO}

We left out a single attribute in each view because it could not be paired with another

without allowing the repetition of one attribute in the same view.
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Figure 4.3: Overview of communication between data aggregator and mobile clients to gen-
erate noisy contingency table on single or multiple views
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4.4.1 Fundamentals of the Randomized Response Block Aggregation Method

Given aset of views V, the aggregator arbitrarily selects a view V; € V comprised of multiple
combinations of attributes. On all these combinations of attributes of the selected view, the
responses are collected from the client in the e—LDP setting. The aggregator initializes for
each combination of attributes in V' the joint distribution by a contingency table whose cells

values correspond to the uniform distribution, i.e.,

1

Te = m 4.1)

To provide an example, for simplicity, suppose we have two attributes such that C; :
{A}, Ay} € Vs then [T | is the product of distinct categories in A; and A,, also called
respectively the number of rows and columns in a contingency table represented in the clas-
sical form of a matrix. The aggregator records this contingency table and sends a copy of
T, and a query on C; to the end-users and collects randomized responses. The contingency
table T will be sent so that when the user will run the randomized protocol it will be able

to generate random values that suitably represent the supposed values distribution of the

combination of the attributes.

Example 4.4.3. Consider database D in Table 4.1a. Suppose V; contains two combina-
tions of attributes V; ={AR, EO)}. For simplicity we only select one joint combination
of attributes, that is C; . AR. Then |C{| = 3 * 2 = 6, since attribute |Dom(A)| =
|[{adult,old, young}| = 3 and |Dom(R)| = |{big,small}| = 2. Each cell v; in the con-
tingency table T¢ [v;] will be initialized with the uniform distribution, i.e., the value 1 /6 =

0.1666.

Upon receiving a question from the aggregator on each set of attributes in a view V;,
the client responds according to the outcomes of the random variables, drawn with the pre-
defined probabilities p and g. Probability p is tunable to adjust the privacy and utility of
the responses. Probability g is randomly drawn between O and 1: it represents the value of
the cumulative joint probability function of the attributes values. It makes correspond each
combination of attributes values represented in the multivariate contingency table with a
probability value that these values are observed. Monte Carlo sampling exploits it to draw
first the probability value and then returns the corresponding combination of attribute values.

The random variable p is implemented by drawing a random value, between O and 1,
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Algorithm 1 Randomized response on single client

1
2
3

® N & s

10
11
12
13
14
15
16
17

18

Input: Set of attributes A, and probability p
Output: Noisy contingency table T,
Function Aggregator(A):
make views V = V|, V5, -,V ;
randomly generate the views and check that the combinations of attributes are
not repeated in the views ;
generate uniform distribution in T of all views using equation 4.1 ;
while exists a client that has not yet communicated do
select arbitrary view V; € V ;
0 « Client(T , query(C))) ; /* Call client procedure */
reconstruct Té{_ from o and T using equation 4.3 ;
update: T, < Tél_
end
Function Client (T, query(C))):
Sample a Bernoulli variable B ;
if B= "Head" then
‘ Respond true value w; € C;
end
else
Respond a fake value using equation 4.2, with a random probability ¢
drawn between [0, 1] ;
end

uniformly distributed, and comparing it to the threshold p. This random variable controls

if the user communicates the true values of the combination of attributes. Instead, if the

random value is above p, “fake” values are communicated to the aggregator, according to

the second random variable g, drawn between [0, 1]. The outcome of this latter random

variable corresponds to one of the cells (denoted by w);) in the contingency table by their

probability. In turn, each cell corresponds to some combinations of the categories of the

attributes. The variable g for emitting a “fake” value is a type of Monte Carlo sampling

from the given discrete joint distribution T, , such that:

Te,[0] = 1

and 0 < g <1 then
-1 I

D T lw] <q< Y Telw,) 4.2)
i=1 i=1

This "fake" response is emitted in such a way to disclose a "controlled” amount of in-

formation about the client’s true attribute values. Hence, limiting the aggregator’s ability to
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Cil| =1

0 TCIE [1] T, [1} —l— T, [2] Tg, [1] +- R Tc, [
1 1 *q 1 i

Figure 4.4: The probability intervals of the cumulative probability distribution function that
makes correspond each probability interval with a cell w; of the contingency table T

learn with confidence the true values of the client, Monte Carlo sampling improves the util-
ity of our protocol by emitting combinations of values based on their probability as stored
in the contingency table.

Once the aggregator receives a response from the client, it reconstructs a noisy contin-

gency table T(’:i using the contingency table from the previous client T, by equation 4.3

/ 0; 1
T L) = (5 = Tglwd-(1=p) - (43)

where o; is the number of clients who communicated those attributes values represented
by combination w; and n is the total number of clients (if the response is from a single
client, then n = 1). The above equation is justified by the fact that o; is the number of
observed responses corresponding to the same cell i in contingency table T¢, [w;] and the
responses come from the execution of the randomization protocol: they are outcomes of the
true probability distribution with probability p (the first coin gives "Head") and are random
outcomes controlled by the probability distribution in T, with probability (1 — p) (the first
coin gives "Tail").

The aggregator updates its table T = Téi and sends this updated table 7 to the next
client u; | for next randomized response. Client u;,; now uses the updated probabilities T,
in the Monte Carlo sampling.

At some point during the protocol execution, it could occur that the aggregator observed
a negative cell value in Té due to the application of equation 4.3. This might occur because
of the assumption of uniform distribution in initialization, which is too different from the true
one. If that situation occurred, the protocol replaces it with a positive, very low probability
(representing the event with a negligible probability). It reconstructs the probabilities of the
cells w; of the contingency table Téi using Equation 4.4

T, [w;] — min(T}, [-]

!’ —
Tl = R )~ minar 1) -

in which % is the fraction of the total number of responses # in which there is an observed
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number o; of responses with the attribute values corresponding to the single cell w; of the
contingency table T and p is the probability that the client answers with a true response in
our randomized response protocol.

Using Equation 4.3, an aggregator reconstructs the unknown probability values of the
attribute combination in C; by accessing the perturbed table Té,- observed by the responses.
In Equation 4.3, we concentrate on a single cell value in the perturbed table. The intuition
is that out of the total responses n, the expected number of responses that get perturbed is
Té[_ [w;]1(1 — p). The total number of responses observed in T 5 0;, can be seen as the sum
of those responses that were perturbed and those that were unperturbed. Subtracting the
Téi [w;](1 — p) perturbed responses from o;, we get an estimate of the number of unperturbed
responses. Thisis scaled up by 1/pto get the total number of responses, as only a p fraction of
responses were retained. We divided o; with n in Equation 4.3 to get the empirical probability
estimation of the observation of the attribute combination of w;.

The aggregator aggregates all the responses in T, and publishes this noisy table to the
server for statistical analysis. Since the aggregator aggregates the noisy reconstructed values
Téi from Equation 4.3 into T, so this T is also a noisy contingency table. At any point,

the aggregator can reconstruct the noisy counts in T using Equation 4.5.
Tel1=Tc[]-n 4.5)

Observe that the aggregator has no access to the client’s true values. Thus our mechanism
ensures local differential privacy. Algorithm 1 outlines the complete working of our proto-
col, including both client-side and aggregator procedures.

If the frequency of the attribute values is strongly unbalanced, this first version of the
protocol does not always permit the correct reconstruction of the probabilities. The reason is
that the uniform probability used to generate “fake data” too strongly impacts the observed

data. To resolve this problem, we introduce our second version of the protocol.

The improved version of the protocol

The second improved version of our randomized response data aggregation works similarly
to the first version, except now, we divide the number of clients into groups called blocks B.
The aggregator now executes the collection of responses from each client in parallel within

the blocks. The aggregator aggregates the responses from the blocks and updates the contin-
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gency table using equation 4.3, where now # is the block size or the number of clients who
responded within that block. When all the responses are collected, the aggregator publishes
the noisy contingency table T to the server. The overview of our proposed randomized re-
sponses protocol and the communication between the aggregator and its end-users is shown
in Figure 4.3, where Figure 4.3a shows how to collect responses on a single combination
of attributes { A, A,} and Figure 4.3b outlines the collection of responses from clients on
multiple combinations within a view V. The block size n is defined by the data aggrega-
tor/curator. In Section 4.5, we will demonstrate, with experiments, the selection of optimal
block size, which will make converge the estimated probabilities in the contingency tables
to true probabilities. The impact of the uniform distribution assumption in the initialization
in the second version of the protocol influences only the first block. In contrast, the remain-
ing ones get the contingency table initialization from the result of the work of the previous

blocks.

4.4.2 Differential Privacy of Randomized Response Block Aggregation

Our proposed mechanism aims to minimize the risk of disclosure to ensure a strong privacy
guarantee while satisfying the strict concept of e—LDP. It promises strong privacy despite
the amount of background knowledge of an adversary. Hence, with a substantial amount of
auxiliary information, an adversary could not confidently identify the true responses from
the clients. Since a single report from the client contributes to the count measure of a single
cell w; in T, the privacy level e is independent of the number of cells in T, . Hence, we
need to prove the satisfaction of e—differential privacy for only a single contingency table

cell.

Theorem 4.4.1. The proposed randomized response protocol satisfies e— differential pri-
vacy, with:
e>In (L)
1-p
where p is the probability that the first coin gives "Head," and the client responds with

the true answer.

Proof. Let us consider the contingency tables TC1 eN*land T, é € NI*I that come respec-
tively from two databases D, and D, that differ for a single record. Let w; be the reported
combination of attribute values returned by the proposed randomization protocol from the

record u; that differ in the two databases. It corresponds to the cell of the contingency table
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Tclw;]. According to the definition of differential privacy [30] we need to consider when
the proposed randomization protocol works as a randomized mechanism and transforms the
input databases D; and D, into the same contingency table T, regardless of having in input
the database D or D,. Let us assume that g is the probability that w; occurs in a database
record. According to the usage of the proposed randomized protocol, w; is the reported
attribute value if the first coin draws "Head" and if w; is the true value: this occurs with
probability pg. In addition, the first coin could give instead "Tail", but the value w; is drawn
as a consequence of the second random event: this overall event occurs with probability
(1 — p)g. On the other database, with a different record ul’. , the only possibility that the
randomized protocol returns the value w; is that the first coin gives "Tail" and the second
random event returns the value w;, and this occurs with probability (1 —p)q. Mathematically,

we obtain:

€

PIM(D,) =T¢] <exp
PIM(D,) =Tc] —
PIM(y;) = w;] <
PIM@u) =w;] ~
pq+ (1 —p)q < oxné
(I-pgqg —
gip+1—p) < expt
g(l—=p)

€

exp

< exp®
(1-p

=>e>In (—1 > (4.6)
l-p
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From the opposite side, when D, does not contain row u; but D, does, we obtain:

€

PIM(D,) = T,] < exp
PIM(Dy) =Tc] —
PIM@) = w)] _ ,
PM(u) =w;] ~
d-pg _ exp’
pqg+(—=pyqg
q(1 —p) < exp®
gp+1—-p) —

(1 -p) <exp®

€

p

e>In(l-p)
that is always satisfied with 0 > p > 1. B

The equation 4.6 shows the relationship between the parameter e (the privacy budget that
controls the amount of privacy preserved) and the parameter p of the randomized response
protocol (the fraction of times clients respond trustfully). Notice that it does not depend on
g, the probability of the emitted value; thus, it is valid regardless of the response.

Decreasing p makes € arbitrarily low, the desired situation since it allows the randomized
protocol to make stronger privacy preservation. As a drawback, with low p the convergence
of the reconstruction of the true probability distribution from the observed responses be-
comes slower, as we will see from the experimental results. On the opposite side, as p
grows, it grows the risk that true values are emitted too frequently, and e cannot be reduced

to small values.

4.4.3 Consistency between Noisy Tables

Given a set of noisy views, the server wishes to release marginals of some attributes with a
privacy guarantee. Since independent noise is added in each attribute combination within
a view, aggregating marginals from the different views will create inconsistencies in the
marginals of the common attributes.

Suppose we have T, where A’ C A C A are subsets of the attributes. We use the
symbol T4, _4[w] to denote the marginal over A’ calculated from T, by aggregating the
corresponding entries.

Consistency between views. We consider the marginal contingency tables T /g and T2A

with A coming from two noisy views A € V; and A € V. The two marginal contingency
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tables T/g and Ti are consistent if and only if the marginal table over the common attributes
in ¥; n V; reconstructed from view V; is the same as reconstructed from view V, that is
Truovi—y, = Tiueuger,

Given a set of views in V and set of attributes A, we can compute k-way marginals T .
When at least one view V; € V includes all the attributes in A, i.e A C V;, we can reconstruct
T, by summing over the corresponding entries of Ty in Ty, that is using Ty ;.. However,
when we have multiple views V; such that A C V;, we need to perform a linear optimization
technique to return consistent marginals from all the views V; that cover all the attributes
in A. When A n V; contains j attributes, then T,y provides exactly 2/ constraints on the
cells for T,. We can extract all these linear constraints from all the views to generate an
under-specified system of equations.

One can utilize the £, —norm optimization technique discussed in [46] to reconstruct the
marginals in T, . This technique does not create a unique solution, and linear programming
has no preference among different solutions. So we employ another constraint optimiza-
tion technique £,—norm (least square solution). We will follow the quadratic programming
approach similar to the work in [66] to solve the under-specified system of equations as a

minimizing problem:

min ) Ty[w]’

VET

V V Tyw]=Tyw

VeV w'eV,nA
It has been shown that this is a quadratic optimization problem, and we solved it with convex

optimization approaches [67].

Example 4.4.4. We use the example in Table 4.2 to illustrate the consistency procedure
between noisy contingency tables T/i = {Al , Az} and TA% = {Al, A3}. After the optimiza-
tion procedure, the marginal tables T/lx and T%A agree on attribute A, without changing the

marginalization of attributes not involved in the consistency procedure, i.e., A, and As.

4.5 Convergence and block size estimation

In this section, we show that the probabilities generated from T [-] will converge to the true

probabilities after we have used the protocol aggregating the observations sent from the indi-

51



CHAPTER 4. RANDOMIZED RESPONSE BLOCK AGGREGATION PROTOCOL

T/i = {Al, Az} before consistency 0.1 0.4 0.3 0.2
T: = { A, A3} before consistency 02 |04 |03 0.1
T/lx marginalized on A, 0.5 0.5
TzA marginalized on A, 0.6 0.4

TA = {Al,Az} after consistency procedure | 0.175 | 0.325 | 0.225 | 0.275
T/i = {Al,A3} after consistency procedure | 0.375 | 0.125 | 0.125 | 0.375

Ti\ consistent marginal on A, 0.5 0.5

T7, consistent marginal on A, 0.5 0.5

Table 4.2: Consistency procedure on the marginalization of attribute A using noisy views
V| and V3

viduals in a certain number of blocks of size n. The probability T, [w;]5* is the probability
of a cell of the contingency table T, created by running the randomized protocol on the
users of block B,, where we use the superscript B, to denote the block number. The esti-
mated probability at round k sending outcomes from block By, is done with T [w,]5¢. The
estimation of the probabilities, done by the protocol, converges to the true probabilities by
oscillating around the true value within a tolerance interval related to the error in observing
a Bernoulli variable. The tolerance interval is given by the width of the confidence interval
of the Bernoulli variable, with the success probability equal to the true but unknown value
v; and interval width opportunely estimated as follows.

If the approximation of the Bernoulli distribution with the Normal distribution holds
(ie., if v; > 5, with v; = Ty[w;] and v;/n the probability estimation), we can use a
symmetrical interval, where the confidence interval size can be estimated by 2z,_, /», with
o =4/ (U'/"(ln—_v‘/n)) the standard deviation of the Bernoulli distribution. Otherwise, maxi-
mum likelihood confidence intervals must be used with the log odds. We set the @ confidence
level equal to the standard values, e.g., 0.05 or 0.01. This latter means that the estimated
probability will remain within the confidence interval with a probability equal to 1 — a.

The convergence algorithm proceeds as follows:

1. Initialization with k = 0: T, [w,]%0 = T
A

2. Atiteration k = k + 1: run the RRBA protocol and estimate

Ta[w,;]B from equation 4.3

3. Repeat: step 2 until convergence, i.e.

|Talw, 1B — Talw,;]B-1| < 6*, for some 6* > 0
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4. Return:

T [w; 18k +T [w;]Bk-1

Tylw,] = -

which is the average between the two consecutive observed values in consecutive

blocks.

where 6* is the size of the confidence interval.

4.5.1 Relationship between the privacy budget ¢ and the probability p

This section discusses the relationship between the privacy budget e, and the value of p, i.e.,
the probability of the first coin is head. We want to evaluate the effect of varying values of p
on the convergence of the observed probabilities. In general, the relationship between e and

p is that as e increases, p can also increase, as shown in Figure 4.5.

1
| € = In(——)
1-p

Figure 4.5: Graph of the relationship between the protocol parameter p of the first coin
"Head" and the privacy budget €

The above relationship means that as more information can be released (i.e., less privacy
is desired and higher values of the privacy budget €), the chance of incorrect data being re-
leased decreases (by emitting fake responses with decreasing probability 1 — p). Conversely,
as the privacy budget e decreases, p must also decrease, meaning that as less information
can be released (i.e., more privacy is desired), the chance of incorrect data being released
increases (with probability 1 — p). Unfortunately, as we can observe from Figure 4.5, € as a
function of p does not grow linearly with p but exponentially. This means that if we increase
p to reconstruct the correct values of the probabilities faster and reach convergence faster, €
increases even faster, thus obliging us to add less noise to the output data and reduce privacy.

We drive the values of p using the Equation 4.7 and identify at what value of p we see

convergence in the observed probabilities using a given block size in the protocol. In the ex-

53



CHAPTER 4. RANDOMIZED RESPONSE BLOCK AGGREGATION PROTOCOL

periments of Section 4.7.2 we discussed the effect of different values of p on the convergence

at different block sizes.

1
I-p

eez%:)»ezln( )=>p<Ll—¢F 4.7
=D

4.6 Testing for Association

One of the first questions posed while dealing with two or more categorical attributes is
whether they are independent. Two attributes are independent when their joint distribution

is equal to the product of their marginals, i.e.
P(A,Ay) = P(A|A,)P(A,) = P(A,|A)P(A|) = P(A))P(A,).

In other words, knowing the value of an attribute A provides no valuable information when
predicting A,. The test of independence y? [68] is one of the most common statistical tests
when dealing with two or more categorical attributes. We now consider the problem of test-
ing whether two or more categorical attributes in the noisy contingency table T are indepen-
dent of each other. This is important if one wants to employ the reconstructed probabilities
in advanced models (e.g., Bayesian networks). Before discussing the test of independence
on noisy attributes, we first discuss how independence testing is performed on categorical
attributes using y2.

We now consider two categorical attributes, A;, and A,. They are independent given
the null hypothesis H, : A; L A,. One approach to performing a test of independence H,
is to sample the database (or the users’ answers) and obtain » joint outcomes from A, and
A,. From the sample, we count the number of observed outcomes as T, 4 which is the
number of times A; = v; and A, = v; occur in the n trials; so we can aggregate all the joint
outcomes as a contingency table T, ;. Compute the 77 statistic as:

(T, = i

P=) = (4.8)

ij i,j

3

Where T, ; stands for observed cell count and ; ; for the maximum likelihood estimator

(MLE). Further, we can write MLE i as described in [69] as:

Lemma 4.6.1. Given a contingency table T which stores the outcomes of n samples on A,
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and A, if A| L A,, then the MLE for i is given as:

(T

i, ; T fori € [r],j € [c] (4.9)

r,c

where T, = iT’J I,;= i—l]—l.] T.= ZTIJ
j=1 i=1

i.J

To perform a test of independence, we first calculate MLE by ; ; from equation 4.9.
Compute 72 using equation 4.8 and set (r — 1)(c — 1) for the degrees of freedom of the test.
If 72 > ;((Zr_l) (e—1)(1—a) (for a 1 — a significance test) and all entries in T are greater than 5
we Reject H, else Accept H,,.

To perform a similar test of independence for a noisy version of the table, we need to
determine an estimation for 71 where we do not have access to the true cell counts in the
contingency table. Now suppose we only have access to the noisy cell values in T, where
noise is added in each cell independently, for instance, using our randomization protocol.
To find the best estimates for 7 given the noisy cells, we consider the total likelihood of the
noisy r X c¢ contingency table. We will perform a two-step MLE calculation similar to the
work of [70, 71].

