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Abstract
Addressing needs of contemporary nonlinear femtosecond optical spectroscopy, we have developed

a fully quantum numerically-accurate wave-function-based approach for the calculation of third-

order spectroscopic signals of polyatomic molecules and molecular aggregates at finite temperature.

The approach is based on the Thermo Field Dynamics (TFD) representation of quantum mechanics

and tensor-train (TT) machinery for efficient numerical simulation of quantum evolution of systems

with many degrees of freedom. The developed TFD-TT approach is applied to the calculation of

time- and frequency-resolved fluorescence spectra of the Fenna–Matthews–Olson (FMO) antenna

complex at room temperature taking into account finite time-frequency resolution in fluorescence

detection, orientational averaging, and static disorder.

Keywords: Thermo Field Dynamics; tensor trains, matrix product states, femtosecond spectroscopy, non-

linear response functions.
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I. INTRODUCTIONS

Nonlinear femtosecond electronic spectroscopy is the main diagnostic tool for the detailed

characterization of photophysical and photochemical processes in polyatomic chromophores

and molecular aggregates in real time [1–7]. However, measured spectroscopic responses

contain information on the system dynamics only implicitly, through the dependence of

signals on carrier frequencies, delay times, phases, and temporal envelopes of the laser pulses.

For example, time- and frequency-resolved fluorescence signal considered in the present work

is triggered by a femtosecond pump pulse and is detected by mixing of spontaneous emission

of excited electronic state(s) with a femtosecond up-conversion pulse [8, 9]. The signal

depends on the time delay between the pump and up-conversion pulses, on carrier frequency

and duration of the pump pulse, and on time- and frequency-resolution of the up-conversion

setup. Since most of polyatomic molecules and notably molecular aggregates are complex

multi-mode systems, theoretical support is indispensable for the extraction of the intrinsic

system evolution from detected spectroscopic observables.

Until recently, theoretical simulations of nonlinear spectroscopic signals were based on

phenomenological models with several relevant electronic states, a few optically-active vibra-

tional modes, and oversimplified description of vibrational relaxation and optical dephasing.

Computer simulations have revolutionized theoretical spectroscopy: It became possible to

develop more complex and therefore more realistic models in which relevant potential energy

surfaces and transition dipole moments were retrieved from electronic-structure calculations.

Linear-vibronic-coupling (LVC) based approach, in which potential energy surfaces and tran-

sition dipole moments are represented by polynomials of nuclear coordinates, is one of the

most popular and reliable methods for the construction of ab initio-based Hamiltonians of

polyatomic chromophores [4, 10] and molecular aggregates [5, 6]. The LVC can also be

efficiently interfaced with classical trajectory simulations [11]. Usually, LVC Hamiltonians

contain high-frequency Franck-Condon-active vibrational modes (which are strongly cou-

pled to electronic states and are responsible for vibronic structure of spectroscopic signals)

as well as relevant low-frequency vibrational modes (which are weakly coupled to electronic

states and are primarily responsible for vibrational relaxation and electronic dephasing).

Since typical energies of low-frequency modes are comparable or less than thermal energy

at ambient conditions, it is necessary to have a computationally efficient methodology for

2



the simulation of nonlinear femtosecond signals at finite temperature.

Wave-function-based-methods, notably the (multilayer) multi-configuration time-

dependent Hartree (MCTDH) method [12] and the variational multi-configurational Gaus-

sian (vMCG) method [13], are known to be highly efficient in numerically accurate simulation

of multi-mode fully quantum dynamics driven by LVC Hamiltonians at zero temperature.

In the late 1990s, this was impressively demonstrated on a 24-vibrational-mode model of

pyrazine [14, 15]. Yet generalization of these methods to finite temperatures is computa-

tionally demanding and requires multidimensional statistical sampling of initial conditions

[16–21]. Hence applications of the MCTDH method to the simulation of spectroscopic sig-

nals at finite temperatures are quite limited [17, 22–24]. The multiple variational Davydov

Ansatz method, which was used to simulate nonlinear spectroscopic signals at zero temper-

ature [25–30], was recently extended to finite temperatures [31] by employing the sampling

technique of Refs. [32, 33]. However, the method of Ref. [31] is computationally efficient for

LVC models with only a few low-frequency modes. There exist also approximate (though

quite accurate for certain classes of multi-mode systems) finite-temperature methods of the

simulation of spectroscopic signals of multi-mode systems by employing the thawed Gaussian

Ansatz method [34–36] and quasiclassical mapping approaches [37–40].

Recently, we have developed a computationally efficient, fully quantum and numerically

accurate wave-function-based method for the simulation of quantum dynamics of systems

with many degrees of freedom at finite temperature [41–44]. The method is based on the

ideas of Thermo Field Dynamics (TFD) [45–49] (which enables a finite temperature wave-

function representation of quantum mechanics) and the tensor-train (TT) methodology [50–

52]. In physics literature, it is common to use the name matrix product states (MPS)

instead of TTs, and the methodology very similar to TFD-TT is called finite-temperature

time-dependent density matrix renormalization group (TD-DMRG) [53]. Over the recent

years, the TFD-TT machinery has been applied to the calculation of steady-state properties

and signals of molecular systems at finite temperature [54–62]. In this work, the TFD-TT

approach is extended towards the simulation of nonlinear response functions and electronic

femtosecond spectroscopic signals.

To illustrate performance of the TFD-TT methodology, we simulate time- and frequency-

resolved fluorescence of the Fenna–Matthews–Olson (FMO) complex. This antenna complex

was extensively studied by femtosecond transient-absorption pump-probe spectroscopy [63,

3



64] and electronic two-dimensional spectroscopy [65–68] (see also recent reviews [69–71]).

However, to our knowledge, no time- and frequency-resolved fluorescence signal of FMO was

detected and no theoretical simulations of this signal were attempted – despite time- and

frequency-resolved fluorescence reveals wavepacket dynamics exclusively in excited electronic

states, without admixture of ground-state bleach and excited-state absorption.

Our paper is structured as follows. Sec. II contains a brief introduction to the TFD

methodology for time-dependent LVC Hamiltonians. The explicit expressions for the TFD

third-order nonlinear response functions are derived in Sec. III. Application of the TT

methodology for the evaluation of nonlinear response functions is discussed in Sec. IV.

