
CATEGORIFYING CONNECTED DOMINATION VIA GRAPH

ÜBERHOMOLOGY

LUIGI CAPUTI, DANIELE CELORIA, AND CARLO COLLARI

Abstract. Überhomology is a recently defined homology theory for simplicial complexes, which
yields subtle information on graphs. We prove that bold homology, a certain specialisation of
überhomology, is related to dominating sets in graphs. To this end, we interpret überhomology
as a poset homology, and investigate its functoriality properties. We then show that the Euler
characteristic of the bold homology of a graph coincides with an evaluation of its connected
domination polynomial. Even more, the bold chain complex retracts onto a complex generated
by connected dominating sets. We conclude with several computations of this homology on
families of graphs; these include a vanishing result for trees, and a characterisation result for
complete graphs.

1. Introduction

The purpose of this paper is twofold; first, we investigate the functoriality properties of the
recently defined überhomology [Cel21a]. We then provide a categorification of an evaluation of
the connected domination polynomial Dc

G(x). Unexpectedly, these two directions turn out to be
closely related; in fact, we show that Dc

G(−1) is the Euler characteristic of a suitable homology
theory H(G). This latter homology is a degree specialisation of the überhomology, but it also
admits an independent definition, cf. [Cel21a, Section 8].

Recall that the überhomology Ḧ(X) is a combinatorially defined (triply-graded) homology
theory associated to a finite and connected simplicial complex X. Its definition relies on certain
combinatorial filtrations on the simplicial chain complex of X, arranged in a poset-like fashion
reminiscent of Khovanov homology [Kho00]. This is not a coincidence; indeed, we show that
the überhomology is a special case of a poset homology (in the sense of [Cha19, CCDT21b],
cf. Remark 2.12). A consequence of this interpretation yields the following result:

Theorem 1.1. The überhomology is a bi-functor

Ḧ∗(−;−) : RegSimpl×Ring→ grAb

where RegSimpl denotes the category of simplicial complexes and injective simplicial maps.

Überhomology groups measure both combinatorial and topological features of simplicial com-
plexes and therefore, in particular, of simple graphs. We focus our attention on the überhomology
in a specific bi-degree, namely we define the bold homology H∗(X) of X as Ḧ∗0,0(X). For a graph

G, the homology H(G) has an independent definition as the homology of the chain complex CH(G)
– cf. [Cel21a, Secion 8]. A basis of H(G) is provided by subgraphs of G. We use these facts, in
conjunction with Theorem 1.1, to prove our main result:

Theorem 1.2. The bold homology H(G) is a categorification of Dc
G(−1); that is H is functorial

with respect to injective morphisms of graphs, and its Euler characteristic is Dc
G(−1).

Recall that, for a graph G, a dominating set D is a subset of the vertices of G such that every
vertex in G is in D or adjacent to at least one member of D. Dominating sets in graphs have
been extensively studied (see e.g. [HHS13] and references therein); finding dominating sets of a
given size is well known to be a NP-complete problem, and is related to open conjectures (such
as Vizing’s conjecture [Viz68], see also the survey [BPW+12]).

The categorification provided by Theorem 1.2 can be strengthened to uncover a deeper relation
between connected dominating sets and H. More precisely, if CH(G) denotes the chain complex
computing the bold homology H(G), we obtain the following result:
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Theorem 1.3. There exists a quasi-isomorphism between the chain complex CH(G) and a com-
plex DH(G). The complex DH(G) is spanned by connected dominating sets of G, and its differential
is induced by inclusions.

The proof of this last theorem relies on various techniques from combinatorial algebraic topol-
ogy (see [Koz08]), and, in particular, from algebraic Morse theory. We prove some technical
results on discrete Morse matchings (cf. Lemma 4.11 and Remark 4.9), which might be of inde-
pendent interest. These techniques enable us to compute the bold homology for certain families
of graphs; namely, trees, complete bipartite graphs, and cycle graphs, proving [Cel21a, Con-
jecture 8.2]. We also examine the behaviour of H under certain natural graph operations –
cf. Propositions 5.3 and 5.8. Finally, we prove that the bold homology characterises complete
graphs:

Theorem 1.4. The homology H1(G) is non-zero if and only if G is a complete graph.

We point out that computations of H(G) can be carried out by means of computer software –
see the Sage [SAG20] implementation [Cel21b].
We conclude with some sample computations of sporadic examples (see Table 1), and a list of
open questions.

Organisation of the paper. In the first section, we recall the definition of überhomology,
and provide an alternative interpretation using poset homology with functor coefficients. This
viewpoint is put to use in Section 3, where we investigate the functoriality of the überhomology
with respect to injective morphisms of graphs. In Section 4 we recall the definition of the bold
homology, as a specialisation of überhomology, and prove that its Euler characteristic categorifies
an evaluation of the connected domination polynomial. We provide some applications and
computations in Section 5, and conclude with some open questions.

Conventions. Typewriter font, e.g. G, H, etc., are used to denote finite, simple and connected
graphs, possibly oriented. Unless otherwise stated, R denotes a ring, K is a field, and F denotes
the field with two elements. We include here the notation for some graph families used in the
paper: Ln denotes the linear graph, Cn the cycle, Wn the wheel graph, and Kn the complete graph
on n vertices. We also denote by Km,n the complete bipartite graph on m,n vertices, and by
Cube(n) the 1-skeleton of the n-dimensional cube.

Acknowledgements. The authors are thankful to F. Petrov for suggesting the proof of Propo-
sition 4.6. LC acknowledges support from the École Polytechnique Fédérale de Lausanne via a
collaboration agreement with the University of Aberdeen. DC was partially supported by the
European Research Council (ERC) under the EU Horizon 2020 research and innovation pro-
gramme (grant agreement No 674978) and by Hodgson-Rubinstein’s ARC grant DP190102363
“Classical And Quantum Invariants Of Low-Dimensional Manifolds”. During the writing of this
paper CC was a postdoc at the New York University Abu Dhabi.

2. Über and poset homologies

In this section we recall some basic notions and prove that the überhomology is a poset
homology.

2.1. Überhomology. We start by giving a brief account of the definitions from [Cel21a].
Let X be a finite and connected simplicial complex with m vertices, which we assume to be

ordered, say V (X) = {v1, . . . , vm}.

Definition 2.1. A bi-colouring ε on X is a map ε : V (X) → {0, 1}. A bi-coloured simplicial
complex is a pair (X, ε) consisting of a simplicial complex X and a bi-colouring ε on V (X).

Given a n-dimensional simplex σ in a bi-coloured simplicial complex (X, ε), define its weight
with respect to ε as the sum

(1) wε(σ) := dim(σ) + 1−
∑

vi∈V (σ)

ε(vi) .
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In other words, the weight is the number of 0-coloured vertices in a simplex. If we fix a colour-
ing ε, the weight in Equation (1) induces a filtration of the simplicial chain complex C∗(X;R)
associated to X. More explicitly, we set

Fj(X, ε;R) := R〈 σ | wε(σ) ≤ j 〉 ⊆ C∗(X;R) .