In a two-step MLE procedure, we first find the most likely contingency table ?A given
the noisy table T, and in the second step, we use equation 4.9 to calculate MLE given a
table of counts T - For the first step, we need to minimize ||T A — T A” subject to fA[G] =n
and ﬁ\[~] > 0. Note that if we add independent noise in each cell of a table T4, the above
optimization problem gives multiple solutions, and it is not clear which solution to use. The
¢ norm in our objective function in Equation 4.10 is convex but not strongly convex, which
means its solution is optimal but may not be unique and sensitive to an initial guess. To
overcome this problem, we add a strongly convex function in the objective function:

N )
minimize y “TA - 7)\||1 +(1=y) ||TA - TA”z
Ty

subject to T4 [0] = n, (4.10)
Tal-12 0.
where y is a mixing parameter in the range [0, 1]. The above objective function is in the

form of elastic net regularize [72] function proposed by [71]. The solution of this objective

function will converge to the solution provided by the #; norm when y is sufficiently large.
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For the test of independence, in the two-step MLE calculation, if any cell value in T A <35,

we follow the commonly chosen rule of thumb to Accept H,,.

4.7 Experiments

For experimental reproducibility, we use three publicly available datasets: Survey [73],
Alarm [74], and Child [75]. They vary in the number of instances and attributes as described

in the overview of Table 4.3. All attributes are discrete.

Datasets | Records | Attributes | Categories
Survey | 500 6 14

Alarm 10,000 | 37 103

Child 10,000 | 20 60

Table 4.3: Summary of the selected datasets.

4.7.1 Monte Carlo simulation: Convergence of the randomization protocol

To perform a test of convergence of the second version of the proposed randomized response
protocol, we test with any of the values of the attributes v; whose probability of occurrence is
in {0.0285, 0.072,0.116,0.224,0.356,0.446,0.524, and 0.732} and let vary the block size
s = {18, 50, 150, and 250}. We perform 40 trials on 200 blocks on each probability
value and block size. We average the number of tuples emitted when the condition holds

|Ta[w; 1B — Tplw,;1B-1| < 5*, and remains valid throughout the blocks.

4.7.2 Convergence Results

We perform the test of convergence in the three different datasets (Survey, Alarm, and
Child). We plotted the results of these experiments in Figure 4.6, where the x-axis repre-
sents the block size, and the y-axis shows the number of tuples emitted when the convergence
isreached. The behavior of convergence of our method is almost similar in all three datasets.

From the graph, it is clear that a smaller block size allows more easily to reach early
convergence of the proposed technique, both in lower and higher probabilities. Hence, from
the experiments, it is sufficient to have a block size equal to the dimension of the contingency

table.

56



CHAPTER 4. RANDOMIZED RESPONSE BLOCK AGGREGATION PROTOCOL

(a) Survey dataset (b) Alarm dataset (c) Child dataset

Figure 4.6: Convergence in  probabilities  P(A4; = w;) =
{0.072,0.116,0.224,0.356,0.446,0.524,0.732} and block size s = {18,50, 150,250}
on three different datasets, Survey, Alarm and Child.

We perform similar experiments on convergence utilizing different values of p (the prob-
ability of releasing true data due to the first coin "Head" in the randomization protocol).
Due to the computational limitations, we focused on a few probabilities to analyze con-
vergence on the varying value of p. The selected probabilities of the true attribute values
P(A; = w;) = {0.072,0.116,0.356,0.446}, block size s = {18, 50, 150,250} and the prob-
ability of the first coin "Head" p = {0.009, 0.048, 0.095,0.139,0.221}.

At p = {0.009, 0.0480,0.095} none of the processes of reconstruction of the probabili-
ties P(A; = w;) converge at given block sizes s. Instead, at p = 0.1390, the reconstruction
process of the higher probabilities P(A; = w;) set at 0.356 and 0.446 converge with the
higher block sizes, i.e., 150 and 250. At p = 0.221 the reconstruction process of all the
probabilities converges with the higher block sizes, as shown in the graph of Figure 4.7. In
the graph, there is no convergence of all the probabilities with block sizes 18 and 50. If we
increase the block size, the reconstruction processes of all the probabilities P(A; = w;) start
to converge. A similar behavior is observed at p = 0.295. The results of Figure 4.7 show
that if we have a smaller value of p we must select larger block sizes so that the reconstruc-
tion process of the probabilities converge; if we select a higher value of p we can see the

convergence at smaller block sizes, as shown in Figure 4.6.

4.7.3 Monte Carlo Simulation: Test of Independence

We generate a k—way noisy contingency table T, using our proposed randomization tech-
nique. We calculated the parameters 7i; ; using the two-step MLE procedure. Using these
estimates, we sample / > 1/a many contingency tables (where «a is the significance level,
0.05). We then add noise to these sampled tables using our randomized response protocol.

Using the same two-step MLE calculation, we obtain [ different 3> values from these sam-
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Figure 4.7: Convergence in  probabilities  P(A4; = w;) =

{0.072,0.116,0.224,0.356,0.446,0.524,0.732} and block size s = {18,50, 150,250}
at probability p (first coin is head) = {0.009, 0.048, 0.095,0.139,0.221}

pled noisy tables. We rank these statistics by choosing [(I + 1)(1 — a)] as threshold 9o 1f
7> 9% we Reject H, else, we Accept Hy,. If at any point the two-step MLE calculation

outputs any cell count < 5 then we Accept H,,.

Significance Results

We now show how our tests of Independence perform on real-world data when H is both
rejected or accepted. We set @ = 0.05, level of significance (1 — a) = 0.95, y = 0.01 as the
parameter in the two-step MLE, and the privacy budget € = 0.25 in all our tests.

We perform the independence testing on 2—way, 3—way, and 4—way contingency tables
with binary attributes. Note that the independence tests can also be performed on arbitrary
r X ¢ noisy contingency tables generated by our proposed method. Notice that as soon as the
number of values increases, our protocol is more robust than the others and succeeds in the
tests a higher number of times.

In the above experiments with Laplace distribution, since it does not provide critical
values, we used the true values of the attributes as the values for the comparison with noisy
data: they are known in advance because the selected datasets are publicly available. If this
was not possible, one could also find the critical values of simulated data using R package

"CompQuadForm".
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2-way 3-way 4-way
Reject H, | Accept H, | Reject Hy | Accept H, | Reject Hyy | Accept H,

Reject H, 68 32 55 45 50 50

Laplace noise Accept H, 35 65 41 59 41 59
Accuracy 66.5% 57% 54.5%

Reject H,, 94 6 94 6 92 8

MClndep [76] | Accept H,, 5 95 7 93 9 91
Accuracy 94.5% 93.5% 91.5%

Reject H,, 96 4 94 6 93 7

RRBA Accept H, 3 97 6 94 6 94
Accuracy 96.5% 94% 93.5%

Table 4.4: Comparison of independence tests on k—way contingency tables (k = 2,3, and 4)
with Laplace noise, MClIndep (performs Monte Carlo independence testing to determine
whether a given contingency table should be rejected or not, while ensuring differential
privacy), and randomized response block aggregation (RRBA) on 100 trials with & = 0.05,
p = 0.5 (privacy parameter of our protocol), and privacy budget ¢ = 0.25 (privacy parameter
for Laplace noise and MClndep).

In Table 4.4, we compare the performance of our proposed method with state-of-the-art
competitors using a confusion matrix with Laplace noise and MClIndep [76]. We perform
100 trials for H rejected and 100 trials for H, accepted with various parameters to generate
the contingency tables. The accuracy of our method is excellent (96.5%, 94%, and 93.5%)
in all k—way contingency tables. These results are better than both Laplace and MClIndep
methods. Further, our block randomization protocol is robust even in sparse data, where
contingency cells often have very low or zero count values. On the contrary, Laplace and
MClndep do not produce valid results in these extreme situations, which can be a killer

application.

4.8 Conclusion

In this work, we systematically explore the problem of collecting and analyzing data from
smart devices under e—local differential privacy, in which neither the aggregator nor the
server are trusted, have access to randomized responses from the users, and reconstruct sta-
tistical models based on the perturbed data. The server can compute accurate statistics from
these joint distributions as a basis for building more advanced machine learning models.
With the experiments, we showed that our protocol achieves high utility in reconstructing

the probabilities of attribute values committing a low error bound. In future work, we will
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like to use the hash function to store these contingency tables to reduce the computation and

communication overheads.
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Chapter 5

Randomized Response, a Modified

Version and a-Geometric Mechanism

This chapter will present two modified variations of our proposed randomization protocol.
In the first part of this chapter, we propose a modified version using a Bayesian network.
We utilize Bayesian networks to perturb the low-dimensional distribution of variables in the
contingency tables. Our results show that this modified version provides better accuracy
and utility than the previous randomization protocol. In the second part of this chapter, we
proposed a hybrid approach by combining our proposed randomization protocol with the a-
Geometric mechanism. This a-Geometric mechanism is also called the discretized version

of the Laplace distribution.

5.1 Introduction

In this section, we present our modified randomization protocol. Our previous version fo-
cuses on publishing noisy k-way contingency tables. In this modified version, we present a
robust solution to the problem of publishing differential private moderate-to-high-dimensional
databases, unlike the solution proposed in the previous version. Our previous version fo-
cused on aggregating and optimizing the noisy responses from clients for specific workloads,
like count and sum queries, which can be calculated directly from the noisy contingency
tables released by the aggregator. Now, we focus on estimating the high-dimensional dis-
tribution of the original dataset with a data-dependent set of well-chosen low-dimensional

distributions. Our results confidently show that the resulting noisy data will provide high
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accuracy for almost any query type (linear function of data values or non-linear).

In any case, we still assume that the noisy dataset generated using our modified random-
ization protocol will obey the original schema and keep the same format as the true dataset.

In the result section, we provide extensive experimental evidence of the accuracy of
our proposed modified randomization protocol. Our experiments show that this proposed
version is more accurate than our previous version without implementing any optimization
techniques.

We use the well-known Bayesian networks, graphical models widely studied in machine
learning,0. and statistical analysis [77]. Bayesian networks combine low-dimensional distri-
butions to estimate the high-dimensional distribution of the dataset. To achieve differential

privacy, our proposed randomized response protocol! consists of the following steps:

1. (Differential private structure learning) In the first step, we construct a differential

private Bayesian structure using our previous randomization protocol.

2. (Differential private distribution learning) We compute the differentially private joint
distributions using our modified randomization version. These joint distributions are
generated from the differentially private Bayesian network learned in the previous

step.

3. (Synthesis data publishing) In the last step, we generate synthetic data from the noisy
joint distributions generated in the previous step without explicitly materializing the

full-dimensional distribution.

5.2 Preliminaries

This section provides an overview of the Bayesian network and necessary notations to help

us establish our work.

5.2.1 Bayesian Network

A Bayesian network G is a probabilistic graphical model that represents a joint probability
distribution on the set of attributes A by compact conditional dependencies among a cer-

tain subset of attributes in A. A Bayesian structure, also known as DAG (Directed Acyclic

'Our proposed modified randomization versions are all executed in blocks as we have discussed in Sec-
tion 4.4.2
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A —— T

Figure 5.1: A Bayesian network generated on six attributes using a Hill Climbing algorithm

Graph), represents each attribute as a node and the conditional dependencies among the
attributes using directed edges. For example, Figure 5.1 illustrates a Bayesian network
constructed on the dataset D from Table 4.1a. This dataset comprises six attributes (Age,
Region, Education, Occupation, Sex, and Transportation). For any two attributes

A, A, € A, three possible cases exist between A and A,.

1. Direct dependence: Suppose there is an edge directing from A, to A, then A, is the
parent of A, and we refer to the set of all parents of A, as its parent set. This shows
that for any tuple in the dataset D, its distribution on A, is calculated by its value on
A,. For example, in Figure 5.1, an edge from Region to Transportation indicates

the type of transportation depends on whether the region is big or small.

2. Strong conditional independence: If there is no edge between A, and A, then there

is conditional independence given any parent sets of A; and A,.

3. Weak conditional independence: If there is no edge between A, and A, but a path
exists between A, and A, then A and A, are conditionally independent, given the
A, parent set. For example, in Figure 5.1, there is no direct edge between Sex and
Occupation, but we can reach Occupation from Sex through (Education, Region).
This indicates that her occupation and sex are conditionally independent, given her ed-

ucation and region.
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i A I1;

1 Sex %)

2 Education {Sex }

3 Region {Education, Sex }

4 Age {Education, Region, Sex }

5 Transportation {Age, Education, Region}

6 Occupation {Education, Region, Transportation}

Table 5.1: The attribute-parent pairs in G

A Bayesian network G extracted on a dataset D with d attributes A = (A, A,, -+, Ay),
is defined as a set of d attribute-parent set (AP) pairs, as follows:

{(PT[A1 ITL, 1), (Pr[A,[TL,]), -, (Pr[Ad|Hd])}
with A; an attribute in A. Each II; is a subset of attributes A € A, which represents the
parent set of A; in the network G.

Nodes are ordered according to an ordering defined as the possible parent sets for each
node. For such an ordering, for any node whose position is i in this ordering, the node index
is denoted by i;. The ordering is such that i} <i; <i; < i, and we have A,-j ¢ II, . There is
no edge from Aij to A; in the Bayesian network, thus maintaining the acyclic nature of the
network. We also define the degree k of the Bayesian network. The degree k defines a node’s
maximum parent set or the maximum number of incoming edges to a node. Table 5.1 shows
the attribute-parent pairs in the Bayesian network G, and Figure 5.1 shows the Bayesian
network of degree 3 since the parent set of any node in the network has size at most 3.

Let Pr[A] indicate the full distribution of attributes in the database. The attribute-
parent set pairs in G approximate Pr[A] with d conditional distributions given as Pr[A |I1;],
Pr[A,|IL,], .-+, Pr[A,|I1;]. According to the DAG characteristics of the Bayesian network,

any A; and A; ¢ I, are conditionally independent given II;. We have:

Pr[A] = Pr[A,, Ay, -+, A,]

= PI‘[Al] * Pr[AzlAl] * Pr[A3|A1, Az], b ,Pr[Al, b ’Ad—l] (51)

d
= [ Pria;im;]

If the Bayesian Network G captures the conditional dependence among the attributes in
A, then Pr;[A] would be a good approximation of Pr[A]. If k is small, then the computation

of Prg[A] is relatively simple, as it only requires d low-dimensional distributions.
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5.2.2 Learning Non-Private Bayesian Structure

The k-degree Bayesian network G on the attributes A in the dataset D accurately captures the
full distribution of the tuple in the dataset, i.e., Prg[A] should be close to Pr[A]. To estimate
this approximation, we use the standard notions for information theory. The Entropy” of a

random variable A over its domain A is given by

H@A)=- ) Pr[A]logPr[A] (5.2)
AeDom(A)

and the mutual information I(-,-) is given by

(5.3)

[(A.) = Y Pr{A,M]log < Prid, 1] >
ATl

Pr[A] Pr(II]

where Pr[ A, I1] is the joint distribution of A and its parent set I1, and Pr[A], Pr[II] are the
marginal distribution of A and IT respectively. We use Kullback—Leibler divergence (KL
divergence) [78] to calculate the distance between two probabilities distributions Prg[A] to

Pr[A], defined as:

Dy (PrIATII PIAD = = 3 T(A,T1) + 3 H(A) = H(A) (5.4)

d d
i=1 i=1

The term Zfl:l H(A;) — H(A) in the above equation is decided by Pr[A] and is fixed once
the input dataset is given. Hence, the KL-divergence is small if and only if 2?:1 I(A;, 1)) is
maximized. Therefore, the construction of a Bayesian network G is seen as an optimization
problem, where we focus on selecting a parent set I1; for each attribute A; in the dataset to
maximize Z;j:] I(A,,TL).

We use the GreedyBayes technique, initially discussed in [1], to construct k-degree
Bayesian networks. When k = 1, Chow et al. [79] show that greedily picking the next edge
based on maximum mutual information is optimal. However, if k > 1, the optimization
problem is NP-hard. For this reason many heuristic algorithms, like hill-climbing [80], ge-
netic algorithms [81], and simulated annealing [82] are often used. Zhang et al. [1] modify
the Chow-Liu approach for the greedy construction of a k > 1 degree’s Bayesian network,
as outlined in Algorithm 2.

Algorithm 2, at line 1, initializes the Bayesian network G and subset A to the empty set,

2All logarithms used in this chapter are of base 2
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Algorithm 2 GreedyBayes [1]

Input: set of an attributes A, degree of Bayesian network k

Output: Bayesian network G

initialize =@ and A =0 ;

randomly select an attribute A; € A ; add (A;,0) to G; add A; to A ;
fori=2tddo

initialize Q =0 ;

foreach A € A\ A foreach Il € (2) add (A,I1) to Q ;

select a pair (A;,11;) from Q with 1(A;, I1;) maximum mutual information ;
add (4,,I))to G;

add A; to A ;

o ® N R W N =

end
return ¢

et
=]

where A contains all the attributes whose parent set has been fixed in the partial creation of
G. Atline 2 the algorithm randomly selects any attribute A; from A and sets its parent set to
null (I]; = @). From line 4 - 8, the algorithm consists of d — 1 iterations: in each iteration,
it greedily adds to G an attribute-parent pair having the maximum mutual information. The
attribute-parent pair is selected from the candidate set € that contains every attribute-parent
pair (A, IT) satisfying the requirements listed in Section 5.2.1. Once the parent sets for each
attribute are decided, the algorithm returns the Bayesian network G at line 10. In each it-

eration, i, the number of pairs considered is (d — 1)(;{) Summing over all iterations, the

d+1)‘

computation cost is bounded by d ¥ (;) =d(,,,

5.2.3 Private Bayesian Network

Observe that in Algorithm 2, the only time we access the true dataset D is when the algo-
rithm at line 6, in each iteration, greedily selects an attribute-parent pair (A4;,I1;). As aresult,
all we have to do to make Algorithm 2 differentially private is replace line 6 with a proce-
dure that selects (A;, I1;) from Q privately. Such a procedure can be implemented using our
randomized response discussed in Section 4.4. Once, the GreedyBayes Algorithm 2 identi-
fied attribute-parent pairs (A4;,11;,) € Q, we generate the noisy distribution in (4;,II;) € Q
using Algorithm 1. In our randomization protocol, we use T, to denote the contingency
table over the joint distribution of a subset of attributes A. So to adapt Algorithm 1 working
to this situation, we have to consider the contingency table of the pair A = (A4;,I1,). In the
next Section, we explain the randomization of each candidate attribute-parent pair in Q. We

select the attribute-parent pair with the maximum mutual information 7(A;,I1;) € Q using
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Equation 5.3.

In the next Section, we explain how we generated the noisy joint distribution of each
attribute-parent pair (identified as said by the GreedyBayes Algorithm 2). From these noisy
joint distributions, we generated the conditional distributions that are needed in the Bayesian

network at each edge.

5.2.4 Noisy Attribute-parent Pairs

This Section will discuss how we generated differential private conditional distributions of
each attribute-parent (AP) pair. These are identified using Algorithm 2. Zhang et al. pro-
posed PRIVBAYES [1] to generate noisy conditional distributions using the standard Laplace
distribution Lap(@) and their proposed algorithm can access the true dataset at least
once. We do not have access to the original dataset in our LDP setting. We assume an
environment where we build a synthetic dataset by randomizing users’ responses.

PRIVBAYES is a differentially private method for releasing private data via Bayesian net-
works. The privacy in PRIVBAYES is achieved using Laplace noise. PRIVBAYES constructs
a Bayesian network G on a given dataset D. The Bayesian network provides a compact
model of the correlations between the attributes in the dataset. It enables the approximation
of the probability distributions of the data using a set of low-dimensional marginals. Af-
ter that, to ensure differential privacy, PRIVBAYES injects Laplace noise into each marginal.
Then, it approximates the dataset probability distributions using the noisy marginals and
the Bayesian network. Finally, PRIVBAYES constructs and releases a synthetic dataset by
sampling tuples from the approximate distribution. The scale of the Laplace noise added to
each low-dimensional marginal is set to Lap(@) (where d is the number of attributes in
the dataset, k is the degree of the Bayesian network) which ensures that the generated noisy
marginals are differentially private.

We now outline the generation of the noisy conditional distributions of AP pairs in Al-
gorithm 3. Once the GreedyBayes Algorithm 2 generates AP pairs (4;,I1;) € Q at line 5,
we pass these candidates set € to the Aggregator function in Algorithm 1. We then start
collecting randomized user responses at line 4 of the Noisy Conditionals Algorithm 3.
Once the aggregator has collected all the responses in the joint distribution of each AP pair
in Q, from lines 5 - 6, the Algorithm 3 normalizes these distributions using MinMix normal-

ization 4.4 and adds them to Q’. The set of noisy candidates Q' is then sent to GreedyBayes
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Algorithm 2 for the computation and selection of the pairs having the maximum mutual
information. The Algorithm 3 iteratively performs these steps until all the AP pairs are

randomized.