Simulated time- and frequency-resolved signals for the FMO antenna complex are presented

and discussed in Sec. V. Sec. VI contains the conclusions and the discussion of the future

developments.

II. TFD METHODOLOGY

A. Starting equations

The third-order polarization P(t) in the appropriate phase-matching direction is the key

quantity specifying nonlinear femtosecond signals [1–7]. It describes the third-order response

of the molecular system to the electric field of relevant laser pulses. Once P(t) is known,

any spectroscopic signal can be calculated. To evaluate P(t), we need calculate the response

of the system (described by the Hamiltonian H) to electric fields of the relevant laser pulses

(described by the interaction Hamiltonian HF (t)). If the system is specified by the density

matrix ρ(t), the response can be obtained from the solution of the driven Liouville – von

Neumann equation (! = 1)

∂tρ(t) = −i[H +HF (t), ρ(t)]. (1)

As has been explained in the Introduction, we assume that the system is characterized by a

standard LVC excitonic Hamiltonian

H =
!

n

εnc
†
ncn −

!

n ∕=m

Jnmc
†
ncm +

!

k

ωka
†
kak −

!

kn

gkn√
2
c†ncn(a

†
k + ak). (2)

Here c†n (cn) create (annihilate) electronic excitation in the state n and obey the Pauli

commutation rules [ck, c†k′ ] = δkk′(1−2c†kck′), εn are site energies, Jnm are electronic couplings,

4



a†n (a) are the creation and annihilation operators of the kth harmonic mode with frequencies

ωk, and the parameters gnk determine the strength of the electron-vibrational coupling. In

the remainder of the present work we adopt excitonic notation and refer to the Hamiltonian

of Eq. (2) as excitonic Hamiltonian [5, 6]. However the developed formalism is equally

applicable to polyatomic chromophores [4, 10] and molecular aggregates [5, 6] described by

LVC Hamiltonians.

The system-field interaction Hamiltonian is given by the expression [1–7]

HF (t) = E(t)µ̂+ + E∗(t)µ̂− (3)

where E(t) is the total electric field of the relevant laser pulses,

µ̂+ =
!

n

c†n(sµn), µ̂− =
!

n

cn(sµn) (4)

are the raising and lowering components of the transition dipole moment operator

µ̂ = µ̂+ + µ̂−, (5)

µn are the transition dipole moment vectors, and s is the polarization of the laser pulses. Eq.

(3) is written the rotating wave approximation. This approximation is thoroughly satisfied

in femtosecond weak-field electronic nonlinear spectroscopy, since electronically-resonant

transitions are relevant only [1].

We assume that the entire system is prepared at a certain time moment tin before arrival

of the laser pulses at thermal vibrational equilibrium in the electronic (excitonic) ground

state |g〉. Hence the initial condition for the Liouville – von Neumann equation (1) reads

ρ(tin) = |g〉〈g|ρv, (6)

where

ρv = Z−1
v exp{−β

!

k

ωka
†
kak}, (7)

Zv is the partition function, β = (kBT )
−1, kB is the Boltzmann constant, and T is the

temperature. With the above definitions, the total nonlinear polarization can be evaluated

as

P(t) = Tr{µ̂ρ(t)}. (8)

5



B. TFD Schrodinger equation

The Liouville – von Neumann equation (1) is a standard departing point for the formal

calculation of various spectroscopic signals [1–7]. Here, following the general scheme of Ref.

[72], we demonstrate how Eq. (1) can be equivalently recast in the TFD representation.

Let us introduce the eigenvectors of the vibrational Hamiltonian,

!

l

ωla
†
lal|k〉 = Ek|k〉.

Obviously,

|k〉 =
"

l

|kl〉, Ek =
!

l

klωl (9)

where |kl〉 are the eigenvectors of the lth harmonic mode. We also define vectors |k̃〉 which

are a copy of the original vectors |k〉 but act in a different Hilbert space, the so-called tilde

space. Adopting the notation

|kk̃〉 = |k〉|k̃〉,

we introduce the unity vector in the |k〉 ⊗ |k̃〉 vector space,

|Iv〉 =
!

k

|kk̃〉, (10)

and the the so-called thermal vacuum state,

|0v(β)〉 =
√
ρv|Iv〉 = Z

− 1
2

v e−
1
2

!
l ωla

†
l al |Iv〉. (11)

With the above definitions, the thermal Boltzmann distribution of Eq. (7) can be rewritten

in the form

ρv = Trk̃{|0v(β)〉〈0v(β)|} (12)

where Trk̃{...} indicates the trace over the tilde subspace. The equivalence of Eqs. (7) and

(12) follows immediately from the orthogonality of the harmonic oscillator eigenvectors.

Let us now consider the Liouville – von Neumann equation identical to that of Eq. (1),

∂tσ(t) = −i[H +HF (t), σ(t)], (13)

but with the initial condition

σ(tin) = |g〉〈g||0v(β)〉〈0v(β)|. (14)
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Then Eq. (12) guarantees that

ρ(t) = Trk̃{σ(t)}. (15)

Furthermore, the Liouville - von Neumann equation

∂tσ(t) = −i[H +HF (t)− h̃v, σ(t)] (16)

(h̃v being any operator acting in the tilde subspace only) with the initial condition (14)

fulfills Eq. (15).

Since the initial condition (14) corresponds to a pure state, the solution of Eq. (16) has

the

σ(t) = |ψ(t)〉〈ψ(t)| (17)

where the wave function |ψ(t)〉 obeys the TFD Schrodinger equation

∂t|ψ(t)〉 = −iH(t)|ψ(t)〉 (18)

with the initial condition

|ψ(tin)〉 = |g〉|0v(β)〉. (19)

For brevity, we have defined

H(t) = H +HF (t)− h̃v. (20)

We have thus demonstrated that the solution of the original Liouville - von Neumann equa-

tion (1) with the initial condition (6) is equivalent to the solution of the TFD Schrodinger

equation (18) with the initial condition (19).