The simplicial differential ∂ preserves this filtration, so each Fj(X, ε;R) is a sub-complex
of C∗(X;R). We can decompose ∂ as the sum of two differentials (cf. [Cel21a, Lemma 2.1]);
one which preserves the weight, and one which decreases it by one. We denote the former by
∂h, and won’t make use of the latter. Call (C(X, ε;R), ∂h) the bi-graded chain complex whose
underlying module is C(X;R); the first degree is given by simplices’ dimensions, and the second
is given by the weight wε.

Definition 2.2. The ε-horizontal homology Hh(X, ε;R) of (X, ε) is the homology of the bi-
graded chain complex (C(X, ε;R), ∂h).

When the ring of coefficients R is clear from the context, we will simply denote the ε-horizontal
homology of (X, ε) by Hh(X, ε).

Consider the Boolean poset B(m) on m vertices, that is the set consisting of subsets of
{1, . . . ,m}, partially ordered by inclusion.

Remark 2.3. One can decorate the elements of B(m) with the bi-colourings on X. Indeed,
the set of bi-colourings on X can be canonically identified with the elements of {0, 1}m via the
map ε 7→ (ε(v1), ..., ε(vm)). The minimum of B(m) corresponds to the (0, . . . , 0)-colouring, and
the maximum of B(m) corresponding to the (1, . . . , 1)-colouring.

We are now ready to recall the definition of the überhomology – cf. [Cel21a, Section 6].
Let ε and ε′ be two bi-colourings on X which differ only on a vertex vi; assume further that
ε(vi) = 0 and ε′(vi) = 1. We denote by dε,ε′ the weight-preserving part of the identity map

Id: Hh(X, ε)→ Hh(X, ε′). More explicitly

dε,ε′(σ) =

{
σ if wε(σ) = wε′(σ)

0 otherwise.

Note that the second case can only occur if wε(σ) = wε′(σ)− 1.

C̈0(X) C̈1(X) C̈2(X) C̈3(X)
d0 d1 d2

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

Hh(X, (0, 0, 0))

Hh(X, (1, 0, 0))

Hh(X, (0, 1, 0))

Hh(X, (0, 0, 1))

Hh(X, (1, 1, 0))

Hh(X, (1, 0, 1))

Hh(X, (0, 1, 1))

Hh(X, (1, 1, 1))Hh(X, (0, 0, 0))

Hh(X, (1, 0, 0))

Hh(X, (0, 1, 0))

Hh(X, (0, 0, 1))

Hh(X, (1, 1, 0))

Hh(X, (1, 0, 1))

Hh(X, (0, 1, 1))

Hh(X, (1, 1, 1))

d (∗,0
,0)

d(0,∗,0)

d
(0,0,∗)

d(1,∗,0)

d
(1,0,∗)

d (∗,0
,1)

d(0,∗,1)

d (∗,1
,0)

d
(0,1,∗)

d
(1,1,∗)

d(1,∗,1)

d (∗,1
,1)

Figure 1. The Boolean poset B(3) with vertices decorated with the horizontal
homologies of a simplicial complex with 3 vertices, and its flattening to the über
chain complex.
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For a bi-colouring ε on the simplicial complex X, we set `(ε) :=
∑

j ε(vj). We can then define

the j-th über chain complex (with coefficients in R) as follows:

(2) C̈j(X;R) =
⊕
`(ε)=j

Hh(X, ε;R) .

We now restrict to the case R = F. Then, by [Cel21a, Proposition 6.2], the map

(3) dj :=
∑
`(ε)=j

dε,ε′ : C̈j(X;R)→ C̈j+1(X;R)

is a differential, turning
(

C̈∗(X;F), d
)

into a triply graded complex. A schematic description of

the construction for the über chain complex is presented in Figure 1.

Definition 2.4. The überhomology Ḧ∗(X) of a finite and connected simplicial complex X is

the homology of the complex
(

C̈∗(X;F), d
)

.

We refer the reader to [Cel21a, Sections 6,7] for a detailed construction of the überhomology,
as well as some examples and computations.

Remark 2.5. The differential d preserves both the dimension of the simplices and their weight.
It follows that the überhomology “inherits” two gradings from the horizontal homology, making
it a triply-graded homology. As a matter of notation, we will sometimes denote these gradings

as Ḧj
i,k(X;R); the j grading is the homological degree of the überhomology, increasing by 1 under

the action of d. The other bi-degree (i, k) denotes the pair consisting of dimension of simplices
and weight.

2.2. Poset homology. We start by reviewing the poset homology of a finite poset P , with
coefficients in a functor F . We remark here that this construction is related, but in general
not equivalent, to the classical poset homology (see e.g. [Wac06], and cf. Remark 2.12) which
is defined as the homology of the associated nerve. We refer to [Cha19, CCDT21b] for more
general expositions on the topic.

For a poset (P, /), let /̃ denote the associated covering relation – i.e. x /̃ y if and only if x / y
and there is no z such that x / z / y.

We say that P is ranked if there is a rank function ` : P → N such that x /̃ y implies
`(y) = `(x) + 1. We say that P is squared if, for each triple x, y, z ∈ P such that z covers y and
y covers x, then there is a unique y′ 6= y such that z covers y′ and y′ covers x. Such elements
x, y, y′, z, together with their covering relations in P , will be called a square. In what follows,
we assume all posets to be ranked and squared.

Example 2.6. A Boolean poset is ranked and squared; the rank function is given by the distance `
of an element from the empty set (cf. Remark 2.3).

Observe that a poset can always be regarded as a category:

Remark 2.7. A finite poset (P, /) can be seen as a (small) category P; the set of objects of P
is the set P , and the set of morphisms between x and y contains a single element if and only if
x / y or x = y, and is empty otherwise.

Functors on the category associated to the poset P preserve commutative squares; in fact, we
have the following:

Remark 2.8. Let C be a small category, and (P, /) be a poset. For each x, z ∈ P there is a
unique mapping fx,z : x → z in the category P. Assume there is a square between x and z; the
existence of such a square implies that fx,z factors:

fx,z = fy,z ◦ fx,y = fy′,z ◦ fx,y′ .
Given a covariant functor F : P→ C, we must have:

F(fy,z) ◦ F(fx,y) = F(fy,z ◦ fx,y) = F(fx,z) = F(fy′,z ◦ fx,y′) = F(fy′,z) ◦ F(fx,y′) .

In other words, all functors preserve the commutativity of the squares in P .
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Let Z2 be the cyclic group on two elements.

Definition 2.9. A sign assignment on a poset (P, /) is an assignment of elements sx,y ∈ Z2 to
each pair of elements x, y ∈ P with x /̃ y, such that the equation

(4) sx,y + sy,z ≡ sx,y′ + sy′,z + 1 mod 2

holds for each square x /̃ y, y′ /̃ z.