Algorithm 3 Noisy Conditionals

Input: candidate set

Output: noisy AP pairs Q'

initialized Q' = ¢ ;

while exists a AP pair € Q not yet randomized do
initialize the joint distribution Pr[A;,I1;] € Q ;
generate differentially private Pr'[A;, 1] using Algorithm 1 ;
normalize Pr'[A;,T1;] ;
add Pr'[A;,T1,] to Q'

end

return: Q'

NN N R W N =

Using our randomized response algorithm, we generated a differential private Bayesian
network by combining GreedyBayes and Noisy Conditionals. The only problem with
this setting is that each time the Aggregate function collects randomized responses from
the clients in the candidate set €, it might release some information to the adversary. Since
each attribute A; is repeatedly combined with other attributes in €2, this might leak some
information about the attribute values. Furthermore, collecting all the responses within each
AP pair is computationally expensive.

We proposed a modified version of our randomization protocol to solve the above prob-
lems. We execute our previous version of the randomization protocol only on a few blocks
to learn the Bayesian structure in the LDP setting. Once we learned the full dimensional
distribution of the attributes Prg[A], we stopped and executed our modified randomization
protocol. At this point, the aggregator uses the noisy data Pr’g[A] generated while learning
the Bayesian structure, collects new randomized responses using the proposed modified ran-
domization version, and aggregates them with the already collected noisy data Pr’g[A]. As
an alternative, the server can directly start with the modified version of the randomized pro-
tocol to collect randomized responses based on the probability distribution given by Prg[A]

to generate noisy Pr’g[A].
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5.2.5 Modified Randomization Protocol

Suppose we are given a k-degree Bayesian network G, as shown in Figure 5.1. Our modified
version utilizes only (d — k) joint distributions to be randomized in a differentially private
manner. For example, suppose we have k = 3, then the algorithm will select AP pairs
that contain only (k + 1) attributes in the joint distributions Pr[A] to be randomized. The
full-dimensional distribution will be reconstructed from the (d — k) joint distributions. The
setting of our modified version is the same as our previous randomization protocol, where
we have a server (that performs the aggregator) that collects randomized client responses.
These responses are collected in contingency tables. As far as the notation is concerned, in
this chapter, we denote contingency tables of AP pairs by using the same notation we used
in Ty, where the subscript refers to the AP pair, with A € (4;,11;)). The server can send a
query for each AP pair and collects randomized responses. Again, we have p, (1 — p), and ¢
probabilities to adjust the privacy and utility of the modified randomized response protocol.

We use the same Q to denote the set of AP pairs to be randomized. The server randomly
selects any AP pair T, € Q to collect responses from each client. With probability p, the
client answers a true value of the attributes in the AP pair. With probability (1 — p), the
client replies a "fake" value using Monte Carlo sampling based on probability g. Recall that
AP pairs are statistically independent as defined by Bayesian networks. The second version
of our randomization protocol independently performs Monte Carlo sampling from each AP
pair. This is an enhancement on the first version of our randomized protocol that sampled
independently from the disjoint views. This sampling in the views could emit the attribute
values independently, thus introducing a possible distortion in the probability distributions
of statistically dependent attributes separated in different views.

As said, in the second version of our protocol, the Monte Carlo sampling is performed
differently from the previous version. In the first version of our randomized response pro-
tocol, the execution of a single Monte Carlo sampling was performed on a single table (or
view) using a single probability mass table. In this new version, the schema from which
Monte Carlo sampling emits “fake” values belongs to an AP pair that could be ”spread”
across multiple tables (views). Furthermore, differently from the first version of the proto-
col, the views’ schema might be overlapping. Our randomized protocol starts from an AP
pair denoted by T,. The attributes of the AP pair might not be found in a single table (or

view V), but some are found in one view and others in another. Each view corresponds to
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a contingency table 7y, from which we emit fake values that must be in agreement with the
attributes that are in common. In our protocol, this “fake” value emittance occurs with the
same probability as above (1 — p) in all the involved views. The presence of an overlapping
set of attributes among the different views in which the original schema of an AP pair is
divided is an enhancement w.r.t. the previous protocol according to whom it was impossible
to share any attributes among the different views.

To better understand how we emit a fake value in Monte Carlo sampling, we use Fig-
ure 5.2 with Example 5.2.1. In this example, we consider that the aggregator works with the
modified version of our protocol and collects randomized responses based on the probability

distribution given by Prs[A] to generate noisy distributions Pr’g[A].

Example 5.2.1. Let us consider a k-degree Bayesian network as shown in Figure 5.1. The
(k+ 1) AP pairs Q = {(A,E,R,S),(A,E,R,T),(0, E,R,T)}. For the sake of simplicity,
we assume that these attributes are all binary. We use these AP pairs Q in the modified
version of our randomization protocol. As shown in Figure 5.3a, the aggregator arbitrarily
selected an AP pair Ty, = (A, R, E, S) to be randomized. With probability p, the client emits
true values of all the attributes in Ty. With probability (1 — p), the client emits fake values.
The attributes that are not included in Ty, i.e., the remaining attributes, do not depend on the
attributes in the AP pair just selected Ty = (A, R, E, .S) and can be emitted independently,
i.e., even with fake values by Monte Carlo sampling. In the example, these latter attributes
areT (Transportation)and O (Occupation) that can be emitted from the single view (an
AP table) (O, E, R, T) by Monte Carlo sampling.

Suppose the true values emitted of the attributes (E, R) are e and ry. If the client
emits fake values with probability (1 — p) for (T, O), these latter need to be combined with
the true values e|,r,. The Monte Carlo sampling is performed using the probability q in
Equation 4.2 referred to the contingency table of the second view Ty = (O, E, R, T) whose
schema contains (T, O). Suppose, from Figure 5.3a, the values emitted correspond to the
cell with values (t,,0,). They are combined with the other attribute values, and the client
emits (e}, 0,) and (r,t;).

Now consider that the aggregator randomly selected the table Ty = (A, E, R,T). With
probability p, the client emits true values, and with (1 — p), it emits fake values. It per-

forms similarly also for the remaining attributes, which are S (Sex) and O (Occupation).

3In Figure, we slightly abuse the notation and use T}, to indicate the cell in the contingency table T at the
second row and first column, i.e. using a binary encoding of the values at rows/columns.
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Algorithm 4 The second version of our randomization protocol with AP pairs and
views

Input: The set of (k + 1) AP pairs £, the set of views V={V;}

Output: The noisy row r to be emitted

Init: =0 ; /* output row */

Init: S=0 ; /* portion of the row schema already emitted */
1 for each AP pair T, € Q do

2 flip the first coin;
3 if the first coin gives "Head" then
4 Al—A\S;
5 r=rUrow[4’]; /* row[A’] are the true row attributes known
only to the user */
6 S=SUA;
7 else
8 draw the second random variable: g € [0..1];
9 V' « setof views {V} | Uj Schema(V}) 2 A;
10 for each V, € V': do
1 A< Schema(V;)NA;
12 Ay < ANS; /* attribute values already emitted */
13 TVj A, < subset of TVJ_ indexed by r[A sl
14 T normalization_sums_to_l(TVj|r[Ajs]);
15 w < Monte Carlo (T’, q); /* return the attribute values w
corresponding to g */
16 r=ruw;
17 S=SuAd 7
18 end
19 end
20 end

Output: row r

Two contingency tables are needed to perform Monte Carlo sampling for emitting the pair
of values of (S,0): (A, E,R,S) and (O, E,R,T), as shown in Figure 5.3b. Suppose the
client’s true values are (a;,ry, e, t;), so with probability p, those values are emitted, and
with probability (1 — p), the client emits a fake value for O using Monte Carlo sampling
in the contingency table (O, E, R, T) and a fake value for S in the other contingency table

(A,E,R,S).

The algorithm just described in Example 5.2.1 is formalized as Algorithm 4.

The above algorithm repeatedly chooses an AP pair and for its attributes (A) it emits
their values (either true or "fake” ones). It flips the first coin (line 2): if "Head" it emits the
true values of the private client data (row) otherwise it runs Monte Carlo sampling (line 15)
on a set V' of contigency tables (T v, ) of views V; whose overall schema cover the attribute
schema A (line 9). Views store the knowledge acquired about the frequencies of the attribute
values and Monte Carlo sampling will rely on them to generate the fake” responses. It draws

the random variable g (line 8) to decide the attribute ("fake”) values to be communicated in
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the output row r. For each view V; these attributes are denoted by A; (line 11). Each time it
emits an attribute value it progressively extends the schema ' of the row (lines 6 and 17) to
keep memory of the attribute values already emitted in order to avoid multiple emittances
and possible inconsistencies. For view V; the attributes already emitted are stored in A4 ;; and
r[A;,] denotes the values already emitted. T, ViIrlA,] denotes the portion of the contingency
table of view V; whose cells are indexed with the attribute values already emitted (A;;)
in the output row r. Monte Carlo sampling will have to restrict its action to these cells
because they are the ones that agree with the already emitted attribute values. In case none
of the attributes in view V; has been previously emitted A;; is empty and the contingency
table TVj IrlA,,] coincides with the original one TVj . The portion of the contingency table is
normalized such that the sum of the probabilities of the cells values gives 1 (at line 14 with
normalization_sums_to_1). This is necessary so that the probability value g drawn from
the second random variable can be used to return the values w by Monte Carlo sampling on
the contingency table ij 1A, The obtained “fake” values w are thus in agreement with
the already emitted values and drawn according to the value of g. The values w are added
to the ouput row r (line 16) and the schema .S is updated with the already emitted attributes

(line 17).

5.2.6 Noisy Conditional Distribution in Modified Randomization Protocol

Our modified randomization protocol generates noisy joint distributions of all Pr’(A4;,I1,)
with i € [k + 1,d] AP pairs. Our proposed randomization protocol satisfies e—differential
privacy since the randomization is achieved using a similar randomization mechanism of
the method presented in Section 4.4.2, which is e—differential private. After obtaining the
noisy Pr'[A,,T1;] distribution, our algorithm generates noisy conditional distributions of all
Pr/(A;|IL;) with i € [k + 1,d] AP pairs.

To construct the approximate distribution Prg[A], we need a conditional distribution
Pr[A;|I1;] with i € [1,d], as shown in Equation 5.1. After Pr'[A,; |[T1;, 1. -, Pr'[A,|T1,]
are constructed, we proceed to generate Pr'[A;|I1,] with i € [1, k]. However, this generation
does not require any additional information from the clients. Instead, the algorithm derives

Pr'[A;|T1;] with i € [1, k] directly from Pr'[A,,T1,,,]*. Such deriving is possible since

4Since generating lower degree distributions from the upper level will generate inconsistencies among the
values at the lower level, one can apply any linear optimization technique to solve these inconsistencies. We
discussed and solved this problem by applying an additional post-processing technique in Section 4.4.3. For
simplicity, we omit such optimization from this presentation.
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the algorithm for constructing the Bayesian network G in Section 5.2.1 ensures that A; €
I, and II; C T, forany i € [1, k].

We consider that each Pr'[A,|IL](i € [1,k]) is generated from Pr'[AkH, I, ] with-
out interactions with the clients. Hence, the construction of Pr’[4;|I1;] does not incur any

privacy cost. We explain this derivation Pr’ [A;|IL](i € [1, k]) in Example 5.2.2.

Example 5.2.2. We consider a Bayesian network G in Figure 5.1. Our modified randomiza-
tion protocol generated three noisy joint distributions Pr'[A, E, R, S, Pt'[T, A, E, R), and
Pr’'[O,T, R, E]. Our algorithm generates noisy conditional distributions Pr'[A|E, R, S],
Pr'[T|A, E, R], and Pr'[O|T, R, E] based on these joint distributions. In addition, the algo-
rithm uses Pr'[A, E, R, S] to derive other conditional distributions Pr'[R|E, S],Pr’[E|S],
and Pr'[S]. Given these six conditional distributions, we can approximate the full distribu-

tion of the input tuple as

Pr/;[A,R,E,S,0,T] =Pr'[S]-Pr'[E|S]-Pr/[R|E, S]-Pr'[A|E, R, S

Pr/[T|A, E, R] - Pr'[O|T, R, E]

5.2.7 Generation of Synthetic Data

One of the advantages of using the Bayesian Network is that it provides a means to approxi-
mate the sampling of attributes without materializing Pr’G[A]. In the first version of our ran-
domization protocol, the server releases noisy contingency tables, considered a workhorse
for data analysis. In this modified version, we can release the whole synthetic data, which
can be used to perform many machine learning tasks or more sophisticated statistic model-
ing. As shown in the Equation 5.1, we can sample each A; from Pr’[A;|I1,] independently,
without considering any attribute not in II; U A;. Furthermore, the acyclic characteristics of
the Bayesian network ensure that forany i; > i;, Aij & I, . Asaresult, if we sample A; with
i; € [i},i4] in increasing order of i;, we must have sampled all attributes in i; by the time
we sample A,-/_ with i; € [iy,i4], 1.e., we will be able to sample A,-/_ from Pr ’[A,-j li;]1 given
the previously sampled attributes. The sampling of A i does not require the full distribution
Pr/ [A].

Using the above sampling technique, we can produce an arbitrary number of tuples from
Pr’;[A] to publish a synthetic dataset D’. We generated the n number of tuples in the syn-

thetic dataset, equivalent to the total number of responses collected from the clients.
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5.3 Experiments on Modified Randomization Protocol

We present an empirical evaluation of our modified randomized response protocol on real
datasets. For experimental reproducibility, we use three publicly available datasets Sur-
vey [73], Alarm [74], and Child [75]. We recall here their characteristics. The Survey
dataset has 5k records, six attributes, and 14 categories. The Alarm dataset has 10k records
with 37 attributes and a total of 103 categories, and the Child has 10k records with 20
attributes and 60 categories. All attributes in these datasets are discrete.

We performed three experiments to evaluate the accuracy of our proposed modified ran-
domization protocol with Laplace noise and our previous randomization protocol. In our first
experiment, Section 5.3.1, we evaluate the accuracy of the generated synthetic dataset D’
with the original dataset D by comparing the Bayesian structure generated on both datasets
(D', D). Next, we use ¢, distance and Jensen-Shannon divergence to evaluate the perfor-

mance of our proposed modified version.

5.3.1 Performance for Bayesian Networks

We use the heuristic approach "Hill-Climbing" to generate Bayesian networks on the noisy
and the original datasets. We use the symbols G and ¢’ to denote the original and the noisy
networks, respectively. We generated the adjacency matrix of G and ¢’ as boolean vectors
g and g’ so that each vector i-th entry is a boolean indicator of the presence of the link i.
We compared two models: the true model g and the noisy model g’, which evaluate the
presence of each link on a given link collection with size L (in our case, for d = 6 attributes,
we have L = 30 possible links). If we consider the original vector g as the ground truth of
this binary classification task, we can compare the binary metrics g’ with ground truth g;
i.e., the number of links in the collection that are true positive (TP), true negative (TN), false
positive (FP), and false negative (FN). Then, we can construct a set of Bayesian networks
performance metrics as shown in Table 5.2.

Sensitivity (sens) measures the ratio of true positives (TP) over the total positives of
the ground truth g (TP + FN), that is, the percentage of g present links that are correctly
identified by g’. Specificity (spec) measures the ratio of true negatives (TN) over the total
negatives of the ground truth g (TN + FP), that is, the percentage of g absent links that
are correctly identified by g’. Average recall (avg_recall) measures the average between

sensitivity (sens) and specificity (spec). Accuracy (acc) measures the ratio of true positives
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Binary Metrics Bayesian Network Performance Metrics

TP=Y" Ig=1¢g,=1 sens =TP/(TP+ FN)

TN = Z£L= Kg =0,g';=0)  spec=TN/(TN + FP)
FP=3_1Ig=1¢g;=0) avg_recall = (sens + spec)/2

FN=Y" Kg=0¢g;=1  acc=TP+TN)/(TP+TN +FP+FN)

Table 5.2: Binary metrics of Bayesian vector g’ with respect to ground truth g (g and g’
are boolean link-indicator vectors of a link collection of size L). From binary metrics,
Bayesian performance metrics are evaluated: sensitivity (sens), specificity (spec), average
recall (avg_recall), and accuracy (acc).

and true negatives (TP + TN) over the link collection size L = TP + TN + FP + FN, which
is the percentage of links, whether absent or present for the ground truth g, that are correctly
identified by g’.

For the performance evaluation, we execute 500 times our randomization protocol to
generate a noisy Bayesian network G’ and each noisy vector g’ is compared with the ground
truth g. The noisy network G’ is generated using our previous randomization protocol, the

modified version, and Laplace noise’

. We report the average performance in Table 5.3,
where the error is computed as the standard deviation of performance. Figure 5.5 shows the

distribution of these performance metrics.

ACC SENS SPEC AVG_RECALL
Modified randomization protocol 0.81 + 0.06 0.93 + 0.06 0.6 + 0.07 0.76 + 0.05
Randomization protocol 0.74 + 0.06 0.87 + 0.06 0.47 +0.07 0.67 + 0.05
Laplace noise 0.71 + 0.06 0.81 + 0.05 0.52 +0.09 0.66 + 0.05

Table 5.3: Bayesian average performance metrics: sensitivity (SENS), specificity (SPEC),
average recall (AVG_RECALL), and accuracy (ACC) evaluated for the Bayesian networks
generated using (Laplace noise, previous Randomization protocol, and modified version).
The metrics represent the level of accordance between the ground truth Bayesian network
and the collection of networks obtained by our randomization protocols and Laplace noise.

Table 5.3 shows that the Bayesian network generated using our modified randomization
protocol has the best consistency between the noisy Bayesian network and the ground truth.
Our modified version beats the other protocols on all four scales, having a high accuracy,

sensitivity, specificity, and average recall.

3In these experiments, the Laplace noise is generated with Lap(%), where € = 0.1.

76



CHAPTER 5. RANDOMIZED RESPONSE, A MODIFIED VERSION AND
a-GEOMETRIC MECHANISM

Accuracy Sensitivity
80 1 B RP 1% version BN RP 1°f version
RP 2" version 60 - RP 2" version
B Laplace BN Laplace
40 A
20 A
T O T T
0.4 0.6 0.8 1.0 0.4 0.6 0.8 1.0
Specificity Average_Recall
100 A
I RP 1% version N RP 15t version
80 RP 2" version 80 A RP 2" version
W Laplace W Laplace
60 60 1
40 - 40 1
20 20 A
0 & T T O T
0.4 0.6 0.8 1.0 0.4 0.6 0.8 1.0

Figure 5.4: Bayesian network performance metric histograms (accuracy on the top left, sen-
sitivity on the top right, specificity on the bottom left, and average recall on the bottom right)
over the resulting collection of the noisy Bayesian networks generated using Randomization
protocols (RR 1% version is the randomization version, RR 2" is the modified randomiza-
tion, and Laplace noise). The average of each performance metric for each Bayes network
is reported in Table 5.3

5.3.2 Performance using £, norm

In this section, we evaluate the performance of our proposed modified randomization proto-
col using ¢ distance. For evaluation purposes, we use the noisy joint distribution AP pair.
Pr’(A;,I1,) with i € [k + 1,d]. This noisy table is compared with the ground truth. The
ground truth table is calculated directly on the unperturbed data®. A ground truth table con-
tains the same attributes as a noisy table, so they have the same dimensionality. The #; norm
is the error metric referred to as the £, distance between the noisy and the original table.
Since each table is a probability density function (p.d.f.) table, we transformed these prob-
abilities into real values by multiplying each cell entity with the total number of responses
collected by the aggregator. We performed 500 trials on Survey, Child, and Alarm data
sets and reported the average performance in Table 5.4. Figure 5.5 shows the distribution of

these performance metrics.

®In experiments performed using #; and Jensen-Shannon distance, the noisy w’ and original w tables are
generated on Pr(A,,I1, with i € [k + 1, d] attributes.
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Survey Child Alarm
Modified randomization protocol 61.38 60.3 51.79
Randomization protocol 120.12 120.82 107.96
Laplace noise 124.79 125.06 112.93

Table 5.4: ¢, distance between the true and the noisy AP pair table on Survey, Child,
and Alarm dataset. The comparison is performed by evaluating the performance of the
modified randomization with the previous randomization version and the Laplace noise with
the original table (ground truth).

From Table 5.4, our modified randomization protocol has the lowest average £, distance

on all the three datasets (Survey, Child, and Alarm).

Survey Child Alarm

s RP 1° version 60 mmm RP 1% version 80 = RP 1% version
60 RP 2™ version RP 2" version RP 2™ version
Laplace 50 70 Laplace
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Figure 5.5: Modified randomization protocol, Randomization protocol, and Laplace noise
performance metric histograms (Survey dataset on the left, Child in the middle, and Alarm
on the right) over the resulting collection of the noisy AP pairs using #; norm. The average
of each performance metric for each dataset is reported in 5.4

5.3.3 Performance Evaluation using Jensen—-Shannon Divergence

Jensen-Shannon divergence (JSD) is based on Kullback-Leibler divergence and is used to
compute the similarities between two probability distributions. Shannon has some notable
and valuable differences as compared with Kullback-Leibler. It always has a finite value, and

itis symmetric. The square root of JSD is a valid metric distance between distributions [83].

