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Abstract 

 

Therapies based on immune checkpoint blockades (ICBs) are highly effective in 

patients affected by colorectal cancer (CRC) with mismatch repair deficiency (MMRd). 

These tumors carry a high number of mutations, which are assumed to be translated 

into a wide set of neoepitopes. A systematic classification of the neoantigen landscape 

in CRC carrying diverse MMR damages is lacking. Moreover, analyses based on 

mass-spectrometry peptidomics demonstrated the existence of MHC class I 

associated peptides (MAPs) originating from non-coding DNA regions. Based on these 

premises we investigated DNA genomic regions responsible for generating MMRd-

induced peptides. 

We exploited whole exome sequencing (WES) data of CT26 mouse model in which 

the MMR genes Mlh1, Msh2, Msh6 and Pms2 were genetically inactivated. A well-

established computational pipeline was employed to characterize the mutational and 

the neoantigen landscape of those CRC cells. Further to this, CT26 Mlh1+/+ and Mlh1-

/- were inoculated in immunocompromised and - competent mice, and whole genome 

sequencing (WGS) and RNA sequencing (RNAseq) data were generated. First, 

peptide databases were built from transcriptomes of MMR proficient (MMRp) and 

MMRd cells. A database of peptides lost after injection in immunocompetent mice was 

generated from RNAseq data since those sequences were assumed to be edited by 

the immune system. Liquid chromatography-mass spectrometry (LC-MS) and 

matched transcriptome and whole genome databases were ultimately employed to 

identify the DNA regions from which the immune-edited MAPs originated. 

The inactivation of Mlh1, Msh2, Msh6 and Pms2 in CT26 leads to the acquisition of 

several mutations during time as compared to the MMRp CT26. In addition, WGS 

analyses revealed an unbalanced distribution of immune edited alterations across the 

genome of Mlh1-/- cells grown in immunocompetent mice. The integrated 

computational and LC-MS analyses also revealed that immune edited MAPs 

originated mainly from atypical translational events in both MMRp and MMRd models. 

Moreover, CT26 Mlh1-/- showed a strikingly different repertoire of mutant MAPs 

targeted by the immune system, mainly derived from untranslated regions (UTRs) and 

out- of-frame translation of coding regions. 
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Our results suggest that MMRd tumors generate a significantly higher number of 

neoantigens, compared to MMRp CRC, mainly classified as non-canonical mutated 

peptides that bind the MHC class I. These results reveal the importance of evaluating 

the diversity of neoepitope repertoire in MMRd tumors to identify novel neoantigens 

as therapeutic targets and further understand the reason why these tumors are highly 

responsive to ICB treatments. 
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Introduction 

Microsatellite stable and unstable colorectal cancers 

Latest global cancer statistics revealed that colorectal cancer (CRC) is currently the 

second leading cause of cancer death and the third most commonly diagnosed cancer 

worldwide (1). Sixty-five percent of CRC patients are estimated to survive 5 years after 

being diagnosed with cancer. The same expectation is reduced to 15% when 

considering the metastatic stage (2). A molecular profiling could facilitate the 

examination of therapeutic options that may be available for treating metastatic CRC 

(mCRC) patients based on tumor subtypes (3). The vast majority of CRCs are 

classified as MMR proficient (MMRp) and the length of microsatellites is stable (MSS) 

over time. A noteworthy proportion of colorectal tumors is classified as mismatch repair 

deficient (MMRd) owing to methylation or mutations in MLH1, MSH2, MSH6 and PMS2 

genes. They often display a shifting length of microsatellites and are classified as 

microsatellite unstable (MSI) tumors. MMRd tumors account for 15% of all CRCs and 

5% of mCRCs (4). In patients with MSI or MMRd tumors, treatment based on immune 

checkpoint blockade (ICB) extends survival significantly more than conventional 

therapeutic options. As a matter of fact, in 2020 FDA approved the immune checkpoint 

inhibitor pembrolizumab for first-line therapy of MSI/MMRd mCRC patients (3). 

In the MSS subtype, tumor progression is driven by the so-called “chromosomal 

instability” characterized by acquisition or loss of an entire or part of chromosome(s) 

that occurs in association with genomic alterations in proto-oncogenes or tumor 

suppressor genes. On the contrary, in MSI tumors the chromosomal integrity is not 

affected by the genomic instability. The progression of disease is instead promoted by 

the accumulation of insertions or deletions in short nucleotides repetitive regions 

(microsatellites) owing to non-functional MMR (5). MSI tumors exhibit peculiar genetic 

and clinical-pathological features since they are more frequently located in the right 

side of the colon, and they show mucinous features and poor histological 

differentiation. Moreover, they are characterized by a great amount of tumor mutations 

– not only limited to single mismatches but rather also short insertions and deletions - 

and high number of tumor-infiltrating lymphocytes, mainly represented by CD8+ T-cells 

(6-8). About one third of MSI tumors is represented by a hereditary mutational 

mechanism that affects one of the products of the MMR system, that is the 
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nonpolyposis colorectal cancer (HNPCC) syndrome, best known as Lynch syndrome 

(5). Sporadic forms of MSI CRC are the majority of MSI tumors caused by epigenetic 

hypermethylation and the consequent inactivation of MLH1 gene. At the molecular 

level, MSI tumors often carry BRAF mutations, while KRAS alterations are less 

frequent (5). Furthermore, the incidence of APC and p53 mutational variations is 

higher in MSS than MSI tumors (9) (Figure 1). In addition, MSI mCRCs are often 

resistant to common cytotoxic agents (10). In addition to this - while MSS mCRCs 

exhibit frequent primary resistance to ICBs - MSI mCRCs are greatly sensitive to 

immune checkpoint inhibitors (3, 11-13). 

 

 
 

Figure 1 CRC adenoma-carcinoma sequence as a multistep mutational pathway (5). 

 

Biological and mutational features of mismatch repair defective 

cancers 

The MMR machinery is composed of several multi protein complexes which are able 

to detect and correct erroneous substitutions, such as single nucleotide variants 

(SNVs), insertions and deletions (indels) following DNA replication (14). The four 

components of the MMR system are MuL homolog 1 (MLH1), PMS1 homolog 2 

(PMS2), MutS homolog 2 (MSH2) and MutS homolog 6 (MSH6). To guarantee the 

efficacy of the entire system these four molecules act as heterodimers (Figure 2): 

MSH2 and MSH6 compose the MutSa complex; MLH1 and PMS2 form the MutLa 



11 
 

complex. Both complexes are capable of recognizing base-base mismatches and 

small indels. In addition to these, the MutSbeta heterodimer - composed by MSH2 and 

MutS homolog 3 (MSH3) - detects and corrects large indels (4). 

 

 
Figure 2 Molecular products of mismatch repair machinery (4). 

 

Defects affecting one or more MMR products lead to DNA repair loss of function and 

contribute to carcinogenesis and microsatellite instability (5). Both genetic and 

epigenetic events are involved in the onset of MMRd status and the emergence of 

MSI. The inheritance of mono-allelic alteration in one MMR gene contribute to cancer 

disorders such as Lynch syndrome. Germline biallelic inactivation of MMR genes 

causes the so-called constitutional MMR deficiency (cMMRd), a rare disease that is 

associated with early CRC onset and pediatric cancers (4). However, only 3% of all 

CRCs - carrying microsatellite instability - emerge in the context of HNPCC. The 

majority of MSI CRCs develop due to somatic mutations in MMR genes or epigenetic 

downregulation of MLH1 expression (15). 
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The inefficient DNA repair system leads MMRd tumors to accumulate a 10-fold 

increase of unsolved alterations across the genome compared to MMRp tumors (6, 

16, 17). Indeed, defects of MMR machinery leads to the emergence of genetic 

variations such as SNVs, which affect an individual amino acid, and small indels, which 

can lead to the generation of frameshift variants (new amino acid frame). SNVs and 

indels alterations are usually identified combining Next Generation Sequencing (NGS) 

sophisticated bioinformatic tools (4, 6). 

Notably, recent studies demonstrated that MMRd induced mutations follow specific 

patterns of DNA alterations (18). Mutational patterns driven by deficiency in MMR 

pathway can be identified looking at mutational signatures: they are able to unveil the 

different etiologies of mutational processes, including DNA damage, repair and/or 

replication mechanisms. This procedure classifies each genomic alteration by looking 

at the base immediately 5′ before the somatic mutation and the base immediately 3′ 

after the somatic mutation. Thus, from each of the six types of somatic variants (C>A, 

C>G, C>T, T>A, T>C and T>G) result 16 different substitutions that generate a total 

of 96 unique mutation types (19). MMRd tumors show specific mutational patterns 

composed by the enrichment of C>T and T>C mutation types. They are also 

characterized by other peculiar patterns: double base substitution and small insertion 

deletion (18). Moreover, the combination of distinct mutational processes may 

generate different mutational signatures, such as MMRd and Polymerase Epsilon 

(POLE)/Polymerase Delta 1 (POLD1) mutant tumors (20, 21). 

 

Immunological characteristics of MMRd cancers 

Mutations induced by MMR damages directly affect the mutational landscape of 

genomic DNA, in terms of both quantity and quality values. The type of DNA repair 

defects occurring in CRCs can affect the type of mutations. As a matter of fact,  MSI 

tumors display a higher number of frameshift indels than POLE mutant lesions that, 

on the contrary, show many SNVs (6). Those alterations, if transcribed and translated, 

can be presented as peptides by the major histocompatibility complex (MHC) class I 

and II to the and trigger adaptive immunity  (8, 22). At protein level, non-synonymous 

SNVs drive the emergence of new epitopes that differ from the wild type sequence 

only for one amino acid. On the contrary, frameshift indels lead to the generation of 

new peptides that vary greatly from their wild type counterpart. In addition to this, indel 
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mutations that cause a frameshift produce new open reading frames that potentially 

give rise to a large amount of neoantigenic peptides. Then, indel variants can both 

increase the number of mutant peptides and reduce susceptibility to self-tolerance 

mechanisms (23). 