In general, the existence of a sign assignment on a poset P depends on the topology of a
certain topological space associated to P – see, e.g. [CCDT21b, Section 3.2], [Put14, Section 5],
or [Cha19]. In cases of interest to us, there is always a sign assignment, and the choice of such
a sign is thus immaterial.

Remark 2.10. Any Boolean poset admits a sign assignment, which is unique up to (a suitable
notion of) isomorphism – cf. [CCDT21b, Example 3.15].

We can now recall the definition of poset homology of a poset P with coefficients in a functor F .
Let A be an Abelian category – e.g. the category of left modules on a commutative ring R –

P a ranked squared poset with rank function `, and s a sign assignment on P . Given a covariant
functor F : P→ A, we can define the cochain groups

CnF (P ) :=
⊕
x ∈ P

`(x) = n

F(x),

and the differentials

dn = dnF :=
∑
x ∈ P

`(x) = n

∑
x′ ∈ P
x /̃ x′

(−1)s(x,x
′)F(x /̃ x′) .

Note that the differentials dn, and therefore the cochain complexes, depend a priori upon the
choice of the sign assignment s. However, in the cases of interest to us – i.e. for Boolean posets
– this choice does not affect the isomorphism type of the cochain complexes.

Theorem 2.11. Let A be an Abelian category, P be a ranked squared poset, and s be a sign
assignment on P . Then, for any n ∈ N and any functor F : P→ A we have dn+1 ◦ dn ≡ 0. In
particular, (C∗F (P ), d∗) is a cochain complex.

For a proof of this result, we refer to [Cha19] and [CCDT21b, Theorem 3.7].

Remark 2.12. Poset homology, as described in this section, is related to the classical homology
of posets – defined as the homology of the associated nerve [Wac06, Section 1.5]. Indeed, when
the poset P is the face poset of a CW-complex X, and the functor F is the constant functor,
then the poset homology of P with coefficients in F agrees with the reduced homology of X
(shifted by 1) – see [CCDT21a, Section 6]. Furthermore, when the poset P is a Boolean poset,
the relationship is stronger: the poset homology with coefficients in a functor F agrees with the
homology (of the associated category) with coefficients in F – now defined as the derived functors
of colim(F) [GZ67] – by [ET09, Theorem 24].

2.3. Überhomology as a poset homology. Let ModR be the category of (left) R-modules,
over a fixed commutative ring R with unit. Note that the category ModR is an Abelian category;
in particular, biproducts are given by direct sums of modules.

Let X be a simplicial complex with |V (X)| = m. By Remark 2.3, we have an identification
of each b ∈ B(m) with a bi-colouring εb on X. Consider the category B(m) associated to B(m),
as in Remark 2.7. Then, we can regard the decoration provided in Section 2.1 as a functor

H : B(m)→ModR

defined as H(b) := Hh(X, εb;R) on objects, and as H(b /̃ b′) := dεb,εb′ for each covering rela-
tion b /̃ b′ of B(m). The extension to other morphisms of B(m) is obtained by compositions.
Furthermore, the assignment so described does indeed define a functor by [Cha19, Section 3].
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Remark 2.13. As the horizontal homology is bi-graded, the functor H lands in the subcategory
of ModR given by bi-graded modules.

We are now ready to identify the überhomology with a poset homology on B(m).

Proposition 2.14. Let X be a finite connected simplicial complex with |V (m)| = m. Then,
the poset homology of B(m) with coefficients in the functor H : B(m)→ModF agrees with the
überhomology of X with coefficients in F.

Proof. It is enough to write down the definition of (C∗H(B(m)), d∗), and compare it with the
definition of überhomology. The n-th cochain group is given by

CiH(B(m)) :=
⊕

b ∈ B(m)
`(εb) = i

H(b) =
⊕

b ∈ B(m)
`(εb) = i

Hh(X, εb;F) = C̈i(X;F).

Similarly, the differential is given by

diH :=
∑

b ∈ B(m)
`(εb) = i

∑
b′ ∈ B(m)

b /̃ b′

H(b /̃ b′)
(∗)
=
∑
`(ε)=i

∑
`(ε′)=i+1

dε,ε′ = di,

where in (∗) we used that by definition dεb,εb′ = 0 if b is not covered by b′. �

This alternative description of the überhomology as a poset homology allows us, by Theo-
rem 2.11, to extend its definition to any ring of coefficients R. In fact, once a sign assignment s
on B(m) is chosen, the überhomology with coefficients in R is defined as the poset homology
of B(m) with coefficients in the functor H : B(m)→ModR. Note that, up to isomorphism, the
result does not depend on the chosen sign assignment by Remark 2.10.

The following corollary describes the functoriality of überhomology with respect to such co-
efficients:

Corollary 2.15. For each finite simplicial complex X, its überhomology defines a functor

Ḧ∗(X;−) : Ring→ grAb.

That is, for each ring homomorphism φ : R → S there is an induced map φ∗ : Ḧ∗(X;R) →
Ḧ∗(X;S) of graded Abelian groups.

Proof. A homomorphism of rings φ : R → S induces a natural transformation between the
functors HR : B(m) → ModR and HS : B(m) → ModS by extension of scalars. The result is
then a consequence of [Cha19, Corollary 7.15]. �

3. Functoriality of überhomology

In this section we investigate überhomology’s functoriality with respect to certain simplicial
maps. Recall that a simplicial map is a map between simplicial complexes such that the image
of the vertices of any simplex spans a simplex.

Definition 3.1. A coloured map ψ : (X, εX) → (Y, εY ) is a simplicial map ψ : X → Y which,
for each y ∈ ψ(V (X)) ⊆ V (Y ), satisfies the following two conditions:

(1) there is at most one x ∈ V (X) such that εX(x) = 1 and ψ(x) = y;
(2) εY (y) = 0 if and only if there is no x ∈ V (X) such that εX(x) = 1 and ψ(x) = y.

Figure 2 gives an example of a coloured map of simplicial complexes. The identity is always
a coloured map between (X, εX) and itself. Coloured maps are closed under composition:

Lemma 3.2. The composition of two composable coloured maps is a coloured map.

Proof. Composition of simplicial maps is simplicial. It is also straightforward to check that the
conditions defining a coloured map are satisfied. �

Remark 3.3. Observe that, given a coloured map ψ : (X, εX) → (Y, εY ), then εY (v) = 0 for
each v ∈ V (Y ) \ ψ(V (X)).
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ψ

Figure 2. A coloured map ψ; the collapse of a coloured 2-simplex on one of its
edges.

Coloured simplicial maps are compatible with the weight of bi-coloured simplicial complexes,
as defined in Equation (1):

Lemma 3.4. Let σ be a simplex of X, and ψ : (X, εX)→ (Y, εY ) be a coloured map. Then,

wεX (σ) ≥ wεY (ψ(σ)) ,

and equality holds if ψ is injective. That is, injective coloured simplicial maps preserve weights.