ISD(T 1) = 3Dy, (T | Q)+ 2Dy (T' 11 0) (5.5)
where:
S
0=3 (T+T)
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and Dy is Kullback-Leibler divergence on both T" and 7" is given as

T, T .
Dy (T 11 Q) = ) log <5> ; Dy (T'11Q) = Y log (§>

iel iel
We use the same noisy and original tables we used in the £ distance experiments. The
negative values in the noisy table are set to zero, and each distribution is normalized, ensur-
ing a total probability mass of 1. Jensen-Shannon distance is calculated using Equation 5.5,
where T’ is the noisy AP pair table and T is the original table calculated directly on the un-
perturbed dataset. We perform 500 trials on Survey, Child, and Alarm datasets and report

the average performance in Table 5.5. Figure 5.6 shows the distribution of these performance

metrics.
Survey Child Alarm
Modified randomization protocol 0.03 0.04 0.03
Randomization protocol 0.07 0.09 0.06
Laplace noise 0.08 0.1 0.083

Table 5.5: Jensen-Shannon distance between the true T and noisy T’ contingency tables
on Survey, Child, and Alarm dataset. The comparison is performed by evaluating the
performance of the modified randomization, the original randomization, and the Laplace
noise with the original table T (ground truth).

Survey Child Alarm
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Figure 5.6: Modified randomization, randomization, and Laplace noise performance metric
histograms (Survey dataset on the left, Child in the middle, and Alarm on the right) over
the resulting collection of the noisy AP pairs tables using Jensen-Shannon distance. The
average of each performance metric for each dataset is reported in Table 5.4

From Table 5.5, we can conclude that our proposed modified randomization model has
the lowest distance on the Jensen-Shannon distance scale (a lower scale means that the noisy
distribution is similar to the ground truth distribution). The runner-up is our previous ran-

domization protocol, and then the Laplace noise. The results from the experiments (per-
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formance metric using Bayesian networks comparison, ; distance, and Jensen-Shannon
divergences) show that our proposed modified model wins over our previous version and
Laplace noise. Our proposed privacy protocol maximizes utility in the perturbed dataset

while ensuring e—differential privacy.

5.4 Randomized Response using «—Geometric Mechanism

This section presents a hybrid local differential private mechanism by combining our ran-
domized response technique discussed in Section 4.4 and a—geometric noise to create a
more robust randomization model. Our results show that this hybrid model is more robust
than the Laplace and the randomized response approach. First, in Section 5.4.1, we will
explain differential privacy via a—geometric mechanism. In 5.4.2, we will explain our pro-
posed hybrid approach by combining randomized response and alpha-geometric noise. In
Section 5.5, we evaluate the performance of our proposed hybrid approach with Laplace and
previously discussed randomization protocols.

Geometric noise refers to a specific technique used in differential privacy to add noise to
a dataset in order to preserve the privacy of individual users. This technique is based on the
exponential mechanism, which is a general approach to differentially private data release.

The exponential mechanism works by selecting a randomized response from a set of pos-
sible outputs, with probability proportional to the utility function. In the case of geometric
noise addition, the utility function is a matrix of probabilities, and the randomized response

is a perturbed version of the original data.

54.1 a—Geometric Mechanism

We consider a dataset D having n rows, where each row in the dataset represents an individ-
ual. Two datasets, D; and D, are neighbors if they differ in a single row. A count query
f takes an input dataset D and returns the result f(D) € N = {0, ---, n}, that is the num-
ber of rows that satisfy a certain predicate on the domain D. Such queries are also called
subset-count queries and are extensively studied in their own right [19, 84, 85].

A randomization mechanism M : NI¥l — r with r € R. We use M, to denote
the probability of outputting a response » when the underline dataset is D. For a € [0, 1], a

mechanism M is a-differentially private if the ratio M, ./ Mp , lies in the interval [a, 1 /a]
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for every possible response r € R and neighbouring databases ’. Intuitively, a is a control
level of privacy. It is also the probability of every response of the privacy mechanism,
independent of whether a specific user "opts in" or "opts out" in the dataset.

For all responses, r € R, a randomization mechanism M is oblivious such that Mp, . =
Mp,, whenever f(D;) = f(D,), and the output distribution only depends on the query
result. We can define an oblivious mechanism using the probability M, of outputting a
response r for every query i € NIPI. The a-differentially private is equal to the ratio of the

probability M,, /M, ), for the query resulti € NI?! and for every possible output r € R.

Definition 5.4.1 (a—Geometric Mechanism [86]). The a—geometric mechanism is oblivious
with a range Z, a count query f, and a privacy parameter a, defined as a modification of
the result of a true query f(D) by the randomized mechanism that outputs f(D)+ Z. Z is

a random variable with a two-sided geometric distribution:

11—«
l+a

Pr[Z =z] = al?l, (5.6)

The geometric mechanism uses a : (0 < a < 1) to indicate e~¢, where € is the level of
privacy (or privacy budget). For every integer z, the a—geometric mechanism is illustrated
in Table 5.7a. For simplicity, Ghosh also shows that this oblivious mechanism will always
return a true query result from f(D) when @ = 0 (0—geometric mechanism) and always
return 0 when @ = 1 (1—geometric mechanism), independent of the input dataset D.

The definition of the a—geometric mechanism is equivalent to a—differential privacy
because the result of a count query f (D) differs by at most one on two neighboring databases
D, and D,. For each z, the probabilities Pr[Z = z + 1] and Pr[Z = z — 1] lie between
the interval ¢ Pr[Z = z] and Pr[Z = z]/a. The a-geometric mechanism is a discretized
version of a Laplace distribution with density €/2 - e=¢/?l on R, where € = lné.

The above mentioned a—geometric mechanism can generate an infinite output domain.
Ghosh considers the truncated version of the a—geometric mechanism to deal with the in-
finite output. The idea is to remap the probability mass of every negative value to 0 and the
probability mass of every value greater than n to n. The truncated ¢—geometric mechanism

is defined as:

"The definition of differential privacy 3.2.2 is based on the ratio of all range subsets. With a countable range,
the two definitions are equivalent.
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(a) %—geometric mechanism withn =5

Input/Output - -1 0 1 2 3 4 5 6
0 ~ 1/6 13 1/6 1/12 124 1/48 1/96 1/192
1 112 U6 13 16 1/12 124 1/48 1/96
2 /12 16 13 1/6 112 1/12 1/24 1/48
3 148 124 112 16 13 1/6 112 124
4 1/96  1/48 124 1/12 16 13 16 1/12
5 1192 1/96 1/48 124 1/12 1/6 13 1/6

(b) Truncated %— geometric mechanism withn =5

Input/Output 0 1 2 3 4 5

0 2/3 1/6 1/12  1/24 1/48 1/48
1/3 1/3 1/6 1/12 1724 1/24
1/6 1/6 1/3 1/6 /12 1/12
/12 1/12  1/6 1/3 1/6 1/6
124 1724 1/12 1/6 1/3 1/3
1/48 1/48 1/24 1/12 1/6 2/3

DN AW N =

Table 5.6: The probabilities of geometric and truncated geometric mechanisms, for @ =
and n = 5. The columns correspond to the mechanism output » € R and the rows correspond
to the query resulti € N

NS

Definition 5.4.2 (Truncated geometric mechanism [86]). The output of the a—geometric
mechanism is "obviously wrong" as f(D) + Z - one less than 0 or greater than n - with
non-zero probability. To deal with this problem, Ghosh proposed a truncated version of
the a—geometric mechanism by "remapping the probability mass of every negative value to
0, and the probability mass of every value greater than n to n. Particularly, the truncated

mechanism applies the following distribution of noise Z when the query result is f(D);

Pr[Z < —f(D)]=Pr[Z >n— f(D)] =0

o/ (D)
Pr[Z = -f(D)] = 070 (5.7)

o1 (D)

Pr[Z =n— f(D)] = 070

and all the other probabilities are as in the a—geometric mechanism in Definition 5.4.1.
Table 5.7b illustrates the a—truncated mechanism. The truncated mechanism is also a—dif-

ferentially private.
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5.4.2 Randomized Response and Geometric Mechanism

To create a more robust mechanism with privacy guarantees, we combine our randomized
response block aggregation technique of Section 4.4 with the a—geometric mechanism with
the goal to create an hybrid approach for collecting the randomized responses from the users’
in a differentially private manner. We use the same environment setting on the server side as
we did in the first version of our protocol, in which a server aggregates responses from the
users in a local differential privacy manner. We only change the setting at the client interface
to utilize the geometric mechanism. Once the client receives a query from the aggregator
on any attribute subset A, the client responds according to the predefined probabilities p,
(1 — p), and ¢q. Probability p and (1 — p) are tunable to adjust the privacy and utility of the
responses, whereas probability g is randomly drawn between 0 < g < 1.

With a probability p, the client responds a true value of the attributes in A, and with
probability (1—p) the client answers a "fake" value using Monte Carlo sampling controlled by
q. However, at this time, the Monte Carlo sample is generated using the truncated geometric
matrix, as shown in Table 5.8. For notational simplicity, we use C rather than M in the
oblivious mechanism. The symbol C denotes the a—truncated matrix, as shown in Table 5.8.
We use C;, to denote the probability that, on the input i, the a-truncated mechanism reports
r. Hence, C;, forms a stochastic matrix representing the conditional probability of i given
r and C,, is the element at the intersection of the i’ row and the #* column, such that
Vi,r €[0,1]1C;, > 0and Vi € [0,1] ), C;, > 0.

We show how we perform Monte Carlo sampling for selecting a pair from the probability
distributions in Table 5.8. We consider Table 4.1a (ShortSurvey dataset) as an example for
Monte Carlo sampling. Suppose the server wishes to collect responses on two attributes
E = {high,uni} and R = {big,small}. Their joint distribution is given as {high, big}
{uni, big}{high, small}{uni, small} as shown in the input and output of Table 5.8. Suppose
the client’s true response is {uni, high}, so at probability (1 — p), our protocol samples the
fake value from the probabilities distributions of the second row in Table 5.8. The Monte

Carlo sampling from the matrix C is given as:
-1 I
Y C,<a<) G, (5.8)
r=1 r=1

where i is the true response of the client and r is the "fake" response sampled based on the
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Input/Output {high, big} {uni, big} {high, small} {uni, small}

{high, big} 2/3 1/6 1/12 1/12
{uni, big} 1/3 1/3 1/6 1/6
{high, small} 1/6 1/6 1/3 1/3
{uni, small} 1/12 1/12 1/6 2/3

Table 5.8: Truncated %—geometric mechanism with n = 4

probability g in the Monte Carlo sampling. This fake response is emitted in such a way as to
disclose a "controlled" amount of information about the client’s true value. Hence, limiting
the aggregator’s ability to learn with confidence the true values of the client, Monte Carlo
sampling improves the utility of our protocol by emitting combinations of values based on
their probability as stored in the stochastic matrix C.

Once the aggregator receives a response from the client, it reconstructs a noisy con-
tingency table. We will discuss the reconstruction of the original distribution from the
collection of noisy data in Section 5.4.5. However, first, we will discuss the utility max-
imization of matrix C. The idea is that the probabilities in the alpha-truncated matrix can
be further enhanced using the optimization technique discussed in [86]. We use the same
linear optimization technique to enhance the accuracies of the probability distribution in the

a—truncated mechanism.

5.4.3 Utility Maximization

The utility model that Ghosh et al. [86] proposed provides strong and general utility guaran-
tees for the truncated mechanisms. We desire a privacy mechanism that ensures maximum
utility to every possible user, independent of their side information and preferences. Same
as differential privacy, which offers protection against every potential attacker, regardless of
their side information and preferences. Ghosh model a client’s preferences via a loss func-
tion I;1(i, r) defined on a matrix C. The loss function / denotes the client’s loss when the
query result is i, and the output of the a—truncated mechanism is r. The loss function /
is subject to the nonnegative and nondecreasing properties in |i — r| for each fixed query
i. For example, [;|i — r| measures the mean error, or (i — r)%, which essentially measures
the variance of the error, or the binary loss function /y;,,,,(i — ), which is 0 if i = r and 1
otherwise.

Ghosh models the side information of a client as a prior probability distribution p; on the

query resultin i € N. This p; denotes the client’s beliefs, which is not introduced to weaken
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the definition of differential privacy. The standard definition of differential privacy makes
no assumption about the auxiliary information of an attacker. This prior probability is only
used to discuss the utility of a private mechanism for a potential client.

Consider a prior p;, loss function /, oblivious mechanism C with range R, and an input
dataset D with query result i = f(D). Then the user’s expected loss is given as Y. C;,. -
1(i, r), where the expectation is over the flip of a coin internal to the mechanism. Following
that, the user’s prior provides a measure of the mechanism’s overall (dis)utility, and is given

as:

Y b ), Cp e 1) (5.9)

ieN  rer
We now introduce the optimal a—truncated mechanism using linear programming to

minimize the user-specific objective function in Equation 5.9.

5.4.4 Linear Programming Formulation for a User-Optimal Mechanism

Could a single privacy mechanism be good enough for all users? Each user can post-process
the output of a privacy mechanism, and this post-processing can reduce the user’s expected
loss. No matter what side knowledge and preferences a potential user has, the geometric
mechanism provides as much utility as interacting with a differentially private mechanism
that is best fitted to that user. The prior from the utility model has no impact on the defi-
nition of privacy. While the geometric method is user-independent (all users see the same
distribution of responses), various users remap the responses differently, based on their prior
distributions and loss function.

We use linear programming to determine the differentially private mechanism that min-
imizes the user’s expected loss. While the objective function of this linear model is user-
specific, the feasible region is not. We thus consider a privacy level a € [0, 1], aloss function
[ for a fixed user, and a prior probability distribution p to formulate a linear model. The pri-

vacy constraints in Section 5.4.1 combined with the objective function from Equation 5.9
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Input/Output {high, big} {uni, big} {high, small} {uni, small}

{high, big} 2/3 1/4 1/12 0
{uni, big} 1/3 172 1/6 0
{high, small} 1/6 172 1/3 0
{uni, small} 1/12 1/4 2/3 0

Table 5.9: Optimization of the %—geometric mechanism with n = 4, for a user with prior
112

(33 5-0), and loss function /(i — r) = |i — r|1

yield the following linear program whose solution is optimal for the specific user.

minimize Z B, Z C, - 1(i,r) (5.10a)
ieN reN
C,—a-Cgiyy 20  VreN/{n},VieN (5.10b)
@ Cy—Cippy <0 VreN/{n},VieN (5.10c)
Y c,=1 VieN (5.10d)
rer
C,>0 VieNVreN (5.10e)

The objective function 5.10a is the expected loss as in Equation 5.9 incurred by the user.
Constraints (5.10b) and (5.10c) enforce a—differential privacy, and constraint (5.10d) and
(5.10e) ensure that the solution to this linear program can be interpreted as a probabilistic
function. Table 5.9 shows an optimal privacy mechanism for a particular user. This table is

2,0},

generated by applying the linear optimization on Table 5.9, where « = 0.5, p = {%, i, 5

and a loss function I(i,r) = |i — r|'.

5.4.5 Reconstructing the original distribution from a collection of Noisy Data

Once the server receives the noisy data from the clients, it aggregates these noisy responses
in the contingency table 7). To this goal, we use the same reconstruction Equation 4.3. But
now we have p, (1 — p), and the a—truncated matrix to reconstruct the original probabilities.
We will consider the matrix C from Table 5.8 to design the system of linear equations for
the reconstruction of the true probabilities.

First, we design the linear equation for the first query result i (the first row in the matrix
C) and then generalize it for the whole matrix C.

Consider i = 0; we use x; to denote the probability that the server observes a value in

{high, big} and the true query result is also {high, big}. For all other remaining probabili-
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ties, we denote X; ! [j # i, n] that are {x,, x5, x,} on which the server observes { high, big},

but the true query result is not { high, big}. The linear equation is given as:

2 1 1 1
00=p>z<x0+(1—p)>kx0>x<§+(1—p)*x1 *6+(1—p)*x2*ﬁ+(l—p)*x3*ﬁ
(5.11)

where o, is the observed value for the first query result i = 0. The generalized equation is

given as

n
o =p-x+(L=p)- Y % Cp (5.12)
i=0

Expanding this generalized Equation 5.12 on the Table 5.8, gives the following system

Oo=p>x<x0+(1—p)>x<x0>x<%+(1—p)*x1*é+(1—p)*x2*%+(1—p)*x3*1—12

(5.13a)

Ol=(1—p)*x0>k%+p*x1+(1—p)*x1*%+(1—p)*x2*%+(l—p)*x3*é

(5.13b)

1 1 1 1
02=(1—p)*x0*8+(1—p)*x1*6+p*x2+(1—p)*x2*§+(1—p)*x3*§
(5.13¢)

O;=(10-p)*x *L+(l— ) % X *L+(1— ) %k X *l+ % X3+ (1 —p)*x *2
T PR R PR

(5.13d)

We solve the above system of linear equations as Ax — b = 0 in a numerical solver to find
the value of x; € [0, n] as a reconstructed probability from the noisy data. Our experiment
shows that the value reconstructed through the numerical solver was not accurate, and the
accuracy was also not up to the standard. To the best of our knowledge, this is due to the fact
that there exist similar probabilities in two consecutive cells in the matrix C, which makes
the numerical solver unable to solve the linear equations accurately.

For reconstructing the original probabilities from the collection of noisy data, we use
the Matrix inversion and Iterative Bayesian technique discussed in [87]. Before discussing
how we perform the matrix inversion and the iterative Bayesian technique, we first converted
the above linear equations into a transition matrix C’. In other words, this transition matrix

combines our randomized response and the a—truncated mechanism. The transition matrix
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(a) The randomized response combined with with the %— geometric mechanism with n = 4

Input/Output  {high, big} {uni, big} {high, small} {uni, small}

{high, big] p+ (1-p)*2/3  (1-p)*l/6 (1-p)*1/12 (1-p)*1/12
{uni, big} (1-p)*1/3  p+(1-p)*1/3 (1-p)*1/6 (1-p)*1/6
{high, small}  (1-p)*1/6 (1-p)*/6  p+ (1-p) * 1/3 (1-p)*1/3
{uni, small} (I-p*1/12  (1-p)*1/12 (1-p)*1/6 p+(1-p)*2/3

(b) Transition matrix C’ with p =0.5,n =4, and a = %

Input/Output  {high, big} {uni, big} {high, small} {uni, small}

{high, big} 5/6 1/12 1724 1724
{uni, big} 1/6 2/3 1/12 1/12
{high, small} 1/12 1/12 2/3 1/6
{uni, small} 1724 1724 1/12 5/6

Table 5.10: The probabilities that define the randomized response and the %—truncated ge-

ometric mechanism, for @ = %, p =0.5,and n = 5. Columns correspond to the mechanism
output » € R and rows correspond to the query result i € N

C’ is given in Table 5.11a.
The following property is important and will be used in the matrix inversion and in the

iterative Bayesian technique.
Lemma 5.4.1 (The matrix C’ is Invertible.).

Proof. Consider the relationship between C’ and the %—truncated geometric mechanism C,
and observe that the highest probabilities of C are all on the diagonal. The matrix C’ also
corresponds to the same principal diagonal as C. Hence, C’s rows are linearly independent.
Since C’ is obtained directly from C by adding the probability p on the diagonals, the rows
of C’ are still linearly independent (C(’)0 is still the highest probability of the column O and

C/ . is still the highest probability of column n). [ |

Matrix Inversion technique

Suppose the transition matrix C” generates the perturbed probabilities (the observed prob-
abilities o collected by the aggregator). To reconstruct the probabilities x, we can use the
inverse (C')~! of the same transition matrix C. We can calculate the reconstructed vector x
from the observed vector o as

x=o0-(C)! (5.14)

Theorem 5.4.2 (Matrix Inversion [87]). The vector x estimated as o-(C')~" is the maximum
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likelihood estimator (MLE) of the relaxed a priori distribution (), x; = 1 and 0 < x; < 1
are the exact constraints. The relaxed constraint only guarantee Y. x; = 1) on the states

that generated the transaction table C'.

Iterative Bayesian technique

Let us consider a vector x of size 2" (n is the number of columns in the matrix C’). Let
us consider a prior distribution on the states of the original rows, and o (of size 2") the
posterior distribution on the state of the perturbed rows C’. The prior distribution is given
by the random variables { X, X,, ---, X,,}, while the state of the n perturbed rows in C’
is given by the random variables {Y;,Y,,---,Y,}. Thenfor0 < a,b <t = (2" — 1) and
1 <i < n, we have Pr[Y; = b] = 0,, and Pr[X; = a] = x,. Also, Pr[Y; =b| X, =a] = C;b
is the transition probability from state a to b.