The key advantage of the TFD representation is a compact analytical representation of

the thermal vacuum state given by thermal Bogoliubov transformation

e−iG|0v0̃v〉 = |0v(β)〉 (21)

where |0v0̃v〉 is the ground state in the |k〉 ⊗ |k̃〉 subspace. Applying thermal Bogoliubov

transformation to Eq. (18), we obtain

i∂t
##ψθ(t)

$
= Hθ(t)

##ψθ(t)
$

(22)

where

Hθ(t) = eiGH(t)e−iG, (23)
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##ψθ(t)
$
= eiG

##ψ(t)
$

(24)

and
##ψθ(tin)

$
= |g〉|0v0̃v〉 (25)

is the global vacuum state. The nonlinear polarization of Eq. (8) can now be evaluated as

P(t) =
%
ψθ(t)

##µ̂θ

##ψθ(t)
$

with µ̂θ = eiGµ̂e−iG. (26)

For thermal vacuum state |0v(β)〉 of Eq. (11), the operator of thermal Bogoliubov transfor-

mation reads [45–49]

G = −i
!

j

θj(aj ãj − a†j ã
†
j) (27)

where

θj = arctanh(e−βωj/2). (28)

For obtaining the explicit form of the transformed Hamiltonian H̄θ(t), we assume that elec-

tronic energies εn, electronic inter-state couplings Jnm, electron-vibrational intrastate cou-

plings gnk, and transition dipole moment vectors µn are independent of vibrational coordi-

nates. These approximations are commonly employed in molecular spectroscopy [1–7] and

will be adopted in the present work. With these approximations, µ̂θ = µ̂. Then, by choosing

h̃v(t) =
!

k

ωkã
†
kãk

we obtain the driven TFD Schrodinger equation

i∂t
##ψθ(t)

$
= (Hθ +HF (t))

##ψθ(t)
$

(29)

where [42]

Hθ = eiGHe−iG = (30)

!

n

εnc
†
ncn +

!

n ∕=m

Jnmc
†
ncm +

!

k

ωk

&
a†kak − ã†kãk

'

−
!

kn

gkn√
2

(&
ak + a†k

'
cosh(θk) +

&
ãk + ã†k

'
sinh(θk)

)
c†ncn.
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HF (t) depends on electronic degrees of freedom only and is unaffected by the TFD and

Bogoliubov transformations. Eq. (29) solved with the initial condition (25) yields the

nonlinear polarization

P(t) =
%
ψθ(t)

##µ̂
##ψθ(t)

$
. (31)

The TFD Schrodinger equation (29) is governed by the TFD-LVC Hamiltonian Hθ of Eq.

(30) and the system-field Hamiltonian HF (t) of Eq. (3). It is fully equivalent to the original

Liouville – von Neumann equation (1). Hence the nonlinear polarizations of Eqs. (8) and

(31) are identical. The number of vibrational modes in Hθ is double of that in the original

Hamiltonian H of Eq. (2), and electron-vibrational couplings in Hθ are renormalized by

temperature-dependent factors: cosh(θk) for physical coordinates xk =
&
ak + a†k

'
/
√
2 and

sinh(θk) for tilde coordinates xk =
&
ãk + ã†k

'
/
√
2. If T → 0 then θj → 0, the coupling to

the tilde space disappears, and the standard Schrodinger equation is recovered as expected.

Nonzero temperature causes dynamical mixing of the physical (ak, a†k) and tilde (ãk, ã†k)

spaces. In actual simulations, we can drop those high-frequency tilde vibrational modes

k for which the factors sinh(θk) are smaller than a certain threshold. Such a flexibility of

the TFD representation, which is absent in the traditional density matrix representation,

decreases effective dimensionality of the problem and reduces computational burden.

It is important that only vibrational degrees of freedom are doubled in the TFD

Schrodinger equation (29), while the number of the excitonic degrees of freedom remains

unchanged. In a basis-set representation, the density matrix ρ(t) in the Liouville – von

Neumann equation (1) is an array of the dimension (Nex × Nv)
2, where Nex (Nv) is the

number of the basis functions specifying the excitonic and vibrational degrees of freedom.

The wave function of the TFD Schrodinger equation,
##ψθ(t)

$
, is an array of the dimension

Nex × N2
v . This yields a considerable reduction of dimension, notably for systems with

multiple electronic states. For FMO, for example, Nex = 7 and computational savings are

substantial.

In the derivation of Eqs. (29) and (30), we assumed that the site energies εn, electronic

couplings Jnm and electron-vibrational couplings gnk in the original LVC Hamiltonian H

of Eq. (2) as well as transition dipole moment vectors µn in the system-field interaction

Hamiltonian HF (t) of Eq. (3) were all constant. In many applications, however, these

parameters are polynomial in vibrational creation-annihilation operators. For example, a
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conical intersection between the states n and m driven by the vibrational coupling mode

j corresponds to Jnm ∼ aj + a†j and transition dipole moments may depend on vibrational

coordinates, µn = µ
(0)
n +

*
j(aj + a†j)µ

(1)
nj (non-Condon effects) [4]. In all these cases, the

TFD Schrodinger equation with the TFD-LVC Hamiltonian can readily be constructed by

using the fundamental relations [73]

eiGaje
−iG = aj cosh(θj) + ã†j sinh(θj), (32)

eiGãje
−iG = ãj cosh(θj) + a†j sinh(θj). (33)

III. THIRD-ORDER RESPONSE FUNCTIONS

From the formal point of view, the TFD Schrodinger equation (29) can be treated as the

usual Schrodinger equation. Hence, all formal derivations, in particular perturbation theory

in system-field interactions and the corresponding response functions will retain their form.

The fundamental quantity describing the third-order response of the system on the external

fields is the four-time correlation function of the transition dipole moment operators [1]. In

our case, it explicitly reads

Φ(τ4, τ3, τ2, τ1) = 〈µ̂(τ4)µ̂(τ3)µ̂(τ2)µ̂(τ1)〉 (34)

where the Heisenberg operators

µ̂(τ) = eiHθτ µ̂e−iHθτ (35)

are governed by the TFD Hamiltonian H̄θ. The angular brackets in Eq. (34) mean

〈...〉 ≡ 〈g|〈0v0̃v|...|0v0̃v〉|g〉. (36)

Following Refs. [26, 74, 75], the fundamental correlation function Φ can be expressed

as a sum of two contributions Φs and Φd, which correspond to the two situations in which,

during the evolution from τ2 to τ3, the system is electronically in the ground state and in

the double-exciton excited states, respectively (in both cases from τ1 to τ2 and from τ3 to τ4

the system is in single-exciton state):

Φ(τ4, τ3, τ2, τ1) = Φs(τ4, τ3, τ2, τ1) + Φd(τ4, τ3, τ2, τ1). (37)
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Explicitly,

Φs(τ4, τ3, τ2, τ1) = 〈µ̂−(τ4)µ̂+(τ3)µ̂−(τ2)µ̂+(τ1)〉 (38)

and

Φd(τ4, τ3, τ2, τ1) = 〈µ̂−(τ4)µ̂−(τ3)µ̂+(τ2)µ̂+(τ1)〉 . (39)

Φs describes the ground-state bleach (GSB) and stimulated-emission (SE) contributions to

third-order spectroscopic signals, Φd is responsible for excited-state absorption (ESA) and

double-coherence signals.