Proof. Note that a coloured map ψ : (X, εX) → (Y, εY ) preserves the sum of the colourings on
the vertices of each simplex, that is the equality∑

v∈V (σ)

εX(v) =
∑

x∈V (ψ(σ))

εY (x)

holds for each σ ⊆ X. The image ψ(σ) is a simplex in Y , of possibly lower dimension, with
the same number of 1-coloured vertices as σ. The statement now follows from the definition of
weight. �

We observe here that a generic coloured simplicial map may not induce a chain map between
the associated ε-horizontal chain complexes:

Remark 3.5. Fix a colouring ε∆1 on the standard 1-simplex ∆1 and a colouring ε∆0 on the
standard 0-simplex ∆0. Let ψ : ∆1 → ∆0 be the simplicial map obtained by collapsing ∆1 to ∆0.
Then, ψ uniquely determines a morphism ψ : C(∆1, ε∆1 ;R) → C(∆0, ε∆0 ;R) of R-modules,
since the underlying R-module of the horizontal chain complex C(X, ε;R) of a coloured simplicial
complex (X, ε) is isomorphic to the R-module of the standard simplicial chain complex associated
to X. However, ψ does not extend to a chain map with respect to the horizontal differentials.

Note that, when restricting to injective coloured simplicial maps, we get graded maps of
complexes with respect to the weight grading; more specifically, for any coefficient ring R, we
have the following:

Proposition 3.6. An injective coloured simplicial map ψ : (X, εX) → (Y, εY ) induces a chain
map between the associated horizontal chain complexes

ψ : (C(X, εX ;R), ∂h) −→ (C(Y, εY ;R), ∂h) ,

which is graded with respect to the grading induced by the weights wεX and wεY .

Proof. Simplicial maps induce morphisms of chain complexes. Furthermore, for an injective map,
the weights are preserved by Lemma 3.4, making the induced morphism of chain complexes a
graded one. �

As a consequence of the above proposition, we obtain functoriality of the ε-horizontal homol-
ogy Hh(X, ε;R) with respect to injective coloured simplicial maps.

We now restrict to injective simplicial maps of simplicial complexes.

Theorem 3.7. For each commutative ring R, the überhomology is a functor

Ḧ(−;R) : RegSimpl→ModR.

from the category RegSimpl of simplicial complexes and injective simplicial maps.
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Proof. Let ϕ : X → Y be an injective simplicial map, and assume |V (X)| = m and |V (Y )| = n.
The Boolean poset B(m) can be seen as a sub-poset of B(n); consider the functors HX : B(m)→
ModR and HY : B(n) → ModR as described in Section 2.3. Note that the functor HX can

be uniquely extended to a functor H̃X on the category B(n) (via the zero extension); this

extension provides a natural transformation η : H̃X ⇒ HY . The result now follows by [Cha19,
Corollary 7.15]. �

The functoriality of Theorem 3.7 cannot be extended to the whole category Simpl of simplicial
complexes with the same methods – see also Remark 3.5. With a different approach, one may
switch the roles of 0 and 1 in Definition 3.1, obtaining the analogue of Proposition 3.6 for
all coloured (with respect to this new definition) simplicial maps. However, in such case, the
functoriality – again only for injective simplicial maps – of Theorem 3.7 is only true up to a shift
in the degree.

4. Bold homology and Dominating sets

In this section we review the definition of bold homology, and investigate some of its properties.

4.1. Bold homology. The überhomology introduced in Section 2.1 is a homology theory for
simplicial complexes; when restricting to simple graphs, i.e. 1-dimensional simplicial complexes,
we can consider what in [Cel21a, Section 8] has been denoted by H0. For notational convenience
in what follows we will drop the index 0 from the notation. This is a singly-graded homology
theory, consisting of the bidegree (0, 0) part of the überhomology, and called here bold homology.
We start by recalling its alternative description in terms of connected subgraphs.

Let G be a connected simple graph. Denote by Col(G) the set of bi-colourings of G, and set

Col(G; i) :=
{
ε ∈ Col(G) :

∑
v∈V (G)

ε(v) = i
}
.

Remark 4.1. The set Col(G) has a natural poset structure induced by the ε-colourings and a
fixed order on V (G). We can identify this poset with a Boolean B(|V (G)|) – cf. Remark 2.3. The
choice of the ordering is immaterial, up to poset isomorphism. From now on, when identifying
the set Col(G) with a Boolean poset, we always implicitly assume a choice of an ordering on V (G).

Each bi-colouring ε ∈ Col(G) determines a possibly disconnected subgraph Gε ⊆ G whose
vertices are given by V (Gε) = {v ∈ V (G) | ε(v) = 1}, and containing all the edges in G connecting
vertices in V (Gε) – see Figure 3 for an example.

1
1

1

0

0

11

(G, ε) Gε

Figure 3. A bi-coloured graph (G, ε), and the subgraph Gε determined by its
colouring ε.

The i-th bold chain group (with coefficients in R) is

CHi(G;R) =
⊕

ε∈Col(G;i)

⊕
x∈π0(Gε)

R〈x〉,

where π0 denotes the set of connected components. Note that for i = 0, Col(G, 0) contains only
the trivial (all 0) colouring ε0. The graph associated to Gε0 is the empty graph, therefore we can
set CH0(G;R) = (0).
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When clear from the context, we identify a connected component x in π0(Gε) with the cor-
responding subgraph of G. Given x ∈ π0(Gε) and x′ ∈ π0(Gε′), we write x ≺ x′ if and only
if ε /̃ ε′ (under the identification of Col(G) with a suitable Boolean poset – cf. Remark 4.1)
and V (x) ⊆ V (y).

Now, define the map of R-modules

di : CHi(G) −→ CHi+1(G)
x 7−→

∑
x≺y s(ε, ε

′)y

on generators x ∈ π0(Gε), for ε ∈ Col(G, i), and extended by R-linearity. It turns out that d
defines a differential on CH∗(G;R). This is implicit from the fact that d is the component of
bi-degree (0, 0) of the überhomology differential. We provide a direct proof of this fact.

Lemma 4.2. Let G be a simple graph. Then, (CH∗(G;R), d∗) is a chain complex.

Proof. In order to prove that d squares to 0, consider the composition

di+1 ◦ di(x) =
∑
x≺y

∑
y≺z

s(ε, ε′)s(ε′, ε′′) z .

Note that each z ∈ π0(Gε′′) appears exactly twice since the poset of colourings is squared. More
precisely, there are exactly two colourings ε′1 and ε′2 such that ε /̃ ε′1, and ε′2/̃ ε

′′. By definition
of sign assignments, we have

s(ε, ε′1)s(ε′1, ε
′′) = −s(ε, ε′)s(ε′, ε′′)

and the statement follows. �

The homology of (CH∗(G;R), d∗) is denoted by H∗(G;R), and referred to as bold homology.
We simply write H∗(G) when the base ring R is clear from the context.