Applying the Bayes rule, we have

b = Pr[Y, =b| X; = a] Pr[X; = d]

Pr[X,=a|Y, =
Pr(Y, = b]
Pr[Y, =b| X; = a] Pr[X; = 4]
T Y PilY, = b | X, = AP[X, = 1] (5.15)
:L
0 Clux,

we iteratively update x using

t
PriX, =a]= ) Pr[Y, = b]Pr[X,=a| Y, =
b=0

The update rule is then given by

xT

T+1 ab a
Z SN

r=0 rb r
where the vector x” represents the iteration at step 7', and the vector x7*1 denotes the

T ,T+1

0 = y, and iterate until two consecutive x”, x

iteration at step T+ 1. We initialize x
iterations do not differ much.

The iterative Bayesian technique makes smaller errors than the matrix inversion proce-
dure, especially when several columns are reconnected. This seems unintuitive as the matrix

inversion technique was shown to provide the MLE estimator for x, satisfying }, x; = 1.
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This can be explained as the Bayesian iterative technique gives the MLE estimator in the
constrained space, i.e., for the subspace of ), x; = 1 that satisfies Vi,0 < x; < 1. Since
the number of rows is always non-negative, this subspace contains the exact original p.d.f.
vector x. When the number of columns in the matrix to be reconnected increases, the error
during the randomization and the reconnection increase and the matrix inversion technique
may return a point outside the constrained boundary, the reconnection error by the matrix
inversion method can grow arbitrarily [87].

Once we have the reconstructed vector x, we assign this vector to the contingency table
Ty such that, Ty[w;] = x;. We then use this reconstructed contingency table Ty as prior
probabilities used in the utility maximization as discussed in Section 5.4.3 to update C’.

This updated matrix C’ is then used in the next block to collect randomized responses.

5.5 Experiments on Randomize a—Geometric Mechanism

To evaluate the performance of our proposed randomized response a—geometric mecha-
nism, we set the same experimental environment as we did in Section 5.3.1. We only use the
¢, distance to measure the performance of our proposed randomized response a—geometric
mechanism compared with the modified randomization 5.2.5, the original randomization 4.4,
and the Laplace noise. We report the average performance of each randomization protocol

in Table 5.12. Figure 5.7 shows the distributions of these performance metrics.

Survey Child Alarm
Modified randomization protocol 61.38 60.3 51.79
Randomization using Geometric mechanism 94.74 102.52 97.81
Randomization protocol 120.12 120.82 107.96
Laplace noise 124.79 125.06 112.93

Table 5.12: Comparison of ¢ distance between the noisy and the original distributions
(Survey, Child, and Alarm datasets); noise is added using the three randomization proto-
cols and the Laplace noise.

Table 5.12 shows that our modified randomization protocol has the lowest ¢ distance
among all the randomization protocols. The runner-up is the randomization protocol com-
bined with the geometric mechanism. This is because the dimensionality of the contingency
table induces more noise in the probability distribution using the ¢—geometric mechanism.

In our modified randomization protocol, the Monte Carlo simulation concentrates only on the
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Figure 5.7: Randomized response a—geometric mechanism, modified randomized response,
randomized response, and Laplace noise performance metric histograms (Survey dataset
on the left, Child in the middle, and Alarm on the right) over the resulting collection of
the noisy contingency tables. The average of each performance metric for each data set is
reported in Table 5.12

remaining attributes to emit fake values, thus maximizing the utility and strong e—differential

privacy.

5.6 Conclusion

In this chapter, we proposed two modifications to our proposed randomization protocol.
The first one uses the advantages of a Bayesian network to generate the full-dimensional
distribution of data from a lower number of dimensions. Using our modified version of the
randomization protocol, we use this full-dimensional distribution to generate noise in the
attribute-parents pair. The Bayesian network is itself generated in a differentially private
manner.

In the second part of this chapter, we propose a hybrid mechanism by combining our
randomization protocol with the a—geometric mechanism. We use this randomized re-
sponse geometric mechanism to generate fake values in the Monte Carlo simulation. Both
mechanisms present strong privacy guarantees while maximizing the utility of the perturbed

datasets.
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Chapter 6

Bayesian Networks for Fuel
Prediction and Reduction in Public

Transportation

In this chapter, We exploit the use of a controller area network (CAN-bus) to monitor sen-
sors on the buses of local public transportation in a big European city. The aim is to advise
fleet managers and policymakers on how to reduce fuel consumption so that air pollution
is controlled and public services are improved. We deploy heuristic algorithms and ex-
haustive ones to generate Bayesian networks among the monitored variables. The aim is to
describe the relevant relationships between the variables, to discover and confirm the possi-
ble cause—effect relationships, to predict the fuel consumption dependent on the contextual
conditions of traffic, and to enable an intervention analysis to be conducted on the variables
so that our goals are achieved. We propose a validation technique using Bayesian networks
based on Granger causality: it relies upon observations of the time series formed by succes-
sive values of the variables in time. We use the same method based on Granger causality to
rank the Bayesian networks obtained as well. A comparison of the Bayesian networks dis-
covered against the ground truth is proposed in a synthetic data set, specifically generated
for this study: the results confirm the validity of the Bayesian networks that agree on most

of the existing relationships.
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6.1 Introduction

According to the World Health Organization (WHO), air pollution is the second leading
cause of noncommunicable diseases, such as stroke, cancer, and heart disease, and pul-
monary diseases, such as chronic obstructive pulmonary diseases and lower respiratory in-
fections. Ambient air pollution accounts for an estimated 4.2 million deaths per year [88].
Around 91% of the world’s population lives in places where air quality levels exceed WHO
limits and the suggested standards for a healthy life [89, 90, 91]. Air pollution is due to
particulate matter 2.5 (PM2.5), which refers to tiny particles in the air that are two and one-
half microns or less in width. Studies suggest that long-term exposure to fine particulate
matter may be associated with increased rates of chronic bronchitis, reduced lung function,
and increased mortality from lung cancer and heart disease. Furthermore, nitrogen dioxide
(NO,) is one of the other main air-quality pollutants of concern and is typically associated
with vehicle emissions. The annual EU limit for NO, was widely exceeded across Europe
in 2017. Some 86% of these exceedances were detected at roadside monitoring locations.

The red and violet colors in the map in Figure 6.1 show the areas in which the limits were
overcome multiple times in past years in European countries. Similar maps are available for
the other main air pollutants. In many countries, diseases can only be significantly reduced
by improving air quality. Turning air-pollution-reduction goals into policies to combat non-
communicable diseases leads to multiple benefits for the environment, economy, and health.
With this work, we address these concerns by putting data science to use at the service of
public policies. According to the European Environment Agency, we can reach the goal of
a reduction in air pollution by monitoring and modeling air quality, collecting data using
sensors on roads and on vehicles, and maintaining emission inventories. We should em-
ploy emission-control strategies to reduce the number of private transport; improve public
ones; reduce their emissions; increase the use of renewable energy; and apply contingency
measures, new policies, and rules that, for instance, encourage planning of more compact
cities.

In this work, we employ machine learning models, specifically, Bayesian networks, to
analyze sensor data installed on the buses of a public transport company in a European city.
The sensors collect data about the vehicle and its use (acceleration, braking, speed, stop du-
rations with the engine on, etc.) with some contextual information about the vehicle location

(such as altitude). An analysis of the sensor data using machine learning algorithms applied
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Figure 6.1: Map of locations with NO, emissions exceeded over the annual mean limit.

using procedures of predictive maintenance can also be used to improve vehicle equipment
maintenance, with a reduction in costs due to stop times for faults and repair. Several re-
lated works exist in the literature. The application of Bayesian networks for the purposes of
monitoring natural resources and applying policies we proposed in [92]. The majority of the
works that monitor fuel consumption in vehicles applied predictive models. Schoen et al.
in [93] adopted Artificial Neural Networks (ANN) to predict average fuel consumption in a
fleet of heavy vehicles. They adopted a data summarization technique of consumption based
on distance rather than time in order to eliminate the conversion of the scale for the predic-
tion of average fuel consumption. We also apply a similar technique in this work because
we build models that employ the fuel consumed per kilometer. Perrotta et al. [94] com-
pared multiple machine learning models—support vector regression (SVR), random forest
(RF), and artificial neural networks (ANN)—to predict fuel consumption in heavy vehicles.
Moradi et al. [95] used multiple models in cascade and confirmed that ANN outperforms
the other models. The goals of these works were to reduce costs and to obtain better routing
of the fleets, even though they found it difficult to determine an accurate estimation of the

fuel level. Yao et al. in [96] used smartphones to collect vehicle mobility data based on
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their global positioning system (GPS) combined with data from onboard diagnostics (OBD)
terminals to predict fuel consumption based on taxi drivers’ driving styles. They compared
ANN, SVR, and RF and showed that they all reached satisfactory prediction performances.
Random forest achieved superior accuracy. Rimpas et al. in [97] selected some parameters
for monitoring vehicles retrieved through the OBD-II diagnostics protocol and related them
to vehicle operation and fuel consumption. They collected the proportion of oxygen in ex-
haust gases using a Lambda Sensor and adjusted the fuel quantity measured by a short-term
fuel trim (STFT) sensor related to the immediate change in fuel flow and used it as a proxy
of the accelerator pedal pressed by the driver. They collected the airflow as measured by
a mass air flow sensor (MAF) as a measure of engine malfunction, a vehicle speed sensor
(VSS), and the value of the engine coolant temperature (ECT) sensor where the coolant
temperature affects engine overheating and fuel consumption. The authors in [98] quanti-
fied the uncertainty in measuring fuel consumption, both in light and heavy vehicles. They
show that, in urban conditions, the uncertainty reaches 7%. In [99], the authors considered
the prediction of fuel consumption in public buses using a multivariate data set including
several explanatory variables. They compared RF, gradient boosting (GB), and ANN. Based
on their analysis, RF produces a more accurate prediction compared to both GB and ANN.
In [100], the authors included weather variables for the task of fuel prediction and consid-
ered them useful for an accurate prediction. Quite often in the above studies, the sample
vehicles (in terms of make, model, and age) were comparable so that the type and status of
the vehicle do not influence fuel consumption. We made a similar choice in selecting heavy
vehicles (buses of the same model, type, mass, length, and age).

In this work, we used sensors with the sole purpose of collecting data about fuel con-
sumption and monitoring the drivers’ usage of the bus’s resources (fuel, breaks, acceleration,
and air conditioning). The goal was to monitor fuel consumption and its contextual condi-
tions with the ultimate objective to provide a descriptive and explainable model of the vari-
ables that influence and cause fuel consumption and that ultimately produce air pollution.
We employed Bayesian networks that permit us to afford a unique model with multiple tasks:
a description with a graph of the dependence relationships between the variables, identifica-
tion of the variables that are independent of the target, selection of the variables that have an
impact on the target, quantification of the amount of impact on the target, prediction of the

target, simulation of the variables in a scenario, and intervention in the scenario by changing

95



CHAPTER 6. BAYESIAN NETWORKS FOR FUEL PREDICTION AND REDUCTION
IN PUBLIC TRANSPORTATION

some of the variables.

The first contribution of this work is to provide a public data set [101] on sensors in-
stalled on board public transports with information about vehicle usage and fuel consump-
tion. Sensors communicate their measures via the controller area network (CAN-bus), a
specialized internal communications network that interconnects components inside a vehi-
cle [102]. CAN is a robust vehicle standard designed to allow micro-controllers and devices
to communicate with each other’s applications without a host computer. It is a message-
based protocol, originally designed for multiplex electrical wiring within automobiles, but
it can be applied to many other contexts. For each device (sensor and actuator), the data in a
frame are transmitted sequentially. Thanks to this, the vehicle turns out to be an advanced,
computerized control system available on board and capable of sensor data storage.

Thanks to the collected data, we assessed the sensor outcomes to support decision mak-
ing. We employed Bayesian networks (BN) as an essential tool that is able to provide de-
scriptive and explainable models of the relationships between the monitored variables, and
dependence relations that might also represent the cause-effect relationships [103]. In fact,
BN captures the independence and the conditional independence among the variables: in a
BN, we represent variables with nodes and dependence relationships with edges. The pres-
ence of a path connecting a variable V' with a target variable T' makes it clear that we should
change the values of V" in order to modify the values of the target (query) variable T'. Instead,
a change in variables not connected within a path including the target should not cause any
effect on it. The main contribution of this work is to provide a BN on the variables moni-
tored by sensors connected to CAN-bus. These BN show which variables we should change
to control the fuel consumption variable. Furthermore, BN also supports the simulation of
the behavior of the system.

BN is employed also to perform an assessment of the observed phenomena and to per-
form an intervention analysis on the causal variables so that the monitored target can be
improved. As a result, we can provide the results and suggestions to drivers and policy-
makers with the goal of improving air quality and reducing the costs of fuel. This is the
third contribution of this work. One of the main results of this intervention analysis is to
show that a change in the vehicle paths (longer but with a reduced slope) turns into a de-
crease in fuel consumption. Other results concern the quantification of the impact on fuel

consumption of air conditioning and brake usage.
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The main difficulty with BN is that the search space of the possible alternative models
increases in a super-exponential way in the number of variables (graph nodes) [104]. There-
fore, it is customary to employ approximate algorithms [105, 80, 106] driven by heuris-
tics that are used to rank and evaluate the alternatives. The results are that the algorithms
might converge to different and suboptimal solutions but in tractable times. Their results,
as we experienced and shown in this work, might differ. In this paper, we deal with some
representative algorithms for BN synthesis from data that are popular in the BN commu-
nity [80, 106]. We use the BIC score [12], a derivation of the likelihood of the data under
the assumed BN model, as a heuristic to evaluate the alternative networks. We revised them
and compared their solutions on the sensor data by providing a brute-force alternative. Brute
force converges to the global optimum of the BIC score within the search space. The brute
force alternative is possible (provided the number of variables is kept limited to some units)
thanks to the opportunity that high-performance computing gives us. It makes the workload
efficient by distributing the computation among multiple servers and CPUs and their execu-
tion in parallel. This is the fourth contribution of this work and one of the novelties of our
approach: a comparison of the results of different algorithms for BN generation from data
that allows us to rank them and evaluate how closely they reach the overall optimum of brute
force. This is not so common in the BN community, since BNs are usually initially provided
by domain experts and later validated against evidence from data [107, 108]. To overcome
the discrepancies among BNs, we compared and ranked them by proposing and adopting an
alternative method: Granger causality [109]. This is one novelty of our approach and last,
but not least, the contribution of our work. Granger causality and its statistical test employ
vector auto-regression (VAR) as a tool to predict the target in time with the aid of multiple
variables (the variables that are in the pathway from causes to effect). In its essence, the
statistical test in Granger causality method verifies that the prediction of the target, with the
aid of the cause variables, is better than without them. Applying this latter criterion is pos-
sible only when the flow of values of these variables is stored in time. Granger causality is
commonly judged as weaker than the stricter principle of probabilistic dependency between
cause and effect. With Granger causality, the existence of a causality relation between the
cause and the effect is verified only in time thanks to the ability of the cause to predict and

anticipate the effect in time [110, 111].
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6.2 Materials and Methods

6.2.1 Sensor Data

The data set was collected by sensors on a fleet of bus vehicles. (The data set contains
records for a fleet of 24 vehicles over 43 dates comprising dates between January and Au-
gust 2019. It is publicly available at [101]). Sensors from the onboard diagnostics (OBD)
interface collect kinematic variables such as speed, acceleration, engine speed (RPM), load
(mass), and road grade. For each vehicle, the sensors perform measurements during a path
from departure to the arrival bus stop; thus, the data are not sampled regularly according to
time. We have a collection of multiple path records for each date on which the vehicle is
driven. (For each vehicle and date, the number of records generally comprises between 100
and 400 units). The variables measured during the path include the physical properties of
the travel (path length, duration, and change of height), time variables (time intervals spent
coasting, braking, or in motion), and the fuel consumption of the vehicle during these time
intervals. Unfortunately, we could not include the weather condition and the road type of
the tracks, even if we assumed that, in the domain of public transportation, the road type is
almost always metropolitan.

Our work aims to apply Bayes networks and Granger causality to study the causal asso-

ciation between variables, especially on fuel consumption.

6.2.2 Feature Selection and Construction

We constructed a set of representative features over which we performed our experiments.

¢ Original feature collection can be grouped as follows:

— Path variables

+x HDIFF (m): difference in altitude between departure and arrival bus-stop
# DIST (m): distance covered during the travel

* MASS (kg): mass of vehicle and passengers
— Time Interval variables (s)

% TMTOT: total time of the travel

* TMAIR: time with air-conditioning on
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* TMCOAST: time spent coasting

* TMBRAKE: time spent using the brakes

* TMMOTION: time spent with the vehicle in motion
From this variables we can derive:

- TMTRACTION: TMMOTION — TMCOAST — TMBRAKE: time spent
in traction, that is, pressing the accelerator pedal

- TMSTOP: TMTOT — TMMOTION: time spent with the stopped vehi-

cle with the engine on
— Fuel consumption variables (mL)
* FUELSTOP: fuel consumption in TMSTOP time

* FUELMOTION: fuel consumption in TMMOTION time

o New features collection is constructed as follows:

avg_slope (%): HDIFF/DIST
- mass (ton): MASS/1000
- brake_usage (%): (TMBRAKE — TMCOAST)/TMTOT

- air_cond_ptime (%): TMAIR/TMTOT

stop_ptime (%): TMSTOP/TMTOT

fuel_per_km (I/km): (FUELSTOP + FUELMOTION)/DIST

- accel (m/s?): 2 x DIST/(TMMOTION x TMTRACTION)

Concerning the derived variables, we can state the following:

o In the data set, buses travel at all different lengths and durations. We chose to divide
the total fuel consumption by distance to perform a better comparison among buses
traveling at different lengths. For the same reason, we decided to normalize all of the
time variables involved in the analysis so that they represent a fraction of the total

travel time;

e The variable brake_usage was created as an indicator of the good practice of choosing
coasting instead of braking. This variable is negative when the time spent coasting is
greater than the time spent braking, zero when these fractions are equal, and positive

otherwise;
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e The variable stop_ptime includes only the idling time, that is, the time spent with the

vehicle not in motion but with the engine on;

e The variable accel is obtained as the result of a simplified model of bus travel. We
assume that the bus travels starting, at time 0 with vy = 0. We assume that the veloc-
ity increases linearly with a constant acceleration (that is presumed to be an important
variable for the prediction of fuel consumption) until the time is equal to TMTRAC-
TION. Then, we assume that the bus velocity starts to decrease linearly for a time equal
to the sum of time spent coasting and braking, so that when time is equal to TMMO-
TION (i.e., TMTRACTION+TMBRAKE+TMCOAST), the final velocity turns out
to again be null: v, = 0. The accel value can be easily derived in this simplified
model by observing that the length of the travel is equal to the area of the velocity

graph in a velocity-time diagram or, more formally, by solving

1 1 2
S = 5(11112 + Ul(t2 - tl) + 502(12 - tl)
vy =aply

0=0v)+ay(t, — 1))

where s is the traveled distance, 1;=TMTRACTION, #,=TMMOTION, v, is the ve-
locity at time #,, a; is the positive acceleration we are looking for, and a, is a negative

acceleration (not involved in fuel consumption).

We show the main statistics (mean, standard deviation, and min-max range) of the new
feature collection for the data set on which we perform our experiments in Table 6.1. We
can observe that the mass of the vehicle is around 20 tons, that the path is generally on the
plain ground (from the mean avg_slope), and that the fuel consumption is around 0.6 L per

km.

6.3 Algorithms for Bayesian Network Learning

In this section, we outline some of the algorithms to learn causal models from the observed
data. Learning a Bayesian network occurs in two steps: structure learning and parameter

learning. Suppose that learning a BN with DAG G and parameters ©® from a data set D
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Mean Std Min Max
avg_slope (%) 0.00 0.02 —0.30 0.21
mass (ton) 21.19 1.55 17.92 29.85
aircond_ptime (%) 0.0 0.2 0.0 1.0
stop_ptime (%) 0.19 0.15 0.01 0.97
brake_usage (%) 0.20 0.09 -0.06 0.72
accel (m/s?) 0.36 0.21 0.01 1.80
fuel_per_km (I/km) 0.57 0.20 0.02 3.93

Table 6.1: Statistics of the data set features: mean, std (standard deviation), and minimum
and maximum feature values.

having n observations is driven by the following:
P(G.©|D)=P(G|D)- PO®|GD)

Structure learning is involved in learning P(G|D): it aims to find the DAG G that incor-
porates the dependence structure between the variables of the data D. In contrast, parameter
learning is focused on P(®|G, D) and consists of estimating the parameters ® given G. Sup-
pose that the parameters are independent in distributions; then, they can be learned in parallel

for each node X; as follows:

N
P©|6.D)=[] P©y | Pa. D)

i=1

where, with Pa;, we represent the set of parent nodes of X; (connected with a directed
edge, incoming in X;) and, with @y , we represent the set of parameters of the conditional
distribution of X; given its parents Pa; in §. Learning the structure of BN is an NP-hard
problem and computationally challenging. Suppose there are N nodes; then, the possible
arcs are N(N — 1)/2, and the number of DAGs grows super-exponentially as the number
of nodes N increases. Hence, only a small number of the possible alternative DAGs can be
explored in a reasonable time. There are three main possible approaches used in the structure
learning of the BN: score-based, constraint-based, and hybrid. Each is based on a different

statistical criterion.