The four-time correlation functions Φα (α = s, d) generate 4 third-order response func-

tions [26, 74, 75]:

Rα
1 (t3, t2, t1) = Φα(t1, t1 + t2, t1 + t2 + t3, 0), (40)

Rα
2 (t3, t2, t1) = Φα(0, t1 + t2, t1 + t2 + t3, t1), (41)

Rα
3 (t3, t2, t1) = Φα(0, t1, t1 + t2 + t3, t1 + t2), (42)

Rα
4 (t3, t2, t1) = Φα(t1 + t2 + t3, t1 + t2, t1, 0). (43)

With these definitions, nonlinear optically-induced third-order polarization can be evaluated

as

P(t) =

+ ∞

0

dt1

+ ∞

0

dt2

+ ∞

0

dt3 S(t1, t2, t3)E(t− t3)E(t− t3 − t2)E(t− t3 − t2 − t1) (44)

where

S(t1, t2, t3) = −i

4!

k=1

!

α=s,d

{Rα
k (t3, t2, t1)− [Rα

k (t3, t2, t1)]
∗}. (45)

In terms of the TFD Hamiltonian Hθ of Eq. (30), the four-time response functions (38)

and (39) read:

Φs(τ4, τ3, τ2, τ1) = 〈g|〈0v0̃v|µ̂−e
−iHθ(τ4−τ3)µ̂+e

−iHv
θ (τ3−τ2)µ̂−e

−iHθ(τ2−τ1)µ̂+|0v0̃v〉|g〉, (46)

Φd(τ4, τ3, τ2, τ1) = 〈g|〈0v0̃v|µ̂−e
−iHθ(τ4−τ3)µ̂−e

−iHθ(τ3−τ2)µ̂+e
−iHθ(τ2−τ1)µ̂+|0v0̃v〉|g〉. (47)

In writing the above expressions, we employ the conservation of the number of excitons,

deriving from the commutation property

[Hθ, N̂ ] = 0, N̂ ≡
!

k=1

c†kck, (48)
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and set the zero-point energy of the vibrational ground state, E0, to zero

Hθ|0v0̃v〉|g〉 = E0|0v0̃v〉|g〉 = 0. (49)

If necessary, E0 can be readily reintroduced in the final formulas. In addition, exp{−iHθ(τ3−

τ2)} in Eq. (46) is replaced by exp{−iHv
θ (τ3 − τ2)} where

Hv
θ =

!

k

ωk

&
a†kak − ã†kãk

'
, (50)

because during the time interval τ3 − τ2 the system evolves in its ground excitonic state.

To make Eq. (46) more explicit, and easier to implement in our TFD-TT approach we

proceed as follows. First, we define single-exciton states

|en〉 = c†n|g〉. (51)

Then the TFD Hamiltonian in the singly-excited state manifolds reads

H
(s)
θ =

!

n

εn|en〉〈en|+
!

n ∕=m

Jnm|en〉〈em|+
!

k

ωk

&
a†kak − ã†kãk

'

−
!

kn

gkn√
2

(&
ak + a†k

'
cosh(θk) +

&
ãk + ã†k

'
sinh(θk)

)
|en〉〈en|

and the transition dipole moment operators assume the form

µ̂− = |g〉〈e|, µ̂+ = |e〉〈g| (52)

where

|e〉 =
!

n

(sµn)|en〉. (53)

It is also convenient to define the TFD wavefunction

|ψ(τ)〉 = e−iHθτ µ̂+|0v0̃v〉|g〉 = e−iH
(s)
θ τ |0v0̃v〉|e〉, (54)

the vibrational propagator

U(τ) = e−iHv
θ τ (55)

and the excitonic operator

B = µ̂+µ̂− = |e〉〈e|. (56)
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With this notation,

Φs(τ4, τ3, τ2, τ1) = 〈ψ(τ3 − τ4)|BU(τ3 − τ2)|ψ(τ2 − τ1)〉. (57)

This is one of the key theoretical results of the present work.

Plugging the definitions (40)-(43) into Eq. (A7) one obtains explicit expressions for the

single-exciton response functions:

Rs
1(t3, t2, t1) = 〈ψ(t2)|BU †(t3)|ψ(t1 + t2 + t3)〉, (58)

Rs
2(t3, t2, t1) = 〈ψ(t1 + t2)|BU †(t3)|ψ(t2 + t3)〉,

Rs
3(t3, t2, t1) = 〈ψ(t1)|BU †(t2 + t3)|ψ(t3)〉,

Rs
4(t3, t2, t1) = 〈ψ(t3)|∗BU(t2)|ψ(t1)〉

(∗ denotes complex conjugation). In the above formulas, R1 and R2 describe evolution of the

system in the single-exciton manifold during t2 and are responsible for the SE contribution.

R3 and R4 describe evolution of the system in the ground excitonic state during t2 and are

responsible for the GSB contribution.

We note that the evaluation of these response functions requires computation of just a

single TFD-TT wavefunction |ψ(τ)〉. Evaluation of Φd is much more involved and considered

in Appendix B.

Due to isotropy of space, the system as a whole does not have a preferential orientation.

Hence Φα and Rα
k should be averaged over orientations of transition dipole moment vectors

µn. The details of this procedure and the explicit expressions for Φ̄α and R̄α
k (the averaging

is denoted by overbar) are given in Appendix C. With the efficient averaging procedure

developed in [76], Φ̄α and R̄α
k can be computed by the evaluation of just three TFD-TT

wavefunctions |ψa(τ)〉 defined per Eq. (C7), a = x, y, z.
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IV. EVALUATION OF RESPONSE FUNCTIONS IN THE TT REPRESENTA-

TION

As already noted, the basic ingredient for evaluation of the single-exciton response func-

tion Φs is a single real time propagation of the initial vacuum state. To show how the

procedure works in the TT representation, we consider the response function Rs
1(t3, t2, t1) of

Eq. (A8) and rewrite it in the form

Rs
1(t3, t2, t1) = 〈ψ(t2)|BU †(t3)|ψ(t1 + t2 + t3)〉 (59)

where the wavefunction |ψ(t2)〉 is determined by Eq. (A4), the operator B defined by Eq.