We can now analyse the bold homology groups in their lowest degrees; first note that by
definition CH0(G) = (0). In particular, H0(G) is always trivial. We also have a complete
characterisation of the first bold homology group H1:

Proposition 4.3. Let G be a simple connected graph. Then, H1(G) 6= 0 if and only if G ∼= Km
for some m ≥ 0.

We sketch a proof here, and give a full proof in Section 4.3 using the techniques developed
therein.

Sketch of proof. If G is a complete graph, then H1(G) ∼= F by [Cel21a, Proposition 8.1]; note that
this also holds on any field K. Complete graphs are the only graphs such that the subgraphs
induced from a 1-colouring on precisely two vertices are always connected. Therefore, if G is not
a complete graph, there exists at least a pair of vertices v1, v2 ∈ V (G) such that the induced
graph is disconnected. We use this to show that the differential d1 is injective.

First note that if a linear combination of generators α1vi1 + . . . + αkvik contains v1 or v2,
then its image d1(α1vi1 + . . . + αkvik) can not be trivial (see Figure 4). Note also that every
connected generator in degree two is in the image of exactly two connected components (i.e. two
1-coloured vertices). If a vertex v is not connected to all the other vertices of G, we can always
find a v′ such that v ∪ v′ induces a disconnected subgraph. It follows that, if α1vi1 + . . .+αkvik
is a cycle, then each vij must be connected with every other vertex in G.

Now, given v ∈ V (G) \ {v1}, connected with all the other vertices in G, we have that {v1, v}
appears in d1v with coefficient ±1. Hence, to cancel out this contribution, v1 must appear in
each cycle featuring v, which is a contradiction. �

4.2. Dominating sets and Domination polynomials. In this section we introduce some
basic notions related to graphs and dominating sets that will be used throughout the rest of the
paper, and show a categorification-like relation with bold homology.

Let G be a simple graph. For a subgraph H ⊆ G we denote by ν(H) the 1-neighbourhood of H
in G, i.e. the subgraph induced by V (H) and by all the vertices sharing an edge with an element
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4

1

2 3

Figure 4. A graph G on 4 vertices, together with its bold chain complex in the
first two degrees. Since G is not a complete graph, we can see two connected
components appearing in degree 2. In the case at hand, these correspond to the
ε-colouring (1, 0, 0, 1).

of V (H). The graph G \ ν(H) is the subgraph of G induced by the vertices V (G) \ V (ν(H)) (see
Figure 5). With the poset structure induced by Col(G), the set

Col(G; H) = {ε ∈ Col(G) | ε(v) = 1 if v ∈ V (H), and ε(v) = 0 if v ∈ V (ν(H) \ H)}

is a Boolean sub-poset of Col(G) isomorphic to B(|V (G \ ν(H))|) – cf. Remark 4.1.

G H ⊆ G ν(H) ⊆ G G \ ν(H) ⊆ G

Figure 5. A graph G, a (non-dominating) connected subgraph H ⊆ G, the neigh-
bourhood ν(H) of H in G, and its complement G \ ν(H).

Dominating set have been extensively studied [AL78, AP09, HHS13]; this is mainly due to the
NP-complete status of the problem of finding all dominating sets of a graph [CKH95], as well
as their relationship with the study of networks (see e.g. [WL99]). We recall here the definition:

Definition 4.4. Given a simple graph G, a subset D ⊆ V (G) is said to be dominating if every
vertex in V (G) \D is adjacent to some member of D.

Equivalently, a subgraph H ⊆ G is dominating if and only if its 1-neighbourhood ν(H) is G.
The dominating polynomial DG(x) ∈ Z[x] is the polynomial

DG(x) =

|V (G)|∑
k=γ(G)

dG(k)xk ,
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where dG(k) is the number of dominating sets in G composed by exactly k vertices, and γ(G) is
the domination number, i.e. the minimal size of a dominating set in G.

We are interested in the related notion of connected dominating sets (see e.g. [SW79], or
[DW12], for an overview of the applications).

Definition 4.5. A dominating set is called connected if its induced graph is connected. The
connected domination polynomial is defined as follows

Dc
G(x) =

|V (G)|∑
k=γc(G)

dcG(k)xk,

where dcG(k) is the number of connected dominating sets with exactly k vertices, and γc(G) the
connected domination number – that is the minimal size of a connected dominating set in G.

The proof of the following result, relating bold homology and connected dominating sets, was
suggested by F. Petrov [Cel21c].

Proposition 4.6. The Euler characteristic χ(H(G)) of H(G) coincides with Dc
G(−1).

Proof. Let G be a simple graph with n vertices. Then by definition, we have:

(5) χ(H(G)) =

n∑
k=1

(−1)k
∑

ε∈Col(G;k)

|π0(Gε)| =
n∑
k=1

(−1)k
∑

ε∈Col(G;k)

∑
H∈π0(Gε)

1 .

We can rearrange the summands in the right-hand side of (5); that is, we count (with sign) how
many times a connected subgraph H ⊆ G, induced by its vertices, appears as a component of
some Gε. After this re-arrangement, we obtain the equality

χ(H(G)) =
∑
H

∑
ε∈Col(G;H)

(−1)`(ε) .

where H ranges among all connected subgraphs of G induced by their vertices. As pointed out
above at the beginning of this section, Col(G; H) is a Boolean sub-set of Col(G), and it is easy

to see that the sum
∑

ε∈Col(G;H)(−1)`(ε) is zero, unless Col(G; H) contains a single element. This

happens if and only if G \ ν(H) is empty, hence when H is dominating (note that H is connected

by definition). In which case, we have (−1)`(ε) = (−1)|V (H)|, where ε is the unique colouring in
Col(G; H), and the statement follows. �

Connected domination polynomials have been computed in some cases. This allows us to
easily compute the Euler characteristic of H, as shown in the following example.

Example 4.7. Let P be the Petersen graph. Its connected domination polynomial was computed
in [ME18] to be

Dc
P(x) = x10 + 10x9 + 45x8 + 110x7 + 135x6 + 72x5 + 10x4.

It follows that χ(H(P)) = Dc
P(−1) = −1. This is coherent with our computations; we explicitly

computed the bold homology using a computer program, obtaining

Hi(P;F) ∼=

{
F if i = 5,

0 otherwise

where F is the field with two elements.

We are now ready to give a proof of Theorem 1.2.

Proof of Theorem 1.2. By Theorem 3.7, the bold homology is a functor from the category of
graphs and injective maps to the category of R-modules. This, together with Proposition 4.6,
provides the needed categorification. �
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4.3. Retraction onto dominating complex. In this section we provide a “categorified ver-
sion” of Proposition 4.6; more precisely, we prove the existence of a retraction of the bold chain
complex CH(G) on the subcomplex DH(G) generated by dominating connected subgraphs of G.