6.3.1 Learning the Structure: Score-based Methods

Score-based approach is a general class of optimization techniques to learn BN structure.
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Each learned BN is assigned a network score based on its Goodness-of-Fit; the algorithm
then tries to maximize the network score. Assuming a BN structure G on data set D, its score
is

Score(G, D = P(G|D),

Score-based methods try to maximize this score. The above computation can be re-written

using Bayes’ law:
(DIG)P(©G)
P(D)

PGID) =
To maximize the BN score we only need to maximize P(D|G)P(G), since P(D) only depends
on the data set. The network score can be the Bayesian Information Criterion [112] (BIC)
or Akaike Information Criterion [113] (AIC) for both discrete and continuous data sets. BN
with lower BIC are generally preferred, but it highly depends on the development environ-
ment: In R programming language, higher BIC is a criterion for model selection. BIC is

defined as
BIC = klIn(n) —21In(L)

where L is the likelihood function which maximize the model G value, givenas L = P(X |0, G),
where ® maximize the likelihood function. X is the observed data, » is the sample size, and
k is the number of parameters calculated by the model. Score-based approach examples
include simulated annealing, greedy search [82], genetic algorithms [81], and hill climbing

(HC) [80].

Example 6.3.1. For example, consider a data set containing 6 attributes (A, S,E,O0,R, T) and

the global probabilities’ distribution is given as
P(A,S,E,0,R, T) = P(A)P(S)P(E|A, S)P(O|E)P(R|E)P(T|O,R)
Then BIC can be calculated using

K
BIC =1In P(A,S,E,Q,R,T) — gln(n) = [m P(A) — ?A In(m)| +

kg kg kg
[m P(S) = 2 In(@)| + [In PEIAS) — = In@)| + |In POIE) ~ 2 In(a)| +

kp
[m PRIE) - 2 Ina)| +

kr
In P(TIO,B) - - ln(n)]
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Where k is the number of parameters in the BN, n is the sample size, and d,, dg, dg, dy, dy, dg, dt

are the number of parameters associated with each node.

score =100

add A-->S delete reverse E-->S

A

score =114

Figure 6.2: Illustration of a Bayesian network hill-climbing search procedure

6.3.2 Learning the Structure: Constraint-based Methods

In constraint-based methods, constraints are imposed on the model based on conditional in-
dependence statements. BN structures may also entail non-independence-based constraints
where the latent variables exist [114]. Although conditional independence tests are used for
statistical tests on data set, these tests can also be used to reconstruct the structure under
several assumptions, including Causal Sufficiency, Faithfulness, and Causal Markov. With
these assumptions, one can determine the edge between two nodes, or the direction of that
edge.

In constraint-based algorithms, the existence of an edge between two variables X; and
X, is tested using a number of conditional independence tests. Each of these conditions on
a distinct subset of W — { X, X, }. If there exists an edge X; — X, and faithfulness hold,
then all these independences tests should also fail. If no edge exists between X and X5,
then there must exist a d-separating subset. Suppose there is no direct edge between X and

X, in the true structure, one of the subsets is the set of parents of one of the nodes. The
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algorithm attempts all possible subsets of W — { X, X, } to find the existence of an edge
between every pair of variables in the domain. After the undirected edges are determined in
the structure, the algorithm determines the directionality of these edges. The directionality
of edges is performed by examining triples of variables X, X5, and X3, such that there is
an edge between X| — X3 and X, — X5 butno X; — X5. If X| and X, are not conditional
independent given S such that X; f X, | S,VS = X;US, SScw- {X,,X,, X5}, then the
directionality of X;—X and X,—X31is X; — X, and X, — X3, respectively. The algorithm
repeats the same process for all the triples variables and propagates the edge direction while

maintaining acyclicity.

6.3.3 Learning the structure: Hybrid methods

Hybrid approaches are constraint-based and use restriction to reduce the candidate space of
DAGs; they are score-based and use maximize implementations to find the optimal DAG in
the restricted space by implementing any combination of constraint-based and score-based
algorithms. Hybrid approaches include Max-Min Hill Climbing algorithm (MMHC) [105],
Restricted Maximization (RSMAX?2) [115], and Hybrid HPC (H2PC) [116]

6.3.4 Hill Climbing Algorithm

The hill climbing algorithm belongs to the class of greedy search algorithms. Hill climbing
(HC) assigns a network score (Goodness-of-Fit) to the candidate BNs, and heuristic algo-
rithms strive to maximize the network score since a higher value means a better fit. HC starts
from a DAG structure, and then it adds, reverses, and deletes arcs until the network score no
longer improves [80]. The network score can be the Bayesian Information Criterion [112]
(BIC) or Akaike Information Criterion explain in section 6.3.1 [113] (AIC) for both dis-
crete and continuous data sets. The graphical representation of the hill-climbing algorithm

is shown in figure 6.2

Restrictive Maximization Algorithm

The restrictive maximization algorithm belongs to the class of hybrid approaches. RM
achieves faster structure learning by restricting the search space and by implementing a com-

bination of constraint-based and score-based algorithms [115].
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Brute Force Algorithm

In this work, we introduce the brute force algorithm to afford the computational complex-
ity of the complete exploration of the search space of the possible BN alternatives. We
take advantage of the parallel computing technology provided by HPC4AI (Turin’s High-
Performance Centre for Artificial. Intelligence! The brute force formalization and imple-
mentation are one of the original contributions of this work. We split up the search space
for model selection and assign each to an independent processor that delivers the best BN
of the corresponding subspace. Finally, these results are compared to choose the very best
model. Each candidate BN is assigned a network score “Goodness-of-fit”. The brute force
algorithm returns a BN with the maximum score since a higher score means a better fit. We
used a score derived from the Bayesian information criterion (BIC) as implemented in the
R Library [117]; this network score is suitable for both continuous and discrete data sets.

The idea of the brute force algorithm is to partition the space for all possible Bayesian
networks and to allocate each partition to a different processor, such that each processor in
parallel executes the task to evaluate the BIC score of all networks in its partition. Each
network is represented as a vector—a binary configuration of as many bits as possible arcs
in the networks. Each bit in the vector represents whether the corresponding arc is present
or absent in the network.

The algorithm starts with an input data set D containing N variables. AllArcs is a
matrix (p*2) with p = N(IN — 1)/2 being the number of possible (undirected) arcs. Each
row in the matrix represents an arc (from-to): the first column represents the starting node,
and the second represents the ending node. Each pair of nodes is identified by a matrix row
index from 1 to p.

k; < p is the number of arcs that are actively considered by each processor, and the
processor is free to vary in any way in combination with the remaining arcs that instead are
fixed. The different processors have different configurations in present/absent arcs fixed in
the remaining subset of p—k, arcs. Fixed ArcsPresence is a vector of length p—k, contain-
ing information related to the arcs for which the presence/absence is fixed for that processor.
p—k; is the prearranged arcs (or pairs of nodes). In total, we have 27~%1 available processors.
Each processor runs the brute force algorithm 5, with Fixed ArcsPresence as an input argu-

ment. Fixed ArcsPresence is a vector of the ordered list representing the presence/absence

Thttps://hpcdai.it/
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of each of the prearranged p — k| arcs. Each element in this vector corresponds to a different
nodes pair with values 0, 1 such that Fixed ArcsPresence[i] = 1 if the ith pair of nodes is
considered by that processor to be connected; otherwise, it is 0. The processors are executed
in parallel, where each processor has a different realization of Fixed ArcsPresence. For
each total configuration of arcs present or absent, from the fixed part and the variable part,
the processor evaluates the BIC score of the corresponding Bayesian network with the goal
of finding the one with the maximum value. Regarding the determination of the arcs’ direc-
tions, defined within the algorithm, it establishes whether each arc is oriented according to
the direction taken as the reference in such a matrix or the other way around and evaluates
the BIC score for both arc directions. In the end, the maximum score among the scores found
by the processors is selected and so is the corresponding Bayesian network.

However, some care should be taken when Bayesian networks are learned from the data.
It should be kept in mind that networks learned from observational data may establish some
relationships that are hard to explain based on our prior knowledge of the domain. Some re-
lationships may reveal aspects of phenomena that we did not expect, some may be explained
by introducing exogenous variables acting as confounders, and the influence of variable X
on another variable X; may be mediated by an unobserved variable X, that is not included
either in the model or in the available data. Moreover, we should take into account that the
model, due to a lack of flexibility, could be unable to accurately describe the phenomenon.
For example, the assumption of Gaussianity may be inadequate for our data, and adapting the
variables to multinomial assumptions through discretization may lead to mutual information
loss.

Therefore, we cannot expect to find a rational justification for each connection but we

can apply critical thinking to extract helpful insights based on what the data supports.

6.4 Granger Causality

We performed a model evaluation of the Bayesian networks employing the statistical con-
cept of Granger causality that applies to the time-series domain [109]. In the following, we
provide a formalization of the application of the concept of Granger causality to the eval-
uation of Bayesian networks. Later, in Section 6.5.2, we apply this method to the task of
ranking and comparing Bayesian networks, resulting from the application to the same data

of different, approximate, and heuristic-driven algorithms. The provided solution can solve
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a data analyst’s uncertainty about the choice among them. These concepts, to the best of

our knowledge, are original in their application to the validation of Bayesian networks and
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in their formalization.

Algorithm 5 Brute force algorithm for learning the best Bayesian network.

Input: D, AllArcs, k, and Fixed ArcsPresence
Output: bestG, bestscore
1 Initialization:

2 bestG « the current best DAG, initially empty ;

3 bestscore « score of the current best DAG (initially empty) ;

4 end

5 For index(base10,) from 0 up to (2¢1 — 1) do:

6 Initialization:

7 Structure < binary vector of length k, initially empty, such that each
element represents an undirected arc
8 ratio«basel0,

9 end

10 For index i from k; down to 1 do:

11 > build the vector defining whether each arc is present or absent.

12 Structure[i] « ratio mod 2

13 ratio < ratio divided by 2 but rounded down (integer divide)

14 end

15 Structure < concatenate(Structure,Fixed ArcsPresence) I> append the digits

associated with the fixed arcs to the end of Structure

16 Present Arcs < the ids of the present arcs (the indexes i such that

structure[i] = 1)

17 > set the arcs in the network according to their default reference direction

determined by the matrix All Arcs

18 Arcs <« AllArcs[PresentArcs, -]

19 k, < length(Present Arcs)

20 If k, > 0:

21 For base10, from 0 up to 2¥2 — 1 do:

22 ratio < baselO,

23 If k, > 1 then:

24 Directions < binary vector of length k,, initially empty, such that
each element represents the direction of the corresponding arc
conditioned on its presence

25 For i from k, down to 1 do:

26 > build the vector determining the orientation of each arc

27 Directions[i] < ratio mod 2

28 ratio < ratio divided by 2 but rounded down (integer divide)

29 If Directions[i]=1 then:

30 change the orientation by swapping the two elements of

Arcsli, -]

31 > else leave the direction as it is

32 end

33 end

34 If the graph defined jointly by the matrices Arcs and Directions
is a DAG then:

35 build the corresponding network G

36 score « score(G)

37 end

38 If score>bestscore:

39 bestdag <« G;

40 bestscore « score

41 end

42 end

43 end

44 end

45 end

46 Return bestG, bestscore

108



CHAPTER 6. BAYESIAN NETWORKS FOR FUEL PREDICTION AND REDUCTION
IN PUBLIC TRANSPORTATION

Granger Test

Given a stationarized multivariate time series ), including variables A and B, we want to
establish if A g B. (The time series must satisfy the stationarity condition that is assessed
for each feature by the Augmented Dickey Fuller test (ADF) with significance level 0.05.
If the S; feature gives rise to a time series that is not stationary, we iteratively apply first-
differencing .S;(¥) — [.S;(¥)—S;(t—1)] and repeat ADF until we reach stationarity.) Notation
A (—ig B denotes that A Granger-causes B. We performed a Granger test by comparing the

two auto-regressive models:

i +e 6.1)

q
B,=) pB
I=1

q q
B,=) BB+ ) A +e (6.2)
I=1 I=1
The Granger test is an F-test with null hypothesis H, := {a; = 0; [ =1,...,q}.

(8
The success of the test implies that A = B, that is, A has a predictive power on B since
its lag coefficients q; in the second auto regressive model are significantly different from 0.
For our multivariate time series ), we conducted a Granger test for each possible ordered
distinct pair from feature set {5, .5,, ..., Sy }. Here, we denote the variables with symbols
S; because we want to highlight that each gives rise in a vehicle to a set of time series (one

for each vehicle in time). We stored the result of the t¢) tests in a Granger matrix G:

(&) !
0 IZS,-f»ijort()
Gi’j = (6.3)
0 : else

We fit a vector auto regressive model (VAR) over the time series 1), and the maximum-
lag order g was selected automatically according to the AIC criteria. We then performed
a Granger test for each pair (S, S;). The related F-test was performed with a significance
level of 0.1. We made this choice because we observed that, with a level of 0.05, we have an
average decrease of 5% in the rate of success of the Granger test over the set of time series
of the experiments.

We frame our data set as a collection of multivariate time series {t*; [ =1,...,T}.
We performed the Granger test for each time series #/) and for each ordered variable pair

(S, 8;). The whole test results were then stored as a collection of Granger matrices (GO, 1=
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1,...,T}. This collection is successively used for validating the Bayes networks.

6.5 Results

6.5.1 The Discovered Bayes Networks

We illustrate the Bayes networks discovered from the algorithms introduced in Section 6.3
applied on the data set with the constructed features described in Section 6.2.2. We ini-
tially conduct an analysis on the found relationships between data set features based on our
knowledge about the data set domain: public transportation. We then introduce the diverse
applications of Bayes networks such as feature selection for a supervised prediction task and

intervention analysis in order to perform decision making.

Bayesian Networks Analysis

We name the discovered Bayesian networks after the algorithms introduced in Section 6.3

as employed for their construction:
- HC: Hill climbing
- RM: Restrictive Maximization

- BF: Brute Force
We group the collection of links found by the networks in Table 6.2 as follows:

- Common Links (CL)

We have 10 links on which the three networks agree both on presence and direction,
identifying reasonable dependencies. Specifically, we have that brake_usage and ac-
cel are both caused by avg_slope and stop_ptime: this can be interpreted with the fact
that a steep path in which we have to slow down or stop, if necessary, implies more
frequent use of the brakes or, conversely, in order to ride up a steep path, to use the
accelerator pedal. fuel_per_km is caused by variables avg_slope, since a steeper path
causes a greater consumption; stop_ptime, since the fuel consumption of a stopped
vehicle and the engine still on is higher; brake_usage, since more frequent use of the
brakes is related to a greater stop_ptime; mass, since a heavier vehicle (full of passen-

gers) requires greater fuel consumption; and aircond_ptime, since air-conditioning
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is expensive in terms of fuel. Moreover, we have that aircond_ptime is caused by
mass; this can be explained by the fact that a higher mass implies a greater number
of persons, which increases the temperature within the vehicle and requires the use

of air-conditioning.

- Common Links with Discordant Direction (CLDD)

We have three variable pairs on which the three networks agree on the link presence
but are discordant on the direction. We discuss the relationship for each of the three

related variable pairs.

For accel and brake_usage, we think that more frequent use of the brakes implies
subsequent use of the accelerator: according to this, brake_usage causes accel, as
stated by HC and RM. BF states the opposite, and it seems reasonable that the use of
the accelerator may lead to successive use of the brakes for decreasing the speed. We
cannot infer the actual direction of the causal relationship between the two variables
without auxiliary information concerning the traffic condition and driving behavior.
Unfortunately, the data set does not contain these features. We only have a proxy of

these conditions from stop_ptime and brake_usage.

For accel and fuel_per_km, we retain that more frequent use of the accelerator causes
a higher consumption, so accel causes fuel_per_km, as stated by HC and BF (while

RM states the opposite).

For mass and brake_usage, we retain that a higher mass of the vehicle implies a higher
probability that someone on the bus requires leaving the vehicle, which follows the
requirement that the bus driver needs to brake and to: so mass causes brake_usage,

as stated by HC and RM (while BF states the opposite).

- Uncommon Links (UL)

[-30]We have four links for which the three networks do not agree, both on presence

and direction.

For the variable pair mass and accel, we think that a heavier vehicle requires more
frequent use of the accelerator to reach its destination, so mass causes accel, as stated

by HC, while BF states the opposite and RM does not find a relationship.

The causal relationship between mass and stop_ptime is found only by HC. It appears
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reasonable and in agreement with the fact that mass causes brake_usage.

The causal relationship between slope and mass is found only by BF. This link is more
difficult to interpret; maybe the dependence between slope and mass may be explained
by the fact that a low value of slope may be a proxy for identifying a crowded region

of the town, where more people get on the bus and therefore the mass increases.

From our considerations, we observe that the links found by the networks can be ex-
plained with arguments concerning the domain of public transportation. Moreover, we no-
tice that, for links with a discordant network direction (CLDD), a feedback link over a vari-
able pair may exist though it is not contemplated by the DAG structure found by the Bayes
network algorithms. That is, given a variable pair and a network construction algorithm, we
find a directed causal relationship that may not be the only one in the considered domain.
For example, we are uncertain on the causal direction for the pair (brake_usage and accel).
Indeed, excessive acceleration may lead to the use of the brakes and the use of brakes ensures
the later use of the accelerator during the same bus path. Therefore, the true relationship be-
tween this pair may be a feedback link (a cycle). Unfortunately, we know that the network

construction algorithm excludes the formation of loops and it will never be found.

CL CLDD UL

1 avg_slope — brake_usage accel — brake_usage (BF) mass — accel (HC)
2 stop_ptime — brake_usage brake_usage — accel (HC, RM) mass — stop (HC)

3 avg_slope— accel brake_usage — mass (BF) accel — mass (BF)
4 stop_ptime — accel mass — brake_usage (HC, RM) slope — mass (BF)
5 avg_slope — fuel_per_km fuel_per_km — accel (RM)

6 stop_ptime — fuel_per_km accel — fuel_per_km (HC, BF)

7 brake_usage — fuel_per_km

8 mass — fuel_per_km

9 aircond_ptime — fuel_per_km

10 mass — aircond_ptime

Table 6.2: Link collection found by the three Bayes networks: hill climbing (HC), restrictive
maximization (RM), and brute force (BF). The collection is grouped as common links (CL),
common links with discordant direction (CLDD), and uncommon Links (UL). For CLDD
and UL, we specify the networks for which the links are present.

These observations highlight the difficulty of Bayes networks in determining the causal
direction between variables, which may be chosen after network construction with the aid
of the expert knowledge.

Concerning fuel consumption, we observe that all of the networks agree on the causal re-
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lationship of the variables (brake_usage, avg_slope, air_cond_ptime, stop_ptime, and mass)
over fuel_per_km while the reasonable relationship of accel causing fuel_per_km is found
by HC and BF. RM states the opposite relationship, which we consider inexact.

In Figure 6.3, we show the details of the BN that might have been extracted if the pres-
ence of a latent variable on the typology of the location (e.g., downtown) were not left as
a latent information but were explicit. As a consequence of the presence of an unobserved
variable, which is a common cause of other variables (mass and avg_slope), we observe the
situation on the right, with a possible mutual link between the effects that are not easily ex-
plained alone. This common situation is recognized also in the literature [118], and the BN

are deemed as equivalent from the viewpoint of the algorithms (but not by the experts).

—

e N

! downtown |

\ /
P

- ~
- ~
avg_slope .4—" avg_slope
Including "downtown" variable Without "downtown" - a latent variable

Figure 6.3: Detail of the uncertainty in Bayesian networks due to the presence of a latent
variable.

Feature Selection and Target Prediction with Bayesian Networks

The Bayesian networks can be applied to perform feature selection for a given supervised
prediction task; we considered multivariate linear regression of a given feature node x,,
where we say x,, is the farget. Given the feature set X = {x, x5, ..., x5}, we define X_, =
X\ {x,} and inquire which features of X_, should be selected to perform a regression on
target x,. Given a Bayes network 3, we introduce the feature set PiB) as the set of parent
nodes of x, with respect to BB (as an example, from Figure 6.4, we have for the Brute Force
network (BF) that the parent set of brake node is Plgﬁie) = {accel, stop_ptime, avg_slope}).