The hypermutation status of MSI tumors is associated with increased responsiveness 

to immune-based therapies, such as ICBs (11, 12, 24). Indeed, MSI tumors show a 

high tumor mutational burden (TMB), which varies significantly across cancer types 

(25) but also inside the same histology (6). Furthermore, the genomic landscape 

driven by MMRd uniquely contributes to the quality of the neoantigen profiles since the 

generation of frameshift indels augments the number of putative neoepitopes per each 

event and, consequently, the generation of immunogenic neoantigens. In addition to 

this, also the high number of non-synonymous SNVs positively contribute to 

neoantigen load in CRCs (26). Therefore, tumors with a high number of neoantigens 

show increased response to ICBs. On the contrary, tumors with fewer mutations - and 

neoantigens - are more likely to be unresponsive to immunotherapy (27). 

The association between such peculiar biological and clinical features of MMRd 

tumors lies in the immunological properties that these tumors unveil. Indeed, high 

levels of neoantigens were positively associated with overall lymphocytic infiltration, 

tumor-infiltrating lymphocytes (TILs), memory T cells, and colorectal cancer–specific 

survival (26). Moreover, the presence of higher TILs in CRCs has long been 

recognized as evidence of microsatellite instability (28, 29) (Figure 3). Also, Galon et 

colleagues proved that the immune repertoire - the type, density, and localization of 

infiltrating lymphocytes in the center and the invasive margins - of colorectal cancers 

is an independent prognostic factor and positive predictors of better survival (30). 

During the last decade the same group defined and improved the concept of 

“immunoscore”: a classification criterion that is based on the localization and the 

amount of CD3+ and CD8+ T cell subpopulations in the tumor microenvironment (31). 

Moreover, ESMO guidelines have included the immunoscore for the staging of CRC 

since 2020 (32). Of relevance, the immunoscore value is able to estimate the risk of 

recurrence in CRCs regardless of MMR status (33). 
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Figure 3 Spatial distribution of tumor infiltrating lymphocyte in MSS and MSI CRC A) 

Immunohistochemical staining of CD4+, CD8+, and FOXP3+ cell infiltration (red stars and blue arrows 

indicate the tumor stroma and tumor epithelium-infiltrating immune cells, respectively). B) Cell density 

quantification (adapted from (29)). 

 

Tumor microenvironment of MSI tumors and the response to ICBs are highly 

conditioned by the TMB and then the neoantigen landscape of these tumor types.  

Germano and colleagues demonstrated that CRC mouse models acquire a wide and 

dynamic mutational spectrum after being inactivated by the Mlh1 gene (8). They 

analyzed MMRd and MMRp tumors inoculated in immunocompetent and -

compromised mice and noted a CD8+ T-cell directed response in Mlh1-/- tumors. 
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Moreover, MMRd tumors triggered increased levels of T-cell rearrangements (TCR) in 

the blood of mice as compared to MMRp cancer cells (8). In the same line of evidence, 

several studies highlighted the correlations between genomics, immune cells 

infiltration and better response to ICB treatments (26, 34, 35). 

These findings lead MSI tumors to be the proper target for a successful treatment with 

ICBs (36). The capacity of ICBs to induce adaptive immune responses is fascinating. 

The interplay between the immune system and cancer cells is indeed negatively 

affected through the upregulation of specific immune receptors present on tumor 

surfaces which magnify the immune-suppressive environment caused by cancer cells 

(37). ICBs are monoclonal antibodies that target specific immune checkpoint products 

and reactivate T-cells antitumor activity. Following these considerations, 

immunotherapy treatments result highly effective in mCRC MSI patients who failed 

previous lines of treatments. Patients showed an outstanding 40% of objective 

response rate (ORR) with a 90% disease control rate (DCR) - as compared to 0% 

ORR and 11% DCR in patients carrying MSS tumors (11). Moreover, ICBs 

demonstrated to be very effective also in MMRd non-colorectal tumors (24, 38-40) 

(Figure 4). 

 

 
 

Figure 4 Correlation between tumor mutational burden and objective response rate upon anti–PD-1 or 

anti–PD-L1 treatment in several tumor types (38). 
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Following such remarkable clinical results, in 2017 the FDA approved pembrolizumab 

for the treatment on any MSI solid tumors. Further to this, very recently, Cercek and 

colleagues reported a clinical complete response in all 12 patients with rectal cancers 

treated with dostarlimab (PD-1 inhibitor). Remarkably, none of the patients had 

received chemoradiotherapy or undergone surgery, and they have undergone at least 

6 months of follow-up (41). 

 

Computational resources for neoantigen identification 

A comprehensive neoantigen characterization can be performed by using NGS data. 

Indeed, several advanced bioinformatic pipelines are available to identify immune 

activating neoantigens starting from genomic data (42-45). Vast majority of 

bioinformatic tools present as core function the prediction of the affinity binding 

between a peptide sequence and the MHC class I or II (46, 47). Further to this, recent 

approaches integrate multiple features to refine the quality of results such as gene 

expression data, variant allele frequency and analysis of clonality. Neoantigen 

prediction software can be classified in three main categories: a) ready-to-use tools - 

which appear like a black boxes ready to use but hardly or not at all customizable; b) 

recommended pipelines - which usually are built as multi-step processes with default 

parameters and tools but allowing the possibility to perform some changes; c) 

algorithms and tools that specifically perform HLA binding prediction - they are not 

always ready to use but moderately adaptable to custom pipelines. The very first step 

for the prediction of tumor neoantigens is performed by the identification of DNA 

alterations (46, 47). Commonly the mutational characterization is performed by 

exploiting WES data from paired normal and tumor samples. The analysis includes 

single base mismatches, aberrations derived from insertions and deletions, splice 

variants, gene fusions and other genomic alterations that could generate non-self-

peptides (47). As reported before, MMRd tumors are highly enriched of SNVs and 

frameshift indels, therefore these alterations are deeply characterized when MMRd 

cancer data undergo bioinformatic analysis (4). Next, mutated sequences are filtered 

according to transcript expression - if RNA sequencing (RNAseq) data are available - 

and then mutated sequences are translated and properly processed before being 

analyzed for MHC affinity binding prediction (4) (Figure 5). 
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Figure 5 In silico neoantigen prediction pipeline (4). 

 

Further to this - and if not known a priori - an accurate identification of the HLA allele 

is necessary to properly predict the affinity binding between MHC and neopeptides. 

The standard HLA typing procedure is performed using serology- or PCR-based 

methods (48). However, both serological and molecular genotyping, which are time-

consuming, laborious, and expensive, do not meet the increasing requests from 

clinicians and researchers. With the advent of NGS, several computational methods 

are now available that allow HLA genotyping by inferring WGS, WES or RNAseq data 
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(48). Moreover, it is worth mentioning that even though multiple studies highlighted the 

role of MHC class II restricted neoantigens for therapeutic purposes, most of the 

pipelines focus on MHC-I neoepitopes due the higher accuracy of available predictors 

and the greater quantity of MHC-I ligand entries in database such The Immune Epitope 

Database (IEDB) (49).  

Despite a huge amount of information can be retrieved by using these advanced 

computational approaches - that is identifying tumor mutations, computing HLA 

genotyping and predicting HLA-peptide binding affinity in a high throughput fashion - 

they still lack accurate sensitivity. For this reason, validation of cancer neoantigens is 

needed in clinical - but also in research – practice (50). First, predicted neoantigens 

should be validated to bind the MHC. Indeed, only a small fraction of mutant putative 

peptides will be processed and presented on the cell surface by the MHC. Next, the 

immunogenic properties of those peptides should be tested, since a reduced number 

of MHC associated neoantigens will be recognized by a T-cell receptor (TCR)-bearing 

T-cells. Previous analyses demonstrated that only 1% of predicted neoantigens bind 

MHC while half of these are recognized by T-cells and only one third are regularly 

processed allowing target cell killing (50). 

In conclusion, both practices - high-throughput computing of neoantigen prediction and 

validation assay - present benefits and limitations. Overall, the computational 

approaches previously described are pivotal to predict immunogenic neoantigens; 

however new tools to obtain more sensitive prediction and more rapid immunogenicity 

validations are needed. 

 

Non-canonical neoantigens 

Computational analyses of cancer immunogenicity are currently based on exome data 

or on a limited number of target genes (custom panels) (51-53). Indeed, neoantigen 

prediction analysis is based on the identification of somatic non-synonymous 

mutations in canonical annotated protein regions by WES and the prediction of the 

binding affinity between MHC and mutant peptides. Although the contribution of 

neoantigens in deciphering the immunogenic features of these tumors has been well 

described (4, 26, 36), the extent to which the non-coding portions of the genome 

affects the immunogenicity of MMRd tumors is largely unknown. Indeed, several lines 
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of evidence suggest that a variety of non- coding regions can contribute to the 

repertoire of tumor antigens (54-57). They include novel or unannotated open reading 

frames (58), retained introns (59), long noncoding RNAs (60), untranslated regions 

(UTRs) (61, 62), junctions and intergenic regions (55, 63) (Figure 6). 

 

 
 

Figure 6 Source of unmutated tumor specific antigens across the entire genome (57). 