(A6) operates exclusively in the excitonic subspace, and U(t) defined by Eq. (A5) is the

vibrational propagator in the electronic ground state (see the Appendix A for the explicit

formulae and other details). Since Hv
θ of Eq. (50) is separable into 2Nv non-interacting

terms this latter operator is nothing but the direct product of 2Nv diagonal exponential

operators

U(t) =
2Nv"

k=1

Uk(t) =
2Nv"

k=1

e−iωknkt (60)

where nk is the occupation number operator of the k-th vibrational mode in the physical or

tilde space.

In our approach the TFD Schrödinger equation is solved using the TT representation, in

combination with a time-dependent variational integration scheme [41–44]. A variety of ap-

plications have shown that this method is very robust and well suited for many-dimensional

electron-vibrational problems [41–44, 50–52]. The TT representation of |ψ(t)〉 is written as

|ψ(t)〉 =
!

i1,i2,...iN

A1(i1; t)A2(i2; t)...AN(iN ; t)|i1, i2...iN〉 (61)

where |i1, i2...iN〉 labels the basis state, N = 2Nv +1, and the Ak(ik; t), k = 1, ...N are time-

dependent complex rectangular matrices of sizes rk−1 × rk called core of the tensor. The

indices rk are the ranks of the TT and, since each term in the product is a complex scalar,

the boundary condition r0 = rN = 1 must be fulfilled. In our specific case the index i1 labels

the excitonic states and the remaining 2Nv indices label the physical and tilde vibrational

degrees of freedom.

We now notice that the operators B and Uk of Eq. (59) act on different variables, and

hence on different indices of the state vector |ψ(t2)〉. Using well known properties of TTs
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[50–52] we can easily compute the cores Ck(ik; t) of the TT representation of the vector

|φ(t2, t3)〉 = BU(t3)|ψ(t2)〉 as

C1(i1; t2) =
!

j1,...,jN

B(i1, j1)A1(j1; t2) (62)

Ck(ik; t2, t3) =
!

j1,...,jN

Uk(ik, jk; t3)Ak(jk; t2) k = 2, ..., 2Nv + 1 (63)

where B(i1, j1) and Uk(ik, jk; t) are the matrix representations of the operators B and Uk.

Rs
1(t3, t2, t1) is given then by the scalar product 〈φ(t2, t3)|ψ(t1 + t2 + t3)〉 which can be

computed with efficient TT algorithms [50].

V. TIME- AND FREQUENCY-RESOLVED EMISSION OF FMO

For the explicit evaluation of Rs
k, we adopt the FMO model which is equivalent to Model

II of Ref. [77]. It describes 7 identical bacteriochlorophyll molecules (BChls), each of which is

modeled as an electronic two-state system possessing two vibrational modes with frequencies

ω1 = 200 cm−1 (2π/ω1 = 167 fs) and ω2 = 160 cm−1 (2π/ω2 = 208 fs). These modes have

been recently detected experimentally [64, 68] and are very close to those appearing from

single molecule spectroscopic data [? ]. Since β−1 = 0.026 eV =210 cm−1 at T = 300 K,

temperature effects are important for both modes. The electron-vibrational couplings are

κ1 = 0.289 and κ2 = 0.175. The values of εk and Jkk′ are taken from Ref. [42, 78]. The

transition dipole moment vectors of the BChls were assumed to be along the two nitrogen

atoms NB −ND [79], and positions of these atoms were we retrieved from the protein data

bank [80, 81]. The response functions Rs
k(t3, t2, t1) were computed on the three-dimensional

grid: 75 points along t3 with time step 10 fs, 150 points along t2 with time step 5 fs, 20

points along t1 with time step 1 fs. Orientational averaging was performed as explained in

Appendix C. Static disorder in εk is assumed to be Gaussian with variance σ = 100 cm−1.

The response functions R̄s
k(t3, t2, t1) were evaluated upon averaging over N = 100 random

realizations of static disorder, which was enough for obtaining converged results (see below).

Omitting a frequency-depending prefactor which is irrelevant for the present discussion,

we can express the time- and frequency-resolved fluorescence signals in terms of response

functions as follows [82, 83]:

I(t,ω) ∼ Re

+ ∞

−∞
dt′

+ ∞

0

dt3

+ ∞

0

dt2

+ ∞

0

dt1 × (64)
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Eg(t′ − t)Eg(t′ − t3 − t)Ep(t− t3 − t2)Ep(t− t3 − t2 − t1)×

e−(γ−iω)t3
,
Rs

1(t3, t2, t1)e
iωpt1 +Rs

2(t3, t2, t1)e
−iωpt1

-
.

Here t is the time delay between the pump pulse and the up-conversion (gate) pulse, ω is the

detected fluorescence frequency, ωp and Ep(t) are the carrier frequency and the dimensionless

envelope of the pump pulse, Eg(t) is the dimensionless envelope determining the temporal

resolution of the gate, and the parameter 0 ≤ γ < ∞ controls the spectral resolution of

the gate: γ = 0 corresponds to perfect spectral resolution, while γ → ∞ yields poor time

resolution [84].