We performed feature selection by choosing the features of parent set P,SB) for the re-
gression of target x,. We notice that this feature selection is feasible only when 7)5’3) # 0.
For example, we observe from Figure 6.4 that avg_slope does not admit a non-null parent

set for any of the discovered Bayes networks.
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Restrictive Maximization (RM) Hill Climbing (HC) Brute Force (BF)

Figure 6.4: Bayes networks discovered by the algorithms (RM, HC, and BF) over the fea-
ture set accel (Accel), avg_slope (Slope), air_cond_ptime (Air), brake_usage (Brake), mass
(Mass), fuel_per_km (Fuel), and stop_ptime (Stop). The set is described in Section 6.2.2.
The green continuous arrows are common links (CL) between the networks, the yellow
dashed arrows are common links with discordant directions (CLDD), and the red dotted
arrows are uncommon links (UL), as presented in Table 6.2

We evaluated the performance of the target prediction using the regression model con-
structed with the parent feature selection. In the evaluation of the performance, we applied
the 10-fold cross-validation score on the root mean squared error (rmse) of the regression.
We then compared the 10-fold averaged rmse with the mean and standard deviation of the
target feature, which can be obtained from Table 6.1. We report the rmse performance for

each feature and for each parent set identified by our Bayes network collection in Table 6.3.

accel fuel_per_km  brake_usage stop_ptime aircond_ptime mass

CVl  0.18(RM) 0.13 (HC,BF) 0.07 (BF) 0.15(HC) 0.13 (HC,BERM) 1.6 (BF)
CV2  0.18 (HC) 0.14 (RM) 0.08 (HC, RM)

CV3 021 (BF)

std 021 0.20 0.09 0.15 0.18 1.6
mean  0.37 0.58 0.20 0.19 0.04 21.2

Table 6.3: 10-fold Cross Validation (CV) averaged rmse score for each regression of target
(column) on possible parent sets identified by Bayes network collection {Brute Force (BF),
Hill Climbing (HC), Restrictive Maximisation (RM)}. The first three rows list the possible
parent set, ordered CV scores together with the Bayes networks that generate the given parent
set. Detailed information on parent set can be retrieved from Figure 6.4. Last two rows
display target mean and standard deviation

We observe that, for each rarget feature, the CV scores tend to be of the same order of
magnitude with respect to the farget standard deviation and are generally smaller. Therefore,
we can state that the target regression with respect to the parent set tends to provide reason-
ably low discrepancy errors. When it is possible, we can employ multiple CV scores in order
to compare the Bayes networks in order to assess their ability to perform feature selection

by identifying different parent sets. To take an example, if we consider target fuel_per_km,
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the networks HC and BF have better performances with respect to RM in terms of parent
feature selection for regression. In fact, HC and BF identify a parent set made by all of the
features X_g0; e, 1n While the RM parent set does not include the accel feature.

In order to perform a more comprehensive study on feature selection, we compared par-
ent set selection with the variance inflation factor (VIF) technique. VIF is a feature-selection
technique [119] that has the goal of reducing multicollinearity in a multivariate data set given
the feature set S = (sy, S5, ..., 5z).

We compute the variance inflation factors collection SVIF) = (V, V,, ..., V) (We eval-
uate for each feature s, the quantity R> ;» that is the R-squared of regression of feature s; with
respect to S_; and the corresponding variance inflation factor ¥; = 1/(1 — R? ). We re-
move the feature s,, with the highest inflation factor if V,, > 5 (For high V,, we have that
feature s,, has high collinearity with respect to the other features and has a scarce impact in
the regression). We then repeat iteratively the same procedure by recomputing the VIF and
removing one feature at each step of the iteration until we reach V,, < 5. We apply VIF on
X_, for feature target x, but we are not able to perform feature removal since the VIF feature
values are of order 1072 or less, suggesting that our data set does not exhibit multicollinear-
ity. Therefore we can reasonably use the Bayes networks as an alternative valid instrument

to perform feature parent selection.

Intervention Analysis

One interesting feature of Bayesian networks is the possibility to estimate the impact of the
intervention on variables using just observational data. This is an advantage because we do
not need to perform costly and, in some cases, impossible experiments. We say we perform
an intervention on a variable when we treat it as fixed for the whole data set. The goal of
this task is to estimate the impact on the target of the action of control and to change the
values on one of its causes. This is an original and valuable contribution of our work since
this intervention aims to reduce fuel consumption and provides actionable knowledge as a
result of sensor data analysis.

To estimate the impact of intervention without using the experimental data, we follow
the approach provided in [107, 120]. For a Gaussian BN, the causal effect of X on Y is

determined as follows:

e We determine the set of parents of X in the BN graph (we denote it as Pa(X)); it is
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the set of variables directly connected to X in the graph.

e We perform a linear regression of Y on X and Pa(X); it computes the target as a

function of the other variables on which it depends; and

e The coefficient of X provides us with the causal effect of X on Y: each coefficient

quantifies the amount of impact of each cause to the target.

[-18]Assuming the BN structure obtained using the brute force algorithm to be true
and restricting our attention to fuel_per_km as the target variable, we obtain the variables
that have an effect on the target. They are (slope,mass,air_cond_ptime, stop_ptime,
brake_usage, and accel). Table 6.4 shows them together with the other variables (the
adjustment set). In the determination of the contribution of each single cause to the effect,
we need to maintain the values of the adjustment set in order to block-out their causal effect
on the target and concentrate only on a single cause (adjustment criterion) [121]. All of these
variables are included as inputs in the regression for the determination of the target; later,
we consider the variation in the target as a function only of a single causal variable for the

quantification of its impact on the target.

Variable Adjustment Set Causal Effect
slope {} 6.635
mass {slope,brake_usage,accel} 0.012
air_cond_ptime {mass} 0.107
stop_ptime {1} 0.445
brake_usage {slope,stop_ptime,accel} 0.206
accel {slope,stop_ptime } 0.189

Table 6.4: Causal effects of variables on target variable fuel_per_km.

Table 6.4 summarizes all of the possible impacts that the variables have on the target
fuel_per_km. This is exactly the added value of Bayesian networks compared to the usual
analytical studies based on prediction models: we can forget about the impact on the target
of the remaining variables that are not directly connected to the target because they cannot
have a direct impact on it. The (causal) variables of the target are directly connected to it
and are exactly those ones that can have an effect on it. This effect is precisely quantified
by the amount called “causal effect”: it measures the increase in the target for any unit of

increase in the corresponding causal variable.
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Using the values in Table 6.4, we can consider the following about the driving styles that

are suitable to reduce fuel consumption:

o If we decrease of one unit air_cond_ptime, we can expect a decrease of 0.107 units

in fuel_per_km;

o If we decrease of one unit brake_usage, we can expect a decrease of 0.206 units in

fuel_per_km; and

e We can obtain similar considerations about mass, obtaining a decrease in fuel_per_km

of 0.012 for each decrease in a ton of mass.

We observe that the causal effect for avg_slope is relatively high with respect to the
other variables. This can be explained by the fact that, for the considered angle interval
(0°,10°), the corresponding slope, that is the tangent of the angle, ranges in the interval
(0,0.18). Then, the corresponding slope variations are of the order 10~! — 102, There-
fore, since the maximum slope variation is 0.18, that is, very small with respect to the unit
value, we have that the corresponding maximum fuel_per_km variation is comparable to
6.635 % 0.18 = 1.19 I/km. This latter variation is compliant with the domain knowledge.
Although the mass and avg_slope variables are not under the control of the driver, this in-
formation can still be useful. A decision-maker can use it, for example, to choose whether it
is convenient to choose a path that is longer but with a lower slope. Additional considerations

on this type of intervention follow.

Case Study: Intervention on Slope From the intervention analysis results, we introduce
a simple case study in which we compare two paths that reach the same destination but have
a different configuration. The first path has a higher slope and a lower length, while the
alternative path has a decrease in slope and therefore a higher length. By the intervention on
avg_slope, we want to study how the fuel consumption varies and if we have a fuel saving

under some configuration of the parameters intervals.

Proof. Path p; has length /; and angle a;; we introduce the slope of the path as the tangent

of its angle: s; = tana,. |

We formulated the fuel consumption of path p; as F; = I, f;, where f; is the fuel_per_km

consumption related to path p;. According to the causal effect information from Table 6.4,
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we assume that f; increases linearly with the slope s; = tana;. That is, from a positive slope
variation As; = Atana;, we have a positive A f; = rA(tana;) with r = 6.635. We refer to
paths (1) and (2) of Figure 6.5, respectively, as p; and p,. We observed that p, and p, are two
possible paths for reaching the same destination (from Figure 6.5, we observe that path (2)
is equivalent to path (1.a), which reaches the same destination H, of path (1); model (2) has
a straight path to facilitate the computation of the fuel savings). We can model fuel savings
as R(a;, ay) = F; — F, between path (1) and path (2). From this formulation, we ask which
values of (a,a,), with @, < @, have a positive saving R(«a;, ) > 0. Knowing that f| > f;,
since path (1) has a greater slope than path (2), we have that f| = f, + r(tana; — tana,).

Therefore, we have the following:

Rlay, @) = fily = ol
0
= f1l, — [f, — r(tana; — tana,)]l,
' (6.4)
= lyr(tana; — tana,) — f1(l, — 1))

2
= rh(tana, — tana,)/sina, — f1h(1/sina, — 1/sina;)

Passage 2 of Equation (6.4) is found according to /; = h/sina;. We computed fuel saving

R(a;, a,) by setting the following parameters:

- a; = 5°: the angle for initial path p;, which approximately has a 10% inclination,

denotes a very steep path (5° is standardized as the maximum slope allowed for roads).

- h =0.01 km: a height of 10 m is reached by paths p; and p,. We have that, for angle
@, the path p; has a length of about 100 m.

- f1 €10.2,0.5,0.8] I/’km: fuel per_km consumption values for path p,: we select them

according to Table 6.1.

- a, < a;: we investigate fuel saving for paths with a lower inclination and consequently

a higher length.

From Figure 6.6, we observe that we have a positive fuel saving for f; = 0.2 I/km and
f1 = 0.5 Vkm, while for f| = 0.8 I/km, we waste fuel. By remembering that path p, has a
lower angle a, but a greater length, from the result, we see that, for greater values of f;, we

do not save fuel because the length of the path has a higher impact on the consumption. In
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Figure 6.5: Two paths for reaching the height z = h: path (1) has a length /; and an angle
a;; path (1.a) reaches the same destination as (1) by keeping a lower constant slope with a
longer length. Path (2) is used in the proof and is equivalent to path (1.a) in the angle a, and
length /,. The paths are compared in terms of fuel savings under different configurations, as
shown in Figure 6.6.

contrast, for lower values of f; (starting from a threshold that is approximately 0.55 I’km), we

have a positive saving because the decrease in slope has a higher impact on fuel consumption.

6.5.2 Bayes Network Validation

We compare the Bayes networks discovered with the results of the Granger experiments
described in Section 6.4 on a set of multivariate time series constructed from the original data
set.

Our data set is temporally confined between January and June 2019, and for each month,
we generally have five consecutive dates of measurement. We exploit the temporal order of
the data set and frame it as a multivariate time series collection. The path records contain in-
formation concerning the bus service: DAT (date and time of measurement) and VehicleID
(identifier of the vehicle). We subset the data set into a collection of multivariate time series
(1O, 1=1,...,T} according to VehicleID and the month of DAT. Each multivariate time
series 1) 1=, corresponds to the time-ordered collection of the path records measured for
a given vehicle v on a given month m (we selected a time series with more than 20 temporal
records and obtained a collection of T = 125 multivariate time series). By formulating the
data set as a time-series collection {t) : I = 1,..., T}, we obtained a set of boolean Granger
matrices {G) : [ = 1,..., T}, which represents the results of the Granger experiments.

Each Granger matrix G), computed from #") according to Equation (6.3), can be in-
terpreted as the adjacency matrix of a graph G). Given a Bayes network B, we compared
it with the set of Granger experiment graphs {G()} obtained for each time series of {#}.

That is, we compare the Bayes adjacency matrix B with the set of Granger matrices {G?}
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Figure 6.6: Fuel consumption saving (1) vs. slope angle @, (°) of path (2). The saving is
computed by the difference in the consumption of path (1) (with fixed a; = 5°) to path (2)
of Figure 6.5. The curves in the colors are for different values of f; € [0.2,0.5,0.8] (I/km)
(fuel_per_km consumption in path p;).

by considering each element of the set as a ground truth.
We define a Bayes performance metric m(B, G), and from it, we define M (B, {GDY
= % 21T=1 m(B, G?) as the average Bayes performance over the collection {G®}. We use

M (B, {G"}) as a mean of the comparison over our Bayes network collection.

Performance with Respect to Granger Experiments

We frame the adjacency matrices B and G as boolean vectors b and g so that each vector’s
ith entry is a boolean indicator of the presence of link i. We compared two models, Bayes
vector b and Granger vector g, which evaluate the presence for each link on a given link
collection with size L (in our case, for V' = 7 variables, we have L = 42 possible links). If
we establish the Granger vector g as the ground truth of this binary classification task, we
can evaluate the binary metrics of b with respect to ground truth g: that is, the number of
links in the collection that are true positive (TP), true negative (TN), false positive (FP), and

false negative (FN). Then, we can construct a set of Bayes performance metrics as shown in
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Table 6.5:

Binary Metrics Bayes Network Performance Metrics

TP=Y" Ib=1g=1) sens =TP/(TP + FN)

TN =YY" 1(b;=0,g;=0)  spec=TN/(TN + FP)

FP= 2,L=1 I, =1,g,=0) avg_recall = (sens + spec)/2

FN=Y" b =0,g=1  acc=(TP+TN)/(TP+TN +FP+FN)

Table 6.5: Binary metrics of Bayes vector b with respect to ground truth g (b and g are
boolean link-indicator vectors of a link collection of size L). From binary metrics, Bayes
performance metrics are evaluated: sensitivity (sens), specificity (spec), average recall
(avg_recall), and accuracy (acc).

Sensitivity (sens) measures the ratio of true positives (TP) over the total positives of
ground truth g (TP + FN), that is the percentage of g present links that are correctly identified
by b. Specificity (spec) measures the ratio of true negatives (TN) over the total negatives
of the ground truth g (TN + FP), that is the percentage of g absent links that are correctly
identified by b. Average recall (avg_recall) measures the average between sensitivity (sens)
and specificity (spec). Accuracy (acc) measures the ratio of true positives and true negatives
(TP + TN) over the link collection size L = TP + TN + FP + EN, which is the percentage
of links, whether absent or present for ground truth g, that are correctly identified by b.

For each performance evaluation m(B, G) related to a given time series 1) (m : sens,
spec, avg_recall, and acc), we compute the averaged Bayes performance metrics M (B, {G?}) =
% 21T=1 m(B, GV) over the time series collection {t} (M : SENS, SPEC, AVG_RECALL,
and ACC) for each discovered Bayes Network. We report the average performances in Ta-
ble 6.6, where the error is computed as the standard deviation of performance over the

Granger matrix collection {G®}.

SENS SPEC AVG_RECALL ACC
BF 0.42 + 0.12 0.68 + 0.06 0.55 + 0.09 0.58 + 0.08
HC 0.41 +0.09 0.68 + 0.05 0.54 + 0.07 0.57 + 0.06
RM 0.36 + 0.09 0.72 + 0.05 0.54 +0.07 0.58 + 0.07

Table 6.6: Bayes average performance metrics over the Granger experiment set { G’ }: sen-
sitivity (SENS), specificity (SPEC), average recall (AVG_RECALL), and accuracy (ACC)
evaluated for the Bayes networks (HC, BF, and RM). The metrics represent the level of ac-
cordance between the Bayes causality models and the collection of results obtained by the
Granger experiments.

From Table 6.6, we observe that the Bayes network performances are below 60% for all
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metrics except for specificity. A higher sensitivity is reached by brute force (BF)m which
on average identifies 42% of present links with respect to the time-series Granger graphs.
A higher specificity is reached by restricted maximization (RM), which identifies 72% of
absent links with respect to the time-series Granger graphs. The average recall, which is the
mean between sensitivity and specificity, is reasonably similar for all the networks and is
around 55%. We have the same for accuracy, which is around 58%.

From Table 6.6, we can state that we have a poor consistency between the discovered
Bayes networks and the Granger experiments since we have that, on average, these models
have a low percentage of commonly identified causal relationships (e.g., accuracy for all
networks is around 58%).

We can motivate these results by the following arguments:

1) Time-series properties

The time series may not be correlated with time and may have a consistent random
component. We can verify this with Ljung-Box test [122] with total number of lags
h = 20 and significance level a = 0.05 for each feature of the time series of our col-
lection {#"}. For each feature, we report the percentage of time series for which we
confirm the independence assumption: accel, 71%; avg_slope, 54%; air_cond_ptime,
12%; brake_usage, 57%; mass, 1%; fuel_per_km, 57%; and stop_ptime, 87%. We
observe that most of the features, especially stop_ptime and accel, present a high in-
dependence frequency over the time-series collection except for aircond_ptime and
mass. This result may suggest that our time-series framing may be the reason for the

low consistency between Granger experiments and Bayes networks.

2) Conceptual causality difference

We may observe that Granger test searches for causality by identifying a past tempo-
ral dependence by means of the vector auto regression model, while Bayes networks
search for a present causality between features, which are collected on the same tem-

poral level.

Let us take an example. We consider multivariate time-series variables (A, B) for
(€3]

which the Granger test provides A = B. We have that A has a predictive power in

forecasting B, but we may not be sure about the existence of a present causal depen-

dence between A and B, that is the type of causality identified by Bayesian networks.

122



CHAPTER 6. BAYESIAN NETWORKS FOR FUEL PREDICTION AND REDUCTION
IN PUBLIC TRANSPORTATION

Specificity Sensitivity

-5
u BF
W HC
| RW
- = -
[=1.} 1

Average Recall Accuracy
=] EM &

B BF I BF
H HC 0 T
40 = BN B AM

o

[l h.

s 7]

Figure 6.7: Bayes network (HC, BF, and RM) performance metric histograms (specificity
on the top left, sensitivity on the top right, average recall on the bottom left, and accuracy on
the bottom right) over the resulting collection of the Granger experiments performed on the
multivariate time-series data set. The average of each performance metric for each Bayes
network is reported in Table 6.6.

6.6 Conclusions

This work presents different contributions with the purpose of analyzing the conditions at
which fuel consumption occurs in vehicles and of understanding how to reduce it by inter-
vening in the scenario. We provided a collection of data from sensors installed on buses
used as public transport. Thanks to the sensor data analysis, we discovered that, in some
contextual conditions (with a fuel consumption per kilometer that does not exceed the value
of 0.75 L per kilometer), it is preferable to choose a longer but less steep path than a shorter
one. As a consequence of the analysis of cause—effect relationships between the variables
and the target, we precisely quantified the impact of all causes on the target: with a decrease
of one unitof air_cond_ptime (percentage of travel time with air conditioning), we can can
expect a decrease of 0.107 units in fuel_per_km; with a decrease of one unit of the percent-
age of time with brake_usage, we can expect a decrease of 0.206 units in fuel_per_km;
and with a decrease of a unit in stop_ptime (stop percentage time with engine on), we can

expect a decrease of 0.445 units in fuel_per_km. In the literature [93], the important effect
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of this variable was confirmed.

We tested both approximate algorithms, driven by the BIC score and brute force with
the purpose of comparing the ability of the algorithms to converge to the same resulting
networks. We evaluated their results with the adoption of Granger causality, a third-party
criterion, based on the time series formed in time by the observed variables. This is an orig-
inal contribution to the scientific community of Bayesian networks that are usually scored
by BIC or K2. According to the Granger causality, we are also able to rank the alternatives,
even in the case where multiple BNs share the same score. We compared BNs also by using
their ability to perform feature selection and to predict the target variable.

We discussed the comparison results. The networks sometimes agree, and other times,
they do not. This mismatch perhaps is due to the multiple maxima that sometimes exist in
the large search space of the solution. The observed mismatches on the edges might also be
a consequence of the heuristics. Heuristics are indeed used to eliminate multiple rankings
of the alternatives, in choosing edge directions (choice of the cause and the effect that often
requires the experts’ advises), and for avoiding cycles in the BN graphs.

In summary, the contributions of our work are as follows:

1. Bayesian networks were applied for the analysis of fuel consumption. Past studies on
fuel consumption in vehicles (reported in Section 6.1) applied only machine learning
predictive models (based on SVR, ANN, random forest, or gradient boosting). All of
them have the sole goal of predicting the target value. None provide machine learning
models that are able to also perform the following: (a) describing and discovering the
cause—effect relationships between variables and the target (Section 6.5) and
(b) performing an intervention analysis on the causes, with the goal of achieving a
desired impact on the target and quantifying this impact (Section 6.5.1).

Bayesian networks are powerful and we used them to reach multiple goals: perform
feature selection (Section 6.5.1) whose outcomes we compared with another standard
method (VIF [119]); perform predictive modeling (target estimation, whose results are
shown in Table 6.3), intervention analysis (Section 6.5.1) and counterfactual analysis

(what-if analysis).

2. Comparing the results of approximate algorithms (heuristic-driven) for Bayesian net-
works with a brute force algorithm, an original one, implemented for this work (Algo-

rithm 5) was made possible thanks to the availability of high-performance computing
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technology that permits us to afford an extremely high computational load of travers-
ing the huge search space of the possible networks by partitioning it and spreading
evaluations of the alternative graphs throughout many servers. The outcome of this
comparison (Section 6.5.2) can help analysts with the uncertainty of which Bayesian

network to use.