 

As matter of fact, Laumont et colleagues first reported that a relevant subset of MHC 

class I associated peptides (MAPs) derived from non-canonical reading frame (63); 

then with their proteogenomic approach reported that noncoding regions are the main 

source of targetable tumor-specific antigens (TSA): they identified 40 TSAs, about 

90% of which were derived from allegedly noncoding regions (55). Interestingly, MAPs 

originating from non-coding portions of the genome were shown to be potential 

immunogenic targets of T-lymphocytes (55, 64). MAPs can also derive from a variety 

of genetic and epigenetic changes leading to the transcription and translation of 

genomic sequences normally not expressed in cells or from non-canonical open 

reading frames that emerge in tumor cells (65, 66). Moreover, a recent study 

demonstrated that non-canonical open reading frames (ORF) encode functional 

proteins essential for cancer cell survival. The authors reported that 50 out of about 

500 candidates from noncanonical ORF datasets induced viability defects when 

knocked out in human cancer cell lines (67). 

Given the potential relevance of non-coding MAPs and mutated MAPs (mMAPs) in the 

immunogenic properties of MMRd tumors, we thought that further investigation at 

immunopeptidome level was necessary, to systematically analyzed how the immune 
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system could perturb the canonical and non-canonical antigen repertoire of MMRd and 

MMRp tumors.  

Deciphering the non-canonical neoantigen landscape of MMRd 

cancers 

The main routine practices currently used to detect neoantigens relies on identification 

of tumor somatic mutations by using exome sequencing data, followed by an in-silico 

prediction analysis of candidate mutated peptides. The accuracy of peptide-MHC 

binding prediction algorithms - which are often poorly accurate - highly affect the 

success of this method. Moreover, given the potential immunogenic features of 

neoantigens generated from non-coding regions, these workflows present a major 

limitation due to the impaired ability to analyze other genomic regions than the 

canonical coding portions. Recent advances in mass spectrometry allow the analysis 

of the HLA peptidome - which consists of the set of HLA class I bound peptides 

expressed by a specific cell - in great resolution (68, 69). This strategy combines NGS 

data and mass spectrometry analysis and allows to define the immunological signature 

that can lead to the identification by the immune system cells. Briefly, in parallel to 

sequencing data analyses, an immunoaffinity purification of the HLA molecules from 

the same cells is performed and then a tandem mass spectrometry (MS) analysis of 

HLA peptides is generated. The MS spectra are analyzed by specific tools, such as 

MaxQuant (70), and matched against a specific peptide dataset, which should include 

the mutant variants inferred by previous sequencing data analysis (69) (Figure 7). 
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Figure 7 Example of immune-peptidomic pipeline. Tumor sample undergoes NGS and mass-

spectrometry analysis. The final results are generated by matching NGS-derived database and spectra 

data.  

  

In 2016, Kalaora and colleagues applied the immune-peptidomic pipeline to a 

melanoma patient, and they identified two mutant peptides derived from WES analysis  

and validated one of them for reactivity with autologous bulk tumor infiltrating 

lymphocytes (69). To enlarge the possibility of detecting unconventional neoantigens 

generated from all genomic regions other studies performed MS-based peptide 

sequencing by matching customized databases which included all-frames translation 

of genomic or transcriptome sequences (55, 63). In this way, immunopeptidome 

studies can detect peptides coded by all reading frames from every genomic region. 

Laumont and colleagues generated an all-six frame translation peptide database by 

using the transcriptome of human B-lymphoblastoid cell lines. This database was used 

to identify MAPs by matching the high-throughput MS sequencing data. Integrating 

transcriptome and proteomic data they classified as cryptic about 10% of MAPs (63). 

In a subsequent study the same group revealed that most of the tumor specific 

antigens generate from non-coding regions (55). Although this strategy allows 

evaluating the peptides bound to the MHC-I, it is cell dependent and therefore it is still 

difficult to apply in a high-throughput fashion. 

Recent studies unveiled novel approaches to investigate the genomic regions that are 

transcribed and translated (71, 72). Ingolia and colleagues designed ribosome 

profiling, a method to systematically characterize translated sequences. This strategy 
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relies on deep sequencing of ribosome protected messenger RNA (mRNA) fragments 

and permits to unveil the translation activity in a cell with single-nucleotide resolution 

(71, 72). Indeed, evaluating the density of sequences protected by translating 

ribosomes - which are called ribosome footprints (RF) - gives a measure of the protein 

synthesis rate. Moreover, the identification of genomic coding regions is simplified by 

the start and stop codons presence in RFs, as compared to standard RNAseq which 

only provides an estimation of the transcript borders. Several studies that analyzed 

ribosome-profiling data highlighted that some predicted noncoding regions of the 

transcriptome were actively translated (62, 72, 73). As example, Chen and colleagues 

recently demonstrated that 240 non-canonical peptides derived from upstream open 

reading frames located in the 5’UTR and long non-coding RNAs of extragenic DNA 

were presented by the HLA of human tumor cell lines (62). Despite ribosome profiling 

being a further step to the exceptional advancement of NGS methods, the ability to 

calculate and predict with high sensitivity the binding affinity between HLA and 

peptides in a high throughput fashion is still lacking.  
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Aim of the study 

Exploring the genomic and the biological characteristics of 

neoantigens in MMRd cancers 

The use of immunotherapy based on checkpoint blockade produced outstanding 

results in MMRd colorectal tumors. Indeed, defects in the MMR machinery result in 

the accumulation of genomic alterations which are predicted to translate into a wide 

repertoire of neoepitopes. Interestingly, analysis based on mass-spectrometry 

peptidomics has demonstrated the existence of MAPs originating from all genomic 

regions. 

Based on these premises we aimed to investigate the role of DNA repair genes, Mlh1, 

Msh2, Msh6 and Pms2, to understand how damages in the MMR pathway could 

perturb the mutational landscape of CRC and how this could result beneficial in clinical 

practice. Moreover, given the potential relevance of non-coding MAPs and mMAPs in 

the immunogenic properties of MMRd tumors our aim is to analyze how the immune 

system could perturb the canonical and non-canonical antigen repertoire of MMRd and 

MMRp tumors.  

Briefly, the goal will be to characterize the specific DNA variants triggered by 

inactivation of the above-mentioned genes as function of putative neoantigens in terms 

of quality and quantity. In addition, we will characterize how the neoantigens generated 

in MMRp and MMRd CRC model are edited by an immunocompetent host. 

Considering the challenges in functionally characterizing these aspects in human 

models, we exploited a well characterized isogenic murine CRC model in which we 

previously perturbed MMR proficiency through gene knock-out with the CRISPR/Cas9 

technology. 

Since 99% of cancer mutations are in non-coding regions, we postulate that non-

coding DNA could be a source of novel MAPs and contribute to the high immunogenic 

impact of MSI tumors when treated with ICB.   
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Materials and methods 

Cell line 

CT26 is a chemically induced colon carcinoma derived from BALB/c mice; CT26 cells 

were cultured in RPMI 1640, 10% FBS, 1% glutamine, 1% penicillin and streptomycin 

(Sigma Aldrich). Cells were regularly checked for mycoplasma contamination and 

before performing the genome editing experiments, they were injected into matched 

syngeneic mice to ensure cell tumorigenicity. After tumor formation, we established 

again in vitro cell cultures. All cells underwent WGS. 

 

Gene editing 

To knockout the Mlh1, Msh2, Msh6 and Pms2 genes, we used the genome editing 

one vector system (lentiCRISPR-v2) (Addgene #52961) as previously reported (8). 

Briefly, sgRNAs were designed using the CRISPR tool (http://crispr.mit.edu) to 

minimize potential off-target effects. For transient expression of CRISPR-Cas9 

system, we transfected cells with lentiCRISPR-v2 vector plasmid (same guides as 

previously described) (8). Transfection was carried out using Lipofectamine 3000 (Life 

technologies) and Opti-MEM (Invitrogen), according to the manufacturer’s 

instructions. After 48 hours CT26 cells were incubated with puromycin (Sigma Aldrich) 

for 2 days and subsequently single cell dilution was performed in 96-well plates. The 

absence of MLH1 and CAS9 was confirmed by western blot (8). 

 

Animal studies 

All animal procedures were approved by the Ethical Commission of the FIRC Institute 

of Molecular Oncology (IFOM) and by the Italian Ministry of Health, they were 

performed in accordance with institutional guidelines and international law and 

policies. Four-six weeks old female NOD-SCID and BALB/c mice were purchased from 

Charles River and were maintained in pathogen-free conditions in individually 

ventilated cages. CT26 cells were resuspended in PBS and injected (500000 cells per 

mouse) subcutaneously. When tumors reached 1200 mm3 of volume they were 

explanted for subsequent analyses. 
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Hybridomas and antibodies 

HB-79 (producing anti H-2Kd/H-2Dd mouse IgG2a) and HB-27 (producing anti H-2Ld 

mouse IgG2a) hybridoma cell lines were purchased from ATCC and grown in Iscove 

medium (Sigma) supplemented with 10% FBS. Hybridoma were then adapted to 

protein-free PFHM medium (Thermo) for expansion and conditioning. Once cells were 

dead, the medium containing immunoglobulins was centrifuged and filtered to be run 

on a MabSelect Sure (ProteinA) column (Cytiva) mounted on Akta Pure (Cytiva). IgGs 

were then eluted at acid pH and dialysed against physiologic storage buffer. 