Physically, the time- and frequency-resolved fluorescence spectrum is defined as the rate

of emission of photons of frequency ω at time t. Qualitatively, I(t,ω) can be interpreted as

the projection of the wave packet in the excited excitonic state(s) onto the vibrational states

of the excitonic ground state. If the pump pulse can be assumed instantaneous, while the

gate pulse is short on the system dynamics timescale, but long on the electronic dephasing

timescale and γ = 0 (perfect time and frequency resolution), then we obtain the so-called

ideal fluorescence signal

Iid(t,ω) ∼ Re

+ ∞

0

dt3e
iωt3Rs

1(t3, t, 0). (65)

Iid(t,ω) cannot be detected in a fluorecence up-conversion experiment, because the frequency

and time resolution of the signal are determined by the duration of the gate pulse and are

Fourier-limited [85, 86]. Nowadays ∼ 10 fs pump pulses are common in spectroscopic labs,

while ∼ 50 fs resolution is currently achievable in fluorescence up-conversion [9, 87]. In our

simulations, the pump pulse was modeled by a Gaussian, Ep(t) = exp{−(t/τp)
2}, and τp = 15

was fixed. For the present FMO model, excitation with this pulse is indistinguishable from

impulsive (instantaneous) excitation. The gate pulse was also assumed to be Gaussian,

Eg(t) = exp{−(t/τg)
2}, but its duration τg was varied to explore how a finite gate time

affects I(t,ω). Spectral resolution was assumed perfect (γ = 0). To give shape to spectral

features of ideal signals, Iid(t,ω) were calculated with electronic dephasing time τd = 200

fs (Rs
k(t3, t2, t1) → Rs

k(t3, t2, t1) exp{−(t3 + t1)/τd}). All real signals I(t,ω) were calculated

without phenomenological dephasing parameters (τ−1
d = 0): As follows from Eq. (64) and
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Figure 1: Time- and frequency-resolved fluorescence spectra I(t,ω) of FMO without static disorder:

(a) ideal, (b) τg = 20 fs, (c) τg = 50 fs, (d) τg = 100 fs. For better visualization, top view of I(t,ω)

is presented in panels (b)-(d).

is confirmed by explicit calculations, spectral resolution of I(t,ω) is controlled by the gate

pulse duration for τd > τg. In all time- and frequency-resolved spectra considered below, the

origin of the frequency axis is set at the excitonic energy of BChl #3.

Fig. 1 shows time- and frequency-resolved fluorescence spectra of FMO calculated without

averaging over static disorder. Ideal signal Iid(t,ω) is depicted in panel (a). As typical for

ideal fluorescence spectra [85, 86], it combines time resolution (oscillatory transients in the

time domain) and frequency resolution (peaks in the frequency domain). We note that

the spectral features do not reveal purely excitonic nor vibrational frequencies. The peaks

are of vibronic character caused by strong exciton-vibrational coupling: despite relatively

17



small coupling constants κa and, correspondingly, small Huang-Rhys factors κ2
a/2, ωa match

quite well excitonic energy difference (a = 1, 2) (see the discussion in Refs. [88–93]). The

spectrum Iid(t,ω) shows pronounced oscillations along t at a given ω, which are of vibronic

origin (vide infra).

Panels (b)-(d) of Fig. 1 show time- and frequency-resolved fluorescence spectra I(t,ω)

calculated with decreasing time resolution, from good (τg = 20 fs, panel (b)) through in-

termediate (τg = 50 fs, panel (c)) to poor (τg = 100 fs, panel (d)). Clearly, the spectral

resolution of I(t,ω) increases and the spectral width shrinks with τg. In addition, the spectral

width of I(t,ω) shrinks with t for fixed τg due to dephasing of vibronic modes contributing

to the wavepacket motion. The signals in panels (b) and (c) exhibit pronounced wavepacket

dynamics. The wavepacket motion is almost symmetric relative to the line ω = 0.025 eV,

which is caused my small Huang-Rhys factors of BChls and therefore small κa of the present

FMO model. I(t,ω) in panels (b) and (c) exhibit pronounced revivals of vibronic origin

(notably the one around t = 230 fs) which are readily detectable when the gate pulse is

short enough (cf. Refs. [88–91]). For τg = 100 fs (panel (d)), duration of the gate pulse is

comparable with the characteristic times vibronic oscillations. Hence the latter are smeared

out, and the time resolution of I(t,ω) is almost lost in 1(d).

To obtain a more detailed view of the wavepacket dynamics, Fig. 2 shows the time evolu-

tion of cuts of I(t,ω) at specific ω covering the most significant spectral width, from −0.0075

to 0.0425 eV. The cuts in all panels exhibit pronounced but quite irregular oscillations of

vibronic origin, the detection of which depends crucially on temporal resolution of gating.

The cuts of Iid(t,ω) in panel (a) are all quite erratic. The cuts of I(t,ω) in panel (b), which

corresponds to a good time resolution, are all similar and exhibit pronounced oscillations of

vibronic origin. However, these oscillations cannot be pinned down to several fundamental

harmonic frequencies. For τg = 50 fs (panel (b)), short-period wiggles are smoothed out,

while the remaining larger amplitude and longer-period structures remain. If temporal res-

olution further decreases (τg = 100 fs, panel (d)) the time resolution is almost lost and the

oscillatory features merge into rather irregular but still non-monotonic evolutions.

We now examine the effect of static disorder on I(t,ω). Fig. 3 shows a cut of the

fluorescence spectrum I(t,ω) at ω = 0.03 eV for good time resolution (τg = 20 fs) evaluated

for increasing number N of random realizations of static disorder. It is evident that static

disorder has a significant impact on I(t,ω) (the details of behavior of the signals are discussed
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Figure 2: Cuts of time- and frequency-resolved fluorescence spectra I(t,ω) of FMO at ω = −0.0075

eV (red), ω = 0.005 eV (green), ω = 0.0175 eV (blue), ω = 0.03 eV (magenta) and ω = 0.0425 eV

(black) calculated without static disorder: (a) ideal, (b) τg = 20 fs, (c) τg = 50 fs, (d) τg = 100 fs.

The cuts are normalized to 1 at t = 0.

below), and that the signal evaluated with N = 100 can be considered converged.

Fig. 4 shows time- and frequency-resolved fluorescence spectra of FMO obtained after

averaging over static disorder. It is quite evident that the oscillatory features in the ideal

signal Iid(t,ω) in panel (a) as well as in real signals in I(t,ω) in panels (b)-(d) are more

regular and smoother in Fig. 4 than in Fig. 1. Furthermore, the shapes and locations of

these oscillatory features change considerably, as is evident from the comparison of signals

in panels (b) and (c) in Figs. 4 and 1.