To facilitate the calculations in the remaining examples, we will use some basic notions of
algebraic Morse theory, as introduced by Forman [For98]; for an overview, the reader is referred
to [Koz08, Section 11]. Roughly speaking, algebraic Morse theory gives a convenient way to
reduce a (co)chain complex by eliminating acyclic summands via changes of bases.

The main construction we will use goes as follows. Let K be a field; consider a finitely

generated chain complex of K-vector spaces, say (C∗, ∂∗), and a basis Bi = {bji}j=0,...,ki of Ci as
a K-vector space, for each i. With respect to these bases, the differential can be expressed as

∂(bji ) =
∑
h

〈∂bji , b
h
i+1〉 bhi+1 ,

for some coefficients 〈∂bji , bhi+1〉 ∈ K. One can now construct a directed graph C with vertices

V (C) :=
⋃
iBi, and directed edges (bki , b

h
j ) ∈ E(C) if and only if 〈∂bji , bhi+1〉 6= 0.

Definition 4.8 ([Cha00, Section 3]). A matching M on a directed graph C is a subset of pairwise
disjoint edges of C. A matching is called acyclic if the graph obtained from C by inverting the
orientations of the edges in M has no directed cycles.

For a chain complex (C∗, ∂∗), a (acyclic) matching on (C∗, ∂∗) is defined as a (acyclic) matching
on the associated graph C. The main result in algebraic Morse theory ([For98, Section 8], see also
[Cha00]) is that, given an acyclic matching M on C, the complex (C∗, ∂∗) is quasi-isomorphic to

a complex (CM∗ , ∂
M
∗ ). Here CMi is generated by all the bji ’s that are not incident to the edges

in M ; the generators that are not paired by M are said to be critical generators with respect

to M . If bji and bki+1 are critical generators, then 〈∂M∗ (bji ), b
k
i+1〉 is determined by a (weighted)

count of certain oriented paths called zig-zags1 in the graph C joining bji and bki+1 – see [Koz08,
Definitions 11.1 and 11.23, Equation (11.7)]. This might make cumbersome the definition of the
differential on the new complex; however, in the case at hand it is immediate to determine ∂M .

Remark 4.9. Necessary conditions to have non-trivial zig-zags are the existence of either:

(♦) a critical generator b, and a matched generator a, such that 〈∂(b), a〉 6= 0;
(♥) a critical generator b′, and a matched generator a′, such that 〈∂(a′), b′〉 6= 0.

Moreover, if either the critical generators or the matched generators form a sub-complex of
(C∗, ∂∗), then at least one between (♦) or (♥), respectively, are violated. It follows that in both
cases the differential ∂M∗ is the restriction of ∂∗ to the span of the critical generators of M .

Remark 4.10. Let Cn be the face poset of a n-simplex ∆n. Then Cn can be naturally identified
with the Boolean poset B(n). This is the graph associated to C∗(∆

n). Then, an acyclic matching
on Cn, involving all vertices, does always exist – see, Figure 6, for an example. These perfect
acyclic matchings correspond to a sequence of elementary collapses of the n-simplex to a point.

In order to facilitate the following discussions, we will make extensive use of this next result.

Lemma 4.11 (Technical Lemma). Let (C∗, ∂∗) be a finitely generated chain complex over a

field K. For each i, denote by Bi = {bji}j=1,...,ki a basis for Ci as a K-vector space. Assume
there exists a matching M on (C∗, ∂∗) partitioned into acyclic sub-matchings M1, ...,Mk, and a
function ϕ :

⋃
Bi → N such that:

(1) if (a, b) ∈Ms for some 1 ≤ s ≤ k, then ϕ(a) = ϕ(b);
(2) if (a, b) /∈Ms, and 〈∂a, b〉 6= 0 then ϕ(b) > ϕ(a).

Then M is acyclic.

1These directed loops also appear in the literature as V-paths, or alternating paths. In these paths, the edges
corresponding to M are reversed.
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{1}

{1, 2}

∅

{2}

{1, 3}

{1, 2, 3}

{3}

{2, 3}

Figure 6. An acyclic matching (in red), involving all vertices, on B(3) ∼=
C∗(∆

3). Inverting the orientation of the red matched edges does not introduce
any directed cycle.

Proof. Assume M supports a directed cycle γ; then by [CY20, Lemma 2] the vertices of γ must
consist of a sequence of generators

bj1i , b
r1
i+1, ..., b

js
i , b

rs
i+1,

such that: (brhi+1, b
jh
i ) ∈M , 〈∂brhi+1, b

jh+1

i 〉 6= 0 for all h = 1, . . . , s, and 〈∂brsi+1, b
j1
i 〉 6= 0. Note that

ϕ(brui+1) ≥ ϕ(bjui ) ≥ ϕ(b
ru+1

i+1 ) for all u = 1, ..., s (where u is considered modulo s). This implies
that

(6) ϕ(b
jh+1

i ) ≥ · · · ≥ ϕ(brsi+1) ≥ ϕ(bj1i ) ≥ · · · ≥ ϕ(brhi+1).

We have two cases; either (brhi+1, b
jh
i ) ∈ Mt for all h and some t ∈ {1, . . . , k}, or there is at

least one h such that (brhi+1, b
jh
i ) ∈ Mp and (b

rh+1

i+1 , b
jh+1

i ) ∈ Mq with p 6= q. The former case is

absurd since each Mt was assumed to be acyclic; for the latter, observe that ϕ(brhi+1) > ϕ(b
jh+1

i )
by hypothesis (since Mp ∩Mq = ∅), which contradicts (6). �

We can regard each x ∈ π0(Gε), for ε ∈ Col(G), as a connected subgraph Hx of G induced by its
vertices. Let DH(G) be the sub-complex of CH(G) spanned by those x ∈ π0(Gε) for which Hx is a
dominating connected subgraph of G (i.e. induced by a dominating set). Note that this is indeed
a sub-complex, since adding any vertex to a connected dominating set induces a connected
dominating subgraph. We will sometimes identify the generators of DH with the corresponding
dominating sets, rather than with the associated dominating subgraphs.

We can now prove a categorified version of Proposition 4.6; there we showed that the Euler
characteristic of H coincides with an alternating sum of the cardinalities of connected dominating
sets. Here, we prove that a similar statement holds at the level of the chain complexes.

Theorem 4.12. The chain complexes CH(G) and DH(G) are quasi-isomorphic.

Proof. The bold chain group CH(G) is spanned by all x ∈ π0(Gε) with ε ∈ Col(G). For each
generator x ∈ π0(Gε) define the quantity

ϕ(x) = |V (Hx)| .
Note that if 〈∂x, y〉 6= 0, then ϕ(x) ≥ ϕ(y); in this case the equality is achieved if and only
if Hx = Hy. Now, we can consider the partition of the generators in CH∗(G) induced by the
equivalence relation

x ∼ x′ ⇐⇒ Hx = Hx′ .