 

Whole Exome Sequencing analysis 

Genomic DNA of cell lines was extracted using the ReliaPrep gDNA Tissue Miniprep 

System (Promega). The library preparation, exome capture and sequencing were 

performed by Integragen SA (Evry, France) on Illumina NovaSeq as paired-end 100 

bp reads. Raw data provided by IntegraGen were analyzed at our institution using the 

bioinformatics pipeline previously published (74). Briefly, fastq files were aligned to the 

mouse reference mm10 using BWA-mem algorithm (75), and then polymerase chain 

reaction (PCR) duplicates were marked using MarkDuplicates in the Picard tools suite 

(76). On the resulting aligned files, we observed a median depth of 90x with 99% of 

the targeted region covered by at least one read. We noted that different sequencing 

led to high depth discrepancy among samples. For this reason, we applied a sampling 

approach to normalize raw data and reduce the depth discrepancy among the 

sequenced samples. Briefly, all the fastq files were downsampled by selecting the 

same number of starting reads (according to the samples that showed the smallest 

number of sequences). Firstly, the read names were extracted from the fastq files and 

randomly sorted. Then, 35 million reads were selected from each file and used as input 

with matched aligned files of Picard tools FilterSamReads (76) to generate 

downsampled cram files. This strategy was performed three times per sample. 

Bioinformatic modules previously developed (74) by our laboratory were used to 

identify count mutant alleles and consequently call SNVs and indels. Murine germline 

alterations were subtracted by using normal DNA of BALB/c mice previously 

sequenced at our institution. For calling mutations, we considered only positions 

present with a minimum depth of 5x and supported by at least 1% allelic frequency. 
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Tumor mutational burden was calculated as the number of variants per megabase 

considering those derived from coding regions. The prediction of neoantigens was 

performed using a bioinformatic pipeline we previously published (4, 6, 8, 77). In brief, 

NetMHC 4.0 software (44) was employed to analyze mutated peptides derived from 

SNV calls that were properly located in kmer composed by 8-11 amino acids. For 

frameshift indels, we applied the same approach considering every possible peptide 

generated by the new frame. Finally, haplotypes for murine samples were set to H2-

Kd and H2-Dd (BALB/c background) and only peptides with predicted strong binding 

affinity (Rank < 0.5) were considered for further analysis. 

 

Mutational signature analysis 

Variant calling files previously generated were used to calculate the mutational 

signature profiles. The pyrimidine base of the Watson–Crick base pair were used to 

calculate the six substitution subtypes C>A, C>G, C>T, T>A, T>C, and T>G. To 

generate the 96 possible mutation types, information about the nucleotides 

immediately 5’ and 3’ to the mutation were retrieved from the reference genome and 

incorporated. Then, the 96 mutated trinucleotides were normalized according to the 

actual trinucleotide frequencies previously calculated on the mouse exome version 

mm10. The signature extraction and the analysis of mutations associated with post-

replicative MMR deficiency was computed using signal (78). In brief, a tab-delimited 

in which each row corresponds to a single mutation in a particular sample was 

generated. Specifically, the information about sample name, chromosome, position, 

original base, and mutated base were selected. Finally, the variant file was used as 

input for the analysis performed by the web application (78). 

 

Immune-peptidomic workflow 

Six CT26 Mlh1+/+ and six CT26 Mlh1-/- tumor masses were explanted from NOD-SCID 

mice and manually smashed with disposable micro tissue homogenizers in lysis buffer 

solution (0.25% sodium deoxycholate, 0.2 mM iodoacetamide, 1mM EDTA, 1:200 

protease inhibitors cocktail, 1mM PMSF, 1% octyl-b-D glucopyranoside in PBS). 

Proteins were extracted for 1 hour at 4°C in continuous mixing, then samples were 
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centrifuged at 30000 rpm for 1 hour at 4°C. Protein extracts in the supernatants were 

pre-cleared with 1 mL of protein A resin (GenScript) for 1 hour at 4°C in agitation, then 

dosed by BCA assay. Around 20 mg were used for reaction, and each experiment was 

performed 3 times. 

Protein A resin was washed 3 times with PBS, then resuspended in PBS-Tween 0.01% 

and added with 5 mg of anti H-2Kd/H-2Dd or anti H-2Ld antibodies. Control samples 

without antibody were included. Resin and antibody were left with continuous mixing 

at 4° C overnight, then the unbound antibody was discarded. Antibodies and resins 

were crosslinked with 5 mM DSS for 1 hour at room temperature with continuous 

mixing, then the reaction was quenched with 1 M Tris HCl pH7.5 for 1 hour at room 

temperature with continuous mixing. 

H-2Ld was immunoprecipitated from precleared proteins by continuous mixing with 

crosslinked resin/antibody at 4°C overnight, then the unbound protein extract was 

subsequently passed on the following crosslinked resin/antibody in order to 

immunoprecipitate H-2Kd/H-2Dd at 4°C overnight. The resins were washed and 

centrifuged for 2 times with 10 volumes of 400 mM NaCl, 20 mM Tris-HCl, 0.2% NP40 

then with 15 volumes 20 mM Tris-HCl pH 8, 3 minutes each wash. Peptides were 

eluted from H-2 complexes with 8 washes in TFA 0.2%, 1 min each. Supernatants 

were passed through an Amicon Ultra 0.5mL 3k filter in order to separate H-2 

molecules from the peptides. 

Peptides in 0.2% TFA were dried by vacuum centrifugation, solubilized in 5% FA and 

purified by binding to disposable reversed-phase C18 stage tips. Samples were 

injected onto a quadrupole Orbitrap Q-exactive HF mass spectrometer (Thermo 

Scientific), each one in technical duplicate. Peptides separation was achieved on a 

linear gradient from 95% solvent A (2% ACN, 0.1% formic acid) to 55% solvent B (80% 

acetonitrile, 0.1% formic acid) over 120 minutes and from 55% to 100% solvent B in 3 

minutes at a constant flow rate of 0.25 µl/min on UHPLC Easy-nLC 1000 (Thermo 

Scientific) where the LC system was connected to a 23-cm fused-silica emitter of 75 

µm inner diameter (New Objective, Inc. Woburn, MA, USA), packed in-house with 

ReproSil-Pur C18-AQ 1.9 µm beads (Dr Maisch Gmbh, Ammerbuch, Germany) using 

a high-pressure bomb loader (Proxeon, Odense, Denmark). The mass spectrometer 

was operated in DDA mode as described previously (79): dynamic exclusion enabled 

(exclusion duration = 15 seconds), MS1 resolution = 70,000, MS1 automatic gain 

control target = 3 x 106, MS1 maximum fill time = 60 ms, MS2 resolution = 17,500, 
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MS2 automatic gain control target = 1 x 105, MS2 maximum fill time = 60 ms, and MS2 

normalized collision energy = 25. For each cycle, one full MS1 scan range = 300-1650 

m/z, was followed by 12 MS2 scans using an isolation window of 2.0 m/z. 

The MS data were analyzed using MaxQuant with 1% false discovery rate (FDR). 

Peptides were searched against the uniport-proteome_Mouse_010419 database or 

the customized reference databases that contained the sequences identified by 

RNAseq data. N-term acetylation and methionine oxidation were set as variable 

modifications. Enzyme specificity was set as unspecific when peptides were searched 

against the UniProt mouse database, while enzyme specificity was set as no enzyme 

when peptides were searched against customized reference databases and peptides 

FDR was set to 0.01. 

 

Whole Genome Sequencing analysis 

Genomic DNA (gDNA) was extracted from BALB/c tissue, Mlh1+/+ and Mlh1-/- cell lines 

using ReliaPrep gDNA tissue miniprep system (Promega). Starting from 500 ng of 

gDNA, Next Generation Sequencing (NGS) libraries were prepared in house by means 

of Nextera DNA Flex Library Prep kit (Illumina Inc., San Diego, CA, USA), according 

to the manufacturer’s protocol. Quality of libraries was checked with High-Sensitivity 

DNA assay kit (Agilent Technologies, Santa Clara, CA), while DNA fragments’ size 

distribution was assessed using the 2100 Bioanalyzer with a High-Sensitivity DNA 

assay kit (Agilent Technologies, Santa Clara, CA). Equal amounts of final DNA 

libraries were pooled and sequenced on NovaSeq 6000 (Illumina Inc., San Diego, CA, 

USA) as paired-end 150 bp reads at IntegraGen SA (Evry, France) and FastQ files 

were generated using bcl2fastq v2.17 software. Genomic analyses were performed 

using a bioinformatic pipeline previously described (74). On average, sequenced 

samples reached a median depth of 93x (Table 1). CT26 Mlh1+/+ and Mlh1-/- mutational 

calling was performed subtracting BALB/c germline variants. Only genomic positions 

present with a minimum depth of 10x and supported by at least 9 mutated reads were 

examined. To annotate alterations at genomic level, a Browser Extensible Data (BED) 

file was built that included all genomic regions. Coding, intronic and UTR regions BED 

files were downloaded from the University of California Santa Cruz (UCSC) table 

browser (assembly: mm10; table: refFlat). Non-coding RNA (ncRNA) regions were 
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extrapolated from the whole mm10 refFlat table filtering for 𝑐𝑑𝑠𝐸𝑛𝑑 −  𝑐𝑑𝑠𝑆𝑡𝑎𝑟𝑡 =  0. 

Each of those specific region BED files was further processed with the bedtools merge 

command (80). To generate the BED file for the extragenic regions, the previously 

merged BED files were concatenated and subtracted from the whole mm10 

chromosome annotation tracks. The size of each region was calculated using the 

bedtools coverage -hist command. The combination of coding, intronic and UTR 

merged tracks together with the extragenic regions BED file was employed for the 

mutational annotation. Normalized TMB was evaluated as the number of variants per 

megabase (Mb) considering those derived from each specific region. The analysis of 

edited mutations was performed calculating for each region the natural logarithm of 

normalized TMB ratios. 

 

RNA Sequencing analysis 

Total RNA was extracted from CT26 Mlh1+/+ and CT26 Mlh1-/- cells using Maxwell® 

RSC miRNA Tissue Kit (AS1460, Promega), according to the manufacturer’s protocol. 