A more detailed and quantitative explanation of the impact of static disorder on the

fluorescence signals can be obtained from the analysis of Fig. 5, which shows cuts of I(t,ω)
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Figure 3: Cut of time- and frequency-resolved fluorescence spectra I(t,ω) of FMO at ω = 0.03 eV

and good time resolution (τg = 20 fs) averaged over N realizations of static disorder indicated in

the legend.

of Fig. 4 at specific ω. Indeed, the cuts in Fig. 5(a) corresponding to Iid(t,ω) are quite

regular. The cuts in Fig. 5(b) for t > 300 fs exhibit oscillations with a period of ∼ 100 fs

which reveal 2nd overtone of the second vibrational mode, 2π/(2ω2) = 104 fs. The features

revealing 2nd overtone of ω2 start to merge and produce different patterns in Fig. 5(c),

because the gate time with τg = 50 fs is just half of the period of 2nd overtone, which is

insufficient for resolving the corresponding oscillatory motion. The cuts in Fig. 5(d) for

τg = 100 fs show non-monotonic evolutions which are difficult to analyze and impossible to

associate with a specific vibrational frequency.

The signal I(ω, t) evaluated for a good time resolution (see 5(b))has two distinct features.

(i) 2nd overtones of vibrational modes frequently manifest themselves in spectroscopic

signals [94, 95]. Indeed, the motion of an excited-state wavepacket modulates the signal

intensity I(t,ω), thus if a maximum of the fluorescence intensity corresponds to the position

of the wavepacket along the dominant Franck-Condon-active vibrational mode somewhere

in between the turning points of its motion, the wavepacket will cross this positions twice

per period.

(ii) As shown in Ref. [77], the expectation variable of any dynamical variable A averaged

over static disorder with a characteristic dispersion σ exhibits predominantly vibrational

oscillations at t > 2π/σ and can be represented as
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Figure 4: Time- and frequency-resolved fluorescence spectra I(t,ω) of FMO calculated after aver-

aging over static disorder: (a) ideal, (b) τg = 20 fs, (c) τg = 50 fs, (d) τg = 100 fs. For better

visualization, top view of I(t,ω) is presented in panels (b)-(d).

%
eiHθtAe−iHθt

$
σ
≈

!

k

Mk!

m=0

akm(t) cos(mωkt− ϕkm(t)). (66)

Here 〈...〉σ indicates the trace and averaging over static disorder, akm(t), ϕkm(t) are some

slowly varying functions of time, and Mk is the maximal number of overtones for the kth

vibrational mode. The excitonic populations averaged over static disorder, which were

studied in Ref. [77] for the same FMO model, also exhibited vibrational oscillations featuring

ω2. The response functions, and notably spectroscopic signals, cannot be expressed in terms

of the simple expression in the l.h.s. of Eq. (66). Nevertheless, the cuts of I(t,ω) in 5(b)

unequivocally show that the behavior predicted by the r.h.s. of Eq. (66) can indeed be
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Figure 5: Cuts of time- and frequency-resolved fluorescence spectra I(t,ω) of FMO at ω = −0.0075

eV (red), ω = 0.005 eV (green), ω = 0.0175 eV (blue), ω = 0.03 eV (magenta) and ω = 0.0425 eV

(black) calculated after averaging over static disorder: (a) ideal, (b) τg = 20 fs, (c) τg = 50 fs, (d)

τg = 100 fs. The cuts are normalized to 1 at t = 0.

detected in time- and frequency-resolved fluorescence of FMO provided the time resolution

of gating is sufficient. Hence purely vibrational beatings recently detected in femtosecond

signals of FMO [64, 68] may be caused not only by the wavepacket motion in the excitonic

ground state [90], but also by “melting” of vibronic frequencies into vibrational frequencies

upon averaging over static disorder, as predicted by Eq. (66). Note that there exist other

mechanisms of long-lived predominantly vibrational responses in the excited electronic states

[97], and existence of disorder-induced purely excitonic oscillations has also been predicted

[98].
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Figure 6: Top views of time- and frequency-resolved fluorescence spectra I(t,ω) of FMO for τg = 50

fs calculated for three random realizations of εk and Jkk′ sampled from Gaussians with variance

σ = 100 cm−1.

To complete the discussion, I(t,ω) of FMO for τg = 50 fs calculated for three random

realizations of εk sampled from Gaussians with variance σ = 100 cm−1 are presented in

6. These random realizations mimic different FMO mutants experimentally studied in Ref.

[64]. It is essential that all three signals are substantially different and exhibit vibronic

revivals at different times. Yet, averaging of I(t,ω) over static disorder results in the signal

in Fig. 4(c) which reveals qualitatively different spectral features.
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VI. CONCLUSIONS

We have developed a methodology for numerically accurate fully quantum simulation of

nonlinear electronic femtosecond signals of polyatomic molecules and molecular aggregates

at finite temperature. The methodology is based on the Thermo Field Dynamics (TFD)

representation of the driven quantum dynamics and tensor-train (TT) methods for efficient

simulation of spectroscopic third-order response functions.

The methodology was applied to the simulation time- and frequency-resolved fluorescence

signals of the Fenna–Matthews–Olson (FMO) complex. The signals show a pronounced

wave-packet motion in the single-exciton states of FMO and depend strongly on the time

resolution of the up-conversion process. In the time domain, the signals exhibit pronounced

oscillations of vibronic origin provided static disorder in excitonic energies and couplings

can be neglect. Upon averaging over static disorder with variance σ = 100 cm−1, the signals

exhibit predominantly vibrational oscillations caused by “melting” of vibronic frequencies

into vibrational frequencies upon averaging over static disorder. If the time resolution is

sufficient, such disorder-induced vibrational oscillations may become visible in various fem-

tosecond signals.

Work is in progress on further generalization of our methodology towards description of

open quantum systems along the lines developed in Refs. [96, 99, 100].
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Appendix A: Explicit formulas for single-exciton response functions

To make Eq. (46) explicit, we define single-exciton states

|en〉 = c†n|g〉. (A1)

Then the TFD Hamiltonian in the singly-excited state manifolds reads

H
(s)
θ =

!

n

εn|en〉〈en|+
!

n ∕=m

Jnm|en〉〈em|+
!

k

ωk

&
a†kak − ã†kãk

'

−
!

kn

gkn√
2

(&
ak + a†k

'
cosh(θk) +

&
ãk + ã†k

'
sinh(θk)

)
|en〉〈en|

and the transition dipole moment operators assume the form

µ̂− = |g〉〈e|, µ̂+ = |e〉〈g| (A2)

where

|e〉 =
!

n

(sµn)|en〉. (A3)

It is also convenient to define the TFD wavefunction

|ψ(τ)〉 = e−iHθτ µ̂+|0v0̃v〉|g〉 = e−iH
(s)
θ τ |0v0̃v〉|e〉, (A4)

the vibrational propagator

U(τ) = e−iHv
θ τ (A5)

and the excitonic operator

B = µ̂+µ̂− = |e〉〈e|. (A6)

With this notation,

Φs(τ4, τ3, τ2, τ1) = 〈ψ(τ3 − τ4)|BU(τ3 − τ2)|ψ(τ2 − τ1)〉. (A7)

This is one of the key theoretical results of the present work.