3. The use of the Granger causality concept was introduced and formalized for an evalu-
ation of Bayesian networks (Section 6.4). Granger causality was used as an indepen-
dent, third party notion to compare, evaluate, and rank the different Bayesian networks,

generated from the same data by different algorithms.

4. Bayesian network discovery is customarily used to test the domain knowledge, pre-
viously distilled under the form of an already available graph [107, 108, 118, 123].
Differently, in this paper, we did not start from an already available graph but directly
started from the collected (sensor) data and provided experts with assumptions about

this knowledge (cause—effect relationships) under the form of a Bayesian network.

5. Last but not least, we provided a public data sets to the scientific community [101]
with real data from buses, useful for testing Bayesian network algorithms and time

series analyses.
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Chapter 7

Utility Privacy Trade-off in a

Differential Private Mechanism

7.1 Introduction

Local differential privacy aggregates randomized responses from each client to publish sen-
sitive information for statistical analysis while protecting individuals’ privacy. This chapter
presents a utility privacy trade-off model suitable for contingency tables. We characterize
the notion of the utility model through experimental analysis, in which we demonstrate the
effect of the Laplace noise on the dependencies structure of two or more random variables
in the contingency tables.

In the context of LDP, there is a trade-off between utility and privacy. The more ran-
domness in the output of the randomized mechanism, the stronger the individual privacy.
On the other hand, this makes more noisy the aggregator’s estimations.

To characterize this utility and privacy trade-off, we need a confidence interval on the
probability of observed responses that measures the utility and privacy in the underlying
protocol. Using this confidence interval, we can identify a minimal level of privacy that a
protocol provides while maximizing the utility.

In theory, LDP provides a privacy guarantee in any situation, and in the worst-case sce-
nario, LDP provides an upper bound on the privacy leakage. However, it can be practically
difficult to define an upper bound in the privacy definition [124, 125]. Many relaxed defini-
tions of LDP settings have been proposed in the literature [8, 126, 127]. Therefore, it is very

important to understand the behaviour of a privacy mechanism and the privacy guarantee it
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provides in the worst-case scenario.

The privacy leakage by a randomized mechanism can be defined using Mutual Informa-
tion (MI) [128], which models how well an aggregator with access to the released data can
refine its belief about the private data [129]. Mutual information is evaluated on the dif-
ference between the randomized response received by an aggregator and the users’ original
data. However, the aggregator infers users’ data by linking the knowledge obtained from
other data sources. Hence, mutual information obtained from the users’ data and the out-
put of the randomization protocol does not correctly quantify information leakage by the
mechanism if one does not condition on the data statistics [8].

Several approaches in the literature define the information-theoretic utility measures in
LDP [124, 125, 129, 130]. Some of them concentrate on mutual information, while others
measure utility via an information leakage by the privacy protocol.

In this chapter, we also use information theory to characterize the notion of utility by
means of experimental analysis in the differential private protocol. In this chapter, we present
the utility privacy tradeoff suitable for the contingency tables. In the context of LDP, there is
a trade-off between utility and privacy. The more randomness in the output of the random-
ized mechanism, the stronger the individual privacy. On the other hand, this makes more
noisy the aggregator’s estimations. We use the log-likelihood ratio G*/G-test [131] to build
a confidence interval on the utility of the responses on the basis of observed noisy values

due to noise addition by the Laplace mechanism for privacy preservation.

7.2 Notations

For the notation simplicity, we only consider a k-way contingency table T' over k attributes
A = (A, A,, -, A;). The table can be calculated directly from the original dataset or
the attributes-parent pairs in the Bayesian network, as presented in Section 5.2.1. We de-
note by T'[w;] a a specific value in the contingency table. We will also denote the original
contingency table by T and use T’ to denote a projection of T after noise addition by a
e—differentially private mechanism.

A privacy mechanism M:T — T’ maps original values in T to noisy values in T’, where
the noise is drawn from the randomization protocols outlined in Chapter 3. For generaliza-
tion, we use a standard e-differentially private Laplace distribution to add noise to remap

T —>T'.
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7.3 Confidence Interval for a Bayesian Network Built over Noisy

Data

We assume we have a noisy contingency table T', representing the joint distribution of two
binary random attributes A; and A,. Noise is added in the contingency table by addition in
the counting of each cell w; of a random variable x;, drawn from the Laplace distribution
Lap(0, b) with zero mean and a scale that depends on the privacy budget € as b = % For

simplicity, we consider a 2-by-2 contingency table with one degree of freedom.

(a) Observed values T’
Ww, | W, | m

(b) Expected counting (T)
Wy =X | Wy =X,

ny | ny | n

Table 7.1: Observed and expected counts in a 2-by-2 contingency table

When two variables are judged dependent by application of a statistical test for inde-
pendence (like log-likelihood ratio G* or G-test), an edge between the two variables in the

Bayesian Network is drawn. The G? test is applied by the following formula:
0.
G*=2) O0;,-In— 7.1
Z ;g (7.1)

For the analysis of the noisy table 7’ the value of G can be expressed in terms of mutual

information, given as

G>=2 Z [w,. ‘In <w,.bii x,. >] (1.2)

with w; the counts in cell i and x; the amount of random noise added.

Let us assume that on the noisy contingency table, the G? test is passed, that means that
G* > Gg (where Gf is critical value), with G* a constant that depends on the degrees of
freedom of the contingency table (it is 3.84 for a 2-by-2 table). In this situation we make the
null hypothesis that the variables are independent (H, : A; 1 A,) and we ask ourselves
which is the probability that as a consequence of the addition of noise variables, distributed
by Laplace distribution, the outcome of the dependency test changes and the null hypothesis
is rejected. The computation of the probability of this event, is the goal of this section. In-
stead, if the G test failed on the noisy contingency table, we make the opposite assumption:

the null hypothesis is that the variables were actually dependent (and on the true contingency
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Figure 7.1: Area under the curve of Laplace noisy x; and Lap%

table the G2 test is passed). This second case is completely dual of the first one, so for the
sake of brevity we will deal only on the first one.

We have to compare G with the critical value Gf below which, the variables per row and
column are presumed as independent. Therefore, we need to find the values of w, w,, ws
and w, (which depend on the Laplace distributed variables x;, x,, x5 and x, that represent

the added noise to the cells) for which the following equation holds:

G? =2Z [(wi-ln wi“i"x.> : (éexp_%ﬂ (7.3)

1

We are interested in finding when the outcome of the G test will change as a result of

the noise (x;, x,, X3, X4), such that:
G*(xy, X5, X3,%4) = G2 < 0 (7.4)

We are interested in calculating the areas of the segments contained between the x-axis
or values of x and the curve Lap(0, %) = % exp_%. In order to calculate the values of x, it
seems reasonable for us to draw a sketch of the curve, as there is no mention of the ordinates,
or values of noise x. We know that, the curve crosses the x-axis when Lap(0, %) = 0, in other
words when x; = a;,x, = a,,x3 = a3,x, = a,. We see that when x is large and positive

Lap(0, %) is also large and positive, and when x is large and negative, Lap(0, %) is also large

and negative. Joining all these features we obtain the curve as shown in Figure 7.1.
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So we focused on the intervals in which the Equation 7.4 is negative (in the area P,
that is, between a; and a,, and the area P,, between a, to a; and so on). We integrate the
Laplace distributed variable x; using Equation 7.5 in each of these intervals. This allowed
us to obtain P; that is the probability that the observed value is generated as a consequence
of noise addition given an assumed true value.

We also know that all the noisy variables xy, -+, x, are independently drawn from the
Laplace distribution. Summing up them will approximate the total probability that the de-
pendency will change due to the noise addition. This probability will define the utility of
the data in the contingency table obtained after the addition of noise due to privacy. On the
opposite side it will also help to approximate how much noise is sufficient to add so that the

dependency between the random variables remains intact.

Lap(0, Z) = / <l exp_%> 0x;
€ €

- (7.5)
€ 2.2 £

Lemma 7.3.1. The extreme values for all the variables (x|, X5, x5, x4) are within the inter-

vals +9¢ = +9 \/5%

Proof. We look for the extreme values between the interval +9¢ = 19\/55 for all the
variables (x,, x,, X3, X,) and check the values of G* — Gg in case it is monotonic: we have 2*
possibilities. To find the maximum probability of each P;, we use Chebyshev’s inequality.

According to Chebyshev’s inequality:

,~ (7.6)

1
P(|xi—y|2ka)§ﬁ=1—P

We use k = 9 to achieve the minimum 98.7654% within k-standard deviations of the mean.
Since we have 4 independent variables (x, x5, x3, x4), multiplying each P, - P, - P, -P, =
(0.9876)* = 0.9153 = 91.53% confidence level. The extreme boundaries on the Laplace

distribution of x; are given by:

X1

k=9 P = 8—11 — 001234 = 1 — 0.9876

Figure 7.2 illustrates the maximum probability of variable x|, the upper u,,,,,;, = 90 and

1-P,,

lower 1,4 = 90 bound, and the extreme values 1 — P, = = 0.0062. [ |
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Figure 7.2: Upper and lower bound of Laplace distribution on x,

7.3.1 Experimental Evaluation: G test

For the experimental evaluation, we select a 2-by-2 noisy contingency table with one degree
of freedom. We start with the lowest noisy value in the first cell (T”[w,] = 5 because one of
the requirements to pass the G? test is that, each cell value in the contingency table should
be greater than or equal to 5). We adjust the remaining cell values (w,, ws, and w,) so that
the marginals (n,, n,, ny, and ny) and the total n remain consistent. To calculate the total
probabilities (le RETI Px4) for all the four variables (x,, -+, x,) for which G*? passes, we use

the following equation:

ub,, 1 —|x; ;
P (s o

€

The first part of the equation is the integral of the Laplace distribution from Equation 7.5. We
iteratively run the above Equation 7.7 in Mathematica' by incrementing the first cell value
(w; + ¢, where c is constant assumed as the original true cell value), until the marginals
does not change anymore. We plot the confidence intervals in Figure 7.3 which shows the
probabilities that the dependence will not change on the y-axis and G? test on the x-axis.
Figure 7.3 shows the confidence intervals at different number of total records # in the con-
tingency table. As shown in the Figure 7.3, it is 99% probable that the dependency between

two random variables remains intact after the addition of noise in the contingency tables

Thttps://www.wolfram.com/mathematica/
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with higher cardinality than n. Whereas, contingency tables with lower cardinality than #,
it is 80 % probable that the dependency will break with the addition of noise drawn from

Lap(%) where € = 0.1.

10 -
0.8 1
§ 06 -
“ 04
-@- n=2000
021 —— n=7000
—.= n=12000
-&- n=22000
0.0 5 | 1 | | T | I |
46 30 20 10 30 60 90 120 140

G2

Figure 7.3: Confidence interval using G? test on 2-by-2 contingency tables having different
records (n = [2000, 7000, 12000, 22000], and € = 0.1). On the y-axis we plot probabilities
and on x-axis we have G2 values (G? values are divided by a factor 100 for the plotting

purpose)

7.4 Robustness of Noise on the Dependence Structure Between

Variables

In this section, we will discuss the effect of the Laplace noise on the BN structure at various
values of the privacy parameter ¢. We build the confidence interval on the BN dependence
structure using Pearson’s chi-square test of independence 2 (as discussed in Section 6.3.2).
Our aim is to evaluate the effect of Laplace noise on the dependencies statements (A;|I1;).
We believe that, adding a large amount of noise (corresponding to low values of €) might
break the dependencies between the variables. Conversely, if we add a small amount of noise
(with higher values of ¢), the dependencies should remain intact. To perform 2 test, we add

Laplace noise in the conditional distribution of the variables. These conditional distributions
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are represented as the contingency tables, which are identified by the Markov blanket of the

Bayesian structure.

Definition 7.4.1 (Markov blanket [132]). The Markov blanket of a node N € A is the

minimal subset S of A, conditioned on which other nodes are independent with N :
N 1L A\S |S (7.8)

It means that the subset S contains all the information one needs to infer N, where the

attributes in A \ S are redundant.

In any Bayesian network, the Markov blanket of a node N is its parent set I1, its children,

and all the other nodes sharing a child with N.

7.4.1 Confidence Interval

To model the confidence interval, we use y> independence testing on a differential private
contingency table T’. This noisy table T’ is generated by adding Laplace noise Lap(%)
independently in each cell of the original contingency table T. We can say that this T’ is
a noisy projection of T'. In the following section, we will discuss the test of independence

using differentially private hypothesis testing.

Hypothesis Testing Preliminaries

Given a noisy conditional distribution 7”7 on a set of attributes (A;|Il;), we wish to iden-
tify whether this distribution comes from a specific model, which is given as a null hy-
pothesis H,. The hypothesis testing is done using a procedure which takes a distribution
T’, level of significance 1 — a, and null hypothesis H,. This procedure outputs a deci-
sion of whether to reject H or accept it. We would like to design our significance test
to such a degree that the hypothesis testing algorithm achieves Type I error with proba-
bility a (that is the error of rejecting the null hypothesis when it is true). More formally,
Pr [T’, a, HO] : Reject (HO) < «a while also achieving a small Type II error (risk of ac-
cepting the null hypothesis when it is false).

Conditional independence test focus on the presence of an arc in the Bayesian network.
Each arc contains a probabilistic dependence, and conditional independence tests can be used

to model whether the data support this probabilistic dependence. An arc is considered to be
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Algorithm 6 Private Hypothesis Testing
Input: contingency table T' generated using (A;|I1;), privacy parameters e
\T'=T+2Z  with Z~ Lap(%)
2 m=MLE(T)
3 if m == @ return: Accept

4 else

5 G < 7% using T’ and m // from equation 4.8
6 setk>1/aandg =0

7 fort € [k] do

8 generate contingency table T’ using m

9 T'=T'+Z  with Z~ Lap(3)

10 m=MLET")

11 if m == @ return: Accept

12 else compute 72 from 4.8, add it to the array g

13 end

14 7 = [(k + 1)(1 — «)] ranked statistic in ¢
15 i = MLE with 7’ using Equation 4.9
16 return: m

added in the network if the null hypothesis H|, (by conditional independence) is rejected.
For example, consider a Bayesian network in Figure 5.1. Consider adding an edge from
S — 0. The H, : O I S|{R} is that, Occupation is probabilistically independent of Sex

conditioned on its parent (Region). The alternative hypothesis is Hy : O X S|{R}.

7.4.2 Deferentially Private Hypothesis Testing

Differential private independence testing is performed using the same technique which we
discussed in Section 4.6. Here, we present an algorithm to perform a Monte Carlo hypothesis
testing on attributes-parent pairs A;|II; in BN. This differential private hypothesis testing is
performed at different privacy levels (e € [0.1,0.25, and 0.35]) similar to the work of [76].

We use Algorithm 6 to build a confidence interval for accepting or rejecting the depen-
dencies between the attributes parent-pairs in the contingency table (A;|II;). This confidence
interval shows at what level of Laplace noise (controlled by €) a strong dependency/indepen-
dency between two random variables in the Bayesian network remains intact. Algorithm 6
works as follows: given a contingency table, we add a random noise drawn from the Laplace
distribution Lap(%) to generate T’ e— differentially private. We use the function MLE to es-
timate the parameters m that correspond to the null hypothesis of independence. Using m,

we sampled k > 1/a many noisy contingency tables to get k different values for 7> (equa-
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Figure 7.4: Level of confidence on y? probabilistically independent hypothesis test (H,, :
O 1 S|{R},a =0.05), left (H, = 12.2%, H, = 87.8% with € = 0.1), middle (H, = 29.1%,
H, =70.9% with ¢ = 0.25), right (Hy = 90.5%, H, = 9.5% with € = 0.35)

tion 4.8) and choose [(k + 1)(1 — )] ranked statistics as our threshold #*. If at any stage

MLE returns @, we select Accept H,.

7.4.3 Monte Carlo Test: Test of Independence

Monte Carlo simulation is performed to evaluate the robustness of Laplace noise at different
privacy budgets e. We want to evaluate the result of noise on the dependencies between
the attributes in the BN structure. We believe that if we add a large amount of noise in
the contingency tables, it might break the dependencies between the attributes and if we
add a lower amount of noise, the dependencies should remain intact. Likewise, we select
conditional distribution (4;|II;) < (O, S|R) from Figure 5.1. Our hypothesis is given as,
H, : O 1 S|{R} and the alternative hypothesis is H; : O X S|[{R}. To test the 72
we set @ = 0.05. We repeated our experiments over 1000 trials. Each set of 1000 trials is
performed on varying values of noise (¢ € [0.1,0.25,0.35]).

Figure 7.4 illustrates the confidence interval using the y> on conditional probabilities
(A;|I1;). Our null hypothesis is O 1. S|{R}; the alternative hypothesis is O L S|{R},
a = 0.05, with 3 degree of freedom. Figure 7.4 shows that if we add a large amount of noise
(e.g, with € = 0.1) the null hypothesis is 12.2% of the times accurate; if € = 0.25, then H|,
is accurate 29.1% of the times; if € = 0.35 the null hypothesis H|, is accurate 90.5% of the
times.

Hence, we conclude that adding a large amount of noise, the noise will create false

dependencies in the BN structure, thus reducing the utility of the data.
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Conclusions

In this dissertation, we developed a set of randomized response protocols to collect users’
sensitive information in a non-trusted environment to achieve local differential privacy. We
proposed differentially private algorithms which provide a privacy guarantee while maxi-
mizing the utility of the released data.

We systematically explored the problem of collecting and analyzing data from users
under e—local differential privacy. In our setting, neither the aggregator nor the server is
trusted, and they only access randomized responses from the users’ to reconstruct statis-
tical models. The server can compute accurate statistics from these joint distributions as
contingency tables.

We proved theoretically that the proposed randomized response protocols satisfy the
definition of differential privacy. We also analyzed the relationships between the parameters
of the proposed protocols and the privacy budget, the main parameter adopted in literature
to control the level of privacy. From the experimental viewpoint, the experiments showed
that our protocol achieves high utility in reconstructing the probabilities of attribute values
while achieving a low error bound.

We also investigated how to adapt our randomization protocol in other applications. We
combine our randomization protocol with the knowledge on the variables dependencies con-
tained in a Bayesian network and collect users’ sensitive information in a privacy-preserving
manner. We use the Bayesian network to approximate the distribution of users’ responses
using a set of low-dimensional contingency tables. We use randomized responses to ensure
these marginals are differentially private. These noisy tables, generated from the Bayesian

network, enable us to estimate the full-dimensional data distribution. The differential pri-
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vate Bayesian network generated in PrivBayes [1] considers a centralized setting where the
Laplace noise is added to the dataset. Since the server can access the true values of the clients
and can become a single point of failure. Our protocol overcomes this limitation by creating
a decentralized setting, where the server can collect randomized responses from each client
in both steps. The server has no access to the client’s true values, which makes our protocol
the best candidate to collect randomized responses to generate privacy preservation surveys.

We also utilized the a-geometric mechanism, a discretized version of Laplace distribu-
tion. We combined a-geometric noise with our randomized response algorithm to create a
hybrid approach for collecting users’ responses in a non-trusted environment. We showed
that our proposed hybrid approach satisfies the privacy guarantee and maximizes the utility
of the perturbed dataset.

In this work, we also presented different contributions to analyze the conditions at which
fuel consumption occurs in vehicles and understand how to reduce it by intervening in the
scenario. We provided a collection of data from sensors installed on buses used as public
transport. We tested both approximate algorithms, driven by the BIC score and brute force,
to compare the algorithms ability to converge to the same resulting networks. We evaluated
their results by adopting Granger causality, a third-party criterion, based on the time series
formed in time by the observed variables. According to the Granger causality, we can also
rank the alternatives, even when multiple Bayesian networks share the same score. We also
compared Bayesian networks by using their ability to perform feature selection and predict
the target variable.

We show, by means of experiments, the effect of noise on the privacy and utility of
a privacy mechanism suitable for the contingency tables. We use information theory to
characterize the notion of utility by means of experimental analysis in the differential private
protocol. We use the log-likelihood ratio G*/G-test to build a confidence interval on the
utility of the responses on the basis of observed noisy values due to noise addition by the
Laplace mechanism for privacy preservation.

In future work, we would like to use the hash function to store these contingency tables
to reduce the computation and communication overheads. We can execute our protocol us-
ing the hash function on low-memory devices. We would also love to work on federated
learning, where we can deploy our randomization protocol to many clients (e.g., mobile de-

vices or whole organization) collaboratively to train a machine learning model under the
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orchestration of a non-trusted central server (e.g., service provider), while keeping the train-
ing data decentralized. This setting enables focused collection and data minimization and
uses our randomization mechanism to mitigate many privacy risks and costs resulting from

traditional, non-trusted centralized machine learning.
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