The quantification of RNA was performed by DeNovix Ds-11 Spectrophotometer 

(Resnova) and Qubit 3.0 Fluorometer (Life Technologies). RNA integrity was 

evaluated with Agilent 2100 Bioanalyzer using the Agilent RNA 6000 Nano Kit. 500 ng 

of total RNA, with RNA integrity number (RIN) score between 8 and 10, was used for 

NGS Library using TruSeq Stranded mRNA Library Preparation Kit LP (48 samples) 

according to the manufacturer’s protocol. The standard RNA fragmentation profile was 

used (94 °C for 8 mim). PCR-amplified RNAseq library quality was assessed using the 

Agilent DNA 1000 kit on the Agilent 2100 BioAnalyzer and quantified using Qubit 3.0 

Fluorometer (Life Technologies). Libraries were diluted to 10 nM using Tris-HCl 

(10 mM pH 8.5) and then pooled together. The 7.5 pM diluted pool was run on MiSeq 

to evaluate library quality and balancing. Rebalanced pool was denatured according 

to the NextSeq system guide, and 1.3 pM were run on NextSeq500 using NextSeq 

500/550 High Output v2.5 kit (150 cycles). 

To calculate the coverage over-depth data, single-end FastQ files were processed as 

follows: files were aligned with MapSplice v2.2.0 (81) using mm10 assembly as 

reference genome. The generated alignment files were handled to translate genomic 

coordinates to transcriptomic ones and to filter out alignments carrying indels using 
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the sam-xlate and sam-filter commands from UNC-Chapel Hill Bioinformatics Utilities. 

The final compressed Sequence Alignment/Map (BAM) files were inspected through 

the bedtools genomecov command using -bga and -split as parameters (80). The 

generated files were further analyzed using the bedtools intersect command (80) to 

count for every genomic region the number of bases covered for each minimum depth 

value. For each region, the count of annotated MAPs was normalized using the 

number of bases covered with at least 10x depth. 

To calculate the peptide transcripts per million (TPM) the following formula was applied 

for each region: 𝑇𝑃𝑀 =
𝑃

∑(𝑃)
 ×  10⁶  where 𝑃 =

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑀𝐴𝑃𝑠 𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑖𝑛𝑔 𝑟𝑒𝑎𝑑𝑠 𝑚𝑎𝑝𝑝𝑒𝑑 𝑡𝑜 𝑒𝑎𝑐ℎ 𝑟𝑒𝑔𝑖𝑜𝑛×10³

𝑟𝑒𝑔𝑖𝑜𝑛 𝑙𝑒𝑛𝑔𝑡ℎ 𝑖𝑛 𝑏𝑎𝑠𝑒 𝑝𝑎𝑖𝑟
.  

 

 

Generation of specific peptide database for mass-spectrometry 

data search 

Each sequence contained in the FastQ files generated during the RNAseq experiment 

(Table 2) was subjected to a six-frame translation: the three possible reading frames 

in both directions of the strand. All the translated sequences were divided into KMERs 

of length 8-11 and then uniquely counted. The Mlh1+/+ specific database was built 

including KMERs (peptides) that exhibited at least 10 counts at the time of injection 

and after excision from immunocompromised mouse (NOD-SCID), and that 

disappeared in tumor masses obtained from immunocompetent mouse (BALB/c). The 

Mlh1-/- custom database was assembled as follows: first peptides that showed at least 

10 counts at the time injection and retained after excision from immunocompromised 

mouse were selected; then those peptides were compared to the sequences obtained 

in tumors growth in three immunocompetent mice. Peptide lost or strongly counter 

selected in at least one BALB/c tumor, measured as 

(𝑐𝑜𝑢𝑛𝑡𝑠𝐵𝐴𝐿𝐵/𝑐  =  0 𝑜𝑟 (𝑐𝑜𝑢𝑛𝑡𝑠𝑝𝑟𝑒−𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑  −  𝑐𝑜𝑢𝑛𝑡𝑠𝐵𝐴𝐿𝐵/𝑐  ≥ 10 𝑎𝑛𝑑 
𝑐𝑜𝑢𝑛𝑡𝑠𝑝𝑟𝑒−𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑

𝑐𝑜𝑢𝑛𝑡𝑠𝐵𝐴𝐿𝐵/𝑐
≥

10) ), were further selected. Peptide sequences found in Mlh1+/+ tumors excised from 

BALB/c and NOD-SCID were excluded from the Mlh1-/- specific database as well as 

sequences present in Mlh1+/+ cells or strongly expanded in Mlh1-/- compared to the 

Mlh1+/+ counterpart. The latter measure was calculated as follows: 



32 
 

(𝑐𝑜𝑢𝑛𝑡𝑠𝐶𝑇26−𝑀𝑙ℎ1−  −  𝑐𝑜𝑢𝑛𝑡𝑠𝐶𝑇26−𝑀𝑙ℎ1+  ≥ 10 𝑎𝑛𝑑 
𝑐𝑜𝑢𝑛𝑡𝑠𝐶𝑇26−𝑀𝑙ℎ1−

𝑐𝑜𝑢𝑛𝑡𝑠𝐶𝑇26−𝑀𝑙ℎ1+
≥ 10) . 

 

MHC-I associated peptide annotation 

Peptides identified by matching RNAseq database and the immune-peptidomic 

pipeline were further inspected to determine the genomic regions from which those 

peptides originated. For both Mlh1+/+ and Mlh1-/- peptide list, the original read name, 

the sequence, and frame of translation were retrieved. Next, the relative positions of 

the peptides inside the reads were calculated. Fasta files were generated and fed to 

blat (82) to retrieve genomic coordinates of the identified peptides. A score was 

calculated from the blat annotated files as follows: (𝑚𝑎𝑡𝑐ℎ +  𝑟𝑒𝑝. 𝑚𝑎𝑡𝑐ℎ − 𝑚𝑖𝑠 −

𝑚𝑎𝑡𝑐ℎ −  𝑄_𝑔𝑎𝑝_𝑐𝑜𝑢𝑛𝑡 −  𝑇_𝑔𝑎𝑝_𝑐𝑜𝑢𝑛𝑡). For each read only the best score output 

was selected, and a BED file was generated with the determined genomic coordinates. 

The latter BED file was further examined through the bedtools merge command using 

-d 5 -c 4 -o distinct,count as parameters (80). Next, the resulting file was matched with 

the BED file that includes all the genomic regions previously described using the 

bedtools intersect command (80). Only uniquely mapped peptides were selected. In 

case peptide reads were aligned to regions that were not uniquely annotated, the 

following priorities were assigned to the genomic regions: 1) coding sequence; 2) 

5’UTR; 3) 3’UTR; 4) intronic; 5) extragenic. Next, the annotated peptides were 

matched with the variant calling files to check the presence of SNVs and indels. Finally, 

all the peptides were examined combining the information from the canonical 

transcripts, generated from the UCSC refFlat table, to identify in-frame and out-of-

frame peptides. The analysis of edited MAPs in Mlh1-/- tumor masses excised from 

BALB/c mice was performed calculating the logn fold change from pre-injection of RNA 

read counts + 1. 
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Results 

Mutational and neoantigen landscape of MMRp and MMRd 

CRC cells 

Intrigued by the efficacy of immunotherapy in MMRd tumor patients, we studied how 

MMR altered genes affect the genomic landscape of tumors and what is the peculiar 

contribution of each gene. To this end we genetically inactivated MMR genes such as 

Mlh1, Msh2, Msh6 and Pms2 - by using the CRISPR-Cas9 technology. To avoid off-

target effects we selected two different clones generated with two different and 

independent guides for each gene. In parallel, two MMR wild type clones were 

selected as control. Each MMRp and MMRd clone was cultured in vitro for many days 

and underwent WES at 30, 90 and 150 days after the MMR inactivation. Finally, the 

mutational and neoantigenic characterization was generated using a bioinformatic 

pipeline previously described (74). Data analysis performed during the past two years 

revealed that the inactivation of Mlh1, Msh2, Msh6 and Pms2 in CT26 leads to the 

acquisition of several mutations – both SNVs and frameshift indels - during time as 

compared to the two MMRp clones (Figure 8 and 9).  

 

 
Figure 8 SNV landscape of MMRp and MMRd CRC cell models. Genomic analysis pipeline (see 

methods) was applied to MMRp (blue x-axis) and MMRd (red x-axis) CRC cells at 30 (green), 90 (blue) 

and 150 (red) days after MMR inactivation.  
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Notably, even if the absolute number of indels was lower than the number of SNVs, 

the relative increase of MMRd cells compared to MMRp cells was higher in the number 

of indels (Figure 9). 

 

 
 

Figure 9 Frameshift indels landscape in MMRp and MMRd CRC cell models. Genomic analysis pipeline 

(see methods) was applied to MMRp (blue x-axis) and MMRd (red x-axis) CRC cells at 30 (green), 90 

(blue) and 150 (red) days after MMR inactivation. 

 

Moreover, we employed SNVs and indels information to perform the neoantigen 

prediction pipeline on the same dataset (4) and the results revealed that all MMRd 

acquired more putative neoepitopes over time compared to MMRp counterparts  

(Figure 10). 
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Figure 10 Number of predicted neoantigens acquired over time in MMRp and MMRd CRC cell models. 

Neoantigen prediction pipeline (see methods) was applied to MMRp (blu) and MMRd (red) CRC cells 

at 30, 90 and 150 days after MMR inactivation. Results were grouped according to MMR status and 

statistical test was performed at each time point (Independent samples T-test: ns= not significant). 