The function ϕ is constant on each equivalence class. Moreover, there is a natural identification
of each such class with a Boolean poset; this is given by the correspondence

[x] 3 x′ ←→ ε′ ∈ Col(Hx) ,

where x′ ∈ π0(Gε′). This poset is non trivial as long as Hx is not dominating.
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Figure 7. In the top part of the figure, the Boolean poset associated to colour-
ings of the length 3 path (shown on the right). Below, the subdivision into
connected components induced by the bi-colouring; here coloured edges provide
the Boolean posets associated with each connected component. Circled elements
represent (unpaired) connected dominating sets.

We can pair up the generators in each class with an acyclic matching on the Boolean poset
they span (following Remark 4.10). The matching on each equivalence class is, by definition,
acyclic. The function ϕ is constant on each of these matchings, and it increases if 〈∂x, y〉 6= 0 and
[x] 6= [y]. It follows from Lemma 4.11 that the union of these matching is an acyclic matching.

Note that the critical generators with respect to these matchings are exactly those x such
that Hx is dominating. Since Hx is connected and induced by its vertices, and Col(G; Hx) consists
of a single colour, we can identify these generators with the corresponding connected dominating
sets of G.

To conclude, the sequence of retractions induced by the acyclic matching provided above,
together with Remark 4.9, give a quasi-isomorphism between CH(G) and DH(G). �

In particular, the homology H(G) always admits a set of generators consisting of (formal sums
of) connected dominating subgraphs in G. This last result implies a few immediate corollaries.
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Corollary 4.13. The homology Hi(G) can be non-trivial only for γc(G) ≤ i ≤ |V (G)|.

Proof. By definition, there are no connected dominating sets in G with strictly less than γc(G)
vertices. �

Corollary 4.14. If G is a disconnected simple graph, then H(G) = 0.

Proof. As the graph is not connected, there are no connected dominating sets. �

We conclude this subsection by remarking that the description of H using dominating sets can
be used, in conjunction with techniques from algebraic Morse theory, to provide an alternative
proof of Proposition 4.3.

Alternative proof of Proposition 4.3. We claim that if G is not a complete graph, then H1(G) = 0.
By definition, DH1(G) is spanned by all dominating vertices of G, and DH2(G) contains all
edges in E(G) such that at least one of their endpoints is a dominating vertex. If there are
no dominating vertices, then DH1(G) = 0, and we are done. Otherwise, G must have a non-
dominating vertex v. We can consider the matching given by (w, {w, v}), for each dominating
vertex w in G. The matching so constructed is acyclic since, in the graph associated to DH(G),
(w, {w, v}) is the only edge with target {w, v}. As there are no critical generators in degree 1,
the claim follows from [Koz08, Theorem 11.24]. �

5. Applications and computations

In this final section we collect some consequences stemming from Theorem 4.12, as well as
some computations (over a field).

5.1. Applications. In this first subsection we re-obtain the full computation of the bold homol-
ogy for complete graphs, and present some vanishing results stemming from Theorem 4.12. In
particular, we can also easily deduce the next result (cf. [Cel21a, Conjecture 8.2]); remarkably,
this is also a consequence of the more general Proposition 5.2 proved below.

Theorem 5.1. Let T be a connected tree on n ≥ 3 vertices. Then H(T) = 0.

Proof. The connected dominating sets in a connected tree T are easily seen to be those ob-
tained by discarding any number of univalent vertices (possibly all, since n ≥ 3). If T has m
leaves, then DH(T) is isomorphic to the simplicial chain complex C(∆m) of the m-simplex ∆m.
Therefore, H(T) vanishes –cf. Remark 4.10. �

G′
v w.

.

.

Figure 8. A leaf in the graph G induces the splitting shown above.

More generally, we obtain a vanishing result for graphs with a leaf (that is a univalent vertex,
cf. Figure 8):

Proposition 5.2. Let G be a simple and connected graph on n ≥ 3 vertices. If G contains a leaf,
then H(G) = 0.

Proof. Since G has a leaf, it must contain a vertex v and a univalent vertex w, as in Figure 8. Note
that any connected dominating set of G must contain the vertex v. In this case, a matching can
be described explicitly: consider a connected and dominating set D of G′ := G \ {w} containing
v; this is also a dominating set of G. We can then pair D with the dominating set D ∪ {w}.

Since n ≥ 3, these are all the possible dominating sets of G. This matching is easily verified
to be acyclic, and the statement follows. �
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Graphs with leaves are not the only graphs for which the bold homology vanishes. In order
to see this, we first need to investigate the behaviour of bold homology with respect to the cone
operation. For a graph G, we consider its graph cone Cone(G). This is the graph obtained by
adding one extra vertex v̂ to the vertices of G, and one edge between v̂ and each v ∈ V (G). As
an example, consider the graph in Figure 9, or in Figure 11.

vn

v1

v2

v3

v4

v5

v6

vn−1

··
·

(a)

vn

v1

v2

v3

v4

v5

v6

vn−1

··
·

v̂

(b)

Figure 9. The cycle graph Cn and the wheel graph Wn+1 = Cone(Cn).

Proposition 5.3. If G is a simple and connected graph, then H(Cone(G)) ∼= H(G).

Proof. We define an acyclic matching M on CH(Cone(G)). Dominating sets in Cone(G) can be
divided in two classes: those which contain v̂, and those which do not (see, for an example,
Figure 10). The latter kind can be identified with the dominating sets of G (seen as a subgraph
of Cone(G)). Any set of vertices containing v̂ is connected and dominating.

The subgraphs containing v̂ form a sub-complex, which is isomorphic to the simplicial chain
complex C∗(∆

|V (G)|) of the standard |V (G)|-simplex ∆|V (G)|; we can now consider one of the
acyclic matchings whose existence is guaranteed by Remark 4.10.

The complex (CH(Cone(G)))M induced by the critical generators with respect to M (see Def-
inition 4.8 and subsequent lines) is a quotient complex of CH(Cone(G)) by the sub-complex
spanned by the matched generators. By identifying the corresponding connected dominating
sets, we can now identify the complex (CH(Cone(G)))M with CH(G), and conclude using Re-
mark 4.9. �

As a straightforward consequence of Proposition 5.3, we can easily deduce the full computation
of the bold homology of complete graphs. Note that this computation was already carried out
in [Cel21a, Section 8] using different techniques.

Corollary 5.4. Let Kn be the complete graph on n vertices; then H∗(Kn) ∼= H∗(K1). In particular,
H∗(Kn) is of rank one in degree one, and trivial otherwise.

Proof. The result follows immediately from Proposition 5.3, after noting that Kn is the result of
iterating n times the cone graph construction on K0. �

It follows from Proposition 5.3 that a necessary condition for a class of graphs to be detected
by H is to be closed under graph coning.