Plugging the definitions (40)-(43) into Eq. (A7) one obtains explicit expressions for the

single-exciton response functions:

Rs
1(t3, t2, t1) = 〈ψ(t2)|BU †(t3)|ψ(t1 + t2 + t3)〉, (A8)
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Rs
2(t3, t2, t1) = 〈ψ(t1 + t2)|BU †(t3)|ψ(t2 + t3)〉,

Rs
3(t3, t2, t1) = 〈ψ(t1)|BU †(t2 + t3)|ψ(t3)〉,

Rs
4(t3, t2, t1) = 〈ψ(t3)|∗BU(t2)|ψ(t1)〉

(∗ denotes complex conjugation). In the above formulas, R1 and R2 describe evolution of the

system in the single-exciton manifold during t2 and are responsible for the SE contribution.

R3 and R4 describe evolution of the system in the ground excitonic state during t2 and are

responsible for the GSB contribution.

Appendix B: Double-exciton response functions

The double-exciton response functions Rd
1−Rd

4 generated by the four-time response func-

tion of Eq. (39) are defined as follows:

Rd
1(t3, t2, t1) = 〈g|〈0v0̃v|µ̂−e

iHθt2µ̂−e
iHθt3µ̂+e

−iHθ(t1+t2+t3)µ̂+|0v0̃v〉|g〉,

Rd
2(t3, t2, t1) = 〈g|〈0v0̃v|µ̂−e

iHθ(t1+t2)µ̂−e
iHθt3µ̂+e

−iHθ(t2+t3)µ̂+|0v0̃v〉|g〉,

Rd
3(t3, t2, t1) = 〈g|〈0v0̃v|µ̂−e

iHθt1µ̂−e
iHθ(t2+t3)µ̂+e

−iHθt3µ̂+|0v0̃v〉|g〉,

Rd
4(t3, t2, t1) = 〈g|〈0v0̃v|µ̂−e

−iHθt1µ̂−e
−iHθt2µ̂+e

−iHθt3µ̂+|0v0̃v〉|g〉.

Here Rd
1 and Rd

2 describe ESA contribution to pump-probe and photon-echo signals,

Rd
3 and Rd

4 are responsible for double-coherence signals [2, 3]. Unfortunately, the double-

exciton response functions cannot be expressed in terms of the single-exciton excited-state

propagator Akk̃n(τ) of Eq. (A4) because the system dynamics during t3 (Rd
1, Rd

2), t2+t3 (Rd
3)

and t2 (Rd
4) develops in the double-exciton manifold. Hence Rd

1 − Rd
4 should be evaluated

on the t3, t2, t1 grid, which is computationally expensive. However, the system propagates

during the time interval t3 in the electronic coherence between the single- and double-exciton

manifold (response functions Rd
1 and Rd

2) and during the time interval t2 in the electronic

double-coherence between the ground- and double-exciton manifold (response functions Rd
3
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and Rd
4). In addition the time interval t3 corresponds to the electronic coherence between

the single- and ground-exciton manifold. Hence its dynamics is controlled by the electronic

dephasing, and propagation during t1, t3 (Rd
1, Rd

2) and t1, t2, t3 (Rd
3, Rd

4) is controlled by

electronic dephasing times which are typically tens of femtosecond for polyatomic species in

condensed phase.

Appendix C: Orientational averaging

Following [76, 101, 102], we introduce an orthogonal molecular reference frame with the

axes x, y, z specified by three mutually orthogonal unit vectors da

(dadb) = δab (C1)

(a = x, y, z) and decompose vectors of the matrix elements of the transition dipole moments

as follows:

µn =
!

a=x,y,z

µnada, (C2)

µna = (daµn).

Then we obtain

µ̂+ =
!

a=x,y,z

(sda)µ̂
a
+, µ̂− =

!

a=x,y,z

(sda)µ̂
a
− (C3)

where

µ̂a
+ =

!

n

µnac
†
n, µ̂a

− =
!

n

µnacn (C4)

are the contracted raising and lowering components of the transition dipole moment opera-

tors. In the manifold of the single-exciton states defined per Eq. (A1)

µ̂a
− = |g〉〈e(a)|, µ̂a

+ = |e(a)〉〈g| (C5)

where

|e(a)〉 =
!

n

µna|en〉. (C6)

Let us consider averaging of single-exciton response functions Φs. With the definitions

of Eqs. (C3) and (C4), the wavefunction |ψ(τ)〉 (Eq. (A4)) and the operator B (Eq. (A6))

can be rewritten as follows:

|ψ(τ)〉 =
!

a=x,y,z

(sda)|ψa(τ)〉,
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B =
!

b,c=x,y,z

(sdb)(sdc)Bbc.

Here

|ψa(τ)〉 = e−iH
(s)
θ τ |0v0̃v〉|e(a)〉, (C7)

Bbc = |e(b)〉〈e(c)| =
!

nn′

µnbµn′c|en〉〈en′ |.

With this notation,

Φs(τ4, τ3, τ2, τ1) = (C8)
!

a,b,c,d

(sda)(sdb)(sdc)(sdd)〈ψa(τ3 − τ4)|BbcU(τ3 − τ2)|ψd(τ2 − τ1)〉.

Since d-vectors are orthonormal (Eq. (C1)), orientational averaging (denoted by overbar)

yields [103]

Cabcd = (sda)(sdb)(sdc)(sdd) =
1

15
{δabδcd + δacδbd + δadδbc} . (C9)

Therefore,

Φ̄s(τ4, τ3, τ2, τ1) =
1

15

!

a,b

{〈ψa(τ3 − τ4)|BbbU(τ3 − τ2)|ψa(τ2 − τ1)〉

+ 〈ψa(τ3 − τ4)|(Bba +Bab)U(τ3 − τ2)|ψb(τ2 − τ1)〉} . (C10)

The explicit expressions for double-exciton response functions Φ̄d can be obtained analo-

gously.
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