Moreover, we calculated the relative frequency of SNV- and indel-derived neoantigens 

and the results highlighted that Mlh1-/- and Msh2-/- CRC cells showed the highest 

presence of predicted neoantigens generated from frameshift indel variants (Figure 

11). 
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Figure 11 Relative frequency of neoantigen sources in MMRp and MMRd CRC cell model after 150 

days from MMR inactivation. The percentage of alteration identity from which the neoantigens were 

predicted are shown for MMRp (green) and MMRd (red) CRC cells after 150 days from MMR 

inactivation. 

Mutational signature profiles of MMRp and MMRd CRC cell 

models 

Somatic mutations are a consequence of several endogenous or exogenous 

mutational processes such as exposure to ultraviolet light, tobacco carcinogens, 

treatment with alkylating agents and defect of DNA repair mechanisms. To investigate 

which are the mutational patterns acquired during tumor progression several Institutes 

collaborated into generate and maintain a database of mutational signatures (83). The 

most recent version of the mutational signature catalogue reports several units 

associated with DNA mismatch repair and microsatellite instability. Specifically, among 

them there are seven single base substitution (SBS) signatures: SBS6, SBS15, 

SBS20, SBS21, SBS26 and SBS44 (18). We reasoned that the noteworthy 

accumulation of genomic variants observed in MMRd CRC cells over time might be 
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reflected in their mutational signatures. To examine that, we generated the mutational 

profiles of our set of CRC cells 150 days after MMR inactivation according to the 

computational strategy employed to reveal mutational signatures. MMRp cells showed 

a mutational signature mainly composed by C>T changes (Figure 12).  

 

 
 

Figure 12 Mutational signature profile of MMRp cells. The MMRp SBS spectra consisting of 96 different 

contexts generated form the pyrimidines of the Watson-Crick base pairs - C>A, C>G, C>T, T>A, T>C, 

and T>G - and the bases immediately 5’ and 3’. 

Notably, MMRd cells showed an increase of a specific trinucleotide context among the 

C>T changes, that is GCG> GTG, and a modest but sprinkled increase of T>C (Figure 

13). 
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Figure 13 Mutational signature profile of MMRd cells. The MMRd SBS spectra consisting of 96 different 

contexts generated form the pyrimidines of the Watson-Crick base pairs - C>A, C>G, C>T, T>A, T>C, 

and T>G - and the bases immediately 5’ and 3’. 

 

Next, to confirm our hypothesis we exploited signal, an advanced computational tool, 

(78), to identify the specific mutational spectrum. Therefore, we decided to identify the 

mismatch repair associated mutational signature on our set of MMRp and MMRd CRC 

samples at 30, 90 and 150 after MMR inactivation. The results revealed that the 

number of mutations contributing to the generation of MMR specific mutational 

signature was stable over time (Figure 14). Conversely, MMRd CRC showed a higher 
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number of mutations associated with MMR specific signature that increased over time 

(Figure 14). 

 

 
 

Figure 14 Prevalence of mutations that specifically contributes to MMR damage associated signature. 

Mutational signature profile was extracted using signal (see methods) and the number of alterations 

that contributed to the generation of MMR damage associated signature are reported for MMRp and 

MMRd CRC cells. 

Characterization of edited alterations in MMR-proficient and -

deficient CRC cells 

To characterize the landscape of alterations edited by the immune system when the 

cancer cells were grown in vivo, we exploited previously described syngeneic mouse 

models (8, 77). We examined the impact of the immune system on cancer cells by 

injecting MMR-proficient and -deficient cells into immunocompromised (NOD-SCID) 

and immunocompetent mice (BALB/c) (Figure 15A).  
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Figure 15 Analysis of edited mutations in MMR-proficient and -deficient CT26 after injection in 

immunocompromised and -competent mice. (A) Experimental workflow employed for the analysis of 

edited mutations in WGS data of CT26 Mlh1+/+ and Mlh1-/- samples. Briefly, each CT26 clone was 

inoculated into NOD-SCID (immunocompromised) and BALB/c (immunocompetent) mice. CT26 MMR-

proficient and -deficient tumors underwent WGS at the time of injection and after excision from the mice. 

Delta between log fold changes evaluated after injection in immunocompromised and -competent mice 

in CT26 Mlh1+/+ (B) and CT26 Mlh1-/- (C). Log fold changes analysis of gained and lost alterations were 

calculated from CT26 Mlh1+/+ and Mlh1-/- pre-injection data respectively. The alterations were grouped 

in regions and normalized per Mb before log fold change calculation. 

 

Tumor cells were subjected to high depth WGS at the day of mouse implantation and 

at the time of excision, i.e., after 15 days of growth in mice (Table 1).  

 

Sample Reads Mapped: Median depth: 

BALB/c 1078015820 99.56% 105 

CT26 Mlh1+/+ 958072282 99.61% 91 

CT26 Mlh1+/+ post BALB/c M1 877846209 99,66% 83 

CT26 Mlh1+/+ post BALB/c M2 856369151 99,63% 80 

CT26 Mlh1+/+ post BALB/c M3 1088138369 99.75% 103 

CT26 Mlh1+/+post NOD-SCID M1 915507037 99.61% 85 

CT26 Mlh1+/+post NOD-SCID M2 964605317 99.62% 92 
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CT26 Mlh1+/+post NOD-SCID M3 888087399 99.58% 82 

CT26 Mlh1-/- 1083850382 99.71% 104 

CT26 Mlh1-/- post BALB/c M2 996468559 99.59% 90 

CT26 Mlh1-/- post BALB/c M6 1038671151 99.52% 94 

CT26 Mlh1-/- post BALB/c M7 1089980019 99.63% 106 

CT26 Mlh1-/- post NOD-SCID M5 1022739553 99.63% 100 

CT26 Mlh1-/- post NOD-SCID M7 854313322 99.59% 81 

 

Table 1 List of WGS analyses performed in CT26 samples. 

 

To assess whether and how the genomic profile of Mlh1+/+ and Mlh1-/- tumor cells 

evolved in the presence of a competent or compromised immune system, we first 

evaluated the mutational landscape of each sample. More precisely, we calculated the 

number of alterations per Mb that emerged in each distinct genomic region (Figure 

16A and 16B). 

 

 

Figure 16 Characterization of alterations in CT26 samples before and after injection in 

immunocompromised and -competent mice. Number of alterations per Mb calculated in every genomic 

region of CT26 Mlh1+/+ (A) and CT26 Mlh1-/- (B) pre- and post-growth in immunocompromised and -

competent mice calculated by WGS. The alterations were grouped in regions and normalized per Mb. 

Log fold change analysis of gained and lost alterations from pre-injection evaluated after tumor growth 
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of CT26 Mlh1+/+ (C) and CT26 Mlh1-/- (D) in immunocompromised and -competent mice. The alterations 

were grouped in regions and normalized per Mb before log fold change calculation. (Mann-Whitney U 

test: ns non-significant). 

 

We found no differences in the mutational spectrum of MMR-proficient cells pre- and 

post-injection in both immunocompetent and -compromised mouse models (Figure 

16A). Overall, these results showed no evidence of immune edited mutations in MMRp 

tumors grown in immunocompetent mice. Conversely, a considerable increase in 

alterations in all genomic regions of Mlh1-/- cells were observed, particularly in the non-

coding areas (Figure 16B). Moreover, a considerable decrease in mutations per Mb 

was observed in MMR-deficient cells grown in immunocompetent mice compared to 

cells before the injection and grown in immunocompromised mice. This result 

prompted us to examine the contribution of the immune system against antigenic 

mutations; to this end, we calculated the mutational differences of MMR-proficient and 

-deficient cancer cells that grew in immunocompetent and -compromised mice. 

Specifically, we evaluated the log fold change from preimplantation cells of gain and 

lost mutations after tumors growth in vivo (Figure 16C and 16D). No differences were 

observed in gain and lost mutations in Mlh1+/+ clones after injection in 

immunocompromised and -competent mice (Figure 15B). On the contrary, a marked 

shrinkage (log fold change) was evident in 5’UTR and coding regions of the CT26 

Mlh1-/- genome (Figure 15C); overall these data suggest that sequences generated in 

those regions were supposed to be removed by the activity of the immune system. 

Identification of MHC class I associated peptides  

We studied the impact of the immune system on the mutational profile in the coding 

and non-coding regions at the protein level. We reasoned that non-coding regions 

affected by immune-editing in Mlh1-/- cells should have been transcribed, translated, 

and further processed to be presented as a (neo)antigens on the cell surface, allowing 

the generation of (neo)peptides from genomic non-coding areas. We hypothesized 

that the non-coding regions counter-selected by the immune system encompass 

unconventional MAPs induced by inactivation of the MMR pathway. To test this 

hypothesis, we developed an extensive neoantigen identification pipeline integrating 

whole genome and RNA sequencing and an immune-peptidomic investigation through 

mass-spectrometry analysis (Figure 17).  
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Figure 17 Pipeline design for MAP identification. (A) WGS data were generated from CT26 Mlh1+/+ and 

Mlh1-/- samples and analyzed using IDEA pipeline (see methods) (74)in order to produce the alignment 

and variant calling files. (B) RNAseq data were further generated from CT26 Mlh1+/+ and Mlh1-/- 

samples. FastQ files were handled to produce the list of all putative peptides present in the 

transcriptome of each sample. In brief, every transcript sequence in the FastQ files underwent all-six 

frame translation; then the lists of 8-11 amino-acid long peptides were generated using the KMER 

approach; finally, the peptide lists were compared to select only peptides edited in tumors excised from 

immunocompetent mice (see methods). (C) CT26 Mlh1+/+ and Mlh1-/- tumor masses were explanted 

from NOD-SCID mice (n=6 per group) and protein extraction was performed. MHC-I was isolated from 

whole protein lysates through H-2d antibodies conjugated to resin, then peptides were eluted from 

MHC-I and injected in a mass spectrometer. The MS data were then analyzed using MaxQuant. 