Remark 5.5. The converse of Proposition 5.2 is false; by Proposition 5.3, H0(G) = 0 for G the
(leafless) Gem graph shown in Figure 11 below. A further example, which is not a graph cone is
the Durer graph (also known as the generalised Petersen graph (6, 2)); we computed its homology
using the program [Cel21b], showing that it is trivial.
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Figure 10. The chain complex for the cone of C3; blue edges represent an acyclic
matching on the Boolean component of the complex. Dashed arrows indicate
the components of the differential joining a critical generator with a matched
generator.

5.2. Computations. We turn to some explicit computations of bold homology groups of certain
families of graphs, complementing those provided in [Cel21a] – see also Table 1.

We start with the computation of the bold homology groups of polygonal graphs, proving the
last point of [Cel21a, Conjecture 8.2].

Proposition 5.6. Let Cn be the cycle graph on n vertices. Then, H∗(Cn) ∼= H̃n−1−∗(S
1).

Proof. We can identify Cn with a simplicial realisation of the 1-sphere S1, by identifying each
1-simplex with the corresponding edge of Cn.
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Figure 11. The Gem graph; this is the graph cone of P3.

The only connected dominating sets of Cn are all subsets of V (Cn) with either n, n − 1 or
n − 2 elements. Thus, to each connected dominating set D ⊆ V (Cn) we can associate the
(possibly empty) simplex spanned by the vertices in V (C) \ D. This gives a bijection between

the generators in DH(Cn) and those of C̃(S1), the simplicial chain complex corresponding to the
simplicial structure defined by Cn. From this description, it is immediate to see that the induced
linear map φ inverts the homological degree and shifts it by (n − 1). Furthermore, since the
differential in DH(Cn) is induced by the inclusion, it commutes with φ (up to the choice of a
sign assignment, which does not affect the isomorphism class of the complex). Therefore, φ is an

isomorphism of chain complexes between DH∗(Cn) and C̃n−1−∗(S
1), concluding the proof. �

In the above proof, we defined an explicit isomorphism H∗(Cn) ∼= H̃n−1−∗(Cn). This isomor-
phism also gives an explicit cycle in DH(Cn) whose class generates H(Cn); this cycle is given by
the sum of all the (n− 2)-paths in Cn, and it has degree n− 2.

Proposition 5.7. The homology H(Kn,m) is of rank 1 in degree 2, and trivial otherwise.

Proof. Let V = {vi}i=1,...,n and W = {wi}i=1,...,m denote the two sets of vertices in Km,n. A
subset of V (Km,n) is connected and dominating if and only if it contains at least one element in
V and one in W . Consider a matching M on the complex DH(Kn,m), given by the pairs (D,D′)
of connected dominating sets such that:

D′ =

{
D ∪ {v1} if v1 /∈ D,
D ∪ {w1} if D ∩ V = {v1} and w1 /∈ D.

We have to show that all such pairs are disjoint. First, note that the first entry of each pair is
completely determined by the second entry; given a pair (D,D′) either D ∩ V = D′ ∩ V = {v1},
which implies D = D′ \ {w1}, or D = D′ \ {v1}. Assume that, for some pairs (D1, D

′
1) and

(D2, D
′
2), we have D1 = D′2. Then we must have v1 /∈ D1, and D2 ∩ V = D′2 ∩ V = {v1}.

This contradicts the fact that D1 is a connected dominating set, since otherwise we would have
D1 ∩ V 6= ∅. Note that by construction the only connected dominating set which is critical for
M is {v1, w1}.

In order to conclude, we are left to show that this matching M is acyclic; to this end consider
the function

ϕ(D) =

{
#D \ {w1} if D ∩ V = {v1},
#D \ {v1} otherwise.

This function is non-increasing along the edges of M , while it increases along the other compo-
nents of the differential. The statement now follows from Lemma 4.11. �

Given a pair of rooted and connected graphs G0 and G1 with at least one edge, we can construct
an infinite sequence of graph NS(G0, G1, k), indexed by k ≥ 1 as follows: NS(G0, G1, 1) is the
connected graph obtained by joining the two roots with an edge e. Then NS(G0, G1, k) is just
obtained by subdividing e k time.

Proposition 5.8. For any pair of simple and connected graphs G0, G1 and integer k ≥ 1 we
have

H∗+k(NS(G0, G1, k)) ∼= H∗(NS(G0, G1, 1)).

Proof. The dominating and connected sets in NS(G0, G1, k) are clearly in bijection with those
in NS(G0, G1, 1). The bijection is obtained by colouring in the new vertices obtained via the
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subdivisions. Since the homological degree in DH is the number of 1-coloured vertices, it follows
that this bijection (which clearly commutes with the differential) shifts the degree by exactly k.

�

This last result provides us with infinite families of graphs where the bold homology stabilises,
up to a degree shift. On a practical level this can be used to reduce the computations of graphs
with a long isthmus.
We conclude this section with some computations, collected in Table 1 below of computations.
We remark that in general: the rank of H can be grater than 1; it can be supported in more
than one homological degree, and it is not completely determined by its Euler characteristic.
An example showing that all these facts hold is given by K3 × C4.

Graph H χH

Kn F(1) −1
Km,n, m,n ≥ 2 F(2) 1
Cn F(n−2) (−1)n

Wn F(n−3) (−1)n+1

Ln, n > 2 (0) 0
Trees 6= L2, L1 (0) 0
Cube(2) = C4 F(2) 1
Cube(3) = C4 × L2 F3

(4) 3

Cube(4) F21
(8) 21

Cube(5) unknown ±455
Petersen graph F(4) 1
K3 × L2 F(2) 1
K4 × L2 F(2) 1
K3 × C4 F(5) ⊕ F2

(6) 1

K4 × C4 F(5) ⊕ F2
(7) −3

K5 × C4 unknown −1
K6 × C4 unknown −3
K3 × K3 F5

(4) 5

C3 × L2 F(2) 1
C5 × L2 F(4) 1
C6 × L2 F(6) 1
C7 × L2 F(8) 1

Table 1. Computations of H and/or χH for some specific graphs. All compu-
tations are made with coefficients in F, and we denoted by Fk(i) a summand of

rank k in homological degree i.

5.3. Open questions. We list here a few open questions.

Question 5.9. Let G, H be graphs with non-trivial bold homology. Is the homology H(G× H) of
the product non-trivial? Is there a Künneth-like theorem for bold homology (and more generally
for the überhomology) with respect to some graph operation?

Question 5.10. The Euler characteristic of H is the coefficient of 1 in the (bi)graded Euler
characteristic of the überhomology; that is

χ̈G(q, t) =
∑

i,j,k∈N
(−1)jrank(Ḧj

i,k(G))qitk ∈ Z[q, t] .

Can we recover other known graph invariants from χ̈? More generally, is the überhomology a
categorification of some known graph polynomial?

Question 5.11. Can we find a graph G such that χ(H(G)) = 0 and H(G) 6= 0?
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