Peptides were searched against the customized DB made of edited peptides generated by RNAseq 

data. (D) Sequence results obtained from the immune-peptidomic pipeline were ultimately matched with 

WGS data to retrieve information about the genomic sources of edited peptides (see methods). 

 

As mentioned before, at first, we performed WGS on Mlh1+/+ and Mlh1-/- before- and 

after growth in BALB/c and NOD-SCID mice (Figure 15A). Through genomic analysis 

of these samples, we generated the variant calling files. Then, RNA extracted from the 

same samples was also sequenced (Table 2).  
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Sample Mates Mapped: 

CT26 Mlh1+/+ 62164033 98.73% 

CT26 Mlh1+/+ post BALB/c M3 61712173 98.20% 

CT26 Mlh1+/+post NOD-SCID M2 59494801 98.72% 

CT26 Mlh1-/- 53045412 98.75% 

CT26 Mlh1-/- post BALB/c M2 57481236 98.92% 

CT26 Mlh1-/- post BALB/c M6 59195273 98.82% 

CT26 Mlh1-/- post BALB/c M7 58457417 98.80% 

CT26 Mlh1-/- post NOD-SCID M5 60813574 98.88% 

 

Table 2 List of RNAseq performed in CT26 samples. 

 

However, the RNAseq FastQ files were not aligned to the reference transcriptome (in 

contrast to procedures previously performed for the genomic pipeline); instead, the 

raw data were used to create two different databases containing all the peptides that 

could originate from the transcripts of both the MMR-proficient and -deficient cancer 

cells (Figure 17B). Ultimately, we applied the immune-peptidomic pipeline to unveil the 

antigenic profile presented by the MHC class I on the surface of Mlh1+/+ and Mlh1-/- 

cells (Figure 17C). Briefly, we performed MHC-I immunoprecipitation on protein 

lysates of both MMR-proficient and -deficient tumors grown in immunocompromised 

animals. Next, peptides eluted from the MHC-I molecules, were analyzed by LC-

MS/MS, and searched against customized reference databases that contained all 

putative peptide sequences selected by RNAseq analysis. The specificity of each 

peptide was verified by a cross-check of the Mlh1+/+ and Mlh1-/- databases on both 

samples: Mlh1+/+ eluted peptides against the Mlh1-/- specific database and vice versa. 

Through this approach we selected only Mlh1-/- exclusive peptides (Mlh1-/- specific 

database), whilst all the peptides eluted from both MMR-proficient and MMR-deficient 

samples were included in the Mlh1+/+ database. Finally, we merged the results from 

the mass-spectrometry analysis and the WGS analysis to characterize the mutational 

status and annotate the genomic origin of MAPs (Figure 17D). 
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Identification of edited peptides in Mlh1+/+ and Mlh1-/- tumor 

cells 

To generate a peptide database for mass-spectrometry analysis we exploited two 

mouse models, with severely compromised (NOD-SCID) or proficient (BALB/c) 

immune systems. This strategy allowed us to select only peptides putatively edited by 

a functional immune system. The RNAseq analysis of tumor cells, from which we 

inferred the peptide sequences, revealed more than 2469 million possible amino acid 

sequences from Mlh1+/+ transcripts (Figure 18A). 

 

Figure 18 Identification of edited MAPs in Mlh1+/+ and Mlh1-/- tumor cells. (A) The peptide list generated 

from RNAseq analysis of CT26 Mlh1+/+ cells grown in vitro was compared to the corresponding lists 

obtained after tumor growth in mice. Thus, peptides lost after injection in immunocompetent BALB/c 

mice and retrieved after inoculation in immunocompromised NOD-SCID mice were selected. The 

overlap of these two peptide datasets generated the database of CT26 Mlh1+/+ edited peptides. (B) 

Peptide lists generated from RNAseq analysis in Mlh1-/- samples before and after in vivo growth were 

compared. This allowed the identification of peptides lost after injection in immunocompetent BALB/c 

mice but maintained in immunocompromised NOD-SCID mice. The overlap of these two datasets 

generated a list of peptides from which specific CT26 Mlh1+/+ sequences were removed. The latter list 

created the edited peptides database specific to CT26 Mlh1-/-. 
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To specifically gather the peptides that trigger a proficient immune activation, we 

selected the translated sequences that were counter selected after cell inoculation into 

immunocompetent animals and crossed these results with the sequence list retained 

after Mlh1+/+ cells injection into immunocompromised mice. The combined results 

generated a list of 305506 peptides from which a custom database for Mlh1+/+ cells 

was built. The same workflow was used for Mlh1-/- cells leading to the identification of 

99 million sequences that were immune edited in the BALB/c mouse (Figure 18B). We 

excluded peptides also present in Mlh1+/+ cells from this list, since our aim was to 

identify sequences induced by the inactivation of MMR machinery which were edited 

by the immune system. A total of 193312 sequences were identified in the Mlh1-/- 

custom database (Figure 18B). 

Before applying the immune-peptidomic pipeline (Figure 17C), using the above-

described custom databases, we verified cell surface levels of MHC class I in both 

MMR-proficient and -deficient cell models (Figure 19).  

 

 

 

Figure 19 MHC class I levels in CT26 Mlh1+/+ and Mlh1-/-. (A) MHC class I surface expression in CT26 

Mlh1+/+ and Mlh1-/- measured by FACS. The gray line corresponds to staining with an isotype control 

antibody. (B) The percentage of MHC class I positive cells and the mean of fluorescence intensity were 

depicted for three biological replicates. 

 

The overall approach identified 417 peptides specifically exposed on Mlh1+/+ surface, 

whilst 775 peptides were found to be specific of Mlh1-/- tumors (Table 3). 
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Sample 
Mlh1+/+ or Mlh1-/- 

custom database 

Uniprot mouse 

database 

CT26 Mlh1+/+ post NOD SCID 417 234 

CT26 Mlh1-/- post NOD SCID 775 362 

 

Table 3 List of LC-MS/MS run results in CT26 samples. 

MAP classification in Mlh1+/+ and Mlh1-/- murine CRC cell line 

To identify the genomic regions from which MAPs originated, we exploited WGS data. 

First, we investigated the resulting peptides among the translated DNA sequences 

generated in Mlh1+/+ and Mlh1-/- cells. Then, we ran a refining alignment of peptide 

derived from the specific reads, and we annotated them on the mouse genome. Next 

each genomic region was assigned to coding, 3’UTR, 5’UTR, intronic or extragenic 

labels. Moreover, according to the open reading frame of the sequences and the 

canonical isoforms annotated in the mouse transcriptome each peptide was further 

annotated as in-frame and out-of-frame. In total, we were able to confidently annotate 

396 (95%) and 665 (86%) MAPs in Mlh1+/+ and Mlh1-/- cells respectively. Interestingly, 

our results showed that most MAPs derived from non-coding regions (Figure 20A). 



48 
 

 

Figure 20 MMR-proficient and -deficient CT26 cells showed a high number of edited non-canonical 

MAPs. (A) The number of MAPs annotated at genomic level in CT26 Mlh1+/+ and Mlh1-/- samples are 

reported in light colors. mMAPs are highlighted in solid colors. (B) The number of annotated MAPs was 

normalized (per Mb) in CT26 Mlh1+/+ and Mlh1-/- samples and are reported in light colors. mMAPs are 

highlighted in solid colors. 

 

More specifically, the majority of them were classified as non-canonical, since many 

MAPs, albeit originated from coding regions, showed out-of-frame translations in both 

MMR-proficient and -deficient cells. We took advantage of the variant calling files 

obtained from the genomic analysis pipeline to study which type of mutations (SNVs 

or indels) affected the MAPs. Notably, mMAPs were most abundant in Mlh1-/- cells and 

were mainly located in coding and UTR regions (Figure 20A). On the contrary, Mlh1+/+ 

cells provided only a few mMAPs. 

We considered that the polyA capture technique of RNA molecules for the subsequent 

RNAseq analysis could have perturbed the prevalence of MAPs in specific regions 

since they were better represented in the transcriptome. For this reason, we calculated 

the covered base pairs in each sample (Figure 21) and then re-evaluated the peptide 

classification after normalizing the data for this parameter. This analysis showed a 
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higher prevalence of 5’UTR-derived MAPs per Mb in both Mlh1+/+ and Mlh1-/- models, 

while the overall trend of all other regions did not change (Figure 20B). 

 

Figure 21 Coverage over depth analysis in all genomic regions of CT26 generated from RNA 

sequencing. The percentage of covered bases at single depth value resolution was calculated for each 

genomic region of Mlh1+/+ (A) and Mlh1-/- RNAseq data (B). 

 

To assess the reliability of our workflow we decided to apply the immune-peptidomic 

pipeline against the UniProt mouse database (Figure 22A). We identified 171 mouse 

MAPs in common to both MMR-proficient and -deficient cells, while 63 and 191 

exclusive MAPs were found in the Mlh1+/+ and Mlh1-/- clones respectively (Table 3, 

Figure 22B). As expected, almost all the sequences present in the mouse canonical 

database were classified as coding. 
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Figure 22 Characterization of the canonical peptide database. (A) Streamlined workflow of the immune-

peptidomic pipeline in which MS spectra are matched to the UniProt mouse database. (B) Heatmap 

showing the peptide calls in CT26 Mlh1+/+ and Mlh1-/- samples searching throughout the UniProt mouse 

database. The first heatmap column displays the genomic region (GR) annotation. 

 

To further corroborate our findings, we determined the change in the expression levels 

of each edited MAP in Mlh1-/- tumors grown in immunocompetent mice, considering 

the biological variability of expression across different animals. To this end, we 

evaluated the quantity of RNA sequences supporting the peptide calls in CT26 Mlh1-/- 

before- and after-growth in immunocompetent animals and then we calculated the log 

fold change (Figure 23A). Notably, mMAPs exhibited a lower expression in Mlh1-/- cells 

grown in mice as compared to wild type MAPs, suggesting that those sequences were 

potently and efficiently targeted by the immune system of the host. Indeed, fold change 

analysis revealed a statistically significant reduction of mMAP transcripts (grouped in 

coding and non-coding) compared to wild type MAPs in Mlh1-/- cells grown in 

immunocompetent mice (Figure 23B). 
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Figure 23 Immune editing of mutated MAPs in CT26 Mlh1-/-. (A) Log fold change analysis performed 

between transcript values of CT26 Mlh1-/- peptides at the time of injection over those found after tumor 

excision from immunocompetent mice (dark green bars). The values are sorted from the lowest, i.e., 

the most edited MAPs, to the largest one, that is the least edited. In gray, the standard deviation among 

the three mice measurement is reported. (B) Log fold changes from pre-injection values were grouped 

according to the peptide mutational status (Independent samples T-test: *** p-value < 0.0005). 
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Discussion 

Although molecular defects in the MMR machinery may be considered an escape 

strategy that leads cancer to a rapid evolution and uncontrolled dissemination, 

considerable evidence has highlighted how this is a double-edged sword for tumor 

cells (84). We previously showed that MMRd tumors trigger a remarkable immune 

response owing to their high neoantigen burden (8). We reported that a higher CD8+ 

T-cell infiltration was present in the tumor microenvironment alongside a high number 

of distinct TCR rearrangements in blood of tumor-bearing mice (8).  

In this work, we used CT26 mouse cell model to understand whether and to what 

extent alterations of DNA repair products modulate neoantigen profiles over time and 

how these can contribute to the immunogenic properties of MMRd CRCs. We 

exploited the CRISPR-Cas9 technology to genetically inactivate four key components 

of MMR pathway - Mlh1, Msh2, Msh6 and Pms2 – and consequently generate four 

MMRd CRC mouse cell models. Together with two MMRp CRC cells, they were 

passaged in vitro several times and WES data were generated. CRC cells carrying 

MMR defects accumulated a great number of mutations which led generating novel 

predicted peptides. Among the others, Mlh1-/- and Msh2-/- cells presented the highest 

prevalence of neoantigens after 150 days from the MMR inactivation. Moreover, those 

cells also showed the highest incidence of indel-derived neoantigens. 

It has also been reported that somatic mutations accumulated throughout cell activity 

may leave a fingerprint on the DNA. Indeed, malfunction of the DNA repair system 

could affect not only the quantity but also the quality of mutations. Therefore, we 

deeply examined the mutational pattern acquired in MMRp and MMRd cells and our 

results revealed that MMRd induced mutations clearly defined a specific signature 

profile associated with DNA repair damages. 

Our analysis was performed in line to the conventional strategy used in research and 

clinical practice by inspecting the coding DNA that defines the landscape of tumor 

neoantigens. However, it is currently unknown whether and to what extent the non-

canonical neoantigen landscape, sometimes referred to as the “dark” side of the 

genome (i.e., the non-coding part), plays a role in the immunogenic features of MMRd 

tumors. Laumont and colleagues demonstrated that in murine cancer cell lines and in 

human primary tumors, 90% of the identified tumor-associated antigens had originated 

from non-canonical regions (55, 63). In addition, Chen and colleagues recently 
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demonstrated that 240 non-canonical peptides derived from upstream open reading 

frames located in the 5’UTR and long non-coding RNAs of extragenic DNA were 

presented by the HLA of human tumor cell lines (62). This new knowledge would not 

have been generated if the tumor associated antigens were identified by standard 

exome-based approaches. A recent work by Cleyle and colleagues demonstrated the 

presence of MAPs originating from non-coding regions in MSS and MSI CRCs (85). 

However, it remains largely unknown whether tumor specific antigens loaded on the 

MHC class I can trigger an immune response (85). Current human models do not allow 

to determine whether MAPs can be edited by the immune system of the host. To bridge 

this gap, we studied the contribution of tumor associated antigens originating from 

non-canonical genome in a MMRd murine cell line and its isogenic MMRp counterpart. 

We performed high depth WGS of Mlh1+/+ and Mlh1-/- isogenic CT26 cells and 

observed an increase of the mutational burden associated with mismatch repair 

inactivation across all the genome and particularly in the extragenic and intronic 

portions. Then, we injected both isogenic cell lines into immunocompromised and 

immunocompetent mice and used WGS to establish the mutational burden and to 

identify the genome areas poorly represented after in vivo growth which we considered 

as evidence that immune editing had occurred. Interestingly, we found a significant 

reduction of alterations in the coding, 5’UTR and 3’UTR regions in Mlh1-/- tumors 

grown in immunocompetent mice. Next, to identify peptides loaded on the MHC class 

I complex we built an immune-peptidomic pipeline combining RNA sequencing and 

mass spectrometry technology. Since the identification of amino acid sequences 

bound to the MHC class I complex requires a list of candidate peptides to be matched 

with, we assembled two specific RNA databases with all the peptide sequences 

potentially generated by the transcripts of MMRp and MMRd CT26 cell lines. We 

specifically selected peptides retained in tumors grown in immunocompromised mice 

and at the same time lost in immunocompetent mice. To selectively identify peptides 

originating as a result of a defective MMR system, Mlh1+/+ sequences were removed 

from the Mlh1-/- database. This approach led the identification of hundreds of MAPs in 

Mlh1+/+ and Mlh1-/- CT26 cells. Finally, to characterize the mutational status and the 

areas of the genome from which MAPs originated, the sequences obtained from the 

immune-peptidomic pipeline were combined with the WGS data. Our results show that 

in both Mlh1+/+ and Mlh1-/- cells most of the MAPs edited in immunocompetent mice 

originated from non-coding DNA portions in accordance with previous studies (55, 86). 
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Furthermore, the non-mutated MAPs targeted by the immune system in Mlh1-/-
 

predominantly originated from non-coding regions whereas mutant MAPs derived 

primarily from the UTR and coding regions. To define the relative contribution in terms 

of immunogenicity between non-mutated MAPs and mMAPS, we first calculated their 

representativeness by the number of supported RNA sequences; then, we calculated 

the fold change between the number of MAPs lost in tumor cells after in vivo growth 

and those previously present at the day of injection. Interestingly, we observed that 

the mMAPs were immune edited more than the non-mutated sequences. 

A limitation of the present study is that a definitive conclusion cannot be drawn on the 

efficacy of single peptides in prompting an immune response. Future studies are 

needed to functionally validate the identified peptides either by vaccination strategy or 

in vitro immune activation assays. In conclusion, we provide functional evidence that 

non-coding DNA sequences, which represent 98% of the genome, can contribute to 

the immunogenic features of MMRd tumors. Additionally, our findings support the 

relevance of a thorough characterization of tumor samples at the genomic levels 

including the often overlooked “dark” portion of the genome.  

 

An elevated mutational burden is currently considered a promising independent 

prognostic biomarker for MMRd cancer (87, 88). In addition, many CRC patients 

display a low TMB, and are not considered good candidates for ICB therapies. 

However, most TMB analyses are performed by WES or by custom panels that include 

a limited number of genes or a portion of them. Accordingly, in most of the studies, the 

extragenic areas of the genome, that are the vast majority of the entire DNA sequence, 

are not included in the TMB evaluation. This is noteworthy considering recent findings 

from Frigola and colleagues that demonstrate how generation of mutations occurs at 

lower levels in coding than in the non-coding regions (89). Notably, they showed that 

mismatches in exonic DNA are repaired by MMR more efficiently than in their intronic 

counterparts. Therefore, non-coding regions could accumulate more alterations during 

tumor evolution as a result of distinct DNA repair efficiency. These findings lead us to 

speculate that: i) the evaluation of the extragenic part of the genome could improve 

the definition of the tumor mutational landscape; ii) in MMRd tumors the contribution 

of extragenic alterations to generating an immune response could be more impactful 

than the intragenic part, considering the diverse level of fidelity between intra- and 

extragenic DNA repair pathways.  
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Conclusions and future perspectives 

Our results reveal the importance of evaluating the diversity of neoepitope repertoire 

in MMRd tumors to better understand the mechanisms behind the immunogenic 

properties of these tumor types. We showed that alterations in MMR affect both the 

quantity of mutations and how these are distributed in the entire genome. 

Our study also highlights the role of non-canonical MAPs in triggering an immune 

response in MMRd mouse models. We point out that 5’UTR and 3’UTR regions are a 

source of mutated peptides that can be loaded on the MHC class I complex. 

Furthermore, we found that these candidate mMAPs are lost after growth of MMRd 

CRC tumors in immunocompetent animals whereas they are preserved in 

immunocompromised mice. These results suggest that non-canonical MAPs are 

targeted by the immune system of the host contributing to the immune editing process 

that controls MMRd tumor growth. 

We provide a proof-of-concept that in MMRd tumors non-canonical translational 

events across the entire genome, i.e., translation of non-coding and out-of-frame 

coding regions, can effectively contribute to the immunogenic properties of these 

tumor types. Moreover, the action of the immune system against non-coding region 

derived neoantigens could be more relevant than that against peptides generated from 

the intragenic part, considering the diverse level of fidelity between intra- and 

extragenic DNA repair.  

Finally, our results pinpoint the contribution of non-canonical neoantigens in the 

positive outcome of MMR deficient CRC tumors and provide the rationale for exploring 

the immunogenic contribution of non-coding genome also in the majority of MMR 

proficient CRC patients that are immune refractory and not eligible for immune-based 

therapies. 
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